
pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 1 of 67

PKCS #11 Cryptographic Token Interface
Historical Mechanisms Specification
Version 2.40

Committee Specification Draft 01 /
Public Review Draft 01

30 October 2013

Specification URIs
This version:

http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/csprd01/pkcs11-hist-v2.40-csprd01.doc
(Authoritative)
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/csprd01/pkcs11-hist-v2.40-csprd01.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/csprd01/pkcs11-hist-v2.40-csprd01.pdf

Previous version:

N/A

Latest version:
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.doc (Authoritative)
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.pdf

Technical Committee:

OASIS PKCS 11 TC

Chairs:
Robert Griffin (robert.griffin@rsa.com), EMC Corporation
Valerie Fenwick (valerie.fenwick@oracle.com), Oracle

Editors:
Susan Gleeson (susan.gleeson@oracle.com), Oracle
Chris Zimman (czimman@bloomberg.com), Bloomberg Finance L.P.

Related work:

This specification is related to:

 PKCS #11 Cryptographic Token Interface Base Specification Version 2.40. Latest version.
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html.

 PKCS #11 Cryptographic Token Interface Current Mechanisms Specification Version 2.40.
Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html.

 PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Latest version.
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html.

 PKCS #11 Cryptographic Token Interface Profiles Version 2.40. Latest version.

http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html.

Abstract:

This document defines mechanisms for PKCS #11 that are no longer in general use.

http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/csprd01/pkcs11-hist-v2.40-csprd01.doc
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/csprd01/pkcs11-hist-v2.40-csprd01.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/csprd01/pkcs11-hist-v2.40-csprd01.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.doc
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.pdf
http://www.oasis-open.org/committees/pkcs11/
mailto:robert.griffin@rsa.com
http://www.emc.com/
mailto:valerie.fenwick@oracle.com
http://www.oracle.com/
mailto:susan.gleeson@oracle.com
http://www.oracle.com/
mailto:czimman@bloomberg.com
http://www.bloomberg.com/
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 2 of 67

Status:
This document was last revised or approved by the OASIS PKCS 11 TC on the above date. The
level of approval is also listed above. Check the “Latest version” location noted above for possible
later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/pkcs11/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/pkcs11/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[PKCS11-hist]

PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification Version 2.40. 30
October 2013. OASIS Committee Specification Draft 01 / Public Review Draft 01.
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/csprd01/pkcs11-hist-v2.40-csprd01.html.

http://www.oasis-open.org/committees/comments/index.php?wg_abbrev=pkcs11
http://www.oasis-open.org/committees/pkcs11/
http://www.oasis-open.org/committees/pkcs11/
http://www.oasis-open.org/committees/pkcs11/ipr.php
http://www.oasis-open.org/committees/pkcs11/ipr.php
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/csprd01/pkcs11-hist-v2.40-csprd01.html

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 3 of 67

Notices

Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

http://www.oasis-open.org/policies-guidelines/ipr
http://www.oasis-open.org/
http://www.oasis-open.org/policies-guidelines/trademark

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 4 of 67

Table of Contents

1 Introduction ... 8

1.1 Terminology .. 8

1.2 Definitions ... 8

1.3 Normative References .. 9

1.4 Non-Normative References .. 9

2 Mechanisms ... 13

2.1 FORTEZZA timestamp ... 16

2.2 KEA ... 16

2.2.1 Definitions .. 16

2.2.2 KEA mechanism parameters ... 16

2.2.3 KEA public key objects .. 17

2.2.4 KEA private key objects .. 18

2.2.5 KEA key pair generation .. 18

2.2.6 KEA key derivation .. 19

2.3 RC2 ... 20

2.3.1 Definitions .. 20

2.3.2 RC2 secret key objects ... 20

2.3.3 RC2 mechanism parameters ... 21

2.3.4 RC2 key generation ... 22

2.3.5 RC2-ECB ... 22

2.3.6 RC2-CBC ... 23

2.3.7 RC2-CBC with PKCS padding .. 23

2.3.8 General-length RC2-MAC ... 24

2.3.9 RC2-MAC .. 24

2.4 RC4 ... 25

2.4.1 Definitions .. 25

2.4.2 RC4 secret key objects ... 25

2.4.3 RC4 key generation ... 25

2.4.4 RC4 mechanism .. 26

2.5 RC5 ... 26

2.5.1 Definitions .. 26

2.5.2 RC5 secret key objects ... 26

2.5.3 RC5 mechanism parameters ... 27

2.5.4 RC5 key generation ... 28

2.5.5 RC5-ECB ... 28

2.5.6 RC5-CBC ... 29

2.5.7 RC5-CBC with PKCS padding .. 29

2.5.8 General-length RC5-MAC ... 30

2.5.9 RC5-MAC .. 30

2.6 General block cipher ... 31

2.6.1 Definitions .. 31

2.6.2 DES secret key objects ... 32

2.6.3 CAST secret key objects ... 33

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 5 of 67

2.6.4 CAST3 secret key objects ... 33

2.6.5 CAST128 (CAST5) secret key objects .. 34

2.6.6 IDEA secret key objects .. 34

2.6.7 CDMF secret key objects .. 35

2.6.8 General block cipher mechanism parameters ... 35

2.6.9 General block cipher key generation ... 35

2.6.10 General block cipher ECB ... 36

2.6.11 General block cipher CBC ... 36

2.6.12 General block cipher CBC with PCKS padding ... 37

2.6.13 General-length general block cipher MAC .. 38

2.6.14 General block cipher MAC .. 38

2.7 SKIPJACK... 39

2.7.1 Definitions .. 39

2.7.2 SKIPJACK secret key objects ... 39

2.7.3 SKIPJACK Mechanism parameters .. 40

2.7.4 SKIPJACK key generation .. 42

2.7.5 SKIPJACK-ECB64 .. 42

2.7.6 SKIPJACK-CBC64 .. 42

2.7.7 SKIPJACK-OFB64 .. 42

2.7.8 SKIPJACK-CFB64 ... 43

2.7.9 SKIPJACK-CFB32 ... 43

2.7.10 SKIPJACK-CFB16 ... 43

2.7.11 SKIPJACK-CFB8 ... 44

2.7.12 SKIPJACK-WRAP ... 44

2.7.13 SKIPJACK-PRIVATE-WRAP .. 44

2.7.14 SKIPJACK-RELAYX .. 44

2.8 BATON .. 44

2.8.1 Definitions .. 44

2.8.2 BATON secret key objects .. 45

2.8.3 BATON key generation ... 45

2.8.4 BATON-ECB128 ... 46

2.8.5 BATON-ECB96.. 46

2.8.6 BATON-CBC128 ... 46

2.8.7 BATON-COUNTER ... 47

2.8.8 BATON-SHUFFLE .. 47

2.8.9 BATON WRAP .. 47

2.9 JUNIPER... 47

2.9.1 Definitions .. 47

2.9.2 JUNIPER secret key objects ... 48

2.9.3 JUNIPER key generation .. 48

2.9.4 JUNIPER-ECB128 .. 49

2.9.5 JUNIPER-CBC128 .. 49

2.9.6 JUNIPER-COUNTER .. 49

2.9.7 JUNIPER-SHUFFLE ... 49

2.9.8 JUNIPER WRAP ... 50

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 6 of 67

2.10 MD2 .. 50

2.10.1 Definitions .. 50

2.10.2 MD2 digest .. 50

2.10.3 General-length MD2-HMAC .. 50

2.10.4 MD2-HMAC ... 51

2.10.5 MD2 key derivation .. 51

2.11 MD5 .. 51

2.11.1 Definitions .. 51

2.11.2 MD5 Digest .. 52

2.11.3 General-length MD5-HMAC .. 52

2.11.4 MD5-HMAC ... 52

2.11.5 MD5 key derivation .. 52

2.12 FASTHASH ... 53

2.12.1 Definitions .. 53

2.12.2 FASTHASH digest ... 53

2.13 PKCS #5 and PKCS #5-style password-based encryption (PBD) ... 53

2.13.1 Definitions .. 53

2.13.2 Password-based encryption/authentication mechanism parameters...................................... 54

2.13.3 MD2-PBE for DES-CBC .. 54

2.13.4 MD5-PBE for DES-CBC .. 54

2.13.5 MD5-PBE for CAST-CBC .. 55

2.13.6 MD5-PBE for CAST3-CBC .. 55

2.13.7 MD5-PBE for CAST128-CBC (CAST5-CBC) .. 55

2.13.8 SHA-1-PBE for CAST128-CBC (CAST5-CBC) ... 55

2.14 PKCS #12 password-based encryption/authentication mechanisms ... 56

2.14.1 SHA-1-PBE for 128-bit RC4 .. 56

2.14.2 SHA-1_PBE for 40-bit RC4 ... 57

2.14.3 SHA-1_PBE for 128-bit RC2-CBC .. 57

2.14.4 SHA-1_PBE for 40-bit RC2-CBC .. 57

2.15 RIPE-MD ... 57

2.15.1 Definitions .. 57

2.15.2 RIPE-MD 128 Digest ... 58

2.15.3 General-length RIPE-MD 128-HMAC ... 58

2.15.4 RIPE-MD 128-HMAC .. 58

2.15.5 RIPE-MD 160 .. 58

2.15.6 General-length RIPE-MD 160-HMAC ... 58

2.15.7 RIPE-MD 160-HMAC .. 59

2.16 SET ... 59

2.16.1 Definitions .. 59

2.16.2 SET mechanism parameters ... 59

2.16.3 OAEP key wrapping for SET ... 59

2.17 LYNKS .. 60

2.17.1 Definitions .. 60

2.17.2 LYNKS key wrapping .. 60

3 PKCS #11 Implementation Conformance .. 61

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 7 of 67

Appendix A. Acknowledgments ... 62

Appendix B. Manifest constants .. 64

Appendix C. Revision History .. 67

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 8 of 67

1 Introduction 1

This document defines historical PKCS#11 mechanisms, that is, mechanisms that were defined for earlier 2
versions of PKCS #11 but are no longer in general use 3

