
sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 1 of 187

Solution Deployment Descriptor
Specification Version 2.0
Committee Specification Draft 01 /
Public Review Draft 01

10 November 2010
Specification URIs:
This Version:

http://docs.oasis-open.org/sdd/sdd/v2.0/csprd01/sdd-v2.0-csprd01.html
http://docs.oasis-open.org/sdd/sdd/v2.0/csprd01/sdd-v2.0-csprd01.doc (Authoritative)
http://docs.oasis-open.org/sdd/sdd/v2.0/csprd01/sdd-v2.0-csprd01.pdf

Previous Version:
http://docs.oasis-open.org/sdd/v1.0/os/sdd-spec-v1.0-os.html
http://docs.oasis-open.org/sdd/v1.0/os/sdd-spec-v1.0-os.doc (Authoritative)
http://docs.oasis-open.org/sdd/v1.0/os/sdd-spec-v1.0-os.pdf

Latest Version:
http://docs.oasis-open.org/sdd/sdd/v2.0/sdd-v2.0.html
http://docs.oasis-open.org/sdd/sdd/v2.0/sdd-v2.0.doc (Authoritative)
http://docs.oasis-open.org/sdd/sdd/v2.0/sdd-v2.0.pdf

Technical Committee:
OASIS Solution Deployment Descriptor (SDD) TC

Chair(s):
Brent Miller, IBM Corporation

Editor(s):
Merri Jensen, SAS Institute, Inc.

Related work:
This specification replaces or supercedes:

• Solution Deployment Descriptor Specification 1.0 OASIS Standard
Declared XML Namespace(s):

sdd-common=http://docs.oasis-open.org/sdd/ns/common
sdd-pd=http://docs.oasis-open.org/sdd/ns/packageDescriptor
sdd-dd=http://docs.oasis-open.org/sdd/ns/deploymentDescriptor

Abstract:
This specification defines schema for two XML document types: Package Descriptors and
Deployment Descriptors. Package Descriptors define characteristics of a package used to deploy
a solution. Deployment Descriptors define characteristics of the content of a solution package,
including the requirements that are relevant for creation, configuration and maintenance of the
solution content. The semantics of the descriptors are fully defined, allowing software
implementations to precisely understand the intent of the descriptor authors and to use the
information provided in the descriptors to support solution deployment.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 2 of 187

Status:
The OASIS Solution Deployment Descriptor (SDD) Technical Committee approved Working Draft
01 as a Committee Specification Draft on 26 October 2010. Check the “Latest Version” or “Latest
Approved Version” location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sdd/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sdd/ipr.php.

Citation Format:
When referencing this specification the following citation format should be used:

SDD2.0 OASIS Committee Specification Draft 01, Solution Deployment Descriptor
Specification Version 2.0, 26 October 2010. http://docs.oasis-
open.org/sdd/sdd/v2.0/csd01/sdd-v2.0-csd01.doc

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 3 of 187

Notices
Copyright © OASIS® 2007, 2010. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS" and “SDD” are trademarks of OASIS, the owner and developer of this specification,
and should be used only to refer to the organization and its official outputs. OASIS welcomes reference
to, and implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 4 of 187

Table of Contents
Notices .. 3
Table of Contents ... 4
1 Introduction .. 9

1.1 Terminology ... 9
1.2 Purpose .. 9
1.3 Scope ... 10
1.4 Audience .. 10
1.5 How to Read this Document .. 10
1.6 Motivation ... 10
1.7 Requirements ... 11
1.8 XML Namespaces .. 13
1.9 Notational Conventions .. 13
1.10 General Document Conventions .. 13
1.11 Diagram Conventions ... 13
1.12 Normative References ... 15
1.13 Non-Normative References .. 16

2 Solution Deployment Descriptor Overview .. 17
2.1 Package and Deployment Descriptors ... 17
2.2 Topology .. 17
2.3 Content and Artifacts .. 17
2.4 Resulting and Changed Resources ... 18
2.5 Base, Selectable and Localization Content Hierarchies .. 18
2.6 Constraints ... 19
2.7 Requirements ... 19
2.8 Conditions .. 19
2.9 Variables .. 20

3 Package Descriptor .. 21
3.1 PackageDescriptor ... 21

3.1.1 PackageDescriptor Property Summary ... 21
3.1.2 PackageDescriptor Property Usage Notes ... 22

3.2 DescriptorInfoGroup ... 22
3.2.1 DescriptorInfoGroup Property Usage Notes ... 23

3.3 PackageIdentityType .. 24
3.3.1 PackageIdentityType Property Summary ... 25
3.3.2 PackageIdentityType Property Usage Notes .. 25

3.4 IdentityType .. 26
3.4.1 IdentityType Property Summary ... 27
3.4.2 IdentityType Property Usage Notes .. 27

3.5 MaintenanceInformationType ... 28
3.5.1 MaintenanceInformationType Property Summary .. 28
3.5.2 MaintenanceInformationType Property Usage Notes ... 29

3.6 FixIdentityType ... 29
3.6.1 FixIdentityType Property Summary ... 29

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 5 of 187

3.6.2 FixIdentityType Property Usage Notes ... 30
3.7 BuildInformationType ... 30

3.7.1 BuildInformationType Property Summary ... 30
3.7.2 BuildInformationType Property Usage Notes .. 30

3.8 ManufacturerType .. 31
3.8.1 ManufacturerType Property Summary .. 31
3.8.2 ManufacturerType Property Usage Notes .. 31

3.9 LocationType .. 31
3.9.1 LocationType Property Summary ... 32
3.9.2 LocationType Property Usage Notes .. 32

3.10 VersionType ... 32
3.11 ContentsType ... 32

3.11.1 ContentsType Property Summary ... 32
3.11.2 ContentsType Property Usage Notes ... 32

3.12 ContentType ... 33
3.12.1 ContentType Property Summary .. 33
3.12.2 ContentType Property Usage Notes ... 34

3.13 DigestInfoGroup ... 34
3.13.1 DigestInfoGroup Property Usage Notes ... 35

4 Deployment Descriptor .. 36
4.1 DeploymentDescriptor .. 36

4.1.1 DeploymentDescriptor Property Summary ... 36
4.1.2 DeploymentDescriptor Property Usage Notes .. 37

4.2 Topology .. 38
4.2.1 TopologyType ... 38
4.2.2 ResourceType ... 40
4.2.3 PropertyType .. 43
4.2.4 ResultingPropertyType ... 44

4.3 Atomic Content Elements ... 44
4.3.1 InstallableUnitType ... 46
4.3.2 ConfigurationUnitType .. 50
4.3.3 ArtifactType ... 52
4.3.4 InstallationArtifactsType .. 55
4.3.5 ConfigurationArtifactsType .. 56
4.3.6 OperationListType ... 56
4.3.7 OperationType .. 56
4.3.8 ArgumentListType ... 57
4.3.9 ArgumentType .. 58
4.3.10 OutputVariableListType .. 59
4.3.11 OutputVariableType .. 59
4.3.12 AdditionalContentType .. 60
4.3.13 SubstitutionType ... 61
4.3.14 CompletionType .. 62

4.4 Constraints ... 63
4.4.1 CapacityConstraintType .. 64

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 6 of 187

4.4.2 CapacityValueType ... 65
4.4.3 ConsumptionConstraintType .. 66
4.4.4 ConsumptionConstraintValueType ... 68
4.4.5 PropertyConstraintType .. 69
4.4.6 PropertyValueListType .. 70
4.4.7 VersionConstraintType ... 70
4.4.8 VersionConstraintValueType .. 71
4.4.9 VersionValueType ... 72
4.4.10 VersionRangeType ... 72
4.4.11 MaxVersionType ... 73
4.4.12 UniquenessConstraintType ... 74
4.4.13 RelationshipConstraintType .. 75
4.4.14 AuthorizationConstraintType ... 76

4.5 Conditions .. 77
4.5.1 ConditionType ... 77
4.5.2 AlternativeConditionalType ... 79
4.5.3 ConditionalResourceConstraintType .. 80
4.5.4 ConditionalPropertyConstraintType .. 82

4.6 Variables .. 83
4.6.1 VariableExpressionType ... 83
4.6.2 ElementValueType .. 84
4.6.3 StringPatternType ... 84
4.6.4 BaseVariableType ... 85
4.6.5 VariablesType ... 86
4.6.6 ParametersType ... 87
4.6.7 BaseParameterType ... 88
4.6.8 IntegerParameterType .. 90
4.6.9 BoundaryType ... 91
4.6.10 StringParameterType .. 92
4.6.11 StringCaseType .. 93
4.6.12 BooleanParameterType .. 94
4.6.13 URIParameterType ... 95
4.6.14 ComplexParameterType ... 96
4.6.15 ArrayParameterType ... 99
4.6.16 IntegerDataType ... 101
4.6.17 StringDataType ... 101
4.6.18 ResourcePropertyType ... 103
4.6.19 DerivedVariableType .. 104
4.6.20 ConditionalDerivedVariableExpressionType ... 105

4.7 Requirements ... 105
4.7.1 RequirementsType .. 106
4.7.2 RequirementType ... 107
4.7.3 AlternativeRequirementType .. 109
4.7.4 ResourceConstraintGroup .. 110
4.7.5 RequirementResourceConstraintType .. 112

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 7 of 187

4.7.6 InternalDependencyType .. 114
4.7.7 DependencyType .. 115
4.7.8 RequiredBaseType ... 116
4.7.9 RequiredBaseConstraintType ... 117
4.7.10 AlternativeRequiredBaseConstraintType .. 119

4.8 Resulting and Changed Resources ... 120
4.8.1 ResultingResourceType .. 121
4.8.2 ResultingChangeType .. 123
4.8.3 RelationshipType .. 125

4.9 Composite Content Elements .. 126
4.9.1 CompositeInstallableType ... 127
4.9.2 CompositeUnitType .. 131

4.10 Aggregation .. 133
4.10.1 ReferencedPackageType ... 137
4.10.2 ResourceMapType .. 141
4.10.3 ResultingResourceMapType ... 142
4.10.4 ResultingChangeMapType ... 144
4.10.5 RequisitesType ... 145

4.11 Base Content ... 146
4.11.1 BaseContentType ... 146

4.12 Content Selectability .. 147
4.12.1 SelectableContentType ... 148
4.12.2 GroupsType .. 149
4.12.3 GroupType .. 150
4.12.4 FeaturesType .. 151
4.12.5 FeatureType .. 152
4.12.6 NestedFeatureType .. 154
4.12.7 MultiplicityType ... 157
4.12.8 FeatureReferenceType ... 158
4.12.9 ContentElementReferenceType .. 159
4.12.10 PackageFeatureReferenceType ... 159
4.12.11 ConstrainedResourceType ... 160
4.12.12 MultiplicityConstraintType ... 161
4.12.13 RequiredContentSelectionType .. 161
4.12.14 ContentSelectionFeatureType .. 162
4.12.15 MultiSelectType .. 162

4.13 Localization .. 163
4.13.1 LocalizationContentType .. 164
4.13.2 LocalizationUnitType ... 165
4.13.3 CompositeLocalizationUnitType ... 169
4.13.4 LanguageSelectionsType ... 172
4.13.5 OptionalLanguagesType ... 172
4.13.6 LanguagesType .. 173
4.13.7 LanguageType .. 174
4.13.8 LanguageSetType ... 174

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 8 of 187

4.14 Display Information .. 175
4.14.1 DescriptionGroup .. 175
4.14.2 DisplayElementGroup ... 176
4.14.3 DisplayTextType ... 176

5 Conformance ... 177
5.1 General Conformance Statements ... 177
5.2 Conformance Levels .. 177

5.2.1 CL Capabilities .. 177
5.2.2 Conformance Level Differences .. 178

5.3 Profiles ... 180
5.3.1 Profile Creation ... 180
5.3.2 Profile Publication ... 180
5.3.3 Profile Applicability .. 181

5.4 Compatibility Statements ... 181
5.5 Conformance Clause ... 181

5.5.1 Conformance for Users of This Specification .. 181
5.5.2 Conformance for This Specification Itself ... 181

A. Schema and Non-Normative Resource File List .. 183
B. Changes from previous versions ... 184
C. Acknowledgements .. 187

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 9 of 187

1 Introduction 1

The Solution Deployment Descriptor (SDD) specification defines a standard, in the form of a schema for 2
XML documents, called Solution Deployment Descriptors, or SDDs. SDDs define metadata that describes 3
the packaging and deployment characteristics of resources that are relevant for their lifecycle 4
management, including creation, configuration and maintenance. 5

1.1 Terminology 6

The following terms are used in this specification in a specialized sense that might differ from definitions 7
elsewhere. 8
Artifact 9

Zero or more files and/or metadata used to perform a deployment lifecycle operation on a 10
resource. 11

Deployment lifecycle 12
The stages marking maturation of a solution: develop, package, integrate, manufacture, install, 13
configure, evaluate, deploy into production, upgrade and/or update, uninstall. 14

Host Resource 15
A resource that provides the execution environment for another resource. 16

Package 17
A set of artifacts used to perform deployment lifecycle operations on a group of related resources 18
that make up a solution. 19

Resource 20
A particular element of a computing environment, such as a computer system, an operating 21
system, a Web server, a software application, or a complex solution. 22

Solution 23
One or more interrelated resources on which deployment lifecycle operations can be performed. 24

Target Resource 25
A resource that processes artifacts to perform deployment lifecycle operations on another 26
resource. The host resource often serves as the target resource. 27

Topology 28
The physical or logical layout of a solution’s resources. 29

Update (n.) 30
A package that replaces a limited set of the resources in a solution instance. An update does not 31
require migration. 32

Upgrade (n.) 33
A package that replaces all, or a significant portion of, the resources used in a solution. An 34
upgrade might or might not require migration. 35

1.2 Purpose 36

The purpose of this document is to provide the normative specification of the SDD, including concepts, 37
structure, syntax, semantics and usage. 38

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 10 of 187

1.3 Scope 39

This document is the specification for the SDD. It consists of both normative and non-normative prose, 40
diagrams, schema and examples. The document is intended to facilitate an understanding of the SDD 41
concepts, structure, syntax, semantics and usage. This document is not intended to be a tutorial. 42
This document is the full SDD specification, but it also is augmented with other documents produced by 43
the SDD TC, including the SDD XML Schema and Examples (see Appendix [A]), [SDDP], [SDDSP] and 44
the set of SDD profiles (see section [5.3]), as well as documents produced by others (see section [5.3.1]). 45

1.4 Audience 46

This document is intended to assist those who require an understanding of the nature and details of the 47
SDD. This includes architects, developers, solution integrators and service/support personnel who 48
generate, consume, or otherwise use SDDs, as well as those who develop tooling and applications for 49
constructing and deploying SDDs. 50

1.5 How to Read this Document 51

The various audiences of this specification might have different objectives and purposes when reading 52
the document. You might wish to generally understand the SDD, or learn the details of the SDD to create 53
or consume SDDs, or use the document as a reference. 54
§ If your purpose is to understand the major capabilities and characteristics of the SDD and how they fit 55

together, start by reading the Introductions to the major sections: [3], [4] and [4.1]–[4.14]. 56
§ If your purpose is to understand the major elements of the SDD and how they work together to 57

accomplish the goals of this specification, read in addition to the above, the introductions to each of 58
the type sections [3.1]–[3.13] and the type subsections within sections [4.2]–[4.14]. 59

§ If your purpose is to understand the syntax of the SDD, look at the tables in each of the Property 60
Summary sections. 61

§ If your purpose is to understand the semantics of the elements and attributes of the SDD, read the 62
Property Usage Notes sections. 63

§ If your purpose is to understand only the package descriptor, subset the above suggestions to focus 64
on the sub-sections within section [3]. 65

§ If your purpose is to understand only the deployment descriptor, subset the above suggestions to 66
focus on the sub-sections within section [4]. 67

1.6 Motivation 68

The motivation for producing this specification is best expressed in this excerpt from the SDD Technical 69
Committee’s charter: 70

Deployment and lifecycle management of a set of interrelated software, hereinafter referred to as 71
a solution, is a predominantly manual operation because there is currently no standardized way 72
to express installation packaging for a multi-platform environment. Each hosting platform or 73
operating system has its own format for expressing packaging of a single installable unit but, 74
even on these homogeneous platforms, there is no standardized way to combine packages into a 75
single aggregated unit without significant re-creation of the dependency and installation 76
instructions. The problem is compounded when the solution is to be deployed across multiple, 77
heterogeneous, platforms. A standard for describing the packaging and mechanism to express 78
dependencies and various lifecycle management operations within the package would alleviate 79
these problems and subsequently enable automation of these highly manual and error-prone 80
tasks. 81
The purpose of this Technical Committee is to define XML schema to describe the characteristics 82
of an installable unit (IU) of software that are relevant for core aspects of its deployment, 83
configuration and maintenance. This document will be referred to as the Solution Deployment 84
Descriptor (SDD). 85

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 11 of 187

SDDs will benefit member companies and the industry in general by providing a consistent model 86
and semantics to address the needs of all aspects of the IT industry dealing with software 87
deployment, configuration and lifecycle management. The benefits of this work include: 88

• ability to describe software solution packages for both single and multi-platform 89
heterogeneous environments. 90

• ability to describe software solution packages independent of the software installation 91
technology or supplier. 92

• ability to provide information necessary to permit full lifecycle maintenance of software 93
solutions. 94

1.7 Requirements 95

A summary of requirements satisfied by this SDD specification follows. Detailed requirements that 96
support approved use cases are available at the SDD TC Web page, http://www.oasis-97
open.org/committees/sdd. 98
Solution lifecycle management 99

The SDD must provide information to support the complete lifecycle of a software solution. 100
Certain key requirements are applicable to all phases of deployment lifecycle operation: planning, 101
installation, configuration, maintenance, upgrade, migration and uninstallation. 102

Solution requirements for environment to perform lifecycle 103
management tasks 104

A deployment lifecycle operation on a target resource is often dependent on a certain set of 105
conditions that must exist on the target. This set of pre-existing conditions is known as the 106
environment. If successful deployment lifecycle operations are dependent on a certain set of pre-107
existing conditions (environment), then the SDD specification must support the ability to specify 108
the required environment. 109

Projected changes to environment 110
The SDD specification must support the definition of environment changes that become effective 111
once the lifecycle operation is complete. 112

Solution instance variability 113
The SDD specification must support the definition of the appropriate information for a runtime to 114
vary the ways in which the solution can be deployed. This information is also needed to enable an 115
integrator to control the variability according to the needs of their higher-level solution. 116

This variability includes the information to control (1) the subset of capability that can be 117
deployed; (2) setting the initial configuration of the solution; and (3) varying the topology in which 118
the solution can be deployed. 119

Solution composition 120
The SDD specification must support the ability for the author to compose solution packages from 121
multiple components, products, or solutions. 122

Solution and packaging identity 123
The SDD specification must support the definition of identity information for the solution package, 124
resources that make up the solution, and solution itself to support use cases including asset 125
management, license management, support/update entitlement, component reuse during 126
development, reports and queries from a package repository, identifying associated 127
documentation, solution lifecycle management, traceability to build/development environment and 128
problem management systems, correlation into the hosting environment, component reuse, and 129
maintenance history. Also, the SDD specification must support the definition of the identity 130
description information used by a runtime to assist a user in making correct decisions about 131
solution installation. The SDD specification must support the definition of the information that 132

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 12 of 187

uniquely identifies the SDD descriptor and the ability to identify the version of the SDD. The 133
customer should be able to identify the solution packages with consistent names. 134

Physical packaging 135
Physical packaging information should be contained in a separate media descriptor. The 136
deployment model for a solution should be decoupled from the details of physical packaging. The 137
format and structure of the physical packaging is outside the scope of SDD v1.0-v2.0. 138

Interoperability with existing software packaging technologies 139
The SDD specification must support the ability for the author to compose solutions from existing 140
software packages that do not have an SDD. This means that the SDD should be able to 141
describe existing software packages. 142

Conform to external standards 143
The SDD specification must provide for alternative descriptive text to be defined for any images, 144
animations, or audio information contained in the descriptor. 145

Decision support 146
Requirements to perform lifecycle management operations within various target environments 147
may not be satisfied in the target’s current state but might be able to be satisfied with additional 148
operations. For example, successful deployment of a set of Java™1 components is dependent on 149
the existence of a Java runtime environment that is not included with the solution. The SDD 150
should have the ability to specify information that will assist lifecycle management tools in 151
planning for, accessing and installing these external requirements. 152

Specification organization 153
The SDD specification must provide the semantic behavior expected by producers and 154
consumers of SDDs. This information allows for the producers to ensure that the consumers of 155
their SDDs will provide the support intended. 156

Solution metadata 157
The SDD metadata may not encompass all of the information about the solution in all contexts in 158
which the solution can be deployed. Additional metadata that is outside of the scope of the SDD 159
is available at the SDD TC Web page, http://www.oasis-open.org/committees/sdd. 160

Globalization 161
For all content in the SDD that would be displayed to a user, the specification must support the 162
definition of strings for multiple locales; for example, this content must be localizable. 163

Align with other standards bodies 164
Satisfying all the requirements listed here calls for extensive standardization in specific areas. 165
The requirements should thus be aligned with other appropriate standards bodies. The SDD 166
reuses existing OASIS and other standards where appropriate and aligns with other standards 167
bodies (for example, [OGF-ACS]) that are developing standards in the same domain as SDD. 168

1 Java is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other
countries.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 13 of 187

1.8 XML Namespaces 169

The XML namespaces defined as part of this specification are: 170
§ sdd-pd: stands for the package descriptor portion of the SDD namespace. 171
§ sdd-dd: stands for the deployment descriptor portion of the SDD namespace. 172
§ sdd-common: stands for the common (shared) types, elements and groups of the SDD namespace. 173
For XML namespaces not defined as part of this specification, conventional XML namespace prefixes are 174
used as follows, regardless of whether a namespace declaration is present in the example: 175
§ The prefix xsd: stands for the W3C XML Schema namespace [XSD]. 176
§ The prefix ds: stands for the digital signature namespace [XMLDSIG-CORE]. 177

1.9 Notational Conventions 178

Everything in the specification, including the Appendices, is considered normative except for the abstract, 179
examples and any sections or other material marked as non-normative. 180
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 181
NOT”, “RECOMMENDED”, “MAY” and “OPTIONAL” in this document are to be interpreted as described 182
in [RFC2119]. 183
These keywords are capitalized when used unambiguously to specify requirements or application 184
features and behavior. When these words are not capitalized, they are meant in their natural-language 185
sense. 186

1.10 General Document Conventions 187

In describing XML elements and attributes of the SDD schema, this document contains many cross-188
references. Such references appear as the referenced section number inside square brackets, for 189
example, [4.5]. In electronic versions of this specification, the cross-references can act as links the target 190
section. 191
The following property naming convention is used in the schema: Element and type names begin with an 192
uppercase letter and attribute names begin with a lowercase letter. 193
Italics are used to identify element and attribute names, type names and enumerated values defined by 194
an SDD type. 195
In describing the XML schema, each section typically contains the following subsections: 196
§ A diagram illustrating the element, group, or type that is specified in the section. 197
§ Property Summary: A table listing the schema elements and attributes, along with the data type, 198

cardinality and description for each one. 199
When specified, extension points are listed in the tables with no name and a type of xsd:any for 200
element extensions and xsd:anyAttribute for attribute extensions. Cardinality is also provided. 201
When a type is an extension of another type, the extended type is listed in the table with no name and 202
prefixed with [extends]. The extended type’s properties can be referenced from the appropriate 203
section listed in the description column. 204
When the schema specifies a default or fixed attribute value, that value is prefixed with two asterisks, 205
as in **default value=“true”. 206

§ Property Usage Notes: A list of the elements and attributes, along with more detailed prose 207
descriptions of the properties and how they fit into the schema as a whole. 208

§ Not all sections contain every one of the preceding subsections. 209

1.11 Diagram Conventions 210

Sections 3 and 4 of this specification contain diagrams that illustrate the structure of elements, data types 211
and groups used throughout the SDD schema. Figure 1 is an example of this type of diagram. 212

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 14 of 187

 213
Figure 1: Sample XML structure diagram. 214
Elements are represented with the element name in a blue shaded rectangle with four rounded corners. 215
In Figure 1, the elements are PackageIdentity, Contents, and ds:Signature. 216
Attributes are represented within a yellow shaded tab and are individually contained in yellow shaded 217
rectangles with two square corners on the left side and two rounded corners on the right side, and the 218
attribute name is preceeded by a “@” symbol. 219

 220
For both elements and attributes, a solid black outline around the rectangle indicates that the element or 221
attribute is required by the schema; whereas a grey outline indicates that the element or attribute is 222
optional. 223
References to elements or attributes defined in a separate namespace are represented by a small arrow 224
in the lower right corner of the rectangle: 225

 226
Complex types are represented by a purple shaded rectangle with four squared corners and with a purple 227
square followed by the element name: 228

 229
Simple types are represented by a purple shaded rectangle with all the corners truncated and with a 230
purple triangle followed by the element name: 231

 232
A purple shaded tab represents an element type that is extended by the element shown in the figure. 233

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 15 of 187

Groups are represented by a rectangle with three squared corners and a rounded upper right corner and 234
with three small squares followed by the group name. Element groups are shaded blue and attribute 235
groups are shaded yellow. 236

 237
A plus sign on the right border of a component indicates hidden child elements or attributes. When 238
hidden, the child elements are usually described in a separate section. 239
There are two connectors (or compositors) used in the SDD schema diagrams to combine elements: 240

§ A sequence of elements is indicated by the following symbol: 241

§ A choice among elements is indicated by the following symbol: 242
Where appropriate, the cardinality of an element is indicated by a rectangle with the cardinality listed to 243
the left, using the form “min..max”. For example, “1..∞” indicates a minimum of one occurrence of the 244
element and an unbounded upper limit: 245

 246
When cardinality is present to the left of a connector, the sequence or choice that follows is constrained 247
and may have restrictions on the number of times it may be repeated within the element. 248

 249
All XSD schema figures were created with <oXygen/> XML Editor, v10.2. 250

1.12 Normative References 251

[CL2_Schema] Solution Deployment Descriptor Schema 252
 See Appendix [A] for location. 253
[CONFORM] OASIS, OASIS Conformance Requirements for Specifications 1.0, 254

http://www.oasis-255
open.org/committees/download.php/305/conformance_requirements-v1.pdf. 256

[IANA-CHARSET] Internet Assigned Numbers Authority, Character Sets, 257
http://www.iana.org/assignments/character-sets, modified December 2006. 258

[IETF-UUID] Internet Engineering Task Force Draft Specification, 259
http://www.ietf.org/rfc/rfc4122.txt. 260

[ISO639.2] Library of Congress, Codes for the Representation of Names of Languages, 261
http://www.loc.gov/standards/iso639-2/englangn.html. 262

[ISO3166] International Organization for Standardization, English Country Names and Code 263
Elements, http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-264
lists/list-en1.html. 265

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 266
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 267

[RFC3066] H. Alvestrand, ed. RFC 3066: Tags for the Identification of Languages 1995, 268
http://www.ietf.org/rfc/rfc3066.txt. 269

[UNIT] Bureau International des Poids et Mesures, http://www.bipm.fr. 270
[XMLDSIG-CORE] Bartel et al., XML-Signature Syntax and Processing, 271

http://www.w3.org/TR/xmldsig-core/, W3C Recommendation, February 2002. 272
[XSD] W3C Schema Working Group, XML Schema, http://www.w3.org/TR/xmlschema-273

1/, W3C Recommendation, October 2004. 274
 275

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 16 of 187

1.13 Non-Normative References 276

[CL1_Schema] Solution Deployment Descriptor Conformance Level 1 Schema 277
 See Appendix [A] for location. 278
[CIM] Distributed Management Task Force, Inc., Common Information Model (CIM) 279

http://www.dmtf.org/standards/cim/. 280
[OGF-ACS] Open Grid Forum, Application Contents Service WG (ACS-WG), 281

http://www.ogf.org/gf/group_info/view.php?group=acs-wg. 282
[SDDEX] Solution Deployment Descriptor Examples 283

See Appendix [A] for location. 284
[SDDP] Solution Deployment Descriptor Primer 285

See Appendix [A] for location. 286
[SDDSP] Solution Deployment Descriptor Starter Profile 287

See Appendix [A] for location. 288
 289

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 17 of 187

2 Solution Deployment Descriptor Overview 290

2.1 Package and Deployment Descriptors 291

The package descriptor defines package content which includes artifacts whose processing results in 292
deployment of the software package. The deployment descriptor defines metadata associated with those 293
artifacts. The SDD package descriptor defines the package identity, the package content and various 294
other attributes of the package. Each SDD consists of exactly one deployment descriptor and one 295
package descriptor. The deployment descriptor is where the topology, selectability, inputs, requirements 296
and conditions of the deployment are described. 297

2.2 Topology 298

The SDD’s topology describes all the resources that may be required, created or modified when any of 299
the deployment operations supported by the SDD are performed. 300
Primary identifying characteristics of the resources can be defined in topology. The topology includes 301
identification of hosts–hosted by relationships between resources. It is usual that only a subset of the 302
resources described in topology will play a role in any particular deployment. This is determined by the 303
selection of content elements for the particular deployment. The resources that are required, created or 304
modified by the content elements in scope for the deployment are the ones that will participate in the 305
deployment and so will be associated with resources in the deployment environment. 306
At deployment time, definitions of the resources that participate in that particular deployment are 307
associated with actual resource instances in the deployment environment. The mechanism for 308
associating resource definitions with resource instances is not defined by the SDD. 309
The only resource definitions in the SDD are in topology. All other mention of resources in the SDD are 310
references to the resource definitions in the topology. 311

2.3 Content and Artifacts 312

Metadata throughout the deployment descriptor is associated with package content in the definition of 313
atomic content elements. The atomic content elements are InstallableUnit, ConfigurationUnit and 314
LocalizationUnit. These are the only content elements that define Artifacts elements. 315
Artifact elements identify an artifact file or set of files defined in package content whose processing will 316
perform all or a portion of the deployment for a particular deployment lifecycle operation. Artifact elements 317
define the inputs and outputs, substitution values and types associated with the artifact files. The content 318
element’s target resource, identified by targetResourceRef, processes the artifact files with the defined 319
inputs to perform deployment operations. Examples of artifact types include zip files, rpm files and 320
executable install files. Artifact types are not defined by this specification. The artifact types defined in the 321
SDD need to be understood by software that processes the SDD. Profiles are used to communicate the 322
artifact types that an implementation is capable of processing [5.3]. 323
Composite content elements organize the content of an SDD but do not define artifacts used to deploy 324
SDD content. There are three types of composite content elements: CompositeInstallable, CompositeUnit 325
and CompositeLocalizationUnit. 326
CompositeInstallable is used any time that more than one content element is defined in support of one 327
operation on the package; any time aggregation of SDDs is needed; or any time the package includes 328
selectable content. CompositeInstallable is the root of a content hierarchy that supports a single 329
deployment lifecycle operation. It can define a base content hierarchy, a localization content hierarchy 330
and a selectable content hierarchy that includes selection criteria. One SDD can have more than one 331
CompositeInstallable–each supporting a different operation. 332
CompositeUnit is used to organize content elements within the base or selectable content hierarchies. 333
CompositeUnits can define InstallableUnits, ConfigurationUnits, ContainedPackages and other 334

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 18 of 187

CompositeUnits. Requirements, conditions and variables that are common to all content elements defined 335
by the CompositeUnit can be defined in the CompositeUnit to avoid repetition. Within the selectable 336
content hierarchy, a CompositeUnit can provide an efficient means for selection of a set of related content 337
elements by a feature. 338
CompositeLocalizationUnit serves the same purposes as CompositeUnit within the LocalizatonContent 339
hierarchy. 340
SDD packages can aggregate other SDD packages. Metadata about the aggregation is defined in 341
ContainedPackage, ContainedLocalizationPackage and Requisite elements. ContainedPackage 342
elements are a content element that can be defined anywhere in the base and selectable content 343
hierarchies. ContainedLocalizationPackages are content elements that can be defined in the localization 344
content hierarchy. Requisites are packages that can be deployed, if necessary, to satisfy requirements in 345
the aggregating SDD. They are not content of the SDD package. The type of all three of these elements 346
is ReferencedPackageType. The term “referenced package” is used in this specification when referring to 347
these elements as a group. The term “referenced SDD” is used when referring to any aggregated SDD. 348
Each referenced package element can further constrain the deployment of the referenced SDD by 349
defining additional requirements; by mapping resources defined in the aggregating SDD to those defined 350
in the referenced SDD; and by determining feature selections for deployment of the referenced SDD. 351

2.4 Resulting and Changed Resources 352

Deployment of an SDD package creates or modifies software resources. These resources are included in 353
the topology definition and described in more detail in ResultingResource and ResultingChange 354
elements. 355
The SDD author can choose to model resulting and modified resources at a very granular level, at a very 356
coarse level; at any level in between, or not at all. An example of modeling resulting resources at a 357
granular level would be modeling every file created by the deployment as a resulting resource. An 358
example of modeling resulting resources at a very coarse level would be modeling the software product 359
created by deployment as a single resulting resource. The choice depends on the needs of the solution 360
deployment. If a resource is not modeled in the SDD, no requirements can be expressed on it, no 361
conditions can be based on it and no variables can be set from values of its properties. It cannot play any 362
of the roles described for resources in the ResourceType section of this document [4.2.2]. 363

2.5 Base, Selectable and Localization Content Hierarchies 364

Each CompositeInstallable element can define three types of content hierarchies. Base content is the 365
default content for the deployment lifecycle operation associated with the CompositeInstallable. This is 366
content that will be deployed whenever the associated operation is performed on the SDD package. Base 367
content may be conditioned on characteristics of the deployment environment but it is not selectable by 368
the deployer. 369
The SDD author can define selectable subsets of optional content in the selectable content hierarchy. 370
The selection criteria include features and groups of features that select content from the selectable 371
content hierarchy. Selectability, as used in the SDD, is a characteristic of the deployment lifecycle 372
operation and the package. For example, the decision to provide selectability for one operation in one 373
package has no semantic relationship to the selectability provided in another package related to the same 374
software. It also has no semantic relationship to the selectability provided for a different operation within 375
the same package. 376
Localization content is the third type of content hierarchy. Localization refers to enabling a particular piece 377
of software for support for one or more languages. Anything that needs to be deployed to provide support 378
for a particular language in that software is considered localization content. Translated materials are a 379
primary, but not the only, example of localization content. 380
Localization content is similar in many ways to other content, but there are important differences in how 381
localization content is selected for deployment that lead to the need for a separate content hierarchy and 382
separate types. There are two criteria for determining that localization content is in scope for a particular 383
deployment. 384

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 19 of 187

§ The first criterion has to do with the language or languages supported by the localization content. At 385
least one of the languages must be in scope for the content to be selected. 386

§ The second criterion has to do with the availability of the resources to be localized–the localization 387
base. The localization base may be a resource deployed by base or selectable content, or it may be 388
a resource previously deployed and found in the deployment environment. 389

2.6 Constraints 390

The SDD author needs to communicate constraints on resources for a variety of purposes. 391
• Some constraints must be met for the requirements of a content element to be met. 392
• Other constraints must be met for a resource to serve as the required base for an update. 393
• Still others must be met to satisfy a condition that determines the applicability of a content element or 394

completion action. 395
The Constraint types are: 396

§ CapacityConstraint 397
§ ConsumptionConstraint 398
§ PropertyConstraint 399
§ VersionConstraint 400
§ UniquenessConstraint 401
§ RelationshipConstraint 402
§ AuthorizationConstraint 403

2.7 Requirements 404

A Requirement is an environmental necessity that a resource must have fulfilled in order for an artifact to 405
be deployed successfully into that environment. Requirements are defined by content elements. A 406
requirement consists of resource constraints that the SDD author states MUST be met prior to successful 407
deployment or use of the software described by the SDD package. Each requirement definition lists one 408
or more deployment lifecycle operations to which the requirement applies. When the requirement is 409
specified in an atomic content element, the operation associates the requirement with artifacts within the 410
atomic content element. 411
When a requirement can be satisfied in more than one way, alternatives can be defined within a 412
requirement. A requirement is considered met when any one of the alternatives is satisfied. 413

2.8 Conditions 414

Conditions are expressed on characteristics of resources in the deployment environment. Conditions are 415
used to indicate when particular elements of the SDD are applicable, or when they should be ignored. 416
Conditions are not requirements. Failure to satisfy a condition does not indicate a failure; it simply means 417
the conditioned element should be ignored. Conditions are used to: 418

§ determine if a content element is applicable 419
§ choose from among values for a variable 420
§ determine when a feature is applicable 421
§ determine when a particular result is applicable 422
§ determine if a particular completion action is necessary. 423

Because conditions are always based on the characteristics of resources, they are expressed using 424
resource constraints. 425

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 20 of 187

2.9 Variables 426

Variables provide a way to associate user inputs, resource property values, fixed strings and values 427
derived from these with input arguments for artifacts and with constraints on resources. 428

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 21 of 187

3 Package Descriptor 429

A package descriptor is an XML document that provides information about the identity and the contents of 430
a software package. A software package is a bundle of one or several content elements that deploy or 431
remove computer software; add features to existing software; or apply maintenance to existing software. 432
Each package descriptor is associated with a deployment descriptor. 433

3.1 PackageDescriptor 434

 435
Figure 2: PackageDescriptor structure. 436
The root element of a package descriptor XML document is PackageDescriptor. PackageDescriptor 437
includes elements that describe the package identity and the contents that make up the package. The 438
PackageDescriptor includes the associated deployment descriptor XML document by defining a Content 439
element with a purpose attribute set to deploymentDescriptor. 440

3.1.1 PackageDescriptor Property Summary 441

Name Data Type * Description

PackageIdentity PackageIdentityType 1 Human-understandable identity information for the software
package.

