
pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 1 of 75

Production Planning and Scheduling
(PPS) Version 1.0

Committee Specification 01

29 September 2011

Specification URIs
This version:

http://docs.oasis-open.org/pps/pps/v1.0/cs01/pps-v1.0-cs01.pdf (Authoritative)
http://docs.oasis-open.org/pps/pps/v1.0/cs01/pps-v1.0-cs01.html
http://docs.oasis-open.org/pps/pps/v1.0/cs01/pps-v1.0-cs01.doc

Previous version:

N/A

Latest version:
http://docs.oasis-open.org/pps/pps/v1.0/pps-v1.0.pdf (Authoritative)
http://docs.oasis-open.org/pps/pps/v1.0/pps-v1.0.html
http://docs.oasis-open.org/pps/pps/v1.0/pps-v1.0.doc

Technical Committee:

OASIS Production Planning and Scheduling TC

Chair:

Yasuyuki Nishioka (nishioka@hosei.ac.jp), PSLX Forum / Hosei University

Editors:
Yasuyuki Nishioka (nishioka@hosei.ac.jp), PSLX Forum / Hosei University
Koichi Wada (wada@kt.rim.or.jp), PSLX Forum

Additional artifacts:

This prose specification is one component of a Work Product which also includes:

 XML schema: http://docs.oasis-open.org/pps/pps/v1.0/cs01/xsd/pps-schema-1.0.xsd

Related work:

This specification replaces or supersedes:

 PPS (Production Planning and Scheduling) Part 1: Core Elements, Version 1.0

 PPS (Production Planning and Scheduling) Part 2: Transaction Messages, Version 1.0

 PPS (Production Planning and Scheduling) Part 3: Profile Specifications, Version 1.0

Declared XML namespace:
http://docs.oasis-open.org/ns/pps/2011

Abstract:
OASIS Production Planning and Scheduling (PPS) specification deals with problems of decision-
making in all manufacturing companies who want to have a sophisticated information system for
production planning and scheduling. PPS specification provides XML schema and communication
protocols for information exchange among manufacturing application programs in the web-
services environment. The Core Elements section focuses on information model of core elements
which can be used as ontology in the production planning and scheduling domain. Since the
elements have been designed without particular contexts in planning and scheduling, they can be
used in any specific type of messages as a building block depending on the context of application

http://docs.oasis-open.org/pps/pps/v1.0/cs01/pps-v1.0-cs01.pdf
http://docs.oasis-open.org/pps/pps/v1.0/cs01/pps-v1.0-cs01.html
http://docs.oasis-open.org/pps/pps/v1.0/cs01/pps-v1.0-cs01.doc
http://docs.oasis-open.org/pps/pps/v1.0/pps-v1.0.pdf
http://docs.oasis-open.org/pps/pps/v1.0/pps-v1.0.html
http://docs.oasis-open.org/pps/pps/v1.0/pps-v1.0.doc
http://www.oasis-open.org/committees/pps/
mailto:nishioka@hosei.ac.jp
http://www.pslx.org/
http://www.hosei.ac.jp/
mailto:nishioka@hosei.ac.jp
http://www.pslx.org/
http://www.hosei.ac.jp/
mailto:wada@kt.rim.or.jp
http://www.pslx.org/
http://docs.oasis-open.org/pps/pps/v1.0/cs01/xsd/pps-schema-1.0.xsd
http://docs.oasis-open.org/pps/v1.0/pr03/pps-core-elements-1.0.html
http://docs.oasis-open.org/pps/v1.0/pr03/pps-transaction-messages-1.0.html
http://docs.oasis-open.org/pps/v1.0/pr03/pps-profile-specifications-1.0.html
http://docs.oasis-open.org/ns/pps/2011

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 2 of 75

programs. The Transaction Messages section focuses on transaction messages that represent
domain information sent or received by application programs in accordance with the context of
the communication, as well as transaction rules for contexts such as pushing and pulling of the
information required. Finally, the Profile Specifications section focuses on profiles of application
programs that may exchange the messages. Application profile and implementation profile are
defined. Implementation profile shows capability of application programs in terms of services for
message exchange, selecting from all exchange items defined in the application profile. The
profile can be used for definition of a minimum level of implementation of application programs
which are involved in a community of data exchange.

Status:
This document was last revised or approved by the OASIS Production Planning and Scheduling
TC on the above date. The level of approval is also listed above. Check the “Latest version”
location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/pps/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/pps/ipr.php).

Citation format:
When referencing this specification the following citation format should be used:

[PPS]

Production Planning and Scheduling (PPS) Version 1.0. 29 September 2011. OASIS Committee
Specification 01. http://docs.oasis-open.org/pps/pps/v1.0/cs01/pps-v1.0-cs01.html.

http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=pps
http://www.oasis-open.org/committees/pps/
http://www.oasis-open.org/committees/pps/
http://www.oasis-open.org/committees/pps/ipr.php
http://www.oasis-open.org/committees/pps/ipr.php
http://docs.oasis-open.org/pps/pps/v1.0/cs01/pps-v1.0-cs01.html

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 3 of 75

Notices

Copyright © OASIS Open 2011. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The names "OASIS" and “PPS” are trademarks of OASIS, the owner and developer of this specification,
and should be used only to refer to the organization and its official outputs. OASIS welcomes reference
to, and implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/intellectualproperty.php
http://www.oasis-open.org/
http://www.oasis-open.org/who/trademark.php

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 4 of 75

Table of Contents

1 Introduction ... 6

1.1 Terminology .. 6

1.2 Normative References .. 7

1.3 Non-Normative References .. 7

1.4 Terms and definitions ... 7

2 Core Elements .. 9

2.1 Primitive Elements .. 9

2.1.1 Structure of primitive elements .. 9

2.1.2 List of primitive elements ... 10

2.2 Relational Elements .. 12

2.2.1 Structure of relational elements... 12

2.2.2 List of relational elements .. 14

2.3 Specific Elements ... 15

2.3.1 Structure of specific element ... 15

2.3.2 List of specific elements .. 16

2.4 Eventual Elements .. 17

2.4.1 Structure of eventual element ... 17

2.4.2 List of eventual elements ... 18

2.5 Accounting Elements .. 18

2.5.1 Structure of Accounting element ... 18

2.5.2 List of accounting elements ... 19

2.6 Administrative Elements ... 20

2.6.1 Structure of Administrative Elements .. 20

2.6.2 List of Administrative Elements ... 20

2.7 Data Elements .. 21

2.7.1 Qty element ... 21

2.7.2 Char element ... 22

2.7.3 Time element ... 22

3 Transaction Messages ... 24

3.1 Messaging model .. 24

3.1.1 Basic Unit of messaging .. 24

3.1.2 Message classes ... 24

3.1.3 Messaging models .. 25

3.1.4 Procedures on responders .. 27

3.2 Add, Change and Remove (PUSH model) ... 28

3.2.1 Add transaction ... 28

3.2.2 Change transaction ... 29

3.2.3 Remove transaction .. 31

3.3 Notify and Sync (NOTIFY and SYNC model) ... 32

3.3.1 Notify transaction ... 32

3.3.2 Synchronizing process .. 33

3.4 Information Query (PULL model) .. 35

3.4.1 Target domain objects ... 35

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 5 of 75

3.4.2 Target domain property ... 37

3.4.3 Multiple property (Level 2 function) ... 39

3.4.4 Using Header element ... 41

3.4.5 Show document ... 42

3.5 XML Elements .. 43

3.5.1 Message Structure .. 43

3.5.2 Transaction element .. 44

3.5.3 Document element .. 45

3.5.4 Error element ... 47

3.5.5 App element .. 48

3.5.6 Condition element ... 48

3.5.7 Selection element .. 49

3.5.8 Header element ... 50

3.5.9 Property element ... 50

4 Profile Specifications .. 53

4.1 Application profile Definitions ... 53

4.1.1 General .. 53

4.1.2 Structure of profile definitions .. 53

4.1.3 Standard profile definitions .. 54

4.1.4 Extended profile definitions ... 55

4.1.5 Revision rule .. 56

4.2 Implementation profiles ... 56

4.2.1 General .. 56

4.2.2 Structure of implementation profiles .. 57

4.2.3 Level of implementation .. 59

4.2.4 Profile inquiry ... 59

4.3 XML Elements .. 60

4.3.1 AppProfile Element .. 60

4.3.2 AppDocument Element ... 60

4.3.3 AppObject Element ... 61

4.3.4 AppProperty Element .. 62

4.3.5 Enumeration Element .. 62

4.3.6 EnumElement Element .. 63

4.3.7 ImplementProfile Element ... 63

4.3.8 ImplementDocument Element ... 65

4.3.9 ImplementAction Element ... 66

4.3.10 ImplementProperty Element .. 66

4.3.11 ImplementEvent Element .. 67

5 Conformance .. 69

Appendix A. Object Class diagram of Core Elements ... 70

Appendix B. Cross reference of elements ... 71

Appendix C. Implementation level ... 73

Appendix D. Revision History .. 74

Appendix E. Acknowledgements ... 75

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 6 of 75

1 Introduction 1

This specification focuses on production planning and scheduling for all kinds of products and services 2
provided by manufacturing enterprises. Production scheduling applications dealt in this specification can 3
be divided into scheduling in the whole enterprise including some areas and sites, and detailed 4
scheduling within an individual area and work-centers. 5

The scope of this specification, however, doesn’t include optimization logic for solution, special 6
knowledge of individual enterprises, concrete solution methods for production planning and scheduling, 7
and planning problems for the total supply chain. 8

Section 2 of this specification prescribes how to describe contents of the XML messages which are used 9
for exchanging the information on Production Planning and Scheduling by some application software 10
programs. 11

If information defined with PPS is exchanged between production planning and scheduling applications, 12
the enterprise can develop systems easily at a low cost and make them more competitive for the whole 13
enterprise. In order to do this, the systems have to have high extendability as well. 14

Section 3 of this specification provides structure and rules of XML transaction elements for messaging 15
between two application programs. Main parts of XML representations of the messages consist of XML 16
core elements defined in Section 2. Those specifications define additional XML elements and attributes 17
that are needed to establish such communications. 18

From perspective of planning and scheduling in manufacturing management, there are many kinds of 19
domain documents and domain objects. All of that information are sent or received in particular context 20
such as notifying new information, requesting particular information, and so forth. Section 3 prescribes 21
communication protocols by categorizing such various transactions into simple models. The specification 22
doesn’t focus on the underlying communication protocols, such as HTTP, SMTP and FTP. 23

A transaction element has message documents which are sent or received as a message. This part does 24
not define type of document, but defines a data structure of message elements, transaction elements and 25
document element that may be created for any particular circumstances. Each document element has 26
domain objects in the production planning and scheduling domain. The domain objects can be 27
represented by nine primitive elements defined in Section 2. 28

This specification also defines messaging models of communication between two application programs, 29
where transaction elements are sent as a message. In the messaging model, an initiator can request a 30
service such as add, change and remove information to the responder. The initiator is also able to 31
request of getting information by sending a query-like-formatted message. This specification defines 32
syntax and rules for such messaging models. 33

Section 4 of this specification prescribes definition of application profile and implementation profile. 34
Implementation profile shows capability of information exchange with other application programs using 35
PPS transaction messages. In order to define an implementation profile for each application program, this 36
document also defines and prescribes application profile specification that should be consistent with all 37
implementation profiles. An application profile allows each individual program to describe their capability. 38

Application profile shows a set of domain documents, domain objects and domain properties, which may 39
be used in a message of production planning and scheduling application programs. Implementation 40
profile shows domain documents, domain objects and domain properties that the application program can 41
deal with correctly. The implementation profile also shows an implementation level of the application 42
program. By collecting implementation profiles, a system integrator can arrange particular messaging in 43
accordance with application specific scenarios. 44

1.1 Terminology 45

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 46
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 47
in [RFC2119]. 48

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 7 of 75

1.2 Normative References 49

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 50
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 51

[PCRE] PCRE(Perl Compatible Regular Expression), http://www.pcre.org/ 52

[PATH] XML Path Language (XPath) Version 1.0, http://www.w3.org/TR/xpath 53

1.3 Non-Normative References 54

[PSLXWP] PSLX Consortium, PSLX White Paper - APS Conceptual definition and 55
implementation, http://www.pslx.org/ 56

[PSLX001] PSLX Technical Standard, Version 2, Part 1: Enterprise Model (in Japanese), 57
Recommendation of PSLX Forum, http://www.pslx.org/ 58

[PSLX002] PSLX Technical Standard, Version 2, Part 2: Activity Model (in Japanese), 59
Recommendation of PSLX Forum, http://www.pslx.org/ 60

[PSLX003] PSLX Technical Standard, Version 2, Part 3: Object Model (in Japanese), 61
Recommendation of PSLX Forum, http://www.pslx.org/ 62

1.4 Terms and definitions 63

Plan 64

Unit for intensive information of related orders corresponding to a specific period on a discrete 65
time scale, or calculated information based on the schedule under the related orders. This can 66
represent actual results when the related events have been occurred. 67

Order 68

Unit of requirement describing concrete item, resource or operation in a specific place at a 69
specific time. This can also represent the results to the requirement. 70

Party 71

Customer who is a sender of an order and has a demand to make a decision, or supplier who is a 72
receiver in case that a decision-maker sends the demand that can’t be handled inside. 73

Item 74

Object to be produced or consumed by production activities. The quantity or the quality of item is 75
changed during the production activity. Examples include product, parts, module, unit, work in 76
process and materials. 77

Resource 78

Object that can provide essential function for production activities. The capacity of function is 79
used during production activity, and is available again after finishing the production. Examples 80
include equipment, machine, device, labor and tool. 81

Process 82

Segment of production activities indicating a certain production line or method. This takes 83
duration from start time to end time, and gives added value to the producing item. One process 84
may have two or more than two processes detailed in the lower levels. 85

Lot 86

Instance of a specific volume of item that exists in a specific place at a specific time. Generally 87
the specific time corresponds to start or end of an operation, and the specific volume is equal to 88
the quantity of item produced or consumed by the operation. 89

Task 90

Unit of necessity to execute a specific operation at a specific time, indicating the volume of used 91
capability provided by the applicable resource. This can represent both capacity value provided 92

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/xpath
http://www.pslx.org/
http://www.pslx.org/
http://www.pslx.org/
http://www.pslx.org/

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 8 of 75

by resource at a specific time point, and aggregated total value of capacity provided by resource 93
during specific duration. 94

Operation 95

Actual processing element to be executed by a specific task, and to produce or consume a 96
specific lot. It is a concrete instance of particular processes in production activities. 97

Application profile 98

Collections of profile specifications for all application programs that may be involved in the 99
communication group who exchanges PPS messages. This information is defined by platform 100
designer to provide all available domain documents, domain objects and domain properties. 101

Domain document 102

Document that is a content of message sent or received between application programs, and is 103
processed by a transaction. Domain document consists of a verb part and a noun part. Verbs 104
such as add, change and remove affect the types of messages, while nouns represented by 105
domain objects show the classes of domain objects. Specific classes of domain documents can 106
be defined by platform designer to share the domain information. 107

Domain object 108

Object necessary for representing production planning and scheduling information in 109
manufacturing operations management. Domain objects are contents of a domain document, and 110
represented by primitive elements. Specific classes of domain objects can be defined by platform 111
designer to share the domain information. 112

Domain property 113

Any parameters that show a property of a domain object. A domain property is represented by 114
XML attributes of the primitive element, or XML child elements of the primitive elements. A 115
domain object may have multiple domain properties that has same property name. Specific 116
properties of domain objects can be defined by platform designer to share the domain 117
information, and additionally defined by each application designer. 118

Implementation profile 119

Specification of capability of an application program in terms of exchanging PPS messages. The 120
profile includes a list of available documents and their properties that may be exchanged in PPS 121
messages among production planning and scheduling applications. 122

Messaging model 123

Simple patterns of messaging between sender and receiver, or requester and responder. Four 124
message models: NOTIFY, PUSH, PULL, SYNC are defined from an application independent 125
perspective. 126

Primitive element 127

XML element that represents a primitive object in the production planning and scheduling domain. 128
Nine primitive elements are defined in this specification. Every domain objects are represented by 129
the primitive elements. 130

Transaction element 131

XML element that represents a transaction to process message documents which is sent or 132
received between application programs. Transaction element can control a transaction process of 133
application program database by commitment and rollback. Transaction element may request 134
confirmation from receiver if the message has been received properly. 135

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 9 of 75

2 Core Elements 136

2.1 Primitive Elements 137

2.1.1 Structure of primitive elements 138

Primitive elements are the minimum series of element that corresponds to the most basic domain objects. 139
The type of this element MUST be represented with the following XML schema. 140

 141

 <xsd:complexType name="PrimitiveType"> 142
 <xsd:sequence> 143
 <xsd:element ref="Compose" minOccurs="0" maxOccurs="unbounded"/> 144
 <xsd:element ref="Produce" minOccurs="0" maxOccurs="unbounded"/> 145
 <xsd:element ref="Consume" minOccurs="0" maxOccurs="unbounded"/> 146
 <xsd:element ref="Assign" minOccurs="0" maxOccurs="unbounded"/> 147
 <xsd:element ref="Relation" minOccurs="0" maxOccurs="unbounded"/> 148
 <xsd:element ref="Location" minOccurs="0" maxOccurs="unbounded"/> 149
 <xsd:element ref="Capacity" minOccurs="0" maxOccurs="unbounded"/> 150
 <xsd:element ref="Progress" minOccurs="0" maxOccurs="unbounded"/> 151
 <xsd:element ref="Spec" minOccurs="0" maxOccurs="unbounded"/> 152
 <xsd:element ref="Start" minOccurs="0" maxOccurs="unbounded"/> 153
 <xsd:element ref="End" minOccurs="0" maxOccurs="unbounded"/> 154
 <xsd:element ref="Event" minOccurs="0" maxOccurs="unbounded"/> 155
 <xsd:element ref="Price" minOccurs="0" maxOccurs="unbounded"/> 156
 <xsd:element ref="Cost" minOccurs="0" maxOccurs="unbounded"/> 157
 <xsd:element ref="Priority" minOccurs="0" maxOccurs="unbounded"/> 158
 <xsd:element ref="Display" minOccurs="0" maxOccurs="unbounded"/> 159
 <xsd:element ref="Description" minOccurs="0" maxOccurs="unbounded"/> 160
 <xsd:element ref="Author" minOccurs="0" maxOccurs="unbounded"/> 161
 <xsd:element ref="Date" minOccurs="0" maxOccurs="unbounded"/> 162
 </xsd:sequence> 163
 <xsd:attribute name="id" type="xsd:string" use="required"/> 164
 <xsd:attribute name="key" type="xsd:long"/> 165
 <xsd:attribute name="name" type="xsd:string"/> 166
 <xsd:attribute name="parent" type="xsd:string"/> 167
 <xsd:attribute name="type" type="xsd:string"/> 168
 <xsd:attribute name="status" type="xsd:string"/> 169
 <xsd:attribute name="party" type="xsd:string"/> 170
 <xsd:attribute name="plan" type="xsd:string"/> 171
 <xsd:attribute name="order" type="xsd:string"/> 172
 <xsd:attribute name="item" type="xsd:string"/> 173
 <xsd:attribute name="resource" type="xsd:string"/> 174
 <xsd:attribute name="process" type="xsd:string"/> 175
 <xsd:attribute name="lot" type="xsd:string"/> 176
 <xsd:attribute name="task" type="xsd:string"/> 177
 <xsd:attribute name="operation" type="xsd:string"/> 178
 </xsd:complexType> 179

 180

 id attribute SHOULD represent an identifier of the domain object. 181

 key attribute represents a key used in the local applications. 182

 name attribute represents the name of the domain object. 183

 parent attribute represents the identifier of the inherited object of the domain object. 184

 type attribute represents the modifier of the domain object. 185

 status attribute represents the status of the domain object. 186

 party attribute represents an identifier of the party associated with the domain object. 187

 plan attribute represents the identifier of the plan associated with the domain object. 188

 order attribute represents the identifier of the order associated with the domain object. 189

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 10 of 75

 item attribute represents the identifier of the item associated with the domain object. 190

 resource attribute represents the identifier of the resource associated with the domain object. 191

 process attribute represents the identifier of the process associated with the domain object. 192

 lot attribute represents the identifier of the lot associated with the domain object. 193

 task attribute represents the identifier of the task associated with the domain object. 194

 operation attribute represents the identifier of the operation associated with the domain object. 195

 196

 Compose element represents the element corresponding to part of the domain object. 197

 Produce element represents the relation that the domain object produces. 198

 Consume element represents the relation that the domain object consumes. 199

 Assign element represents the relation that the domain object uses. 200

 Relation element represents the relation to other primitive elements. 201

 Location element represents the location where the domain object exists. 202

 Capacity element represents the capacity status of the domain object. 203

 Progress element represents the progress of the domain object. 204

 Spec element represents the specification of the domain object. 205

 Start element represents the start event of the domain object. 206

 End element represents the completion event of the domain object. 207

 Event element represents the optional event under the domain object. 208

 Price element represents the price of the domain object. 209

 Cost element represents the cost of the domain object. 210

 Priority element represents the priority of the domain object. 211

 Display element represents how to display the domain object. 212

 Description element represents the description of the domain object. 213

 Author element represents the author of the domain object information. 214

 Date element represents the date of the domain object information. 215

2.1.2 List of primitive elements 216

This specification defines nine primitive elements: Party, Plan, Order, Item, Resource, Process, Lot, Task, 217
and Operation. The type of those elements MUST be represented with the following XML schema. 218