 4

All text is normative unless otherwise labeled. 5

1.1 Terminology 6

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 7
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be 8
interpreted as described in [PKCS #11-Base] PKCS #11 Cryptographic Token 9
Interface Base Specification Version 2.40. Latest version. http://docs.oasis-10

open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html. 11

[PKCS #11-Curr] PKCS #11 Cryptographic Token Interface Current Mechanisms Specification 12
Version 2.40. Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-13
curr/v2.40/pkcs11-curr-v2.40.html. 14

 [PKCS #11-Prof] PKCS #11 Cryptographic Token Interface Profiles Version 2.40. Latest version. 15
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-16
v2.40.html. 17

[RFC2119]. 18

 19

1.2 Definitions 20

For the purposes of this standard, the following definitions apply. Please refer to [PKCS#11-Base] for 21
further definitions 22

 BATON MISSI’s BATON block cipher. 23

 CAST Entrust Technologies’ proprietary symmetric block cipher 24

 CAST3 Entrust Technologies’ proprietary symmetric block cipher 25

 CAST5 Another name for Entrust Technologies’ symmetric block cipher 26
CAST128. CAST128 is the preferred name. 27

 CAST128 Entrust Technologies’ symmetric block cipher. 28

 CDMF Commercial Data Masking Facility, a block encipherment method 29
specified by International Business Machines Corporation and 30
based on DES. 31

 CMS Cryptographic Message Syntax (see RFC 2630) 32

 DES Data Encryption Standard, as defined in FIPS PUB 46-3 33

 ECB Electronic Codebook mode, as defined in FIPS PUB 81. 34

 FASTHASH MISSI’s FASTHASH message-digesting algorithm. 35

 IDEA Ascom Systec’s symmetric block cipher. 36

 IV Initialization Vector. 37

 JUNIPER MISSI’s JUNIPER block cipher. 38

 KEA MISSI’s Key Exchange Algorithm. 39

 LYNKS A smart card manufactured by SPYRUS. 40

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 9 of 67

 MAC Message Authentication Code 41

 MD2 RSA Security’s MD2 message-digest algorithm, as defined in RFC 42
1319. 43

 MD5 RSA Security’s MD5 message-digest algorithm, as defined in RFC 44
1321. 45

 PRF Pseudo random function. 46

 RSA The RSA public-key cryptosystem. 47

 RC2 RSA Security’s RC2 symmetric block cipher. 48

 RC4 RSA Security’s proprietary RC4 symmetric stream cipher. 49

 RC5 RSA Security’s RC5 symmetric block cipher. 50

 SET The Secure Electronic Transaction protocol. 51

 SHA-1 The (revised) Secure Hash Algorithm with a 160-bit message digest, 52
as defined in FIPS PUB 180-2. 53

 SKIPJACK MISSI’s SKIPJACK block cipher. 54

 UTF-8 Universal Character Set (UCS) transformation format (UTF) that 55
represents ISO 10646 and UNICODE strings with a variable number 56
of octets 57

1.3 Normative References 58

[PKCS #11-Base] PKCS #11 Cryptographic Token Interface Base Specification Version 2.40. Latest 59
version. http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-60
v2.40.html. 61

[PKCS #11-Curr] PKCS #11 Cryptographic Token Interface Current Mechanisms Specification 62
Version 2.40. Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-63
curr/v2.40/pkcs11-curr-v2.40.html. 64

 [PKCS #11-Prof] PKCS #11 Cryptographic Token Interface Profiles Version 2.40. Latest version. 65
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-66
v2.40.html. 67

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 68
14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt. 69

1.4 Non-Normative References 70

[ANSI C] ANSI/ISO. American National Standard for Programming Languages – C. 1990 71

[ANSI X9.31] Accredited Standards Committee X9. Digital Signatures Using Reversible Public 72
Key Cryptography for the Financial Services Industry (rDSA). 1998. 73

[ANSI X9.42] Accredited Standards Committee X9. Public Key Cryptography for the Financial 74
Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm 75
Cryptography. 2003 76

[ANSI X9.62] Accredited Standards Committee X9. Public Key Cryptography for the Financial 77
Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). 1998 78

[CC/PP] W3C. Composite Capability/Preference Profiles (CC/PP): Structure and 79
Vocabularies. World Wide Web Consortium, January 2004. URL: 80
http://www.w3.org/RT/CCPP-struct-vocab/ 81

[CDPD] Ameritech Mobile Communications et al. Cellular Digital Packet Data System 82
Specifications: Part 406: Airlink Security. 1993 83

[FIPS PUB 46-3] NIST. FIPS 46-3: Data Encryption Standard (DES). October 26, 2999. URL: 84
http://csrc.nist.gov/publications/fips/index.html 85

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/RT/CCPP-struct-vocab/
http://csrc.nist.gov/publications/fips/index.html

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 10 of 67

[FIPS PUB 74] NIST. FIPS 74: Guidelines for Implementing and Using the NBS Data Encryption 86
Standard. April 1, 1981. URL: http://csrc.nist.gov/publications/fips/index.html 87

[FIPS PUB 81] NIST. FIPS 81: DES Modes of Operation. December 1980. URL: 88
http://csrc.nist.gov/publications/fips/index.html 89

[FIPS PUB 113] NIST. FIPS 113: Computer Data Authentication. May 30, 1985. URL: 90
http://csrc.nist.gov/publications/fips/index.html 91

[FIPS PUB 180-2] NIST. FIPS 180-2: Secure Hash Standard. August 1, 2002. URL: 92
http://csrc.nist.gov/publications/fips/index.html 93

[FIPS PUB 186-2] NIST. FIPS 186-2: Digital Signature Standard. January 27, 2000. URL: 94
http://csrc.nist.gov/publications/fips/index.html 95

[FIPS PUB 197] NIST. FIPS 197: Advanced Encryption Standard (AES). November 26, 2001. 96
URL: http://csrc.nist.gov/publications/fips/index.html 97

[FORTEZZA CIPG] NSA, Workstation Security Products. FORTEZZA Cryptologic Interface 98
Programmers Guide, Revision 1.52. November 1985 99

[GCS-API] X/Open Company Ltd. Generic Cryptographic Service API (GCS-API), Base – 100
Draft 2. February 14, 1995. 101

[ISO/IEC 7816-1] ISO. Information Technology – Identification Cards – Integrated Circuit(s) with 102
Contacts – Part 1: Physical Characteristics. 1998. 103

[ISO/IEC 7816-4] ISO. Information Technology – Identification Cards – Integrated Circuit(s) with 104
Contacts – Part 4: Interindustry Commands for Interchange. 1995. 105

[ISO/IEC 8824-1] ISO. Information Technology – Abstract Syntax Notation One (ASN.1): 106
Specification of Base Notation. 2002. 107

[ISO/IEC 8825-1] ISO. Information Technology – ASN.1 Encoding Rules: Specification of Basic 108
Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished 109
Encoding Rules (DER). 2002. 110

[ISO/IEC 9594-1] ISO. Information Technology – Open System Interconnection – The Directory: 111
Overview of Concepts, Models and Services. 2001. 112

[ISO/IEC 9594-8] ISO. Information Technology – Open Systems Interconnection – The Directory: 113
Public-key and Attribute Certificate Frameworks. 2001. 114

[ISO/IEC 9796-2] ISO. Information Technology – Security Techniques – Digital Signature Scheme 115
Giving Message Recovery – Part 2: Integer factorization based mechanisms. 116
2002. 117

[Java MIDP] Java Community Process. Mobile Information Device Profile for Java 2 Micro 118
Edition. November 2002. URL: http://jcp.org/jsr/detail/118.jsp 119

[MeT-PTD] MeT. MeT PTD Definition – Personal Trusted Device Definition, Version 1.0. 120
February 2003. URL: http://www.mobiletransaction.org 121

[PCMCIA] Personal Computer Memory Card International Association. PC Card Standard, 122
Release 2.1. July 1993. 123

[PKCS #1] RSA Laboratories. RSA Cryptography Standard, v2.1. June 14, 2002 124

[PKCS #3] RSA Laboratories. Diffie-Hellman Key-Agreement Standard, v1.4. November 125
1993. 126

[PKCS #5] RSA Laboratories. Password-Based Encryption Standard, v2.0. March 26, 127
1999. 128

[PKCS #7] RSA Laboratories. Cryptographic Message Syntax Standard, v1.5. November 129
1993 130

[PKCS #8] RSA Laboratories. Private-Key Information Syntax Standard, v1.2. November 131
1993. 132