Contents ContentsType 1 A list of package contents.

ds:Signature ds:SignatureType 0..1 A signature for the package descriptor.

schemaVersion xsd:string 1 The descriptor complies with this version of the Solution
Deployment Descriptor Specification.
**fixed value=“2.0”

descriptorID UUIDType 1 Identifier of a particular package’s descriptor.

lastModified xsd:dateTime 1 The time the descriptor was last modified.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 22 of 187

descriptorLanguageBundle xsd:token 0..1 The root name of language bundle files containing translations
for display text elements in the PackageDescriptor.

 xsd:anyAttribute 0..*

3.1.2 PackageDescriptor Property Usage Notes 442

§ PackageIdentity: The PackageIdentity element provides identity information about the software 443
package that can be used by the consumer of the package for deployment planning or aggregation of 444
the package into a larger solution. 445
See the PackageIdentityType section for structure and additional usage details [3.3]. 446

§ Contents: The Contents element defines a list of one or more Content elements describing all the 447
files that are part of the package. All files in the package MUST be defined in Contents. 448
See the ContentsType section for structure and additional usage details [3.11]. 449

§ ds:Signature: The package descriptor and each file in the package MAY be digitally signed. It is 450
RECOMMENDED that they be digitally signed by using an XML-Signature [XMLDSIG-CORE]. 451
The signature element is an enveloped signature over the SDD package. Note that each Content 452
element included in the package is digitally signed indirectly via this digest. Files can also be 453
individually signed in the Content element. 454

§ descriptorLanguageBundle: Language translations for elements of DisplayTextType in the 455
descriptor MAY be included in the solution package. Note that these are not translations for the 456
software deployed by the package, but rather translations only for the text in the descriptors 457
themselves. The root name of the files containing these translations MUST be specified in the 458
descriptorLanguageBundle attribute, which is an instance of xsd:token. Language bundles are 459
associated with specific locales at run time using Java-style resource bundle resolution; that is, the 460
bundle filenames SHOULD take the form languageBundle_locale, where locale consists of optional 461
language, location (country) and variant codes, separated by an underscore character. Language 462
codes consist of two lowercase letters [ISO639.2] and location codes consist of two uppercase letters 463
[ISO3166]. 464

For example, if descriptorLanguageBundle is set to ”SampleStrings”, then 465
“SampleStrings_en_US” refers to the United States English version of the SampleStrings bundle 466
and “SampleStrings_ja” identifies the Japanese version of the same bundle. 467

See the DisplayTextType section for structure and additional usage details [4.14.3]. 468
§ schemaVersion, descriptorID, lastModified: See the DescriptorInfoGroup section for structure and 469

additional usage details [3.2]. 470

3.2 DescriptorInfoGroup 471

 472
Figure 3: DescriptorInfoGroup structure. 473
The attributes defined by DescriptorInfoGroup are included in both PackageDescriptor and 474
DeploymentDescriptor. 475

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 23 of 187

3.2.1 DescriptorInfoGroup Property Usage Notes 476

§ schemaVersion: The schemaVersion attribute identifies the Solution Deployment Descriptor 477
specification version to which the descriptor conforms. It MUST have a fixed value of “2.0”. 478

§ descriptorID: The descriptorID attribute, combined with the lastModified attribute value, provides a 479
unique identifier for the descriptor. The descriptorID value MUST be unique within the scope of use of 480
the deployment descriptor or package descriptor. The descriptorID attribute is an instance of 481
UUIDType, which is based on xsd:hexBinary with length 16. This enables use of a 128-bit UUID 482
[IETF-UUID]. The descriptorID value supports descriptor updates by allowing updated descriptors to 483
be correctly associated with an earlier version of the same descriptor. 484

For example, if a descriptor contains errors, it may be replaced by an error-free version using the 485
same descriptorID value but a different lastModified value. 486

§ lastModified: The lastModified value can be used to differentiate between different versions of the 487
same descriptor, for example, the descriptor for one particular package. Comparison of lastModified 488
values can be used to determine which descriptor is newer. 489
The lastModified attribute MUST be defined as a value that conforms to the xsd:dateTime type as 490
defined in [XSD] and MUST match the following lexical representation: [-]CCYY-MM-491
DDThh:mm:ss[Z|(+|-)hh:mm]. This is a combination of a complete date and time of day, where 492
the time zone can be specified as Z (UTC) or (+|-)hh:mm. 493

For example, the following are valid values for the lastModified attribute: 494

§ 2001-10-26T21:32:52 495

§ 2001-10-26T21:32:52+02:00 496

§ 2001-10-26T19:32:52Z 497

§ 2001-10-26T19:32:52+00:00 498

§ -2001-10-26T21:32:52 499

§ 2001-10-26T21:32:52.12679 500

However, the following values would be invalid: 501

§ 2001-10-26 502

§ 2001-10-26T21:32 503

§ 01-10-26T21:32 504

§ 2001-10-26T25:32:52+02:00 505

The first three invalid examples do not specify all the required parts, and the fourth includes an 506
out of range hours part, “25”. 507

 508

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 24 of 187

3.3 PackageIdentityType 509

 510
Figure 4: PackageIdentityType structure. 511

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 25 of 187

The software package described by the SDD can be identified for humans and package management 512
software using the properties in PackageIdentity. The PackageIdentity is not to be confused with the 513
identity of the deployed software, which is described in the resulting resource elements of the deployment 514
descriptor; see the ResultingResourceType section [4.8.1]. 515

3.3.1 PackageIdentityType Property Summary 516

Name Data Type * Description

 [extends] IdentityType See the IdentityType section for additional properties [3.4].

packageType PackageTypeType 0..1 The type of the package, for example, “baseInstall” or “maintenance”.
**default value=“baseInstall”.

contentType xsd:QName 0..1 The type of content provided by this package, for example, BIOS.

label xsd:NCName 0..1 A programmatic label for this package.

 xsd:anyAttribute 0..*

3.3.2 PackageIdentityType Property Usage Notes 517

See the IdentityType section for details about the inherited attributes and elements [3.4]. 518
§ packageType: The package type is provided to aid consumer understanding of the type of content 519

contained in the package. A package can contain more than one type of content. In this case, a single 520
packageType value should be selected that represents the primary content type as determined by the 521
SDD author. The SDD defines a set of enumeration values in PackageTypeType which are 522
extendable by the SDD author. 523
The enumerated types defined by the SDD are as follows: 524

• baseInstall: The value baseInstall indicates that the package provides a complete installation 525
of the solution. This package type is associated with deployment descriptors that contain 526
installable units with installation artifacts that install the primary solution resources. 527
When packageType is not specified, this is the default value. 528

• baseUninstall: The value baseUninstall indicates that the package provides a complete 529
uninstallation of the solution. This package type is associated with deployment descriptors 530
that contain installable units with uninstall artifacts that remove the primary solution 531
resources. 532

• configuration: The value configuration indicates that the package configures the solution. 533
This package type is associated with deployment descriptors that contain configuration units 534
with configuration artifacts that configure the solution. 535

• maintenance: The value maintenance indicates that the package fixes one or more problems 536
in the solution. This package type is associated with deployment descriptors that contain 537
installable units with update artifacts. 538

• modification: The value modification indicates that the package modifies the function of the 539
solution in some way such as by adding new function. This package type is associated with 540
deployment descriptors that contain installable units with update artifacts. 541

• replacement: The value replacement indicates that the package installs a solution that 542
replaces a previous version of the solution. Replacement MAY be associated with migration 543
of data into the new solution and/or with deletion of the replaced solution. When associated 544
with migration of data, installation or configuration artifacts within the solution package would 545
perform the migration. When associated with deletion of the replaced solution, uninstall 546
artifacts within the solution package would perform the deletion. This package type is 547
associated with deployment descriptors that contain installable units with installation artifacts 548

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 26 of 187

that deploy a set of resources that replace the set of resources associated with a previous 549
version of the solution. 550

• localization: The value localization indicates that the package contains materials that 551
localize deployed software for one or more languages. 552

§ contentType: The value of contentType is determined by the SDD manufacturer to communicate a 553
characteristic of the package that MAY be used in the manufacturer’s package management system 554
or other manufacturer-specific tools that use the SDD. The SDD author chooses the values; they are 555
not defined in this specification. 556

§ label: The label MAY be used as an index in a package management system. The SDD author 557
chooses the values; they are not defined in this specification. 558

3.4 IdentityType 559

 560
Figure 5: IdentityType structure. 561
This complex type provides identity information for the package as a whole, as well as for content 562
elements, which are portions of the package. Content elements are the InstallableUnit, LocalizationUnit, 563
ConfigurationUnit, CompositeUnit and CompositeInstallable elements defined in the deployment 564
descriptor. 565

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 27 of 187

3.4.1 IdentityType Property Summary 566

Name Data Type * Description

Description DisplayTextType 0..1 A verbose description of the package or content element.

ShortDescription DisplayTextType 0..1 A limited description of the package or content element.

Name DisplayTextType 0..1 A human-readable, translatable, name for the package or
content element.

Version VersionType 0..1 The package or content element version.

MaintenanceInformation MaintenanceInformationType 0..1 Information about package or content element content
used when the package contains maintenance.

BuildInformation BuildInformationType 0..1 A manufacturer identifier for the build of this package or
content element. This property can be extended with
additional manufacturer-specific information about the
build.

Manufacturer ManufacturerType 0..1 Information about the manufacturer of the package or
content element.

 xsd:any 0..*

softwareID xsd:string 0..1 A manufacturer’s identification number for the software
created or updated by the package or content element.

 xsd:anyAttribute 0..*

3.4.2 IdentityType Property Usage Notes 567

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 568
information. If used, they MUST provide a description of the package. 569
The Description element MUST be defined if the ShortDescription element is defined. 570
See the DisplayTextType section for structure and additional usage details [4.14.3]. 571

§ Name: When the manufacturer of the SDD has a package management system, Name in 572
PackageIdentity should correspond to the name of the package as known in the package 573
management system. Name in a content element’s Identity should correspond to the name of the unit 574
of packaging, if it is known in the package management system. 575
When the PackageIdentity element is defined, Name MUST be defined. 576
Software packages that create software often have the same name as the deployed software. 577
Software packages that update software often have a name that reflects the fact that the package is a 578
maintenance package, differentiating it from the base deployed software. The author of the software 579
package that is described by PackageIdentity determines whether the Name is the same as or 580
different from the Name of the deployed software. 581
See the DisplayTextType section for structure and additional usage details [4.14.3]. 582

§ Version: This is a packaging version. In PackageIdentity, it is the version of the package as a whole. 583
In content element identities, this is the version of the unit of packaging represented by the content 584
element. In either case, the SDD author MAY choose to make this version correspond to the version 585
of a resulting or changed resource, but it should not be confused with resource versions. 586
In the case of a base install, version MAY be the same as the top level resulting resource. In the case 587
of a configuration package, version SHOULD NOT be the same as the top level resulting resource. 588
See the VersionType section for structure and additional usage details [3.10]. 589

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 28 of 187

§ MaintenanceInformation: This is used when the package or content element describes the 590
deployment of maintenance. 591
See the MaintenanceInformationType section for structure and additional usage details [3.5]. 592

§ BuildInformation: In PackageIdentity, this describes the build of the package as a whole. In content 593
element Identity, this describes the build of the artifact(s) and the content element describing the 594
artifact. 595
See the BuildInformationType section for structure and additional usage details [3.7]. 596

§ Manufacturer: See the ManufacturerType section for structure and additional usage details [3.8]. 597
§ softwareID: The software identified by softwareID is the software whose deployment is described by 598

the SDD. When the manufacturer maintains software identifiers within a sales and distribution 599
system, the softwareID SHOULD correspond to an identifier for the software within that system. If a 600
format for software identifiers is not pre-existing within the manufacturer’s systems, a UUID SHOULD 601
be used for softwareID. When a UUID is used, it MUST be unique within the domain in which the 602
described software is used. 603

3.5 MaintenanceInformationType 604

 605
Figure 6: MaintenanceInformationType structure. 606
If the package provides maintenance for deployed software, MaintenanceInformation declares information 607
about the fix or fixes provided. If the package content is a single fix, MaintenanceInformation describes 608
the information about that one fix. If the content is a collection of fixes—for example, a fix pack—609
MaintenanceInformation describes each of the fixes provided by the fix pack. 610

3.5.1 MaintenanceInformationType Property Summary 611

Name Type * Description

Severity DisplayTextType 0..1 Severity of the maintenance content.

Category DisplayTextType 0..* Category of the maintenance content.

Supersedes MaintenanceInformationType 0..* A previously released fix that is superseded by application of this
maintenance.

Fix FixIdentityType 0..* An included fix.

 xsd:any 0..*

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 29 of 187

3.5.2 MaintenanceInformationType Property Usage Notes 612

§ Severity: This value SHOULD correspond to a severity value used within the SDD provider’s support 613
system. It serves as a hint to the deployer about the urgency of applying the described maintenance. 614
See the DisplayTextType section for structure and additional usage details [4.14.3]. 615

§ Category: These values SHOULD correspond to maintenance categories within the SDD provider’s 616
support system. 617
See the DisplayTextType section for structure and additional usage details [4.14.3]. 618

§ Supersedes: Superseded fixes are ones that fix a problem also fixed by the superseding 619
maintenance package or content element and therefore need not be applied. 620
This element does not indicate whether or not the superseded fix needs to be removed. To indicate 621
that the previous fix must be removed before the superseding maintenance can be applied 622
successfully; the SDD author can create a requirement stating that the fix must not be present. 623
Superseded fixes MAY include all the information defined in MaintenanceInformationType. At a 624
minimum, a superseded fix MUST include at least one Fix element with the name of the superseded 625
fix defined. 626

§ Fix: Fix elements provide information about individual fixes provided by the maintenance content. 627
See the FixIdentityType section for structure and additional usage details [3.6]. 628

3.6 FixIdentityType 629

 630
Figure 7: FixIdentityType structure. 631
Elements of FixIdentityType describe fixes that will be applied when the package is deployed or the 632
content element is applied. 633

3.6.1 FixIdentityType Property Summary 634

Name Type * Description

Name xsd:NMTOKEN 1 A name for the fix which is, at a minimum, unique within the scope of the
resource fixed.

Description DisplayTextType 1 A complete description of the fix.

ShortDescription DisplayTextType 0..1 An abbreviated description of the fix.

Symptom DisplayTextType 0..* A symptom of the problem fixed.

 xsd:any 0..*

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 30 of 187

3.6.2 FixIdentityType Property Usage Notes 635

§ Name: The Name element MUST provide a value that uniquely identifies a fix within a scope defined 636
by the manufacturer. This is a name provided by the manufacturer that corresponds to the fix name 637
as understood in the deployment environment. 638

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 639
information. If used, they MUST provide a description of the fix. 640
The Description element MUST be defined if the ShortDescription element is defined. 641
See the DisplayTextType section for structure and additional usage details [4.14.3]. 642

§ Symptom: Symptom strings can be used to correlate a fix with one or more experienced problems. 643
See the DisplayTextType section for structure and additional usage details [4.14.3]. 644

3.7 BuildInformationType 645

 646
Figure 8: BuildInformationType structure. 647
BuildInformationType provides the type definition for the BuildInformation element in package and content 648
element identity. BuildInformation provides information about the creation of the package and its parts. 649

3.7.1 BuildInformationType Property Summary 650

Name Type * Description

buildID xsd:token 1 Identifies the build of the package or package element.

 xsd:anyAttribute 0..*

3.7.2 BuildInformationType Property Usage Notes 651

§ buildID: The buildID attribute is an identifier provided by the manufacturer and meaningful to 652
developers that can be used to identify a build of the defining element. This information MUST 653
correspond with information known in the manufacturer’s build environment. It is traditionally used 654
during problem determination to allow maintainers of the software to determine the specifics of 655
package creation. Inclusion of buildID in the SDD allows the end user to provide this information to 656
package maintainers, enabling them to correlate the deployed software with a particular known build 657
of the software. 658

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 31 of 187

3.8 ManufacturerType 659

 660
Figure 9: ManufacturerType structure. 661
The SDD author can include information about the package manufacturer that includes name, location 662
and contact information such as the address of the manufacturer’s Web site or telephone number. 663

3.8.1 ManufacturerType Property Summary 664

Name Type * Description

Name DisplayTextType 1 A translatable name for the manufacturer.

Location LocationType 0..1 The address and country of the manufacturer.

ContactInformation DisplayTextType 0..1 Contact information for the manufacturer.

 xsd:any 0..*

3.8.2 ManufacturerType Property Usage Notes 665

§ Name: The value provided in the Name element MUST be an identifiable name of the manufacturer 666
of the SDD. 667
See the DisplayTextType section for structure and additional usage details [4.14.3]. 668

§ Location: See the LocationType section for structure and additional usage details [3.9]. 669
§ ContactInformation: This element MAY provide additional contact information for the named 670

manufacturer, such as a support Web site address or a technical support telephone number. 671
See the DisplayTextType section for structure and additional usage details [4.14.3]. 672

3.9 LocationType 673

 674
Figure 10: LocationType structure. 675
LocationType supports inclusion of the manufacturer’s address and country in package and content 676
element identity. 677

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 32 of 187

3.9.1 LocationType Property Summary 678

Name Type * Description

Address DisplayTextType 0..1 The manufacturer’s address.

Country DisplayTextType 0..1 The manufacturer’s country.

3.9.2 LocationType Property Usage Notes 679

§ Address: This is the mailing address or the physical address. 680
See the DisplayTextType section for structure and additional usage details [4.14.3]. 681

§ Country: Recording the manufacturer’s country in the SDD provides information that may be of 682
interest in relation to import and export of software. 683
See the DisplayTextType section for structure and additional usage details [4.14.3]. 684

3.10 VersionType 685

VersionType provides the type definition for version elements in the package descriptor and deployment 686
descriptor. It is a simple type that is based on xsd:string with no further restrictions. This means that 687
versions in the SDD are represented simply as strings. Because resource versions exist in the 688
deployment environment, their formats and semantics vary widely. For this reason, the format and 689
semantics of versions are not defined by this specification. 690

3.11 ContentsType 691

 692
Figure 11: Contents structure. 693
ContentsType is used in PackageDescriptor to provide a list of one or more Content elements. 694

3.11.1 ContentsType Property Summary 695

Name Type * Description

Content ContentType 1..* Describes the physical contents of the software package.

3.11.2 ContentsType Property Usage Notes 696

§ Content: A PackageDescriptor MUST contain a Contents element that is a list of one or more 697
Content elements. 698
See the ContentType section for structure and additional usage details [3.12]. 699

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 33 of 187

3.12 ContentType 700

 701
Figure 12: ContentType structure. 702
A software package includes one or more content files. ContentType defines the properties of a content 703
file included in the package descriptor. Content defined in the package descriptor as part of the software 704
package does not need to be physically co-located. Each element MUST be in a location that can be 705
identified by a URI. The pathname attribute of each content file defines a URI for accessing the file. 706
Characteristics of the content files—such as their length, purpose and character encoding—MAY be 707
declared in the package descriptor. It is RECOMMENDED to list only content files that need to be 708
accessed by the runtime when processing the SDD. 709

3.12.1 ContentType Property Summary 710

Name Data Type * Description

ds:DigestMethod ds:DigestMethodType 0..1 Specifies the digest method applied to the file.

ds:DigestValue ds:DigestValueType 0..1 Specifies the Base64-encoded value of the digest of the file.

id xsd:ID 1 An identifier used in deployment descriptors to refer to the file definition
in the associated package descriptor.

pathname xsd:anyURI 1 The absolute or relative path of the content file including the file name.

purpose ContentPurposeType 0..1 Associates a purpose classification with a file.
**default value=“content”

charEncoding xsd:string 0..1 Specifies the character encoding of the contents of the file.

length xsd:nonNegativeInteger 0..1 Specifies the size of the file in bytes.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 34 of 187

 xsd:anyAttribute 0..*

3.12.2 ContentType Property Usage Notes 711

§ ds:DigestMethod, ds:DigestValue: These values MAY be used to assist with file verification. 712
See the DigestInfoGroup section for structure and additional usage details [3.13]. 713

§ id: This is the identifier for the content that is used as a reference in artifact elements in the 714
deployment descriptor. 715
The id attribute may be useful to software that processes the SDD, for example, for use in creating 716
log and trace messages. 717

§ pathname: pathname is used to access content in the package. The path of the file MUST be a URI 718
that specifies an absolute path or a path relative to the location of the package descriptor. It MUST 719
include the file name. For a pathname that has a purpose of descriptorLanguageBundle, the SDD 720
author SHOULD include the URI to the root resource bundle only. 721

§ purpose: The purpose attribute enables the PackageDescriptor author to associate a classification 722
with a file. The classification identifies the file as having a specific purpose. ContentPurposeType 723
defines a union of SDDContentPurposeType with xsd:NCName. The purpose value MAY be chosen 724
from one of the following values enumerated in SDDContentPurposeType or be a valid NCName 725
value provided by the SDD author. If purpose is not specified, the default value is content. 726
Enumerated values for purpose are: 727

• readMe: A file with information about the package. An implementation may choose to display 728
this to a user as part of the deployment process. 729

• endUserLicenseAgreement: A file containing an end user license agreement. An 730
implementation may choose to display this to a user as part of the deployment process. 731

• responseFile: A file that contains input values for an operation. 732
• deploymentDescriptor: An XML file containing the DeploymentDescriptor definition 733

associated with the PackageDescriptor. A valid PackageDescriptor MUST have exactly one 734
Content element with a purpose value of deploymentDescriptor. 735

• packageDescriptor: Supports aggregation of packages. This is used to reference a 736
packageDescriptor of an aggregated package. 737

• descriptorLanguageBundle: A file containing translations of text defined directly in the 738
package descriptor or its associated deployment descriptor. See [SDDP] for an example that 739
includes descriptorLanguageBundle content. 740

• content: A file used during deployment of solution content. This is the default value for 741
purpose. 742

§ charEncoding: This attribute need only be used for files that a run-time is required to render. 743
Common charEncoding values include “ASCII”, “UTF-8”, “UTF-16” and “Shift_JIS”. For an extensive 744
list of character encodings, see [IANA-CHARSET]. 745

§ length: The file length MAY be used for simple file verification. 746

3.13 DigestInfoGroup 747

 748
Figure 13: DigestInfoGroup structure. 749

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 35 of 187

When digest information is used to sign a content file, both the digest method and the digest value MUST 750
be provided. 751

3.13.1 DigestInfoGroup Property Usage Notes 752

§ ds:DigestMethod, ds:DigestValue: ds:digestMethod and ds:digestValue MAY be used to digitally 753
sign individual files. If files are signed, the digest value MUST be calculated over the whole of each 754
file. 755
See [XMLDSIG-CORE] for details on the usage of ds:DigestMethod and ds:DigestValue. 756

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 36 of 187

4 Deployment Descriptor 757

A solution package contains a deployment descriptor in addition to a package descriptor. The deployment 758
descriptor describes the topology, selectability, inputs, requirements and conditions of the deployment. 759
The deployment descriptor is associated with a package descriptor and refers to content files in that 760
package descriptor. 761

4.1 DeploymentDescriptor 762

 763
Figure 14: DeploymentDescriptor structure. 764
DeploymentDescriptor is the top level element of a deployment descriptor. The DeploymentDescriptor 765
defines the information required to support deployment of the package contents. This includes the 766
Topology, which declares all of the resources that may participate in deployment. It also includes one 767
atomic content element or one or more CompositeInstallable content elements. Atomic content elements 768
are InstallableUnit, ConfigurationUnit, or LocalizationUnit. Atomic content elements define artifacts that 769
can be processed to deploy software resources. They are atomic because they cannot aggregate other 770
content elements. A CompositeInstallable element is the root of a content element hierarchy that defines 771
content that performs the one deployment operation supported by the CompositeInstallable. A 772
CompositeInstallable can define base, selectable and localization content as well as the aggregation of 773
other content elements. 774

4.1.1 DeploymentDescriptor Property Summary 775

Name Type * Description

Topology TopologyType 1 Defines resources that are required, created or modified by

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 37 of 187

deployment.

InstallableUnit InstallableUnitType 0..1 Defines content that installs, updates and/or uninstalls
resources. When an InstallableUnit is defined, no
ConfigurationUnit, LocalizationUnit or CompositeInstallable
elements can be defined.

ConfigurationUnit ConfigurationUnitType 0..1 Defines content that configures resources. When a
ConfigurationUnit is defined, no InstallableUnit, LocalizationUnit
or CompositeInstallable elements can be defined.

LocalizationUnit LocalizationUnitType 0..1 Defines content that installs, updates and/or uninstalls translated
materials. When a LocalizationUnit is defined, no InstallableUnit,
ConfigurationUnit or CompositeInstallable elements can be
defined.

CompositeInstallable CompositeInstallableType 0..* Defines a hierarchy of base, selectable and/or localization
content used to perform one deployment lifecycle operation.
When one or more CompositeInstallable elements are defined,
no InstallableUnit, ConfigurationUnit or LocalizationUnit
elements can be defined.

Requisites RequisitesType 0..1 A list of references to SDD packages that can optionally be
deployed to satisfy deployment requirements of the defining
SDD.

 xsd:any 0..* Describes completion actions such as restart and the conditions
under which the action is applied.

schemaVersion xsd:string 1 The descriptor complies with this version of the Solution
Deployment Descriptor Specification.
**fixed value=“2.0”

descriptorID UUIDType 1 Identifier of the deployment descriptor for a particular set of
deployable content.

lastModified xsd:dateTime 1 The time the descriptor was last modified.

 xsd:anyAttribute 0..*

4.1.2 DeploymentDescriptor Property Usage Notes 776

§ Topology: Topology provides a logical view of all resources that may participate in any particular 777
deployment. A resource can participate by being required, created or modified by the deployment. A 778
required resource MAY also play the role of target resource, meaning that it can process artifacts to 779
perform some portion of the deployment. The resources that actually participate in a particular 780
deployment are determined by the user inputs, selections and resource bindings provided during that 781
deployment. 782
See the TopologyType section for structure and additional usage details [4.2.1]. 783

§ InstallableUnit, ConfigurationUnit, LocalizationUnit, CompositeInstallable: A simple software 784
deployment that uses a single artifact for each supported deployment operation MAY be described 785
using an SDD that defines a single atomic content element–InstallableUnit, ConfigurationUnit or 786
LocalizationUnit. 787
A software deployment that requires multiple artifacts, aggregates other deployment packages or has 788
selectable content MAY be described using an SDD that defines one or more CompositeInstallable 789
elements. Each CompositeInstallable MUST describe one deployment lifecycle operation for the 790
package. 791

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 38 of 187

See the respective sections (InstallableUnitType [4.3.1], ConfigurationUnitType [4.3.2], 792
LocalizationUnitType [4.13.2] and CompositeInstallableType [4.9.1]) for structure and additional 793
usage details. 794

§ Requisites: When the package author chooses to provide deployment packages for required 795
software, those packages are described by Requisite elements in Requisites. 796
Including requisite packages in the SDD package MAY provide a convenient way for the deployer to 797
satisfy one or more SDD requirements. 798
See the RequisitesType section for structure and additional usage details [4.10.5]. 799

§ schemaVersion, descriptorID, lastModified: These attributes can be useful to tooling that 800
manages, creates or modifies deployment descriptors. 801
See the DescriptorInfoGroup section for structure and additional usage details [3.2]. 802

4.2 Topology 803

The SDD’s topology describes all the resources that may be required, created or modified when any of 804
the deployment operations supported by the SDD are performed. 805
Primary identifying characteristics of the resources can be defined in topology. Constraints beyond these 806
primary characteristics are not defined in topology; they are defined in content elements that reference 807
the resource definitions in topology. 808
The topology includes identification of hosts–hostedBy relationships between resources. When both 809
resources in that relationship participate in a particular deployment, the relationship is considered a 810
requirement for that deployment. 811
It is possible that only a subset of the resources described in topology will play a role in a particular 812
deployment. This is determined by the selection of content elements for the particular deployment. The 813
resources that are required, created or modified by the content elements in scope for the deployment are 814
the ones that will participate in the deployment and so are associated with resources in the deployment 815
environment. 816
At deployment time, definitions of the resources that participate in that particular deployment are 817
associated with actual resource instances in the deployment environment. The mechanisms for 818
associating resource definitions with resource instances are not described by the SDD. The SDD 819
metadata describes the characteristics of the participating resources. Whether associations of resource 820
instances with matching characteristics are made by user choice or entirely by software does not affect 821
the success of the deployment. Resource characteristics used when making this association include 822
those defined in topology plus all those defined in constraints on the resource in the content elements that 823
are in scope for the particular deployment. 824
Some topologies are variable. That is, a particular set of logical resources of the same type in the 825
topology might be associated with different physical resource instances or the same physical resource 826
during deployment. In this case, a separate logical resource definition is created in topology for each 827
possible physical resource instance. Uniqueness constraints can then be used to describe the conditions 828
under which the separate resources can be associated with a single resource. 829
All resource definitions in the SDD are in topology. All other descriptions of resources in the SDD are 830
references to the resource definitions in the topology. 831

4.2.1 TopologyType 832

 833
Figure 15: TopologyType structure. 834

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 39 of 187

The Topology element defines one or more hierarchies of resource specifications that describe the 835
resources that MAY play a role in the deployment of the contents of the solution package. These resource 836
specifications do not identify specific resource instances in a specific deployment environment. Instead, 837
they are logical specifications of resources that can be associated with specific resource instances in the 838
deployment environment for a particular deployment based on the described resource identity 839
characteristics. These resources have a role in a particular solution deployment only when they are 840
required, created or modified by a content element, or referred to by a variable, in that particular solution 841
deployment. 842

4.2.1.1 TopologyType Property Summary 843

Name Type * Description

Resource ResourceType 1..* The root of a tree of resources that play a role in the solution.

 xsd:any 0..*

4.2.1.2 TopologyType Property Usage Notes 844

§ Resource: The SDD author’s decision to model a resource in the deployment environment as a 845
resource in the SDD depends on the need to know about that resource when planning for 846
deployment, aggregating, deploying and managing the resource lifecycle using the SDD. All 847
resources required by the solution SHOULD be included. For all Requirements declared in the SDD, 848
resources MUST be specified. Resources referred to by ResultingResource or ResultingChange 849
elements MUST also be included. The more complete the SDD is, the more useful it will be in guiding 850
successful deployment. 851
See the ResourceType section for structure and additional usage details [4.2.2]. 852

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 40 of 187

4.2.2 ResourceType 853

 854
Figure 16: ResourceType structure. 855
Elements of ResourceType—both the top level Resource elements and the HostedResource elements 856
within the resource hierarchy—make up the topology of an SDD. Each Resource element declares, at a 857
minimum, the type of the resource. Values for resource type are not defined by this specification. A core 858
assumption of this specification is that an understanding of specific resource types and resource 859
characteristics are shared by the deployment descriptor author and the deployment software. Therefore, if 860
the deployment descriptor author declares a new resource type, then deployment software operating on 861
the SDD needs to understand how to handle that resource type. 862
In addition to defining type, the resource elements MAY specify other identity properties that can be used 863
to identify instances of the resource in the deployment environment. The resource identity element, 864
Property, is optional and MAY be specified in content elements rather than in topology. Identity properties 865
used in the resource specification in topology MUST be those that do not change during deployment, 866
even when the resource is updated. 867

For example, during an update, software may change its version string, thus the version string is not 868
an appropriate identity property. 869

ResourceType provides the type definition for the Resource and HostedResource elements defined in 870
Topology. All resources MAY nest resource definitions for resources that they host. To host a resource 871
means to provide the execution environment for that resource. 872

For example, an operating system provides the execution environment for software, and a database 873
engine provides the execution environment for a database table. The operating system hosts the 874
software and the database engine hosts the database table. 875

Each resource in these hierarchies may play a role in solution deployment. 876

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 41 of 187

Content elements determine a resource’s participation and role(s) in a particular solution deployment. 877
Content elements can refer to resources in Topology in several ways. A resource can be identified via 878
xsd:IDREF: 879

§ as the target of the content element’s artifacts. A target resource is a resource that is capable of 880
processing a particular artifact. A target resource is often, but not always, the host of the 881
resources created by the artifacts it processes. 882

For example, an operating system may be the target resource of an artifact that is a zip file 883
containing a J2EE application. However, when the J2EE application is deployed, a J2EE 884
server is the host resource of the application. Thus, the OS hosts the artifact and the J2EE 885
server hosts the J2EE application. 886

See the targetResourceRef attribute in the InstallableUnitType [4.3.1], ConfigurationUnitType 887
[4.3.2] and LocalizationUnitType [4.13.2] sections. 888

§ as the required base for an update applied by the artifact referenced by the content element. 889
See the RequiredBaseType section [4.7.8]. 890

§ as the resource that will be created by deploying the artifact referenced by the content element. 891
See the ResultingResourceType section [4.8.1]. 892

§ as the resource that will be changed by deploying the artifact referenced by the content element. 893
See the ResultingChangeType section [4.8.2]. 894

§ as the localization base for translated materials. The localization base is the resource that is 895
localized by deploying the translated materials. 896
See the LocalizationBase element in the LocalizationUnitType section [4.13.2]. 897

§ as a required resource named in the content element’s Requirements. 898
See the RequirementsType section [4.7.1]. 899

§ to establish a variable value from a resource property. 900
See the ResourcePropertyType section [4.6.18]. 901

One resource MAY be referred to by any number of content elements and can be identified to play any or 902
all of the roles just listed. When a content element participates in a particular solution deployment, the 903
resources it references participate in that solution deployment and are associated with resource instances 904
in the deployment environment. 905

4.2.2.1 ResourceType Property Summary 906

Name Type * Description

Description DisplayTextType 0..1 A description of the resource and its role in the solution described by
the SDD.

ShortDescription DisplayTextType 0..1 A short description of the resource and its role.

Name VariableExpressionType 0..1 The name of the resource as known in the deployment environment.
[DEPRECATED in SDD v2.0]

Property PropertyType 0..* An identity property of the resource.

HostedResource ResourceType 0..* A resource that participates in the solution and that is hosted by the
defining resource.

 xsd:any 0..*

id xsd:ID 1 An identifier of the resource scoped to the descriptor.

implementedBy xsd:QName 0..1 A reference to another hosted resource in topology.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 42 of 187

type ResourceTypeNameType 1 A well-known resource type.

 xsd:anyAttribute 0..*

4.2.2.2 ResourceType Property Usage Notes 907

§ Description, ShortDescription: If used, these elements MUST provide a human-readable 908
description of the resource. 909
The Description element MUST be defined if the ShortDescription element is defined. 910
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 911

§ Name: The resource name is an identifying characteristic of the resource that correlates with a name 912
for the resource in the deployment environment. 913
The type of the Name element, VariableExpressionType, allows the resource name to be expressed 914
as a simple string or in terms of a user input parameter or other variable. 915

An example of a good use of a variable expression in Resource.Name is to make sure that the 916
installation directory is hosted on a file system that has sufficient space available for deployment. 917
In this example, the file system resource element would define a HostedResource element for the 918
directory. The Name of the directory would be expressed as a variable expression that refers to a 919
user input parameter for installation location. Content elements that use the installation directory 920
would express a requirement on the directory and on the file system with the additional constraint 921
that the file system have a certain amount of available space (to satisfy the consumption 922
constraints). The fact that both resources are required and that they are defined with a hosts–923
hostedBy relationship in Topology, means that the directory that is used must be the installation 924
directory and it must be hosted by a file system that meets the consumption constraint for 925
available space. 926

Only the Variable elements defined in a top level content element can be used to define a resource 927
Name, because these are the only variables visible within Topology. 928
If the name of a resource is changed during deployment, for example, during an update, then the 929
resource name SHOULD NOT be included in the resource specification. Instead, the pre-update 930
resource name SHOULD be specified in the RequiredBase element of the installable unit that 931
provides the update, and the post-update name SHOULD be specified in the ResultingResource 932
element of the same installable unit. 933
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 934
[Starting with SDD v2.0, Name has been deprecated. See the Property element below for the 935
appropriate method for specifying a resource identifier.] 936

§ Property: Property elements MUST be used to identify the resource instance(s). Each property 937
included represents an identifying characteristic necessary for accurate run-time resolution of the 938
resource instance(s). 939
If a resource can be identified by a property that represents the name for that resource, the SDD 940
author SHOULD include a Property element and MUST set the value of PropertyName to “Name”. 941
See the PropertyType section for structure and additional usage details [4.2.3]. 942

§ HostedResource: A Resource MAY define HostedResource elements. Each HostedResource 943
element is an instance of ResourceType. When both the host and the hosted resource participate in a 944
particular solution deployment, the associated resource instances selected for use during that 945
deployment must have a hosts relationship. 946

For example, a Web application declared to be hosted on a Web server must be hosted on the 947
instance of the Web server that is selected for use during the deployment. 948

If only the host resource is identified by the DeploymentDescriptor’s content elements as participating 949
in the solution, then there is no assumption that the hosted resource exists. 950

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 43 of 187

§ id: The id attribute uniquely identifies the resource element within the DeploymentDescriptor. This id 951
value is used by other elements in the DeploymentDescriptor to refer to this resource. This value is 952
created by the descriptor author. 953
The id attribute may be useful to software that processes the SDD, for example, for use in creating 954
log and trace messages. 955

§ implementedBy: The implementedBy attribute is useful for type casting a resource to another 956
defined hosted resource. 957

For example, an SDD producer needs to deploy a database. The only property with which the 958
producer is concerned is the destination path property. It is cumbersome to require the producer 959
and the runtime to both handle the hosted resource as database specific when a generic resource 960
type will suffice for the operation. 961
In this case it is useful for the SDD producer to define a hosted resource as a generic resource 962
type and use it to typecast the specific database resource type. This allows subsequent operations 963
to recognize that a database has been deployed to the hosting environment even though a generic 964
resource type was used to perform that deployment. 965
To do this, the SDD producer MUST define a generic hosted resource. This is done by defining a 966
hosted resource with the type attribute being a xsd:QName reference to a generic resource type 967
from the profile. The SDD producer then defines the specific hosted resource. To typecast the 968
specific hosted resource, the previously defined generic hosted resource should be specified in the 969
implementedBy attribute. 970
See [SDDEX] for an example that demonstrates this use of the implementedBy attribute. 971

§ type: The type attribute defines the class of resource. The value of type correlates with the resource 972
type known for the resource in the deployment environment. ResourceTypeNameType restricts type 973
to valid xsd:QNames. The values for type are not defined by this specification. Creators of 974
DeploymentDescriptors rely on knowledge of resource types that are understood by supporting 975
infrastructure in the target environment. To honor the descriptor author’s intent, the deploying 976
infrastructure must be able to discover the existence of resources of the types defined in the SDD; the 977
values of the resource’s properties; and the existence and type of resource relationships. The 978
deploying infrastructure also needs to understand how to use the artifact types associated with the 979
resource type to create, modify and delete the resource. 980

4.2.3 PropertyType 981

 982
Figure 17: PropertyType structure. 983
PropertyType provides the type definition for elements used to declare an identity property of a resource, 984
namely, the Property elements of Resource and HostedResource in Topology. It also provides the type 985
definition for Property elements in Relationship and RelationshipConstraint. 986

4.2.3.1 PropertyType Property Summary 987

Name Type * Description

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 44 of 187

PropertyName xsd:QName 1 The property name.

Value ElementValueType 1 The property value.

 xsd:anyAttribute 0..*

4.2.3.2 PropertyType Property Usage Notes 988

§ PropertyName: The PropertyName MAY be used to provide identification for the resource in the 989
deployment environment. 990
The PropertyName MAY be used to provide constraints on the configuration of a resource. 991

§ Value: Evaluation of the Value expression provides the value of the property. 992
See the ElementValueType section for structure and additional usage details [4.6.2]. 993

4.2.4 ResultingPropertyType 994

 995
Figure 18: ResultingPropertyType structure. 996
ResultingPropertyType provides the type definition for elements used to declare an identity property of a 997
resulting resource or to declare a configuration change to a resource property which results from 998
deployment of an artifact. 999

4.2.4.1 ResultingPropertyType Property Summary 1000

Name Type * Description

PropertyName xsd:string 1 The resulting property name.

Value ElementValueType 1 The resulting property value.

 xsd:anyAttribute 0..* Additional attributes of the resulting property.

4.2.4.2 ResultingPropertyType Property Usage Notes 1001

§ PropertyName: The PropertyName MAY be used to provide additional identification for the resource 1002
in the deployment environment. 1003
The PropertyName MAY be used to declare a configuration change to a resource. 1004

§ Value: Evaluation of the Value expression provides the value of the resulting property. 1005
See the ElementValueType section for structure and additional usage details [4.6.2]. 1006

4.3 Atomic Content Elements 1007

The package descriptor defines package content that includes artifacts whose processing results in 1008
deployment of the software package. The deployment descriptor defines metadata associated with those 1009

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 45 of 187

artifacts. The metadata includes conditions, requirements, results, inputs, outputs and completion actions. 1010
Metadata throughout the deployment descriptor is associated with package content in the definition of 1011
atomic content elements. The atomic content elements are InstallableUnit, ConfigurationUnit and 1012
LocalizationUnit. These are the only content elements that define Artifacts elements. 1013
Artifact elements identify an artifact file or set of files defined in package content whose processing will 1014
perform all or a portion of the deployment for a particular deployment lifecycle operation. The name of the 1015
artifact element indicates the operation supported by the artifact. Names of the artifact elements are 1016
created by prefixing “Artifacts” with the operation name. The artifacts defined for use in the SDD are 1017
InstallArtifact, UpdateArtifact, UndoArtifact, UninstallArtifact, RepairArtifact and ConfigArtifact. 1018
Artifact elements define the inputs and outputs, substitution values and types associated with the artifact 1019
files. The content element’s target resource, identified by targetResourceRef, processes the artifact files 1020
with the defined inputs to perform deployment operations. Examples of artifact types include zip files, rpm 1021
files and executable install files. Artifact types are not defined by this specification. The artifact types 1022
defined in the SDD need to be understood by software that processes the SDD. 1023
There MAY be multiple atomic content elements within a composite installable that describe the 1024
deployment of multiple resources as part of a single software deployment or there MAY be a single 1025
atomic content element (singleton) in the deployment descriptor that describes the entirety of a simple 1026
deployment. When an atomic content element is used in a CompositeInstallable, it MUST define exactly 1027
one artifact. When an atomic content element is a singleton, it MUST define at least one artifact element 1028
and MAY define one of each type of artifact element allowed for its type. The inclusion of an artifact 1029
element in a singleton atomic content element implies support for the associated operation. 1030

For example, a singleton ConfigurationUnit that defines a ConfigArtifact associates a configure 1031
operation with the ConfigArtifact. Similarly, an SDD with a singleton InstallableUnit that defines an 1032
InstallArtifact and an UpdateArtifact associates an install operation with the InstallArtifact and an 1033
update operation with the UpdateArtifact. 1034

When an atomic content element is defined within a CompositeInstallable hierarchy, its one artifact MUST 1035
support the single top level operation associated with the CompositeInstallable. The single artifact defined 1036
need not be an artifact for the operation defined for the CompositeInstallable. 1037

For example, in a CompositeInstallable that defines metadata for an update operation, there may be 1038
one InstallableUnit that defines an InstallArtifact element and another InstallableUnit that defines an 1039
UpdateArtifact element. Both of these artifacts are used when performing the overall update operation 1040
defined for the CompositeInstallable. 1041

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 46 of 187

4.3.1 InstallableUnitType 1042

 1043
Figure 19: InstallableUnitType structure. 1044
The InstallableUnit element is an atomic content element that defines artifacts that install or update 1045
software and defines requirements for applying those artifacts. It may also define artifacts that undo an 1046
update or that uninstall or repair existing software. 1047

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 47 of 187

4.3.1.1 InstallableUnitType Property Summary 1048

Name Type * Description

Identity IdentityType 0..1 Human-understandable identity information about the InstallableUnit.