 219

 <xsd:element name="Party" type="PrimitiveType"/> 220
 <xsd:element name="Plan" type="PrimitiveType"/> 221
 <xsd:element name="Order" type="PrimitiveType"/> 222
 <xsd:element name="Item" type="PrimitiveType"/> 223
 <xsd:element name="Resource" type="PrimitiveType"/> 224
 <xsd:element name="Process" type="PrimitiveType"/> 225
 <xsd:element name="Lot" type="PrimitiveType"/> 226
 <xsd:element name="Task" type="PrimitiveType"/> 227
 <xsd:element name="Operation" type="PrimitiveType"/> 228

 229

2.1.2.1 Party element 230

Party element represents a customer or a supplier. Customer is an object that requests some products or 231
services to the enterprise. The requests are sent to a person who is in charge of production planning and 232

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 11 of 75

scheduling. Supplier is an object providing some products or services to the enterprise. Supplier receives 233
orders from the enterprise, and provides corresponding items, resources or processes for the enterprise. 234

2.1.2.2 Plan element 235

Plan element represents a value planned for particular products or services. The value shows volume of 236
the products or services required or resulted during certain period of time. Typical cases of planning 237
period include day, week and month. 238

2.1.2.3 Order element 239

Order element represents an object of information produced to request some products or services. Order 240
is source to create production orders that are finally dispatched to the plant floor. Orders can be divided 241
into inventory order, capacity order and production order according to the type of request. 242

 243

Example: Item “A” products are requested. 244

<Order id=”Z01” item=”A”> 245
 <Spec type=”quantity”><Qty value=”10”/></Spec> 246
</Order> 247

Example: Three labors in ”group B” are requested. 248

<Order id=”Z02” resource=”groupB”> 249
 <Spec type=”quantity”><Qty value=”3”/></Spec> 250
</Order> 251

Example: Switching operation is requested two times. 252

<Order id=”Z03” process=”change01”> 253
 <Spec type=”quantity”><Qty value=”2”/></Spec> 254
</Order> 255

Example: Order which consist of 10 of “A” and 5 of “B” is totally 3,000 yen. 256

<Order id=”Z00”> 257
 <Compose order=”Z01”/> 258
 <Compose order=”Z02”/> 259
 <Price value=”3000” unit=”yen”/> 260
</Order> 261
<Order id=”Z01” item=”A”> 262
 <Spec type=”quantity”><Qty value=”10”/></Spec> 263
</Order> 264
<Order id=”Z02” item=”B”> 265
 <Spec type=”quantity”><Qty value=”5”/></Spec> 266
</Order> 267

 268

2.1.2.4 Item element 269

Item element represents a product, component, parts, work in process (WIP), raw material and other 270
items. Item is produced by any processes, and after that, it is consumed by another processes. 271

2.1.2.5 Resource element 272

Resource element represents a resource, which is an object enabling production, transportation, storage, 273
inspection and other various services. As resource can produce tasks to execute operations, it is 274
assigned to an operation by considering its volume of capacity. 275

2.1.2.6 Process element 276

Process element represents a process that has a function to produce value. Process can be defined as a 277
segment of activities in production process. It produces and consumes production items by being 278
executed during certain period of time. 279

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 12 of 75

2.1.2.7 Lot element 280

Lot element represents a production lot. Production lot is an object corresponding to a concrete item that 281
actually exists in a specific place at a specific date and time. Lot is produced by an operation and finally 282
consumed by another operation or discarded. 283

2.1.2.8 Task element 284

Task element represents a task, which is an object showing the usage of a specific resource capability for 285
a specific period of time. Schedule may request a certain volume of task for each resource assigned to 286
execute the appropriate operations. 287

 288

Example: Task corresponding to the volume that 3 labors work load is required for 2 days 289

<Task id=”T01”> 290
 <Capacity type=”human”><Qty value=”3”/></Capacity> 291
 <Capacity type=”duration”><Qty value=”2” unit=”day” /></Capacity> 292
</Task> 293

 294

2.1.2.9 Operation element 295

Operation element represents a segment of activities that is actually dispatched to plant floor. Operation 296
identifies an executable function at a specific place on a plant floor for a specific time. Operation is 297
associated with a specific lot and task by executing those activities. 298

2.2 Relational Elements 299

2.2.1 Structure of relational elements 300

Relational elements represent any relations between domain objects. A relational element can have 301

properties. The type of this element MUST be represented with the following XML schema. 302

 303

 <xsd:complexType name="RelationalType"> 304
 <xsd:sequence> 305
 <xsd:element ref="Location" minOccurs="0" maxOccurs="unbounded"/> 306
 <xsd:element ref="Capacity" minOccurs="0" maxOccurs="unbounded"/> 307
 <xsd:element ref="Progress" minOccurs="0" maxOccurs="unbounded"/> 308
 <xsd:element ref="Spec" minOccurs="0" maxOccurs="unbounded"/> 309
 <xsd:element ref="Start" minOccurs="0" maxOccurs="unbounded"/> 310
 <xsd:element ref="End" minOccurs="0" maxOccurs="unbounded"/> 311
 <xsd:element ref="Event" minOccurs="0" maxOccurs="unbounded"/> 312
 <xsd:element ref="Price" minOccurs="0" maxOccurs="unbounded"/> 313
 <xsd:element ref="Cost" minOccurs="0" maxOccurs="unbounded"/> 314
 <xsd:element ref="Priority" minOccurs="0" maxOccurs="unbounded"/> 315
 <xsd:element ref="Display" minOccurs="0" maxOccurs="unbounded"/> 316
 <xsd:element ref="Description" minOccurs="0" maxOccurs="unbounded"/> 317
 <xsd:element ref="Author" minOccurs="0" maxOccurs="unbounded"/> 318
 <xsd:element ref="Date" minOccurs="0" maxOccurs="unbounded"/> 319
 <xsd:element ref="Qty" minOccurs="0" maxOccurs="unbounded"/> 320
 <xsd:element ref="Char" minOccurs="0" maxOccurs="unbounded"/> 321
 <xsd:element ref="Time" minOccurs="0" maxOccurs="unbounded"/> 322
 </xsd:sequence> 323
 <xsd:attribute name="id" type="xsd:string"/> 324
 <xsd:attribute name="key" type="xsd:long"/> 325
 <xsd:attribute name="name" type="xsd:string"/> 326
 <xsd:attribute name="type" type="xsd:string"/> 327
 <xsd:attribute name="status" type="xsd:string"/> 328
 <xsd:attribute name="apply" type="xsd:string"/> 329
 <xsd:attribute name="party" type="xsd:string"/> 330
 <xsd:attribute name="plan" type="xsd:string"/> 331
 <xsd:attribute name="order" type="xsd:string"/> 332
 <xsd:attribute name="item" type="xsd:string"/> 333

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 13 of 75

 <xsd:attribute name="resource" type="xsd:string"/> 334
 <xsd:attribute name="process" type="xsd:string"/> 335
 <xsd:attribute name="lot" type="xsd:string"/> 336
 <xsd:attribute name="task" type="xsd:string"/> 337
 <xsd:attribute name="operation" type="xsd:string"/> 338
 </xsd:complexType> 339

 340

 id attribute SHOULD represent an identifier of the relation. 341

 key attribute represents a key used in the local applications. 342

 name attribute represents the name of the relation. 343

 type attribute represents the modifier of the relation. 344

 status attribute represents the status of the relation. 345

 apply attribute represents application type of the relation. This element is a disjunctive (OR) content 346
under the parent object, if the attribute value is "disjunctive ". 347

 party attribute represents an identifier of the party associated with the relation. 348

 plan attribute represents the identifier of the plan associated with the relation. 349

 order attribute represents the identifier of the order associated with the relation. 350

 item attribute represents the identifier of the item associated with the relation. 351

 resource attribute represents the identifier of the resource associated with the relation. 352

 process attribute represents the identifier of the process associated with the relation. 353

 lot attribute represents the identifier of the lot associated with the relation. 354

 task attribute represents the identifier of the task associated with the relation. 355

 operation attribute represents the identifier of the operation associated with the relation. 356

 357

 Location element represents the location associated with the relation. 358

 Capacity element represents the capacity status of the relation. 359

 Progress element represents the progress of the relation. 360

 Spec element represents the specification of the relation. 361

 Start element represents the start event of the relation. 362

 End element represents the completion event of the relation. 363

 Event element represents the optional event under the relation. 364

 Price element represents the price of the relation. 365

 Cost element represents the cost of the relation. 366

 Priority element represents the priority of the relation. 367

 Display element represents how to display the relation. 368

 Description element represents the description of the relation. 369

 Author element represents the author of the relation information. 370

 Date element represents the date of the relation information. 371

 Qty element represents the quantity of the relation. 372

 Char element represents the qualitative value of the relation. 373

 Time element represents the time of the relation. 374

 375

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 14 of 75

2.2.2 List of relational elements 376

This part of specifications defines five relational elements: Compose, Produce, Consume, Assign, and 377
Relation. Relational element defines relationship between the parent element and those that characterize 378

the element. The type of this element MUST be represented with the following XML schema. 379

 380

 <xsd:element name="Compose" type="RelationalType"/> 381
 <xsd:element name="Produce" type="RelationalType"/> 382
 <xsd:element name="Consume" type="RelationalType"/> 383
 <xsd:element name="Assign" type="RelationalType"/> 384
 <xsd:element name="Relation" type="RelationalType"/> 385

 386

2.2.2.1 Compose element 387

Compose element defines a hierarchical relation between the parent element and another same primitive 388
element that addresses one level upper or lower than the target element. This element can represent that 389
the object referred to in this element composes or be composed by the parent element. 390

 391

Example: Product “A” family includes product “A1” and product “A2”. 392

<Item id=”A”> 393
 <Compose type=”child” item=”A1”/> 394
 <Compose type=”child” item=”A2”/> 395
</Item> 396

Example: Product “B” is assembled with 2 of parts “C1” and 3 of parts “C2”. 397

<Item id=”B”> 398
 <Compose type=”child” item=”C1”><Qty value=”2”/></Compose> 399
 <Compose type=”child” item=”C2”><Qty value=”3”/></Compose> 400
</Item> 401

Example: 2 of parts “C1” are used for product “B1”, and 5 of parts “C1” are used for product “B2”. 402

<Item id=”C1”> 403
 <Compose type=”parent” item=”B1”><Qty value=”2”/></Compose> 404
 <Compose type=”parent” item=”B2”><Qty value=”5”/></Compose> 405
</Item> 406

 407

2.2.2.2 Produce element 408

Produce element defines a relation between processes and items, or a relation between operations and 409
lots. This element can show the quantity of the item or lot produced by the process or operation 410
respectively, or how many items or lots are produced by the process or the operation respectively. 411

2.2.2.3 Consume element 412

Consume element defines a relation between processes and items, or a relation between operations and 413
lots. This element can show the quantity of the item or lot consumed by the process or operation 414
respectively, or how many items or lots are consumed by the process or operation respectively. 415

2.2.2.4 Assign element 416

Assign element defines a relation between processes and resources, or a relation between operations 417
and tasks. This element can show the volume of capacity provided by the resource or task assigned for 418
the process or operation respectively, or how many resources or tasks are used. 419

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 15 of 75

2.2.2.5 Relation element 420

Relation element can show that the parent element has a specific relation to other primitive elements. 421
This element can additionally define relational classes between primitive elements. Examples include 422
precedence relations and pegging relations. 423

2.3 Specific Elements 424

2.3.1 Structure of specific element 425

Specific elements are defined to represent any properties of the primitive element. This element MAY be 426
described more than once on the same parent element if the value is historical. Those multiple properties 427
have time stamp. The type of this element MUST be represented with the following XML schema. 428

 429

 <xsd:complexType name="SpecificType"> 430
 <xsd:sequence> 431
 <xsd:element ref="Start" minOccurs="0" maxOccurs="unbounded"/> 432
 <xsd:element ref="End" minOccurs="0" maxOccurs="unbounded"/> 433
 <xsd:element ref="Event" minOccurs="0" maxOccurs="unbounded"/> 434
 <xsd:element ref="Price" minOccurs="0" maxOccurs="unbounded"/> 435
 <xsd:element ref="Cost" minOccurs="0" maxOccurs="unbounded"/> 436
 <xsd:element ref="Priority" minOccurs="0" maxOccurs="unbounded"/> 437
 <xsd:element ref="Display" minOccurs="0" maxOccurs="unbounded"/> 438
 <xsd:element ref="Description" minOccurs="0" maxOccurs="unbounded"/> 439
 <xsd:element ref="Author" minOccurs="0" maxOccurs="unbounded"/> 440
 <xsd:element ref="Date" minOccurs="0" maxOccurs="unbounded"/> 441
 <xsd:element ref="Qty" minOccurs="0" maxOccurs="unbounded"/> 442
 <xsd:element ref="Char" minOccurs="0" maxOccurs="unbounded"/> 443
 <xsd:element ref="Time" minOccurs="0" maxOccurs="unbounded"/> 444
 </xsd:sequence> 445
 <xsd:attribute name="id" type="xsd:string"/> 446
 <xsd:attribute name="key" type="xsd:long"/> 447
 <xsd:attribute name="name" type="xsd:string"/> 448
 <xsd:attribute name="type" type="xsd:string"/> 449
 <xsd:attribute name="status" type="xsd:string"/> 450
 <xsd:attribute name="apply" type="xsd:string"/> 451
 </xsd:complexType> 452

 453

 id attribute SHOULD represent an identifier of the property. 454

 key attribute represents a key used in the local applications. 455

 name attribute represents the name of the property. 456

 type attribute represents the modifier of the property. 457

 status attribute represents the status of the property. 458

 apply attribute represents application type of the property. The value of the element is relative, if the 459
value is “relative “. 460

 461

 Start element represents the start event of the property. 462

 End element represents the completion event of the property. 463

 Event element represents the optional event under the property. 464

 Price element represents the price of the property. 465

 Cost element represents the cost of the property. 466

 Priority element represents the priority of the property. 467

 Display element represents how to display the property. 468

 Description element represents the description of the property. 469

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 16 of 75

 Author element represents the author of the property information. 470

 Date element represents the date of the property information. 471

 Qty element represents the quantity of the property. 472

 Char element represents the qualitative value of the property. 473

 Time element represents the time of the property. 474

 475

2.3.2 List of specific elements 476

For specific elements, this part of specifications has four elements: Location, Capacity, Progress, and 477
Spec. The type of this element MUST be represented with the following XML schema. 478

 479

 <xsd:element name="Location" type="SpecificType"/> 480
 <xsd:element name="Capacity" type="SpecificType"/> 481
 <xsd:element name="Progress" type="SpecificType"/> 482
 <xsd:element name="Spec" type="SpecificType"/> 483

 484

2.3.2.1 Location element 485

Location element represents a location. When the expression of location has structure, multiple values 486
can be set by describing different names of the data. Change of the location depending on time can also 487
be represented by multiple values. 488

 489

Example: Customer’s address 490

<Party id=”ABC Inc.”> 491
 <Location type=”address”><Char value=”123 ABC street”/></Location> 492
 <Location type=”city”><Char value=”Cambridge”/></Location> 493
 <Location type=”state”><Char value=”MA”/></Location> 494
 <Location type=”code”><Char value=”02139”/></Location> 495
 <Location type=”country”><Char value=”USA”/></Location> 496
</Party> 497

 498

2.3.2.2 Capacity element 499

Capacity element represents volume of capability provided by resources, items or processes. In the case 500
of resource capability, it may show available amount of corresponding tasks. In the case of Items, it 501
shows the available amount of Lots. And for Processes, it shows maximum ratio of production. All of this 502
information is represented in a time horizon. 503

 504

Example: Inventory level of “material01” 505

<Item id=”material01”> 506
 <Capacity><Qty value=”150”/></Capacity> 507
</Item> 508

Example: Temporal change of the material 509

<Item id=”material01”> 510
 <Capacity><Qty value=”150”><Time value=”2005-04-10T00:00:00/></Capacity> 511
 <Capacity><Qty value=”200”><Time value=”2005-04-17T00:00:00/></Capacity> 512
</Item> 513

Example: Material location information: Stock of “material01” is 150 located at “storage01” 514

<Item id=”material01”> 515

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 17 of 75

 <Location value=”storage01”/> 516
 <Capacity><Qty value=”150”/></Capacity> 517
</Item> 518

 519

2.3.2.3 Progress element 520

Progress element represents progress of order and operation, or status of lot and task. This element 521
shows the latest data, status or progress at a specific time point. This element MAY represent a change 522
of time-dependent values. 523

2.3.2.4 Spec element 524

Spec element represents various specifications for primitive elements. The content can be represented 525
with a pair of a spec name and a value. This element can also represent time-dependent change of the 526
value. The value of the specification is represented with one data type of a numerical value, characters 527
and date time. 528

2.4 Eventual Elements 529

2.4.1 Structure of eventual element 530

Eventual elements represent any properties that occur at one time point. Any type of events can be 531
specified by using this element. The type of this element MUST be represented with the following XML 532
schema. 533

 534

 <xsd:complexType name="EventualType"> 535
 <xsd:sequence> 536
 <xsd:element ref="Priority" minOccurs="0" maxOccurs="unbounded"/> 537
 <xsd:element ref="Display" minOccurs="0" maxOccurs="unbounded"/> 538
 <xsd:element ref="Description" minOccurs="0" maxOccurs="unbounded"/> 539
 <xsd:element ref="Author" minOccurs="0" maxOccurs="unbounded"/> 540
 <xsd:element ref="Date" minOccurs="0" maxOccurs="unbounded"/> 541
 <xsd:element ref="Qty" minOccurs="0" maxOccurs="unbounded"/> 542
 <xsd:element ref="Char" minOccurs="0" maxOccurs="unbounded"/> 543
 <xsd:element ref="Time" minOccurs="0" maxOccurs="unbounded"/> 544
 </xsd:sequence> 545
 <xsd:attribute name="id" type="xsd:string"/> 546
 <xsd:attribute name="key" type="xsd:long"/> 547
 <xsd:attribute name="name" type="xsd:string"/> 548
 <xsd:attribute name="type" type="xsd:string"/> 549
 <xsd:attribute name="status" type="xsd:string"/> 550
 <xsd:attribute name="apply" type="xsd:string"/> 551
 <xsd:attribute name="condition" type="xsd:string"/> 552
 <xsd:attribute name="value" type="xsd:string"/> 553
 </xsd:complexType> 554

 555

 id attribute SHOULD represent an identifier of the property. 556

 key attribute represents a key used in the local applications. 557

 name attribute represents the name of the property. 558

 type attribute represents the modifier of the property. 559

 status attribute represents the status of the property. 560

 apply attribute represents application type of the property. The value of this element is exclusive, if 561
the value is “exclusive”. 562

 condition attribute represents the condition of the property. 563

 value attribute represents the qualitative value of the property. 564

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 18 of 75

 565

 Priority element represents the priority of the property. 566

 Display element represents how to display the property. 567

 Description element represents the description of the property. 568

 Author element represents the author of the property information. 569

 Date element represents the date of the property information. 570

 Qty element represents the quantity of the property. 571

 Char element represents the qualitative value of the property. 572

 Time element represents the time of the property. 573

 574

2.4.2 List of eventual elements 575

This part of specifications defines three eventual elements: Start, End, and Event. The Start and End are 576
special cases of Event element. The type of this element MUST be represented with the following XML 577
schema. 578

 579

 <xsd:element name="Start" type="EventualType"/> 580
 <xsd:element name="End" type="EventualType"/> 581
 <xsd:element name="Event" type="EventualType"/> 582

 583

2.4.2.1 Start element 584

Start element represents a start event of orders, processes or operations. In case of order, this element 585

represents an event at the earliest start time of corresponding operations. 586

2.4.2.2 End element 587

End element represents an end event of orders, processes or operations. In case of order, this element 588

represents an event at the latest end time of corresponding operations. 589

2.4.2.3 Event element 590

Event element represents an event associated with a customer, supplier, item, resource, process or 591
operation. Event brings any action or any status change at a specific time point. In general, the status 592
value of item or resource changes discontinuously before the event. 593

 594

2.5 Accounting Elements 595

2.5.1 Structure of Accounting element 596

Accounting element represents any accounting information such as profit revenue and cost spending. 597
Price and cost associated with goods and services are the target of the elements. The type of this 598
element MUST be represented with the following XML schema. 599

 600

 <xsd:complexType name="AccountingType"> 601
 <xsd:sequence> 602
 <xsd:element ref="Priority" minOccurs="0" maxOccurs="unbounded"/> 603
 <xsd:element ref="Display" minOccurs="0" maxOccurs="unbounded"/> 604
 <xsd:element ref="Description" minOccurs="0" maxOccurs="unbounded"/> 605
 <xsd:element ref="Author" minOccurs="0" maxOccurs="unbounded"/> 606

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 19 of 75

 <xsd:element ref="Date" minOccurs="0" maxOccurs="unbounded"/> 607
 <xsd:element ref="Qty" minOccurs="0" maxOccurs="unbounded"/> 608
 <xsd:element ref="Char" minOccurs="0" maxOccurs="unbounded"/> 609
 <xsd:element ref="Time" minOccurs="0" maxOccurs="unbounded"/> 610
 </xsd:sequence> 611
 <xsd:attribute name="id" type="xsd:string"/> 612
 <xsd:attribute name="key" type="xsd:long"/> 613
 <xsd:attribute name="name" type="xsd:string"/> 614
 <xsd:attribute name="type" type="xsd:string"/> 615
 <xsd:attribute name="status" type="xsd:string"/> 616
 <xsd:attribute name="value" type="xsd:string"/> 617
 <xsd:attribute name="condition" type="xsd:string"/> 618
 <xsd:attribute name="apply" type="xsd:string"/> 619
 </xsd:complexType> 620