[PKCS #11-UG] PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Latest 133
version. http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-134
v2.40.html. 135

[PKCS #11-C] RSA Laboratories. PKCS#11: Conformance Profile Specification. October 136
2000. 137

[PKCS #11-P] RSA Laboratories. PKCS #11 Profiles for mobile devices. June 2003. 138

http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://jcp.org/jsr/detail/118.jsp
http://www.mobiletransaction.org/
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 11 of 67

 139

[PKCS #12] RSA Laboratories. Personal Information Exchange Syntax Standard, v1.0. 140
June 1999. 141

[RFC 1319] B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. RSA Laboratories, 142
April 1992. URL: http://ietf.org/rfc/rfc1319.txt 143

[RFC 1321] R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT Laboratory for 144
Computer Science and RSA Data Security, Inc., April 1992. URL: 145
http://ieft.org/rfc/rfc1321.txt 146

[RFC 1421] J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic Mail: Part I: 147
Message Encryption and Authentication Procedures. IAB IRTF PSRG, IETF 148
PEM WG, February 1993. URL: http://ieft.org/rfc/rfc1421.txt 149

[RFC 2045] Freed, N., and Borenstein. RFC 2045: Multipurpose Internet Mail Extensions 150
(MIME) Part One: Format of Internet Message Bodies. November 1996. URL: 151
http://ieft.org/rfc/rfc2045.txt 152

[RFC 2246] T. Dierks and C. Allen. RFC 2245: The TLS Protocol Version 1.0. Certicom, 153
January 1999. URL: http://ieft.org/rfc/rfc2246.txt 154

[RFC 2279] F. Yergeau. RFC 2279: UTF-8, a transformation format of ISO 10646. Alis 155
Technologies, January 1998. URL: http://ietf.org/rfc/rfc2279.txt 156

[RFC 2534] Masinter, L., Wing, D., Mutz, A., and K. Holtman. RFC 2534: Media Features for 157
Display, Print and Fax. March 1999. URL: http://ieft.org/rfc/rfc2534.txt 158

[RFC 2630] R. Houseley. RFC 2630: cryptographic Message Syntax. June 1999. URL: 159
http://ieft.org/rfc/rfc2630.txt 160

[RFC 2743] J. Linn. RFC 2743: Generic Security Service Application Program Interface 161
Version 2, Update 1. RSA Laboratories, January 2000. URL: 162
http://ieft.org/rfc/rfc2743.txt 163

[RFC 2744] J. Wray. RFC 2744: Generic Security Services API Version 2: C-bindings. Iris 164
Associates, January 2000. URL: http://ieft.org/rfc/rfc2744.txt 165

[SEC-1] Standards for Efficient Cryptography Group (SECG). Standards for Efficient 166
Cryptography (SEC) 1: Elliptic Curve Cryptography. Version 1.0, September 20, 167
2000. 168

[SEC-2] Standards for Efficient cryptography Group (SECG). Standards for Efficient 169
Cryptography (SEC) 2: Recommended Elliptic Curve Domain Parameters. 170
Version 1.0, September 20, 2000. 171

[TLS] IETF. RFC 2246: The TLS Protocol Version 1.0. January 1999. URL: 172
http://ieft.org/rfc/rfc2256.txt 173

[WIM] WAP. Wireless Identity Module. – WAP-260-WIP-20010712.a. July 2001. URL: 174
http://www.wapforum.org 175

[WPKI] WAP. Wireless PKI. – WAP-217-WPKI-20010424-a. April 2001. URL: 176
http://www.wapforum.org 177

[WTLS] WAP. Wireless Transport Layer Security Version – WAP-261-WTLS-20010406-178
a. April 2001. URL: http://www.wapforum.org 179

[X.500] ITU-T. Information Technology – Open Systems Interconnection –The Directory: 180
Overview of Concepts, Models and Services. February 2001. (Identical to 181
ISO/IEC 9594-1) 182

[X.509] ITU-T. Information Technology – Open Systems Interconnection – The 183
Directory: Public-key and Attribute Certificate Frameworks. March 2000. 184
(Identical to ISO/IEC 9594-8) 185

[X.680] ITU-T. Information Technology – Abstract Syntax Notation One (ASN.1): 186
Specification of Basic Notation. July 2002. (Identical to ISO/IEC 8824-1) 187

[X.690] ITU-T. Information Technology – ASN.1 Encoding Rules: Specification of Basic 188
Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished 189
Encoding Rules (DER). July 2002. (Identical to ISO/IEC 8825-1) 190

 191

http://ietf.org/rfc/rfc1319.txt
http://ieft.org/rfc/rfc1321.txt
http://ieft.org/rfc/rfc1421.txt
http://ieft.org/rfc/rfc2045.txt
http://ieft.org/rfc/rfc2246.txt
http://ietf.org/rfc/rfc2279.txt
http://ieft.org/rfc/rfc2534.txt
http://ieft.org/rfc/rfc2630.txt
http://ieft.org/rfc/rfc2743.txt
http://ieft.org/rfc/rfc2744.txt
http://ieft.org/rfc/rfc2256.txt
http://www.wapforum.org/
http://www.wapforum.org/
http://www.wapforum.org/

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 12 of 67

 192

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 13 of 67

2 Mechanisms 193

A mechanism specifies precisely how a certain cryptographic process is to be performed. PKCS #11 194
implementations MAY use one or more mechanisms defined in this document. 195

 196

The following table shows which Cryptoki mechanisms are supported by different cryptographic 197
operations. For any particular token, of course, a particular operation may well support only a subset of 198
the mechanisms listed. There is also no guarantee that a token which supports one mechanism for some 199
operation supports any other mechanism for any other operation (or even supports that same mechanism 200
for any other operation). For example, even if a token is able to create RSA digital signatures with the 201
CKM_RSA_PKCS mechanism, it may or may not be the case that the same token can also perform RSA 202
encryption with CKM_RSA_PKCS. 203

Table 1, Mechanisms vs. Functions 204

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest
Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_FORTEZZA_TIMESTAMP X
2

CKM_KEA_KEY_PAIR_GEN X

CKM_KEA_KEY_DERIVE X

CKM_RC2_KEY_GEN X

CKM_RC2_ECB X X

CKM_RC2_CBC X X

CKM_RC2_CBC_PAD X X

CKM_RC2_MAC_GENERAL X

CKM_RC2_MAC X

CKM_RC4_KEY_GEN X

CKM_RC4 X

CKM_RC5_KEY_GEN X

CKM_RC5_ECB X X

CKM_RC5_CBC X X

CKM_RC5_CBC_PAD X X

CKM_RC5_MAC_GENERAL X

CKM_RC5_MAC X

CKM_DES_KEY_GEN X

CKM_DES_ECB X X

CKM_DES_CBC X X

CKM_DES_CBC_PAD X X

CKM_DES_MAC_GENERAL X

CKM_DES_MAC X

CKM_CAST_KEY_GEN X

CKM_CAST_ECB X X

CKM_CAST_CBC X X

CKM_CAST_CBC_PAD X X

CKM_CAST_MAC_GENERAL X

CKM_CAST_MAC X

CKM_CAST3_KEY_GEN X

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 14 of 67

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest
Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_CAST3_ECB X X

CKM_CAST3_CBC X X

CKM_CAST3_CBC_PAD X X

CKM_CAST3_MAC_GENERAL X

CKM_CAST3_MAC X

CKM_CAST128_KEY_GEN

(CKM_CAST5_KEY_GEN)

 X

CKM_CAST128_ECB

(CKM_CAST5_ECB)

X X

CKM_CAST128_CBC

(CKM_CAST5_CBC)

X X

CKM_CAST128_CBC_PAD

(CKM_CAST5_CBC_PAD)

X X

CKM_CAST128_MAC_GENERAL

(CKM_CAST5_MAC_GENERAL)

 X

CKM_CAST128_MAC

(CKM_CAST5_MAC)

 X

CKM_IDEA_KEY_GEN X

CKM_IDEA_ECB X X

CKM_IDEA_CBC X X

CKM_IDEA_CBC_PAD X X

CKM_IDEA_MAC_GENERAL X

CKM_IDEA_MAC X

CKM_CDMF_KEY_GEN X

CKM_CDMF_ECB X X

CKM_CDMF_CBC X X

CKM_CDMF_CBC_PAD X X

CKM_CDMF_MAC_GENERAL X

CKM_CDMF_MAC X

CKM_SKIPJACK_KEY_GEN X

CKM_SKIPJACK_ECB64 X

CKM_SKIPJACK_CBC64 X

CKM_SKIPJACK_OFB64 X

CKM_SKIPJACK_CFB64 X

CKM_SKIPJACK_CFB32 X

CKM_SKIPJACK_CFB16 X

CKM_SKIPJACK_CFB8 X

CKM_SKIPJACK_WRAP X

CKM_SKIPJACK_PRIVATE_WRAP X

CKM_SKIPJACK_RELAYX X
3

CKM_BATON_KEY_GEN X

CKM_BATON_ECB128 X

CKM_BATON_ECB96 X

CKM_BATON_CBC128 X

CKM_BATON_COUNTER X

CKM_BATON_SHUFFLE X

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 15 of 67

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest
Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_BATON_WRAP X