Condition ConditionType 0..1 A condition that determines if the content element is relevant to a
particular deployment.

Variables VariablesType 0..1 Variables for use within the InstallableUnit’s requirements and artifact
definitions.

RequiredBase RequiredBaseType 0..1 A resource that will be updated when the InstallableUnit’s
UpdateArtifact is processed.

Requirements RequirementsType 0..1 Requirements that must be met prior to successful processing of the
InstallableUnit’s artifacts.

Languages LanguagesType 0..1 Languages supported by the InstallableUnit.

Completion CompletionType 0..* Describes completion actions such as restart and the conditions
under which the action is applied.

ResultingResource ResultingResourceType 0..* A resource that will be installed or updated by processing the
InstallableUnit’s artifacts.

ResultingChange ResultingChangeType 0..* A resource that will be configured by processing the InstallableUnit’s
artifacts.

Artifacts InstallationArtifactsType 1 The set of artifacts associated with the InstallableUnit.

 xsd:any 0..*

id xsd:ID 1 An identifier for the InstallableUnit scoped to the deployment
descriptor.

targetResourceRef xsd:IDREF 1 Reference to the resource that can process the InstallableUnit’s
artifacts.

 xsd:anyAttribute 0..*

4.3.1.2 InstallableUnitType Property Usage Notes 1049

§ Identity: The InstallableUnit’s Identity element defines human-understandable information that 1050
reflects the identity of the solution as understood by the end user of the solution. 1051
If the InstallableUnit defines a resulting resource, the Identity of the InstallableUnit SHOULD reflect 1052
the identity of the resulting resource. 1053
When the InstallableUnit is the only content element in the deployment descriptor, its Identity MAY 1054
define values that are the same as the corresponding PackageIdentity element values. 1055

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 48 of 187

This would be useful, for example, in a case where the package is known by the same name as 1056
the resource created by the InstallableUnit. 1057

See the IdentityType section for structure and additional usage details [3.4]. 1058
§ Condition: A Condition is used when the InstallableUnit’s content should be deployed only when 1059

certain conditions exist in the deployment environment. 1060
For example, one InstallableUnit may be applicable only when the operating system resource is 1061
resolved to a Linux®2 operating system during deployment. The InstallableUnit would define a 1062
Condition stating that the type of the operating system must be Linux for the InstallableUnit to be 1063
considered in scope for a particular deployment. 1064

See the ConditionType section for structure and additional usage details [4.5.1]. 1065
§ Variables: An InstallableUnit’s Variables element defines variables that are used in the definition of 1066

the InstallableUnit’s requirements and in parameters and properties passed to the InstallableUnit’s 1067
target resource. 1068
When the deployment descriptor defines a single InstallableUnit at the top level, that is, not inside a 1069
CompositeInstallable, the variables it defines MAY be referred to by any element under Topology. 1070
See the VariablesType section for structure and additional usage details [4.6.5]. 1071

§ Languages: When translated materials are deployed by the InstallableUnit’s artifacts, the languages 1072
of the translations are listed in Languages. 1073
See the LanguagesType section for structure and additional usage details [4.13.6]. 1074

§ RequiredBase: When an InstallableUnit can be used to update resources, the RequiredBase 1075
element identifies the resources that can be updated. 1076
See the RequiredBaseType section for structure and additional usage details [4.7.8]. 1077

§ Requirements: Requirements specified in an InstallableUnit identify requirements that must be met 1078
prior to successful processing of the InstallableUnit’s artifacts. 1079
See the RequirementsType section for structure and additional usage details [4.7.1]. 1080

§ Completion: A Completion element MUST be included if the artifact being processed requires a 1081
system operation such as a reboot or logoff to occur to function successfully after deployment or if the 1082
artifact executes a system operation to complete deployment of the contents of the artifact. 1083
There MUST be an artifact associated with the operation defined by a Completion element. 1084

For example, if there is a Completion element for the install operation, the InstallableUnit must 1085
define an InstallArtifact. 1086

See the CompletionType section for structure and additional usage details [4.3.14]. 1087
§ ResultingResource: An InstallableUnit’s ResultingResource element identifies the resources in 1088

Topology that will be installed or updated when the InstallableUnit’s artifacts are processed. 1089
See the ResultingResourceType section for structure and additional usage details [4.8.1]. 1090

§ ResultingChange: Multiple content elements within the SDD MAY specify the same resource in their 1091
ResultingChange elements. In this case each content element is capable of modifying the 1092
configuration of that resource. 1093

2 Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 49 of 187

An example use of the ResultingChange element is to understand whether or not one content 1094
element can satisfy the requirements specified in another content element. 1095
See the ResultingChangeType section for structure and additional usage details [4.8.2]. 1096

§ Artifacts: When the InstallableUnit is a singleton defined outside of a CompositeInstallable, it MUST 1097
define at least one artifact element and MAY define one of each type of artifact element allowed for its 1098
type. The inclusion of an artifact element in a singleton InstallableUnit implies support for the 1099
associated operation. 1100
When the InstallableUnit is defined within a CompositeInstallable, it MUST define exactly one artifact. 1101
The artifact defined MAY be any artifact allowed in an InstallableUnit and it MUST support the single 1102
top level operation defined by the CompositeInstallable. This does not mean the operation associated 1103
with the artifact has to be the same as the one defined by the CompositeInstallable. 1104

For example, an update of a resource may be required to support an install of the overall solution, 1105
in which case the InstallableUnit would define an UpdateArtifact to support the top level install 1106
operation. 1107

See the InstallationArtifactsType section for structure and additional usage details [4.3.4]. 1108
§ id: The id attribute is referenced in features to identify an InstallableUnit selected by the feature and 1109

Dependency elements to indicate a dependency on processing of the content element. 1110
The id attribute may be useful to software that processes the SDD, for example, for use in creating 1111
log and trace messages. 1112

§ targetResourceRef: The targetResourceRef attribute identifies the resource that will process the 1113
InstallableUnit’s artifacts. 1114
The resources created or modified by artifact processing are frequently, but not necessarily, hosted 1115
by the target resource. 1116
 For example, an operating system may be the target resource of an artifact that is a zip file 1117

containing a J2EE application. However, when the J2EE application is deployed, a J2EE server is 1118
the host resource of the application. Thus, the OS hosts the artifact and the J2EE server hosts 1119
the J2EE application. 1120

This value MUST match an id of a resource element in Topology. 1121
The target may be a resource that has not yet been created. In this case, there is a dependency on 1122
the complete installation of the target resource prior to applying the InstallableUnit. This dependency 1123
MUST be represented in a Dependency element within Requirements that apply to the 1124
InstallableUnit. 1125

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 50 of 187

4.3.2 ConfigurationUnitType 1126

 1127
Figure 20: ConfigurationUnitType structure. 1128
The ConfigurationUnit element defines artifacts that configure one or more existing resources. It also 1129
defines the requirements for applying those artifacts. It MUST NOT install, update, or uninstall resources. 1130

4.3.2.1 ConfigurationUnitType Property Summary 1131

Name Type * Description

Identity IdentityType 0..1 Human-understandable identity information about the
ConfigurationUnit.

Condition ConditionType 0..1 A condition that determines if the content element is relevant to a
particular deployment.

Variables VariablesType 0..1 Variables for use within the ConfigurationUnit’s requirement and
artifact definitions.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 51 of 187

Requirements RequirementsType 0..1 Requirements that must be met prior to successful processing of
the ConfigurationUnit’s artifacts.

Completion CompletionType 0..* Describes completion actions such as restart and the conditions
under which the action is applied.

ResultingChange ResultingChangeType 0..* A definition of changes made to a resource that is configured by
processing the ConfigurationUnit’s ConfigArtifact.

Artifacts ConfigurationArtifactsType 1 The artifact associated with the ConfigurationUnit.

 xsd:any 0..*

id xsd:ID 1 An identifier for the ConfigurationUnit scoped to the deployment
descriptor.

targetResourceRef xsd:IDREF 1 Reference to the resource that can process the ConfigurationUnit’s
artifacts.

 xsd:anyAttribute 0..*

4.3.2.2 ConfigurationUnitType Property Usage Notes 1132

§ Identity: The ConfigurationUnit’s Identity element defines human-understandable information that 1133
reflects the identity of the provided configuration as understood by the end user of the solution. 1134
Identity has elements that are common with elements in the corresponding PackageDescriptor’s 1135
PackageIdentity element, for example, Name and Version. The values of these common elements 1136
SHOULD be the same as the corresponding PackageIdentity element values. 1137
See the IdentityType section for structure and additional usage details [3.4]. 1138

§ Condition: A Condition is used when the deployment of configuration content is dependent on the 1139
existence of certain conditions in the deployment environment. 1140

For example, a package that has one configuration artifact that creates a database table for one 1141
database product and a different artifact that creates a table for a different database product 1142
would have two configuration units, each with a condition on the associated database product. 1143

See the ConditionType section for structure and additional usage details [4.5.1]. 1144
§ Variables: A ConfigurationUnit’s Variables element defines variables that are used in the definition of 1145

requirements and artifact parameters. 1146
When the deployment descriptor defines a single ConfigurationUnit at the top level, that is, not inside 1147
a CompositeInstallable, the variables it defines MAY be referred to by any element under Topology. 1148
See the VariablesType section for structure and additional usage details [4.6.5]. 1149

§ Requirements: Requirements specified in a ConfigurationUnit identify requirements that MUST be 1150
met prior to successful processing of the ConfigurationUnit’s artifacts. 1151
See the RequirementsType section for structure and additional usage details [4.7.1]. 1152

§ Completion: A Completion element MUST be included if the artifact being processed requires a 1153
system operation such as a reboot or logoff to occur to function successfully after deployment or if the 1154
artifact executes a system operation to complete deployment of the contents of the artifact. 1155
There MUST be an artifact associated with the operation defined by a Completion element. 1156

For example, if there is a Completion element for the configure operation, the ConfigurationUnit 1157
must define a ConfigArtifact. 1158

See the CompletionType section for the structure and additional usage details [4.3.14]. 1159
§ ResultingChange: Configuration changes made when the configuration artifact is processed 1160

SHOULD be declared here. This information may be necessary when the SDD is aggregated into 1161
another SDD and the resulting change satisfies a constraint in the aggregation. The information 1162

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 52 of 187

declared here can be compared with resource constraints to determine if application of the 1163
ConfigurationUnit will satisfy the constraint. 1164
See the ResultingChangeType section for structure and additional usage details [4.8.2]. 1165

§ Artifacts: When the ConfigurationUnit is a singleton defined outside of a CompositeInstallable, it 1166
MUST define at least one artifact element. The inclusion of an artifact element in a singleton 1167
ConfigurationUnit implies support for the associated operation. 1168
When the ConfigurationUnit is defined within a CompositeInstallable, it MUST define exactly one 1169
artifact. The artifact defined MUST be a ConfigArtifact and it MUST support the single top level 1170
operation defined by the CompositeInstallable. 1171
See the ConfigurationArtifactsType section for structure and additional usage details [4.3.5]. 1172

§ id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 1173
log and trace messages. 1174

§ targetResourceRef: The targetResourceRef attribute identifies the resource in Topology that will 1175
process the ConfigurationUnit’s artifacts to configure the resources identified by the 1176
ConfigurationUnit’s ResultingChange definition. 1177
This value MUST match an id of a resource element in Topology. 1178

4.3.3 ArtifactType 1179

 1180
Figure 21: ArtifactType structure. 1181
ArtifactType elements define the files, arguments and other information required to perform a particular 1182
deployment operation. Every artifact that can be defined in a content element is an instance of 1183

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 53 of 187

ArtifactType. These are InstallArtifact, UpdateArtifact, UndoArtifact, UninstallArtifact, RepairArtifact, and 1184
ConfigArtifact. 1185

4.3.3.1 ArtifactType Property Summary 1186

Name Type * Description

Arguments ArgumentListType 0..1 Arguments used during processing of the artifact.

OutputVariables OutputVariableListType 0..1 Variables whose values are set during processing of the artifact.

AdditionalContent AdditionalContentType 0..* Additional content files that are part of the artifact.

 xsd:any 0..*

contentRef xsd:token 0..1 The primary artifact file. Not used if resourceRef is used.

resourceRef xsd:IDREF 0..1 The resulting resource representing the artifact file. Not used if
contentRef is used.

type ArtifactTypeNameType 0..1 Type of the primary artifact file.

weight xsd:positiveInteger 0..1 The time required to process this artifact relative to all other artifacts
in the SDD.

 xsd:anyAttribute 0..*

4.3.3.2 ArtifactType Property Usage Notes 1187

§ Arguments: Inputs to the processing of the artifact MUST be specified by defining an Arguments 1188
element. All required inputs MUST be included in the arguments list. There are no implied arguments. 1189

For example, there is no implication that the selected required resource instances will be passed 1190
with an InstallArtifact on the install operation. If knowledge of those selections is required, 1191
instance identifiers should be passed as arguments. 1192

When one Argument refers to the OutputVariable of another artifact, the output value must be 1193
available at the time of processing the dependent artifact. 1194

For example, an artifact in a content element that is conditioned on the operating system being 1195
Linux should not refer to the output of an artifact in a content element conditioned on the 1196
operating system being Windows™3. 1197

A Dependency requirement MUST be defined between the content elements to indicate that the 1198
artifact that defines the output variable is a pre-requisite of the content element with the dependent 1199
artifact. 1200
See the ArgumentListType section for structure and additional usage details [4.3.8]. 1201

§ OutputVariables: OutputVariables are variables whose values are set by artifact processing. 1202
OutputVariables can also be useful in log and trace messages. 1203

3 Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 54 of 187

See the OutputVariableListType section for structure and additional usage details [4.3.10]. 1204
§ AdditionalContent: AdditionalContent elements MUST be defined when supporting files are needed 1205

by the artifact for this operation. The content file reference is specified via the contentRef attribute of 1206
AdditionalContent. 1207
See the AdditionalContentType section for structure and additional usage details [4.3.12]. 1208

§ contentRef: The value MUST be a reference to the id of the primary artifact file defined in a Content 1209
element in the package descriptor. 1210
Note that it is valid to have no artifact file and drive the operation from arguments alone. 1211
When more than one artifact file is needed, contentRef points to the primary artifact file and 1212
AdditionalContent.contentRef points to any other files used during application of the content element. 1213
When resourceRef is defined, contentRef MUST NOT be defined. 1214

§ resourceRef: Sometimes, artifact files are created during a deployment rather than being contained 1215
in the package. 1216

For example, some install programs create an uninstall program when the software is deployed. 1217
The uninstall program is the artifact file that is needed by the UninstallArtifact, but is created by, 1218
but not contained in, the package. In this case, the created artifact file is represented as a 1219
ResultingResource. 1220

An Artifact element that defines resourceRef identifies the resulting resource as its artifact file. 1221
When contentRef is defined, resourceRef MUST NOT be defined. 1222
The value MUST reference the id of a resource element in Topology. 1223

§ type: The type attribute identifies the format of the artifact file or files. When there is no artifact file 1224
identified, type MAY be left undefined. If there is an artifact file or additional files defined, type MUST 1225
be defined. 1226
Values for this attribute are not defined by this specification. ArtifactTypeNameType restricts type to 1227
valid xsd:QNames. 1228

§ weight: Defining weights for all artifacts and referenced packages in an SDD provides useful 1229
information to software that manages deployment. The weight of the artifact refers to the relative time 1230
taken to deploy the artifact with respect to other artifacts and referenced packages in this SDD. 1231

For example, if the artifact takes three times as long to deploy as another artifact whose weight is 1232
“2”, then the weight would be “6”. The weight numbers have no meaning in isolation and do not 1233
describe actual time elapsed. They simply provide an estimate of relative time. 1234

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 55 of 187

4.3.4 InstallationArtifactsType 1235

 1236
Figure 22: InstallationArtifactsType structure. 1237
InstallationArtifactsType provides the type definition for the Artifacts element of InstallableUnit and 1238
LocalizationUnit. At least one Artifact element MUST be defined. Within a CompositeInstallable definition, 1239
exactly one Artifact element MUST be defined. 1240

4.3.4.1 InstallationArtifactsType Property Summary 1241

Name Type * Description

InstallArtifact ArtifactType 0..1 Artifact for install operation.

UpdateArtifact ArtifactType 0..1 Artifact for update operation.

UndoArtifact ArtifactType 0..1 Artifact for undo operation.

UninstallArtifact ArtifactType 0..1 Artifact for uninstall operation.

RepairArtifact ArtifactType 0..1 Artifact for repair operation.

 xsd:any 0..*

4.3.4.2 InstallationArtifactsType Property Usage Notes 1242

§ InstallArtifact: The InstallArtifact element declares deployment information sufficient to enable the 1243
target resource to perform an install using the named artifact files. The ResultingResource and 1244
ResultingChange elements describe the characteristics of the new or modified resource(s). 1245
See the ArtifactType section for structure and additional usage details [4.3.3]. 1246

§ UpdateArtifact: The UpdateArtifact element declares deployment information sufficient to enable the 1247
target resource to perform an update using the named artifact files. The RequiredBase element 1248
defines the resource(s) that can be updated. The ResultingResource and ResultingChange elements 1249
describe the updated characteristics of the resource(s). 1250
See the ArtifactType section for structure and additional usage details [4.3.3]. 1251

§ UndoArtifact: The UndoArtifact element declares deployment information sufficient to enable the 1252
target resource to undo an update. This undo will put the resource back to a previous level. 1253

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 56 of 187

The update that can be undone is described in the RequiredBase element. The ResultingResource 1254
definition can be used to describe the state of the resource(s) after the undo completes. 1255
See the ArtifactType section for structure and additional usage details [4.3.3]. 1256

§ UninstallArtifact: The UninstallArtifact element declares deployment information sufficient to enable 1257
the target resource to perform an uninstall. 1258
If an InstallArtifact is defined in the same InstallableUnit, the ResultingResource element defines the 1259
resource(s) that will be uninstalled. 1260
When an UninstallArtifact is the only artifact defined for an InstallableUnit, the RequiredBase MUST 1261
be defined to declare the resource(s) that will be uninstalled. The ResultingResource element MUST 1262
be left blank because the result of the uninstall is that the resource(s) are removed. 1263
See the ArtifactType section for structure and additional usage details [4.3.3]. 1264

§ RepairArtifact: The RepairArtifact element declares deployment information sufficient to enable the 1265
target resource to repair an installation. 1266
If an InstallArtifact is defined in the same InstallableUnit, the ResultingResource element defines the 1267
resource(s) that will be repaired. 1268
When a RepairArtifact is the only artifact defined for an InstallableUnit, the RequiredBase MUST be 1269
defined to declare the resource(s) that will be repaired. 1270
See the ArtifactType section for structure and additional usage details [4.3.3]. 1271

4.3.5 ConfigurationArtifactsType 1272

 1273
Figure 23: ConfigurationArtifactsType structure. 1274
ConfigurationArtifactsType provides the type definition for the Artifacts element of ConfigurationUnit. 1275

4.3.5.1 ConfigurationArtifactsType Property Summary 1276

Name Type * Description

ConfigArtifact ArtifactType 0..1 Artifact for configure operation.

 xsd:any 0..*

4.3.5.2 ConfigurationArtifactsType Property Usage Notes 1277

§ ConfigArtifact: The ConfigArtifact element declares deployment information sufficient to allow the 1278
target resource to configure the resources identified in the content element’s ResultingChange 1279
elements. 1280
See the ArtifactType section for structure and additional usage details [4.3.3]. 1281

4.3.6 OperationListType 1282

This simple type extends the xsd:list type as defined in [XSD], and adds the restriction that each 1283
value in the list must be one of the operations from the enumeration defined by OperationType [4.3.7]. 1284

4.3.7 OperationType 1285

Operations are used in the SDD to associate requirements and completion actions with particular 1286
artifacts. 1287

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 57 of 187

For example, when a requirement defines an operation attribute with value undo, it is a statement that 1288
the requirement must be met prior to processing of the undo artifact. 1289

OperationType enumerates the basic resource lifecycle operations that use the content and information 1290
defined in the SDD to change the state of the resources being installed, updated, or configured. 1291

4.3.7.1 OperationType Property Usage Notes 1292

Attributes of OperationType MUST be set to one of the following values: 1293
§ configure: Uses the ConfigArtifact to perform configuration actions on a resource. 1294
§ install: Uses the InstallArtifact to install resources. 1295
§ repair: Uses the RepairArtifact to repair an installation. 1296
§ undo: Uses the UndoArtifact to restore a resource to the state before the most recent update was 1297

applied. 1298
§ update: Uses the UpdateArtifact to update an existing instance of a resource, as specified by the 1299

required base. 1300
§ use: Associates a requirement or completion action with use of the deployed software resources. 1301

Setting the operation attribute to use indicates that the requirement or completion action is not 1302
associated with an artifact. 1303

§ uninstall: Uses the UninstallArtifact to uninstall a resource. 1304

4.3.8 ArgumentListType 1305

 1306
Figure 24: ArgumentListType structure. 1307
Each artifact MAY optionally include an Arguments element whose type is provided by ArgumentListType. 1308
This simply defines a list of Argument elements. 1309

4.3.8.1 ArgumentListType Property Summary 1310

Name Type * Description

Argument ArgumentType 1..* An input to artifact processing.

4.3.8.2 ArgumentListType Property Usage Notes 1311

§ Argument: An argument value is a variable expression used to define a fixed value for the argument 1312
or to define a value in terms of one of the variables visible to the artifact. 1313
See the ArgumentType section for structure and additional usage details [4.3.9]. 1314

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 58 of 187

4.3.9 ArgumentType 1315

 1316
Figure 25: ArgumentType structure. 1317
ArgumentType provides the type definition for Argument elements in artifacts [4.3.3]. This complex type is 1318
used to declare the argument name and optionally include a value for that argument. 1319

4.3.9.1 ArgumentType Property Summary 1320

Name Type * Description

Name ElementValueType 1 The argument name.

Value ElementValueType 0..1 The argument value.

required xsd:boolean 0..1 Indicates that the argument value must result in a valid expression for each
particular deployment.
**default value=“true”

 xsd:anyAttribute 0..*

4.3.9.2 ArgumentType Property Usage Notes 1321

§ Name: Evaluation of the Name expression produces the name of the argument. This can be useful 1322
for arguments with only a name, for example, those that are not name-value pairs. 1323
When the argument name alone is sufficient to communicate its meaning, the argument value 1324
SHOULD be omitted. 1325
If Name and Value elements are specified, the Name expression MUST be a literal string. 1326
Additionally, a pattern of wildcard is not supported and MUST NOT be used with the Name element. 1327
See the ElementValueType section for structure and additional usage details [4.6.2]. 1328

§ Value: Evaluation of the Value expression provides the value of the argument. 1329
The variable expression MAY be used to define a fixed value for the argument or to define a value in 1330
terms of one of the variables visible to the artifact. 1331
A pattern of wildcard is not supported and MUST NOT be used with the Value element.See the 1332
ElementValueType section for structure and additional usage details [4.6.2]. 1333

§ required: In cases where the argument should be ignored when the value expression is not valid for 1334
a particular deployment, set required to "false". 1335

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 59 of 187

4.3.10 OutputVariableListType 1336

 1337
Figure 26: OutputVariableListType structure. 1338

An artifact can set variables. The variables set by the artifact are defined in the artifact’s OutputVariables. 1339

4.3.10.1 OutputVariableListType Property Summary 1340

Name Type * Description

OutputVariable OutputVariableType 1..* An output from artifact processing.

4.3.10.2 OutputVariableListType Property Usage Notes 1341

§ OutputVariable: This is the definition of the variable, not a reference to a variable defined elsewhere. 1342
See the OutputVariableType section for structure and additional usage details [4.3.11]. 1343

4.3.11 OutputVariableType 1344

 1345
Figure 27: OutputVariableType structure. 1346

Output variables are variables whose value is set by artifact processing. OutputVariableType extends 1347
BaseVariableType and so has all of the attributes defined there, including an id attribute that is used to 1348
refer to the output variable within the SDD. Output variables can be useful in log and trace messages. 1349

4.3.11.1 OutputVariableType Property Summary 1350

Name Type * Description

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 60 of 187

 [extends] BaseVariableType See the BaseVariableType section for additional properties
[4.6.4].

outputParameterName xsd:NCName 0..1 An output from artifact processing.

 xsd:anyAttribute 0..*

4.3.11.2 OutputVariableType Property Usage Notes 1351

See the BaseVariableType section for details about the inherited attributes and elements [4.6.4]. 1352
§ outputParameterName: This is the name of the output variable as understood within the artifact 1353

processing environment. The output value is associated with the output variable’s id. The SDD author 1354
uses this id within the SDD to refer to this output value. 1355

4.3.12 AdditionalContentType 1356

 1357
Figure 28: AdditionalContentType structure. 1358
When artifact processing requires more than a single file, the artifact declaration includes information 1359
about the additional files needed. AdditionalContentType provides the type definition. Additional content 1360
MAY include input files that need to be edited to include values received as input to a particular solution 1361
deployment. In this case, the additional file can include a Substitution element. 1362

4.3.12.1 AdditionalContentType Property Summary 1363

Name Type * Description

Substitution SubstitutionType 0..* A value to substitute into the file.

 xsd:any 0..*

contentRef xsd:token 1 A reference to the content element’s id defined in the package descriptor.

type ArtifactTypeNameType 0..1 Type of the additional artifact file.

 xsd:anyAttribute 0..*

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 61 of 187

4.3.12.2 AdditionalContentType Property Usage Notes 1364

§ Substitution: The Substitution element supports the use of files that require some editing before they 1365
can be used in artifact processing. The definitions in this element support placement of values 1366
determined during a particular deployment into the file identified by the contentRef attribute. 1367
See the SubstitutionType section for structure and additional usage details [4.3.13]. 1368

§ contentRef: The contentRef attribute points back to the package descriptor for information about the 1369
physical file. This value MUST match an id of a content element in the package descriptor. 1370

§ type: The type attribute identifies the format of the additional file. Values for this attribute are not 1371
defined by this specification. ArtifactTypeNameType restricts values of type to valid xsd:QNames. 1372

4.3.13 SubstitutionType 1373

 1374
Figure 29: SubstitutionType structure. 1375
SubstitutionType provides the type definition for the Substitution element in AdditionalContent 1376
declarations. It enables declaration of patterns in the file and the values that should replace the patterns 1377
before the file is used in artifact processing. 1378

4.3.13.1 SubstitutionType Property Summary 1379

Name Type * Description

Pattern xsd:string 1 The search pattern in the file that needs to be substituted.

Value ElementValueType 1 The value to be substituted in the file.

limit xsd:positiveInteger 0..1 The number of substitutions that should be made.

required xsd:boolean 0..1 Indicates that substitution's value must result in a valid expression for each particular
deployment.
**default value=“true”

 xsd:anyAttribute 0..*

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 62 of 187

4.3.13.2 SubstitutionType Property Usage Notes 1380

§ Pattern: This is the substitution string that will be replaced with the Value when found in the file 1381
referenced by the contentRef attribute of the AdditionalContent element. 1382

§ Value: Evaluation of the Value expression results in the value that will be substituted for the pattern. 1383
A pattern of wildcard is not supported and MUST NOT be used with the Value element. 1384
See the ElementValueType section for structure and additional usage details [4.6.2]. 1385

§ limit: If limit is not defined, there is no limit and all instances of the pattern found in the file will be 1386
replaced. 1387

§ required: In cases where the substitution should be ignored when the value expression is not valid 1388
for a particular deployment, set required to “false”. 1389

4.3.14 CompletionType 1390

 1391
Figure 30: CompletionType structure. 1392
For some deployments certain completion actions such as restart and logoff are required before a 1393
deployment operation using a particular content element can be considered complete. The 1394
CompletionType elements enable the SDD author to indicate either that one of these actions is required 1395
or that one of these actions will be performed by the associated artifact. 1396

4.3.14.1 CompletionType Property Summary 1397

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the completion action.

Description DisplayTextType 0..1 Description of the completion action.

ShortDescription DisplayTextType 0..1 Short description of the completion action.

Condition ConditionType 0..1 Conditions that determine when the completion action will be used.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 63 of 187

 xsd:any 0..*

type CompletionTypeNamesType 1 The type of the completion action.

resourceRef xsd:IDREF 1 The resource where the completion action will be executed.

operation OperationListType 1 Associates a completion action with the processing of a particular
artifact.

 xsd:anyAttribute 0..*

4.3.14.2 CompletionType Property Usage Notes 1398

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 1399
MUST provide a label for the Completion element. 1400
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 1401

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 1402
information. If used, they MUST provide a description of the Completion element. 1403
The Description element MUST be defined if the ShortDescription element is defined. 1404
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 1405

§ Condition: Conditions specified on resource characteristics determine if the completion action 1406
applies. If the conditions are met, the action applies. If not met, then the action is not needed. Unmet 1407
conditions are not considered a failure. When no conditions are defined, the action always applies. 1408
See the ConditionType section for structure and additional usage details [4.5.1]. 1409

§ type: This is the completion action that applies when conditions defined in ResourceConstraint are 1410
met. Allowed values defined in CompletionTypeNameType are: 1411

• restartRequiredImmediately: A system restart is required before the deployment operation 1412
is considered complete and the artifact associated with the operation does not perform the 1413
restart. The restart MUST happen before further deployment actions are taken. 1414

• restartRequiredBeforeUse: A system restart is required before the deployment operation is 1415
considered complete and the artifact associated with the operation does not perform this 1416
action. The restart MUST happen before the associated resources are used. 1417

• restartOccurs: The artifact associated with the lifecycle operation will initiate a system 1418
restart. 1419

• logoffRequired: A logoff and logon to the user account is required before the deployment 1420
operation is considered complete and the artifact associated with the operation does not 1421
perform this action. The logoff and logon MUST happen before the operation can be 1422
considered complete. 1423

§ resourceRef: This will often be the resource named as the target resource for the defining content 1424
element. 1425
The value MUST reference the id of a resource element in Topology. 1426

§ operation: A completion action is associated with the processing of one artifact by setting operation 1427
to the operation associated with that artifact. The element that defines the Completion MUST also 1428
define an artifact associated with the operation defined for the Completion element. 1429
See the OperationListType section for operation enumerations and their meaning [4.3.6]. 1430

4.4 Constraints 1431

The SDD author needs to communicate constraints on resources for a variety of purposes. 1432
§ Some constraints must be met for the requirements of a content element to be met. See the 1433

RequirementsType section [4.7.1]. 1434

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 64 of 187

§ Other constraints must be met for a resource to serve as the required base for an update. See the 1435
RequiredBaseType section [4.7.8]. 1436

§ Still others must be met for to satisfy a condition that determines the applicability of a content element 1437
or completion action. See the ConditionType section [4.5.1] and the CompletionType section [4.3.14]. 1438

The Constraint types described in this section support identification of resource constraints in these 1439
various contexts. These types are: 1440
§ CapacityConstraint 1441
§ ConsumptionConstraint 1442
§ PropertyConstraint 1443
§ VersionConstraint 1444
§ UniquenessConstraint 1445
§ RelationshipConstraint 1446
§ AuthorizationConstraint 1447
All of these constraint types are constraints on a resource. There are different constraint types because 1448
there are distinct semantics for each type of constraint. Examples are: 1449

• values within a certain range; 1450
• one of a set of values; 1451
• all of a set of values; 1452
• equal to a certain value; 1453
• no more than or no less than a certain value; 1454
• no more than or no less than a certain value when all constraints of that type are added 1455

together. 1456
In all cases, deployment software must be able to discover the property’s value to honor the SDD author’s 1457
intent. 1458

4.4.1 CapacityConstraintType 1459

 1460
Figure 31: CapacityConstraintType structure. 1461
CapacityConstraintType provides the type definition of the Capacity elements of 1462
RequirementResourceConstraintType [4.7.5]. These elements are used to express a requirement on the 1463
capacity of a particular resource property such as memory available from an operating system. Capacity 1464
is shared: multiple capacity constraints expressed on the same property are evaluated individually without 1465
assuming any change to the available quantity of the property. 1466

4.4.1.1 CapacityConstraintType Property Summary 1467

Name Type * Description

Description DisplayTextType 0..1 A description of the capacity constraint. Required if ShortDescription is
defined.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 65 of 187

ShortDescription DisplayTextType 0..1 A short description of the capacity constraint.

PropertyName xsd:QName 1 Name of the constrained property.

Value CapacityValueType 1 Bounds on the value of the constrained property.

4.4.1.2 CapacityConstraintType Property Usage Notes 1468

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 1469
information. If used, they MUST provide a description of the capacity constraint on the resource. 1470
The Description element MUST be defined if the ShortDescription element is defined. 1471
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1472

§ PropertyName: This name corresponds to the name of the constrained resource property in the 1473
environment. This name may be specified in profiles [5.3]. 1474

§ Value: Value specifies the bound and optional recommended bound on the resource property 1475
identified in the PropertyName element. 1476
See the CapacityValueType section for structure and additional usage details [4.4.2]. 1477

4.4.2 CapacityValueType 1478

 1479
Figure 32: CapacityValueType structure. 1480
Capacity value is expressed in terms of a minimum or maximum capacity. CapacityValueType provides 1481
the elements that support this expression. It also supports expression of a recommended minimum or 1482
maximum capacity. 1483

4.4.2.1 CapacityValueType Property Summary 1484

Name Type * Description

Minimum ElementValueType 0..1 Minimum capacity.

Maximum ElementValueType 0..1 Maximum capacity.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 66 of 187

MinimumRecommended ElementValueType 0..1 Minimum recommended capacity.

MaximumRecommended ElementValueType 0..1 Maximum recommended capacity.

unit xsd:string 0..1 Unit of measure used to interpret the capacity value.

 xsd:anyAttribute 0..*

4.4.2.2 CapacityValueType Property Usage Notes 1485

§ Minimum: There will usually be either a minimum value or a maximum value defined, but not both. 1486
When minimum is specified, the actual value of the capacity property MUST be equal to or greater 1487
than the minimum value. 1488
A pattern of wildcard is not supported and MUST NOT be used with the Minimum element. 1489
See the ElementValueType section for structure and additional usage details [4.6.2]. 1490

§ Maximum: When specified, the actual value of the capacity property MUST be less than or equal to 1491
the defined maximum. 1492
If Minimum and Maximum are both defined, Minimum MUST be less than or equal to Maximum. 1493
A pattern of wildcard is not supported and MUST NOT be used with the Maximum element. 1494
See the ElementValueType section for structure and additional usage details [4.6.2]. 1495
MinimumRecommended: The SDD author can indicate a preferred, but not required, minimum by 1496
defining a value for this element.A pattern of wildcard is not supported and MUST NOT be used with 1497
the MinimumRecommended element. 1498
See the ElementValueType section for structure and additional usage details [4.6.2]. 1499

§ MaximumRecommended: The SDD author can indicate a preferred, but not required, maximum by 1500
defining a value for this element. 1501
If MinimumRecommended and MaximumRecommended are both defined, MinimumRecommended 1502
MUST be less than or equal to MaximumRecommended. 1503
A pattern of wildcard is not supported and MUST NOT be used with the MaximumRecommended 1504
element. 1505
See the ElementValueType section for structure and additional usage details [4.6.2]. 1506

§ unit: Values for unit SHOULD be well-known units of measure from the International System of Units 1507
[UNIT]. A unit of measure SHOULD be specified for all properties that are measured in any kind of 1508
unit. 1509

4.4.3 ConsumptionConstraintType 1510

 1511
Figure 33: ConsumptionConstraintType structure. 1512
ConsumptionConstraintType provides the type definition of the Consumption elements of 1513
RequirementResourceConstraintType [4.7.5]. These elements are used to express a requirement on the 1514
available quantity of a particular resource property such as disk space on a file system. 1515
ConsumptionConstraints represent exclusive use of the defined quantity of the resource property. In other 1516
words, consumption constraints are additive, with each consumption constraint specified in the SDD 1517

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 67 of 187

adding to the total requirement for the specified resource(s). A consumption constraint is assumed to alter 1518
the available quantity such that the portion of the property used to satisfy one constraint is not available to 1519
satisfy another consumption constraint on the same property. 1520

For example, suppose that the target file system has 80 megabytes available. The application of a 1521
content element’s InstallArtifact results in installation of files that use 5 megabytes of file space. The 1522
application of a second InstallArtifact results in installation of files that use 2 megabytes of file space. 1523
Consumption constraints are additive, so the total space used for this content element is 7 1524
megabytes, leaving 73 (80–7) megabytes available on the target file system. 1525

4.4.3.1 ConsumptionConstraintType Property Summary 1526

Name Type * Description

Description DisplayTextType 0..1 A description of the consumption constraint. Required if
ShortDescription is defined.

ShortDescription DisplayTextType 0..1 A short description of the consumption constraint.

PropertyName xsd:QName 1 Names the resource property to test.

Value ConsumptionConstraintValueType 1 A variable expression defining the minimum available
quantity.

4.4.3.2 ConsumptionConstraintType Property Usage Notes 1527

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 1528
information. If used, they MUST provide a description of the consumption constraint on the resource. 1529
The Description element MUST be defined if the ShortDescription element is defined. 1530
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1531

§ PropertyName: The property name can be used to find the property value in the deployment 1532
environment. This name may be specified in profiles [5.3]. 1533

§ Value: The result of evaluating this variable expression represents the minimum quantity of the 1534
named resource property that MUST be available for successful deployment of the defining content 1535
element’s artifacts. This quantity will be consumed by application of the associated artifact. 1536
See the ConsumptionConstraintValueType section for structure and additional usage details [4.4.4]. 1537

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 68 of 187

4.4.4 ConsumptionConstraintValueType 1538

 1539
Figure 34: ConsumptionConstraintValueType structure. 1540
A consumption value is defined using a variable expression. ConsumptionConstraintValueType provides 1541
the variable expression by extending ElementValueType. 1542

4.4.4.1 ConsumptionConstraintValueType Property Summary 1543

Name Type * Description

 [extends] ElementValueType See the ElementValueType section for additional properties [4.6.2].

unit xsd:string 0..1 Unit of measure used to interpret the consumption value.

 xsd:anyAttribute 0..*

4.4.4.2 ConsumptionConstraintValueType Property Usage Notes 1544

See the ElementValueType section for details about the inherited attributes and elements [4.6.2]. 1545
§ unit: Values for unit SHOULD be well-known units of measure from International System of Units 1546

[UNIT]. A unit of measure SHOULD be specified for all properties which are measured in any kind of 1547
unit. 1548

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 69 of 187

4.4.5 PropertyConstraintType 1549

 1550
Figure 35: PropertyConstraintType structure. 1551
PropertyConstraintType provides the type definition of the Property elements of 1552
RequirementResourceConstraintType [4.7.5]. It supports definition of a required value or set of 1553
acceptable values for a particular resource property. 1554

4.4.5.1 PropertyConstraintType Property Summary 1555

Name Type * Description

Description DisplayTextType 0..1 A description of the property constraint. Required if ShortDescription is
defined.