 621

 id attribute SHOULD represent an identifier of the property. 622

 key attribute represents a key used in the local applications. 623

 name attribute represents the name of the property. 624

 type attribute represents the modifier of the property. 625

 status attribute represents the status of the property. 626

 apply attribute represents application type of the property. The value of this element is exclusive, if 627
the value is “exclusive”. 628

 condition attribute represents the condition of the property. 629

 value attribute represents the qualitative value of the property. 630

 631

 Priority element represents the priority of the property. 632

 Display element represents how to display the property. 633

 Description element represents the description of the property. 634

 Author element represents the author of the property information. 635

 Date element represents the date of the property information. 636

 Qty element represents the quantitative value of the property. 637

 Char element represents the qualitative value of the property. 638

 Time element represents the temporal value of the property. 639

 640

2.5.2 List of accounting elements 641

For accounting elements, Price element and Cost element are defined in this specification. The type of 642

this element MUST be represented with the following XML schema. 643

 644

 <xsd:element name="Price" type="AccountingType"/> 645
 <xsd:element name="Cost" type="AccountingType"/> 646

 647

2.5.2.1 Price element 648

Price element represents a price. This element can be used to represent price information of primitive 649
element and some properties. 650

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 20 of 75

2.5.2.2 Cost element 651

Cost element represents a cost. This element can be used to represent cost information of primitive 652

element and some properties. 653

 654

2.6 Administrative Elements 655

2.6.1 Structure of Administrative Elements 656

Administrative elements represent any administrative information, which is not the main body of the 657
problem domain but the information how to deal with the domain information. The type of this element 658
MUST be represented with the following XML schema. 659

 660

 <xsd:complexType name="AdministrativeType"> 661
 <xsd:sequence> 662
 <xsd:element ref="Qty" minOccurs="0" maxOccurs="unbounded"/> 663
 <xsd:element ref="Char" minOccurs="0" maxOccurs="unbounded"/> 664
 <xsd:element ref="Time" minOccurs="0" maxOccurs="unbounded"/> 665
 </xsd:sequence> 666
 <xsd:attribute name="name" type="xsd:string"/> 667
 <xsd:attribute name="type" type="xsd:string"/> 668
 <xsd:attribute name="status" type="xsd:string"/> 669
 <xsd:attribute name="apply" type="xsd:string"/> 670
 <xsd:attribute name="condition" type="xsd:string"/> 671
 <xsd:attribute name="value" type="xsd:string"/> 672
 </xsd:complexType> 673

 674

 name attribute represents the name of the property. 675

 type attribute represents the modifier of the property. 676

 status attribute represents the status of the property. 677

 apply attribute represents application type of the property. The value of this element is exclusive, if 678

the value is “exclusive”. 679

 condition attribute represents the condition of the property. 680

 value attribute represents the qualitative value of the property. 681

 682

 Qty element represents the quantitative value of the property. 683

 Char element represents the qualitative value of the property. 684

 Time element represents the temporal value of the property. 685

 686

2.6.2 List of Administrative Elements 687

For administrative elements, Priority, Display, Description, Author and Date elements are defined in this 688

specification. The type of this element MUST be represented with the following XML schema. 689

 690

 <xsd:element name="Priority" type="AdministrativeType"/> 691
 <xsd:element name="Display" type="AdministrativeType"/> 692
 <xsd:element name="Description" type="AdministrativeType"/> 693
 <xsd:element name="Author" type="AdministrativeType"/> 694
 <xsd:element name="Date" type="AdministrativeType"/> 695

 696

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 21 of 75

2.6.2.1 Priority element 697

Priority element represents the priority of the primitive element or the parent element. This information is 698

used to make a decision for planning or scheduling. 699

2.6.2.2 Display element 700

Display element is an element to set how to display the parent element. This element can specify colors 701
or display locations on the screen. 702

2.6.2.3 Description element 703

Description element is an element to set an optional comment of the parent element. The comment data 704

type is a character string. 705

2.6.2.4 Author element 706

Author element represents the author and its related information such as the authoring date. This 707

information is not about the target domain model, but information processing model. 708

2.6.2.5 Date element 709

Date element is an element that shows the creation date, expire date, revising date, and so forth. This 710
information is for administrative use of the domain model. 711

2.7 Data Elements 712

2.7.1 Qty element 713

Qty element SHOULD represent quantitative information. This element can be used to represent the 714
quantitative numerical data by decimal type data format. Unit of the value can be set in this element, and 715
representation of fraction is available. The type of this element MUST be represented with the following 716
XML schema. 717

 718

 <xsd:element name="Qty"> 719
 <xsd:complexType> 720
 <xsd:attribute name="name" type="xsd:string"/> 721
 <xsd:attribute name="type" type="xsd:string"/> 722
 <xsd:attribute name="status" type="xsd:string"/> 723
 <xsd:attribute name="apply" type="xsd:string"/> 724
 <xsd:attribute name="condition" type="xsd:string"/> 725
 <xsd:attribute name="value" type="xsd:decimal"/> 726
 <xsd:attribute name="count" type="xsd:long"/> 727
 <xsd:attribute name="unit" type="xsd:string"/> 728
 <xsd:attribute name="base" type="xsd:decimal"/> 729
 </xsd:complexType> 730
 </xsd:element> 731

 732

 name attribute represents the name of the data. 733

 type attribute represents the modifier of the data. 734

 status attribute represents the status of the data. 735

 apply attribute represents application type of the data. The value of this element is exclusive, if the 736
value is “exclusive”. 737

 condition attribute represents the condition of the data. 738

 value attribute represents the content corresponding to the qty element. 739

 count attribute represents the countable value of the data. 740

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 22 of 75

 unit attribute represents the type of unit of the data. 741

 base attribute represents the base data of the data. The value of the “value” attribute is divided with 742
this value. 743

 744

Example: 1/3 meters 745

<Qty value=”1” unit=”m” base=”3”/> 746

Example: 3 weeks (discrete time scale) 747

<Qty count=”3” unit=”week” /> 748

 749

2.7.2 Char element 750

Char element SHOULD represent character data. This element can be used to represent a qualitative 751
value of specification or a value of location. The type of this element MUST be represented with the 752
following XML schema. 753

 754

 <xsd:element name="Char"> 755
 <xsd:complexType> 756
 <xsd:attribute name="name" type="xsd:string"/> 757
 <xsd:attribute name="type" type="xsd:string"/> 758
 <xsd:attribute name="status" type="xsd:string"/> 759
 <xsd:attribute name="apply" type="xsd:string"/> 760
 <xsd:attribute name="condition" type="xsd:string"/> 761
 <xsd:attribute name="value" type="xsd:string"/> 762
 <xsd:attribute name="count" type="xsd:long"/> 763
 <xsd:attribute name="unit" type="xsd:string"/> 764
 <xsd:attribute name="base" type="xsd:string"/> 765
 </xsd:complexType> 766
 </xsd:element> 767

 768

 name attribute represents the name of the data. 769

 type attribute represents the modifier of the data. 770

 status attribute represents the status of the data. 771

 apply attribute represents application type of the data. The value of this element is exclusive, if the 772
value is “exclusive”. 773

 condition attribute represents the condition of the data. 774

 value attribute represents the content corresponding to the data. 775

 count attribute represents the countable value of the data. 776

 unit attribute represents the type of unit of the data. 777

 base attribute represents the base data of the data. The value of the “value” attribute is divided with 778

this value. 779

 780

2.7.3 Time element 781

Time element SHOULD represent a specific time. Time is represented by a continuous time scale, or a 782
specific discrete time scale. The type of this element MUST be represented with the following XML 783
schema. 784

 785

 <xsd:element name="Time"> 786

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 23 of 75

 <xsd:complexType> 787
 <xsd:attribute name="name" type="xsd:string"/> 788
 <xsd:attribute name="type" type="xsd:string"/> 789
 <xsd:attribute name="status" type="xsd:string"/> 790
 <xsd:attribute name="apply" type="xsd:string"/> 791
 <xsd:attribute name="condition" type="xsd:string"/> 792
 <xsd:attribute name="value" type="xsd:dateTime"/> 793
 <xsd:attribute name="count" type="xsd:long"/> 794
 <xsd:attribute name="unit" type="xsd:string"/> 795
 <xsd:attribute name="base" type="xsd:dateTime"/> 796
 </xsd:complexType> 797
 </xsd:element> 798

 799

 name attribute represents the name of the data. 800

 type attribute represents the modifier of the data. 801

 status attribute represents the status of the data. 802

 apply attribute represents application type of the data. The value of this element is exclusive, if the 803

value is “exclusive”. 804

 condition attribute represents the condition of the data. 805

 value attribute represents the content corresponding to the data. 806

 count attribute represents the countable value of the data. 807

 unit attribute represents the type of unit of the data. 808

 base attribute represents the base data of the data. The value of the “value” attribute is divided with 809

this value. 810

 811

Example: noon on May 13th, 2005 812

<Time value=”2005-05-13T12:00:00”/> 813

Example: 2 months later since the present month (May, 2005) (discrete time scale) 814

<Time count=”2” unit=”month” base=”2005-05-01T00:00:00”/> 815

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 24 of 75

3 Transaction Messages 816

3.1 Messaging model 817

3.1.1 Basic Unit of messaging 818

Two basic unit of messaging are defined in this specification. The first one is a communication between 819
sender and receiver (Type 1), where the sender simply sends a message to the receiver without any 820
negotiations. The second is a communication between requester and responder (Type 2), where the 821
requester asks the responder to do some services. The responder may answer to the sender by sending 822
appropriate message. The responding message is mandatory or optional depending on the service. The 823
receiver or responder may be multiple at one transaction, so as to make broad casting. 824

 825

Sender Receiver Requester Responder

Type 1 Type 2 826

Figure 3.1 Basic unit of messaging 827

 828

The basic units used to define several messaging models in later sections. However in many practical 829
business situations, communication protocols such as customer negotiation with price and due dates, 830
communication procedures are designed using these basic patterns as a building block. In such cases, 831
how to combine the component is not in the scope of this standard. 832

In addition, underlying communication protocols such as HTTP and TCP/IP may used to define for the 833
simple messaging unit, considering security, reliability, efficiency and so forth. In such cases, messages 834
may be sent several times for the one arrow in Figure 3.1. This is also not in the scope of this part. 835

Application programs communicate using the basic unit of messaging to perform particular business 836
logics. One or more than one transactions of domain documents are contained in each message. 837

3.1.2 Message classes 838

Domain documents, which are exchanged between sender and receiver, or requester and responder, are 839
defined for each transaction. According to the verb information of each document, they can be 840
categorized into 8 different classes. The table shows the message types. 841

 842

Table 3.1 Action classes of domain documents 843

Action classes Description

Add The message requests to add the specified domain objects to the database
managed by the responder.

Change The message requests to change the specified domain objects in the database
managed by the responder.

Remove The message requests to remove the specified domain objects in the database
managed by the responder.

Confirm The message responds from the responder to the requester as a confirmation of the

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 25 of 75

results.

Notify The message informs any domain objects to the receiver as a notification from the
sender.

Sync The message requests the owner of information to send notify message
synchronously at the time the specified event occurs.

Get The message asks the responder to show the specified domain objects in a
specified format by responding Show message.

Show The message responses the requested information of domain objects to the Get
message from the requester.

 844

In order to ask the confirmation from responders, domain documents that perform with Add, Change, 845
Remove or Sync action MAY have an attribute of the following confirmation requests. 846

 847

Table 3.2 Confirmation request 848

Confirm type Description

Never Responder SHOULD NOT respond to the request.

OnError Responder SHOULD respond to the request, only if any errors in processing the
request occur.

Always Responder SHOULD always respond to the request.

 849

3.1.3 Messaging models 850

3.1.3.1 NOTIFY model (Type 1) 851

Basic massaging unit of Type 1 performs in the NOTIFY model. In this model, the sender sends a Notify 852
message to the receiver. There is no obligation on the receiver to respond to the message, nor to make a 853
task for the message. 854

 855

Sender Receiver
(1) Notify

 856

Figure3. 2 NOTIFY model 857

 858

3.1.3.2 PUSH model (Type 2) 859

In PUSH model, domain document with Add action, Change action and Remove action can be requested 860
and processed by applications. This model is enabled by type 1 messaging unit. 861

 In Add transaction, the requester sends an Add message to request responder to add the specified 862
domain objects to the database that is managed by the responder. After making the task of adding the 863
information, the responder can send a Confirm message depending on the confirmation request. 864

 865

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 26 of 75

Requester Responder
(1) Add,

Change,

Remove

(2) Confirm
 866

Figure 3.3 PULL model 867

 868

Change transaction performs when the requester tries to change the specified domain objects in the 869
database that is managed by the responder. The requester sends a Change message to the responder 870
as a request to change. The responder can do the task and send a Confirm massage as a result of the 871
task. 872

Remove transaction performs when the requester tries to delete the specified domain objects in the 873
database managed by the responder. The requester sends a Remove message, and the responder 874
responds a Confirm message if the Remove message has a confirmation request. 875

Responder processes the requested actions, and if necessary, responds confirmation documents to the 876
requester. 877

3.1.3.3 PULL model (Type 2) 878

PULL model is defined for one or more than one actions of Get-Show transactions. Get-Show transaction 879
performs like a query-response process in the client-server database systems. The requester sends a Get 880
message to the responder in order to get information of the specified domain objects. The responder tries 881
to answer the request by sending Show message with corresponding information which is managed by 882
the responder. 883

 884

Requester Responder
(1) Get

(2) Show
 885

Figure 3.4 PULL model 886

 887

3.1.3.4 SYNC model (Type 2 and Type 1) 888

SYNC model consists of a Sync transaction (Type 2) and several Notify transactions (Type 1). Sync 889
transaction performs that requester requests responder to send Notify message synchronously at the 890
time when the specified event occurs on the domain objects owned by the responder. Responder keeps 891
monitoring the event in order to send Notify messages by invoking another Notify transaction. Notify 892
messages are sent repetitively when the event occurs until the Sync request is canceled. 893

 894

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 27 of 75

Requester Responder
(1) Sync

(2) Confirm

(3) Notify

 895

Figure 3.5 SYNC model 896

3.1.4 Procedures on responders 897

3.1.4.1 Common tasks 898

Responders SHOULD have capability to perform the following tasks when a massage document is 899
received. 900

 The responder, who receives a proper Get document, SHOULD send a Show message to the 901
requester. The Show message SHOULD have either error information or domain object requested by 902
the requester in the specified forms. 903

 The responder, who receives a proper Add document, SHOULD add the domain objects in the 904
message to the database that is managed by the responder, unless the ID of the object already 905
exists. 906

 The responder, who receives a proper Change document, SHOULD change the target domain object 907
in the database managed by the responder to the new data in the message, unless the ID of the 908
object doesn’t exist. 909

 The responder, who receives a proper Remove document, SHOULD delete the target domain object 910
in the database managed by the responder, unless the ID of the object doesn’t exist. 911

3.1.4.2 Confirm message 912

The responder of Add, Change, Remove and Sync document SHOULD have capability to make the 913
following tasks when the message received has a confirmation request. 914

 The responder SHOULD send a Confirm document to the requester when the Add document 915
received has an attribute of confirm=”Always”. The Confirm document SHOULD have either error 916
information or the id list that shows all the objects added to the database. 917

 The responder SHOULD send a Confirm document to the requester when the Change document 918
received has an attribute of confirm=”Always”. The Confirm document SHOULD have either error 919
information or the id list that shows all the objects changed in the database. 920

 The responder SHOULD send a Confirm document to the requester when the Remove document 921
received has an attribute of confirm=”Always”. The Confirm document SHOULD have either error 922
information or the id list that shows all the objects deleted in the database. 923

 The responder SHOULD send a Confirm document to the requester when the Sync document 924
received has an attribute of confirm=”Always”. The Confirm document SHOULD have either error 925
information or the id list that shows all the objects to be monitored for synchronization. 926

 The responder SHOULD NOT send a Confirm document to the requester when the document 927
received has an attribute of confirm=”Never”. 928

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 28 of 75

3.1.4.3 Error handling 929

To deal with errors occurred during the process of document in responder application, e.g. syntax or 930
semantic problems detected by the responder’s programs, the responder SHOULD have capability of the 931
following error handling: 932

 In PULL model, responder, who receives a Get document and is hard to respond in normal 933
processes because of errors, SHOULD send a Show document with the error information to the 934
requester. 935

 In PUSH model and SYNC model, responder who receives a document that has attribute of 936
confirm=”OnError” or “Always” and detects errors during the process requested SHOULD send a 937
Confirm document with the error information to the requester. 938

 The responder SHOULD NOT send a Confirm document nor Show document to the requester when 939
the document received has an attribute of confirm=”Never”, even if there is an error. 940

 941

3.2 Add, Change and Remove (PUSH model) 942

3.2.1 Add transaction 943

Add document requests the responder to add the specified domain objects in the document to the 944
database managed by the responder. 945

When the Add document request to add domain objects with ID specified at the “id” attribute, responder 946
SHOULD check existence of the ID in its database and add the data if the corresponding data does not 947
already exist in the database. If the document has an ID that already exists in the database, the 948
responder SHOULD NOT add the data. 949

When the Add document request to add domain object without ID, the responder SHOULD create any 950
unique ID in its database, and create a new domain object that has the specified information. The new 951
IDs MAY return by Confirm message if the requester needs confirmation. 952

 953

action=“Add”

action=“Confirm”

Message Body

Object ID list

Requester Responder

action=“Add”

Message Body

Requester Responder

action=“Confirm”

Error elements

 954

(a) Normal case (b) Error case 955

Figure 3.6 Add transactions 956

 957

Example: Document to add three Product Records 958

<Document id=”A-1” name=”Product” action=”Add”> 959
<Item id=”001” name=”Product-1”><Spec type=”pps:color”><Char value=”red”/></Spec></Item> 960
<Item id=”002” name=”Product-2”><Spec type=”pps:color”><Char value=”red”/></Spec></Item> 961
<Item id=”003” name=”Product-3”><Spec type=”pps:color”><Char value=”red”/></Spec></Item> 962
</Document> 963

 964

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 29 of 75

When Condition element is specified in a domain element, the Property element in the Condition element 965
shows common property of all domain objects listed in the document. The following example is the same 966
request compare to the previous example. 967

 968

Example: Add document using a Condition element 969

<Document id=”A-2” name=”Product” action=”Add” > 970
<Condition> 971
 <Property name=”pps:color”><Char value=”red”/></Property> 972
</Condition> 973
<Item id=”001” name=”Product-1”/> 974
<Item id=”002” name=”Product-2”/> 975
<Item id=”003” name=”Product-3”/> 976
</Document> 977

 978

The response to Add document can be done by sending a Confirm document that has primitive elements 979
in its body. The primitive element represents the domain object that is successfully added, and SHOULD 980
only have id attribute. The next example is the Confirm document as a result of the previous Add 981

document. 982

 983

Example: Confirm document as a response of an Add transaction 984

<Document id=”B-1” name=”Product” action=”Confirm” > 985
<Item id=”001” /> 986
<Item id=”002” /> 987
<Item id=”003” /> 988
</Document> 989

 990

3.2.2 Change transaction 991

Change document requests to change the specified information of the specified domain objects that is in 992
the database managed by the responder. In order to identify the target domain object, Condition element 993
has any condition to select one or more than one domain objects. 994

After selecting the target domain object, Select element SHOULD represent the values of target 995
properties to be changed. The values SHOULD be specified in the Property element in the Selection 996

element. 997

All the selected domain objects depending on the Condition element SHOULD be applied to change in 998

the same way. ID of domain objects SHOULD NOT be changed by this Change process. 999

 1000

Condition elements

action=“Change”

action=“Confirm”

Selection elements

Object ID list

Requester Responder

Condition elements

action=“Change”

Selection elements

Requester Responder

action=“Confirm”

Error elements

 1001

(a) Normal case (b) Error case 1002

Figure 3.7 Change transactions 1003

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 30 of 75

 1004

In the database managed by the responder, a property type is either single or multiple. If the property 1005
type is single, the value requested to change is applied as a new value of the property. Otherwise, in the 1006
cases of multiple properties, the property of the domain object is inserted, updated or deleted depending 1007
on the type of the Change document. 1008

3.2.2.1 Insert property (Level 2 function) 1009

For the multiple primitives that have the same property name in the same object, an insert property 1010
document performs to add another property that has a new value. When type attribute of Selection 1011
element has “Insert” value, it shows that the properties in the Selection element are requested to insert. 1012

 1013

Example: Add information of new level 10 as the latest stock value. 1014

<Document id=”A-4” name=”Product” action=”Change” > 1015
<Condition id=”001”/> 1016
<Selection type=”Insert” > 1017
 <Property name=”pps:stock”><Qty value=”10”/></Property> 1018
</Selection> 1019
</Document> 1020

 1021

3.2.2.2 Update property (Level 2 function) 1022

When the value of type attribute of Selection element is “Update”, the properties in the Selection element 1023
are for updating the current properties in the owner’s database. The target properties to be changed are 1024
selected by Condition elements which are defined under the Selection element. 1025

If the Condition elements select more than one property instances, all values of these selected instances 1026
are changed to the value specified in the Property element. If the Condition elements select no property 1027

instance, nothing happens for the message. 1028

 1029

Example: Document requests to change the usage of A001-2 from 1 to 4. 1030

<Document id=”A-5” name=”Product” action=”Change” > 1031
<Condition id=”A001”/> 1032
<Selection type=”Update” > 1033
 <Condition><Property name=”pps:child”><Char value=”A001-2”/></Property></Condition> 1034
 <Property name=”pps:child-value”><Qty value=”4”/></Property> 1035
</Selection> 1036
</Document> 1037