CKM_JUNIPER_KEY_GEN X

CKM_JUNIPER_ECB128 X

CKM_JUNIPER_CBC128 X

CKM_JUNIPER_COUNTER X

CKM_JUNIPER_SHUFFLE X

CKM_JUNIPER_WRAP X

CKM_MD2 X

CKM_MD2_HMAC_GENERAL X

CKM_MD2_HMAC X

CKM_MD2_KEY_DERIVATION X

CKM_MD5 X

CKM_MD5_HMAC_GENERAL X

CKM_MD5_HMAC X

CKM_MD5_KEY_DERIVATION X

CKM_RIPEMD128 X

CKM_RIPEMD128_HMAC_GENERAL X

CKM_RIPEMD128_HMAC X

CKM_RIPEMD160 X

CKM_RIPEMD160_HMAC_GENERAL X

CKM_RIPEMD160_HMAC X

CKM_FASTHASH X

CKM_PBE_MD2_DES_CBC X

CKM_PBE_MD5_DES_CBC X

CKM_PBE_MD5_CAST_CBC X

CKM_PBE_MD5_CAST3_CBC X

CKM_PBE_MD5_CAST128_CBC

(CKM_PBE_MD5_CAST5_CBC)

 X

CKM_PBE_SHA1_CAST128_CBC

(CKM_PBE_SHA1_CAST5_CBC)

 X

CKM_PBE_SHA1_RC4_128 X

CKM_PBE_SHA1_RC4_40 X

CKM_PBE_SHA1_RC2_128_CBC X

CKM_PBE_SHA1_RC2_40_CBC X

CKM_PBA_SHA1_WITH_SHA1_HMAC X

CKM_PKCS5_PBKD2 X

CKM_KEY_WRAP_SET_OAEP X

CKM_KEY_WRAP_LYNKS X

1
 SR = SignRecover, VR = VerifyRecover. 205

2
 Single-part operations only. 206

3
 Mechanism can only be used for wrapping, not unwrapping. 207

The remainder of this section will present in detail the mechanisms supported by Cryptoki and the 208
parameters which are supplied to them. 209

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 16 of 67

In general, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen fields of the 210

CK_MECHANISM_INFO structure, then those fields have no meaning for that particular mechanism. 211

 212

2.1 FORTEZZA timestamp 213

The FORTEZZA timestamp mechanism, denoted CKM_FORTEZZA_TIMESTAMP, is a mechanism for 214
single-part signatures and verification. The signatures it produces and verifies are DSA digital signatures 215

over the provided hash value and the current time. 216

It has no parameters. 217

Constraints on key types and the length of data are summarized in the following table. The input and 218
output data may begin at the same location in memory. 219

Table 2, FORTEZZA Timestamp: Key and Data Length 220

Function Key type Input Length Output Length

C_Sign
1

DSA private key 20 40

C_Verify
1

DSA public key 20,40
2

N/A
1 Single-part operations only

221
2 Data length, signature length

222
For this mechanism, the ulMinKeySIze and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 223
specify the supported range of DSA prime sizes, in bits. 224

2.2 KEA 225

2.2.1 Definitions 226

This section defines the key type “CKK_KEA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE 227
attribute of key objects. 228

Mechanisms: 229

CKM_KEA_KEY_PAIR_GEN 230

CKM_KEA_KEY_DERIVE 231

2.2.2 KEA mechanism parameters 232

2.2.2.1 CK_KEA_DERIVE_PARAMS; CK_KEA_DERIVE_PARAMS_PTR 233

 234

CK_KEA_DERIVE_PARAMS is a structure that provides the parameters to the CKM_KEA_DERIVE 235

mechanism. It is defined as follows: 236

typedef struct CK_KEA_DERIVE_PARAMS { 237
CK_BBOOL isSender; 238
CK_ULONG ulRandomLen; 239
CK_BYTE_PTR pRandomA; 240
CK_BYTE_PTR pRandomB; 241
CK_ULONG ulPublicDataLen; 242
CK_BYTE_PTR pPublicData; 243
} CK_KEA_DERIVE_PARAMS; 244

 245

The fields of the structure have the following meanings: 246

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 17 of 67

 isSender Option for generating the key (called a TEK). The value 247

is CK_TRUE if the sender (originator) generates the 248

TEK, CK_FALSE if the recipient is regenerating the TEK 249

 ulRandomLen the size of random Ra and Rb in bytes 250

 pRandomA pointer to Ra data 251

 pRandomB pointer to Rb data 252

 ulPublicDataLen other party’s KEA public key size 253

 pPublicData pointer to other party’s KEA public key value 254

CK_KEA_DERIVE_PARAMS_PTR is a pointer to a CK_KEA_DERIVE_PARAMS. 255

2.2.3 KEA public key objects 256

KEA public key objects (object class CKO_PUBLIC_KEY, key type CKK_KEA) hold KEA public keys. 257
The following table defines the KEA public key object attributes, in addition to the common attributes 258
defined for this object class: 259

Table 3, KEA Public Key Object Attributes 260

Attribute Data type Meaning

CKA_PRIME
1,3

Big integer Prime p (512 to 1024 bits, in steps of 64 bits)

CKA_SUBPRIME
1,3

Big integer Subprime q (160 bits)

CKA_BASE
1,3

Big integer Base g (512 to 1024 bits, in steps of 64 bits)

CKA_VALUE
1,4

Big integer Public value y

-
Refer to [PKCS #11-Base] table 15 for footnotes 261

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “KEA domain 262

parameters”. 263

The following is a sample template for creating a KEA public key object: 264

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY; 265
CK_KEY_TYPE keyType = CKK_KEA; 266
CK_UTF8CHAR label[] = “A KEA public key object”; 267
CK_BYTE prime[] = {…}; 268
CK_BYTE subprime[] = {…}; 269
CK_BYTE base[] = {…}; 270
CK_BYTE value[] = {…}; 271
CK_ATTRIBUTE template[] = { 272
 {CKA_CLASS, &class, sizeof(class)}, 273
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 274
 {CKA_TOKEN, &true, sizeof(true)}, 275
 {CKA_LABEL, label, sizeof(label)-1}, 276
 {CKA_PRIME, prime, sizeof(prime)}, 277
 {CKA_SUBPRIME, subprime, sizeof(subprime)}, 278
 {CKA_BASE, base, sizeof(base)}, 279
 {CKA_VALUE, value, sizeof(value)} 280
}; 281

 282

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 18 of 67

2.2.4 KEA private key objects 283

KEA private key objects (object class CKO_PRIVATE_KEY, key type CKK_KEA) hold KEA private keys. 284
The following table defines the KEA private key object attributes, in addition to the common attributes 285
defined for this object class: 286

Table 4, KEA Private Key Object Attributes 287

Attribute Data type Meaning

CKA_PRIME
1,4,6

Big integer Prime p (512 to 1024 bits, in steps of 64 bits)

CKA_SUBPRIME
1,4,6

Big integer Subprime q (160 bits)

CKA_BASE
1,4,6

Big integer Base g (512 to 1024 bits, in steps of 64 bits)

CKA_VALUE
1,4,6,7

Big integer Private value x

Refer to [PKCS #11-Base] table 15 for footnotes 288

 289

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “KEA domain 290

parameters”. 291

Note that when generating a KEA private key, the KEA parameters are not specified in the key’s 292
template. This is because KEA private keys are only generated as part of a KEA key pair, and the KEA 293

parameters for the pair are specified in the template for the KEA public key. 294

The following is a sample template for creating a KEA private key object: 295

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY; 296
CK_KEY_TYPE keyType = CKK_KEA; 297
CK_UTF8CHAR label[] = “A KEA private key object”; 298
CK_BYTE subject[] = {…}; 299
CK_BYTE id[] = {123}; 300
CK_BYTE prime[] = {…}; 301
CK_BYTE subprime[] = {…}; 302
CK_BYTE base[] = {…}; 303
CK_BYTE value[] = {…]; 304
CK_BBOOL true = CK_TRUE; 305
CK_ATTRIBUTE template[] = { 306
 {CKA_CLASS, &class, sizeof(class)}, 307
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},Algorithm, as defined by NISTS 308
 {CKA_TOKEN, &true, sizeof(true)}, 309
 {CKA_LABEL, label, sizeof(label) -1}, 310
 {CKA_SUBJECT, subject, sizeof(subject)}, 311
 {CKA_ID, id, sizeof(id)}, 312
 {CKA_SENSITIVE, &true, sizeof(true)}, 313
 {CKA_DERIVE, &true, sizeof(true)}, 314
 {CKA_PRIME, prime, sizeof(prime)}, 315
 {CKA_SUBPRIME, subprime, sizeof(subprime)}, 316
 {CKA_BASE, base, sizeof(base)], 317
 {CKA_VALUE, value, sizeof(value)} 318
}; 319

2.2.5 KEA key pair generation 320

The KEA key pair generation mechanism, denoted CKM_KEA_KEY_PAIR_GEN, generates key pairs for 321
the Key Exchange Algorithm, as defined by NIST’s “SKIPJACK and KEA Algorithm Specification Version 322
2.0”, 29 May 1998. 323

It does not have a parameter. 324

The mechanism generates KEA public/private key pairs with a particular prime, subprime and base, as 325
specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the template for the public 326

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 19 of 67

key. Note that this version of Cryptoki does not include a mechanism for generating these KEA domain 327
parameters. 328