ShortDescription DisplayTextType 0..1 A short description of the property constraint.

PropertyName xsd:QName 1 Name of the constrained property.

Value ElementValueType 0..1 Required property value.

ListOfValues PropertyValueListType 0..1 List of required property values.

4.4.5.2 PropertyConstraintType Property Usage Notes 1556

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 1557
information. If used, they MUST provide a description of the property constraint on the resource. 1558
The Description element MUST be defined if the ShortDescription element is defined. 1559
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1560

§ PropertyName: The property name can be used to find the property value in the deployment 1561
environment. This name may be specified in profiles [5.3]. 1562

§ Value: The result of evaluating the Value expression represents the required value of the named 1563
resource property. 1564
See the ElementValueType section for structure and additional usage details [4.6.2]. 1565

§ ListOfValues: A list of required values can be defined in place of a single required value. 1566
See the PropertyValueListType section for structure and additional usage details [4.4.6]. 1567

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 70 of 187

4.4.6 PropertyValueListType 1568

 1569
Figure 36: PropertyValueListType structure. 1570
A property value list is expressed as one or more strings representing valid values for the property. 1571

4.4.6.1 PropertyValueListType Property Summary 1572

Name Type * Description

Value ElementValueType 1..* A property value.

match PropertyMatchType 0..1 Determines whether the actual property value must match any or all of the listed
values.
**default value=“any”

 xsd:anyAttribute 0..*

4.4.6.2 PropertyValueListType Property Usage Notes 1573

§ Value: The result of the Value expression represents one possible required value of the named 1574
resource property. 1575
See the ElementValueType section for structure and additional usage details [4.6.2]. 1576

§ match: The value or values of the property found in the deployment environment are compared to the 1577
value or values listed in the property constraint. PropertyMatchType defines two enumerated values: 1578
any and all. When match is set to any, the property constraint is considered met when any one of the 1579
found property values matches any one of the declared property values. When match is set to all, the 1580
constraint is considered met when all of the declared property values match values found for the 1581
property. 1582

4.4.7 VersionConstraintType 1583

 1584
Figure 37: VersionConstraintType structure. 1585

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 71 of 187

VersionConstraintType provides the type definition of the VersionConstraint elements of 1586
RequirementResourceConstraintType [4.7.5]. A VersionConstraint can define a set of individual versions 1587
or ranges of versions that are supported and a similar set that are certified. During deployment, the set of 1588
certified versions, if provided, will be resolved and if successful, prioritized first. If the version constraint is 1589
still unmet after processing the certified versions, then the supported versions will be resolved. 1590

4.4.7.1 VersionConstraintType Property Summary 1591

Name Type * Description

Description DisplayTextType 0..1 A description of the version constraint. Required if
ShortDescription is defined.

ShortDescription DisplayTextType 0..1 A short description of the version constraint.

Supported VersionConstraintValueType 1 A supported version or set of versions.

Certified VersionConstraintValueType 0..1 A subset of the supported versions that are certified as tested.

4.4.7.2 VersionConstraintType Property Usage Notes 1592

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 1593
information. If used, they MUST provide a description of the version constraint on the resource. 1594
The Description element MUST be defined if the ShortDescription element is defined. 1595
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1596

§ Supported: If the version of a resource is in the Supported set, it meets the requirements. 1597
See the VersionConstraintValueType section for structure and additional usage details [4.4.8]. 1598

§ Certified: In some cases the set of required versions may be different from the set of versions that 1599
are certified by the manufacturer as thoroughly tested. Version(s) declared as Certified MUST be a 1600
subset of the version(s) declared as Supported. 1601
See the VersionConstraintValueType section for structure and additional usage details [4.4.8]. 1602

4.4.8 VersionConstraintValueType 1603

 1604
Figure 38: VersionConstraintValueType structure. 1605
A version constraint can be specified using any number of individual version values in combination with 1606
any number of version ranges. 1607

4.4.8.1 VersionConstraintValueType Property Summary 1608

Name Type * Description

Value VersionValueType 0..* A version value with associated fixes specified.

Range VersionRangeType 0..* A range of version values with associated fixes specified for each range.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 72 of 187

4.4.8.2 VersionConstraintValueType Property Usage Notes 1609

§ Value: Discrete version values can be defined when the set of required versions includes versions 1610
that do not fall within a range. There is no assumption by this specification that version values are 1611
numerically comparable. The method of comparing version values may be resource-specific. 1612
See the VersionValueType section for structure and additional usage details [4.4.9]. 1613

§ Range: See the VersionRangeType section for structure and additional usage details [4.4.10]. 1614

4.4.9 VersionValueType 1615

 1616
Figure 39: VersionValueType structure. 1617
A version value includes a version and a list of required fixes associated with that version. 1618

4.4.9.1 VersionValueType Property Summary 1619

Name Type * Description

Version VersionType 1 An allowable version value.

FixName xsd:string 0..* The name of a fix.

4.4.9.2 VersionValueType Property Usage Notes 1620

§ Version: A string containing a single, exact version value. This is compared with the version value of 1621
specific resource instances. Only equal values satisfy this part of the constraint. 1622
See the VersionType section for structure and additional usage details [3.10]. 1623

§ FixName: Any number of FixName elements can be defined; identifying fixes that must be discovered 1624
to be applied for the version constraint to be considered met. 1625

4.4.10 VersionRangeType 1626

 1627
Figure 40: VersionRangeType structure. 1628
A VersionRange is specified with a minimum and maximum version value and a list of required fixes 1629
associated with that range. The method of comparing version strings in a version range is resource-1630
specific. 1631

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 73 of 187

4.4.10.1 VersionRangeType Property Summary 1632

Name Type * Description

MinVersion VersionType 0..1 The least allowable version value.

MaxVersion MaxVersionType 0..1 The greatest allowable version value.

FixName xsd:string 0..* The name of a fix.

4.4.10.2 VersionRangeType Property Usage Notes 1633

§ MinVersion: This is the lower bound of a version range. If MinVersion is defined but MaxVersion is 1634
not, there is no upper bound. A version that is equal to MinVersion is within the defined range. 1635
See the VersionType section for structure and additional usage details [3.10]. 1636

§ MaxVersion: This is the upper bound of a version range. If MaxVersion is defined but MinVersion is 1637
not, there is no lower bound. A version that is equal to MaxVersion may be within the defined range 1638
depending on the value specified for the inclusive attribute. 1639
See the MaxVersionType section for structure and additional usage details [4.4.11]. 1640

§ FixName: Any number of FixNames can be defined identifying fixes that must be found to be applied 1641
for the version constraint is to be considered satisfied. This is true for all versions within the defined 1642
range. 1643
When FixName is defined, either a MinVersion or a MaxVersion element MUST also be defined. 1644

4.4.11 MaxVersionType 1645

 1646
Figure 41: MaxVersionType structure. 1647
A maximum version can be inclusive or exclusive. 1648

4.4.11.1 MaxVersionType Property Summary 1649

Name Type * Description

 [extends] VersionType See the VersionType section for additional properties [3.10].

inclusive xsd:boolean 0..1 Indicates whether the max version value is included in the supported range of
versions.
**default value=“false”

 xsd:any 0..*

4.4.11.2 MaxVersionType Property Usage Notes 1650

See the VersionType section for details about the inherited attributes and elements [3.10]. 1651

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 74 of 187

§ inclusive: The inclusive attribute allows the SDD author to choose the semantics of maximum 1652
version. Supported ranges are often everything equal to or greater than the minimum version and up 1653
to, but not including, the maximum version. Sometimes it is more convenient for the range to include 1654
the maximum version. 1655

4.4.12 UniquenessConstraintType 1656

 1657
Figure 42: UniquenessConstraintType structure. 1658
A UniquenessConstraint is used to indicate when two resources defined in topology MUST or MUST NOT 1659
resolve to the same resource instance during a particular deployment. A UniquenessConstraint indicates 1660
that the two resources MUST NOT be the same when it is defined in a ResourceConstraint element with 1661
testValue=“true”. A UniquenessConstraint indicates that the two resources MUST be the same when 1662
defined in a ResourceConstraint with testValue=“false”. 1663
When no UniquenessConstraint is in scope for a particular pair of resources, the two resources MAY 1664
resolve to the same resource when their identifying characteristics are the same and when all in-scope 1665
constraints on both resources are satisfied. 1666
The first of the pair of resources is identified in the resourceRef attribute of the ResourceConstraint 1667
element that defines the UniquenessConstraint. The second of the pair is identified in the 1668
distinctResourceRef attribute of the UniquenessConstraint. 1669

4.4.12.1 UniquenessConstraintType Property Summary 1670

Name Type * Description

Description DisplayTextType 0..1 A description of the uniqueness constraint, for example what must or must
not be unique and why.

ShortDescription DisplayTextType 0..1 A short description of the uniqueness constraint.

distinctResourceRef xsd:IDREF 1 One of the pair of resources referred to by the constraint.

4.4.12.2 UniquenessConstraintType Property Usage Notes 1671

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 1672
information. If used, they MUST provide a description of the uniqueness constraint on the resource. 1673
The Description element MUST be defined if the ShortDescription element is defined. 1674
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1675

§ distinctResourceRef: The second resource in the pair of resources. 1676
The value MUST reference the id of a resource element in Topology. 1677

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 75 of 187

4.4.13 RelationshipConstraintType 1678

 1679
Figure 43: RelationshipConstraintType structure. 1680
A RelationshipConstraint identifies a particular relationship between two resources that is constrained in 1681
some way by the SDD. The value of the testValue attribute of the ResourceConstraint that contains the 1682
RelationshipConstraint determines whether the constraint MUST be satisfied or MUST NOT be satisfied. 1683
The first resource of the pair is defined by the resourceRef attribute of the ResourceConstraint containing 1684
the RelationshipConstraint. 1685

4.4.13.1 RelationshipConstraintType Property Summary 1686

Name Type * Description

Description DisplayTextType 0..1 A description of the relationship and its purpose in the overall solution.

ShortDescription DisplayTextType 0..1 A short description of the relationship.

Property PropertyType 0..* A property constraint that further constrains the relationship.

relatedResourceRef xsd:IDREF 0..1 The second resource in the relationship.

type xsd:QName 1 The type of the relationship.

 xsd:anyAttribute 0..*

4.4.13.2 RelationshipConstraintType Property Usage Notes 1687

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 1688
information. If used, they MUST provide a description of the relationship constraint on the resource. 1689
The Description element MUST be defined if the ShortDescription element is defined. 1690
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1691

§ Property: This element MAY be used to provide additional constraints on the relationship. 1692
For example, a connectivity relationship might specify additional information such as the specific 1693
protocol used (for instance, TCP/IP) and/or particular characteristics of a protocol (for instance, 1694
port number). 1695

See the PropertyType section for structure and additional usage details [4.2.3]. 1696

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 76 of 187

§ relatedResourceRef: Naming the second resource is optional. When it is not named, the relationship 1697
constraint is satisfied if the first resource has the defined relationship with any other resource. 1698
When it is named, the value MUST reference the id of a resource element in Topology. 1699

§ type: Values for relationship type are not defined by the SDD specification. 1700

4.4.14 AuthorizationConstraintType 1701

 1702
Figure 44: AuthorizationConstraintType structure. 1703
An AuthorizationConstraint enables the SDD author to declare the level of authority that is required by the 1704
target resource in order to deploy the content that is described by the SDD. 1705

For example, if the referenced resource for which this contraint applies is an operating system–the 1706
SDD author would use this constraint to declare that root authority is required. This pattern similarly 1707
applies to databases, application servers, etc. 1708

4.4.14.1 AuthorizationConstraintType Property Summary 1709

Name Type * Description

Description DisplayTextType 0..1 A description of the authorization level and its purpose in the overall solution.

ShortDescription DisplayTextType 0..1 A short description of the authorization level.

userType UserAuthorityType 0..1 The type of the authority, for example, “guest” or “root”.
**default value=“guest”.

 xsd:anyAttribute 0..*

4.4.14.2 AuthorizationConstraintType Property Usage Notes 1710

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 1711
information. If used, they MUST provide a description of the authorization constraint on the resource. 1712
The Description element MUST be defined if the ShortDescription element is defined. 1713
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1714

§ userType: If specified, the userType attribute designates the level of authority required by the 1715
referenced resource. 1716

For example, setting the userType to “guest” implies that the resource does not need a level of 1717
authoritization higher than a common user. However, if userType is set to “root”, the resource 1718
requires an elevated level of administrative authority in order to successfully function. 1719

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 77 of 187

4.5 Conditions 1720

Conditions are expressed on characteristics of resources in the deployment environment. Conditions are 1721
used to indicate when particular elements of the SDD are applicable, or when they should be ignored. 1722
Conditions are not requirements. Failure to satisfy a condition does not indicate a failure; it simply means 1723
the conditioned element should be ignored. Conditions are used to: 1724

§ determine if a content element is applicable 1725
§ choose from among values for a variable 1726
§ determine when a feature is applicable 1727
§ determine when a particular result is applicable 1728
§ determine if a particular completion action is necessary. 1729

Because conditions are always based on the characteristics of resources, they are expressed using 1730
resource constraints. 1731

4.5.1 ConditionType 1732

 1733
Figure 45: ConditionType structure. 1734
ConditionType allows expression of the particular resource characteristics that must be true for the 1735
condition to be considered met. These are resource characteristics that may vary from one particular 1736
deployment to another. 1737

For example, one deployment using the SDD might use one version of an application server and a 1738
different deployment might use a different version. The differences in the version might be great 1739
enough to: 1740
• select among content elements. 1741

For example, one content element has an artifact for a Web application that works in a 1742
particular version and a different content element has an artifact for a later version of the 1743
same Web application. 1744

• select among variable values. 1745
For example, the default installation path on one operating system may be different from the 1746
default install path on another operating system. 1747

• select among completion actions. 1748
For example, a reboot may be required when deploying on one operating system but not 1749
another. 1750

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 78 of 187

4.5.1.1 ConditionType Property Summary 1751

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the condition.

Description DisplayTextType 0..1 Description of the condition.

ShortDescription DisplayTextType 0..1 Short description of the condition.

Alternative AlternativeConditionalType 0..* An alternative set of resource constraints.

ResourceConstraint ConditionalResourceConstraintType 0..* A set of constraints on one resource.

 xsd:any 0..*

operation OperationListType 0..1 The condition applies only when processing the artifact
associated with this operation.

 xsd:anyAttribute 0..*

4.5.1.2 ConditionType Property Usage Notes 1752

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 1753
MUST provide a label for the condition. 1754
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 1755

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 1756
information. If used, they MUST provide a description of the condition. 1757
The Description element MUST be defined if the ShortDescription element is defined. 1758
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 1759

§ Alternative: When a condition can be satisfied in multiple ways, two or more Alternative elements are 1760
defined. 1761
As a convenience for tooling that produces SDDs, it is also possible to define a single Alternative. 1762
This is semantically identical to directly defining ResourceConstraints. 1763
To meet a condition, at least one of the specified Alternatives must be satisfied. 1764
See the AlternativeConditionalType section for structure and additional usage details [4.5.2]. 1765

§ ResourceConstraint: When a condition can be satisfied in only one way, constraints MAY be 1766
defined directly under Condition or in a single Alternative element. 1767
Constraints are defined using a sequence of ResourceConstraints. Every constraint in the sequence 1768
must be met for the condition to be met. 1769
See the ConditionalResourceConstraintType section for structure and additional usage details [4.5.3]. 1770

§ operation: In a singleton atomic content element, a condition MAY be associated with application of 1771
one or more artifacts. The association is made by setting the operation attribute to the operations 1772
associated with those artifacts. 1773
Conditions defined for CompositeInstallable and for atomic content elements defined within a 1774
CompositeInstallable SHOULD NOT define operation. If the operation is defined for a 1775
CompositeInstallable Condition, it MUST be set to the operation defined in the CompositeInstallable’s 1776
operation attribute. If operation is defined for an atomic content element’s Condition, it MUST be set 1777
to the operation associated with the single artifact defined by the atomic content element. 1778
When operation is not specified, the condition applies to the processing of all artifacts. 1779
See the OperationListType section for operation enumerations and their meaning [4.3.6]. 1780

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 79 of 187

4.5.2 AlternativeConditionalType 1781

 1782
Figure 46: AlternativeConditionalType structure. 1783
When a condition can be met in more than one way, alternative sets of conditional resource constraints 1784
can be defined. AlternativeConditionalType provides the type definition for these elements. 1785

4.5.2.1 AlternativeConditionalType Property Summary 1786

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the alternative.

Description DisplayTextType 0..1 Description for the alternative.

ShortDescription DisplayTextType 0..1 Short description of the alternative.

ResourceConstraint ConditionalResourceConstraintType 1..* A set of constraints on one resource.

 xsd:any 0..*

id xsd:IDREF 1 Identifier for the alternative that is unique within the
deployment descriptor.

 xsd:anyAttribute 0..*

4.5.2.2 AlternativeConditionalType Property Usage Notes 1787

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 1788
MUST provide a label for the alternative condition. 1789
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 1790

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 1791
information. If used, they MUST provide a description of the alternative condition. 1792
The Description element MUST be defined if the ShortDescription element is defined. 1793
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 1794

§ ResourceConstraint: All constraints defined in the individual Alternative MUST be met for the 1795
Alternative condition to evaluate to true. 1796
See the ConditionalResourceConstraintType section for structure and additional usage details [4.5.3]. 1797

§ id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 1798
log and trace messages. 1799

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 80 of 187

4.5.3 ConditionalResourceConstraintType 1800

 1801
Figure 47: ConditionalResourceConstraintType structure. 1802
ConditionalResourceConstraintType provides the type definitions for ResourceConstraint elements used 1803
in conditions. These constraints do not represent requirements for deployment. Instead, they identify the 1804
resource characteristics associated with a condition. Version, property and the existence or absence of 1805
the resource can be specified with a resource constraint used in a condition. 1806

For example, an SDD author might want to deploy a specific artifact to Windows XP operating 1807
systems but not to other Windows operating systems. To accomplish this, a ResourceConstraint that 1808
includes a VersionConstraint that identifies the OS version that matches Windows XP is included with 1809
the InstallableUnit for that specific artifact. At runtime, if the OS version matches, the condition is met 1810
and the artifact is deployed; otherwise, it is skipped. 1811

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 81 of 187

4.5.3.1 ConditionalResourceConstraintType Property Summary 1812

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the resource constraint.

Description DisplayTextType 0..1 Description for the resource constraint.

ShortDescription DisplayTextType 0..1 Short description of the resource constraint.

Name VariableExpressionType 0..1 Name of the resource constraint.
[DEPRECATED in SDD v2.0]

VersionConstraint VersionConstraintValueType 0..1 A resource version set.

PropertyConstraint ConditionalPropertyConstraintType 0..* A resource property name and required value.

UniquenessConstraint UniquenessConstraintType 0..* A required mapping of two resources in the topology to
unique instances in the deployment environment.

RelationshipConstraint RelationshipConstraintType 0..* A required relationship between the resource identified
in the resourceRef and another resource in the
topology.

AuthorizationConstraint AuthorizationConstraintType 0..* A required authorization level for a resource.

 xsd:any 0..*

id xsd:ID 1 Identifier for the resource constraint that is unique
within the deployment descriptor.

resourceRef xsd:IDREF 1 The resource to which the conditions apply.

testValue xsd:boolean 0..1 The result of evaluating the contained constraints,
which will result in the ResourceConstraint being met.
**default value=“true”

 xsd:anyAttribute 0..*

4.5.3.2 ConditionalResourceConstraintType Property Usage Notes 1813

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 1814
MUST provide a label for the resource constraint. 1815
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 1816

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 1817
information. If used, they MUST provide a description of the resource constraint. 1818
The Description element MUST be defined if the ShortDescription element is defined. 1819
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 1820

§ Name: The name of the resource identified by resourceRef. If the resource name is defined in 1821
topology it SHOULD NOT be defined here. If it is defined in both places, the one defined in the 1822
condition is used when evaluating the condition. 1823
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 1824
[Starting with SDD v2.0, Name has been deprecated.] 1825

§ VersionConstraint: The actual version of the resource MUST be one of the set of versions defined 1826
here for the version condition to be considered met. 1827
See the VersionConstraintValueType section for structure and additional usage details [4.4.8]. 1828

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 82 of 187

§ PropertyConstraint: The actual value of the property MUST match the value defined here for the 1829
condition to be considered met. 1830
See the ConditionalPropertyConstraintType section for structure and additional usage details [4.5.4]. 1831

§ UniquenessConstraint: UniquenessConstraint elements are used in ResourceConstraints to 1832
indicate when two resources defined in topology MUST or MUST NOT resolve to the same resource 1833
instance during a particular deployment. 1834
See the UniquenessConstraintType section for structure and additional usage details [4.4.12]. 1835

§ RelationshipConstraint: RelationshipConstraint elements are used in ResourceConstraints to 1836
indicate a constraint on a particular relationship between resources. 1837
See the RelationshipConstraintType section for structure and additional usage details [4.4.13]. 1838

§ AuthorizationConstraint: AuthorizationConstraint elements are used in ResourceConstraints to 1839
indicate a required level of authorization required by a resource in order to deploy the content that is 1840
described by the SDD. 1841
See the AuthorizationConstraintType section for structure and additional usage details [4.4.14]. 1842

§ id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 1843
log and trace messages. 1844

§ resourceRef: The version and property constraints defined here all apply to the one resource 1845
specification in topology identified by this attribute. 1846
The value MUST reference the id of that resource element in Topology. 1847

§ testValue: When the result of evaluating all of the constraints defined in the ResourceConstraint 1848
matches the value of testValue, the ResourceConstraint is considered met. 1849
When no version or property constraints are defined, and testValue is “true”, the constraint is met if 1850
the resource exists as defined in topology. 1851
When no version or property constraints are defined, and testValue is “false”, the constraint is met if 1852
the resource, as defined in topology, does not exist. 1853

4.5.4 ConditionalPropertyConstraintType 1854

 1855
Figure 48: ConditionalPropertyConstraintType structure. 1856
ConditionalPropertyConstraintType provides the type definition for a PropertyConstraint included within 1857
Alternatives specified in Condition elements. The ConditionalPropertyConstraintType is very similar to the 1858
PropertyConstraintType; the only difference is that the Value element defined in the 1859
ConditionalPropertyConstraintType is of type xsd:string which is less restrictive than the Value 1860
element defined in the PropertyConstraintType which is of ElementValueType. 1861

4.5.4.1 ConditionalPropertyConstraintType Property Summary 1862

Name Type * Description

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 83 of 187

Description DisplayTextType 0..1 A description of the property constraint. Required if ShortDescription is
defined.

ShortDescription DisplayTextType 0..1 A short description of the property constraint.

PropertyName xsd:QName 1 Name of the constrained property.

Value xsd:string 0..1 Required property value.

ListOfValues PropertyValueListType 0..1 List of required property values.

4.5.4.2 ConditionalPropertyConstraintType Property Usage Notes 1863

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 1864
information. If used, they MUST provide a description of the PropertyConstraint element. 1865
The Description element MUST be defined if the ShortDescription element is defined. 1866
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1867

§ PropertyName: The property name can be used to find the property value in the deployment 1868
environment. The name may be defined in a profile [5.3]. 1869

§ Value: In a condition, the value used in a property constraint is a string rather than a variable 1870
expression. 1871

§ ListOfValues: A list of required values can be defined in place of a single required value. 1872
See the PropertyValueListType section for structure and additional usage details [4.4.6]. 1873

4.6 Variables 1874

Variables provide a means to associate user inputs, resource property values, fixed strings and values 1875
derived from these with input arguments for artifacts and with constraints on resources. Three types of 1876
variables can be defined in an SDD. Parameter is a variable whose value is expected to be received as 1877
input to the deployment process. ResourceProperty is a variable whose value is set from the property of a 1878
specific instance of a resource during a particular solution deployment. DerivedVariable is exactly what its 1879
name indicates; it is a variable that is derived from values defined elsewhere in the descriptor or in the 1880
environment. 1881
A variable is considered defined if it has a value provided, even if that value is the empty string. A variable 1882
expression is considered valid if it contains no variable references, or if all contained variable references 1883
are defined. 1884
Specifically, a ResourceProperty variable is undefined when the resource does not participate in the 1885
particular deployment or when the specified property has no value. A Parameter variable is undefined 1886
when it has no default value and has no value provided by the deployer. A DerivedVariable that uses 1887
ConditionalExpression elements is undefined when none of its conditions evaluates to true, or the 1888
selected condition's value expression is not valid. A DerivedVariable that uses an unconditioned 1889
Expression is undefined when its value expression is undefined. 1890
To avoid an undefined Parameter variable, default parameter values may be used. To avoid an undefined 1891
ResourceProperty variable, replace references to the ResourceProperty variable with references to a 1892
DerivedVariable defined to provide a default value in cases where the ResourceProperty is undefined. 1893
This DerivedVariable would define one expression, conditioned on the resource, that refers to the 1894
ResourceProperty variable and another, low priority, catch-all expression that defines the desired 1895
“default” value. Note that the default value in either of these cases MAY be an empty string, for example, 1896
“”. An empty string acts just like any other defined variable value. When the provided value of a variable is 1897
an empty string, the variable reference in a variable expression is replaced by an empty string. 1898

4.6.1 VariableExpressionType 1899

Variable expressions allow the value of a variable to be used as all, or part of, the value of some other 1900
SDD element. A variable expression is a string that can include a reference to a variable. The string is 1901

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 84 of 187

evaluated by replacing all references to variables with the value of the variable. A variable reference is a 1902
variable id placed inside parentheses preceded by a dollar sign. 1903

For example, the variable expression “C:\Program Files\$(InstallDirectory)” resolves to “C:\Program 1904
Files\Acme Software Product” if the value of the variable with the id “InstallDirectory” has the value 1905
“Acme Software Product”. 1906

The value of a variable that is replaced into a variable expression can itself have a variable reference. 1907
This reference is resolved before using the value. This nesting of variable expressions is unlimited. Any 1908
number of variable references can be used in a variable expression. If a variable expression string does 1909
not contain a variable reference, it is used as is. 1910

4.6.2 ElementValueType 1911

 1912
Figure 49: ElementValueType structure. 1913
ElementValueType provides a string value and a processing hint to the runtime necessary for proper 1914
handling the string. This provides the author with flexibility when specifying string values, so that literals 1915
and expressions are interpreted as the author intended. See [SDDP] and [SDDEX] for examples using 1916
the ElementValueType. 1917

4.6.2.1 ElementValueType Property Summary 1918

Name Type * Description

 [extends] xsd:string See the xsd:string definition in [XSD].

pattern StringPatternType 0..1 The format of the specified value indicating how the string should be interpreted at
runtime.
**default value=“string”

4.6.2.2 ElementValueType Property Usage Notes 1919

See the xsd:string definition in [XSD] for inherited attributes and elements. 1920
§ pattern: The value of pattern MUST be one of the enumerations provided by StringPatternType. 1921

In some expressions of ElementValueType, wildcards logically do not make sense. A usage note is 1922
provided if an element does not support a pattern of wildcard. 1923
See the StringPatternType section for structure and additional usage details [4.6.3]. 1924

4.6.3 StringPatternType 1925

StringPatternType provides an enumeration of the possible patterns for runtime processing of string 1926
values specified in elements of ElementValueType. 1927

4.6.3.1 StringPatternType Property Usage Notes 1928

Attributes of StringPatternType MUST be set to one of the following values: 1929
§ string: The value specified will be treated as a case insensitive string. 1930

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 85 of 187

§ literal: The value specified will be treated as a case sensitive string. 1931
§ variableReference: The value specified will be treated as a variable expression and string resolution 1932

will be performed. 1933
§ wildcard: The value specified will be processed as a type of regular expression, where “*” is the 1934

preferred wildcard character. 1935
For example, a PropertyType element might have a Value that can either match “Oracle 9iAS” or 1936
“Oracle 10”. In order to indicate that either is an acceptible match, specify the expression value as 1937
“Oracle*”, and set pattern=”wildcard”. 1938

In some expressions of ElementValueType, wildcards logically do not make sense. A usage note is 1939
provided if an element does not support a pattern of wildcard. 1940

4.6.4 BaseVariableType 1941

 1942
Figure 50: BaseVariableType structure. 1943
BaseVariableType is the base type of the DerivedVariable and ResourceProperty elements defined by 1944
VariablesType [4.6.5]. It provides the id attribute, which is used to reference the variable in a variable 1945
expression. 1946

4.6.4.1 BaseVariableType Property Summary 1947

Name Type * Description

Description DisplayTextType 0..1 Description of the variable.

ShortDescription DisplayTextType 0..1 Short description of the variable.

id xsd:ID 1 Identifier used for referencing the variable within the descriptor.

sensitive xsd:boolean 0..1 A “true” value indicates the variable contains sensitive data.
**default value=“false”

4.6.4.2 BaseVariableType Property Usage Notes 1948

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 1949
information. If used, they MUST provide a description of the variable. 1950
The Description element MUST be defined if the ShortDescription element is defined. 1951
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 1952

§ id: Variables may be referenced in deployment descriptor elements of type VariableExpression within 1953
the scope of the variable. The scope of the variable includes the content element where defined and 1954
all nested content elements. Variables defined in the top level content element are also visible in 1955

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 86 of 187

Topology. The Variable is referenced by placing the variable id within parentheses preceded by a 1956
dollar sign. 1957

For example, a variable with id value “InstallLocation” is referenced with the string 1958
“$(InstallLocation)”. 1959

The id attribute may be useful to software that processes the SDD, for example, for use in creating 1960
log and trace messages. 1961

§ sensitive: The sensitive attribute provides an indication of whether the data within a variable is likely 1962
to be considered sensitive. User name and password are examples of data that may be considered 1963
sensitive. 1964

For example, sensitive data typically would not be displayed in a user interface, written to a log 1965
file, stored without protection, or in any way made visible except to authorized users. 1966

The default value is “false”. 1967

4.6.5 VariablesType 1968

 1969
Figure 51: VariablesType structure. 1970
There are three types of variables that can be defined in a content element: input parameter variables, 1971
variables that take the value of a resource property, and variables whose value is derived from a variable 1972
expression. 1973
A variable is in scope for a particular deployment when the content element that defines the variable is in 1974
scope for that deployment. 1975

4.6.5.1 VariablesType Property Summary 1976

Name Type * Description

Parameters ParametersType 0..* A list of variables whose values can be supplied as input to the
deployment process.

ResourceProperty ResourcePropertyType 0..* A variable whose value is set from the value of a resource property.

DerivedVariable DerivedVariableType 0..* A set of expressions with optional associated conditions. The
DerivedVariable’s value is determined by evaluating the conditions and
then setting the variable value to the result of the top priority
expression from the set of expressions whose conditions evaluate to
true.

 xsd:any 0..*

4.6.5.2 VariablesType Property Usage Notes 1977

§ Parameters: See the ParametersType section for structure and additional usage details [4.6.6]. 1978

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 87 of 187

§ ResourceProperty: See the ResourcePropertyType section for structure and additional usage details 1979
[4.6.18]. 1980

§ DerivedVariable: See the DerivedVariableType section for structure and additional usage details 1981
[4.6.19]. 1982

4.6.6 ParametersType 1983

 1984
Figure 52: ParametersType structure. 1985
Parameters are variables whose value is expected to be received as input to the deployment process. 1986
The SDD author can specify multiple specific types of parameters, including validation rules for the values 1987
of the parameters. 1988

4.6.6.1 ParametersType Property Summary 1989

Name Type * Description

IntegerParameter IntegerParameterType 0..* An integer input parameter.

StringParameter StringParameterType 0..* A string input parameter.

BooleanParameter BooleanParameterType 0..* A boolean input parameter.

URIParameter URIParameterType 0..* A Universal Resource Identifier input parameter.

ComplexParameter ComplexParameterType 0..* A set of input parameters of different base types.

ArrayParameter ArrayParameterType 0..* An array of input parameters of the same type.

 xsd:any 0..*

4.6.6.2 ParametersType Property Usage Notes 1990

§ IntegerParameter: See the IntegerParameterType section for structure and additional usage details 1991
[4.6.8]. 1992

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 88 of 187

§ StringParameter: See the StringParameterType section for structure and additional usage details 1993
[4.6.10]. 1994

§ BooleanParameter: See the BooleanParameterType section for structure and additional usage 1995
details [4.6.12]. 1996

§ URIParameter: See the URIParameterType section for structure and additional usage details 1997
[4.6.12.2]. 1998

§ ComplexParameter: See the ComplexParameterType section for structure and additional usage 1999
details [4.6.13.2]. 2000

§ ArrayParameter: See the ArrayParameterType section for structure and additional usage details 2001
[4.6.15]. 2002

4.6.7 BaseParameterType 2003

 2004
Figure 53: BaseParameterType structure. 2005
BaseParameterType provides a default value, along with other attributes used by all parameter types. It 2006
also provides the id attribute, which is used to reference the parameter in variable expressions. 2007

4.6.7.1 BaseParameterType Property Summary 2008

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the parameter.

Description DisplayTextType 0..1 Description of the parameter.

ShortDescription DisplayTextType 0..1 Short description of the parameter.

id xsd:ID 1 Identifier used for referencing the variable within the descriptor.

sensitive xsd:boolean 0..1 A “true” value indicates the variable contains sensitive data.
**default value=“false”

required xsd:boolean 0..1 A “true” value indicates that a value for the parameter must be provided.
**default value=“true”

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 89 of 187

operation OperationListType 0..1 The parameter is used when the specified operation(s) is (are) performed.

4.6.7.2 BaseParameterType Property Usage Notes 2009

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 2010
MUST provide a label for the parameter. 2011
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2012

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 2013
information. If used, they MUST provide a description of the parameter. 2014
These elements may be used to assist the deployer in understanding the purpose and expected 2015
values for the parameters. 2016
The Description element MUST be defined if the ShortDescription element is defined. 2017
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2018

§ id: Parameters may be referenced in DeploymentDescriptor elements of type VariableExpression or 2019
ElementValueType within the scope of the parameter variable. The scope of the variable includes the 2020
content element where the variable is defined and all nested content elements. Variables defined in 2021
the top level content element are also visible in Topology. The Variable is referenced by placing the 2022
variable id within parentheses preceded by a dollar sign. 2023

For example, a variable with id value “InstallLocation” is referenced with the string 2024
“$(InstallLocation)”. 2025

The id attribute may be useful to software that processes the SDD, for example, for use in creating 2026
log and trace messages. 2027

§ sensitive: The sensitive attribute provides an indication of whether the data within a variable is likely 2028
to be considered sensitive. User name and password are examples of data that may be considered 2029
sensitive. 2030

For example, sensitive data typically would not be displayed in a user interface, written to a log 2031
file, stored without protection, or in any way made visible except to authorized users. 2032

§ required: A “true” value for required indicates that a value for the parameter must be provided when 2033
the parameter is in scope for a particular deployment. 2034
In cases where the parameter should be ignored when the value expression is not valid for a 2035
particular deployment, set required to "false". 2036
A “false” value for the required attribute has no effect when a DefaultValue is provided. 2037

§ operation: This attribute enables unique parameters to be defined per operation. Note that the use of 2038
a parameter for a particular operation is determined by a reference to the parameter in a variable 2039
expression or artifact argument used when performing that operation. The operation(s) associated 2040
with a parameter’s use can be determined by examining its use in the SDD. The operation attribute 2041
provides a quick way to know which operation(s) will use the parameter without having to examine 2042
the use of the parameter. 2043
All parameters defined within a CompositeInstallable are associated with the single operation 2044
supported by the CompositeInstallable. The operation attribute SHOULD NOT be set in this situation. 2045
See the OperationListType section for operation enumerations and their meaning [4.3.6]. 2046

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 90 of 187

4.6.8 IntegerParameterType 2047

 2048
Figure 54: IntegerParameterType structure. 2049
IntegerParameterType defines upper and lower bounds that can be used to validate the input received for 2050
that parameter. 2051

4.6.8.1 IntegerParameterType Property Summary 2052

Name Type * Description

 [extends] BaseParameterType See the BaseParameterType section for additional properties [4.6.7].

Bounds BoundaryType 0..* Specifies the boundaries for the value of the parameter.

DefaultValue ElementValueType 0..1 Default value for the parameter.

 xsd:anyAttribute 0..*

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 91 of 187

4.6.8.2 IntegerParameterType Property Usage Notes 2053

See the BaseParameterType section for details about the inherited attributes and elements [4.6.7]. 2054
§ Bounds: If there are restrictions on the range of values that are valid for a parameter, those 2055

restrictions MUST be specified in Bounds. 2056
See the BoundaryType section for structure and additional usage details [4.6.9]. 2057

§ DefaultValue: The DefaultValue is used if no other value is provided as input to the deployment 2058
process. 2059
The value is interpreted based on the type of the defining parameter. 2060

For example, the DefaultValue for a BooleanParameter must be either “true” or “false”; the 2061
DefaultValue for a StringParameter must be a string; etc. 2062

A pattern of wildcard is not supported and MUST NOT be used with the DefaultValue element. 2063
See the ElementValueType section for structure and additional usage details [4.6.2]. 2064

4.6.9 BoundaryType 2065

 2066
Figure 55: BoundaryType structure. 2067
BoundaryType defines upper and lower bounds that can be used to validate the input received for that 2068
parameter. 2069

4.6.9.1 BoundaryType Property Summary 2070

Name Type * Description

LowerBound ElementValueType 0..1 Lowest valid value for the parameter.

UpperBound ElementValueType 0..1 Highest valid value for the parameter.

4.6.9.2 BoundaryType Property Usage Notes 2071

§ LowerBound: This variable expression MUST resolve to an integer. 2072
If no LowerBound is specified, no integer value is too low. 2073
A LowerBound of “0” restricts the integer parameter to positive integer values. 2074
A pattern of wildcard is not supported and MUST NOT be used with the LowerBound element. 2075
See the ElementValueType section for structure and additional usage details [4.6.2]. 2076

§ UpperBound: This variable expression MUST resolve to an integer. 2077
If no UpperBound is specified, no integer value is too high. 2078
A pattern of wildcard is not supported and MUST NOT be used with the UpperBound element. 2079
See the ElementValueType section for structure and additional usage details [4.6.2]. 2080

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 92 of 187

4.6.10 StringParameterType 2081

 2082
Figure 56: StringParameterType structure. 2083
StringParameterType supports definition of minimum and maximum lengths that can be used to validate 2084
the input received for the string parameter. It also supports definition of a list of valid input values. 2085

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 93 of 187

4.6.10.1 StringParameterType Property Summary 2086

Name Type * Description

 [extends] BaseParameterType See the BaseParameterType section for additional properties [4.6.7].

ValidValue xsd:string 0..* A string representing one valid value for the parameter.

DefaultValue ElementValueType 0..1 Default value for the parameter.

minLength xsd:positiveInteger 0..1 Minimum length of the parameter value.

maxLength xsd:positiveInteger 0..1 Maximum length of the parameter value.

case StringCaseType 0..1 The case of the string–“upper”, “lower” or “mixed”.
**default value=“mixed”

 xsd:anyAttribute 0..*

4.6.10.2 StringParameterType Property Usage Notes 2087

See the BaseParameterType section for details about the inherited attributes and elements [4.6.7]. 2088
§ ValidValue: Any number of valid values for the parameter can be listed using ValidValue elements. 2089

When both DefaultValue and one or more ValidValues are specified, DefaultValue MUST match one 2090
of the ValidValues. 2091
ValidValues should be in the correct case as identified in the case attribute. 2092

§ DefaultValue: The DefaultValue is used if no other value is provided as input to the deployment 2093
process. 2094
The value is interpreted based on the type of the defining parameter. 2095

For example, the DefaultValue for a BooleanParameter must be either “true” or “false”; the 2096
DefaultValue for a StringParameter must be a string; etc. 2097

A pattern of wildcard is not supported and MUST NOT be used with the DefaultValue element. 2098
See the ElementValueType section for structure and additional usage details [4.6.2]. 2099

§ minLength: When no minimum length is specified, no string is too short, including an empty string. 2100
§ maxLength: When no maximum length is specified, no string is too long. 2101
§ case: Used when the case of the string is restricted. Defaults to mixed if not defined. 2102

See the StringCaseType section for enumeration values and their meaning [4.6.11]. 2103

4.6.11 StringCaseType 2104

StringCaseType defines the enumeration values for specifying case restrictions on a string parameter. 2105

4.6.11.1 StringCaseType Property Usage Notes 2106

§ lower: The string MUST be lower case. 2107
§ upper: The string MUST be upper case. 2108
§ mixed: The string SHOULD be mixed case. 2109

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 94 of 187

4.6.12 BooleanParameterType 2110

 2111
Figure 57: BooleanParameterType structure. 2112
When the DefaultValue element is defined for a boolean parameter, its value MUST be either “true” or 2113
“false”. 2114

4.6.12.1 BooleanParameterType Property Summary 2115

Name Type * Description

 [extends] BaseParameterType See the BaseParameterType section for additional properties [4.6.7].