 1038

Example: Initial status of the product data A001 that has A001-1, A001-2 and A001-3. 1039

<Document name=”Item” id=”A001”> 1040
<Compose type=”pps:child” item=”A001-1”><Qty value=”1”/></Compose> 1041
<Compose type=”pps:child” item=”A001-2”><Qty value=”1”/></Compose> 1042
<Compose type=”pps:child” item=”A001-3”><Qty value=”1”/></Compose> 1043
</Document> 1044

 1045

Example: Revised status of the product data 1046

<Document name=”Item” id=”A001”> 1047
<Compose type=”pps:child” item=”A001-1”><Qty value=”1”/></Compose> 1048
<Compose type=”pps:child” item=”A001-2”><Qty value=”4”/></Compose> 1049
<Compose type=”pps:child” item=”A001-3”><Qty value=”1”/></Compose> 1050
</Document> 1051

 1052

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 31 of 75

3.2.2.3 Delete property (Level 2 function) 1053

When a value of type attribute of Selection element is “Delete”, then it performs to delete particular 1054
properties that are selected by Condition elements under the Selection element. Condition element is 1055

necessary to select the target properties to be deleted. 1056

If the Condition elements select more than one property instances, all of these instances are deleted. If 1057
the Condition elements select no property instance, nothing happens for the message. 1058

 1059

Example: Usage of “Machine-1” by the process “Proc-1” is requested to delete. 1060

<Document id=”A-6” name=”ProductionProcess” action=”Change” > 1061
<Condition id=”Proc-01”/> 1062
<Selection type=”Delete”> 1063
<Condition><Property name=”pps:equipment”><Char value=”Machine-1064

1”/></Property></Condition> 1065
</Selection> 1066
</Document> 1067

 1068

Example: Delete all inventory records of the item “A001” that has a date before August 1st. 1069

<Document id=”A-7” name=”InventoryRecord” action=”Change” > 1070
<Condition id=”A001”/> 1071
<Selection type=”delete”> 1072
 <Condition><Property name=”pps:stock-date”> 1073
 <Time value=”2006-08-01T00:00:00” condition=”Max”/></Property> 1074
 </Condition> 1075
</Selection> 1076
</Document> 1077

 1078

3.2.3 Remove transaction 1079

Remove document requests to delete the specified domain objects in the database managed by the 1080
responder. The responder can decide either the request is accepted or rejected. If it is rejected, the 1081
responder SHOULD send an error message, unless the confirm attribute is “Never”. Removing objects 1082
means that the data in the owner’s database is actually deleted, or logically deleted such that only the 1083
delete flag is marked on the object. 1084

The target domain objects to be removed are selected by specifying Condition elements that represent 1085

the conditions of the target domain objects. 1086

 1087

action=“Remove”

action=“Confirm”

Condition elements

Object ID list

Requester Responder

action=“Remove”

Condition elements

Requester Responder

action=“Confirm”

Error elements

 1088

(a) Normal case (b) Error case 1089

Figure 3.8 Remove transactions 1090

 1091

Example: Document requesting that all the lot schedule objects of item “M001” are removed. 1092

<Document id=”A-8” name=”LotSchedule” action=”Remove” > 1093
<Condition> 1094

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 32 of 75

 <Property name=”pps:item”><Char value=”M001”/></Property> 1095
</Condition> 1096
</Document> 1097

 1098

 1099

3.3 Notify and Sync (NOTIFY and SYNC model) 1100

3.3.1 Notify transaction 1101

Notify document SHOULD have a value of “Notify” in the action attribute. The figure shows that 1102
transaction pattern of Notify document exchange. The sender of Notify document will not receive its 1103
response from the receiver. 1104

Notify document MAY be sent by the sender to any information users whom the sender decides as the 1105
destination of the message. If Notify document is caused by synchronization request specified by a Sync 1106
document received in advance, the message is sent when the corresponding event occurs. In Notify 1107
document for synchronization, the event attribute SHOULD show the event name. 1108

 1109

action=“Notify”

Header element

Sender Receiver

Message Body

 1110

Figure 3.9 Notify transactions 1111

 1112

Notify document SHOULD have a Header element that MAY have the number of domain objects and any 1113
aggregated information of objects. Domain objects, which are represented by primitive elements 1114
described in Section 2, MAY be described in the body of a Notify document. 1115

 1116

Example: A Notify document shows reception of customer order 001 and its detailed items. 1117

<Document id=”A-9” name=”SalesOrder” action=”Notify” > 1118
<Header id=”001” count=”3” title=”Order Form”> 1119
 <Property type=”Target” name=”pps:party” display=”C-Name”><Char value=”K-1120
Inc.”/></Property> 1121
 <Property type=”Selection” name=”pps:id” display=”P/N”/> 1122
 <Property type=”Selection” name=”pps:name” display=”NAME”/> 1123
 <Property type=”Selection” name=”pps:qty” display=”QTY”/> 1124
 <Property type=”Selection” calc=”sum” name=”pps:price” display=”PRICE”><Qty 1125
value=”1200”/></Property> 1126
</Header> 1127
<Order id=”001-1” item=”Product-A1”><Spec type=”pps:plan”><Qty 1128
value=”1”/></Spec></Order> 1129
<Order id=”001-2” item=”Product-A2”><Spec type=”pps:plan”><Qty 1130
value=”10”/></Spec></Order> 1131
<Order id=”001-3” item=”Product-A3”><Spec type=”pps:plan”><Qty 1132
value=”3”/></Spec></Order> 1133
</Document> 1134

 1135

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 33 of 75

3.3.2 Synchronizing process 1136

In order to synchronize information of users with the information of the owner’s database, the user needs 1137
to know the change of information at the time it occurs. The Sync transaction allows the user to request 1138
the information owner to notify the change of domain objects synchronously. 1139

If an information owner monitors particular property value of a domain object and tries to detect certain 1140
event occurrence such as data changes, the Sync document is used to establish a relationship of 1141
synchronization by requesting subscription of the event occurrence detected by the information owner. 1142

When a synchronization request specified using a Sync document is accepted by responder, e.g., the 1143
information owner, the responder SHOULD be ready to send a notification document by invoking another 1144
transaction when the corresponding event occurs. The notification documents are not included in the 1145
Sync transaction. Notification of change of the property value will be invoked as a different transaction 1146
independent from the Sync transaction. 1147

This model can be regarded as a publish-subscription model. The Sync document can be regarded as a 1148
subscription request message. If the responder has an additional subscription management module, then 1149
an application program can send a single Notify document to the module, which knows the subscribers 1150
and dispatch the message to all the members listed as a subscriber. 1151

 1152

Condition elements

action=“Sync”

Requester Responder

action=“Confirm”

Object ID list

Condition elements

action=“Sync”

Requester Responder

action=“Confirm”

Error elements

 1153

(a) Normal case (b) Error case 1154

Figure 3.10 Sync transaction 1155

 1156

All properties of a domain object MAY NOT be available to request for this synchronization service. In 1157
order to know the capability of application program and the list of event name that the application program 1158
can provide the service, an implementation profile defined in Section 4 SHOULD specify the information. 1159

According to the implementation profile specification format, the responder (information owner) 1160
determines the interval of monitoring cycle, size of difference to detect changes, range of value to detect 1161
event occurrence by minimum and maximum constraints, and so forth. 1162

When the value of the property is changed into the range defined by maximum and minimum constraints, 1163
the information owner SHOULD send the notification. The owner SHOULD NOT send a next notification 1164
of the event before the value will once be outside of the range. 1165

When the size of difference to detect changes is defined, any changes of the property value that is less 1166
than the size SHOULD be ignored. 1167

The changes during the monitoring cycle MAY be merged at the time of the next monitoring time. 1168
Therefore, changes during the cycle MAY NOT be detected by the requester. 1169

3.3.2.1 Sync document 1170

Sync document can represent a message to request synchronization of information. Sync document 1171
SHOULD specify a value “Sync” at action attribute of the element. Sync document SHOULD have an 1172

event name that has been defined in advance by the responder. 1173

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 34 of 75

Sync document MAY specify particular domain objects that have been managed by the responder at the 1174
time and is possible to monitor to detect the event. Condition element allows the requester to make 1175

request of synchronization for several domain objects by sending one Sync document. 1176

When there is no available event in the suggested domain object described by the event attribute and 1177
Condition elements, the responder SHOULD send a error information in Confirm document unless the 1178
request has “Never” value on the confirm attribute. 1179

 1180

Example: To request notification when event “E01” occurs on any production order of item “A001”. 1181

<Document id=”A-3” name=”ProductionOrder” action=”Sync” event=”E01” > 1182
<Condition> 1183
 <Property name=”pps:item”><Char value=”A001”/></Property> 1184
</Condition> 1185
</Document> 1186

 1187

Example: The requester is registered in the subscription list of event “E01” on the three orders. 1188

<Document id=”B-1” name=”ProductionOrder” action=”Confirm” event=”E01” > 1189
<Order id=”1201”/> 1190
<Order id=”1204”/> 1191
<Order id=”1223”/> 1192
</Document> 1193

 1194

Once a Sync document is received without error, the synchronization request becomes effective until the 1195
responder will get a cancel request of the subscription, or the responder will stop the event detection 1196
process. In order to cancel the Sync request by requester, the requester SHOULD send a Sync 1197
document under a Transaction element that has type attribute with “Cancel” vale. When the responder 1198
receives cancelation of the Sync transaction, the responder SHOULD cancel the synchronization request 1199
corresponding to the transaction id. If the cancel request has new transaction id, then all transactions 1200
restricted by the specified event name and Condition element are canceled. 1201

3.3.2.2 Procedure of information owner 1202

Information owner, who has a capability of event monitoring and publishing services, MAY specify the 1203
available event information on the implementation profile described in Section 4. In accordance with the 1204
specification of the profile, the owner SHOULD perform event detection and publication. 1205

First, the information owner SHOULD monitor the actual value of the property that the owner decides to 1206
detect the event. In every monitoring cycle, the owner SHOULD determine whether the event occurs, that 1207
is, the value of the data is changed to satisfy all the conditions defined to the event. The conditions 1208
include minimum value, maximum value, and difference of change of the domain property. 1209

When the event occurs, the information owner SHOULD send a Notify document to all the members who 1210
are in the list of subscription. This is similar to publish-subscription mechanism, so the information owner 1211
MAY ask the publication process to a middle-ware information broker. 1212

The Notify document SHOULD have the event name at event attribute. The transaction id SHOULD be 1213
equal to the transaction id of the corresponding Sync document. The Notify document of this event 1214
occurrence SHOULD have the id of the domain object and the value of the property in the massage body. 1215

 1216

Example: Notify of event “E01” that shows a change of “production result” of production orders. 1217

<Document id=”B-2” name=”ProductionOrder” action=”Notify” event=”E01” > 1218
<Order id=”1204”> 1219
 <Produce><Qty value=”200”/></Produce> 1220
</Order> 1221
</Document> 1222

 1223

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 35 of 75

3.4 Information Query (PULL model) 1224

Using a Get document, the requester MAY request particular information to the responder by describing 1225
the Condition elements that can select the target domain objects. The target objects can be described 1226
directly by IDs in id attribute, or any conditions of the domain objects using Condition elements. 1227

If no Condition element is specified in Get document, all domain objects that the responder manages in 1228

the database SHOULD be selected and shown in the content of the Show document. 1229

The responder who receives the Get document SHOULD process either responding corresponding 1230
domain objects, or refusing the request and setting error information in the Show document. 1231

 1232

Condition elements

action=“Get”

action=“Show”

Selection elements

Header element

Requester Responder

Message Body

Header element

Condition elements

action=“Get”

Selection elements

Requester Responder

action=“Show”

Error elements

Header element

 1233

(a) Normal case (b) Error case 1234

Figure 3.11 Get -Show transactions 1235

 1236

3.4.1 Target domain objects 1237

3.4.1.1 Selection by object IDs 1238

The simplest way to select domain objects is describing IDs of the target objects in Condition elements. If 1239
the ID of the object is known, it can be specified as a value of id attribute of a Condition element. In this 1240
case, the Condition elements SHOULD be specified as many as the number of requested objects. 1241

 1242

Example: Three objects that have “0001”, “0005”, “0013” as ID are requested. 1243

<Document id=”A-2” name=”Customer” action=”Get” > 1244
<Condition id=”0001”/> 1245
<Condition id=”0005”/> 1246
<Condition id=”0013”/> 1247
<Selection type=”All”/> 1248
</Document> 1249

 1250

3.4.1.2 Selection by Property elements 1251

The second way to select domain objects is to specify Property elements in the Condition element under 1252
the Document element. The Property elements in this case represent condition of domain objects that 1253
SHOULD have the corresponding property. Each Property element shows the property name and its 1254

value, or range of value. 1255

If the data type of value is string, then the property shows that the value attribute should have the 1256

specified value. 1257

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 36 of 75

In order to select domain objects, the responder SHOULD evaluate the truth of the constraint described in 1258
the property, and if all the Property elements in the parent Condition element are satisfied, then the 1259

domain object SHOULD be selected. 1260

 1261

Example: Products that have “white” as a value of color property are required. 1262

<Document id=”A-3” name=”Product” action=”Get” > 1263
<Condition> 1264
 <Property name=”pps:color”><Char value=”white” /></Property> 1265
</Condition> 1266
<Selection type=”All”/> 1267
</Document> 1268

 1269

When a property specified in the Condition element is multiple, that is, the property can have many 1270
instances, the value of the corresponding Property element SHOULD meet at least one instance in the 1271

multiple property values. 1272

 1273

Example: Any product items that has “A001” item in its parts list is required. 1274

<Document id=”A-4” name=”Product” action=”Get” > 1275
<Condition> 1276
 <Property name=”pps:child”><Char value=”A001”/></Property> 1277
</Condition> 1278
<Selection type=”All”/> 1279
</Document> 1280

 1281

In order to select target objects, Condition element allows the requester to specify any range of property 1282
value. The range can be specified in Property element using Qty, Char, and Time element that has 1283
condition attribute. Available types of condition SHOULD include GE (greater than or equal), LE (less 1284

than or equal), GT (greater than), LT (less than), EQ (equal), NE (not equal). 1285

 1286

Example: The document requests any products that the price is $2,000 or higher. 1287

<Document id=”A-5” name=”Product” action=”Get” > 1288
<Condition> 1289
 <Property name=”pps:price”><Qty value=”2000” condition=”GE”/></Property> 1290
</Condition> 1291
<Selection type=”All”/> 1292
</Document> 1293

 1294

3.4.1.3 Disjunctive and conjunctive conditions 1295

When more than one Property elements are specified in a Condition element, it means that all conditions 1296
represented by the Property elements SHOULD be satisfied. 1297

 1298

Example: Both A001 and A002 are the child items of the product. 1299

<Document “A-6” name=”Product” action=”Get” > 1300
<Condition> 1301
 <Property name=”pps:child”><Char value=”A001”/></Property> 1302
 <Property name=”pps:child”><Char value=”A002”/></Property> 1303
</Condition> 1304
<Selection type=”All”/> 1305
</Document> 1306

 1307

When there are more than one Condition elements in a document, these conditions are interpreted 1308

disjunctive, i.e., at least one condition SHOULD be satisfied. 1309

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 37 of 75

 1310

Example: Compare to the previous example, the document shows a request of product data that has 1311

either A001 or A002 as a child part. 1312

<Document id=”A-7” name=”Product” action=”Get” > 1313
<Condition><Property name=”pps:child”><Char value=”A001”/></Property></Condition> 1314
<Condition><Property name=”pps:child”><Char value=”A002”/></Property></Condition> 1315
<Selection type=”All”/> 1316
</Document> 1317

 1318

3.4.1.4 Selection by wildcard 1319

The third way to select target domain objects is to use wildcard in Condition element. To specify the 1320
required objects, wildcard attribute denotes the property name while the wildcard string is specified in the 1321
value attribute. The regular expressions [PCRE] are applied for interpreting the wildcard string. 1322

Wildcard specification SHOULD only apply to properties that have a value in string format. 1323

 1324

Example: Request of customer orders that the destination address has any text of “Boston”. 1325

<Document id=”A-8” name=”SalesOrder” action=”Get” > 1326
<Condition wildcard=”pps:delivery” value=”Boston”/> 1327
<Selection type=”All”/> 1328
</Document> 1329

 1330

3.4.2 Target domain property 1331

When the target domain objects are determined, Get document needs another specification for selecting 1332
properties in the domain objects to show the information detail. Selection element MAY be used for this 1333
purpose. The properties selected by Selection elements are included and corresponding values are 1334
described by the responder in the Show document. 1335

Selection element MAY represent ordering request/result of the objects in the response message, or 1336

calculating request/result of the values of the target objects. 1337

3.4.2.1 All available properties 1338

When the type attribute of Selection element has a value of “All”, it SHOULD represent that all the 1339
possible properties are included in the Show document. The list of properties to return is decided by the 1340

responder. 1341

When value “Typical” is described in the type attribute, the typical properties of the domain object are 1342
selected by the responder. The list of typical properties is depending on the domain document. This list is 1343
defined by the responder according to the profile defined in Section 4. 1344

 1345

Example: Request all the material information. All objects are selected with all possible properties. 1346

<Document id=”A-9” name=”ResourceCapacity” action=”Get” > 1347
<Selection type=”All”/> 1348
</Document> 1349

 1350

3.4.2.2 Selecting domain property 1351

In order to specify the properties required in the selected objects, Property element in the Selection 1352
element is used. To select objects, name of property SHOULD be described in the name attribute of 1353
Property element in the Get document. Property name is defined in the application profile or the 1354
implementation profile. 1355

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 38 of 75

 1356

Example: The objects in the responding document are required with properties of key, name and priority. 1357

<Document id=”A-10” name=”Party” action=”Get” > 1358
<Selection> 1359
 <Property name=”pps:key”/> 1360
 <Property name=”pps:name” /> 1361
 <Property name=”pps:priority” /> 1362
</Selection> 1363
</Document> 1364

 1365

When the property required has not been defined in the profile, Get document MAY request user-made 1366
properties by specifying its own texts following the prefix of “user:”. 1367

 1368

3.4.2.3 Sorting by property value (Level 2 function) 1369

Sorting request of the domain objects in the Show document can be described in Property element in 1370
Selection element. The Property element has sort attribute that MAY have a value of “Disc” or “Asc”. The 1371
responder who receives this document SHOULD sort the domain objects by descending or ascending 1372
order, respectively. 1373

When there is more than one Property elements in the Selection element that has sort attribute, the first 1374
Property element is the highest priority of the sort procedure. If the values of the property of two objects in 1375
the responding domain objects are the same, then the second data value indicated by the next Property 1376

element are compared. 1377

 1378

Example: Data request with sorting 1379

<Document id=”A-12” name=”Product” action=”Get” > 1380
<Selection> 1381
 <Property name=”pps:parent” sort=”Asc”/> 1382
 <Property name=”pps:name” sort=”Asc”/> 1383
<Selection> 1384
</Document> 1385

 1386

Example: An example of response of the previous example 1387

<Document id=”B-12” name=”Product” action=”Show” > 1388
<Item name=”bbb”><Compose type=”pps:parent” item=”A”/></Item> 1389
<Item name=”ccc”><Compose type=”pps:parent” item=”A”/></Item> 1390
<Item name=”ddd”><Compose type=”pps:parent” item=”A”/></Item> 1391
<Item name=”aaa”><Compose type=”pps:parent” item=”B”/></Item> 1392
</Document> 1393

 1394

3.4.2.4 Calculation of property value (Level 2 function) 1395

Property element in a Selection element MAY represent a request of calculation of property values that 1396
are selected by the Get document. In order to do this, calc attribute of Property element is used to select 1397
a calculation method. The value of calc attribute of Property element can take either “Sum”, “Ave”, “Max”, 1398
“Min”, and “Count” as a calculation function. 1399

The name of property that should be calculated MAY be described in name attribute of the Property 1400
element. Then, the values of the property SHOULD be calculated using the function describing at the calc 1401

attribute. 1402

In Show document or Notify document, the result of calculation is described in Property element in the 1403
Header element. Because Show and Notify element doesn’t have Selection element, the result need to 1404
move from the Selection element in the Get document to the Header element. 1405

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 39 of 75

The responder who receives Get document SHOULD answer by calculating the target property value, 1406
and describes it at the corresponding value attribute of Qty, Char and Time element in the Property 1407

element depending on the data type. 1408

 1409

Example: Requests to calculate summary of total price 1410

<Document id=”A-13” name=”SalesOrder” action=”Get” > 1411
<Selection> 1412
 <Property name=”pps:price” calc=”Sum”/> 1413
</Selection> 1414
<Selection type=”All”/> 1415
</Document> 1416

 1417

Example: The corresponding response of the previous example 1418

<Document name=”SalesOrder” id=”B-13” action=”Show” > 1419
<Header count=”3”> 1420
 <Property name=”pps:price” calc=”Sum”><Qty value=”2500”/></Property> 1421
</Header> 1422
<Order id=”001” item=”Product-1”><Price><Qty value=”1000” unit=”USD”/></Price></Order> 1423
<Order id=”004” item=”Product-1”><Price><Qty value=”1000” unit=”USD”/></Price></Order> 1424
<Order id=”007” item=”Product-1”><Price><Qty value=”500” unit=”USD”/></Price></Order> 1425
</Document> 1426