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new 329
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and 330
CKA_VALUE attributes to the new private key. Other attributes supported by the KEA public and private 331
key types (specifically, the flags indicating which functions the keys support) may also be specified in the 332
templates for the keys, or else are assigned default initial values. 333

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 334

specify the supported range of KEA prime sizes, in bits. 335

2.2.6 KEA key derivation 336

The KEA key derivation mechanism, denoted CKM_DEA_DERIVE, is a mechanism for key derivation 337
based on KEA, the Key Exchange Algorithm, as defined by NIST’s “SKIPJACK and KEA Algorithm 338
Specification Version 2.0”, 29 May 1998. 339

It has a parameter, a CK_KEA_DERIVE_PARAMS structure. 340

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE 341
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of 342
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism 343
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key 344

type must be specified in the template. 345

As defined in the Specification, KEA can be used in two different operational modes: full mode and e-mail 346
mode. Full mode is a two-phase key derivation sequence that requires real-time parameter exchange 347
between two parties. E-mail mode is a one-phase key derivation sequence that does not require real-348
time parameter exchange. By convention, e-mail mode is designated by use of a fixed value of one (1) 349
for the KEA parameter Rb (pRandomB). 350

The operation of this mechanism depends on two of the values in the supplied 351
CK_KEA_DERIVE_PARAMS structure, as detailed in the table below. Note that in all cases, the data 352
buffers pointed to by the parameter structure fields pRandomA and pRandomB must be allocated by the 353
caller prior to invoking C_DeriveKey. Also, the values pointed to by pRandomA and pRandomB are 354

represented as Cryptoki “Big integer” data (i.e., a sequence of bytes, most significant byte first). 355

Table 5, KEA Parameter Values and Operations 356

Value of
boolean

isSender

Value of big
integer

pRandomB

Token Action

(after checking parameter and template values)

CK_TRUE
0

Compute KEA Ra value, store it in pRandomA, return CKR_OK. No
derived key object is created.

CK_TRUE 1 Compute KEA Ra value, store it in pRandomA, derive key value
using e-mail mode, create key object, return CKR_OK.

CK_TRUE >1 Compute KEA Ra value, store it in pRandomA, derive key value
using full mode, create key object, return CKR_OK

CK_FALSE 0 Compute KEA Rb value, store it in pRandomB, return CKR_OK. No
derived key object is created.

CK_FALSE 1 Derive key value using e-mail mode, create key object, return
CKR_OK.

CK_FALSE >1 Derive key value using full mode, create key object, return CKR_OK.

Note that the parameter value pRandomB == 0 is a flag that the KEA mechanism is being invoked to 357
compute the party’s public random value (Ra or Rb, for sender or recipient, respectively), not to derive a 358

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 20 of 67

key. In these cases, any object template supplied as the C_DeriveKey pTemplate argument should be 359

ignored. 360

This mechanism has the following rules about key sensitivity and extractability
*
: 361

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can 362
both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on 363
some default value. 364

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived 365
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, 366
then the derived has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its 367
CKA_SENSITIVE attribute. 368

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then 369
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to 370
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the 371
opposite value from its CKA_EXTRACTABLE attribute. 372

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 373

specify the supported range of KEA prime sizes, in bits. 374

2.3 RC2 375

RC2 is a block cipher which is trademarked by RSA Security. It has a variable keysizse and an additional 376
parameter, the “effective number of bits in the RC2 search space”, which can take on values in the range 377
1-1024, inclusive. The effective number of bits in the RC2 search space is sometimes specified by an 378
RC2 “version number”; this “version number” is not the same thing as the “effective number of bits”, 379

however. There is a canonical way to convert from one to the other. 380

2.3.1 Definitions 381

This section defines the key type “CKK_RC2” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE 382
attribute of key objects. 383

Mechanisms: 384

CKM_RC2_KEY_GEN 385

CKM_RC2_ECB 386

CKM_RC2_CBC 387

CKM_RC2_MAC 388

CKM_RC2_MAC_GENERAL 389

CKM_RC2_CBC_PAD 390

2.3.2 RC2 secret key objects 391

RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC2) hold RC2 keys. The 392
following table defines the RC2 secret key object attributes, in addition to the common attributes defined 393
for this object class: 394

Table 6, RC2 Secret Key Object Attributes 395

Attribute Data type Meaning

*
 Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE,
CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have changed in version
2.11 to match the policy used by other key derivation mechanisms such as
CKM_SSL3_MASTER_KEY_DERIVE.

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 21 of 67

CKA_VALUE
1,4,6,7

Byte array Key value (1 to 128 bytes)

CKA_VALUE_LEN
2,3

CK_ULONG Length in bytes of key value

Refer to [PKCS #11-Base] table 15 for footnotes 396

The following is a sample template for creating an RC2 secret key object: 397

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 398
CK_KEY_TYPE keyType = CKK_RC2; 399
CK_UTF8CHAR label[] = “An RC2 secret key object”; 400
CK_BYTE value[] = {…}; 401
CK_BBOOL true = CK_TRUE; 402
CK_ATTRIBUTE template[] = { 403
 {CKA_CLASS, &class, sizeof(class)}, 404
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 405
 {CKA_TOKEN, &true, sizeof(true)}, 406
 {CKA_LABEL, label, sizeof(label)-1}, 407
 {CKA_ENCRYPT, &true, sizeof(true)}, 408
 {CKA_VALUE, value, sizeof(value)} 409
}; 410

2.3.3 RC2 mechanism parameters 411

2.3.3.1 CK_RC2_PARAMS; CK_RC2_PARAMS_PTR 412

CK_RC2_PARAMS provides the parameters to the CKM_RC2_ECB and CMK_RC2_MAC mechanisms. 413
It holds the effective number of bits in the RC2 search space. It is defined as follows: 414

typedef CK_ULONG CK_RC2_PARAMS; 415

CK_RC2_PARAMS_PTR is a pointer to a CK_RC2_PARAMS. 416

2.3.3.2 CK_RC2_CBC_PARAMS; CK_RC2_CBC_PARAMS_PTR 417

CK_RC2_CBC_PARAMS is a structure that provides the parameters to the CKM_RC2_CBC and 418
CKM_RC2_CBC_PAD mechanisms. It is defined as follows: 419

typedef struct CK_RC2_CBC_PARAMS { 420
 CK_ULONG ulEffectiveBits; 421
 CK_BYTE iv[8]; 422
} CK_RC2_CBC_PARAMS; 423

The fields of the structure have the following meanings: 424

 ulEffectiveBits the effective number of bits in the RC2 search space 425

 iv the initialization vector (IV) for cipher block chaining 426

mode 427

CK_RC2_CBC_PARAMS_PTR is a pointer to a CK_RC2_CBC_PARAMS. 428

2.3.3.3 CK_RC2_MAC_GENERAL_PARAMS; 429

CK_RC2_MAC_GENERAL_PARAMS_PTR 430

CK_RC2_MAC_GENERAL_PARAMS is a structure that provides the parameters to the 431
CKM_RC2_MAC_GENERAL mechanism. It is defined as follows: 432

typedef struct CK_RC2_MAC_GENERAL_PARAMS { 433
 CK_ULONG ulEffectiveBits; 434
 CK_ULONG ulMacLength; 435
} CK_RC2_MAC_GENERAL_PARAMS; 436

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 22 of 67

The fields of the structure have the following meanings: 437

 ulEffectiveBits the effective number of bits in the RC2 search space 438

 ulMacLength length of the MAC produced, in bytes 439

CK_RC2_MAC_GENERAL_PARAMS_PTR is a pointer to a CK_RC2_MAC_GENERAL_PARAMS. 440

2.3.4 RC2 key generation 441

The RC2 key generation mechanism, denoted CKM_RC2_KEY_GEN, is a key generation mechanism for 442
RSA Security’s block cipher RC2. 443

It does not have a parameter. 444

The mechanism generates RC2 keys with a particular length in bytes, as specified in the 445
CKA_VALUE_LEN attribute of the template for the key. 446

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new 447
key. Other attributes supported by the RC2 key type (specifically, the flags indicating which functions the 448
key supports) may be specified in the template for the key, or else are assigned default initial values. 449

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 450

specify the supported range of RC2 key sizes, in bits. 451

2.3.5 RC2-ECB 452

RC2-ECB, denoted CKM_RC2_ECB, is a mechanism for single- and multiple-part encryption and 453
decryption; key wrapping; and key unwrapping, based on RSA Security’s block cipher RC2 and electronic 454
codebook mode as defined in FIPS PUB 81. 455

It has a parameter, a CK_RC2_PARAMS, which indicates the effective number of bits in the RC2 search 456
space. 457

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to 458
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the 459
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to seven null bytes 460
so that the resulting length is a multiple of eight. The output data is the same length as the padded input 461
data. It does not wrap the key type, key length, or any other information about the key; the application 462
must convey these separately. 463

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the 464
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the 465
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE 466

attribute of the new key; other attributes required by the key type must be specified in the template. 467

Constraints on key types and the length of data are summarized in the following table: 468