DefaultValue ElementValueType 0..1 Default value for the parameter.

 xsd:anyAttribute 0..*

4.6.12.2 BooleanParameterType Property Usage Notes 2116

See the BaseParameterType section for details about the inherited attributes and elements [4.6.7]. 2117
§ DefaultValue: The DefaultValue is used if no other value is provided as input to the deployment 2118

process. 2119
The value is interpreted based on the type of the defining parameter. 2120

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 95 of 187

For example, the DefaultValue for a BooleanParameter must be either “true” or “false”; the 2121
DefaultValue for a StringParameter must be a string; etc. 2122

A pattern of wildcard is not supported and MUST NOT be used with the DefaultValue element. 2123
See the ElementValueType section for structure and additional usage details [4.6.2]. 2124

4.6.13 URIParameterType 2125

 2126
Figure 58: URIParameterType structure. 2127
When the DefaultValue element is specified for a URI parameter, its value MUST be a valid Uniform 2128
Resource Identifier. 2129

4.6.13.1 URIParameterType Property Summary 2130

Name Type * Description

 [extends] BaseParameterType See the BaseParameterType section for additional properties [4.6.7].

DefaultValue ElementValueType 0..1 Default value for the parameter.

 xsd:anyAttribute 0..*

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 96 of 187

4.6.13.2 URIParameterType Property Usage Notes 2131

See the BaseParameterType section for details about the inherited attributes and elements [4.6.7]. 2132
§ DefaultValue: The DefaultValue is used if no other value is provided as input to the deployment 2133

process. 2134
The value is interpreted based on the type of the defining parameter. 2135

For example, the DefaultValue for a BooleanParameter must be either “true” or “false”; the 2136
DefaultValue for a StringParameter must be a string; etc. 2137

A pattern of wildcard is not supported and MUST NOT be used with the DefaultValue element. 2138
See the ElementValueType section for structure and additional usage details [4.6.2]. 2139

4.6.14 ComplexParameterType 2140

 2141
Figure 59: ComplexParameterType structure. 2142

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 97 of 187

ComplexParameterType is useful for specifying variables that contain a set of values of differing base 2143
types, specifically for inputs that are logically grouped together, such as a host name and port number. 2144
See [SDDEX] for an example that demonstrates how to use the ComplexParameterType element. 2145

4.6.14.1 ComplexParameterType Property Summary 2146

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the complex parameter.

Description DisplayTextType 0..1 Description of the complex parameter.

ShortDescription DisplayTextType 0..1 Short description of the complex parameter.

IntegerParameter IntegerParameterType 0..* An input array element of integer type.

StringParameter StringParameterType 0..* An input array element of string type.

BooleanParameter BooleanParameterType 0..* An input array element of boolean type.

URIParameter URIParameterType 0..* An input array element that is a Universal Resource Identifier.

 xsd:any 0..*

id xsd:ID 1 Identifier used for referencing the complex parameter within the
descriptor.

required xsd:boolean 0..1 A “true” value indicates that a value for the complex parameter
must be provided.
**default value=“true”

operation OperationListType 0..1 The complex parameter is used when the specified operation(s) is
(are) performed.

length xsd:positiveInteger 1 The number of elements in the input array.

 xsd:anyAttribute 0..*

4.6.14.2 ComplexParameterType Property Usage Notes 2147

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 2148
MUST provide a label for the parameter. 2149
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2150

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 2151
information. If used, they MUST provide a description of the parameter. 2152
These elements may be used to assist the deployer in understanding the purpose and expected 2153
values for the parameters. 2154
The Description element MUST be defined if the ShortDescription element is defined. 2155
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2156

§ IntegerParameter, StringParameter, BooleanParameter, URIParameter: These define the type of 2157
the elements in the input array as Integer, String, Boolean, or URI respectively. 2158

§ id: Parameters may be referenced in DeploymentDescriptor elements of type VariableExpression or 2159
ElementValueType within the scope of the parameter variable. The scope of the variable includes the 2160
content element where the variable is defined and all nested content elements. Variables defined in 2161
the top level content element are also visible in Topology. The Variable is referenced by placing the 2162
variable id within parentheses preceded by a dollar sign. 2163

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 98 of 187

For example, a variable with id value “InstallLocation” is referenced with the string 2164
“$(InstallLocation)”. 2165

The id attribute may be useful to software that processes the SDD, for example, for use in creating 2166
log and trace messages. 2167

§ required: A “true” value for required indicates that a value for the parameter must be provided when 2168
the parameter is in scope for a particular deployment. 2169
In cases where the parameter should be ignored when the value expression is not valid for a 2170
particular deployment, set required to "false". 2171

§ operation: This attribute enables unique parameters to be defined per operation. Note that the use of 2172
a parameter for a particular operation is determined by a reference to the parameter in a variable 2173
expression or artifact argument used when performing that operation. The operation(s) associated 2174
with a parameter’s use can be determined by examining its use in the SDD. The operation attribute 2175
provides a quick way to know which operation(s) will use the parameter without having to examine 2176
the use of the parameter. 2177
All parameters defined within a CompositeInstallable are associated with the single operation 2178
supported by the CompositeInstallable. The operation attribute SHOULD NOT be set in this situation. 2179
See the OperationListType section for operation enumerations and their meaning [4.3.6]. 2180

§ length: The length attribute MUST be set to the number of elements in the input array. 2181

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 99 of 187

4.6.15 ArrayParameterType 2182

 2183
Figure 60: ArrayParameterType structure. 2184
ArrayParameterType should be used for variables containing multiple inputs of the same base type. 2185

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 100 of 187

For example, a parameter might specify a set of files and their locations that need to have a string 2186
substitution applied, in this case, the ArrayParameter would have URIType specified and the 2187
DefaultElementValue elements would specify a URI for each file needing the substitution. 2188

See [SDDEX] for an example that demonstrates how to use the ArrayParameterType element. 2189

4.6.15.1 ArrayParameterType Property Summary 2190

Name Type * Description

 [extends] BaseParameterType See the BaseParameterType section for additional
properties [4.6.7].

IntegerType IntegerDataType 0..1 An array parameter of integer type.

StringType StringDataType 0..1 An array parameter of string type.

BooleanType BooleanDataType 0..1 An array parameter of boolean type.

URIType URIDataType 0..1 An array parameter that is a Universal Resource Identifier.

DefaultElementValue ElementValueType 0..* The default value given to each item in the array.

length xsd:positiveInteger 1 The number of elements in the input array.

 xsd:anyAttribute 0..*

4.6.15.2 ArrayParameterType Property Usage Notes 2191

See the BaseParameterType section for details about the inherited attributes and elements [4.6.7]. 2192
§ IntegerType: Used to specify a variable that contains an integer array. 2193

See the IntegerDataType section for structure and additional usage details [4.6.16]. 2194
§ StringType: Used to specify a variable that contains a string array. 2195

See the StringDataType section for structure and additional usage details [4.6.17]. 2196
§ BooleanType: Used to specify a variable that contains a boolean array. 2197

The BooleanType XML tag MUST be included for type identification of a boolean array parameter 2198
defined in the DeploymentDescriptor; however, the element does not include any attributes or 2199
elements. 2200

§ URIType: Used to specify a variable that contains an array of Universal Resource Identifier values. 2201
The URIType XML tag MUST be included for type identification of an array parameter containing 2202
URIs defined in the DeploymentDescriptor; however, the element does not include any attributes or 2203
elements. 2204

§ DefaultElementValue: The default value for each element of the array parameter. 2205
Separate DefaultElementValue entries MUST be defined even if the value of each array element is 2206
identical. 2207
See the ElementValueType section for enumeration values and their meaning [4.6.2]. 2208

§ length: The length attribute MUST be set to the number of elements in the input array. The value of 2209
the length attribute MUST match the number of DefaultElementValue elements defined in the 2210
ArrayParameter. 2211

For example, if the parameter being defined is an integer array representing a list of default ports, 2212
and the length is set to “3”, three separate DefaultElementValue elements MUST be defined, one 2213
for each port. 2214

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 101 of 187

4.6.16 IntegerDataType 2215

 2216
Figure 61: IntegerDataType structure. 2217
IntegerDataType defines upper and lower bounds that can be used to validate the input received for the 2218
integer array parameter. 2219

4.6.16.1 IntegerDataType Property Summary 2220

Name Type * Description

Bounds BoundaryType 0..* Specifies the boundaries for the values of the array parameter’s entries.

 xsd:anyAttribute 0..*

4.6.16.2 IntegerDataType Property Usage Notes 2221

§ Bounds: If there are restrictions on the range of values that are valid for the entries in an array 2222
parameter, those restrictions MUST be specified in Bounds. 2223
See the BoundaryType section for structure and additional usage details [4.6.9]. 2224

4.6.17 StringDataType 2225

 2226
Figure 62: StringDataType structure. 2227
StringDataType supports definition of minimum and maximum lengths that can be used to validate the 2228
input received for the string array parameter. It also supports definition of a list of valid input values. 2229

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 102 of 187

4.6.17.1 StringDataType Property Summary 2230

Name Type * Description

ValidValue xsd:string 0..* A string representing one valid value for the parameter.

minLength xsd:positiveInteger 0..1 Minimum length of the parameter value.

maxLength xsd:positiveInteger 0..1 Maximum length of the parameter value.

case StringCaseType 0..1 The case of the string–“upper”, “lower” or “mixed”.
**default value=“mixed”

 xsd:anyAttribute 0..*

4.6.17.2 StringDataType Property Usage Notes 2231

§ ValidValue: Any number of valid values for the parameter can be listed using ValidValue elements. 2232
When both DefaultElementValue and one or more ValidValues are specified, DefaultElementValue 2233
MUST match one of the ValidValues. 2234
ValidValues should be in the correct case as identified in the case attribute. 2235

§ minLength: When no minimum length is specified, no string is too short, including an empty string. 2236
§ maxLength: When no maximum length is specified, no string is too long. 2237
§ case: Used when the case of the string is restricted. Defaults to mixed if not defined. 2238

See the StringCaseType section for enumeration values and their meaning [4.6.11]. 2239

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 103 of 187

4.6.18 ResourcePropertyType 2240

 2241
Figure 63: ResourcePropertyType structure. 2242
ResourcePropertyType provides the type definition for the ResourceProperty element of VariablesType 2243
[4.6.5]. ResourceProperty is a variable whose value is set from the property of a specific instance of a 2244
resource during a particular solution deployment. A SDD author MUST NOT include a ResourceProperty 2245
if the value of the property alone is not sufficient to resolve to a specific physical resource instance. All 2246
content elements can define ResourceProperty elements. 2247

4.6.18.1 ResourcePropertyType Property Summary 2248

Name Type * Description

 [extends] BaseVariableType See the BaseVariableType section for additional properties [4.6.4].

resourceRef xsd:IDREF 1 The resource in Topology that owns the property.

propertyName xsd:QName 1 Name of the property whose value provides the variable’s values.

 xsd:anyAttribute 0..*

4.6.18.2 ResourcePropertyType Property Usage Notes 2249

See the BaseVariableType section for details about the inherited attributes and elements [4.6.4]. 2250
§ resourceRef: The resourceRef attribute MUST identify the resource in Topology that owns the 2251

property and will provide the value for ResourceProperty. 2252
§ propertyName: The propertyName attribute identifies the name of the resource property whose value 2253

is to be used as the value of ResourceProperty. 2254

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 104 of 187

4.6.19 DerivedVariableType 2255

 2256
Figure 64: DerivedVariableType structure. 2257
A DerivedVariable defines a series of expressions with optional conditions. The value of the variable is 2258
determined by evaluating the boolean conditions and then setting the variable to the result of the top 2259
priority expression from the set of expressions whose conditions evaluate to true. This restriction does not 2260
apply to variables of the same name in different descriptors. The SDD author MUST create 2261
DerivedVariables in a way that makes the selection of the expression unambiguous. 2262

4.6.19.1 DerivedVariableType Property Summary 2263

Name Type * Description

 [extends] BaseVariableType See the BaseVariableType section for
additional properties [4.6.4].

Expression VariableExpressionType 1 An expression whose results become the
value of the variable.

ConditionalExpression ConditionalDerivedVariableExpressionType 1..* An expression and an associated condition.

4.6.19.2 DerivedVariableType Property Usage Notes 2264

See the BaseVariableType section for details about the inherited attributes and elements [4.6.4]. 2265
§ Expression: When the DerivedVariable is used to define one variable whose value is not conditional, 2266

the SDD author can include one variable expression defined in one Expression element. 2267
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2268

§ ConditionalExpression: When the variable will take one of a number of possible values depending 2269
on the characteristics of the resources that participate in the particular deployment, then one 2270
ConditionalExpression element is defined for each value-condition pair. 2271
See the ConditionalDerivedVariableExpressionType section for structure and additional usage details 2272
[4.6.20]. 2273

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 105 of 187

4.6.20 ConditionalDerivedVariableExpressionType 2274

 2275
Figure 65: ConditionalDerivedVariableExpressionType structure. 2276
ConditionalDerivedVariableExpressionType is the type of the ConditionalExpression elements in derived 2277
variables. These elements associate a condition with a variable expression. 2278

4.6.20.1 ConditionalDerivedVariableExpressionType Property Summary 2279

Name Type * Description

Condition ConditionType 1 A set of resource characteristics that are evaluated to determine if the
associated expression is a candidate for determining the value of the derived
variable.

Expression VariableExpressionType 1 Evaluation of this expression produces a candidate value for the derived
variable.

priority xsd:positiveInteger 0..1 A priority used as a tie-breaker when multiple expressions are available to
determine the value of the variable.
**default value=“1”

4.6.20.2 ConditionalDerivedVariableExpressionType Property Usage Notes 2280

§ Condition: Selection of conditioned expressions is based on the characteristics of one or more 2281
resources that participate in a particular solution deployment. These characteristics are defined in the 2282
Condition element. 2283
See the ConditionType section for structure and additional usage details [4.5.1]. 2284

§ Expression: The Expression element contains the expressions that evaluate to a potential value of 2285
the DerivedVariable. Only one expression will be selected for use in a particular solution deployment. 2286
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2287

§ priority: When multiple conditions evaluate to true for a particular deployment, the expression chosen 2288
is determined by the priority value. A higher priority is indicated by a lower value. “1” is the highest 2289
priority. 2290

4.7 Requirements 2291

A Requirement is an environmental necessity that a resource must have fulfilled in order for an artifact to 2292
be deployed successfully into that environment. Requirements are defined by content elements. A 2293
Requirement consists of resource constraints that the SDD author states MUST be met prior to 2294
successful deployment or use of the software described by the SDD package. Each Requirement 2295
definition lists one or more deployment lifecycle operations to which the Requirement applies. When the 2296

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 106 of 187

Requirement is specified in an atomic content element, the operation associates the Requirement with 2297
artifacts within the atomic content element. (See the OperationType section for the mapping between 2298
operations and artifacts [4.3.7]. Note that the use operation indicates that the Requirement is associated 2299
with running of the software after deployment and not with content element artifacts.) When the 2300
Requirement is specified in a CompositeUnit or CompositeInstallable, the operation value MUST either be 2301
use or be the same top level operation as defined in the CompositeInstallable element. When the 2302
Requirement is specified for a ReferencedPackage, the operation associates the Requirement with a top 2303
level operation within the referenced SDD. 2304
All Requirements specified for content elements that are in scope for a particular deployment MUST be 2305
met. 2306
When a Requirement can be satisfied in more than one way, Alternatives can be defined within a 2307
Requirement. A Requirement is considered met when any one of the Alternatives is satisfied. 2308

4.7.1 RequirementsType 2309

 2310
Figure 66: RequirementsType structure. 2311
RequirementsType provides the type definition for Requirements in InstallableUnit and LocalizationUnit 2312
elements. It defines a list of Requirement elements. 2313

4.7.1.1 RequirementsType Property Summary 2314

Name Type * Description

Requirement RequirementType 1..* A requirement that must be met prior to processing the defining content element’s
artifacts.

4.7.1.2 RequirementsType Property Usage Notes 2315

§ Requirement: The Requirements element contains a sequence of Requirement elements. The 2316
Requirement elements define requirements that MUST be met prior to successful processing of the 2317
content element’s artifacts. 2318
See the RequirementType section for structure and additional usage details [4.7.2]. 2319

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 107 of 187

4.7.2 RequirementType 2320

 2321
Figure 67: RequirementType structure. 2322
A Requirement either directly defines a single set of resource constraints that MUST be met or defines 2323
one or more alternative sets of resource constraints, only one of which MUST be met. 2324
When multiple Requirement elements are declared for the same operation, all MUST be met prior to 2325
processing the associated artifact. 2326
The association is made between a requirement and an artifact via the operation attribute. 2327

4.7.2.1 RequirementType Property Summary 2328

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the requirement.

Description DisplayTextType 0..1 Description of the requirement.

ShortDescription DisplayTextType 0..1 Short description of the requirement.

Alternative AlternativeRequirementType 0..* An alternative that can satisfy the requirement.

ResourceConstraint RequirementResourceConstraintType 0..* A set of constraints on one resource.

Dependency InternalDependencyType 0..* A dependency on another content element.

 xsd:any 0..*

id xsd:ID 1 Identifier for requirement scoped to the deployment
descriptor.

operation OperationListType 1 Requirement must be met before this operation is
performed.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 108 of 187

 xsd:anyAttribute 0..*

4.7.2.2 RequirementType Property Usage Notes 2329

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 2330
MUST provide a label for the requirement. 2331
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2332

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 2333
information. If used, they MUST provide a description of the requirement. 2334
The Description element MUST be defined if the ShortDescription element is defined. 2335
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2336

§ Alternative: Alternative elements are used when a requirement can be satisfied in multiple ways. 2337
As a convenience for tooling that produces SDDs, it is also possible to define a single Alternative. 2338
This is semantically identical to directly defining ResourceConstraints under Requirements. 2339
To satisfy a requirement, at least one of the specified alternatives MUST be satisfied. 2340
See the AlternativeRequirementType section for structure and additional usage details [4.7.3]. 2341

§ ResourceConstraint: When a requirement can be satisfied in only one way, constraints MAY be 2342
defined directly under Requirement or in a single Alternative element. 2343
Constraints are defined using a sequence of ResourceConstraints. Every constraint in the sequence 2344
MUST be met for the requirement to be met. 2345
See the RequirementResourceConstraintType section for structure and additional usage details 2346
[4.7.5]. 2347

§ Dependency: When one content element must be processed before another for any reason, a pre-2348
req type Dependency MUST be defined. Reasons for a pre-requisite dependency include the use of 2349
an output variable from one artifact as an argument to another; the deployment of a resource before it 2350
is configured; and the configuration of a resource before deployment of another resource that 2351
depends on it. 2352
See the InternalDependencyType section for structure and additional usage details [4.7.6]. 2353

§ id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2354
log and trace messages. 2355
The id attribute for a Requirement MUST be unique within a DeploymentDescriptor and MUST be 2356
unique across an aggregation of Deployment Descriptors. 2357

§ operation: A Requirement is associated with application of one or more operations by setting its 2358
operation attribute value to one of the enumerated values defined in OperationListType [4.3.6]. 2359
If the Requirement is not a pre-requisite for application of an operation, but rather is required before 2360
the resulting resources are considered usable, then the value SHOULD be set to use. (Note that a 2361
completion action may also be required before a resulting resource is considered usable. See the 2362
CompletionType section [4.3.14].) 2363
The value of operation for a Requirement defined in an atomic content element MUST be set either to 2364
use or to an operation that is associated with an artifact element defined in the content element’s 2365
Artifacts. The operation value(s) associate the Requirement with one or more artifact(s). 2366
When the Requirement is specified in a CompositeUnit or CompositeInstallable, the operation value 2367
MUST be set either to use or be the same top level operation as defined in the CompositeInstallable 2368
element. 2369
There is no default value for operation. The SDD author must define it explicitly. 2370
See the OperationType section for enumeration values and their meaning [4.3.7]. 2371

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 109 of 187

4.7.3 AlternativeRequirementType 2372

 2373
Figure 68: AlternativeRequirementType structure. 2374
AlternativeRequirementType provides the type definition for Alternative elements used within 2375
requirements to define alternative sets of resource constraints that will satisfy the requirement. 2376

4.7.3.1 AlternativeRequirementType Property Summary 2377

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the alternative.

Description DisplayTextType 0..1 Description of the alternative.

ShortDescription DisplayTextType 0..1 Short description of the alternative.

ResourceConstraint RequirementResourceConstraintType 1..* A set of requirements on one resource.

Dependency InternalDependencyType 0..* A dependency on another content element.

 xsd:any 0..*

id xsd:ID 1 Identifier for the alternative scoped to the deployment
descriptor.

priority xsd:positiveInteger 0..1 Assists in determining alternative selected when
multiple alternatives evaluate to true.
**default value=“1”

 xsd:anyAttribute 0..*

4.7.3.2 AlternativeRequirementType Property Usage Notes 2378

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 2379
MUST provide a label for the alternative requirement. 2380

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 110 of 187

See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2381
§ Description, ShortDescription: These elements MAY be used to provide human-understandable 2382

information. If used, they MUST provide a description of the alternative requirement. 2383
The Description element MUST be defined if the ShortDescription element is defined. 2384
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2385

§ ResourceConstraint: Every ResourceConstraint defined in a single Alternative MUST be met for the 2386
alternative requirement to be considered satisfied. 2387
See the RequirementResourceConstraintType section for structure and additional usage details 2388
[4.7.5]. 2389

§ Dependency: When one content element must be processed before another for any reason, a pre-2390
req type Dependency MUST be defined. Reasons for a pre-requisite dependency include the use of 2391
an output variable from one artifact as an argument to another; the deployment of a resource before it 2392
is configured; and the configuration of a resource before deployment of another resource that 2393
depends on it. 2394
See the InternalDependencyType section for structure and additional usage details [4.7.6]. 2395

§ id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2396
log and trace messages. 2397

§ priority: If there are multiple satisfied alternatives during a particular solution deployment, one of the 2398
alternatives must be selected. The priority attribute communicates the SDD author’s prioritization of 2399
the alternatives. A lower number represents a higher priority with “1” representing the highest priority. 2400
Other inputs may also be used to select an alternative. The criteria for making this selection are 2401
outside of the scope of the SDD. 2402

4.7.4 ResourceConstraintGroup 2403

 2404
Figure 69: ResourceConstraintGroup structure. 2405

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 111 of 187

The elements of ResourceConstraintGroup are used when defining content element requirements on 2406
resources. The ResourceConstraint element is used to group one or more constraints on a single 2407
resource. 2408

4.7.4.1 ResourceConstraintGroup Property Summary 2409

Name Type * Description

CapacityConstraint CapacityConstraintType 0..1 A bound on a quantifiable property of a resource.

ConsumptionConstraint ConsumptionConstraintType 0..1 A required quantity of a property of a resource in any state.

PropertyConstraint PropertyConstraintType 0..1 A required value or set of values of a property.

VersionConstraint VersionConstraintType 0..1 A required value or set of values of a version property.

UniquenessConstraint UniquenessConstraintType 0..1 A required mapping of two resources in the topology to
unique instances in the deployment environment.

RelationshipConstraint RelationshipConstraintType 0..1 A required relationship between the resource identified in
the resourceRef and another resource in the topology.

AuthorizationConstraint AuthorizationConstraintType 0..1 A required authorization level for a resource.

 xsd:any 0..*

4.7.4.2 ResourceConstraintGroup Property Usage Notes 2410

§ CapacityConstraint: CapacityConstraint elements are used in ResourceConstraints to express 2411
constraints on the available capacity of a particular property of a particular resource. 2412
A CapacityConstraint tests a numeric value representing a bound on a quantifiable property of a 2413
resource, such as processor speed. The test may be for a lower (minimum) or upper (maximum) 2414
bound. This constraint differs from a ConsumptionConstraint in that it is comparative, not cumulative. 2415
When multiple CapacityConstraint elements are defined by content elements participating in a 2416
particular solution deployment apply to the same property of the same resource, the most restrictive 2417
constraint applies. 2418
See the CapacityConstraintType section for structure and additional usage details [4.4.1]. 2419

§ ConsumptionConstraint: ConsumptionConstraint elements are used in ResourceConstraints to 2420
express constraints on the quantity of a particular property of a specific resource that is available for 2421
consumption. 2422
A ConsumptionConstraint defines a required quantity of a consumable resource property. The 2423
ConsumptionConstraint is cumulative rather than comparative. 2424

An example of a consumable resource property is the disk space property of a file system 2425
resource. 2426

When multiple ConsumptionConstraint elements are defined for the same resource by content 2427
elements participating in a particular solution deployment, the sum of all the expressed consumption 2428
constraints must be met by the resource. 2429
See the ConsumptionConstraintType section for structure and additional usage details [4.4.3]. 2430

§ PropertyConstraint: PropertyConstraint elements are used in ResourceConstraints to indicate that 2431
specific resource properties must have a specific value or set of values. 2432
See the PropertyConstraintType section for structure and additional usage details [4.4.5]. 2433

§ VersionConstraint: VersionConstraint elements are used in ResourceConstraints to express a 2434
constraint on the version of a specific resource. 2435

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 112 of 187

A VersionConstraint defines a required resource version or a range of versions. It MAY include a 2436
certified version or range of versions representing a more restrictive set of versions whose use carries 2437
a higher degree of confidence. 2438
Version formats and comparison rules vary greatly. The SDD does not provide information on how to 2439
interpret version strings. 2440
See the VersionConstraintType section for structure and additional usage details [4.4.7]. 2441

§ UniquenessConstraint: UniquenessConstraint elements are used in ResourceConstraints to 2442
indicate when two resources defined in topology MUST or MUST NOT resolve to the same resource 2443
instance during a particular deployment. 2444
See the UniquenessConstraintType section for structure and additional usage details [4.4.12]. 2445

§ RelationshipConstraint: RelationshipConstraint elements are used in ResourceConstraints to 2446
indicate a constraint on a particular relationship between resources. 2447
See the RelationshipConstraintType section for structure and additional usage details [4.4.13]. 2448

§ AuthorizationConstraint: AuthorizationConstraint elements are used in ResourceConstraints to 2449
indicate a required level of authorization required by a resource in order to deploy the content that is 2450
described by the SDD. 2451
See the AuthorizationConstraintType section for structure and additional usage details [4.4.14]. 2452

4.7.5 RequirementResourceConstraintType 2453

 2454
Figure 70: RequirementResourceConstraintType structure. 2455
ResourceConstraintType provides the Type section for the ResourceConstraint element in content 2456
element Requirements. A ResourceConstraint is a set of zero or more constraints on one resource. 2457

4.7.5.1 RequirementResourceConstraintType Property Summary 2458

Name Type * Description

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 113 of 187

DisplayName DisplayTextType 0..1 Name for the resource constraint.

Description DisplayTextType 0..1 Description of the resource constraint.

ShortDescription DisplayTextType 0..1 Short description of the resource constraint.

Name VariableExpressionType 0..1 The name of the resource.
[DEPRECATED in SDD v2.0]

CapacityConstraint CapacityConstraintType 0..1 A capacity constraint that applies to the resource identified
in resourceRef.

ConsumptionConstraint ConsumptionConstraintType 0..1 A consumption constraint that applies to the resource
identified in resourceRef.

PropertyConstraint PropertyConstraintType 0..1 A property constraint that applies to the resource identified
in resourceRef.

VersionConstraint VersionConstraintType 0..1 A version constraint that applies to the resource identified in
resourceRef.

UniquenessConstraint UniquenessConstraintType 0..1 A required mapping of two resources in the topology to
unique instances in the deployment environment.

RelationshipConstraint RelationshipConstraintType 0..1 A required relationship between the resource identified in
the resourceRef and another resource in the topology.

AuthorizationConstraint AuthorizationConstraintType 0..1 A required authorization level to operate on the resource
identified in resourceRef.

 xsd:any 0..*

id xsd:ID 1 Identifier for the ResourceConstraint scoped to the
deployment descriptor.

resourceRef xsd:IDREF 1 Reference to a resource specification in topology.

testValue xsd:boolean 0..1 Indicates whether the ResourceConstraint must evaluate to
true or to false.
**default value=“true”.

 xsd:anyAttribute 0..*

4.7.5.2 RequirementResourceConstraintType Property Usage Notes 2459

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 2460
MUST provide a label for the resource constraint. 2461
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2462

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 2463
information. If used, they MUST provide a description of the resource constraint. 2464
The Description element MUST be defined if the ShortDescription element is defined. 2465
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2466

§ Name: This name is used to identify the resource in the deployment environment. If the resource 2467
identified by resourceRef does not have the name defined here, then the constraint is not met. 2468
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2469
[Starting with SDD v2.0, Name has been deprecated.] 2470

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 114 of 187

§ CapacityConstraint, ConsumptionConstraint, PropertyConstraint, VersionConstraint, 2471
UniquenessConstraint, RelationshipConstraint, AuthorizationConstraint: See the 2472
ResourceConstraintGroup section for structure and additional usage of the individual constraints 2473
[4.7.4]. 2474

§ id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2475
log and trace messages. 2476

§ resourceRef: This is the resource to which the constraints apply. 2477
This reference MUST refer to the id of a resource in Topology. 2478

§ testValue: When the result of evaluating all of the constraints defined in the ResourceConstraint 2479
matches the value of testValue, the ResourceConstraint is considered met. 2480
When no constraints are defined, and testValue is “true”, the constraint is met if the resource exists 2481
as defined in topology. 2482
When no constraints are defined, and testValue is “false”, the constraint is met if the resource, as 2483
defined in topology, does not exist. 2484

4.7.6 InternalDependencyType 2485

 2486
Figure 71: InternalDependencyType structure. 2487
InternalDependencyType provides the type definition for Dependency elements defined in all types of 2488
content elements. Dependency elements allow the expression of dependence on the application of a 2489
particular operation to a content element defined in the deployment descriptor before application of a 2490
particular operation on the defining content element. The dependency is associated with an operation on 2491
the defining content element by the operation attribute in the Requirement defining the Dependency 2492
element. The dependency is associated with an operation on the depended on content element by the 2493
contentRefOperation attribute in the Dependency. There are three types of dependencies: pre-requisites, 2494
co-requisites and ex-requisites. 2495

4.7.6.1 InternalDependencyType Property Summary 2496

Name Type * Description

Description DisplayTextType 0..1 A human-understandable description of the dependency.

ShortDescription DisplayTextType 0..1 A short human-understandable description of the dependency.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 115 of 187

type DependencyType 0..1 Type can be “pre-req”, “co-req”, or “ex-req”.
**default value=“pre-req”

contentElementRef xsd:IDREF 1 A reference to the content element which is depended on.

contentElementRefOperation OperationListType 0..1 The dependency is on application of this operation to the content
element identified in contentRef.

 xsd:anyAttribute 0..*

4.7.6.2 InternalDependencyType Property Usage Notes 2497

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 2498
information. If used, they MUST provide a description of the dependency. 2499
The Description element MUST be defined if the ShortDescription element is defined. 2500
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 2501

§ type: See the DependencyType section for an explanation of the semantics of each of the possible 2502
dependency types [4.7.7]. 2503

§ contentElementRef: The contentElementRef value is the id of the content element that is depended 2504
on. 2505
The value MUST reference the id of a content element. 2506

§ contentElementRefOperation: When the depended-on content element is an atomic content 2507
element, the operation defined here effectively identifies the artifact that must be processed for a pre-2508
requisite or co-requisite or not processed for an ex-requisite. 2509
When the depended-on content element is a CompositeUnit, the operation defined in 2510
contentElementRefOperation MUST be the top level operation defined by the containing 2511
CompositeInstallable. 2512
See the OperationListType section for structure and additional usage details [4.3.6]. 2513

4.7.7 DependencyType 2514

The DependencyType enumeration provides the value for the type attribute in Dependency elements. 2515

4.7.7.1 DependencyType Property Usage Notes 2516

§ pre-req: A pre-req dependency is satisfied if the other content element is in scope for the 2517
deployment. The pre-req indicates that the other content element MUST be processed before the 2518
content element that defines the pre-req. 2519
The dependency is not met if the other content element is not in scope. 2520

§ co-req: A co-req dependency is satisfied if the other content element is in scope for the deployment. 2521
There is no dependence on order of processing. 2522
The dependency is not met if the other content element is not in scope. 2523

§ ex-req: An ex-req dependency indicates that the other content element MUST NOT be in scope. 2524
The dependency is not met if the other content element is in scope. 2525

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 116 of 187

4.7.8 RequiredBaseType 2526

 2527
Figure 72: RequiredBaseType structure. 2528
RequiredBaseType provides the type definition for the RequiredBase element of InstallableUnit and 2529
LocalizationUnit elements and the LocalizationBase element of LocalizationUnits. These elements 2530
declare the identity characteristics of one or more resources that will be modified or localized by applying 2531
of the content element’s artifacts. Definition of a RequiredBase element represents a requirement that a 2532
resource matching the declared characteristic exists. Definition of a LocalizationBase element represents 2533
a condition on the existence of a resource that matches the declared characteristics. 2534

4.7.8.1 RequiredBaseType Property Summary 2535

Name Type * Description

DisplayName DisplayTextType 0..1 Display name for the requirement on a resource to
serve as the base of an update or localization.

Description DisplayTextType 0..1 Description of the requirement. Required if
ShortDescription is defined.

ShortDescription DisplayTextType 0..1 Short description of the requirement.

Alternative AlternativeRequiredBaseConstraintType 0..* Alternative set of constraints on a required base
resource.

ResourceConstraint RequiredBaseConstraintType 1..* Constraints on the required base resource.

 xsd:any 0..*

 xsd:anyAttribute 0..*

4.7.8.2 RequiredBaseType Property Usage Notes 2536

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 2537
MUST provide a label for the required base element. 2538
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2539

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 2540
information. If used, they MUST provide a description of the required base for this content element. 2541
The Description element MUST be defined if the ShortDescription element is defined. 2542
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2543

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 117 of 187

§ Alternative: When more than one resource can be used as the update or localization base, two or 2544
more Alternative elements are defined to describe the choices. As a convenience for tooling that 2545
produces SDDs, a single Alternative can be defined in place of a ResourceConstraint. 2546
See the AlternativeRequiredBaseConstraintType section for structure and additional usage details 2547
[4.7.10]. 2548

§ ResourceConstraint: ResourceConstraints defined here identify one or more particular resources 2549
that can serve as the update or localization base. If ResourceConstraints are defined for multiple 2550
resources, they are all updated or localized by application of the content element. 2551
See the RequiredBaseConstraintType section for structure and additional usage details [4.7.9]. 2552

4.7.9 RequiredBaseConstraintType 2553

 2554
Figure 73: RequiredBaseConstraintType structure. 2555
RequiredBaseConstraintType provides the type definition for the ResourceConstraint elements used in 2556
RequiredBase and LocalizationBase elements. A required base definition differs from a requirement 2557
definition in the limited nature of the constraints that can be specified. The purpose of constraints within a 2558
required base is to identify resource instances that can be correctly updated or localized by the content 2559
element. Only constraints related to the basic identity characteristics of the resource are allowed. 2560

4.7.9.1 RequiredBaseConstraintType Property Summary 2561

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the constraint.

Description DisplayTextType 0..1 Description of the constraint.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 118 of 187

ShortDescription DisplayTextType 0..1 Short description of the constraint.

Name VariableExpressionType 0..1 Name of the required base resource as understood in the deployment
environment.
[DEPRECATED in SDD v2.0]

VersionConstraint VersionConstraintType 0..1 Allowed versions for the required base resource.

 xsd:any 0..*

id xsd:ID 1 Constraint identifier scoped to the deployment descriptor.

resourceRef xsd:IDREF 1 Reference to the resource representing the required base for an
update operation.

testValue xsd:boolean 0..1 Defines the desired result of the required base constraint.
**default value=“true”

 xsd:anyAttribute 0..*

4.7.9.2 RequiredBaseConstraintType Property Usage Notes 2562

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 2563
MUST provide a label for the constraint. 2564
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2565

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 2566
information. If used, they MUST provide a description of the constraint on the required base. 2567
The Description element MUST be defined if the ShortDescription element is defined. 2568
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2569

§ Name: The Name element provides the name by which the resource is known in the deployment 2570
environment. The value of Name is compared to resource names found in the deployment 2571
environment as part of constraint evaluation. 2572
If the resource name is declared in the referenced resource definition, it SHOULD NOT be declared 2573
here. If the resource name is changed by application of the update, the original name SHOULD be 2574
declared here and the updated name SHOULD be declared in ResultingResource. The name 2575
declared here is always the one that represents the required value for the required base. 2576
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2577
[Starting with SDD v2.0, Name has been deprecated.] 2578

§ VersionConstraint: The VersionConstraint element defines the set of versions that can serve as a 2579
base for the update. 2580
See the VersionConstraintType section for structure and additional usage details [4.4.7]. 2581

§ id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2582
log and trace messages. 2583

§ resourceRef: The resourceRef attribute value MUST reference the id of the resource element in 2584
Topology to which this constraint refers. 2585

§ testValue: The required base constraint is met when the boolean result of comparing the declared 2586
version to the actual version is equal to the boolean value specified in testValue. 2587
Because the purpose of a required base constraint is to positively identify one or more resources that 2588
can serve as the base for an update or localization, there MUST always be one ResourceConstraint 2589
that has testValue set to “true”. 2590
Additional ResourceConstraints can be defined with testValue set to “false”. These constraints 2591
identify characteristics of the same required base resource that must not be true for that resource to 2592
serve as the base. 2593

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 119 of 187

4.7.10 AlternativeRequiredBaseConstraintType 2594

 2595
Figure 74: AlternativeRequiredBaseConstraintType structure. 2596
AlternativeRequiredBaseConstraintType provides the type definition for the Alternative elements used in 2597
RequiredBase and LocalizationBase elements. 2598

4.7.10.1 AlternativeRequiredBaseConstraintType Property Summary 2599

Name Type * Description

DisplayName DisplayTextType 0..1 Name of the constraint.

Description DisplayTextType 0..1 Description of the constraint.

ShortDescription DisplayTextType 0..1 Short description of the constraint.