 1427

The response message to the calculation request has the calculation result in Property element in Header 1428
element. If the calculation method is “Count”, then the result value is the number of corresponding domain 1429
objects in the database. In order to know the number of data before the detailed query execution, this 1430
calculation request MAY be send without Selection element that shows the property items in the Show 1431
document. In the case that “Count” value is specified in calc attribute, name attribute of Property element 1432
MAY NOT be specified. 1433

 1434

Example: Request of counting the number of data 1435

<Document id=”A-14” name=”SalesOrder” action=”Get” > 1436
<Selection> 1437
 <Property calc=”Count”/> 1438
</Selection> 1439
</Document> 1440

 1441

Example: The answer of the request of counting the data 1442

<Document id=”B-14” name=”SalesOrder” action=”Show” > 1443
<Header> 1444
 <Property calc=”Count”><Qty value=”55”/></Property> 1445
</Header> 1446
</Document> 1447

 1448

This value is similar to the value of count attribute in Header element. The value described in the count 1449
attribute represents the actual number of objects in the document, whereas the value in Property element 1450
shows the actual number in the database managed by the responder. 1451

 1452

3.4.3 Multiple property (Level 2 function) 1453

A Document element for a simple Get transaction has one Selection element which has several 1454
properties required by the sender. However, if the target domain object has a multiple property and some 1455
of its instances need to be selected, each multiple property SHOULD have corresponding Selection 1456

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 40 of 75

element. The Selection element for the multiple properties needs Condition element as its child element 1457

to represent conditions to select the instances. 1458

From a modeling perspective, a multiple property can be defined by attribute objects which are 1459
associated with or contained by the target domain object. The target domain object and attribute objects 1460
has one-to-many relations. Figure 3.12 shows that Property A, B, and C is a single property, while 1461
Property D to G are multiple properties. In this figure, it is important that Property D and E are on the 1462
same attribute object, and then any conditions for those two properties are applied in the same manner to 1463
select satisfied attribute objects. 1464

 1465

Property D3

Property E3Property D2

Property E2

Domain object

Property A

Property B

Property C
Property D1

Property E1

Single properties Multiple properties

Property F2

Property G2

Property G1

Property F1

Multiple properties
 1466

Figure 3.12: Single property and Multiple property 1467

 1468

In accordance with this conceptual structure, a Selection element SHOULD be defined for each attribute 1469
class, i.e. type of attribute objects. For example, the case of the figure can have three different Selection 1470
elements. In the three Selection elements, one for the multiple properties has information of Property D 1471
and Property E at the same Selection element. 1472

 1473

Example: A request of calendar information of a customer in April. 1474

<Document id=”A-15” name=”Customer” action=”Get” > 1475
<Condition id=”001”/> 1476
<Selection> 1477
 <Property name=”pps:id” /> 1478
 <Property name=”pps:name”/> 1479
</Selection> 1480
<Selection> 1481
 <Property name=”pps:calendar-date” /> 1482
 <Property name=”pps:calendar-value”/> 1483
 <Condition> 1484
 <Property name=”pps:calendar-date”> 1485
 <Time value=”2006-04-01T00:00:00” condition=”GE”/> 1486
 </Property> 1487
 <Property name=”pps:calendar-date”> 1488
 <Time value=”2006-05-01T00:00:00” condition=”LT”/> 1489
 </Property> 1490
 </Condition> 1491
</Selection> 1492
</Document> 1493

 1494

Example: One possible answer to the previous document. 1495

<Document id=”B-15” name=”Customer” action=”Show” > 1496
<Party id=”001”> 1497
<Capacity status=”pps:holiday”><Time value=”2006-04-01T00:00:00”/></Capacity> 1498
<Capacity status=”pps:work”><Time value=”2006-04-02T00:00:00”/></Capacity> 1499
<Capacity status=”pps:work”><Time value=”2006-04-03T00:00:00”/></Capacity> 1500
… 1501
<Capacity status=”pps:work”><Time value=”2006-04-30T00:00:00”/></Capacity> 1502
</Party> 1503

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 41 of 75

</Document> 1504

 1505

When there is more than one Selection element in a transaction element, the first Selection element 1506
SHOULD NOT have Condition element. The Selection element that selects multiple properties SHOULD 1507

be specified at the second or later. 1508

3.4.4 Using Header element 1509

3.4.4.1 Inquiry by header element (Level 2 function) 1510

In a Header element of a Get document, brief inquiry information can be added independent from the 1511
main query mechanism provided by Condition and Selection elements. The brief inquiry mechanism is 1512
activated when id attribute of Header element in a Get document has an ID. 1513

The responder to this document SHOULD get the corresponding domain object which has the ID, and 1514
answer its property values required by Primitive elements of Header element in the Get document. The 1515
Primitive elements for the brief inquiry have type attribute with “Target” value, or the attribute doesn’t have 1516

a value because “Target” is default value. 1517

The target object selected in this brief inquiry is basically in the same class of the domain objects, unless 1518
the class attribute of Header element has another name of domain object. When the class attribute is 1519
described with a name of another domain object, the corresponding information of the domain objects will 1520
be answered in the Header of the Show document. 1521

Multiple property MAY not be processed properly in this mechanism because the answer is formatted in 1522
single type properties. If a multiple property is selected in the Header, arbitrarily instance of the property 1523

is selected and described in the answer document. 1524

 1525

Example: Header element for brief query has id attribute that is specified a name of the object. 1526

<Document id=”A-16” name=”Product” action=”Get” 1527
<Header id=”001”> 1528
 <Property type=”Target” name=”pps:name”/> 1529
</Header> 1530
</Document> 1531

 1532

Example: An answer of the previous document 1533

<Document id=”B-16” name=”Product” action=”Show” > 1534
<Header id=”001”> 1535
 <Property type=”Target” name=”pps:name”><Char value=”Product-A”/></Property> 1536
</Header> 1537
</Document> 1538

 1539

3.4.4.2 Count of domain objects (Level 2 function) 1540

In Get document, count attribute of Selection element SHOULD represent the maximum number of 1541
objects described in the response message. If the value of the count attribute is 1 or more than 1, then 1542

the number described in the attribute restricts the size of the response message. 1543

When many domain objects are in the database, they can be retrieved separately by several Get 1544
documents. In such case, offset attribute of Selection element SHOULD be described as an offset 1545

number to skip the first objects while retrieving the domain objects. 1546

The offset request MAY be effective when a sort mechanism performed according to the value of sort 1547
attribute in Property element. If there is no description of sort, then the application MAY concern that the 1548

domain objects are sorted by the values of their IDs. 1549

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 42 of 75

The attribute of count and offset SHOULD NOT be specified if the Selection element is the second or 1550
later addressed in the Document element. In the corresponding Show document, the attribute of count 1551
and offset are specified in the Header element instead of Selection element. 1552

 1553

Example: The following document requests customer order from #101 to #110. 1554

<Document id=”A-17” name=”SalesOrder” action=”Get” > 1555
<Selection offset=”100” count=”10”/> 1556
 <Property name=”pps:id” sort=”Desc”/> 1557
</Selection> 1558
</Document> 1559

 1560

3.4.5 Show document 1561

3.4.5.1 Structure of Show document 1562

Show document has the same stricture as the structure of Notify document. This document SHOULD 1563
have a value of “Show” at the action attribute. 1564

Show document SHOULD have header information by Header element, and if the Get document requests 1565
calculation by describing calc attribute of Selection elements, then the calculation results SHOULD be 1566
specified in Header element. 1567

Body of Show documents SHOULD have the content of the domain objects that corresponds to the 1568
request. The body MAY be empty if the corresponding object doesn’t exist. 1569

 1570

Example: The document of customer order #001 that has total amount and detailed item lists. 1571

<Document id=”B-18” name=”SalesOrder” action=”Show” > 1572
<Header id=”001” count=”3” title=”OrderSheet”> 1573
 <Property name=”pps:party” display=”CSTM”><Char value=”K-Inc.”/></Property> 1574
 <Property type=”Selection” name=”pps:id” display=”PN”/> 1575
 <Property type=”Selection” name=”pps:name” display=”NAME”/> 1576
 <Property type=”Selection” name=”pps:qty” display=”QTY”/> 1577
 <Property type=”Selection” calc=”sum” name=”pps:price” display=”PRICE”> 1578
 <Qty value=”1200”/></Property> 1579
</Header> 1580
<Order id=”001-1” item=”Product-A1”><Qty value=”1”/></Order> 1581
<Order id=”001-2” item=”Product-A2”><Qty value=”10”/></Order> 1582
<Order id=”001-3” item=”Product-A3”><Qty value=”3”/></Order> 1583
</Document> 1584

 1585

3.4.5.2 Header in Show document 1586

In Show documents, the number of domain objects listed in the body of the message is described as the 1587
value of count attribute of the Header element. 1588

Property elements described in the Header element consist of three types. First type is for properties of a 1589
header domain object requested by the Get document as a result of brief inquiry. All Property elements of 1590
this group SHOULD have a value “Target” at the type attribute or the attribute is not described. This 1591
property represents any value of the header object selected by id attribute of the Header element. 1592

The second type of Property elements has a value “Condition” at the type attribute. This property 1593
SHOULD represent that all domain objects listed in the body of the document has the same value 1594
described in the property. Application program who responses the Show document MAY describe the 1595
properties simply by duplicating the corresponding Property elements in Condition element in the Get 1596

document, because the property to be described can be regarded as a condition of the domain objects. 1597

The final group of properties comes from the Selection element of the Get document. The properties in 1598
this group SHOULD have a value “Selection” at the type attribute. These properties are basically a copy 1599

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 43 of 75

of Property elements of the Selection element in the Get document. If the Selection element in the Get 1600
document requests calculation, results are described in the value attribute of Qty, Char or Time sub-1601
element of the Property element. In addition, a value of display attribute MAY be described for any texts 1602
in the header area for printing on a formatted sheet. 1603

 1604

Example: A request to get product information of “A001” and its parts list. 1605

<Document id=”A-19” name=”Product” action=”Get”> 1606
<Condition> 1607
 <Property name=”pps:parent” value=”A001”/> 1608
</Condition> 1609
<Selection> 1610
 <Property name=”pps:id”/> 1611
 <Property name=”pps:name”/> 1612
</Selection> 1613
<Header title=”BillOfMaterials” id=”A001” > 1614
 <Property name=”pps:name”/> 1615
 <Property name=”pps:price”/> 1616
 <Property name=”pps:price-unit”/> 1617
</Header> 1618
</Document> 1619

 1620

Example: The response to the previous Get document. 1621

<Document id=”B-19” name=”Product” action=”Show”> 1622
<Header title=”BillOfMaterials” id=”A001” count=”3”> 1623
 <Property name=”pps:name”><Char value=”Product A001”/></Property> 1624
 <Property name=”pps:price”><Qty value=”2000”/></Property> 1625
 <Property name=”pps:price-unit”><Char value=”yen”/></Property> 1626
 <Property type=”Condition” name=”pps:parent”><Char value=”A001”/></Property> 1627
 <Property type=”Selection” name=”pps:id”/> 1628
 <Property type=”Selection” name=”pps:name”/> 1629
</Header> 1630
<Item id=”A001-01” name=”Part A001-01”/> 1631
<Item id=”A001-02” name=”Part A001-02”/> 1632
<Item id=”A001-03” name=”Part A001-03”/> 1633
</Document> 1634

 1635

 1636

3.5 XML Elements 1637

3.5.1 Message Structure 1638

Message is defined as unit information to send or receive by an application program at one time. A 1639
message that is exchanged between two parties SHOULD consist of one or more transaction elements or 1640
an implementation profile. 1641

The message content corresponds to any content in actual communication protocol such as SOAP, FTP 1642
and SMTP. Since this specification doesn’t address on how to exchange messages in IP (Internet 1643
Protocol) level, data envelope mechanisms such as SOAP can be considered as well as a simple SMTP 1644
and file transfer mechanism. 1645

This information MUST be specified in the following XML schema. 1646

 1647

 <xsd:complexType name="MessageType"> 1648
 <xsd:choice> 1649
 <xsd:element ref="ImplementProfile"/> 1650
 <xsd:element ref="Transaction" maxOccurs="unbounded"/> 1651
 </xsd:choice> 1652
 <xsd:attribute name="id" type="xsd:string" use="required"/> 1653
 <xsd:attribute name="sender" type="xsd:string"/> 1654

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 44 of 75

 <xsd:attribute name="security" type="xsd:string"/> 1655
 <xsd:attribute name="create" type="xsd:dateTime"/> 1656
 <xsd:attribute name="description" type="xsd:string"/> 1657
 </xsd:complexType> 1658

 1659

 id attribute SHOULD represent the identifier of the message. Every message SHOULD have a 1660
unique id in the scope of the sender or the requester. 1661

 sender attribute represents an identifier of the sender or requester of the message. This information 1662
is not for the low-level communication programs but for application programs. 1663

 security attribute represents a security text data such as pass words for authorization of the sender. 1664

 create attribute represents a date when the message is created. 1665

 description attribute represents any comments or descriptions. 1666

 1667

 Elements under this messageType element SHOULD follow the sentences: 1668

 ImplementProfile element represents a request of implementation profile or answer of 1669

implementation profile defined in Section 4. 1670

 Transaction element represents transaction information to process in the responder. 1671

 1672

In the case of representing XML format in messaging, the name of XML element can be described 1673
according to the following XML schema. In the case of describing in specific protocols such as SOAP, the 1674
payload body SHOULD be defined using MessageType. 1675

 1676

 <xsd:element name="Message" type="MessageType"/> 1677

 1678

3.5.2 Transaction element 1679

A transaction element represents information of a transaction step. In the case where application need to 1680
commit several actions during transaction, and where it need to cancel and rollback the actions it has 1681
already processed, transaction element can control such operations. 1682

Transaction element SHOULD consist of zero or more than zero domain documents. When it has multiple 1683
documents, the first document in the content is the primary document in the transaction. 1684

This information MUST be specified in the following XML schema. 1685

 1686

 <xsd:element name="Transaction"> 1687
 <xsd:complexType> 1688
 <xsd:sequence> 1689
 <xsd:element ref="Document" minOccurs="0" maxOccurs="unbounded"/> 1690
 </xsd:sequence> 1691
 <xsd:attribute name="id" type="xsd:string" use="required"/> 1692
 <xsd:attribute name="type" type="xsd:string"/> 1693
 <xsd:attribute name="confirm" type="xsd:string"/> 1694
 <xsd:attribute name="connection" type="xsd:string"/> 1695
 <xsd:attribute name="create" type="xsd:dateTime"/> 1696
 <xsd:attribute name="description" type="xsd:string"/> 1697
 </xsd:complexType> 1698
 </xsd:element> 1699

 1700

 id attribute SHOULD represent the identifier of the transaction. Several transaction elements that 1701
belong to a transaction process SHOULD have same id value. For example, transaction elements in 1702
the same messaging model have the same id value. Re-sending depending on errors SHOULD have 1703

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 45 of 75

the same transaction id as the previous one. Every transaction process SHOULD have a unique id in 1704
the scope of the sender or the requester. 1705

 type attribute represents transaction control type. “Start” SHOULD represent to start transaction, 1706
while “Commit” SHOULD represent commitment and finalize the transaction. If the value is “Cancel”, 1707
then it SHOULD represent that the transaction is canceled and the process stops. 1708

 confirm attribute represents a confirmation request. The value of the attribute MUST be either 1709

“Never”, “OnError”, or “Always”. 1710

 create attribute represents a date when the transaction is created. 1711

 description attribute represents any comments or descriptions. 1712

 1713

 Elements under the transaction element SHOULD follow the sentences: 1714

 Document element represents domain document to process in the responder. 1715

 1716

3.5.3 Document element 1717

Domain document is information unit to perform actions by application programs. Domain document is 1718
represented by document element. The specific list of domain documents which are necessary for 1719
production planning and scheduling can be described by application profile defined in Section 4. 1720

This information MUST be specified in the following XML schema. 1721

 1722

 <xsd:element name="Document"> 1723
 <xsd:complexType> 1724
 <xsd:sequence> 1725
 <xsd:element ref="Error" minOccurs="0" maxOccurs="unbounded"/> 1726
 <xsd:element ref="App" minOccurs="0"/> 1727
 <xsd:element ref="Spec" minOccurs="0" maxOccurs="unbounded"/> 1728
 <xsd:element ref="Condition" minOccurs="0" maxOccurs="unbounded"/> 1729
 <xsd:element ref="Selection" minOccurs="0" maxOccurs="unbounded"/> 1730
 <xsd:element ref="Header" minOccurs="0"/> 1731
 <xsd:choice minOccurs="0"> 1732
 <xsd:element ref="Party" minOccurs="0" maxOccurs="unbounded"/> 1733
 <xsd:element ref="Plan" minOccurs="0" maxOccurs="unbounded"/> 1734
 <xsd:element ref="Order" minOccurs="0" maxOccurs="unbounded"/> 1735
 <xsd:element ref="Item" minOccurs="0" maxOccurs="unbounded"/> 1736
 <xsd:element ref="Resource" minOccurs="0" maxOccurs="unbounded"/> 1737
 <xsd:element ref="Process" minOccurs="0" maxOccurs="unbounded"/> 1738
 <xsd:element ref="Lot" minOccurs="0" maxOccurs="unbounded"/> 1739
 <xsd:element ref="Task" minOccurs="0" maxOccurs="unbounded"/> 1740
 <xsd:element ref="Operation" minOccurs="0" maxOccurs="unbounded"/> 1741
 </xsd:choice> 1742
 </xsd:sequence> 1743
 <xsd:attribute name="id" type="xsd:string" use="required"/> 1744
 <xsd:attribute name="name" type="xsd:string" use="required"/> 1745
 <xsd:attribute name="ref" type="xsd:string"/> 1746
 <xsd:attribute name="action" type="xsd:string"/> 1747
 <xsd:attribute name="option" type="xsd:string"/> 1748
 <xsd:attribute name="event" type="xsd:string"/> 1749
 <xsd:attribute name="namespace" type="xsd:string"/> 1750
 <xsd:attribute name="create" type="xsd:dateTime"/> 1751
 <xsd:attribute name="description" type="xsd:string"/> 1752
 </xsd:complexType> 1753
 </xsd:element> 1754

 1755

 id attribute SHOULD represent the identifier of the message. Every transaction message SHOULD 1756
have a unique id in the scope of the sender or the requester. 1757

 name attribute represents name of domain document. The name SHOULD be selected from the list 1758
in the application profile. 1759

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 46 of 75

 ref attribute represents the identifier of a primary message document or other document that is in the 1760
same transaction element, when the transaction element has more than one document. 1761

 action attribute represents the type of the message, where the types correspond to verbs information 1762
for the message. Values of the attribute is either “Add”, “Change”, “Remove”, “Confirm”, “Notify”, 1763
“Sync”, “Get”, or “Show”. 1764

 option attribute represents any optional information that may be interpreted by the receiver of the 1765
message. 1766

 event represents the identifier of event. When the document requests synchronization message, this 1767
value show the name of event the responder show in the profile. Notify document of the event also 1768
has the event name in this attribute. 1769

 namespace attribute represents namespace of the name of this document. When the implementation 1770
profile of the sender application supports more than one namespace, this attribute is required to 1771
identify the corresponding profile. 1772

 create attribute represents a date when the transaction document is created. 1773

 description attribute represents any comments or descriptions. 1774

 1775

Elements under the transaction element SHOULD follow the sentences: 1776

 Error element represents error information. 1777

 App element represents any information for the application programs. 1778

 Spec element represents any particular specification of the document. This element is defined in 1779
Section 2. 1780

 Condition element represents any condition of selecting required domain objects. 1781

 Selection element represents any condition of selecting required properties of a domain object. 1782

 Header element represents information of the document independently defined from the domain 1783
objects. 1784

 Party, Plan, Order, Item, Resource, Process, Lot, Task, or Operation element represent domain 1785
objects. Different type of them SHOULD NOT be specified at the same parent Document element. 1786

 1787

Action type that the document element has in its action attribute determines the structure of the element 1788
available to specify. The table below shows the combination matrix. Each column shows different 1789
document action type, while the row shows available elements in the document element. The blank cell 1790
represents the corresponding element SHULD NOT be the child of the transaction element. “M” denotes 1791
that the corresponding element SHULD be defined in the parent element. And “O” denotes optional where 1792
the element may described depending on the situation. 1793

 1794

Table 3.3 Structure of document element 1795

 Add Change Remove Confirm Confirm

(Error)

Notify Sync Get Show Show

(Error)

Error element M M

App element O O O O O O O O O O

Condition
element

O O O O O

Selection
element

 M O

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 47 of 75

Header element M O M O

Primitive
element

M M M M

3.5.4 Error element 1796

Error information SHOULD be specified in the error element under Document elements when one 1797
application program needs to send the error results to the requester. The error elements MAY be 1798
specified in Show documents and Confirm documents. 1799

The Document element SHOULD have one or more Error elements if the document is sent as error 1800
information. The Document element SHOULD NOT have an Error element if the document is a normal 1801
response in the messaging models. 1802

This information MUST be specified in the following XML schema. The XML documents generated by the 1803
schema SHOULD be consistent with the following arguments. 1804

 1805

 <xsd:element name="Error"> 1806
 <xsd:complexType> 1807
 <xsd:attribute name="id" type="xsd:string"/> 1808
 <xsd:attribute name="ref" type="xsd:string"/> 1809
 <xsd:attribute name="code" type="xsd:string"/> 1810
 <xsd:attribute name="location" type="xsd:string"/> 1811
 <xsd:attribute name="status" type="xsd:string"/> 1812
 <xsd:attribute name="description" type="xsd:string"/> 1813
 </xsd:complexType> 1814
 </xsd:element> 1815