Table 7 RC2-ECB: Key and Data Length 469

Function Key
type

Input
length

Output length Comments

C_Encrypt RC2 Multiple of
8

Same as input length No final
part

C_Decrypt RC2 Multiple of
8

Same as input length No final
part

C_WrapKey RC2 Any Input length rounded up to multiple of 8

C_UnwrapKey RC2 Multiple of
8

Determined by type of key being unwrapped or
CKA_VALUE_LEN

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 23 of 67

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 470
specify the supported range of RC2 effective number of bits. 471

2.3.6 RC2-CBC 472

RC2_CBC, denoted CKM_RC2_CBC, is a mechanism for single- and multiple-part encryption and 473
decryption; key wrapping; and key unwrapping, based on RSA Security’s block cipher RC2 and cipher-474
block chaining mode as defined in FIPS PUB 81. 475

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates the effective 476
number of bits in the RC2 search space, and the next field is the initialization vector for cipher block 477
chaining mode. 478

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to 479
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the 480
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to seven null bytes 481
so that the resulting length is a multiple of eight. The output data is the same length as the padded input 482
data. It does not wrap the key type, key length, or any other information about the key; the application 483
must convey these separately. 484

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the 485
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the 486
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE 487

attribute of the new key; other attributes required by the key type must be specified in the template. 488

Constraints on key types and the length of data are summarized in the following table: 489

Table 8, RC2-CBC: Key and Data Length 490

Function Key
type

Input
length

Output length Comments

C_Encrypt RC2 Multiple of
8

Same as input length No final
part

C_Decrypt RC2 Multiple of
8

Same as input length No final
part

C_WrapKey RC2 Any Input length rounded up to multiple of 8

C_UnwrapKey RC2 Multiple of
8

Determined by type of key being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 491
specify the supported range of RC2 effective number of bits. 492

2.3.7 RC2-CBC with PKCS padding 493

RC2-CBC with PKCS padding, denoted CKM_RC2_CBC_PAD, is a mechanism for single- and multiple-494
part encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s block cipher 495
RC2; cipher-block chaining mode as defined in FIPS PUB 81; and the block cipher padding method 496
detailed in PKCS #7. 497

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates the effective 498

number of bits in the RC2 search space, and the next field is the initialization vector. 499

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the 500
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified 501
for the CKA_VALUE_LEN attribute. 502

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA, 503
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see ***MISSING 504
REFERENCE*** for details). The entries in the table below for data length constraints when wrapping 505
and unwrapping keys do not apply to wrapping and unwrapping private keys. 506

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 24 of 67

Constraints on key types and the length of data are summarized in the following table: 507

Table 9, RC2-CBC with PKCS Padding: Key and Data Length 508

Function Key type Input length Output length

C_Encrypt RC2 Any Input length rounded up to multiple of 8

C_Decrypt RC2 Multiple of 8 Between 1 and 8 bytes shorter than input length

C_WrapKey RC2 Any Input length rounded up to multiple of 8

C_UnwrapKey RC2 Multiple of 8 Between 1 and 8 bytes shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 509
specify the supported range of RC2 effective number of bits. 510

2.3.8 General-length RC2-MAC 511

General-length RC2-MAC, denoted CKM_RC2_MAC_GENERAL, is a mechanism for single-and 512
multiple-part signatures and verification, based on RSA Security’s block cipher RC2 and data 513
authorization as defined in FIPS PUB 113. 514

It has a parameter, a CK_RC2_MAC_GENERAL_PARAMS structure, which specifies the effective 515

number of bits in the RC2 search space and the output length desired from the mechanism. 516

The output bytes from this mechanism are taken from the start of the final RC2 cipher block produced in 517
the MACing process. 518

Constraints on key types and the length of data are summarized in the following table: 519

Table 10, General-length RC2-MAC: Key and Data Length 520

Function Key type Data length Signature length

C_Sign RC2 Any 0-8, as specified in parameters

C_Verify RC2 Any 0-8, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 521
specify the supported range of RC2 effective number of bits. 522

2.3.9 RC2-MAC 523

RC2-MAC, denoted by CKM_RC2_MAC, is a special case of the general-length RC2-MA mechanism 524
(see Section 2.3.8). Instead of taking a CK_RC2_MAC_GENERAL_PARAMS parameter, it takes a 525
CK_RC2_PARAMS parameter, which only contains the effective number of bits in the RC2 search space. 526

RC2-MAC always produces and verifies 4-byte MACs. 527

Constraints on key types and the length of data are summarized in the following table: 528

 529

Table 11, RC2-MAC: Key and Data Length 530

Function Key type Data length Signature length

C_Sign RC2 Any 4

C_Verify RC2 Any 4

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 531
specify the supported range of RC2 effective number of bits. 532

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 25 of 67

2.4 RC4 533

2.4.1 Definitions 534

This section defines the key type “CKK_RC4” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE 535
attribute of key objects. 536

Mechanisms 537

 CKM_RC4_KEY_GEN 538

 CKM_RC4 539

2.4.2 RC4 secret key objects 540

RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC4) hold RC4 keys. The 541
following table defines the RC4 secret key object attributes, in addition to the common attributes defined 542
for this object class: 543

Table 12, RC4 Secret Key Object 544

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (1 to 256 bytes)

CKA_VALUE_LEN
2,3,6

CK_ULONG Length in bytes of key value

Refer to [PKCS #11-Base] table 15 for footnotes 545

The following is a sample template for creating an RC4 secret key object: 546

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 547
CK_KEY_TYPE keyType = CKK_RC4; 548
CK_UTF8CHAR label[] = “An RC4 secret key object”; 549
CK_BYTE value[] = {…}; 550
CK_BBOOL true – CK_TRUE; 551
CK_ATTRIBUTE template[] = { 552
 {CKA_CLASS, &class, sizeof(class)}, 553
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 554
 {CKA_TOKEN, &true, sizeof(true)}, 555
 {CKA_LABEL, label, sizeof(label)-1}, 556
 {CKA_ENCRYPT, &true, sizeof(true)}, 557
 {CKA_VALUE, value, sizeof(value} 558
}; 559

2.4.3 RC4 key generation 560

The RC4 key generation mechanism, denoted CKM_RC4_KEY_GEN, is a key generation mechanism for 561

RSA Security’s proprietary stream cipher RC4. 562

It does not have a parameter. 563

The mechanism generates RC4 keys with a particular length in bytes, as specified in the 564
CKA_VALUE_LEN attribute of the template for the key. 565

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new 566
key. Other attributes supported by the RC4 key type (specifically, the flags indicating which functions the 567
key supports) may be specified in the template for the key, o r else are assigned default initial values. 568

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 569

specify the supported range of RC4 key sizes, in bits. 570

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 26 of 67

2.4.4 RC4 mechanism 571

RC4, denoted CKM_RC4, is a mechanism for single- and multiple-part encryption and decryption based 572
on RSA Security’s proprietary stream cipher RC4. 573

It does not have a parameter. 574

Constraints on key types and the length of input and output data are summarized in the following table: 575

Table 13, RC4: Key and Data Length 576

Function Key type Input length Output length Comments

C_Encrypt RC4 Any Same as input length No final part

C_Decrypt RC4 Any Same as input length No final part

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 577
specify the supported range of RC4 key sizes, in bits. 578

2.5 RC5 579

RC5 is a parameterizable block cipher patented by RSA Security. It has a variable wordsize, a variable 580
keysize, and a variable number of rounds. The blocksize of RC5 is always equal to twice its wordsize. 581

2.5.1 Definitions 582

This section defines the key type “CKK_RC5” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE 583
attribute of key objects. 584

Mechanisms: 585

 CKM_RC5_KEY_GEN 586

 CKM_RC5_ECB 587

 CKM_RC5_CBC 588

 CKM_RC5_MAC 589

 CKM_RC5_MAC_GENERAL 590

 CMK_RC5_CBC_PAD 591

2.5.2 RC5 secret key objects 592

RC5 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC5) hold RC5 keys. The 593
following table defines the RC5 secret key object attributes, in addition to the common attributes defined 594
for this object class. 595

Table 14, RC5 Secret Key Object 596

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (0 to 255 bytes)

CKA_VALUE_LEN
2,3,6

CK_ULONG Length in bytes of key value

Refer to [PKCS #11-Base] table 15 for footnotes 597

 598

The following is a sample template for creating an RC5 secret key object: 599

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 600
CK_KEY_TYPE keyType = CKK_RC5; 601
CK_UTF8CHAR label[] = “An RC5 secret key object”; 602
CK_BYTE value[] = {…}; 603
CK_BBOOL true = CK_TRUE; 604

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 27 of 67

CK_ATTRIBUTE template[] = { 605
 {CKA_CLASS, &class, sizeof(class)}, 606
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 607
 {CKA_TOKEN, &true, sizeof(true)}, 608
 {CKA_LABEL, label, sizeof(label)-1}, 609
 {CKA_ENCRYPT, &true, sizeof(true)}, 610
 {CKA_VALUE, value, sizeof(value)} 611
}; 612

2.5.3 RC5 mechanism parameters 613

2.5.3.1 CK_RC5_PARAMS; CK_RC5_PARAMS_PTR 614

CK_RC5_PARAMS provides the parameters to the CKM_RC5_ECB and CKM_RC5_MAC mechanisms. 615
It is defined as follows: 616

typedef struct CK_RC5_PARAMS { 617
 CK_ULONG ulWordsize; 618
 CK_ULONG ulRounds; 619
} CK_RC5_PARAMS; 620