ResourceConstraint RequiredBaseConstraintType 1..* A set of requirements on one resource.

 xsd:any 0..*

id xsd:ID 1 Constraint identifier scoped to the deployment descriptor.

priority xsd:positiveInteger 0..1 Assists in determining alternative selected when multiple
alternatives evaluate to true.
**default value=“1”

 xsd:anyAttribute 0..*

4.7.10.2 AlternativeRequiredBaseConstraintType Property Usage Notes 2600

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 2601
MUST provide a label for the alternative. 2602
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2603

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 2604
information. If used, they MUST provide a description of the alternative. 2605

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 120 of 187

The Description element MUST be defined if the ShortDescription element is defined. 2606
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 2607

§ ResourceConstraint: ResourceConstraints defined here identify one or more particular resources 2608
that can serve as the update or localization base. If ResourceConstraints are defined for multiple 2609
resources, they are all updated or localized by application of the content element. 2610
See the RequiredBaseConstraintType section for structure and additional usage details [4.7.9]. 2611

§ id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2612
log and trace messages. 2613

§ priority: If there are multiple satisfied alternatives during a particular solution deployment, one of the 2614
alternatives must be selected. The priority attribute communicates the SDD author’s prioritization of 2615
the alternatives. A lower number represents a higher priority with “1” representing the highest priority. 2616
Other inputs may also be used to select an alternative. The criteria for making this selection are 2617
outside of the scope of the SDD. 2618

4.8 Resulting and Changed Resources 2619

Deployment of an SDD package creates or modifies software resources. These resources are included in 2620
the Topology definition and described in more detail in ResultingResource and ResultingChange 2621
elements. 2622
The SDD author can choose to model resulting and modified resources at a very granular level, at a very 2623
coarse level; at any level in between, or not at all. An example of modeling resulting resources at a 2624
granular level would be modeling every file created by the deployment as a resulting resource. An 2625
example of modeling resulting resources at a very coarse level would be modeling the software product 2626
created by deployment as a single resulting resource. The choice depends on the needs of the solution 2627
deployment. If a resource is not modeled in the SDD, no requirements can be expressed on it, no 2628
conditions can be based on it and no variables can be set from values of its properties. It cannot play any 2629
of the roles described for resources in the ResourceType section of this document [4.2.2]. 2630

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 121 of 187

4.8.1 ResultingResourceType 2631

 2632
Figure 75: ResultingResourceType structure. 2633
InstallableUnit and LocalizationUnit content elements can include zero or more ResultingResource 2634
elements that describe the key resources installed or updated when the content element’s artifacts are 2635
processed. The type definition for these elements is provided by ResultingResourceType. 2636
ResultingResource elements refer to resources in topology and define characteristics of those resources 2637
that will become true when the artifact is applied. The deployment descriptor author MAY omit the 2638
ResultingResource element from the content element and the definition of the resource from Topology 2639
when no knowledge of their existence is required for deployment of the solution or for aggregation of the 2640
solution. Characteristics that exist in ResultingResource and elsewhere, such as Topology or 2641
ResultingChange, MUST NOT conflict. 2642

For example, if Topology specifies a property that indicates that a file must be writable, it would be 2643
incorrect for ResultingResource to specify that the resulting file resource is read-only. 2644

Example uses of the ResultingResource element are to: 2645
• determine whether potentially resulting resources will actually be installed or updated; 2646
• identify the resource associated with a content element that may be subsequently uninstalled 2647

using the uninstall information in this SDD; 2648
• discover the components of a logical solution resource previously installed using this SDD; 2649
• check whether or not a content element has already been installed. 2650

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 122 of 187

4.8.1.1 ResultingResourceType Property Summary 2651

Name Type * Description

Description DisplayTextType 0..1 Description of the effect of the content element on the resulting
resource.

ShortDescription DisplayTextType 0..1 Short description of the effect of the content element on the resulting
resource.

Condition ConditionType 0..1 A condition that determines if the resulting resource definition is
relevant to a particular deployment.

Name VariableExpressionType 0..1 Name of the resulting resource as known in the deployment
environment.
[DEPRECATED in SDD v2.0]

Version VersionType 0..1 Version of the resulting resource.

FixName xsd:string 0..* Name of a resulting fix.

Property ResultingPropertyType 0..* A resulting property setting of the resulting resource.

Relationship RelationshipType 0..* A relationship that will exist after creating or updating the resource.

 xsd:any 0..*

resourceRef xsd:IDREF 1 Reference to a resource in topology.

 xsd:anyAttribute 0..*

4.8.1.2 ResultingResourceType Property Usage Notes 2652

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 2653
information. If used, they MUST provide a description of the effect of the content element on the 2654
resulting resource. 2655
The Description element MUST be defined if the ShortDescription element is defined. 2656
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 2657

§ Condition: A Condition is used when the resulting resource will be created by the content element 2658
only when certain conditions exist in the deployment environment. 2659
See the ConditionType section for structure and additional usage details [4.5.1]. 2660

§ Name: The name of the resulting resource SHOULD be defined in the ResultingResource element 2661
and not in Topology when the content element installs the resulting resource. The resource name 2662
comes into existence when the resulting resource is created. When the content element updates the 2663
resulting resource without changing the resource name, Name SHOULD be defined in Topology. 2664
Name SHOULD NOT be defined in both places. If a resource name is defined in both Topology and 2665
ResultingResource, the values MUST match. 2666
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2667
[Starting with SDD v2.0, Name has been deprecated. See the Property element below for the 2668
appropriate method for specifying a resource identifier.] 2669

§ Version: This is the version of the resource after processing the content element’s artifacts. Version 2670
SHOULD be defined for all resulting resources. 2671

For example, when update artifacts are processed, this version describes the resource after the 2672
update is complete. 2673

See the VersionType section for structure and additional usage details [3.10]. 2674

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 123 of 187

§ FixName: Multiple FixName elements MAY be included to identify the resulting resource fixes that 2675
will exist once the content element is applied. The FixName SHOULD match the names of fixes that 2676
can be detected on the system. 2677

§ Property: Property elements SHOULD be included to identify property values of the resulting 2678
resource that will exist after applying the content element. 2679
Properties of the resulting resource SHOULD be defined in the ResultingResource element and not in 2680
Topology. They SHOULD NOT be defined in both places. If a property is defined in both Topology 2681
and ResultingResource, the values MUST match. 2682
If a resource can be identified by a property that represents the name for that resource, the SDD 2683
author SHOULD include a Property element and MUST set the value of PropertyName to “Name”. 2684
See the ResultingPropertyType section for structure and additional usage details [4.2.4]. 2685

§ Relationship: Relationship elements SHOULD be included to identify relationships that will exist after 2686
applying the content element. 2687
See the RelationshipType section for structure and additional usage details [4.8.3]. 2688

§ resourceRef: The resourceRef attribute MUST identify the resource in Topology that will be installed 2689
or updated when the defining content element is applied. 2690

4.8.2 ResultingChangeType 2691

 2692
Figure 76: ResultingChangeType structure. 2693
InstallableUnit and ConfigurationUnit content elements can include zero or more ResultingChange 2694
elements that describe the key resources whose configuration is modified when the content element’s 2695
artifacts are processed. ResultingChange elements refer to resources in Topology and define 2696
characteristics of those resources that will become true when the content element is applied. 2697

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 124 of 187

4.8.2.1 ResultingChangeType Property Summary 2698

Name Type * Description

Description DisplayTextType 0..1 Description of the effect of the content element on the changing resource.

ShortDescription DisplayTextType 0..1 Short description of the effect of the content element on the changing
resource.

Condition ConditionType 0..1 A condition that determines if the resulting change definition is relevant to
a particular deployment.

Name VariableExpressionType 0..1 Name of the resulting resource as known in the deployment environment.
[DEPRECATED in SDD v2.0]

Property ResultingPropertyType 0..* A resulting property setting of the changing resource.

Relationship RelationshipType 0..* Specifies a relationship(s) with another resource that will result from this
deployment.

 xsd:any 0..*

resourceRef xsd:IDREF 1 Reference to the resource in topology that will be changed by application
of the content element.

 xsd:anyAttribute 0..*

4.8.2.2 ResultingChangeType Property Usage Notes 2699

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 2700
information. If used, they MUST provide a description of the effect of the content element on the 2701
changing resource. 2702
The Description element MUST be defined if the ShortDescription element is defined. 2703
See the DescriptionGroup section for structure and additional usage details [4.14.1]. 2704

§ Condition: A Condition is used when the resulting change will be performed by applying the content 2705
element only when certain conditions exist in the deployment environment. 2706
See the ConditionType section for structure and additional usage details [4.5.1]. 2707

§ Name: The Name corresponds with the name of the changed resource as known in the deployment 2708
environment. Name SHOULD be defined in Topology and not in ResultingChange, because the name 2709
is not changed by processing the content elements artifacts. If Name is defined in both places, the 2710
values MUST match. 2711
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 2712
[Starting with SDD v2.0, Name has been deprecated. See the Property element below for the 2713
appropriate method for specifying a resource identifier.] 2714

§ Property: Property elements MAY be included to identify property values of the identified resource as 2715
they will exist after applying the content element. 2716
Properties defined in ResultingChange MUST be properties that are modified by processing the 2717
content element’s artifacts. 2718
If a resource can be identified by a property that represents the name for that resource, the SDD 2719
author SHOULD include a Property element and MUST set the value of PropertyName to “Name”. 2720
See the ResultingPropertyType section for structure and additional usage details [4.2.4]. 2721

§ Relationship: When application of the content element results in the creation or modification of 2722
relationships, the Relationship elements SHOULD be included to identify relationships as they will 2723
exist after application of the content element. 2724
See the RelationshipType section for structure and additional usage details [4.8.3]. 2725

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 125 of 187

§ resourceRef: The resourceRef attribute MUST identify the resource whose configuration will be 2726
modified when the defining content element is applied. 2727
The value MUST reference the id of a resource specified in Topology. 2728

4.8.3 RelationshipType 2729

 2730
Figure 77: RelationshipType structure. 2731

4.8.3.1 RelationshipType Property Summary 2732

Name Type * Description

Property PropertyType 0..* A property definition that further constrains the relationship.

 xsd:any 0..*

relatedResourceRef xsd:IDREF 1 The second resource in the relationship.

type xsd:QName 1 The type of the relationship.

 xsd:anyAttribute 0..*

4.8.3.2 RelationshipType Property Usage Notes 2733

§ Property: This element MAY be used to provide additional information about the relationship. 2734
For example, a connectivity relationship might specify additional information such as the specific 2735
protocol used (for instance, TCP/IP) and/or particular characteristics of a protocol (for instance, 2736
port number). 2737

See the PropertyType section for structure and additional usage details [4.2.3]. 2738
§ relatedResourceRef: There are two resources in any relationship. The first is the resource defined in 2739

the resourceRef of the ResultingResource or RelationshipConstraint element that defines the 2740
Relationship element. The second resource is the one identified by relatedResourceRef. 2741
The value MUST reference the id of a resource specified in Topology. 2742

§ type: Values for relationship type are not defined by the SDD specification. This type may be 2743
specified in profiles [5.3]. 2744

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 126 of 187

4.9 Composite Content Elements 2745

Composite content elements organize the content of an SDD but do not define artifacts used to deploy 2746
SDD content. There are three types of composite content elements: CompositeInstallable, CompositeUnit 2747
and CompositeLocalizationUnit. 2748
CompositeInstallable is used any time that more than one content element is defined in support of one 2749
operation on the package; any time aggregation of SDDs is needed or any time the package includes 2750
selectable content. 2751
CompositeInstallable is the root of a content hierarchy that supports a single deployment lifecycle 2752
operation. It can define a base content hierarchy, a localization content hierarchy, and/or a selectable 2753
content hierarchy and selection criteria. Base content defines content that is deployed by default. 2754
Selectable content defines content that can be selected or not by the deployer. Localization content 2755
defines content that provides language support. One SDD can have more than one 2756
CompositeInstallable–each supporting a different operation. 2757
CompositeUnit is used to organize content elements within the base or selectable content hierarchies. 2758
CompositeUnits can define InstallableUnits, ConfigurationUnits, ContainedPackages and other 2759
CompositeUnits. Requirements, conditions and variables that are common to all content elements defined 2760
by the CompositeUnit can be defined on the CompositeUnit to avoid repetition. Within the selectable 2761
content hierarchy, a CompositeUnit can provide an efficient means for selection of a set of related content 2762
elements by a Feature. 2763
CompositeLocalizationUnit is described in the Localization section [4.13]. 2764

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 127 of 187

4.9.1 CompositeInstallableType 2765

 2766
Figure 78: CompositeInstallableType structure. 2767
A CompositeInstallable supports the definition of metadata about package content for one deployment 2768
lifecycle operation. One CompositeInstallable can be defined for each operation supported by the 2769

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 128 of 187

software package. When more than one CompositeInstallable is defined in an SDD, there MUST NOT be 2770
more than one CompositeInstallable in scope for a particular deployment defined for any one operation. 2771

4.9.1.1 CompositeInstallableType Property Summary 2772

Name Type * Description

Identity IdentityType 0..1 Human-understandable identity information about the
CompositeInstallable.

Condition ConditionType 0..1 A condition that determines if the content of the
CompositeInstallable is relevant to a particular deployment.

Variables VariablesType 0..1 Variables for use anywhere below the CompositeInstallable and in
Topology.

RequiredBase RequiredBaseType 0..1 Resource or resources that can be updated by the
CompositeInstallable.

Requirements RequirementsType 0..1 Requirements that must be met before successful application of the
CompositeInstallable.

Languages LanguageSelectionsType 0..1 Defines required and selectable languages and groups of
languages.

ResultingResource ResultingResourceType 0..* Resources that result from applying the CompositeInstallable.

ResultingChange ResultingChangeType 0..* Configuration changes that result from applying the
CompositeInstallable.

BaseContent BaseContentType 0..1 Defines content describing the deployment of core resources.

SelectableContent SelectableContentType 0..1 Defines content describing the deployment of selectable resources.

LocalizationContent LocalizationContentType 0..1 Defines content whose sole purpose is to provide language support.

id xsd:ID 1 A unique identifier for the CompositeInstallable element.

operation OperationType 1 The deployment lifecycle operation described by the
CompositeInstallable definition.

 xsd:anyAttribute 0..*

4.9.1.2 CompositeInstallableType Property Usage Notes 2773

§ Identity: This identity MAY have values in common with the identity of a resulting resource created 2774
when artifacts defined by content of the composite are processed. 2775
If the unit of packaging described by the CompositeInstallable is known to a package management 2776
system, the Identity elements SHOULD correspond to values associated with that package in the 2777
package management system. 2778
See the IdentityType section for structure and additional usage details [3.4]. 2779

§ Condition: When the condition defined in the CompositeInstallable is not met for a particular 2780
deployment, the CompositeUnit and all the content elements defined below the CompositeUnit are 2781
out of scope for that particular deployment. 2782
See the ConditionType section for structure and additional usage details [4.5.1]. 2783

§ Variables: Variables defined here are visible throughout the CompositeInstallable and in Topology. 2784
See the VariablesType section for structure and additional usage details [4.6.5]. 2785

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 129 of 187

§ RequiredBase: When a resource or resources corresponding to the overall software will be modified 2786
during deployment, that resource or those resources MAY be defined in the RequiredBase element. 2787
The RequiredBase definition represents a requirement that the described resource be available for 2788
modification to apply the single operation defined by the CompositeInstallable. When RequiredBase 2789
is defined, the operation defined by CompositeInstallable MUST be one of the following: update, 2790
undo, uninstall, or repair. By specifying the required base separately from other requirements, it is 2791
possible for consumers of the SDD to easily determine if the base is available before processing 2792
other requirements. 2793
See the RequiredBaseType section for structure and additional usage details [4.7.8]. 2794

§ Requirements: These are requirements that must be met regardless of what content is selected for 2795
deployment and which conditions within the content hierarchy evaluates to true. 2796
Requirements that apply only to a portion of the content SHOULD be defined at the point in the 2797
content hierarchy where they apply. 2798
All requirements specified on content elements that are in scope for a particular deployment MUST 2799
be met. This represents a logical “AND” of the requirements. Care should be taken by the SDD author 2800
to ensure that conflicting requirements cannot be in scope for the same deployment. 2801
See the RequirementsType section for structure and additional usage details [4.7.1]. 2802

§ Languages: When the SDD contains language support, the Languages element can be defined to 2803
describe the languages supported; which languages are required and which are selectable; and how 2804
language selections are grouped. 2805
Languages defined in the Mandatory element under Languages are always in scope. Languages 2806
defined in the Optional element under Languages are in scope if selected by the deployer. 2807
The Languages element is used to declare the mandatory and optional language support available in 2808
the package. Languages whose support is deployed by LocalizationUnits in LocalizationContent 2809
MUST be defined as either a mandatory language or an optional language. In addition, languages 2810
whose support is deployed along with other content by InstallableUnits in BaseContent or 2811
SelectableContent SHOULD be defined as a mandatory language. 2812
See the LanguageSelectionsType section for structure and additional usage details [4.13.4]. 2813

§ ResultingResource: The software whose deployment is described by the SDD can be described in 2814
the CompositeInstallable’s ResultingResource element. This software may consist of many resources 2815
that are described in the ResultingResource elements of the InstallableUnits and/or LocalizationUnits 2816
defined within the CompositeInstallable. 2817
See the ResultingResourceType section for structure and additional usage details [4.8.1]. 2818

§ ResultingChange: Configuration changes that result from deployment regardless of selected content 2819
or condition evaluation can be described in the CompositeInstallable’s ResultingChange element. 2820
Note that a ResultingChange is a change that is made to an existing resource. This is in contrast with 2821
ResultingResource, which describes newly created resources. 2822
See the ResultingChangeType section for structure and additional usage details [4.8.2]. 2823

§ BaseContent: The base content hierarchy defines content elements that are in scope by default. 2824
These content elements MAY be conditioned out based on characteristics of the deployment 2825
environment, but are not optional from the deployer’s perspective. 2826
See the BaseContentType section for structure and additional usage details [4.11.1]. 2827

§ SelectableContent: Content that is selected by feature MUST be defined in the selectable content 2828
hierarchy. Groups and Features that select this content are also defined within SelectableContent. 2829
See the SelectableContentType section for structure and additional usage details [4.12.1]. 2830

§ LocalizationContent: All LocalizationUnits and ContainedLocalizationPackages MUST be defined in 2831
the LocalizationContent hierarchy. Each LocalizationUnit contains information about the languages it 2832
supports and the resources it localizes. This information is evaluated to determine if the 2833
LocalizationUnit is in scope for a particular deployment. 2834

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 130 of 187

Each LocalizationUnit and ContainedLocalizationPackage defined in LocalizationContent MAY 2835
support any combination of Mandatory and Optional languages and can localize any combination of 2836
base and selectable resources, as well as resources already deployed. 2837
Some language support may be deployed incidentally by artifacts in an InstallableUnit along with 2838
deployment of other solution content. LocalizationContent holds only content elements whose sole 2839
purpose is to provide language support. 2840
LocalizationContent supports advanced management of language support, including definition of 2841
mandatory and optional languages and support of localization materials with a lifecycle that is 2842
somewhat independent of the resources localized. When an SDD author has no need for advanced 2843
management of language support, all language support MAY be delivered with other content in 2844
InstallableUnits. 2845
See the LocalizationContentType section for structure and additional usage details [4.13.1]. 2846

§ id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2847
log and trace messages. 2848

§ operation: This is the operation that may be applied to the SDD package whose metadata is 2849
described by the CompositeInstallable. 2850
See the OperationType section for enumeration values and their meaning [4.3.7]. 2851

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 131 of 187

4.9.2 CompositeUnitType 2852

 2853
Figure 79: CompositeUnitType structure. 2854
The CompositeUnit element is used to organize content elements within the base or selectable content 2855
hierarchies. It can define any number of InstallableUnits, ConfigurationUnits, ContainedPackages and 2856
other CompositeUnits. Composite units assist in organizing the deployment package. A composite unit 2857
can provide a convenient way to specify variables, requirements, conditions and other information that 2858
applies to every content element defined below the composite unit. Within the selectable content 2859
hierarchy, composite units can be used to group content elements that are selected by feature sets or 2860
groups. When a feature containing a composite unit is selected, all its child content elements are selected 2861
by association. Organization of content within a composite unit does not imply any relationships among 2862
the resources that result from deployment of the composite content. 2863

4.9.2.1 CompositeUnitType Property Summary 2864

Name Type * Description

Identity IdentityType 0..1 Human-understandable identity information about the

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 132 of 187

CompositeUnit.

Condition ConditionType 0..1 A condition that determines if the CompositeUnit and its child
content elements are relevant to a particular deployment.

Variables VariablesType 0..1 Variables for use within the CompositeUnit’s and its child content
elements’ requirement and artifact definitions.

Requirements RequirementsType 0..1 Requirements that must be met prior to successful processing of
any of the CompositeUnit’s content.

InstallableUnit InstallableUnitType 0..* An InstallableUnit that is part of the composite content.

ConfigurationUnit ConfigurationUnitType 0..* A ConfigurationUnit that is part of the composite content.

CompositeUnit CompositeUnitType 0..* A CompositeUnit that organizes a subset of the composite’s
content.

ContainedPackage ReferencedPackageType 0..* A ContainedPackage that is part of the composite content.

 xsd:any 0..*

id xsd:ID 1 An identifier for the CompositeUnit scoped to the deployment
descriptor.

 xsd:anyAttribute 0..*

4.9.2.2 CompositeUnitType Property Usage Notes 2865

§ Identity: This identity MAY have values in common with the identity of a resulting resource created 2866
when artifacts defined by content of the composite are processed. 2867
If the unit of packaging described by the CompositeUnit is known to a package management system, 2868
some of the identity elements MAY correspond to values associated with that package in the package 2869
management system. 2870

 See the IdentityType section for structure and additional usage details [3.4]. 2871
§ Condition: When the condition defined in the CompositeInstallable is not met for a particular 2872

deployment, the CompositeUnit and all the content elements defined below the CompositeUnit are 2873
out of scope for that particular deployment. 2874
See the ConditionType section for structure and additional usage details [4.5.1]. 2875

§ Variables: Variables defined here are visible within the CompositeUnit and every content element 2876
defined below the CompositeUnit. 2877
These variables are in scope for a particular deployment only if the CompositeUnit is in scope for that 2878
deployment. 2879
See the VariablesType section for structure and additional usage details [4.6.5]. 2880

§ Requirements: These are requirements that must be met before any of the artifacts in the 2881
CompositeUnit hierarchy can be processed. 2882
These requirements are in scope for a particular deployment only if the CompositeUnit is in scope for 2883
that deployment. 2884
The operation defined for a Requirement defined in a CompositeUnit MUST be the same as the 2885
operation defined by the CompositeInstallable containing the CompositeUnit. 2886
See the RequirementsType section for structure and additional usage details [4.7.1]. 2887

§ InstallableUnit: See the InstallableUnitType section for structure and additional usage details [4.3.1]. 2888
§ ConfigurationUnit: See the ConfigurationUnitType section for structure and additional usage details 2889

[4.3.2]. 2890
§ CompositeUnit: A CompositeUnit element MAY contain child CompositeUnits. 2891

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 133 of 187

§ ContainedPackage: See the ReferencedPackageType section for structure and additional usage 2892
details [4.10.1]. 2893

§ id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 2894
log and trace messages. 2895

4.10 Aggregation 2896

SDD packages can aggregate other SDD packages. Metadata about the aggregation is defined in 2897
ContainedPackage, ContainedLocalizationPackage and Requisite elements. ContainedPackage 2898
elements are content elements that can be defined anywhere in the base and selectable content 2899
hierarchies. ContainedLocalizationPackages are content elements that can be defined in the localization 2900
content hierarchy. Requisites are packages that can be deployed, if necessary, to satisfy requirements in 2901
the aggregating SDD. They are not content of the SDD package. The type of all three of these elements 2902
is ReferencedPackageType. The term referenced package is used in this specification when referring to 2903
these elements as a group. The term referenced SDD is used when referring to any aggregated SDD. 2904
When an SDD aggregates other SDDs, the package descriptors of the aggregated SDDs are included in 2905
the Contents list in the package descriptor of the aggregating SDD (see Figure 80). The referenced 2906
package elements in the deployment descriptor identify a referenced SDD package by referencing its 2907
package descriptor definition in Contents. Each referenced package element can further constrain the 2908
deployment of the referenced SDD by defining additional requirements; by mapping resources defined in 2909
the aggregating SDD to those defined in the referenced SDD; and by determining feature selections for 2910
deployment of the referenced SDD. 2911

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 134 of 187

 2912
Figure 80: The aggregating SDD identifies the package descriptor of the aggregated SDD and 2913
maps resource definitions in the aggregating SDD to resource definitions in the aggregated SDD. 2914
Referenced packages can create and modify software resources that may be required by the aggregating 2915
SDD or other SDDs in the aggregation. These resources are mapped to the associated resource 2916
definitions in the aggregating SDD by using the ResultingResourceMap, the ResultingChangeMap and 2917
the RequiredResourceMap elements of a referenced package element. The characteristics of these 2918
resources that other SDDs in the aggregation depend on in some way MUST be exposed in the 2919
ResultingResourceMap, the ResultingChangeMap and the RequiredResourceMap elements of the 2920
aggregating SDD (see Figure 81). These exposed characteristics are mapped to requirements, conditions 2921
and resource variables in the SDDs to determine if requirements are satisfied, conditions are met and to 2922
set the values of resource property variables (see Figure 82). 2923

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 135 of 187

 2924

 2925
Figure 81: The list of resource maps is segmented by the role the resource plays in the referenced 2926
SDD. 2927

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 136 of 187

 2928

 2929
Figure 82: Arguments and OutputVariables of ReferencedPackageType map variables in the 2930
aggregating SDD to variables in the referenced SDD. 2931
It is important to remember that all id attributes MUST be unique within a DeploymentDescriptor and 2932
MUST be unique across an aggregation of SDDs, including referenced SDDs. 2933

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 137 of 187

4.10.1 ReferencedPackageType 2934

 2935
Figure 83: ReferencedPackageType structure. 2936

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 138 of 187

A referenced package identifies an aggregated SDD and describes the conditions of its aggregation. 2937
ReferencedPackageType provides the type definition for ContainedPackage and Requisite elements. 2938
ContainedPackage elements identify an SDD package that is treated like a content element of the 2939
defining SDD. Requisite elements identify an SDD package that can be deployed, if necessary, to satisfy 2940
resource constraints. 2941

4.10.1.1 ReferencedPackageType Property Summary 2942

Name Type * Description

Condition ConditionType 0..1 A condition that determines if the referenced package
is relevant to a particular deployment.

RequiredContentSelection RequiredContentSelectionType 0..1 A list of groups and features that MUST be selected
when the referenced package is deployed.

Arguments ArgumentListType 0..1 Inputs to the reference package.

OutputVariables OutputVariableListType 0..1 Outputs from the referenced package.

Requirements RequirementsType 0..1 Additional requirements for deploying the referenced
package as part of the aggregation.

ResultingResourceMap ResultingResourceMapType 0..* Maps resulting resources in the referenced package to
resources in the referencing package and exposes
properties of the resulting resource.

ResultingChangeMap ResultingChangeMapType 0..* Maps changed resources defined in the referenced
package to resources in the referencing package and
exposes changed properties of the resource.

RequiredResourceMap ResourceMapType 0..* Maps required resources in the referenced package to
resources in the referencing package.

Languages LanguagesType 0..1 Languages supported by the referenced package.

 xsd:any 0..*

id xsd:ID 1 Identifier for the referenced package element that is
unique within the deployment descriptor.

contentRef xsd:token 1 Reference to the identifier of the package Content
defined in the package descriptor which identifies the
package descriptor of the referenced package.

weight xsd:positiveInteger 0..1 The time required to process the referenced package
relative to all artifacts and other referenced packages
in the SDD.

operation OperationType 0..1 Specifies which operation in the referenced SDD is
performed.

 xsd:anyAttribute 0..*

4.10.1.2 ReferencedPackageType Property Usage Notes 2943

§ Condition: A Condition is used when the ReferencedPackage’s content should only be deployed 2944
when certain conditions exist in the deployment environment. 2945
See the ConditionType section for structure and additional usage details [4.5.1]. 2946

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 139 of 187

§ RequiredContentSelection: Certain Groups or Features may need to be selected when deploying 2947
the referenced package. These can be identified in the RequiredContentSelection element. 2948
If one particular aggregated SDD requires the selection of different groups or features, depending on 2949
other choices made during a particular deployment, different Requisite or ContainedPackage 2950
elements can be defined in a way that will cause the correct combination of Groups and Features to 2951
be used in each situation. 2952
See the RequiredContentSelectionType section for structure and additional usage details [4.12.13]. 2953

§ Arguments: Arguments are used to provide values for input variables defined in the deployment 2954
descriptor of the referenced package. The argument name specified MUST reference the id of a 2955
parameter in the referenced package. 2956
See the ArgumentListType section for structure and additional usage details [4.3.8]. 2957

§ OutputVariables: The output variable mapping can be used to set variables to outputs created by 2958
processing the referenced SDD. The output variables in the referenced package are mapped to 2959
output variables in the aggregating SDD. 2960
Each output variable value specified MUST reference the id of an output variable in the referenced 2961
package. This can be an output variable from an artifact or an output variable from a referenced 2962
package defined within the referenced SDD. 2963
See the OutputVariableListType section for structure and additional usage details [4.3.10]. 2964

§ Requirements: When the aggregating SDD has stricter requirements for the use of the referenced 2965
SDD than are defined by the referenced SDD itself, those requirements can be defined in 2966
Requirements. This is not intended to repeat requirements expressed in the referenced SDD, but 2967
rather to add additional stricter requirements. 2968
Requirements expressed in the referenced SDD need to be satisfied, in addition to the requirements 2969
expressed in the Requisite or ContainedPackage element of the aggregating SDD. 2970
Requirements expressed in the aggregating SDD MUST NOT conflict with requirements expressed in 2971
the referenced SDD. The requirements specified MUST further constrain the referenced package. 2972
See the RequirementsType section for structure and additional usage details [4.7.1]. 2973

§ ResultingResourceMap: Resources created by the referenced package may be resources that are 2974
defined in the aggregating SDD. The ResultingResourceMap is used to identify the correspondence 2975
between resource definitions in the aggregating SDD and resulting resource definitions in the 2976
aggregated SDD. 2977
Characteristics of the resulting resources MAY be exposed in the ResultingResourceMap element. 2978
ResourceConstraints defined on those resources anywhere in the aggregation are mapped to the 2979
resource properties exposed in the resulting maps of the referenced package to determine if the 2980
referenced package will satisfy the constraints. Each individual constraint is considered met by the 2981
referenced package if a property exposed in the resulting resource map that is in scope for the 2982
particular deployment satisfies the constraint. 2983

For example, a property constraint in a ResourceConstraint element states that the property 2984
named “FileAttributes” has the value “Writeable”. The resourceRef in the ResourceConstraint 2985
identifies a resource defined in Topology that is also identified in the ResultingResourceMap of a 2986
Requisite or ContainedPackage element that is in scope for the particular deployment. If the 2987
ResultingResourceMap element contains a statement that the property named “FileAttributes” 2988
has the value “Writeable”, then the ResourceConstraint is met when the Requisite or 2989
ContainedPackage is deployed. 2990

This same logic applies to ResourceConstraints in aggregated packages. If the SDD in the preceding 2991
example also aggregates another SDD and maps the same resource to a required resource in that 2992
aggregated SDD, then all ResourceConstraints in the aggregated SDD are met only if the 2993
ResultingResourceMap of the referenced SDD that creates that resource contains a Version or 2994
Property definition that satisfies the constraint. 2995
See the ResultingResourceMapType section for structure and additional usage details [4.10.3]. 2996

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 140 of 187

§ ResultingChangeMap: Resources configured by the referenced package may be resources that are 2997
defined in the aggregating SDD. The ResultingChangeMap is used to identify the correspondence 2998
between resource definitions in the aggregating SDD and changed resources defined in 2999
ResultingChange elements of the aggregated SDD. 3000
Characteristics of resources that are changed by the referenced SDD MAY be exposed in the 3001
ResultingChangeMap. These are correlated with ResourceConstraints on the changed resource in 3002
the same manner as the exposed characteristics of a resulting resource. See the property usage 3003
notes for ResultingResourceMap above. 3004
See the ResultingChangeMapType section for structure and additional usage details [4.10.4]. 3005

§ RequiredResourceMap: When a resource required by the aggregated SDD is a resource also 3006
defined in the aggregating SDD, the RequiredResourceMap is used to identify the correspondence. 3007
This element is a simple mapping of a resource in one SDD to a resource in another. There is no 3008
need to expose characteristics of the resource because it is not created or modified by the referenced 3009
package. 3010
One resource MAY be required, resulting, changed, all three or any combination of these within one 3011
SDD. When a resource in the referenced SDD plays more than one role, the mapping MUST be 3012
repeated everywhere it applies. This allows exposure of all the created or modified properties in the 3013
ResultingChangeMap and ResultingResourceMap. In this situation–when one resource in the 3014
referenced SDD plays more than one of the roles identified earlier (required, resulting or changed)–all 3015
mappings MUST be to the same resource in the aggregating SDD. Only the exposed resulting and 3016
changed properties differ. 3017
See the ResourceMapType section for structure and additional usage details [4.10.2]. 3018

§ Languages: Languages supported by the referenced package MAY be identified here. This list does 3019
not identify mandatory versus optional languages; it is for informational purposes only. The SDD 3020
author is not limiting use of the referenced package to deployments where all in-scope languages are 3021
found in this list. There may be cases where aggregated packages are deployed even though they 3022
cannot support all of the languages supported by the aggregation as a whole. 3023
Each language specified MUST match a language in the referenced package. 3024
See the LanguagesType section for structure and additional usage details [4.13.6]. 3025

§ id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 3026
log and trace messages. 3027

§ contentRef: The package descriptor of an SDD that aggregates other SDDs, either through 3028
ContainedPackage elements or Requisite elements, will list the package descriptor files of the 3029
aggregated SDDs in its content list. The contentRef attribute of a referenced package element MUST 3030
be a reference to the id of a Content element in the aggregating SDD’s package descriptor that 3031
defines the aggregated package descriptor. 3032

§ weight: Defining weights for all artifacts and referenced packages in an SDD provides useful 3033
information to software that manages deployment. The weight of the referenced package refers to the 3034
relative time taken to deploy the referenced package with respect to other packages in this SDD. 3035

For example, if the referenced package takes twice as long to deploy as a particular install artifact 3036
whose weight is “4”, then the weight of the referenced package would be “8”. The weight numbers 3037
have no meaning in isolation and do not describe actual time elapsed. They simply provide an 3038
estimate of relative time. 3039

§ operation: The referenced SDD may support more than one deployment lifecycle operation. The 3040
operation attribute MUST include the operations that are applicable when this is the case. 3041
See the OperationType section for enumeration values and their meaning [4.3.7]. 3042

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 141 of 187

4.10.2 ResourceMapType 3043

 3044
Figure 84: ResourceMapType structure. 3045
ResourceMapType is used in the definition of elements that map resources in an SDD to resources in a 3046
referenced SDD. The purpose of a resource map is to identify when two resources in separate SDDs 3047
MUST resolve to the same resource instance during any particular deployment. The characteristics of a 3048
mapped resource that are defined in the topology sections of the two SDDs MUST NOT conflict. 3049

For example, if a Property definition is included for the same property in both SDDs, the value MUST 3050
be the same. 3051

Additional characteristics of a mapped resource may be constrained by Requirements or Conditions in 3052
either SDD. All constraints on a mapped resource that are in scope for a particular deployment MUST 3053
NOT conflict. 3054
Resources that are not mapped between the two SDDs MAY resolve to the same instance when their 3055
characteristics defined in topology do not conflict and when the constraints in scope for any particular 3056
deployment do not conflict. 3057
The RequiredResourceMap, ResultingResourceMap and ResultingChangeMap elements all use 3058
ResourceMapType, either directly or as a base type that is extended. 3059

4.10.2.1 ResourceMapType Property Summary 3060

Name Type * Description

resourceRef xsd:IDREF 1 Reference to a resource defined in the deployment descriptor.

foreignID xsd:NCName 0..1 Reference to a resource defined in a referenced deployment descriptor.

 xsd:anyAttribute 0..*

4.10.2.2 ResourceMapType Property Usage Notes 3061

§ resourceRef: The value of the resourceRef MUST be set to the id of the resource in the SDD that is 3062
mapped to a resource in a referenced SDD. 3063

§ foreignID: The value MUST reference the id of a resource in the referenced package. This is the 3064
resource in the referenced SDD that MUST resolve to the same resource instance as the resource 3065
identified in resourceRef. 3066

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 142 of 187

4.10.3 ResultingResourceMapType 3067

 3068
Figure 85: ResultingResourceMapType structure. 3069
ResultingResourceMapType defines an element type that maps resources that result from deployment of 3070
a referenced SDD to a resource in the referencing SDD. In addition to identifying the two resources that 3071
MUST resolve to the same resource instance, the resulting resource map allows characteristics of the 3072
resulting resource to be exposed. Constraints might be defined on the mapped resource in the 3073
referencing SDD or any referenced SDD. These constraints can be evaluated by comparing the 3074
constraint to the characteristics that are exposed in the resulting resource map. The resulting resource 3075
map MUST expose sufficient characteristics of the resulting resource to enable the evaluation of 3076
constraints on that resource. 3077

For example, suppose that an SDD defines a resource with id=”Database” in its topology. The 3078
solution can work with Database_Product_A or Database_Product_B. Database_Product_A is 3079
created by a referenced SDD defined in a Requisites element. The referencing SDD contains 3080
Requirements and/or Conditions that have Alternatives for each of the two alternative database 3081
products. All constraints on the Database resource that apply to Database_Product_A must be 3082
satisfied by a resource characteristic that is exposed in the ResultingResourceMap element of the 3083
Requisite element that references the SDD that deploys Database_Product_A. 3084

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 143 of 187

4.10.3.1 ResultingResourceMapType Property Summary 3085

Name Type * Description

 [extends] ResourceMapType See the ResourceMapType section for additional properties [4.10.2].

Condition ConditionType 0..1 A condition that determines if the resulting resource definition is relevant
to a particular deployment.

Name VariableExpressionType 0..1 The name of the resource created or updated by the referenced SDD.
[DEPRECATED in SDD v2.0]

Version VersionType 0..1 The version of the resource created or updated by the referenced SDD.

FixName xsd:string 0..* Names of fixes to the mapped resource that are created by the
referenced SDD.

Property ResultingPropertyType 0..* Properties set when the mapped resource is created or updated by the
referenced SDD.

Relationship RelationshipType 0..* Relationship that will exist after creating or updating the resource.

 xsd:any 0..*

4.10.3.2 ResultingResourceMapType Property Usage Notes 3086

See the ResourceMapType section for details about the inherited attributes and elements [4.10.2]. 3087
§ Condition: A Condition is used when the resulting resource will be created by the referenced 3088

package only when certain conditions exist in the deployment environment. 3089
See the ConditionType section for structure and additional usage details [4.5.1]. 3090

§ Name: The Name of the resulting resource created or updated by the referenced SDD MUST be 3091
defined if it is not defined elsewhere and there are constraints on this resource that contain a Name 3092
element. “Defined elsewhere” means defined in the topology of the referencing SDD or in the 3093
topology of any other referenced SDD for a resource that is also mapped to the same resource. 3094
“Constraints on this resource” means a constraint that applies to the particular instantiation of the 3095
resource that is created or updated by the referenced SDD, for example a constraint that needs to 3096
successfully map to the referenced SDD for the referenced SDD to be used in a particular 3097
deployment. 3098
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 3099
[Starting with SDD v2.0, Name has been deprecated. See the Property element below for the 3100
appropriate method for specifying a resource identifier.] 3101

§ Version: The Version of the resulting resource created or updated by the referenced SDD MUST be 3102
defined if it is not defined elsewhere and version constraints are defined on this resource. “Defined 3103
elsewhere” means defined in the topology of the referencing SDD or in the topology of any other 3104
referenced SDD for a resource that is also mapped to the same resource. 3105
See the VersionType section for structure and additional usage details [3.10]. 3106

§ FixName: One or more names of fixes to the resulting resource created or updated by the referenced 3107
SDD MUST be defined if they are not defined elsewhere and version constraints are defined on this 3108
resource that include fix names. (See the usage note for Version above for a definition of “defined 3109
elsewhere”.) 3110

§ Property: A Property of the resulting resource created or updated by the referenced SDD MUST be 3111
defined if it is not defined elsewhere and property constraints are defined on this property. (See the 3112
usage note for Version above for a definition of “defined elsewhere”.) 3113
If a resource can be identified by a property that represents the name for that resource, the SDD 3114
author SHOULD include a Property element and MUST set the value of PropertyName to “Name”. 3115

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 144 of 187

See the ResultingPropertyType section for structure and additional usage details [4.2.4]. 3116
§ Relationship: Any number of Relationship elements can be included to identify relationships that will 3117

exist after applying the referenced package. 3118
See the RelationshipType section for structure and additional usage details [4.8.3]. 3119

4.10.4 ResultingChangeMapType 3120

 3121
Figure 86: ResultingChangeMapType structure. 3122
ResultingChangeMapType is similar to ResultingResourceMapType. It defines an element type that maps 3123
resources that are changed by deployment of the referenced SDD to a resource in the referencing SDD. 3124
In addition to identifying the two resources that MUST resolve to the same resource instance, the 3125
resulting change map allows characteristics of the modified resource to be exposed. Constraints may be 3126
defined on the mapped resource in the referencing SDD or any referenced SDD. These constraints can 3127
be evaluated by comparing the constraint to the characteristics that are exposed in the resulting change 3128
map. The resulting change map MUST expose sufficient characteristics of the resulting change to enable 3129
the evaluation of constraints on that resource. 3130

For example, suppose that an SDD defines a resource with id=”OS” in its topology. The solution can 3131
work with Windows or Linux. Linux is configured by a referenced SDD defined in a Requisites 3132
element. The referencing SDD contains Requirements and/or Conditions that have Alternatives for 3133
Windows and for Linux. All constraints on the modified characteristics of Linux must be satisfied by a 3134
resource characteristic that are exposed in the ResultingChangeMap element of the Requisite 3135
element that references the SDD that configures Linux. 3136

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 145 of 187

4.10.4.1 ResultingChangeMapType Property Summary 3137

Name Type * Description

 [extends] ResourceMapType See the ResourceMapType section for additional properties [4.10.2].