 1816

 id attribute SHOULD represent identifier that application can identify the error data. 1817

 ref attribute represents the document id that has the errors. 1818

 code attribute represents unique identifier of the error categories. The error code MAY consist of 1819

three digits. If the first digit is 0, then the code MAY represent as follows: 1820

 “000” represents “Unknown error”. 1821

 “001” represents “Connection error”. 1822

 “002” represents “Authorization error”. 1823

 “003” represents “Application is not ready”. 1824

 “004” represents “Message buffer is full”. 1825

 “005” represents “Syntax error (communication)”. 1826

 “006” represents “Syntax error (application logic)”. 1827

 “007” represents “Requested task is not supported”. 1828

 “008” represents “Requested task is denied”. 1829

 “009” represents “No data object requested in the document”. 1830

 “010” represents “Data object requested already exists”. 1831

 “011” represents “Application error”. 1832

 “012” represents “Abnormal exception”. 1833

 location attribute represents the location of error texts. 1834

 status attribute represents a status. Values of this attribute SHOULD include: 1835

 “Error” represents that the document is error notification. 1836

 “Warning” represents that the document is warning. 1837

 description attribute represents any description of the error explanations. 1838

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 48 of 75

3.5.5 App element 1839

Application information MAY be used by application programs by their own ways. For this purpose, App 1840
element is defined. App element is extension area for application programs who may want to have their 1841
own information by using another name spaces. If the application programs within a messaging model 1842
can decide to have a new namespace, they have their own XML schema under the App element. 1843

This element MUST be consistent with the following XML schema. 1844

 1845

 <xsd:element name="App"> 1846
 <xsd:complexType> 1847
 <xsd:sequence> 1848
 <xsd:any minOccurs="0" maxOccurs="unbounded"/> 1849
 </xsd:sequence> 1850
 </xsd:complexType> 1851
 </xsd:element> 1852

 1853

3.5.6 Condition element 1854

Condition element SHOULD represent any condition to select domain objects or domain properties. The 1855
conditions can be defined by Property elements, which can represent value or range of property values. 1856

If there is more than one Condition element in the same XML element, then these conditions SHOULD be 1857

regarded disjunctive manner. 1858

This information MUST be specified in the following XML schema. The XML documents generated by the 1859
schema SHOULD be consistent with the following arguments. 1860

 1861

 <xsd:element name="Condition"> 1862
 <xsd:complexType> 1863
 <xsd:sequence> 1864
 <xsd:element ref="Property" minOccurs="0" maxOccurs="unbounded"/> 1865
 </xsd:sequence> 1866
 <xsd:attribute name="id" type="xsd:string"/> 1867
 <xsd:attribute name="wildcard" type="xsd:string"/> 1868
 <xsd:attribute name="value" type="xsd:string"/> 1869
 <xsd:attribute name="version" type="xsd:string"/> 1870
 </xsd:complexType> 1871
 </xsd:element> 1872

 1873

 Property element represents any properties that restrict the target objects by describing a value or 1874
range of value. 1875

 1876

 id attribute SHOULD represent the identifier of the target domain object. When the target object is 1877
known, then this value is specified instead of describing any other conditions. 1878

 wildcard attribute represents the name of property that is used to apply wildcard value. The wildcard 1879
text is specified in the value attribute. 1880

 value attribute represents the wildcard text for selecting the target domain objects. The text is 1881
interpreted by regular expression rules [PCRE]. 1882

 version attribute represents version name of the target object. The format of version texts is 1883

managed in application programs. Values of this attribute MAY include: 1884

 “Latest” --- the latest version object 1885

 “Earliest” – the earliest version object 1886

 any string that represent a version identifier 1887

 1888

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 49 of 75

3.5.7 Selection element 1889

Selection element SHOULD represent information for appropriate properties to be selected in the all 1890
domain properties in the domain object. Selection elements are used in Get documents and Change 1891

documents. 1892

In Change documents, Selection element is used to select the property that the requester tries to change 1893
the value. In Get documents, Selection element is used to select the target properties to select in the 1894
Show document. If there is no Select element in Get document, then the corresponding Show document 1895

doesn’t have any domain objects in its document body. 1896

When the target property of selection is multiple, then the parent Get document or Change document is 1897
required for each attribute object that the multiple property is defined. 1898

This information MUST be specified in the following XML schema. The XML documents generated by the 1899
schema SHOULD be consistent with the following arguments. 1900

 1901

 <xsd:element name="Selection"> 1902
 <xsd:complexType> 1903
 <xsd:sequence> 1904
 <xsd:element ref="Condition" minOccurs="0" maxOccurs="unbounded"/> 1905
 <xsd:element ref="Property" minOccurs="0" maxOccurs="unbounded"/> 1906
 </xsd:sequence> 1907
 <xsd:attribute name="type" type="xsd:string"/> 1908
 <xsd:attribute name="multiple" type="xsd:boolean"/> 1909
 <xsd:attribute name="count" type="xsd:int"/> 1910
 <xsd:attribute name="offset" type="xsd:int"/> 1911
 </xsd:complexType> 1912
 </xsd:element> 1913

 1914

 Condition element represents any condition for selecting members of a multiple property, when the 1915
multiple attribute is “true”. Change or Get document can restrict its target by this condition. 1916

 Property element represents any property required to describe in the target domain objects. In the 1917
case of Get document in PULL model, the corresponding information of this property is addressed in 1918
the body of the response document. More than one Property elements which represent multiple 1919
property SHOULD NOT be described in the same Selection element. 1920

 1921

 type attribute represents the type of action after selecting the target properties. The available values 1922

are defined depending on the type of document. 1923

 “Insert” for Change document represents that the property value is inserted, this is default value. 1924
This value is not described in Get document. 1925

 “Update” for Change document represents that the property value is updated. This value is not 1926
described in Get document. 1927

 “Delete” for Change document represents that the property value is deleted. This value is not 1928
described in Get document. 1929

 “None” for Get document can represent that the target is specified by Property element. This is 1930

default value. This value is not described in Change document. 1931

 “Typical” for Get document can represent that the target property is typical set. This value is not 1932
described in Change document. 1933

 “All” for Get document can represent that the target property is all properties in the object. This 1934
value is not described in Change document. 1935

 multiple attribute for Get document shows whether the selected property is regarded as multiple or 1936
single one. If application profile or implementation profile shows that the property is single, then the 1937
selected property is regarded as single. No description of this attribute represents single property. 1938

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 50 of 75

 count attribute for Get document represents the maximum number of properties selected by the 1939
Property element for the domain object. This value is not described in Change document. This value 1940
is not be described for single property suggested by multiple attribute. 1941

 offset attribute for Get document represents the number of skipping the properties selected by the 1942
Property element for the domain object. This value is not described in Change document. This value 1943
is not described for single property suggested by multiple attribute. 1944

 1945

3.5.8 Header element 1946

Header element is used for representing header information in Show and Notify documents. The header 1947
information is described for any data depending on the document from an entire perspective. In Get 1948
document, Header element MAY be used to make brief inquiry of domain object that is not in the target of 1949
domain document. The Header element SHOULD be described in document elements. 1950

This information MUST be specified in the following XML schema. The XML documents generated by the 1951
schema SHOULD be consistent with the following arguments. 1952

 1953

 <xsd:element name="Header"> 1954
 <xsd:complexType> 1955
 <xsd:sequence> 1956
 <xsd:element ref="Property" minOccurs="0" maxOccurs="unbounded"/> 1957
 </xsd:sequence> 1958
 <xsd:attribute name="id" type="xsd:string"/> 1959
 <xsd:attribute name="class" type="xsd:string"/> 1960
 <xsd:attribute name="title" type="xsd:string"/> 1961
 <xsd:attribute name="count" type="xsd:int"/> 1962
 <xsd:attribute name="offset" type="xsd:int"/> 1963
 </xsd:complexType> 1964
 </xsd:element> 1965

 1966

 Property element represents any property of the target object in the header or any aggregation value 1967
of domain objects in the body of the document. 1968

 1969

 id attribute SHOULD represent ID of the target object that is shown in the header by describing its 1970
property in the “Property” element. 1971

 class attribute represents the target domain object that the header shows the information in its 1972
Property elements. If there is no class attribute, then it represents that the target domain object is 1973
those that the domain document refers to as default. 1974

 title attribute represents a title of the document. 1975

 count attribute represents the number of domain objects in the document. When this attribute is used 1976
in Notify document and Show document, the value equals to the number of object in the body of the 1977
document. In Get document, the value represents the maximum number of objects the receiver is 1978
expecting in the Show document. 1979

 offset attribute represents the offset number of data list. When the objects in the document are not all 1980
of the existing objects in the sender, the offset value shows the relative position of the first object on 1981
the document body in the whole objects. This attribute can be used in Get document as a request to 1982
offset the response data. In Notify and Show document, this value shows the offset number of the 1983
body. 1984

 1985

3.5.9 Property element 1986

Property element represents property information of domain objects under Condition element, Selection 1987
element and Header element. When Condition element has a Property element, it shows condition of 1988

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 51 of 75

selecting the domain objects. When Selection element has a Property element, it shows the target 1989
property of changing or getting documents. When Header element has a Property element, it shows a 1990

property of the header object or aggregation information of the body objects. 1991

This information MUST be specified in the following XML schema. The XML documents generated by the 1992
schema SHOULD be consistent with the following arguments. 1993

 1994

 <xsd:element name="Property"> 1995
 <xsd:complexType> 1996
 <xsd:choice> 1997
 <xsd:element ref="Qty" minOccurs="0" maxOccurs="unbounded"/> 1998
 <xsd:element ref="Char" minOccurs="0" maxOccurs="unbounded"/> 1999
 <xsd:element ref="Time" minOccurs="0" maxOccurs="unbounded"/> 2000
 </xsd:choice> 2001
 <xsd:attribute name="type" type="xsd:string"/> 2002
 <xsd:attribute name="name" type="xsd:string"/> 2003
 <xsd:attribute name="path" type="xsd:string"/> 2004
 <xsd:attribute name="value" type="xsd:string"/> 2005
 <xsd:attribute name="sort" type="xsd:string"/> 2006
 <xsd:attribute name="calc" type="xsd:string"/> 2007
 <xsd:attribute name="display" type="xsd:string"/> 2008
 </xsd:complexType> 2009
 </xsd:element> 2010

 2011

 Qty, Char, and Time elements represent a value of the property. These elements are defined in 2012
Section 2. When the property is described in Condition elements, constraint of property value MAY 2013
be described, where the value attribute in Qty, Char, and Time element shows the value of 2014
constraints, and condition attribute in Qty, Char, and Time element shows constraint type. Multiple 2015

constraints under one property is regarded conjunctive. 2016

 2017

 type attribute represents a type of property. This attribute is used only when the Property element is 2018
defined under the Header element. The value of this attribute is one of the followings: 2019

 “Target” --- the property of the header target object, 2020

 “Condition” --- the condition data of the objects in the body. This data is copied from the property 2021
data in the Condition element. 2022

 “Selection” --- the selection data of the properties of objects in the body. This data is copied from 2023
the property data in the Selection element. 2024

 name attribute represents a name of property. The value of this attribute is the string that is defined 2025

in the corresponding profile or a name of user-extended property whose name is starting with “user:”. 2026

 path attribute represents X-path string that shows the position of the data in the corresponding 2027
primitive element. This attribute is required only if the value of the “name” attribute shows that the 2028
property is user-extended property, because such path data is predefined in the profile for the others. 2029

 value attribute represents the value of property in Selection element and Header element. When this 2030
attribute is described, then the value described in Qty, Char and Time SHOULD be ignored. When 2031
the data type of this attribute is Qty or Time, then the value needs to be parsed to the corresponding 2032
data type. 2033

 sort attribute represents that the objects in the body of this document are expected to be sorted by 2034
ascending or descending order. For Get document, this attribute SHOULD be used in under 2035
Selection element. For Show document and Notify document, this attribute SHOULD be specified in 2036
Header element. If more than one Property element that has sort attribute are described in Get 2037
document, these sort requests SHOULD be applied in the priority rule that the faster element 2038
dominate the followers. This attribute SHOULD NOT use together with the calc attribute. 2039

 “Asc” --- sort in ascending order, 2040

 “Desc” --- sort in descending order. 2041

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 52 of 75

 calc attribute represents that the property is expected to be calculated for the objects in the body of 2042
this document. For Get document, this attribute is used in Selection element. For Show document 2043
and Notify document, this attribute is described in Header element. This attribute does not use 2044
together with the sort attribute. 2045

 “Sum” --- summary of the value of properties of the target objects, 2046

 “Ave” --- average of the value of properties of the target objects, 2047

 “Max” --- maximum value of properties of the target objects, 2048

 “Min” --- minimum value of properties of the target objects, 2049

 “Count” --- the number of the target objects in the body. 2050

 display attribute represents the text string that can be shown in the header line for each primitive for 2051
explanation. This attribute is used only under the Header element. 2052

 2053

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 53 of 75

4 Profile Specifications 2054

4.1 Application profile Definitions 2055

4.1.1 General 2056

Application profile definition is a set of specifications for all application programs that may be involved in 2057
the communication exchanging PPS transaction messages. Each application program may send and 2058
receive messages that consist of domain documents, domain objects and domain properties. The 2059
application profile definition provides all available domain documents, domain objects and domain 2060
primitives. 2061

Application programs can exchange their messages correctly when they understand the semantics of 2062
information in the message. In order to do this, application profile definition helps agreement of common 2063
usage and understanding of domain documents, domain objects and domain properties. 2064

Several application profile definitions can exist independently for the same problem domain. Two 2065
application programs cannot communicate each other if they don’t refer a common application profile. In 2066
order to avoid such a situation, this specification provides an extension mechanism in which a standard 2067
profile definition can be extended to an extended profile definition for particular group in local domain. 2068

Figure 4.13 shows the structure of application profiles. Application profile is either a standard profile 2069
definition or an extended profile definition. Figure also shows that an implementation profile refers an 2070
application profile without regarding distinction of standard profile definition and extended profile 2071
definition. 2072

 2073

Application profile

Standard profile definition

Extended profile definition

Implementation profile

extended

selected

 2074

Figure 4.13 Structure of profile specifications 2075

 2076

As an example of standard profile definition, PPS TC supports the PSLX profile [PROFILE] for this 2077
planning and scheduling domain. However, this specification only shows general rules and structures of a 2078
standard profile definition. 2079

4.1.2 Structure of profile definitions 2080

Application profile SHOULD have a list of domain documents and a list of domain objects. In addition, 2081
application profile MAY have a list of enumerations, which shows available value set of a domain property 2082
of a domain object. 2083

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 54 of 75

Application profile definition SHOULD be described by AppProfile element defined in Section 4.3.1. This 2084

element SHOULD appear in the top level of the XML document. 2085

All candidates of domain documents, which may be used by any application program who sends or 2086
receives a message in the target domain, SHOULD be specified using AppDocument element under the 2087
AppProfile element. 2088

All domain objects, which are used in any domain document defined in AppDocument elements, 2089
SHOULD be specified in AppObject element under the AppProfile element. An AppObject has a list of 2090
properties that represent the characteristics of the object. Each property SHOULD be described in 2091
AppProperty under the AppObject. 2092

 2093

AppProfile

AppObject

AppProperty

AppDocument

AppObject

 2094

Figure 4.14 Application Profile 2095

 2096

The structure of application profile is illustrated in Figure 4.14. Domain document represented by 2097
AppDocument has domain objects represented by AppObject. The domain objects that is listed in the 2098
same document SHOULD be the same class objects defined in one AppObject in the application profile. 2099
The application profile defines domain objects independent from domain documents, because the domain 2100
objects may be referred from several different kinds of domain documents. 2101

 2102

Example: Application profile definition 2103

<AppProfile name=”pps-profile” prefix="pps" namespace="http://www.oasis-2104
open.org/committees/pps/profile-1.0"> 2105
 <AppObject name="Product" primitive=”Item”> 2106
 <AppProperty name="id" path="@id"/> 2107
 <AppProperty name="name" path="@name"/> 2108
 … 2109
 <AppProperty name="Size" path="Spec[@type=”size”]/@value"/> 2110
 <AppProperty name="Color" path="Spec[@type=”color”]/@value"/> 2111
 … 2112
 </AppObject> 2113
 … 2114
 <AppDocument name="ProductRecord" object=”Product”/> 2115
 <AppDocument name="ProductInventory" object=”Product”/> 2116
 <AppDocument name="BillOfMaterials" object=”Product”/> 2117
 <AppDocument name="BillOfResources" object=”Product”/> 2118
 … 2119
</AppProfile> 2120

 2121

 2122

4.1.3 Standard profile definitions 2123

An application profile that does not have a base profile is a standard profile. Standard profile definition 2124
SHOULD be specified in consistent with the following rules: 2125

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 55 of 75

 Standard profile definition SHOULD have a name to identify the definition among all application 2126
programs in world-wide. Unique identifier such as URI is required. 2127

 The name of standard profile definition contains information of revision, and the revision of the 2128
definition SHOULD follow the rule defined in Section 4.1.5. 2129

 Standard profile definition SHOULD NOT have a base definition as a reference of other standard 2130
profile definitions. 2131

 Standard profile definition SHOULD be published among application programs and accessible by all 2132
the application programs in the problem domain via Internet by announcing the URL the application 2133
can download the document. 2134

 Standard profile definition SHOULD have the domain object in Table 4.4 or sub-class of Table 4.1 2135
domain objects. The domain objects SHOULD be represented by the primitive elements determined 2136
by the table. 2137

 Every domain object in a standard profile definition SHOULD have a domain property that shows 2138
identifier of the object. The domain property SHOULD be represented by id attribute of the primitive 2139
XML element in Table 4.1. 2140

 2141

Table 4.4 Domain objects required in standard profile definitions 2142

Object Name XML Element Description

Party Party Party such as customers and suppliers

Plan Plan Plan of production, capacity, inventory, etc.

Order Order Request of products and services

Item Item Items to produce or consume

Resource Resource Production resource such as machine and personnel

Process Process Production process

Lot Lot Actual lots produced in the plant

Task Task Actual tasks on certain resources

Operation Operation Actual operations in the plant

 2143

4.1.4 Extended profile definitions 2144

Standard profile definition MAY be extended by an extended profile definition. Extended profile definition 2145
MAY also be extended recursively. This is also represented by AppProfile element. Extended profile 2146

definitions SHOULD have a reference of a standard profile definition, which is the base of extension. 2147

Extended profile definition MAY add domain documents, domain objects and domain properties which 2148
have not been defined in the standard profile definition. Additional information of domain documents, 2149
domain objects and domain properties SHOULD be defined in the same way as the definition in standard 2150
profile definitions. 2151

Extended profile definitions MAY modify the domain documents, domain objects and domain properties 2152
addressed in the standard profile. In order to modify the definition, extended profile SHOULD describe 2153
new contents with the same identification name of the document, object or property. 2154

Extended profile definitions SHOULD NOT remove the domain documents, domain objects and domain 2155
properties addressed in the standard profile. 2156

Enumerations MAY be added or modified to the standard profile definition. When extended profile 2157
describes enumeration name which is in the standard profile, the candidates of the enumeration are 2158

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 56 of 75

replaced to those in the standard. Extended profile definitions SHOULD NOT remove any enumeration in 2159
the application profile. 2160

 2161

Example: Extended application profile 2162

<AppProfile prefix="ex1" name="pps-profile-1.1” namespace=”http://www.pslx.org/profile-2163
1" base="pps-profile-1.0"> 2164
 <Enumeration name="groupType"> 2165
 <EnumElement name="high" description="description of a"/> 2166
 <EnumElement name="low" description="description of b"/> 2167
 </Enumeration> 2168
 <AppObject name=”Consumer”> 2169
 <AppProperty name="group" path="Spec[type=’pslx:group’]/@value" 2170
enumeration="groupType"/> 2171
 </AppObject> 2172
</AppProfile> 2173

 2174

Example shows an application profile extended from the standard profile. The new profile has additional 2175
enumeration named “groupType”, and then a new Consumer object is defined with a new property which 2176
has a name “group” and the additional enumeration type. 2177

4.1.5 Revision rule 2178

After an application profile definition has been created, many application programs are developed 2179
according to the profile definition. In accordance with the industrial experiences, the old definition may be 2180
required to modify for domain specific reasons in the application domain. 2181

Any application profile SHOULD NOT be changed without keeping the following rules after when the 2182
profile definition has been published. Otherwise, the new profile SHOULD have a new name that doesn’t 2183
have any relation with the previous one. 2184

There are two revision levels. One is a revision that the system developers have to deal with the new 2185
specification and change if necessary. The other is editorial revision where the any program doesn’t need 2186
to care in terms of interoperability. To inform the former cases, the name of profile SHOULD be changed 2187
by adding the revision numbers. For the latter cases, instead of changing the name of profile, the actual 2188
file name of the profile, specified at the location attribute in the AppProfile element SHOULD be changed. 2189

In order to represent the revision status in the profile name, there are two portions of digits in the name of 2190
profile definitions: major revision and minor revision. They are following the original identification name or 2191
the profile separated by dash “-” mark. The two portion is separated by the dot “.” character. 2192

When the major version increases, it: 2193

 SHOULD NOT change the name of the profile excepting the portion representing the revision status. 2194

 SHOULD NOT change the prefix and namespece in the attribute of AppProfile element. 2195

 SHOULD NOT change the domain object in AppDocument element. 2196

When the minor version increases, it: 2197

 SHOULD follow the rule of major version increasing, 2198

 SHOULD NOT change the domain properties in the domain objects. 2199

 SHOULD NOT change the enumeration definition in the AppProfile element. 2200

 2201

4.2 Implementation profiles 2202

4.2.1 General 2203

Application program may not have all capability in dealing with the domain documents, domain objects 2204
and domain properties defined in the application profile definitions. Implementation profiles are the 2205