The fields of the structure have the following meanings: 621

 ulWordsize wordsize of RC5 cipher in bytes 622

 ulRounds number of rounds of RC5 encipherment 623

CK_RC5_PARAMS_PTR is a pointer to a CK_RC5_PARAMS. 624

2.5.3.2 CK_RC5_CBC_PARAMS; CK_RC5_CBC_PARAMS_PTR 625

CK_RC5_CBC_PARAMS is a structure that provides the parameters to the CKM_RC5_CBC and 626
CKM_RC5_CBC_PAD mechanisms. It is defined as follows: 627

typedef struct CK_RC5_CBC_PARAMS { 628
 CK_ULONG ulWordsize; 629
 CK_ULONG ulRounds; 630
 CK_BYTE_PTR pIv; 631
 CK_ULONG ulIvLen; 632
} CK_RC5_CBC_PARAMS; 633

The fields of the structure have the following meanings: 634

 ulwordSize wordsize of RC5 cipher in bytes 635

 ulRounds number of rounds of RC5 encipherment 636

 pIV pointer to initialization vector (IV) for CBC encryption 637

 ulIVLen length of initialization vector (must be same as 638

blocksize) 639

CK_RC5_CBC_PARAMS_PTR is a pointer to a CK_RC5_CBC_PARAMS. 640

2.5.3.3 CK_RC5_MAC_GENERAL_PARAMS; 641

CK_RC5_MAC_GENERAL_PARAMS_PTR 642

CK_RC5_MAC_GENERAL_PARAMS is a structure that provides the parameters to the 643
CKM_RC5_MAC_GENERAL mechanism. It is defined as follows: 644

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 28 of 67

typedef struct CK_RC5_MAC_GENERAL_PARAMS { 645
 CK_ULONG ulWordsize; 646
 CK_ULONG ulRounds; 647
 CK_ULONG ulMacLength; 648
} CK_RC5_MAC_GENERAL_PARAMS; 649

The fields of the structure have the following meanings: 650

 ulwordSize wordsize of RC5 cipher in bytes 651

 ulRounds number of rounds of RC5 encipherment 652

 ulMacLength length of the MAC produced, in bytes 653

CK_RC5_MAC_GENERAL_PARAMS_PTR is a pointer to a CK_RC5_MAC_GENERAL_PARAMS. 654

2.5.4 RC5 key generation 655

The RC5 key generation mechanism, denoted CKM_RC5_KEY_GEN, is a key generation mechanism for 656

RSA Security’s block cipher RC5. 657

It does not have a parameter. 658

The mechanism generates RC5 keys with a particular length in bytes, as specified in the 659
CKA_VALUE_LEN attribute of the template for the key. 660

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new 661
key. Other attributes supported by the RC5 key type (specifically, the flags indicating which functions the 662
key supports) may be specified in the template for the key, or else are assigned default initial values. 663

For this mechanism, the ulMinKeySIze and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 664

specify the supported range of RC5 key sizes, in bytes. 665

2.5.5 RC5-ECB 666

RC5-ECB, denoted CKM_RC5_ECB, is a mechanism for single- and multiple-part encryption and 667
decryption; key wrapping; and key unwrapping, based on RSA Security’s block cipher RC5 and electronic 668
codebook mode as defined in FIPS PUB 81. 669

It has a parameter, CK_RC5_PARAMS, which indicates the wordsize and number of rounds of 670

encryption to use. 671

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to 672
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the 673
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with null bytes so that the 674
resulting length is a multiple of the cipher blocksize (twice the wordsize). The output data is the same 675
length as the padded input data. It does not wrap the key type, key length, or any other information about 676
the key; the application must convey these separately. 677

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the 678
CKA_KEY_TYPE attributes of the template and, if it has one, and the key type supports it, the 679
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE 680

attribute of the new key; other attributes required by the key type must be specified in the template. 681

Constraints on key types and the length of data are summarized in the following table: 682

Table 15, RC5-ECB Key and Data Length 683

Function Key
type

Input length Output length Comments

C_Encrypt RC5 Multiple of
blocksize

Same as input length No final
part

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 29 of 67

C_Decrypt RC5 Multiple of
blocksize

Same as input length No final
part

C_WrapKey RC5 Any Input length rounded up to multiple of
blocksize

C_UnwrapKey RC5 Multiple of
blocksize

Determined by type of key being unwrapped
or CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 684
specify the supported range of RC5 key sizes, in bytes. 685

2.5.6 RC5-CBC 686

RC5-CBC, denoted CKM_RC5_CBC, is a mechanism for single- and multiple-part encryption and 687
decryption; key wrapping; and key unwrapping, based on RSA Security’s block cipher RC5 and cipher-688
block chaining mode as defined in FIPS PUB 81. 689

It has a parameter, a CK_RC5_CBC_PARAMS structure, which specifies the wordsize and number of 690

rounds of encryption to use, as well as the initialization vector for cipher block chaining mode. 691

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to 692
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the 693
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to seven null bytes 694
so that the resulting length is a multiple of eight. The output data is the same length as the padded input 695
data. It does not wrap the key type, key length, or any other information about the key; the application 696
must convey these separately. 697

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the 698
CKA_KEY_TYPE attribute for the template, and, if it has one, and the key type supports it, the 699
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE 700

attribute of the new key; other attributes required by the key type must be specified in the template. 701

Constraints on key types and the length of data are summarized in the following table: 702

Table 16, RC5-CBC Key and Data Length 703

Function Key
type

Input length Output length Comments

C_Encrypt RC5 Multiple of
blocksize

Same as input length No final
part

C_Decrypt RC5 Multiple of
blocksize

Same as input length No final
part

C_WrapKey RC5 Any Input length rounded up to multiple of
blocksize

C_UnwrapKey RC5 Multiple of
blocksize

Determined by type of key being unwrapped
or CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 704
specify the supported range of RC5 key sizes, in bytes. 705

2.5.7 RC5-CBC with PKCS padding 706

RC5-CBC with PKCS padding, denoted CKM_RC5_CBC_PAD, is a mechanism for single- and multiple-707
part encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s block cipher 708
RC5; cipher block chaining mode as defined in FIPS PUB 81; and the block cipher padding method 709
detailed in PKCS #7. 710

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 30 of 67

It has a parameter, a CK_RC5_CBC_PARAMS structure, which specifies the wordsize and number of 711

rounds of encryption to use, as well as the initialization vector for cipher block chaining mode. 712

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the 713
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified 714
for the CKA_VALUE_LEN attribute. 715

In addition to being able to wrap an unwrap secret keys, this mechanism can wrap and unwrap RSA, 716
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section 717
MISSING REFERENCE for details). The entries in the table below for data length constraints when 718
wrapping and unwrapping keys do not apply to wrapping and unwrapping private keys. 719

Constraints on key types and the length of data are summarized in the following table: 720

Table 17, RC5-CBC with PKCS Padding; Key and Data Length 721

Function Key
type

Input length Output length

C_Encrypt RC5 Any Input length rounded up to multiple of blocksize

C_Decrypt RC5 Multiple of
blocksize

Between 1 and blocksize bytes shorter than input
length

C_WrapKey RC5 Any Input length rounded up to multiple of blocksize

C_UnwrapKey RC5 Multiple of
blocksize

Between 1 and blocksize bytes shorter than input
length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 722

specify the supported range of RC5 key sizes, in bytes. 723

2.5.8 General-length RC5-MAC 724

General-length RC5-MAC, denoted CKM_RC5_MAC_GENERAL, is a mechanism for single- and 725
multiple-part signatures and verification, based on RSA Security’s block cipher RC5 and data 726
authentication as defined in FIPS PUB 113. 727

It has a parameter, a CK_RC5_MAC_GENERAL_PARAMS structure, which specifies the wordsize and 728

number of rounds of encryption to use and the output length desired from the mechanism. 729

The output bytes from this mechanism are taken from the start of the final RC5 cipher block produced in 730
the MACing process. 731

Constraints on key types and the length of data are summarized in the following table: 732

Table 18, General-length RC2-MAC: Key and Data Length 733

Function Key type Data length Signature length

C_Sign RC5 Any 0-blocksize, as specified in parameters

C_Verify RC5 Any 0-blocksize, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySIze fields of the CK_MECHANISM_INFO structure 734
specify the supported range of RC5 key sizes, in bytes. 735

2.5.9 RC5-MAC 736

RC5-MAC, denoted by CKM_RC5_MAC, is a special case of the general-length RC5-MAC mechanism. 737
Instead of taking a CK_RC5_MAC_GENERAL_PARAMS parameter, it takes a CK_RC5_PARAMS 738

parameter. RC5-MAC always produces and verifies MACs half as large as the RC5 blocksize. 739

Constraints on key types and the length of data are summarized in the following table: 740

Table 19, RC5-MAC: Key and Data Length 741

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 31 of 67

Function Key type Data length Signature length

C_Sign RC5 Any RC5 wordsize = [blocksize/2]

C_Verify RC5 Any RC5 wordsize = [blocksize/2]

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 742
specify the supported range of RC5 key sizes, in bytes. 743

2.6 General block cipher 744

For brevity’s sake, the mechanisms for the DES, CAST, CAST3, CAST128 (CAST5), IDEA and CDMF 745
block ciphers will be described together here. Each of these ciphers ha the following mechanisms, which 746
will be described in a templatized form. 747