Condition ConditionType 0..1 A condition that determines if the resulting change definition is relevant
to a particular deployment.

Name VariableExpressionType 0..1 The name of the modified resource.
[DEPRECATED in SDD v2.0]

Property ResultingPropertyType 0..* A modified property of the resource.

Relationship RelationshipType 0..* Relationship that will exist after the change is applied to the resource.

 xsd:any 0..*

4.10.4.2 ResultingChangeMapType Property Usage Notes 3138

See the ResourceMapType section for details about the inherited attributes and elements [4.10.2]. 3139
§ Condition: A Condition is used when the resource mapped from the external package will be 3140

changed only when certain conditions exist in the deployment environment. 3141
See the ConditionType section for structure and additional usage details [4.5.1]. 3142

§ Name: The Name of the resource that is modified by the referenced SDD is defined here to assist 3143
with identifying the resource instance that is changed. It is not an indication that the resource name 3144
itself is modified by the referenced SDD. If resource characteristics defined in the topology of any 3145
SDD defining a resource mapped to the changed resource are sufficient to identify the resource, then 3146
Name SHOULD NOT be defined in the ResultingChangeMap. 3147
See the VariableExpressionType section for structure and additional usage details [4.6.1]. 3148
[Starting with SDD v2.0, Name has been deprecated. See the Property element below for the 3149
appropriate method for specifying a resource identifier.] 3150

§ Property: A modified property MUST be exposed in a ResultingChangeMap if it is not defined 3151
elsewhere and property constraints are defined on the modified property. “Defined elsewhere” means 3152
defined in the topology of the referencing SDD or in the topology of any other referenced SDD for a 3153
resource that is also mapped to the same resource. “Constraints on the modified property” means a 3154
property constraint that applies to the particular instantiation of the resource that is modified by the 3155
referenced SDD; for example, a constraint that must map to the referenced SDD, if the referenced 3156
SDD is to be used in a particular deployment. 3157
If a resource can be identified by a property that represents the name for that resource, the SDD 3158
author SHOULD include a Property element and MUST set the value of PropertyName to “Name”. 3159
See the ResultingPropertyType section for structure and additional usage details [4.2.4]. 3160

§ Relationship: Relationship elements SHOULD be included to identify relationships that will exist after 3161
the application of the referenced package. 3162
Relationships that need to be known by the aggregate MUST be mapped. Relationships need to be 3163
known when they are referred to in one or more resource constraints. 3164
See the RelationshipType section for structure and additional usage details [4.8.3]. 3165

4.10.5 RequisitesType 3166

 3167
Figure 87: RequisitesType structure. 3168

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 146 of 187

The Requisites element contains a list of references to SDD packages that can be used to satisfy one or 3169
more of the requirements defined by content elements. The definition of a requisite does not imply that it 3170
must be used; only that it is available for use if needed. 3171
Requisite definitions can map values and resources defined in the SDD to inputs and resources defined 3172
in the requisite SDD. 3173

4.10.5.1 RequisitesType Property Summary 3174

Name Type * Description

ReferencedPackage ReferencedPackageType 1..* An SDD package that can, but is not required to, be deployed to
satisfy a requirement.

4.10.5.2 RequisitesType Property Usage Notes 3175

§ ReferencedPackage: See the ReferencedPackageType section for structure and additional usage 3176
details [4.10.1]. 3177

4.11 Base Content 3178

Base content is the default content for the deployment lifecycle operation associated with the 3179
CompositeInstallable that contains the base content. This is content that is deployed whenever the 3180
associated operation is performed on the SDD package. Base content may be conditioned on 3181
characteristics of the deployment environment but it is not selectable by the deployer. 3182
Resources associated with base content for one operation may be different from resources associated 3183
with base content for a different operation in the same SDD package. 3184

For example, base content in the CompositeInstallable for the configuration operation may configure 3185
resources that were created by selectable content in the CompositeInstallable for the install 3186
operation. In this example, the configuration is in base content because it must be done if the 3187
resource exists. It is not selectable by the deployer during the configuration operation. 3188

4.11.1 BaseContentType 3189

 3190
Figure 88: BaseContentType structure. 3191
The BaseContent hierarchy defines the default content for the deployment operation described by the 3192
CompositeInstallable. This content MAY be conditioned. 3193

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 147 of 187

4.11.1.1 BaseContentType Property Summary 3194

Name Type * Description

InstallableUnit InstallableUnitType 0..* An InstallableUnit that defines base content.

ConfigurationUnit ConfigurationUnitType 0..* A ConfigurationUnit that defines base configuration content.

CompositeUnit CompositeUnitType 0..* A CompositeUnit that organizes base content.

ContainedPackage ReferencedPackageType 0..* An SDD whose content is considered to be base content in the
context of this aggregation.

 xsd:any 0..*

4.11.1.2 BaseContentType Property Usage Notes 3195

§ InstallableUnit: See the InstallableUnitType section for structure and additional usage details [4.3.1]. 3196
§ ConfigurationUnit: See the ConfigurationUnitType section for structure and additional usage details 3197

[4.3.2]. 3198
§ CompositeUnit: See the CompositeUnitType section for structure and additional usage details 3199

[4.9.2]. 3200
§ ContainedPackage: See the ReferencedPackageType section for structure and additional usage 3201

details [4.10.1]. 3202

4.12 Content Selectability 3203

The SDD author MAY define selectable subsets of content using Groups and Features. Selectability, as 3204
used in the SDD, is a characteristic of the deployment lifecycle operation and the package. The decision 3205
to provide selectability for one operation in one package has no semantic relationship to the selectability 3206
provided in another package related to the same software. It also has no semantic relationship to the 3207
selectability provided for a different operation within the same package. 3208

For example, when the SDD author chooses to create a feature in a maintenance package, that 3209
feature is designed to allow selectable application of the maintenance, not to reflect the original set of 3210
features for the base content. 3211

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 148 of 187

4.12.1 SelectableContentType 3212

 3213
Figure 89: SelectableContentType structure. 3214
Content elements defined here make up the selectable content hierarchy. These elements are selected 3215
via Groups and Features also defined under SelectableContent. 3216

4.12.1.1 SelectableContentType Property Summary 3217

Name Type * Description

Groups GroupsType 0..1 Groups of features that can be selected as a unit.

Features FeaturesType 0..1 A definition of user-selectable content.

InstallableUnit InstallableUnitType 0..* An InstallableUnit that defines selectable content.

ConfigurationUnit ConfigurationUnitType 0..* A ConfigurationUnit that defines selectable configuration.

CompositeUnit CompositeUnitType 0..* A CompositeUnit that organizes content elements that define
selectable content.

ContainedPackage ReferencedPackageType 0..* An SDD package whose content is selectable in the context of the
aggregating SDD.

 xsd:any 0..*

4.12.1.2 SelectableContentType Property Usage Notes 3218

§ Groups: Groups can be used by the SDD author to define a convenient way for deployers to select a 3219
group of features. 3220

“Typical” and “Custom” are examples of groups that are commonly presented in installation 3221
interfaces. 3222

See the GroupsType section for structure and additional usage details [4.12.2]. 3223

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 149 of 187

§ Features: Features can be used to organize optional functionality into meaningful selections. 3224
Features should be meaningful from the deployer’s point of view. 3225
See the FeaturesType section for structure and additional usage details [4.12.4]. 3226

§ InstallableUnit: See the InstallableUnitType section for structure and additional usage details [4.3.1]. 3227
§ ConfigurationUnit: See the ConfigurationUnitType section for structure and additional usage details 3228

[4.3.2]. 3229
§ CompositeUnit: See the CompositeUnitType section for structure and additional usage details 3230

[4.9.2]. 3231
§ ContainedPackage: See the ReferencedPackageType section for structure and additional usage 3232

details [4.10.1]. 3233

4.12.2 GroupsType 3234

 3235
Figure 90: Groups structure. 3236
GroupsType is used in SelectableContent to provide a list of one or more Group elements. 3237

4.12.2.1 GroupsType Property Summary 3238

Name Type * Description

Group GroupType 1..* A group of features that can be selected together.

4.12.2.2 GroupsType Property Usage Notes 3239

§ Group: Associating features in a Group is based on the characteristics of the package and the ways 3240
in which the SDD author chooses to expose function variability to the deployer. 3241

One example is a “Typical” group that allows easy selection of the most common grouping of 3242
features, along with a “Custom” group that allows an advanced user to select from among all 3243
features. Another example is a “Client” group that selects features that deploy the client software 3244
for an application, along with a “Server” group that selects features that deploy the server 3245
software for the same application. 3246

If alternative sets of selections are desired, Groups MUST be used to define these sets. Zero or one 3247
set can be selected for any particular deployment. 3248
See the GroupType section for structure and additional usage details [4.12.3]. 3249

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 150 of 187

4.12.3 GroupType 3250

 3251
Figure 91: GroupType structure. 3252
GroupType provides the type definition for each Group element in SelectableContent’s list of Groups. For 3253
a particular deployment, zero or one groups may be selected by the deployer. 3254

4.12.3.1 GroupType Property Summary 3255

Name Type * Description

DisplayName DisplayTextType 0..1 A human-readable name for the group.

Description DisplayTextType 0..1 A human-readable description of the group.

ShortDescription DisplayTextType 0..1 A human-readable short description of the group.

SelectedFeature FeatureReferenceType 1..* A feature that is part of the group.

 xsd:any 0..*

id xsd:ID 1 An identifier of the group that is unique within the descriptor.

default xsd:boolean 0..1 Indicates that the group is selected by default when no selections are
provided by the deployer.
**default value=“false”

 xsd:anyAttribute 0..*

4.12.3.2 GroupType Property Usage Notes 3256

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 3257
MUST provide a label for the group. 3258
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3259

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 3260
information. If used, they MUST provide a description of the group. 3261
The Description element MUST be defined if the ShortDescription element is defined. 3262

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 151 of 187

See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3263
§ SelectedFeature: Each SelectedFeature is considered selected if inputs identify the group as 3264

selected. 3265
Selection of a nested feature causes its parent feature to be selected. 3266
See the FeatureReferenceType section for structure and additional usage details [4.12.8]. 3267

§ id: The group’s id may be used to refer to the group when aggregating the SDD into another SDD. 3268
The id attribute may be useful to software that processes the SDD, for example, for use in creating 3269
log and trace messages. 3270

§ default: Multiple default Groups MUST NOT be defined. 3271

4.12.4 FeaturesType 3272

 3273
Figure 92: FeaturesType structure. 3274
FeaturesType provides the type definition for the single, optional, Features element in SelectableContent. 3275
Features defined directly under the Features element in SelectableContent are the top level features. A 3276
Features element may also include a MultiSelect element that refers to features whose selections are 3277
interdependent. 3278

4.12.4.1 FeaturesType Property Summary 3279

Name Type * Description

Feature FeatureType 1..* A top level feature in the hierarchy of features defined in SelectableContent.

MultiSelect MultiSelectType 0..* A list of feature references whose selection is controlled as a multi-select list with
defined minimum and maximum selections.

 xsd:any 0..*

4.12.4.2 FeaturesType Property Usage Notes 3280

§ Feature: Each top level Feature can define NestedFeatures. All features can define required 3281
relationships with other features that cause the required feature to be selected. 3282
See the FeatureType section for structure and additional usage details [4.12.5]. 3283

§ MultiSelect: The MultiSelect element MUST refer to Feature or NestedFeature elements. 3284
See the MultiSelectType section for structure and additional usage details [4.12.15]. 3285

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 152 of 187

4.12.5 FeatureType 3286

 3287
Figure 93: FeatureType structure. 3288

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 153 of 187

FeatureType provides the type definition for each feature defined directly below SelectableContent. A 3289
Feature can define NestedFeatures and identify ContentElements and other features that will be selected 3290
when the feature is selected. A feature can also be defined to be available for selection only under certain 3291
conditions. 3292

4.12.5.1 FeatureType Property Summary 3293

Name Type * Description

 [extends] NestedFeatureType See the NestedFeatureType section for additional properties [4.12.6].

required xsd:boolean 0..1 Indicates the feature must be selected.
**default value=“false”

4.12.5.2 FeatureType Property Usage Notes 3294

See the NestedFeatureType section for details about the inherited attributes and elements [4.12.6]. 3295
§ required: A top level Feature MUST be selected when the value of the required attribute is “true”. In 3296

this case, the user cannot choose to deselect this top level Feature. 3297
In Features that define Multiplicity, the SDD author can state a minimum number of instances of the 3298
Feature. This minimum applies only if the Feature is selected. The required attribute can be used to 3299
indicate that the Feature is always selected and so the minimum number of instances applies. 3300
The required attribute SHOULD be used only when Multiplicity is applied to the Feature. 3301

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 154 of 187

4.12.6 NestedFeatureType 3302

 3303
Figure 94: NestedFeatureType structure. 3304
NestedFeatureType is identical to FeatureType except that NestedFeatureType does not define a 3305
required attribute. All features other than those defined directly below SelectableContent use the 3306
NestedFeatureType. 3307

4.12.6.1 NestedFeatureType Property Summary 3308

Name Type * Description

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 155 of 187

DisplayName DisplayTextType 0..1 A human-readable name for the feature.

Description DisplayTextType 0..1 A human-readable description of the feature.

ShortDescription DisplayTextType 0..1 A human-readable short description of the feature.

Condition ConditionType 0..1 A condition that determines if the feature is relevant
to a particular deployment.

Multiplicity MultiplicityType 0..1 Both an indication that multiple instances of the
feature can be selected and the specification of their
constraints.

Languages LanguageSelectionsType 0..1 A list of language support available for the feature’s
content.

NestedFeature NestedFeatureType 0..* A nested feature.

ContentElement ContentElementReferenceType 0..* A reference to a content element to be deployed
when the feature is selected.

PackageFeatureReference PackageFeatureReferenceType 0..* A reference to a feature to be selected in a
ContainedPackage defined in either the BaseContent
or SelectableContent hierarchies.

RequiredFeature FeatureReferenceType 0..* A reference to a feature that is required when the
defining feature is selected and so is selected
automatically.

Variable DerivedVariableType 0..* The definition of a variable that can be used
anywhere in any variable expression in the SDD.

 xsd:any 0..*

id xsd:ID 1 Used within the SDD to refer to the feature.

addOn xsd:boolean 0..1 A “true” value indicates that the feature can be added
to a deployed instance of the solution.
**default value=“false”

 xsd:anyAttribute 0..*

4.12.6.2 NestedFeatureType Property Usage Notes 3309

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 3310
MUST provide a label for the nested feature. 3311
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3312

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 3313
information. If used, they MUST provide a description of the nested feature. 3314
The Description element MUST be defined if the ShortDescription element is defined. 3315
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3316

§ Condition: If the features and its nested features are only applicable in certain environments, a 3317
Condition can be defined. When the Condition is not met, the feature and its nested features are not 3318
in scope. 3319

For example, some features may be available only on a Linux operating system, even though the 3320
software can be applied on other operating systems. In this case, a Condition can be defined to 3321
cause the feature to be ignored when the operating system is not Linux. 3322

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 156 of 187

See the ConditionType section for structure and additional usage details [4.5.1]. 3323
§ Multiplicity: When multiple instances of a feature can be selected, a Multiplicity element MUST be 3324

defined. 3325
For example, a solution that includes a server and a client may allow the deployment of multiple 3326
clients. In this situation, a feature that defines a Multiplicity element would select the content 3327
elements that deploy the client software. 3328

See the MultiplicityType section for structure and usage details [4.12.7]. 3329
§ Languages: Sometimes language support for a feature is different than that available for the overall 3330

solution. This is especially likely when features are implemented by aggregation of packages 3331
provided by different teams. When language support differs, the Languages element of the feature 3332
MUST be defined to state which languages are supported for the feature. 3333
When Languages is defined in a feature, it overrides the global declaration of supported languages 3334
and MUST declare the complete set of language support available for that feature. 3335
If Languages is not defined, the global declaration of supported languages in CompositeInstallable 3336
applies for the feature. 3337
See the LanguageSelectionsType section for structure and additional usage details [4.13.4]. 3338

§ NestedFeature: A NestedFeature must be explicitly selected. It is not assumed to be selected when 3339
the parent feature is selected. Selection of a nested feature causes its parent feature to be selected, 3340
but not vice-versa. The definition of a NestedFeature indicates that application of the NestedFeature 3341
is dependent on application of the parent feature. 3342

§ ContentElement: The ContentElement referred to MUST be in the selectable content hierarchy 3343
defined by the SelectableContent element. 3344
When the content reference is to a CompositeUnit, the composite and all content elements below it in 3345
the content hierarchy are considered to be in scope when the feature is selected. Ease of referencing 3346
a group of content from a feature can be one reason for using a composite in the content hierarchy. 3347
See the ContentElementReferenceType section for structure and additional usage details [4.12.9]. 3348

§ PackageFeatureReference: Selection of a feature may result in selection of an aggregated 3349
package’s feature identified by a ContainedPackage element anywhere in the BaseContent or 3350
SelectableContent hierarchies. A PackageFeatureReference identifies both the ContainedPackage 3351
and the applicable features to be selected in that package. 3352
See the PackageFeatureReferenceType section for structure and additional usage details [4.12.10]. 3353

§ RequiredFeature: When the selection of one feature requires the selection of another feature, the 3354
RequiredFeature can be used to specify this requirement. 3355
When two features identify each other as required features, they are always selected together. 3356
The selection of the defining feature MUST cause the required feature to be selected. 3357
See the FeatureReferenceType section for structure and additional usage details [4.12.8]. 3358

§ Variable: Variables defined in features are useful when inputs to an artifact need to vary based on 3359
which features are selected for a particular deployment. Artifact arguments can be defined in terms of 3360
feature Variables to allow for this variation. When an artifact deploys selectable content, inputs to the 3361
artifact that indicate the selections for a particular deployment can be associated with feature 3362
selection in the SDD via feature Variables. 3363

For example, a Feature that deploys a trace facility might define a Variable called 3364
“TraceSettings”. The value of an argument to a base content artifact might define its value as 3365
“$(TraceSettings)”. If the feature is selected, this argument would be used and its value would be 3366
taken from the feature Variable. If the feature is not selected, the argument would be ignored. 3367

A Variable defined in a feature differs from Variable elements defined in content elements in one 3368
important way. A reference to an undefined feature Variable is treated as an empty string and is 3369
considered to be defined. 3370
See the DerivedVariableType section for structure and additional usage details [4.6.19]. 3371

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 157 of 187

§ id: Provides the means to reference a feature from other features. 3372
The id attribute may be useful to software that processes the SDD, for example, for use in creating 3373
log and trace messages. 3374

§ addOn: When a solution and the artifacts that deploy the various parts of the solution are designed in 3375
a way that supports the addition of a particular feature at a later time (after the deployment of the 3376
base solution), the addOn attribute is set to “true”. 3377

4.12.7 MultiplicityType 3378

 3379
Figure 95: MultiplicityType structure. 3380
Some solutions allow multiple instances of some portion of the solution’s resources to be deployed as 3381
part of the solution. 3382

For example, a solution that includes a server and a client may allow the deployment of multiple 3383
clients. The deployment of each client may involve content elements that represent several different 3384
resulting resources, features that control optional functionality of the client and configuration elements 3385
that configure the client. All of these can be defined within a “Client” feature that declares a Multiplicity 3386
element that indicates that multiple clients are allowed. Each selection or “instance” of the feature 3387
results in the deployment of a client. 3388

The phrase “feature instance” is used to refer to the set of instances of all resources deployed when the 3389
feature is selected. It does not imply that features themselves are represented as having lifecycle or that 3390
features in the SDD correspond with feature instances in the deployment environment. 3391

4.12.7.1 MultiplicityType Property Summary 3392

Name Type * Description

ConstrainedFeature FeatureReferenceType 0..* A nested feature whose selection must be the same for all
instances of the defining feature in a particular deployment.

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 158 of 187

ConstrainedResource ConstrainedResourceType 0..* A resource that must resolve to the same resource instance for
all instances of the feature in a particular deployment.

 xsd:any 0..*

multiplesAllowed xsd:boolean 1 Indicates that multiple instances of the feature are allowed.
**fixed value=“true”

minSelections xsd:positiveInteger 0..1 The minimum number of instances of the feature that must be
selected if the feature is selected at all.
**default value=“1”

maxSelections xsd:positiveInteger 0..1 That maximum number of instances of the feature that can be
selected.

 xsd:anyAttribute 0..*

4.12.7.2 MultiplicityType Property Usage Notes 3393

§ ConstrainedFeature: A feature with multiplicity may contain NestedFeature elements. When a 3394
NestedFeature is identified in a ConstrainedFeature, then all instances of the defining Feature MUST 3395
make the same selection choice for that NestedFeature. 3396
See the FeatureReferenceType section for structure and additional usage details [4.12.8]. 3397

§ ConstrainedResource: The content elements selected by a feature may express constraints on 3398
resources. When the resource constraints for each instance of a feature must resolve to the same 3399
resource instance, or when all must resolve to unique resource instances, the resource is referred to 3400
and the constraint type is identified in the ConstrainedResource element. 3401
See the ConstrainedResourceType section for structure and additional usage details [4.12.11]. 3402

§ multiplesAllowed: This is an attribute with a fixed value of “true”. It is included because all other 3403
elements and attributes of MultiplicityType are optional. A feature that allows multiples but has no 3404
need to define constraints on resources, features or number of instances would define a Multiplicity 3405
element that had only the multiplesAllowed attribute. 3406

§ minSelections: When a feature is selected, if more than one instance of the feature is required, 3407
minSelections MUST be specified. 3408

§ maxSelections: When a feature is selected, if there is a limit on the number of instances of the 3409
feature that can be selected, maxSelections MUST be specified. If maxSelections is defined, it MUST 3410
be equal to or greater than minSelections. 3411

4.12.8 FeatureReferenceType 3412

 3413
Figure 96: FeatureReferenceType structure. 3414
FeatureReferenceType provides a way to reference a feature defined in the SDD from within the SDD. 3415

4.12.8.1 FeatureReferenceType Property Summary 3416

Name Type * Description

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 159 of 187

featureRef xsd:IDREF 1 Reference to a feature defined in the deployment descriptor.

 xsd:anyAttribute 0..*

4.12.8.2 FeatureReferenceType Property Usage Notes 3417

§ featureRef: The value MUST reference the id of a feature in the deployment descriptor. 3418

4.12.9 ContentElementReferenceType 3419

 3420
Figure 97: ContentElementReferenceType structure. 3421
ContentElementReferenceType provides a way to reference a content element defined in the SDD from 3422
within a feature. 3423

4.12.9.1 ContentElementReferenceType Property Summary 3424

Name Type * Description

contentElementRef xsd:IDREF 1 Reference to a content element in the deployment descriptor’s selectable
content.

 xsd:anyAttribute 0..*

4.12.9.2 ContentElementReferenceType Property Usage Notes 3425

§ contentElementRef: The value MUST reference the id of a content element in the deployment 3426
descriptor. 3427

4.12.10 PackageFeatureReferenceType 3428

 3429
Figure 98: PackageFeatureReferenceType structure. 3430
PackageFeatureReferenceType provides a way to reference a feature defined in a referenced SDD. It 3431
identifies the ContainedPackage element that references the SDD and the feature in the referenced SDD. 3432

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 160 of 187

4.12.10.1 PackageFeatureReferenceType Property Summary 3433

Name Type * Description

contentElementRef xsd:IDREF 1 Reference to a content element in the deployment descriptor.

packageFeatureRef xsd:NCName 1 The feature’s id as defined in the referenced package’s deployment
descriptor.

 xsd:anyAttribute 0..*

4.12.10.2 PackageFeatureReferenceType Property Usage Notes 3434

§ contentElementRef: This value MUST reference the id of a ContainedPackage element in 3435
SelectableContent or BaseContent. This reference does not cause the ContainedPackage to be in 3436
scope. 3437

§ packageFeatureRef: Specifies the value of the id of a feature element from the SDD of the 3438
ContainedPackage identified in contentElementRef. This feature reference is ignored when the 3439
ContainedPackage identified in contentElementRef is not in scope for a particular deployment. 3440

4.12.11 ConstrainedResourceType 3441

 3442
Figure 99: ConstrainedResourceType structure. 3443
A resource may be required during deployment of the content selected by a Feature instance. The 3444
requirement may exist because the resource is used in a Requirement statement, referred to in a Variable 3445
whose value is in scope for the particular deployment or referred to in a constraint in a Condition that is 3446
satisfied for the particular deployment. This is an in-scope, required resource for the particular 3447
deployment. The SDD author may wish to constrain in-scope, required resources to resolve to the same 3448
resource instance for all Feature instances or to resolve to unique resource instances for each Feature 3449
instance. This is done using a ConstrainedResource element. 3450

4.12.11.1 ConstrainedResourceType Property Summary 3451

Name Type * Description

resourceRef xsd:IDREF 1 A reference to the constrained resource.

constraintType MultiplicityConstraintType 0..1 Indicates whether the constraint requires every instance of the resource to
be the same or requires every instance to be different.
**default value=“same”

 xsd:anyAttribute 0..*

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 161 of 187

4.12.11.2 ConstrainedResourceType Property Usage Notes 3452

§ resourceRef: The value MUST reference the id of a resource element in Topology. 3453
§ constraintType: If there is a constraint, constraintType indicates that all resource instances be 3454

unique or that all resource instances be the same. 3455
For example, all clients for a particular solution may need to connect to the same database. In 3456
this case, constraintType would be set to same. In other cases, each of the deployed resources 3457
might need to use its own unique instance of a required resource. If there could be only one client 3458
per operating system, a constraint on the operating system resource would set constraintType to 3459
unique. 3460

See the MultiplicityConstraintType section for the enumeration values for constraintType [4.12.12]. 3461

4.12.12 MultiplicityConstraintType 3462

This is a simple type that is used to indicate how resources declared in the Multiplicity element should be 3463
treated. Enumeration values are same, unique, or if a value is not specified, the SDD author is indicating 3464
that it doesn’t matter. 3465

4.12.12.1 MultiplicityConstraintType Property Usage Notes 3466

§ same: The value same is used to indicate that the constraint requires all resource instances MUST 3467
be the same. 3468

§ unique: The value unique is used to indicate that each resource instance MUST be unique. 3469

4.12.13 RequiredContentSelectionType 3470

 3471
Figure 100: RequiredContentSelectionType structure. 3472
When one SDD aggregates another, there needs to be an indication of which Groups and/or Features in 3473
the aggregated SDD should be selected. The RequiredContentSelection of the referenced package 3474
element identifies which elements MUST be selected when the defining package is selected. 3475

4.12.13.1 RequiredContentSelectionType Property Summary 3476

Name Type * Description

Group xsd:token 0..1 A reference to the group to be selected.

Feature ContentSelectionFeatureType 0..* A reference to a feature to be selected.

4.12.13.2 RequiredContentSelectionType Property Usage Notes 3477

§ Group: The Group value is the identifier of a Group in the aggregated SDD. This value MUST 3478
reference the id of a Group element in the deployment descriptor denoted by the referenced package. 3479

§ Feature: The Feature element value is the identifier of the feature in the aggregated SDD. Attributes 3480
indicating the number of selections to be made can be included. The feature value MUST be the id of 3481
a feature element in the deployment descriptor denoted by the referenced package. 3482
If Group is also defined, Feature SHOULD be a feature that is not selected by the Group. 3483
See the ContentSelectionFeatureType section for structure and additional usage details [4.12.14]. 3484

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 162 of 187

4.12.14 ContentSelectionFeatureType 3485

 3486
Figure 101: ContentSelectionFeatureType structure. 3487
The ContentSelectionFeatureType allows for the definition of the number of times a feature can be 3488
referenced if that feature includes a Multiplicity element. 3489

For example, a software package has a server and client; the server can be deployed only on one 3490
machine, but the client can be deployed on multiple machines and configured to reference the one 3491
server. The server, for performance reasons, is limited to 10 client connections. To limit the number of 3492
times the client can be deployed, the Selections element expression should be set to “10”. 3493

4.12.14.1 ContentSelectionFeatureType Property Summary 3494

Name Type * Description

 [extends] xsd:token See the xsd:token definition in [XSD].

Selections ElementValueType 0..1 The number of times a feature with Multiplicity in the referenced package should
be deployed.

4.12.14.2 ContentSelectionFeatureType Property Usage Notes 3495

See the xsd:token definition in [XSD] for inherited attributes and elements. 3496
§ Selections: The value of Selections MUST be, or resolve to, a positive integer that is within the 3497

bounds of the minSelections and maxSelections attributes defined in the Multiplicity element of the 3498
referenced feature. 3499
A pattern of wildcard is not supported and MUST NOT be used with the Selections element. 3500
See the ElementValueType section for structure and additional usage details [4.6.2]. 3501

4.12.15 MultiSelectType 3502

 3503
Figure 102: MultiSelectType structure. 3504
MultiSelectType defines a way to associate features with a defined minimum and maximum number of 3505
selections allowed. A MultiSelect element MAY be used to support identification of mutually exclusive 3506
features. 3507

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 163 of 187

4.12.15.1 MultiSelectType Property Summary 3508

Name Type * Description

Feature FeatureReferenceType 2..* A reference to a feature in the list of features defined in the MultiSelect
element.

minSelections xsd:nonNegativeInteger 0..1 Minimum number of features that must be selected.
**default value=“0”

maxSelections xsd:positiveInteger 0..1 Maximum number of features that can be selected.

4.12.15.2 MultiSelectType Property Usage Notes 3509

§ Feature: The value MUST reference the id of a feature element. 3510
See the FeatureReferenceType section for structure and additional usage details [4.12.8]. 3511

§ minSelections, maxSelections: When it is not necessary that any of the features in the MultiSelect 3512
list be selected, the default of “0” can be used. 3513
Mutually exclusive features can be defined using a MultiSelect element with two features, 3514
minSelections set to “0” and maxSelections set to “1”. 3515
If multiple instances of a single feature are selected via multiplicity, the set of multiple instances count 3516
only once toward the minimum and maximum. In other words, the count is based solely on the 3517
features selected, not on how many instances of each feature are selected. 3518
When maxSelections is not defined, all of the features in the MultiSelect MAY be selected for a 3519
particular deployment. 3520
If defined, the maxSelections value MUST be greater than or equal to the minSelections value and 3521
MUST be less than or equal to the number of referenced features. 3522

4.13 Localization 3523

Localization refers to enabling a particular piece of software to support one or more languages. Anything 3524
that needs to be deployed to provide support for a particular language in that software is considered 3525
localization content. Translated materials are a primary, but not the only, example of localization content. 3526
Localization content is similar in many ways to other content, but there are important differences in how 3527
localization content is selected for deployment that lead to the need for a separate content hierarchy and 3528
separate types. Two criteria determine whether or not localization content is in scope for a particular 3529
deployment: 3530
§ The first criterion has to do with the language or languages supported by the localization content. At 3531

least one of the languages must be in scope for the content to be selected. 3532
§ The second criterion has to do with the availability of the resources to be localized–the localization 3533

base. The localization base may be a resource deployed by base or selectable content, or it may be a 3534
resource previously deployed and found in the deployment environment. 3535

The types described in this section support definition of metadata describing the criteria for determining 3536
when localization content is in scope. 3537

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 164 of 187

4.13.1 LocalizationContentType 3538

 3539
Figure 103: LocalizationContentType structure. 3540
The LocalizationContent tree contains all content created specifically to provide localization by deploying 3541
language-specific materials for a particular location. The localization support provided can be for content 3542
defined in the SDD or it can be for resources in the deployment environment that are not created or 3543
modified by deployment of the SDD. Each element defined in the LocalizationContent hierarchy is in 3544
scope for a particular deployment when it supports a language that is in scope for that deployment and 3545
when its localization base, if any, is available. 3546

4.13.1.1 LocalizationContentType Property Summary 3547

Name Type * Description

LocalizationUnit LocalizationUnitType 0..* Contains artifacts that create, modify or delete
language support.

ContainedLocalizationPackage ReferencedPackageType 0..* Identifies an SDD whose contents are aggregated
to create, modify or delete language support.

CompositeLocalizationUnit CompositeLocalizationUnitType 0..* An organizational element that groups localization
content and defines metadata common to all the
grouped content.

4.13.1.2 LocalizationContentType Property Usage Notes 3548

§ LocalizationUnit: When there is no need to group a LocalizationUnit with other units that have 3549
common metadata, the LocalizationUnit is defined at the top level of the hierarchy. A LocalizationUnit 3550
defined at the top level of the LocalizationContent hierarchy is in scope for a particular deployment 3551
when its Condition and LocalizationBase, if any, evaluate to true and its Languages element, if any, 3552
defines a language that is in scope for the deployment. 3553
See the LocalizationUnitType section for structure and additional usage details [4.13.2]. 3554

§ ContainedLocalizationPackage: ContainedLocalizationPackage definitions include a list of 3555
languages supported by the contained package. The package need not be processed if none of those 3556
languages is in scope for a particular deployment. 3557
See the ReferencedPackageType section for structure and additional usage details [4.10.1]. 3558

§ CompositeLocalizationUnit: CompositeLocalizationUnit is a construct that allows organization of 3559
localization content in a way that is meaningful to the SDD author. 3560

One example use of a CompositeLocalizationUnit is to group a set of LocalizationUnits that 3561
provide support for a variety of languages for the same resource. This eliminates the need to 3562
define identical LocalizationBase elements in every LocalizationUnit. It can be defined once in the 3563
CompositeLocalizationUnit. 3564

If evaluation of the CompositeLocalizationUnit's Condition, Languages and LocalizationBase 3565
determines that it is not selected for deployment, none of the content elements defined below it in the 3566
hierarchy are selected. 3567

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 165 of 187

Requirements, Variables, Conditions and Completion elements common to all child content elements 3568
MAY be defined once in the CompositeLocalizationUnit rather than once in each nested element. 3569
See the CompositeLocalizationUnitType section for structure and additional usage details [4.13.3]. 3570

4.13.2 LocalizationUnitType 3571

 3572
Figure 104: LocalizationUnitType structure. 3573

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 166 of 187

The LocalizationUnit element defines artifacts that deploy localization content for one group of resources 3574
whose translations are packaged together. Localization content consists of materials that have been 3575
translated into one or more languages. 3576

4.13.2.1 LocalizationUnitType Property Summary 3577

Name Type * Description

Identity IdentityType 0..1 Human-understandable identity information about the
LocalizationUnit.

Condition ConditionType 0..1 A condition that determines if the content element is relevant to a
particular deployment.

Variables VariablesType 0..1 Variables that can be referenced in the LocalizationUnit’s
requirement and artifact definitions.

RequiredBase RequiredBaseType 0..1 A resource that will be updated when the LocalizationUnit’s
UpdateArtifact is processed.

Requirements RequirementsType 0..1 Requirements that must be met prior to successful processing of the
LocalizationUnit’s artifacts.

Languages LanguagesType 0..1 The LocalizationUnit’s artifacts contain materials translated into
these languages.

Completion CompletionType 0..* Describes completion actions such as restart and the conditions
under which the action is applied.

LocalizationBase RequiredBaseType 0..1 A resource whose translatable characteristics will be localized by
processing the LocalizationUnit’s InstallArtifact.

ResultingResource ResultingResourceType 0..* A resource that will be installed or updated by processing the
LocalizationUnit’s artifacts.

Artifacts InstallationArtifactsType 1 The set of artifacts associated with the LocalizationUnit.

 xsd:any 0..*

id xsd:ID 1 An identifier for the LocalizationUnit scoped to the deployment
descriptor.

targetResourceRef xsd:IDREF 1 Reference to the resource that can process the LocalizationUnit’s
artifacts.

 xsd:anyAttribute 0..*

4.13.2.2 LocalizationUnitType Property Usage Notes 3578

§ Identity: The Identity element defines human-understandable information that reflects the identity of 3579
the provided localization resources as understood by the end user of the solution. Identity has 3580
elements that are common with elements in the corresponding PackageDescriptor’s PackageIdentity 3581
element, for example, Name and Version. The values of these common elements SHOULD be the 3582
same as the corresponding PackageIdentity element values. 3583
See the IdentityType section for structure and additional usage details [3.4]. 3584

§ Condition: A Condition is used when the LocalizationUnit’s content should be deployed only when 3585
certain conditions exist in the deployment environment. 3586

For example, for a package that has one artifact that should be processed when the operating 3587
system is Linux and another artifact that should be processed when the operating system is 3588

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 167 of 187

Windows, the LocalizationUnit defining metadata for the Linux artifact would have a condition on 3589
the operating system being Linux. The LocalizationUnit defining metadata for the Windows 3590
artifact would have a condition on the operating system being Windows. 3591

Conditions should not be used to identify the resource that will be localized by the LocalizationUnit. 3592
The LocalizationBase element is used for that purpose. A LocalizationUnit can have both a Condition 3593
and a LocalizationBase. 3594
See the ConditionType section for structure and additional usage details [4.5.1]. 3595

§ Variables: A Variables element defines variables that can be used in the definition of requirements 3596
and artifact parameters. 3597
When the deployment descriptor defines a single LocalizationUnit at the top level, that is, not inside a 3598
CompositeInstallable, the variables it defines can also be referred to in any element under Topology. 3599
See the VariablesType section for structure and additional usage details [4.6.5]. 3600

§ RequiredBase: RequiredBase identifies the resource that must exist prior to applying the 3601
LocalizationUnit’s update artifact. 3602
See the RequiredBaseType section for structure and additional usage details [4.7.8]. 3603

§ Requirements: Requirements MUST be met prior to processing the LocalizationUnit’s artifacts. 3604
See the RequirementsType section for structure and additional usage details [4.7.1]. 3605

§ Languages: Languages lists the languages of the translated material deployed by the 3606
LocalizationUnit. 3607
See the LanguagesType section for structure and additional usage details [4.13.6]. 3608

§ Completion: A Completion element MUST be included if the artifact being processed requires a 3609
system operation such as a reboot or logoff to occur to function successfully after deployment or if the 3610
artifact executes a system operation to complete deployment of the contents of the artifact. 3611
There MUST be an artifact associated with the operation defined by a Completion element. 3612

For example, if there is a Completion element for the install operation, the LocalizationUnit must 3613
define an InstallArtifact. 3614

See the CompletionType section for structure and additional usage details [4.3.14]. 3615
§ LocalizationBase: LocalizationBase identifies the resource or resources that can be localized by 3616

processing the LocalizationUnit. A resource that satisfies the constraints defined in the 3617
LocalizationBase is one that can be localized by applying the LocalizationUnit. 3618
If no resource is found that meets the constraints defined in LocalizationBase during a particular 3619
deployment, then the LocalizationUnit is not considered to be in scope for that deployment. This does 3620
not represent an error. 3621
Translations created or modified by the LocalizationUnit are for human-readable text included with the 3622
LocalizationBase resources. 3623
See the RequiredBaseType section for structure and additional usage details [4.7.8]. 3624

§ ResultingResource: The ResultingResources for a LocalizationUnit MUST NOT identify resources 3625
other than localization resources. 3626
See the ResultingResourceType section for structure and additional usage details [4.8.1]. 3627

§ Artifacts: When the LocalizationUnit is a singleton defined outside of a CompositeInstallable, it 3628
MUST define at least one artifact element and MAY define one of each type of artifact element 3629
allowed for its type. The inclusion of an artifact element in a singleton LocalizationUnit implies support 3630
for the associated operation. 3631
When the LocalizationUnit is defined within a CompositeInstallable, it MUST define exactly one 3632
artifact. The artifact defined MAY be any artifact allowed in a LocalizationUnit and it MUST support 3633
the single top level operation defined by the CompositeInstallable. This does not mean the operation 3634
associated with the artifact has to be the same as the one defined by the CompositeInstallable. 3635

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 168 of 187

For example, an install of a localization resource may be required during the update of the overall 3636
solution, in which case the LocalizationUnit would define an InstallArtifact to support the top level 3637
update operation. 3638

See the InstallationArtifactsType section for structure and additional usage details [4.3.4]. 3639
§ id: The id attribute may be useful to software that processes the SDD, for example, for use in creating 3640

log and trace messages. 3641
§ targetResourceRef: The targetResourceRef attribute MUST reference the id of a resource element 3642

in Topology that will process the LocalizationUnit’s artifacts to create or modify the localization 3643
resources identified in the LocalizationUnit’s ResultingResource elements. 3644

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 169 of 187

4.13.3 CompositeLocalizationUnitType 3645

 3646
Figure 105: CompositeLocalizationUnitType structure 3647
CompositeLocalizationUnitType provides the type definition for all CompositeLocalizationUnit elements in 3648
the LocalizationContent hierarchy. CompositeLocalizationUnit elements define nested localization content 3649
elements and metadata that applies to all of the nested elements. 3650

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 170 of 187

4.13.3.1 CompositeLocalizationUnitType Property Summary 3651

Name Type * Description

Identity IdentityType 0..1 Human-understandable identity information
about the CompositeLocalizationUnit.