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 57 of 75

selection of domain documents, domain objects and domain properties from application profile definitions 2206
by application programs depending on the capability of the program. 2207

When an application program tries to send a message to another application program, system integrator 2208
may need to confirm whether or not the receiving application program has capability to response the 2209
message. Then an implementation profile of an application program shows such capability to send or 2210
receive information. 2211

 2212

Implementation

profile 1

Implementation

profile 2

Application profile definitions

(Program 1)

(Program 2)

K H A C G J P U M

A G J P M

K A C G M

Available

communication

 2213

Figure 4.15 Concept of communication availability between implementations 2214

 2215

Figure 4.15 explains a concept of communication availability between two application programs. Each 2216
application program that refers a same application profile has an implementation profile that has a list of 2217
items available to communicate, by selecting from the candidates defined in the application profile. Tow 2218
application programs can exchange a message properly if the both implementations have the 2219
corresponding capability. 2220

An application program MAY have two or more than two implementation profiles each of which 2221
corresponding to different application profile definitions. An implementation profile SHOULD have a 2222
corresponding application profile definition. 2223

To confirm the capability of any application program, section 4.2.4 provides the method of how to get the 2224
information by receiving an implementation profile from the program. 2225

4.2.2 Structure of implementation profiles 2226

Implementation profiles defined for application programs SHOULD be described by ImplementProfile 2227
element in XML format. The information includes domain documents, domain objects and domain 2228
properties available to process by the application program. For each domain document, implementation 2229
level, which shows the application program have all functions or not in terms of transactions defined in 2230
Section 3, can be defined. 2231

Every implementation profile has a reference to a certain application profile. However, it doesn’t show 2232
whether the application profile is a standard or extended. From the perspective of application programs, 2233
distinction between standard profile definition and extended profile definition has no sense. 2234

ImplementProfile element MAY be described under Transaction element defined in Section 3. Therefore, 2235
this can be send or receive through a PPS transaction process. Using Get and Show transactions, two 2236
application programs can exchange the implementation profile. 2237

An ImplementProfile element has ImplementDocument elements each of which represents availability for 2238
any domain document. An ImplementDocument element has ImplementAction, ImplementProperty and 2239
ImplementEvent. 2240

ImplementAction element represents information of implemented type of transaction such as Get, Show, 2241
Add, and so forth. ImplementProperty element represents implemented properties of the domain object. 2242

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 58 of 75

ImplementEvent represents any event definitions that the application program monitors properties and 2243
publish notifications of event defined on the property. Figure 4.16 shows the structure of 2244
ImplementProfile, ImplementDocument, ImplementAction, and ImplementProperty elements. 2245

 2246

ImplementProfile

ImplementDocument

ImplementAction

ImplementProperty

Domain document

Get Show Add

Actions

Implementation Profile Application profile

Domain object

Domain property

Domain property

…

ImplementEvent

 2247

Figure 4.16 Structure of ImplementProfile 2248

 2249

All domain documents represented by ImmplementProfile SHOULD be in the list of the corresponding 2250

application profile definition. 2251

Domain documents in implementation profile SHOULD have a domain property if the property is defined 2252
in the application profile as a primary key of the object or as a property that is always required. 2253

The following example shows an implementation profile of an application program that communicates 2254
with other program under an application profile. Then the implementation profile of the example is the 2255
selection of the application profile representing domain documents, transaction types and domain 2256
properties. 2257

 2258

Example: Implementation profile of a program for an application profile 2259

<ImplementProfile id=”AP001” action=”Notify”> 2260
 <ImplementDocument name=”Product”> 2261
 <ImplementAction action=”Get” level=”1”/> 2262
 <ImplementAction action=”Show” level=”1”/> 2263
 <ImplementAction action=”Add” level=”2”/> 2264
 <ImplementProperty name=”id” title=”Company ID”/> 2265
 <ImplementProperty name=”name” title=”Company name”/> 2266
 </ImplementDocument> 2267
 <ImplementDocument name=”ProductInventory”> 2268
 … 2269
 </ImplementDocument> 2270
 …. 2271
</ImplementProfile> 2272

 2273

In accordance with the implementation profile, the application program sends or receives a message that 2274
SHOULD have a domain document listed in the implementation profile. The domain properties in the 2275
object SHOULD be one of the domain properties defined in the application profile. 2276

 2277

Example: A message created on the implementation profile 2278

<Document name=”Product” id=”001” action=”Get” 2279
 namespace="http://www.oasis-open.org/committees/pps/profile-1.0"> 2280
 <Condition> 2281
 <Property name=”pps:name” value=”MX-001”/> 2282
 <Property name=”pps:color” value=”white”/> 2283
 </Condition> 2284

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 59 of 75

 <Selection type=”All”/> 2285
</Document> 2286

 2287

Above example shows a message of a Get document created by an application program. The properties 2288
referred to as “name” and “color” are specified in this message. The properties are defined in the 2289
implementation profile as well as the application profile. The prefix “pps” and colon mark are added at the 2290
front of the name to notify that the name is defined in the profile. 2291

4.2.3 Level of implementation 2292

Domain documents can be sent or received by application programs in any types of action including Add, 2293
Change, Remove, Get, Show, Notify and Sync. These actions are prescribed in Section 3. Level of 2294
implementation represents whether or not the functions prescribed in Section 3 are fully implemented or 2295
partially implemented 2296

The certain level of Partial implementation is defined in Section 3 depending on the type of transaction. 2297
When the application program informs Partial implementation, it SHOULD have full capability of functions 2298
defined in the partial implementation in Section 3. 2299

An application program MAY define a level of implementation for each pair of document and transaction 2300
type for each application profile definition. 2301

4.2.4 Profile inquiry 2302

All application programs SHOULD send implementation profile as a Show transaction message or Notify 2303
transaction message. Application programs SHOULD have capability to response implementation profile 2304
as Show message when it receives an ImplementProfile inquiry in a form of Get message. 2305

When responding to the Get message of implementation profile in PULL model, the program SHOULD 2306
send corresponding Show message that is made of ImplementProfile element or Error element. 2307

This capability of implement profile inquiry SHOULD NOT be in the available list of ImplementProfile by 2308
itself. Since any Condition and Selection element cannot be described in ImplementProfile, the inquiry of 2309

implementation profile can only request all the information of implement profiles. 2310

 2311

Example: Inquiry of implementation profile for PPS standard profile definition 2312

<Message id=”A01” sender=”A”> 2313
 <ImplementProfile action=”Get” /> 2314
</Message> 2315

 2316

Example: Answer of the inquiry in above example 2317

<Message id=”B01” sender=”B”> 2318
<ImplementProfile id=”B01” action=”Show” > 2319
 <ImplementDocument name="Supplier"> 2320
 <ImplementAction action="Get" level="1"/> 2321
 <ImplementAction action="Add"/> 2322
 <ImplementProperty name="id" display="NO"/> 2323
 <ImplementProperty name="name" display="NAME"/> 2324
 … 2325
 </ImplementDocument> 2326
 2327
</ImplementProfile > 2328
</Message> 2329

 2330

Examples are the request of implementation profile and its response. By the message in the first example 2331
, the responder needs to answer its capability on the application profiles. 2332

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 60 of 75

4.3 XML Elements 2333

4.3.1 AppProfile Element 2334

AppProfile element SHOULD represent an application profile. Standard application profile and extended 2335
application profile are both represented by this element. This is a top level element in an application 2336
profile, and has Enumeration element, AppObject element, and AppDocument element. 2337

This information SHOULD be specified in the following XML schema. The XML documents generated by 2338
the schema SHOULD be consistent with the following arguments. 2339

 2340

 <xsd:element name="AppProfile"> 2341
 <xsd:complexType> 2342
 <xsd:sequence> 2343
 <xsd:element ref="Enumeration" minOccurs="0" maxOccurs="unbounded"/> 2344
 <xsd:element ref="AppObject" minOccurs="0" maxOccurs="unbounded"/> 2345
 <xsd:element ref="AppDocument" minOccurs="0" maxOccurs="unbounded"/> 2346
 </xsd:sequence> 2347
 <xsd:attribute name="name" type="xsd:string" use="required"/> 2348
 <xsd:attribute name="base" type="xsd:string"/> 2349
 <xsd:attribute name="location" type="xsd:string"/> 2350
 <xsd:attribute name="prefix" type="xsd:string"/> 2351
 <xsd:attribute name="namespace" type="xsd:string"/> 2352
 <xsd:attribute name="create" type="xsd:string"/> 2353
 <xsd:attribute name="description" type="xsd:string"/> 2354
 </xsd:complexType> 2355
 </xsd:element> 2356

 2357

 Enumeration element SHOULD represent any enumeration type that is used as a special type of 2358
properties. 2359

 AppObject element SHOULD represent any domain objects used in the domain documents defined in 2360

this profile. 2361

 AppDocument element SHOULD represent any domain documents that the applications may send or 2362
receive on this profile. 2363

 2364

 name attribute SHOULD represent the name of this application profile. The name SHOULD be unique 2365
in the namespace. This attribute is REQUIRED. 2366

 base attribute SHOULD represent the base application profile when this profile is an extended 2367

application profile. 2368

 location attribute SHOULD represent the location where the profile can be downloaded via Internet. 2369

 prefix attribute SHOULD represent the prefix text that is added in the name of values that are 2370
qualified by this profile. 2371

 namespace attribute SHOULD represent the namespace when this profile is used in a specific 2372

namespace. 2373

 create attribute SHOULD represent the date of creation of the profile 2374

 description attribute SHOULD represent any description related to this profile. 2375

4.3.2 AppDocument Element 2376

AppDocument element SHOULD represent a domain document that is contained in a message of any 2377
transactions. All domain documents that may appear in messages SHOULD be described in 2378
AppApplication element that corresponds to an application profile. 2379

This information SHOULD be specified in the following XML schema. The XML documents generated by 2380
the schema SHOULD be consistent with the following arguments. 2381

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 61 of 75

 2382

 <xsd:element name="AppDocument"> 2383
 <xsd:complexType> 2384
 <xsd:attribute name="name" type="xsd:string" use="required"/> 2385
 <xsd:attribute name="object" type="xsd:string"/> 2386
 <xsd:attribute name="category" type="xsd:string"/> 2387
 <xsd:attribute name="description" type="xsd:string"/> 2388
 </xsd:complexType> 2389
 </xsd:element> 2390

 2391

 name attribute SHOULD represent the name of the domain document. The name SHOULD be unique 2392

in the namespace to identify the type of the document. This attribute is REQUIRED. 2393

 object attribute SHOULD represent the name of domain object that the document MAY have in the 2394
body as its content. One document SHOULD have one kind of domain object. All objects referred by 2395
this attribute SHOULD be defined in the same application profile or base application profile. This 2396
attribute is REQUIRED. 2397

 category attribute SHOULD represent any category of the domain document. This information is used 2398
for making any group by categorizing various documents. Same group documents have same value 2399
for this attribute. This attribute is OPTIONAL. 2400

 description attribute SHOULD represent any description of the domain document. Any comments and 2401

additional information of the document may be specified there. This attribute is OPTIONAL. 2402

4.3.3 AppObject Element 2403

AppObject element SHOULD represent a domain object corresponding to any actual object in the target 2404
problem domain. All domain objects that are referred to from domain documents in the application profile 2405
SHOULD be described in the AppObject element. 2406

This information SHOULD be specified in the following XML schema. The XML documents generated by 2407
the schema SHOULD be consistent with the following arguments. 2408

 2409

 <xsd:element name="AppObject"> 2410
 <xsd:complexType> 2411
 <xsd:sequence> 2412
 <xsd:element ref="AppProperty" minOccurs="0" maxOccurs="unbounded"/> 2413
 </xsd:sequence> 2414
 <xsd:attribute name="name" type="xsd:string" use="required"/> 2415
 <xsd:attribute name="primitive" type="xsd:string" use="required"/> 2416
 <xsd:attribute name="description" type="xsd:string"/> 2417
 </xsd:complexType> 2418
 </xsd:element> 2419

 2420

 AppProperty element SHOULD represent a property that may be described in the domain objects of 2421
the application profile definition. All possible properties SHOULD be described in the domain object 2422
represented by AppObject. 2423

 2424

 name attribute SHOULD represent the name of the object. The name SHOULD be unique under the 2425
application profile definition in the selected namespace. This attribute is REQUIRED. 2426

 primitive attribute SHOULD represent a primitive element name selected from the primitive element 2427
list defined in Section 2. Since every domain object is a subclass of one in the primitive objects, all 2428
AppObject elements SHOULD have a primitive attribute. This attribute is REQUIRED. 2429

 description attribute SHOULD represent any description of the domain object. This attribute is 2430
OPTIONAL. 2431

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 62 of 75

4.3.4 AppProperty Element 2432

AppProperty element SHOULD represent a domain property of a domain object. All properties that may 2433
be defined to represent the characteristics of the domain object SHOULD be described under the 2434
AppObject corresponding to the domain object. 2435

This information SHOULD be specified in the following XML schema. The XML documents generated by 2436
the schema SHOULD be consistent with the following arguments. 2437

 2438

 <xsd:element name="AppProperty"> 2439
 <xsd:complexType> 2440
 <xsd:attribute name="name" type="xsd:string"/> 2441
 <xsd:attribute name="path" type="xsd:string"/> 2442
 <xsd:attribute name="multiple" type="xsd:string"/> 2443
 <xsd:attribute name="key" type="xsd:string"/> 2444
 <xsd:attribute name="enumeration" type="xsd:string"/> 2445
 <xsd:attribute name="dataType" type="xsd:string"/> 2446
 <xsd:attribute name="use" type="xsd:string"/> 2447
 <xsd:attribute name="description" type="xsd:string"/> 2448
 </xsd:complexType> 2449
 </xsd:element> 2450

 2451

 name attribute SHOULD represent the name of the property. The name SHOULD be unique in the 2452
domain object defined by AppObject to identify the property. This attribute is REQUIRED. 2453

 path attribute SHOULD represent the location of the attribute data in the primitive XML description 2454
defined in Section 2. The specification of the path SHOULD conform to [PATH]. If the profile is a 2455
standard application profile, this attribute is REQUIRED, and otherwise OPTIONAL. 2456

 multiple attribute SHOULD represent whether the property can have multiple values or not. If the 2457
value of this attribute is positive integer or “Unbounded”, actual message described by Section 2 2458
specification can have corresponding number of values for this property. This attribute is OPTIONAL. 2459

 key attribute SHOULD represent whether or not this property is primary key of the domain object to 2460
identify the target object from the instances in the database. If the value is “True”, then this property is 2461
primary key. Primary key SHOULD NOT defined more than one in the same domain object. 2462

 enumeration attribute SHOULD represent the name of enumeration type when the property has a 2463
value in the enumeration list. The name of enumeration type SHOULD be specified in Enumeration 2464

elements in the same application profile definition. This attribute is OPTIONAL. 2465

 dataType attribute SHOULD represent the data type of the property. The value of this attribute 2466
SHOULD be “Qty”, “Char” or “Time”. The data type described in the attribute SHOULD be the same 2467
as the data type of attribute on the body elements identified by the path attribute. 2468

 use attribute SHOULD represent that the property is mandatory for any implementation, if the value of 2469

this attribute is “Required”. 2470

 description attribute SHOULD represent any description of the domain property. This attribute is 2471
OPTIONAL. 2472

4.3.5 Enumeration Element 2473

Enumeration element SHOULD represent an enumeration type that has several items in a list format. If a 2474
property of a domain object has the enumeration type, then the property SHOULD have one of any items 2475
in the enumeration list. 2476

Enumeration type is independent from any domain object in the application profile definition. Therefore, 2477
several different domain objects MAY have different properties that has the same enumeration type. 2478

This information SHOULD be specified in the following XML schema. The XML documents generated by 2479
the schema SHOULD be consistent with the following arguments. 2480

 2481

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 63 of 75

 <xsd:element name="Enumeration"> 2482
 <xsd:complexType> 2483
 <xsd:sequence> 2484
 <xsd:element ref="EnumElement" maxOccurs="unbounded"/> 2485
 </xsd:sequence> 2486
 <xsd:attribute name="name" type="xsd:string" use="required"/> 2487
 <xsd:attribute name="description" type="xsd:string"/> 2488
 </xsd:complexType> 2489
 </xsd:element> 2490

 2491

 EnumElement element SHOULD represent an item of the list that the enumeration type has as 2492
candidates of property value. 2493

 2494

 name attribute SHOULD represent a name of this enumeration type. The name SHOULD be unique 2495

in the application profile definition. This attribute is REQUIRED. 2496

 description attribute SHOULD represent any description of the enumeration type. This attribute is 2497
OPTIONAL. 2498

4.3.6 EnumElement Element 2499

EnumElement element SHOULD represent an item of enumeration list. A property that is defined with the 2500

enumeration type SHOULD select one of the items from the enumeration list. 2501

This information SHOULD be specified in the following XML schema. The XML documents generated by 2502
the schema SHOULD be consistent with the following arguments. 2503

 2504

 <xsd:element name="EnumElement"> 2505
 <xsd:complexType> 2506
 <xsd:attribute name="value" type="xsd:string" use="required"/> 2507
 <xsd:attribute name="primary" type="xsd:boolean"/> 2508
 <xsd:attribute name="alias" type="xsd:int"/> 2509
 <xsd:attribute name="description" type="xsd:string"/> 2510
 </xsd:complexType> 2511
 </xsd:element> 2512

 2513

 value attribute SHOULD represent value texts that can be selected from the enumeration list. The 2514
value SHOULD be unique in the value list of the enumeration type. This attribute is REQUIRED. 2515

 primary attribute SHOULD represent the primary item in the enumeration list. Only the primary 2516
attribute SHOULD have “True” value for this attribute. No more than one item in the item list SHOULD 2517
have “true” value. This attribute is OPTIONAL, and the default value is “False”. 2518

 alias attribute SHOULD represent a numerical value instead of the text value specified in the value 2519
attribute. The value SHOULD be unique integer among the items in the enumeration type. 2520

 description attribute SHOULD represent any description of the enumeration element. This attribute is 2521

OPTIONAL. 2522

4.3.7 ImplementProfile Element 2523

ImplementProfile element SHOULD represent an implementation profile for an application program. 2524
ImplementProfile SHOULD be defined for each application program what the application program 2525
supports. This information MAY be sent by the application program and received by the party who wants 2526
to know the capability of the application program. Therefore, in order to make transactions, some 2527
attributes and sub-elements are the same as the attributes of Document element defined in Section 3. 2528

This information SHOULD be specified in the following XML schema. The XML documents generated by 2529
the schema SHOULD be consistent with the following arguments. 2530

 2531

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 64 of 75

 <xsd:element name="ImplementProfile"> 2532
 <xsd:complexType> 2533
 <xsd:sequence> 2534
 <xsd:element ref="Error" minOccurs="0" maxOccurs="unbounded"/> 2535
 <xsd:element ref="App" minOccurs="0"/> 2536
 <xsd:element ref="ImplementDocument" minOccurs="0" maxOccurs="unbounded"/> 2537
 </xsd:sequence> 2538
 <xsd:attribute name="id" type="xsd:string"/> 2539
 <xsd:attribute name="name" type="xsd:string"/> 2540
 <xsd:attribute name="action" type="xsd:string"/> 2541
 <xsd:attribute name="profile" type="xsd:string"/> 2542
 <xsd:attribute name="location" type="xsd:string"/> 2543
 <xsd:attribute name="namespace" type="xsd:string"/> 2544
 <xsd:attribute name="create" type="xsd:dateTime"/> 2545
 <xsd:attribute name="description" type="xsd:string"/> 2546
 </xsd:complexType> 2547
 </xsd:element> 2548

 2549

 Error element SHOULD represent error information, when any errors occur during the transaction of 2550
message exchange of this implementation profile. The specification of this element is defined in 2551
Section 3. 2552

 App element SHOULD represent any information for the application program concerning the 2553
transaction of profile exchange. The use of this element SHOULD be consistent with all cases of 2554
transactions while the other messages are exchanged. The specification of this element is defined in 2555
Section 3. 2556

 ImplementDocument element SHOULD represent a domain document that the application program 2557
may send or receive. All available documents in the application profile SHOULD be listed using this 2558
element. 2559

 2560

 id attribute SHOULD represent identifier of the application program. The id SHOULD be unique in all 2561
application programs that can be accessed in the network. In order to guarantee the uniqueness, 2562
system integrator must assign the unique number and manages it in the network configuration. This 2563
id is the same as the sender name when the application will send a message. This attribute is 2564
REQUIRED. 2565

 name attribute SHOULD represent a name that the application program shows its name for an 2566
explanation by natural texts. This attribute is OPTIONAL 2567

 action attribute SHOULD represent a name of action during transaction models defined in Section 3. 2568
The value of this attribute SHOULD be “Notify”, “Get” or “Show”. When the element is created as a 2569
message for exchange, this attribute is REQUIRED. Otherwise, such as for a XML document file, this 2570
attribute is OPTIONAL. 2571

 profile attribute SHOULD represent the name of application profile that this implementation profile is 2572
referring to select the available part in the definition. This attribute is OPTIONAL. 2573

 location attribute SHOULD represent the location of the application profile to get the actual file by the 2574

party who want to know the content of the application profile. This attribute is OPTIONAL. 2575

 namespace attribute SHOULD represent the namespace of the application profile. This attribute is 2576
necessary to identify the profile in world-wide basis. This attribute is OPTIONAL. 2577

 create attribute SHOULD represent the date of creation of the implementation profile. This attribute is 2578
OPTIONAL. 2579

 description attribute SHOULD represent any description of the implementation profile. This attribute is 2580