Condition ConditionType 0..1 A condition that determines if the
CompositeLocalizationUnit is relevant to a
particular deployment.

Variables VariablesType 0..1 Variables for use within the
CompositeLocalizationUnit and content elements
nested beneath it in the hierarchy.

RequiredBase RequiredBaseType 0..1 A resource that will be updated when the nested
elements are processed.

Requirements RequirementsType 0..1 Requirements that must be met prior to
successful processing of the nested content
elements.

Languages LanguagesType 0..1 Localization elements defined within
CompositeLocalizationUnit contain materials
translated into these languages.

Completion CompletionType 0..* Describes completion actions such as restart
and the conditions under which the action is
applied.

LocalizationBase RequiredBaseType 0..1 A resource whose translatable characteristics
will be localized by processing the nested
content elements.

ResultingResource ResultingResourceType 0..* A localization resource that will be installed or
updated by processing the nested content
elements.

LocalizationUnit LocalizationUnitType 0..* Contains artifacts that will create, modify or
delete language support.

ContainedLocalizationPackage ReferencedPackageType 0..* Identifies an SDD whose contents are
aggregated to create, modify or delete language
support.

CompositeLocalizationUnit CompositeLocalizationUnitType 0..* An organizational element that groups
localization content and defines metadata
common to all the grouped content.

 xsd:any 0..*

id xsd:ID 1 An identifier for the CompositeLocalizationUnit
that is unique within the deployment descriptor.

 xsd:anyAttribute 0..*

4.13.3.2 CompositeLocalizationUnitType Property Usage Notes 3652

§ Identity: The CompositeLocalizationUnit, like all content elements, is a unit of packaging. Its identity 3653
is the identity of a unit of packaging and may be useful to package management tools. The identity 3654
MAY be similar or identical to the identity of the ResultingResource(s). 3655

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 171 of 187

See the IdentityType section for structure and additional usage details [3.4]. 3656
§ Condition: If the composite and the elements nested beneath it are applicable only in certain 3657

environments, a Condition can be defined. When the Condition is not met, the composite and its 3658
nested elements are not in scope. 3659
See the ConditionType section for structure and additional usage details [4.5.1]. 3660

§ Variables: Variables used by more than one nested element can be defined in the 3661
CompositeLocalizationUnit for efficiency both in composing and processing the SDD. Variables are 3662
visible to all nested content elements. 3663
See the VariablesType section for structure and additional usage details [4.6.5]. 3664

§ RequiredBase: If the processing of all the update artifacts in the nested content elements results in a 3665
single resource being updated, that resource can be defined in the CompositeLocalizationUnit’s 3666
RequiredBase element. 3667
See the RequiredBaseType section for structure and additional usage details [4.7.8]. 3668

§ Requirements: When a CompositeLocalizationUnit is in scope for a particular deployment–as 3669
determined by evaluation of its LocalizationBase and Languages properties–then its requirements 3670
MUST be met. 3671
See the RequirementsType section for structure and additional usage details [4.7.1]. 3672

§ Languages: The Languages element in the CompositeLocalizationUnit MUST NOT be defined or 3673
MUST define the union of all languages supported by the nested content elements. For nested 3674
content elements to be evaluated to determine if they are in scope, the CompositeLocalizationUnit 3675
must be in scope. When Languages is present in the CompositeLocalizationUnit, it must define one of 3676
the languages in scope for the particular deployment if any of the nested elements are to be 3677
evaluated. If Languages is not present in a CompositeLocalizationUnit, evaluation of all the child 3678
elements still is required, as long as the other elements of CompositeLocalizationUnit have evaluated 3679
to true. When the Languages and/or the LocalizationBase element in a CompositeLocalizationUnit is 3680
not defined, the nested content elements must be evaluated to determine if they are in scope. 3681
See the LanguagesType section for structure and additional usage details [4.13.6]. 3682

§ Completion: When a particular completion action applies to all nested elements and should be 3683
performed only once for the entire group, it can be defined in the CompositeLocalizationUnit rather 3684
than in each individual element. 3685
See the CompletionType section for structure and additional usage details [4.3.14]. 3686

§ LocalizationBase: A LocalizationBase element evaluates to true when the resource identified in the 3687
base is created by a content element that is in scope for the deployment or it already exists in the 3688
deployment environment. 3689
When the LocalizationBase is defined it must evaluate to true for any of the nested content elements 3690
to be evaluated. If it evaluates to false, none of the nested content elements are in scope. If it 3691
evaluates to true, the nested content elements may be in scope. 3692
When the LocalizationBase and/or the Languages element in a CompositeLocalizationUnit is not 3693
defined, the nested content elements must be evaluated to determine if they are in scope. 3694
See the RequiredBaseType section for structure and additional usage details [4.7.8]. 3695

§ ResultingResource: If there are one or more resources that will be created when the nested content 3696
elements are processed, they can be defined here. 3697
See the ResultingResourceType section for structure and additional usage details [4.8.1]. 3698

§ LocalizationUnit: LocalizationUnits defined within the composite typically have common metadata. 3699
Metadata defined in the composite does not need to be repeated in the nested element. Definitions in 3700
the nested LocalizationUnit are additions to those defined in the composite. 3701
See the LocalizationUnitType section for structure and additional usage details [4.13.2]. 3702

§ ContainedLocalizationPackage: A ContainedLocalizationPackage is defined in a 3703
CompositeLocalizationUnit for the same reasons that a LocalizationUnit is–because it has metadata 3704
in common with other elements defined in the composite. 3705

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 172 of 187

See the ReferencedPackageType section for structure and additional usage details [4.10.1]. 3706
§ CompositeLocalizationUnit: A CompositeLocalizationUnit can be nested inside another 3707

CompositeLocalizationUnit when some of the metadata is shared only by a subset of the elements 3708
nested in the higher level composite. 3709

For example, the higher level composite might contain operating system requirements that apply 3710
to all localization content and nested composites might group localization content by localization 3711
base. 3712

§ id: This id is not referred to by any other element in the deployment descriptor. 3713
The id attribute may be useful to software that processes the SDD, for example, for use in creating 3714
log and trace messages. It also may be useful for associating custom discovery logic with the 3715
CompositeLocalizationUnit’s resource-related elements. 3716

4.13.4 LanguageSelectionsType 3717

 3718
Figure 106: LanguageSelectionsType structure. 3719
LanguageSelectionsType provides the type definition for the Languages element in CompositeInstallable 3720
that describes the languages supported by the SDD as a whole. It also provides the type definition for the 3721
Languages element in features that allows a feature to override the SDD-wide definitions. 3722

4.13.4.1 LanguageSelectionsType Property Summary 3723

Name Type * Description

Mandatory LanguagesType 0..1 The set of languages that will be deployed.

Optional OptionalLanguagesType 0..1 The set of language selections available to the deployer.

4.13.4.2 LanguageSelectionsType Property Usage Notes 3724

§ Mandatory: The deployer has no ability to determine if a mandatory language will be deployed. 3725
See the LanguagesType section for structure and additional usage details [4.13.6]. 3726

§ Optional: Each language group in the list of optional languages defines a list of one or more 3727
languages that can be selected together. 3728
Language groups defined in LanguageSelections MAY be used to allow the deployer to select 3729
individual languages or to allow selection of multiple languages as a single choice. 3730
See the OptionalLanguagesType section for structure and additional usage details [4.13.5]. 3731

4.13.5 OptionalLanguagesType 3732

 3733
Figure 107: OptionalLanguagesType structure 3734

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 173 of 187

OptionalLanguagesType supports definition of a language or sets of languages that the deployer can 3735
optionally choose for deployment. This type is used to define the global set of optional languages in 3736
CompositeInstallable as well as any Feature-specific set that overrides the global set for a particular 3737
Feature. 3738

4.13.5.1 OptionalLanguagesType Property Summary 3739

Name Type * Description

Language LanguageType 1..* A single language that can be chosen individually.

LanguageSet LanguageSetType 1..* A set of languages that can be chosen together.

4.13.5.2 OptionalLanguagesType Property Usage Notes 3740

§ Language: When the SDD author allows the deployer to individually select a language for 3741
deployment, it is defined in a Language element within OptionalLanguages. 3742
See the LanguageType section for structure and usage details [4.13.7]. 3743

§ LanguageSet: When the SDD author allows the deployer to select languages for deployment as a 3744
set, it is defined in a LanguageSet element within OptionalLanguages. 3745

One example of a reason to define optional languages in a set rather than individually is for a 3746
group of languages that are packaged together and whose deployment cannot be separated. 3747

See the LanguageSetType section for structure and additional usage details [4.13.8]. 3748

4.13.6 LanguagesType 3749

 3750
Figure 108: LanguagesType structure. 3751
LanguagesType supports expression of a list of languages. It is used in the Languages elements of 3752
content elements to list languages supported by that content element. It is also used as the type of the 3753
Mandatory element that lists languages that are deployed by default. 3754

4.13.6.1 LanguagesType Property Summary 3755

Name Type * Description

Language LanguageType 1..* A single language definition.

4.13.6.2 LanguagesType Property Usage Notes 3756

§ Language: Each language definition MAY include display information as well as the language code 3757
that identifies the language. 3758
See the LanguageType section for structure and additional usage details [4.13.7]. 3759

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 174 of 187

4.13.7 LanguageType 3760

 3761
Figure 109: LanguageType structure. 3762
LanguageType supports the definition of display information and the language code for one language. It 3763
is used everywhere a language is defined in the SDD. 3764

4.13.7.1 LanguageType Property Summary 3765

Name Type * Description

DisplayName DisplayTextType 0..1 A name for the language.

Description DisplayTextType 0..1 A description of the language.

ShortDescription DisplayTextType 0..1 A short description of the language.

type xsd:language 1 The locale code for the language.

4.13.7.2 LanguageType Property Usage Notes 3766

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 3767
MUST provide a label for the language. 3768
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3769

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 3770
information. If used, they MUST provide a description of the language. 3771
The Description element MUST be defined if the ShortDescription element is defined. 3772
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3773

§ type: The type attribute MUST be defined as a value that conforms to the set of language codes 3774
defined by [RFC3066]. 3775

For example, “de” is a locale code for German and “en-US” is the locale code for English in the 3776
United States. 3777

4.13.8 LanguageSetType 3778

 3779
Figure 110: LanguageSetType structure. 3780
LanguageSetType provides the type definition for the OptionalLanguages elements of 3781
CompositeInstallable and Feature. It defines a set of languages that can be selected together. 3782

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 175 of 187

4.13.8.1 LanguageSetType Property Summary 3783

Name Type * Description

DisplayName DisplayTextType 0..1 A name for the set of languages.

Description DisplayTextType 0..1 A description of the set of languages.

ShortDescription DisplayTextType 0..1 A short description of the set of languages.

Language LanguageType 1..* A set of one or more language codes.

4.13.8.2 LanguageSetType Property Usage Notes 3784

§ DisplayName: This element MAY be used to provide human-understandable information. If used, it 3785
MUST provide a label for the set of languages. 3786

For example, “Eastern European Languages” or “French, English and German”. 3787
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3788

§ Description, ShortDescription: These elements MAY be used to provide human-understandable 3789
information. If used, they MUST provide a description of the set of languages. 3790
The Description element MUST be defined if the ShortDescription element is defined. 3791
See the DisplayElementGroup section for structure and additional usage details [4.14.2]. 3792

§ Language: The languages defined in this element MUST be selected together. 3793
See the LanguageType section for structure and additional usage details [4.13.7]. 3794

4.14 Display Information 3795

There are many places throughout the SDD where translatable information intended for display to 3796
humans MAY be defined. All display information definitions can include a translationKey that can be used 3797
as an index into a file containing translations. 3798

4.14.1 DescriptionGroup 3799

 3800
Figure 111: DescriptionGroup structure. 3801
The DescriptionGroup type is used throughout the SDD to provide human-readable, translatable, 3802
descriptive-text elements. 3803

4.14.1.1 DescriptionGroup Property Usage Notes 3804

§ Description: This is a description of the defining element unless usage notes for that element state 3805
otherwise. It can be as long as necessary to provide a useful description. 3806
The Description element MUST be defined if the ShortDescription element is defined. 3807
See the DisplayTextType section for details about associating this text with translated text [4.14.3]. 3808

§ ShortDescription: This is a short description of the defining element unless usage notes for that 3809
element state that it refers to something else. It SHOULD provide a limited description that can be 3810
used by tools where limited text is allowed, for example, fly-over help. 3811
See the DisplayTextType section for details about associating this text with translated text [4.14.3]. 3812

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 176 of 187

4.14.2 DisplayElementGroup 3813

 3814
Figure 112: DisplayElementGroup structure. 3815
The DisplayElementGroup is used throughout the package descriptor and deployment descriptor to 3816
provide human-readable, translatable names, descriptions and/or short descriptions for a variety of 3817
elements. 3818

4.14.2.1 DisplayElementGroup Property Usage Notes 3819

§ DisplayName: This is a label for the defining element unless usage notes for that element state 3820
otherwise. 3821
See the DisplayTextType section for details about associating this text with translated text [4.14.3]. 3822

4.14.3 DisplayTextType 3823

 3824
Figure 113: DisplayTextType Structure. 3825
Elements of DisplayTextType define translatable strings and an optional key to translated text in language 3826
bundle files. DisplayTextType extends the xsd:string type with an optional translationKey attribute. 3827

4.14.3.1 DisplayTextType Property Usage Notes 3828

§ translationKey: The translationKey attribute is a value that can be used as an index into a file 3829
containing translations of DisplayTextType elements in the DeploymentDescriptor and/or 3830
PackageDescriptor. The value of the translationKey MUST match an entry in the message bundle 3831
referenced by the descriptorLanguageBundle attribute in the package descriptor. 3832
See the PackageDescriptor section for details on how to specify the appropriate message bundle in 3833
the descriptorLanguageBundle attribute [3.1]. 3834

 3835

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 177 of 187

5 Conformance 3836

5.1 General Conformance Statements 3837

An implementation MAY claim conformance to the entirety of the SDD specification (including all 3838
conformance levels) or one or more particular conformance levels, and/or one or more particular profiles 3839
(SDD conformance levels and profiles are detailed next). 3840

5.2 Conformance Levels 3841

An SDD conformance level (CL) is defined, consistent with [CONFORM], as a subset of the schema 3842
intended to enable a certain set of capabilities to be achieved, based on SDDs that restrict their content to 3843
the particular CL. The purpose of conformance levels is to allow subsets of the full set of capabilities that 3844
can be expressed using an SDD to be implemented. The proper subsets are expected to be easier to 3845
implement, but still offer features, value and interoperability that make it worthwhile to implement a 3846
particular CL in certain circumstances. 3847
SDD conformance levels are designated as CL1 and CL2. CL1 is a proper subset of the schema; CL2 3848
represents the full schema. CL1 is the minimal set or core of the specification that shall be implemented 3849
by all products. CL2 includes all of CL1 and consists of the entire specification. 3850
The following sections describe the defined CLs for SDD. 3851

5.2.1 CL Capabilities 3852

Table 1 expresses the capabilities for each defined CL. 3853

 Conformance Level 1 Conformance Level 2

Description Single target, simple package. Multi-target, aggregated packages; full
deployment capabilities with all functions
enabled by the SDD schema.

Objective Serve as the “on-ramp” for SDD
adoption. Deploy pre-prepared content
that needs limited customization (basic
parameters). Descriptors serve as
contract between assembly and
operations. Exemplary use case is
“wrappering” existing packages in SDD.

Serve as the expected level for newly-
authored non-legacy SDDs. Deploy newly-
prepared content that has related
components in a solution, with various
topologies. Most robust specification (and
corresponding run-time implementations) of
SDD. Exemplary use case is non-trivial,
non-legacy solution deployment.

Included
Schema
Functions

• Solution package with single
component (singleton IU, CU, or
LU; no composite) and single target
topology

• Solution package dependency
checking for given environment

• base installations and maintenance
• Simple uninstall (based on

information in single descriptor)
• Ability to deploy existing artifact

formats appropriate for the target

All functions, including:
• Aggregation (composites)
• Features
• Selectable features
• Conditional content
• Variable-target topology
• Robust localization

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 178 of 187

environment
• Some localization possible

(localization of the units that are
supplied)

Excluded
Functions

• Features
• Selectable content
• Requisites
• Aggregation
• Multi-target topology
• Robust localization
• Replacements and modifications

that change base resource/solution
composition (including
obsolescence)

• Backwards compatibility, range
enforcement

• Verification of installation and
configuration

None

Table 1: SDD conformance level capabilities summary. 3854

5.2.2 Conformance Level Differences 3855

CL1 SDDs can be used to describe the inputs, requirements and results of processing a single 3856
deployment artifact. This artifact could be one that deploys, updates, configures or localizes software 3857
resources. This is useful for simple deployments that require only a single artifact. CL2 SDDs add support 3858
for aggregation of multiple artifacts and SDDs into solutions; definition of features that optionally select 3859
content; and requisite software that can be deployed if needed to satisfy requirements. CL1 SDDs can be 3860
aggregated by CL2 SDDs. 3861

For example, CL2 SDDs can describe a solution that consists of a Web server, an application server, 3862
a database and one or more applications, in which each of these components is described by its own 3863
individual SDD and an aggregating CL2 SDD aggregates them into the composite solution. 3864

The differences between CL1 and CL2 that are summarized in Table 1 are detailed next. These make 3865
use of the information that is in the SDD schema; see [CL1_Schema] for the CL1 schema files, and 3866
[CL2_Schema] for the CL2 schema files. The differences between the CL1 and CL2 schema files are 3867
isolated to the “sdd-dd” namespace. The “sdd-common” and “sdd-pd” namespaces contain identical 3868
schema files for each namespace with respect to CL1 and CL2. 3869

5.2.2.1 Type Definitions Modified in CL2 3870

A few SDD types used in CL1 have additional elements added in CL2. The types listed in the left column 3871
of Table 2 exist in both CL1 and CL2 with different definitions. The elements in the right column are the 3872
sub-elements added to the type definitions in CL2. 3873
 3874
Type Name CL2 Sub-Element Names

DeploymentDescriptorType Requisites
CompositeInstallable

InstallationArtifactsType RepairArtifact

ResultingResourceType Relationship

ResultingChangeType Relationship

ResourceConstraintGroup UniquenessConstraint

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 179 of 187

Type Name CL2 Sub-Element Names
RelationshipConstraint

ConditionalResourceConstraintType UniquenessConstraint
RelationshipConstraint

RequirementType Dependency

AlternativeRequirementType Dependency

Table 2. Modified Types. 3875

5.2.2.2 Type Structures Modified in CL2 3876

Several SDD types have altered structure between CL1 and CL2. The types listed in the left column of 3877
Table 3 are valid for both CL1 and CL2; however, valid structure for these types differs between CL1 and 3878
CL2, as shown in the center and right columns. 3879
 3880
Type CL1 Structure CL2 Structure

DeploymentDescriptorType Choice of one of the following:
InstallableUnit, ConfigurationUnit,
or LocalizationUnit

Choice of one of the following:
InstallableUnit, ConfigurationUnit, or
LocalizationUnit;
or one or more
CompositeInstallable elements

RequirementType Sequence of ResourceConstraint
elements

Unbounded choice of
ResourceConstraint elements and
Dependency elements

AlternativeRequirementType Sequence of ResourceConstraint
elements

Unbounded choice of
ResourceConstraint elements and
Dependency elements

Table 3. Altered types in CL2. 3881

5.2.2.3 SDD Types Introduced in CL2 3882

As seen in Table 2, CL2 adds two new elements to DeploymentDescriptor. The CompositeInstallable 3883
element provides the definition of an aggregate deployment. CompositeInstallable is a complex element 3884
with many sub-elements. The second element added to DeploymentDescriptor is Requisites. Requisites 3885
is a list of references to SDDs that can be used, if needed, to satisfy deployment requirements defined in 3886
the CompositeInstallable. 3887
Table 4 includes the CL2 types that are introduced in support CompositeInstallable and Requisites 3888
 3889
BaseContentType FeatureType PackageFeatureReferenceType

CompositeInstallableType GroupsType ReferencedPackageType

CompositeLocalizationType GroupType RelationshipConstraintType

CompositeUnitType InternalDependencyType RelationshipType

ConstrainedResourceType LanguageSelectionType RequiredContentSelectionType

ContentElementReferenceType LocalizationContentType RequisitesType

ContentListGroup MultiplicityConstraintType ResourceMapType

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 180 of 187

ContentSelectionFeatureType MultiplicityType ResultingChangeMapType

DependencyType MultiSelectType ResultingResourceMapType

FeatureReferenceType NestedFeatureType SelectableContentType

FeaturesType OptionalLanguagesType UniquenessConstraintType

Table 4 SDD types introduced in CL2. 3890

5.2.2.4 Extended Enumeration Value in CL2 3891

One SDD type has an additional enumeration value that is valid only for CL2-based implementations. The 3892
type listed in the left column of Table 5 is valid for both CL1 and CL2; however, the value in the right 3893
column is valid only for CL2. 3894
 3895
Type CL2 Enumeration Value

OperationType repair

Table 5 Extended enumeration value in CL2. 3896

5.3 Profiles 3897

Profiles are intended to specify detailed information that can be used in an SDD to promote 3898
interoperability. An SDD profile is defined consistent with [CONFORM], to identify the functionality, 3899
parameters, options and/or implementation requirements necessary to satisfy the requirements of a 3900
particular community of users. SDD profiles are intended to enable a specific set of use cases, typically in 3901
a particular domain. Profiles are considered largely orthogonal to CLs; whereas a CL is a subset of the 3902
schema, a profile specifies the usage of the schema, including appropriate conventions and content 3903
values, to accomplish a particular set of use cases (typically in a particular domain). 3904
A starter profile is initially defined with version 1.0 of this specification and is published separately. This 3905
starter profile defines terms and patterns that can be used to generate other specific profiles and 3906
addresses the content values that are required to support the SDD XML examples that also are published 3907
separately. 3908
The starter profile is not intended to be a complete vocabulary for all SDDs, but rather to illustrate the 3909
format and provide example content so that additional profiles can be generated in the future. The starter 3910
profile leverages and extends the CIM standard [CIM] for many content values, but other profiles MAY 3911
use other content values. 3912
Other profiles MAY be published by the TC in the future, and new profiles can be created as specified in 3913
5.3.1. 3914
An implementation MAY claim conformance to one or more particular profiles. 3915

5.3.1 Profile Creation 3916

The SDD TC has created a starter profile as described in 5.3. The SDD TC MAY create additional profiles 3917
in the future. 3918
Others MAY create SDD profiles for use cases, domains, or user communities that are not addressed by 3919
the currently available profiles from the SDD TC. When creating new profiles, it is RECOMMENDED that 3920
profile creators follow the model of the starter profile and any existing profiles and reuse content from 3921
existing standards where possible. It is also RECOMMENDED that implementations publish the profile(s) 3922
that they support. 3923

5.3.2 Profile Publication 3924

The SDD TC publishes the starter profile and MAY publish any other profiles created by the SDD TC. 3925

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 181 of 187

Profiles created by the SDD TC SHALL be made available by the SDD TC. 3926
Profiles created by others MAY be published and made available by those parties and/or submitted to the 3927
SDD TC for consideration for publication by the SDD TC, according to the OASIS policies and 3928
procedures, including intellectual property rights. The SDD TC MAY publish and make available the new 3929
profiles through majority vote of the TC. 3930

5.3.3 Profile Applicability 3931

Profiles are applicable to particular usage models, domains and/or user communities. An implementation 3932
MAY claim conformance to one or more particular profiles. 3933

5.4 Compatibility Statements 3934

Versions of the specification use the version value defined in the schemaVersion attribute described in 3935
section 3.2. New versions of the specification MAY update the conformance level contents. Changes 3936
made to the specification for each new version are listed in Appendix [B]. 3937
Profiles also use the schemaVersion attribute described in section 3.2. New versions of profiles MAY 3938
update the profile contents. 3939
Minor version updates of the schema, specification and profiles SHALL be backward-compatible with 3940
proceeding major versions (for example, all “1.x” versions are backward-compatible with version “1.0”). 3941
Moreover, minor version updates of the schema, specification and profiles SHALL be backward-3942
compatible with proceeding minor versions of the same major version (for example, version “1.4” is 3943
backward-compatible with versions “1.3”, “1.2”, “1.1” and “1.0”). 3944
Major version updates of the schema, specification and profiles are NOT REQUIRED to be backward-3945
compatible with previous versions and MAY NOT be backward-compatible with previous versions. For 3946
example, if non-backward-compatible changes occur in version “1.x”, the new version is “2.0”. Although 3947
new major versions MAY have substantial backward compatibility, backward compatibility is not 3948
guaranteed for all aspects of the schema across major versions. 3949

5.5 Conformance Clause 3950

5.5.1 Conformance for Users of This Specification 3951

An SDD conforms to this specification if it conforms to the SDD schema and follows the syntax and 3952
semantics defined in the normative portions of this specification. An SDD MAY conform to conformance 3953
levels CL1 or CL2. 3954
An implementation conforms to this specification if it conforms to, at minimum, conformance level CL1 of 3955
the SDD schema; supports at least one SDD profile; and follows the syntax and semantics defined in the 3956
normative portions of this specification. An implementation MAY support conformance levels CL1 or CL2 3957
and MAY support additional SDD profiles. 3958

5.5.2 Conformance for This Specification Itself 3959

This section is the conformance claim for how this document conforms to [CONFORM]. The conformance 3960
issues in section 8 of [CONFORM] apply to this document as follows: 3961

1. This document is applicable to SDDs as defined in this specification. To claim conformance to this 3962
document, all the requirements in section 5.5.1 SHALL be met. 3963

2. This document MAY be implemented in its entirety or in defined conformance levels CL1 and CL2. 3964
This document does not define profiles, but the SDD TC MAY define profiles that MAY be 3965
implemented. 3966

3. This document allows extensions. Each implementation SHALL fully support all required 3967
functionality of the specification exactly as specified. The use of extensions SHALL NOT 3968
contradict nor cause the non-conformance of functionality defined in the specification. 3969

4. This document contains no discretionary items. 3970

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 182 of 187

5. This document’s normative language is English. Translation into other languages is permitted. 3971
 3972

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 183 of 187

A. Schema and Non-Normative Resource File List 3973

The SDD schema is implemented by multiple schema files. Types defined in each file are identified by a 3974
specific namespace prefix, as indicated in the following list: 3975
§ sdd-common-2.0.xsd (prefix: sdd-common) 3976

Contains definitions of common types used in the SDD specification, including identity and fix-identity 3977
types, UUID and version types, and the display text type. The following namespace document 3978
describes this namespace and contains a directory of links to related resources, including the CL1 3979
and Full Schema files: 3980
http://docs.oasis-open.org/sdd/v2.0/sdd-common-2.0.html 3981

§ sdd-deploymentDescriptor-2.0.xsd (prefix: sdd-dd) 3982
Contains the deployment descriptor specification, including various content types. The following 3983
namespace document describes this namespace and contains a directory of links to related 3984
resources, including the CL1 and Full Schema files: 3985
http://docs.oasis-open.org/sdd/v2.0/sdd-deploymentdescriptor-2.0.html 3986

§ sdd-packageDescriptor-2.0.xsd (prefix: sdd-pd) 3987
Contains the package descriptor specification, including types related to packages and files. The 3988
following namespace document describes this namespace and contains a directory of links to related 3989
resources, including the CL1 and Full Schema files: 3990
http://docs.oasis-open.org/sdd/v2.0/sdd-packagedescriptor-2.0.html 3991

 3992
Additional non-normative files referenced by the SDD specification include example SDDs, the SDD 3993
Primer, and the SDD Starter Profile. These documents are provided as supplemental resources for SDD 3994
authors. 3995
Example SDDs showing the use of the schema can be found at the following address: 3996

 http://docs.oasis-open.org/sdd/v2.0/wd01/sdd-examples-v2.0-wd01.zip 3997
The SDD Primer can be found at: 3998

http://docs.oasis-open.org/sdd/v2.0/wd01/sdd-primer-v2.0-wd01.doc 3999
The SDD Starter Profile can be found at: 4000

http://docs.oasis-open.org/sdd/v2.0/wd01/sdd-starter-profile-v2.0-wd01.doc 4001
HTML and PDF versions of the SDD Primer and the SDD Starter Profile are also available in the locations 4002
provided above. 4003
 4004

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 184 of 187

B. Changes from previous versions 4005

The following are the changes between the “Solution Deployment Descriptor v1.0” specification and the 4006
“Solution Deployment Descriptor v2.0” specification. 4007
Items highlighted below in bold are elements that are deprecated starting with the “Solution Deployment 4008
Descriptor v2.0” specification. These elements were also changed in the SDD v2.0 schemas to a new 4009
type in order to remain compatible. However, in order to reduce confusion and to emphasize that these 4010
elements should no longer be used, the referenced sections in the SDD v2.0 specification for these 4011
elements were not updated to reflect the new type; instead, they have been updated to indicate that the 4012
element is deprecated. The text is unchanged from the SDD v1.0 specification. 4013

§ Changed version number from 1.0 to 2.0. 4014
§ Refreshed all images and updated diagram conventions in section [1.11]. 4015
§ Added new Non-Normative Reference to SDD Examples in section [1.13]. 4016
§ Added clarification to Requirements [2.7]. 4017
§ Removed descriptorLanguageBundle attribute from DescriptorInfoGroup [3.2] and 4018

DeploymentDescriptor [4.1]; moved descriptorLanguageBundle attribute to PackageDescriptor [3.1]. 4019
§ Updated version number in schemaVersion attribute in DescriptorInfoGroup [3.2]. 4020
§ Added clarification to ContentType [3.12]. 4021
§ Added clarification to pathname attribute in ContentType [3.12]. 4022
§ Added clarification to the descriptorLanguageBundle enumeration value within the purpose attribute 4023

in ContentType [3.12]. 4024
§ Added clarification to the ResourceType [4.2.2]. 4025
§ Added implementedBy attribute to ResourceType [4.2.2]. 4026
§ Deprecated Name element from ResourceType [4.2.2]. 4027
§ Added clarification to the Property element in ResourceType [4.2.2]. 4028
§ Changed Value element to ElementValueType [4.6.2] in PropertyType [4.2.3]. 4029
§ Changed Value element to ElementValueType [4.6.2] in ResultingPropertyType [4.2.4]. 4030
§ Added clarification/example to targetResourceRef attribute in InstallableUnitType [4.3.1]. 4031
§ Added clarification to OperationType [4.3.7]. 4032
§ Changed name and value attributes to ElementValueType [4.6.2] and renamed to Name and Value in 4033

ArgumentType [4.3.9]. Added clarification to both specific to use of ElementValueType [4.6.2]. 4034
§ Added clarification to Pattern element in SubstitutionType [4.3.13]. 4035
§ Changed Value element to ElementValueType [4.6.2] in SubstitutionType [4.3.13] and added 4036

clarification to Value specific to the use of ElementValueType [4.6.2]. 4037
§ Added clarification to the Constraints [4.4] introduction. 4038
§ Changed Minimum, Maximum, MinimumRecommended, and MaximumRecommended elements to 4039

ElementValueType [4.6.2] in CapacityValueType [4.4.2] and added clarification to all specific to use of 4040
ElementValueType [4.6.2]. 4041

§ Changed ConsumptionConstraintValueType [4.4.4] to extend ElementValueType [4.6.2]. 4042
§ Changed Value element to ElementValueType [4.6.2] in PropertyConstraintType [4.4.5]. 4043
§ Added clarification to the Value element in PropertyConstraintType [4.4.5]. 4044
§ Changed Value element to ElementValueType [4.6.2] in PropertyValueListType [4.4.6]. 4045
§ Added clarification to the Value element in PropertyValueListType [4.4.6]. 4046
§ Added clarification to the VersionConstraintType [4.4.7]. 4047

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 185 of 187

§ Added clarification to the Supported and Certified elements in VersionConstraintType [4.4.7]. 4048
§ Added new AuthorizationConstraintType [4.4.14]. 4049
§ Added clarification and example to ConditionalResouceConstraintType [4.5.3]. 4050
§ Deprecated Name element from ConditionalResourceConstraintType [4.5.3]. 4051
§ Added AuthorizationConstraint element to ConditionalResourceConstraintType [4.5.3]. 4052
§ Added clarification to testValue attribute in ConditionalResourceConstraintType [4.5.3]. 4053
§ Changed ConditionalPropertyConstraintType [4.5.3] to reference ElementValueType [4.6.2] instead of 4054

VariableExpressionType [4.6.1]. 4055
§ Improved description in Variables [4.6] introduction. 4056
§ Added clarification to VariableExpressionType [4.6.1] and moved general variable content to 4057

Variables [4.6] introduction section. 4058
§ Added new ElementValueType [4.6.2]. 4059
§ Added new StringPatternType [4.6.3]. 4060
§ Added ComplexParameter and ArrayParameter elements to ParametersType [4.6.6]. 4061
§ Changed defaultValue attribute to ElementValueType [4.6.2] and renamed to DefaultValue in 4062

BaseParameterType [4.6.6]. Added clarification to DefaultValue specific to ElementValueType [4.6.2]. 4063
§ Added clarification to id and required attributes in BaseParameterType [4.6.6]. 4064
§ Changed LowerBound and UpperBound elements to ElementValueType [4.6.2] in BoundaryType 4065

[4.6.9] and added clarification to both specific to ElementValueType [4.6.2]. 4066
§ Added clarification to BooleanParameterType [4.6.12] specific to ElementValueType [4.6.2]. 4067
§ Added new ComplexParameterType [4.6.13.2]. 4068
§ Added new ArrayParameterType [4.6.15]. 4069
§ Added new IntegerDataType [4.6.16]. 4070
§ Added new StringDataType [4.6.17]. 4071
§ Added clarification to the ResourcePropertyType [4.6.18]. 4072
§ Added clarification to the Requirements [4.7] introduction. 4073
§ Added clarification to the id attribute in RequirementType [4.7.2]. 4074
§ Added AuthorizationConstraint element to ResourceConstraintGroup [4.7.4]. 4075
§ Deprecated Name element from RequirementResourceConstraintType [4.7.5]. 4076
§ Added AuthorizationConstraint element to RequirementResourceConstraintType [4.7.5]. 4077
§ Added clarification to testValue attribute in RequirementResourceConstraintType [4.7.5]. 4078
§ Deprecated Name element from RequiredBaseConstraintType [4.7.8]. 4079
§ Added clarification to testValue attribute in RequiredBaseConstraintType [4.7.9]. 4080
§ Deprecated Name element from ResultingResourceType. [4.8.1] 4081
§ Added clarification to Property element in ResultingResourceType [4.8.1]. 4082
§ Deprecated Name element from ResultingChangeType [4.8.2]. 4083
§ Added clarification to Property element in ResultingChangeType [4.8.2]. 4084
§ Added clarification to ResultingResourceMap element in ReferencedPackageType [4.10.1]. 4085
§ Added clarification to the ResourceMapType [4.10.2]. 4086
§ Deprecated Name element from ResultingResourceMapType [4.10.3]. 4087
§ Added clarifications to ResultingResourceMapType [4.10.3] and to the Version, FixName, and 4088

Property elements in ResultingResourceMapType [4.10.3]. 4089
§ Deprecated Name element from ResultingChangeMapType [4.10.4]. 4090

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 186 of 187

§ Added clarifications to ResultingChangeMapType [4.10.4] and to the Property element in 4091
ResultingChangeMapType [4.10.4]. 4092

§ Changed selections attribute to ElementValueType [4.6.2] and renamed to Selections in 4093
ContentSelectionFeatureType [4.12.9]. Added clarification to Selections specific to 4094
ElementValueType [4.6.2]. 4095

§ Added clarification to translationKey attribute in DisplayTextType [4.14.3]. 4096
§ Incorporated v1.0 Errata into Appendix [A]. 4097
§ Added new Appendix [B] to list summary of changes to the specification from version to version. 4098
 4099

sdd-v2.0-csprd01 Standards Track Work Product 10 November 2010
Copyright © OASIS® 2007, 2010. All Rights Reserved. Page 187 of 187

C. Acknowledgements 4100

The following individuals have participated in the creation of this specification and are gratefully 4101
acknowledged: 4102
Participants: 4103

Dr. Howard Abrams, CA 4104
Mr. Joshua Allen, Macrovision Corporation 4105
Mr. Rich Aquino, Macrovision Corporation 4106
Mr. Lazar Borissov, SAP AG 4107
Ms. Debra Danielson, CA 4108
Mr. Robert DeMason, SAS Institute, Inc. 4109
Mr. Robert Dickau, Macrovision Corporation 4110
Mr. Quenio dos Santos, Macrovision Corporation 4111
Mrs. Christine Draper, IBM 4112
Mr. Adrian Dunston, SAS Institute, Inc. 4113
Mr. James Falkner, Sun Microsystems 4114
Mr. Keisuke Fukui, Fujitsu Limited 4115
Mr. Randy George, IBM 4116
Mr. Nico Groh, SAP AG 4117
Mr. Jeff Hamm, SAS Institute, Inc. 4118
Mr. Frank Heine, SAP AG 4119
Ms. Merri Jensen, SAS Institute, Inc. 4120
Dr. Hiro Kishimoto, Fujitsu Limited 4121
Mr. Thomas Klink, SAP AG 4122
Mr. Jason Losh, SAS Institute, Inc. 4123
Ms. Julia McCarthy, IBM 4124
Mr. Mark McCraw, SAS Institute, Inc. 4125
Mr. Art Middlekauff, Macrovision Corporation 4126
Mr. Brent Miller, IBM 4127
Mr. Ed Overton, SAS Institute, Inc. 4128
Mr. Chris Robsahm, SAP AG 4129
Dr. David Snelling, Fujitsu Limited 4130
Mr. Thomas Studwell, Dell 4131
Dr. Weijia (John) Zhang, Dell 4132
Mr. Kirk Wilson, CA 4133

 4134