OPTIONAL. 2581

 2582

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 65 of 75

4.3.8 ImplementDocument Element 2583

ImplementDocument element SHOULD represent a domain document selected from the application 2584
profile. All available domain documents SHOULD be listed by this element. Available domain documents 2585
MAY be defined for each application profile that the program can support. 2586

This information SHOULD be specified in the following XML schema. The XML documents generated by 2587
the schema SHOULD be consistent with the following arguments. 2588

 2589

 <xsd:element name="ImplementDocument"> 2590
 <xsd:complexType> 2591
 <xsd:sequence> 2592
 <xsd:element ref="ImplementAction" minOccurs="0" maxOccurs="unbounded"/> 2593
 <xsd:element ref="ImplementProperty" minOccurs="0" maxOccurs="unbounded"/> 2594
 <xsd:element ref="ImplementEvent" minOccurs="0" maxOccurs="unbounded"/> 2595
 </xsd:sequence> 2596
 <xsd:attribute name="name" type="xsd:string" use="required"/> 2597
 <xsd:attribute name="title" type="xsd:string"/> 2598
 <xsd:attribute name="option" type="xsd:string"/> 2599
 <xsd:attribute name="profile" type="xsd:string"/> 2600
 <xsd:attribute name="location" type="xsd:string"/> 2601
 <xsd:attribute name="namespace" type="xsd:string"/> 2602
 <xsd:attribute name="description" type="xsd:string"/> 2603
 </xsd:complexType> 2604
 </xsd:element> 2605

 2606

 ImplementAction element SHOULD represent an action that the program can perform for the domain 2607
document. This element MAY represent a role of the program in the transaction. 2608

 ImplementProperty element SHOULD represent a property that the program can deal with in the 2609
domain object. All properties defined in this element SHOULD be defined as a property of a domain 2610
object in the corresponding application profile. 2611

 ImplementEvent element SHOULD represent an event that the program can monitor a property in 2612
order to notify the change of the data to subscribers. This information MAY be defined by each 2613
application programs. 2614

 2615

 name attribute SHOULD represent the name of the domain document. The name SHOULD be 2616
defined in the list of domain document in the corresponding application profile. This attribute is 2617
REQUIRED. 2618

 title attribute SHOULD represent the header title of the document. This value MAY be a short 2619
description to show the property relating to the actual world. This attribute is OPTIONAL. 2620

 option attribute SHOULD represent optional process to deal with the domain document data. There 2621
can be several domain document of same document name if the document has different option value. 2622
According to the option process, the required implement properties may be different. 2623

 profile attribute SHOULD represent the name of application profile that this ImplementDocument is 2624
referring to select the available part in the definition. This attribute is OPTIONAL. 2625

 location attribute SHOULD represent the location of the application profile to get the actual file by the 2626

party who want to know the content of the application profile. This attribute is OPTIONAL. 2627

 namespace attribute SHOULD represent the namespace of the ImplementDocument. This attribute is 2628
necessary to identify the document name in world-wide basis. This attribute is OPTIONAL. 2629

 description attribute SHOULD represent any description of the implemented document. This attribute 2630
is OPTIONAL. 2631

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 66 of 75

4.3.9 ImplementAction Element 2632

ImplementAction element SHOULD represent an action that the program can perform for the domain 2633
document. The actions include the transaction model referred to as “Add”, “Change”, “Remove”, “Notify”, 2634
“Sync”, “Get” or “Show”. This element MAY represent a role of the program in the transaction such as 2635
sender or receiver. 2636

This information SHOULD be specified in the following XML schema. The XML documents generated by 2637
the schema SHOULD be consistent with the following arguments. 2638

 2639

 <xsd:element name="ImplementAction"> 2640
 <xsd:complexType> 2641
 <xsd:attribute name="action" type="xsd:string" use="required"/> 2642
 <xsd:attribute name="level" type="xsd:int"/> 2643
 <xsd:attribute name="role" type="xsd:string"/> 2644
 <xsd:attribute name="description" type="xsd:string"/> 2645
 </xsd:complexType> 2646
 </xsd:element> 2647

 2648

 action attribute SHOULD represent the action performed by the application program. The value of this 2649
attribute SHOULD be one of “Add”, “Change”, “Remove”, “Notify”, “Sync”, “Get” and “Show”. This 2650
attribute is REQUIRED. 2651

 level attribute SHOULD represent an implementation level defined in Section 3 for each document 2652
processed by the application program. Level 0 shows no implementation, while level 1 and 2 are 2653
partially and fully implemented, respectively. Default value is 1 that minimum implementation is 2654
supported. This attribute is OPTIONAL. 2655

 role attribute SHOULD represent a role in the transaction. The value of this attribute is either “Server” 2656
or “Client”. Every transaction has its available roles that can be selected as a value of this attribute. 2657
Default value is “Server”. This attribute is OPTIONAL. 2658

 description attribute SHOULD represent any description of the implement action. This attribute is 2659

OPTIONAL. 2660

4.3.10 ImplementProperty Element 2661

ImplementProperty element SHOULD represent a domain property that can be processed in the 2662
application program. Some properties SHOULD be defined in the corresponding domain object in the 2663
application profile definition. The properties that are not defined in the application profile SHOULD be 2664
specified in this element as a user extended property. Properties extended by application programs 2665
SHOULD have additional definitions similar to the definitions by AppProperty element. 2666

This information SHOULD be specified in the following XML schema. The XML documents generated by 2667
the schema SHOULD be consistent with the following arguments. 2668

 2669

 <xsd:element name="ImplementProperty"> 2670
 <xsd:complexType> 2671
 <xsd:attribute name="name" type="xsd:string" use="required"/> 2672
 <xsd:attribute name="title" type="xsd:string"/> 2673
 <xsd:attribute name="extend" type="xsd:string"/> 2674
 <xsd:attribute name="link" type="xsd:string"/> 2675
 <xsd:attribute name="multiple" type="xsd:string"/> 2676
 <xsd:attribute name="path" type="xsd:string"/> 2677
 <xsd:attribute name="dataType" type="xsd:string"/> 2678
 <xsd:attribute name="enumeration" type="xsd:string"/> 2679
 <xsd:attribute name="type" type="xsd:string"/> 2680
 <xsd:attribute name="use" type="xsd:string"/> 2681
 <xsd:attribute name="description" type="xsd:string"/> 2682
 </xsd:complexType> 2683
 </xsd:element> 2684

 2685

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 67 of 75

 name attribute SHOULD represent the name of the property. The name SHOULD be defined in the 2686
corresponding application profile. This attribute is REQUIRED. 2687

 title attribute SHOULD represent the header title of the property. This value MAY be a short 2688
description to show the property relating to the actual world. This attribute is OPTIONAL. 2689

 extend attribute SHOULD represent qualifier string that is specified as prefix of the property name, if 2690
this property is extended by the local program. For example, if the value is “user”, then the description 2691
of this property will have “user:” prefix in the actual messages. This attribute is OPTIONAL. 2692

 link attribute SHOULD represent that this property is also defined in other domain document that can 2693
be linked to this document. The value of this attribute MAY has the name of domain document. 2694

 multiple attribute SHOULD represent whether the property can have multiple values or not. If the 2695
value of this attribute is positive integer or “Unbounded”, actual message can have corresponding 2696
number of values for this property. The value number SHOULD be less or equal than the number 2697
defined in the application profile. 2698

 path attribute SHOULD represent the location of the attribute data in the primitive XML description 2699
defined in Section 2. The specification of the path SHOULD conform to the syntax of [PATH]. If the 2700
attribute value of extend is defined and this attribute is not described, then the default path data 2701
SHOULD be “Spec[@type=’aaa:bbb’]/CCC/@value”, where aaa denotes the value of extend attribute 2702
and bbb denotes the value of name attribute, and CCC is the value of dataType attribute. 2703

 dataType attribute SHOULD represent the data type of the property. The expecting value of this 2704
attribute is Qty, Char and Time. This attribute is REQUIRED if the value of extend has data. 2705

Otherwise it is OPTIONAL. 2706

 enumeration attribute SHOULD represent the name of enumeration type when the property is 2707
extended by the local program, and has a value in the enumeration list. The name of enumeration 2708
type SHOULD be specified in Enumeration elements in the application profile definition. This attribute 2709

is OPTIONAL. 2710

 type attribute SHOULD represent that the type of this property in terms of usage. When the value is 2711

“Typical”, then the usage of this property is typical. 2712

 use attribute SHOULD whether the property is mandatory. When the value “Required” represents 2713
mandatory, while the value “Optional” represents optional. This value SHOULD be “Required” if the 2714
corresponding property in the application profile has “Required” value. Default value of this attribute is 2715
“Optional”. 2716

 description attribute SHOULD represent any description of the property. This attribute is OPTIONAL. 2717

 2718

4.3.11 ImplementEvent Element 2719

ImplementEvent element SHOULD represent any event definitions that the application program monitors 2720
on a particular property and detects the event occurrence on it. When the event occurs, the application 2721
program SHOULD publish a notification of the event to all the parties who are on the list of subscription. 2722
This information is defined by each application program, then clients of the event notification service MAY 2723
request for the publication as a subscriber. 2724

ImplementEvent element SHOULD allow an application program to define the unit size of data 2725
differences, maximum and minimum data value, duration of one monitoring cycle and expire date of 2726
notifications to determine the event occurrence. 2727

This information SHOULD be specified in the following XML schema. The XML documents generated by 2728
the schema SHOULD be consistent with the following arguments. 2729

 2730

 <xsd:element name="ImplementEvent"> 2731
 <xsd:complexType> 2732
 <xsd:sequence> 2733
 <xsd:element ref="App" minOccurs="0"/> 2734
 <xsd:element ref="Condition" minOccurs="0" maxOccurs="unbounded"/> 2735

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 68 of 75

 <xsd:element ref="Selection" minOccurs="0" maxOccurs="unbounded"/> 2736
 <xsd:element ref="Property" minOccurs="0" maxOccurs="unbounded"/> 2737
 </xsd:sequence> 2738
 <xsd:attribute name="name" type="xsd:string" use="required"/> 2739
 <xsd:attribute name="type" type="xsd:string"/> 2740
 <xsd:attribute name="cycle" type="xsd:duration"/> 2741
 <xsd:attribute name="start" type="xsd:dateTime"/> 2742
 <xsd:attribute name="expire" type="xsd:dateTime"/> 2743
 <xsd:attribute name="description" type="xsd:string"/> 2744
 </xsd:complexType> 2745
 </xsd:element> 2746

 2747

 App element SHOULD represent the application specific information about event monitoring, event 2748
processing, transaction control and so forth. The specification of App element is defined in Section 2. 2749

 Condition element SHOULD represent the condition to select the target domain objects the 2750

application is monitoring the event. The specification of this element is defined in Section 3. 2751

 Selection element SHOULD represent the condition of selecting the target property in the domain 2752
object. The selected property values are reported to the subscribers when event occurs. When the 2753
target property is multiple, Condition element under this element can restrict the properties. The 2754
specification of this element is defined in Section 3. 2755

 Property element SHOULD represent the target property and constraints to detect event on the 2756
property. The target property is monitored by the program. When there is more than one Property 2757
element under the ImplementEvent, it SHOULD represent that more than one conditions need to be 2758
checked to detect the event occurrence. Each Property element MAY have a different target property 2759
on the domain object to others. Conditions of these properties SHOULD be conjunctive. The 2760
specification of this element is defined in Section 3. 2761

 2762

 name attribute SHOULD represent the name of the event. The name SHOULD be unique in the 2763

domain object defined in the application profile. This attribute is REQUIRED. 2764

 type attribute SHOULD represent a method to detect this event. Value candidates of this attribute 2765
SHOULD include “True”, “False”, “Enter”, “Leave”, “Change”, “Add”, and “Remove”. If the value is 2766
“True”, then event occurs when all the conditions are true. If the value is “False”, then event occurs 2767
when at least one condition is false. If the value is “Enter”, then event occurs when the status 2768
changes from false to true, while “Leave” means that the status changes from true to false. If the 2769
value is “Change”, then event occurs when the value of the target property is change. “Add” 2770
represents that event occurs when a new domain object which satisfies the conditions is added, and 2771
“Remove” shows that event occurs when any objects which satisfies the conditions is removed. If the 2772
target property is multiple and Selection element is described, then “Add” and “Remove” mean that 2773
one of the multiple properties is added and removed, respectively. Default value is “Change”. This 2774
attribute is OPTIONAL. 2775

 cycle attribute SHOULD represent the duration of monitoring of the property value to detect the event 2776
occurrence. The application program SHOULD monitor the value until the expiration date. This 2777
attribute is OPTIONAL. 2778

 start attribute SHOULD represent starting time of the monitoring and notification service. After this 2779
date and time, application program start monitoring the properties. If this attribute is not described, 2780
then it represent the service has already started. The origin of cyclic procedure defined by cycle 2781
attribute SHOULD be this start time. This attribute is OPTIONAL. 2782

 expire attribute SHOULD represent expire time and date of the event notification. After the time of 2783
expiration, the application will stop monitoring the event occurrence. If this attribute is not defined, it 2784
SHOULD represent that there is no expiration date. This attribute is OPTIONAL. 2785

 description attribute SHOULD represent any description of the event. This attribute is OPTIONAL. 2786

 2787

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 69 of 75

5 Conformance 2788

A document or part of document conforms to OASIS PPS Core Elements if all elements in the artifact are 2789
consistent with the normative statements of Section 2 of this specification and the document can be 2790
processed properly with the XML schema that can be downloaded from the schema URI. 2791

A document or message conforms to OASIS PPS Transaction Messages if all elements in the artifact are 2792
consistent with the normative statement of Section 3 of this specification and the document can be 2793
processed properly with the XML schema that can be downloaded from the schema URI. 2794

A process or service conforms to OASIS PPS Transaction Messages if the process or service can deal 2795
with the message that conforms to OASIS PPS Transaction Messages and the process or service is 2796
consistent to the normative statement of Section 4 of this specification. 2797

A document or profile conforms to OASIS PPS Profile Specifications if all elements in the artifact are 2798
consistent with the normative statements of this part of specifications and the document can be 2799
processed properly with the XML schema that can be downloaded from the schema URI. 2800

The schema URI is given in the “Related work” section in the header page of this document. 2801

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 70 of 75

Appendix A. Object Class diagram of Core Elements 2802

Figure A.1 shows the structure of primitive objects in this specification with a UML class diagram. Each 2803
object corresponds to each XML element. In this figure, arrows represent relative information between the 2804
source and destination objects. When an arrow has role names, it corresponds to an independent XML 2805
element in the specification. This figure doesn’t include all the information of XML schema but the partial 2806
information of the primitive elements. 2807

 2808

Part y

Resource It emProcess

Order

Opera t ionTask Lot

Plan

Produce,
Consume

Ass ig n Produce,
Consume

Compose

Compose

Produce,
ConsumeAss ig n

Compose

Ass ig n

Compose

Ass ig n

Compose

Produce,
Consume

Compose

Compose ComposeCompose

 2809

Figure A.1: Primitive objects for representing planning and scheduling problems 2810

 2811

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 71 of 75

Appendix B. Cross reference of elements 2812

Table B.1 shows the relations between elements. The row headers represent parent elements and the 2813
column headers represent child elements. Symbol * in the table means 0 or more than 0 element can be 2814
described. 2815

 2816

Table B.1 Element and sub-element relations 2817

C
o
m

p
o
s
e

P
ro

d
u
c
e

C
o
n
s
u
m

e

A
s
s
ig

n

R
e
la

ti
o
n

L
o
c
a
ti
o
n

C
a
p
a
c
it
y

P
ro

g
re

s
s

S
p
e
c

S
ta

rt

E
n
d

E
v
e
n
t

P
ri
c
e

C
o
s
t

P
ri
o
ri
ty

D
is

p
la

y

D
e
s
c
ri
p
ti
o
n

A
u
th

o
r

D
a
te

Q
ty

C
h
a
r

T
im

e

Party * * * * * * * * * * * * * * * * * * *

Plan * * * * * * * * * * * * * * * * * * *

Order * * * * * * * * * * * * * * * * * * *

Item * * * * * * * * * * * * * * * * * * *

Resource * * * * * * * * * * * * * * * * * * *

Process * * * * * * * * * * * * * * * * * * *

Lot * * * * * * * * * * * * * * * * * * *

Task * * * * * * * * * * * * * * * * * * *

Operation * * * * * * * * * * * * * * * * * * *

Compose * * * * * * * * * * * * * * * * *

Produce * * * * * * * * * * * * * * * * *

Consume * * * * * * * * * * * * * * * * *

Assign * * * * * * * * * * * * * * * * *

Relation * * * * * * * * * * * * * * * * *

Location * * * * * * * * * * * * *

Capacity * * * * * * * * * * * * *

Progress * * * * * * * * * * * * *

Spec * * * * * * * * * * * * *

Start * * * * * * * *

End * * * * * * * *

Event * * * * * * * *

Price * * * * * * * *

Cost * * * * * * * *

Priority * * *

Display * * *

Description * * *

Author * * *

Date * * *

Qty

Char

Time 2818

 2819

 2820

2821

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 72 of 75

The following table B.2 shows the correspondence between elements and attributes. The row headers 2822
show the element name, and the column headers show attribute the name. The characters in the table 2823
represent data types. The character in the table are used as follows: “U” denotes identification character 2824
of element, “P” denotes an identification character of referencing elements, “S” denotes the character 2825
string, “D” denotes a decimal number, “N” denotes an integer number and “T” for date time. Boldface 2826
means required information. 2827

 2828

Table B.2 Element and attribute relations 2829

id k
e
y

n
a
m

e

p
a
re

n
t

ty
p
e

s
ta

tu
s

a
p
p
ly

c
o
n
d
it
io

n

v
a
lu

e

c
o
u
n
t

u
n
it

b
a
s
e

p
a
rt

y

p
la

n

 o
rd

e
r

 i
te

m

 r
e
s
o
u
rc

e

p
ro

c
e
s
s

 l
o
t

 t
a
s
k

o
p
e
ra

ti
o
n

Party U N S P S S P P P P P P P P P

Plan U N S P S S P P P P P P P P P

Order U N S P S S P P P P P P P P P

Item U N S P S S P P P P P P P P P

Resource U N S P S S P P P P P P P P P

Process U N S P S S P P P P P P P P P

Lot U N S P S S P P P P P P P P P

Task U N S P S S P P P P P P P P P

Operation U N S P S S P P P P P P P P P

Compose U N S S S S P P P P P P P P P

Produce U N S S S S P P P P P P P P P

Consume U N S S S S P P P P P P P P P

Assign U N S S S S P P P P P P P P P

Relation U N S S S S P P P P P P P P P

Location U N S S S S

Capacity U N S S S S

Progress U N S S S S

Spec U N S S S S

Start U N S S S S S S

End U N S S S S S S

Event U N S S S S S S

Price U N S S S S S S

Cost U N S S S S S S

Priority S S S S S S

Display S S S S S S

Description S S S S S S

Author S S S S S S

Date S S S S S S

Qty S S S S S D N S D

Char S S S S S S N S S

Time S S S S S T N S T 2830

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 73 of 75

Appendix C. Implementation level 2831

Since this specification provides the highest level functionality of application programs of information 2832
exchange on planning and scheduling problems, it might be difficult to implement for the application 2833
programs that don’t need full capability of messaging. Regarding such situation, this specification 2834
additionally defines implementation levels for each application program. 2835

The implementation level is specified in implementation profiles defined in Section 4. Each application 2836
program MAY describe its capability for each messaging model. Therefore, system designer of the 2837
domain problem can know available combination of messaging without making a configuration tests. 2838

The following table prescribes the implementation levels. 2839

 2840

Table C.1 Implementation levels 2841

Level Description

0 The application program has no capability of the function

1 The application program has some capability of the function. The partial function
is defined for the restricted specifications.

2 The application program has all capability on the function prescribed in this
standard

 2842

There are some functional categories of specifications, in which some additional constraints MAY be add 2843
to restrict the full specification. The level 1 of implementation is conformed to this restricted specification. 2844
In this specification, “Level 2 Function” denotes that the section or subsection is not necessary for the 2845
application program that declares level 1 for the messaging model. 2846

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 74 of 75

Appendix D. Revision History 2847

 2848

Revision Date Editor Changes Made

01 23 Feb 2011 Y.Nishioka Marge three parts of CS01

02 24 May 2011 Y.Nishioka Name space URI and Cover page URI are
revised

 2849

pps-v1.0-cs01 29 September 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 75 of 75

Appendix E. Acknowledgements 2850

The following individuals have participated in the creation of this specification and are gratefully 2851
acknowledged: 2852

Participants: 2853
Yasuyuki Nishioka, PSLX Forum/Hosei University 2854
Koichi Wada, PSLX Forum 2855
Shinya Matsukawa, Hitachi 2856
Tomohiko Maeda, Fujitsu 2857
Masahiro Mizutani, Unisys Corporation 2858
Akihiro Kawauchi, Individual Member 2859
Yuto Banba, PSLX Forum 2860
Osamu Sugi, PSLX Forum 2861
Hideichi Okamune, PSLX Forum 2862
Hiroshi Kojima，PSLX Forum 2863
Ken Nakayama，Hitachi 2864
Yukio Hamaguchi，Hitachi 2865
Tomoichi Sato，Individual 2866
Hiroaki Sasaki，Individual 2867
Tomoichi Sato, Individual 2868
Junzo Kato, PSLX Forum 2869
Hiroaki Machida, PSLX Forum 2870
Shoei Komatsu, PSLX Forum 2871
 2872

 2873