2.6.1 Definitions 748

This section defines the key types “CKK_DES”, “CKK_CAST”, “CKK_CAST3”, “CKK_CAST5” 749
(deprecated in v2.11), “CKK_CAST128”, “CKK_IDEA” and “CKK_CDMF” for type CK_KEY_TYPE as 750
used in the CKA_KEY_TYPE attribute of key objects. 751

Mechanisms: 752

 CKM_DES_KEY_GEN 753

 CKM_DES_ECB 754

 CKM_DES_CBC 755

 CKM_DES_MAC 756

 CKM_DES_MAC_GENERAL 757

 CKM_DES_CBC_PAD 758

 CKM_CDMF_KEY_GEN 759

 CKM_CDMF_ECB 760

CKM_CDMF_CBC 761

 CKM_CDMF_MAC 762

 CKM_CDMF_MAC_GENERAL 763

 CKM_CDMF_CBC_PAD 764

 CKM_DES_OFB64 765

 CKM_DES_OFB8 766

 CKM_DES_CFB64 767

 CKM_DES_CFB8 768

 CKM_CAST_KEY_GEN 769

 CKM_CAST_ECB 770

 CKM_CAST_CBC 771

 CKM_CAST_MAC 772

 CKM_CAST_MAC_GENERAL 773

 CKM_CAST_CBC_PAD 774

 CKM_CAST3_KEY_GEN 775

 CKM_CAST3_ECB 776

 CKM_CAST3_CBC 777

 CKM_CAST3_MAC 778

 CKM_CAST3_MAC_GENERAL 779

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 32 of 67

 CKM_CAST3_CBC_PAD 780

 CKM_CAST5_KEY_GEN 781

 CKM_CAST128_KEY_GEN 782

 CKM_CAST5_ECB 783

 CKM_CAST128_ECB 784

 CKM_CAST5_CBC 785

 CKM_CAST128_CB C 786

 CKM_CAST5_MAC 787

 CKM_CAST128_MAC 788

 CKM_CAST5_MAC_GENERAL 789

 CKM_CAST128_MAC_GENERAL 790

 CKM_CAST5_CBC_PAD 791

 CKM_CAST128_CBC_PAD 792

 CKM_IDEA_KEY_GEN 793

 CKM_IDEA_ECB 794

 CKM_IDEA_MAC 795

 CKM_IDEA_MAC_GENERAL 796

 CKM_IDEA_CBC_PAD 797

2.6.2 DES secret key objects 798

DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hold single-length DES 799
keys. The following table defines the DES secret key object attributes, in addition to the common 800
attributes defined for this object class: 801

Table 20, DES Secret Key Object 802

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (always 8 bytes long)

Refer to [PKCS #11-Base] table 15 for footnotes 803

DES keys must always have their parity bits properly set as described in FIPS PUB 46-3. Attempting to 804
create or unwrap a DES key with incorrect parity will return an error. 805

The following is a sample template for creating a DES secret key object: 806

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 807
CK_KEY_TYPE keyType = CKK_DES; 808
CK_UTF8CHAR label[] = “A DES secret key object”; 809
CK_BYTE value[8] = {…}; 810
CK_BBOOL true = CK_TRUE; 811
CK_ATTRIBUTE template[] = { 812
 {CKA_CLASS, &class, sizeof(class)}, 813
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 814
 {CKA_TOKEN, &true, sizeof(true)}, 815
 {CKA_LABEL, label, sizeof(label)-1}, 816
 {CKA_ENCRYPT, &true, sizeof(true)}, 817
 {CKA_VALUE, value, sizeof(value} 818
}; 819

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three 820
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with 821
the key type of the secret key object. 822

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 33 of 67

2.6.3 CAST secret key objects 823

CAST secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST) hold CAST keys. 824
The following table defines the CAST secret key object attributes, in addition to the common attributes 825
defined for this object class: 826

Table 21, CAST Secret Key Object Attributes 827

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (1 to 8 bytes)

CKA_VALUE_LEN
2,3,6

CK_ULONG Length in bytes of key value

Refer to [PKCS #11-Base] table 15 for footnotes 828

 829

The following is a sample template for creating a CAST secret key object: 830

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 831
CK_KEY_TYPE keyType = CKK_CAST; 832
CK_UTF8CHAR label[] = “A CAST secret key object”; 833
CK_BYTE value[] = {…}; 834
CK_BBOOL true = CK_TRUE; 835
CK_ATTRIBUTE template[] = { 836
 {CKA_CLASS, &class, sizeof(class)}, 837
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 838
 {CKA_TOKEN, &true, sizeof(true)}, 839
 {CKA_LABEL, label, sizeof(label)-1}, 840
 {CKA_ENCRYPT, &true, sizeof(true)}, 841
 {CKA_VALUE, value, sizeof(value)} 842
}; 843

2.6.4 CAST3 secret key objects 844

CAST3 secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST3) hold CAST3 keys. 845
The following table defines the CAST3 secret key object attributes, in addition to the common attributes 846
defines for this object class: 847

Table 22, CAST3 Secret Key Object Attributes 848

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (1 to 8 bytes)

CKA_VALUE_LEN
2,3,6

CK_ULONG Length in bytes of key value

Refer to [PKCS #11-Base] table 15 for footnotes 849

The following is a sample template for creating a CAST3 secret key object: 850

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 851
CK_KEY_TYPE keyType = CKK_CAST3; 852
CK_UTF8CHAR label[] = “A CAST3 secret key object”; 853
CK_BYTE value[] = {…}; 854
CK_BBOOL true = CK_TRUE; 855
CK_ATTRIBUTE template[] = { 856
 {CKA_CLASS, &class, sizeof(class)}, 857
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 858
 {CKA_TOKEN, &true, sizeof(true)}, 859
 {CKA_LABEL, label, sizeof(label)-1}, 860
 {CKA_ENCRYPT, &true, sizeof(true)}, 861
 {CKA_VALUE, value, sizeof(value)} 862
}; 863

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 34 of 67

2.6.5 CAST128 (CAST5) secret key objects 864

CAST128 (also known as CAST5) secret key objects (object class CKO_SECRET_KEY, key type 865
CKK_CAST128 or CKK_CAST5) hold CAST128 keys. The following table defines the CAST128 secret 866

key object attributes, in addition to the common attributes defines for this object class: 867

Table 23, CAST128 (CAST5) Secret Key Object Attributes 868

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (1 to 16 bytes)

CKA_VALUE_LEN
2,3,6

CK_ULONG Length in bytes of key value

Refer to [PKCS #11-Base] table 15 for footnotes 869

The following is a sample template for creating a CAST128 (CAST5) secret key object: 870

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 871
CK_KEY_TYPE keyType = CKK_CAST128; 872
CK_UTF8CHAR label[] = “A CAST128 secret key object”; 873
CK_BYTE value[] = {…}; 874
CK_BBOOL true = CK_TRUE; 875
CK_ATTRIBUTE template[] = { 876
 {CKA_CLASS, &class, sizeof(class)}, 877
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 878
 {CKA_TOKEN, &true, sizeof(true)}, 879
 {CKA_LABEL, label, sizeof(label)-1}, 880
 {CKA_ENCRYPT, &true, sizeof(true)}, 881
 {CKA_VALUE, value, sizeof(value)} 882
}; 883

 884

2.6.6 IDEA secret key objects 885

IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK_IDEA) hold IDEA keys. The following 886
table defines the IDEA secret key object attributes, in addition to the common attributes defines for this object class: 887

Table 24, IDEA Secret Key Object 888

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (always 16 bytes long)

Refer to [PKCS #11-Base] table 15 for footnotes 889

The following is a sample template for creating an IDEA secret key object: 890

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 891
CK_KEY_TYPE keyType = CKK_IDEA; 892
CK_UTF8CHAR label[] = “An IDEA secret key object”; 893
CK_BYTE value[16] = {…}; 894
CK_BBOOL true = CK_TRUE; 895
CK_ATTRIBUTE template[] = { 896
 {CKA_CLASS, &class, sizeof(class)}, 897
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 898
 {CKA_TOKEN, &true, sizeof(true)}, 899
 {CKA_LABEL, label, sizeof(label)-1}, 900
 {CKA_ENCRYPT, &true, sizeof(true)}, 901
 {CKA_VALUE, value, sizeof(value)} 902
}; 903

 904

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 35 of 67

2.6.7 CDMF secret key objects 905

IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK_CDMF) hold CDMF keys. The following 906
table defines the CDMF secret key object attributes, in addition to the common attributes defines for this object class: 907

Table 25, CDMF Secret Key Object 908

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (always 8 bytes long)

Refer to [PKCS #11-Base] table 15 for footnotes 909

CDMF keys must always have their parity bits properly set in exactly the same fashion described for DES 910
keys in FIPS PUB 46-3. Attempting to create or unwrap a CDMF key with incorrect parity will return an 911
error. 912

The following is a sample template for creating a CDMF secret key object: 913

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 914
CK_KEY_TYPE keyType = CKK_CDMF; 915
CK_UTF8CHAR label[] = “A CDMF secret key object”; 916
CK_BYTE value[8] = {…}; 917
CK_BBOOL true = CK_TRUE; 918
CK_ATTRIBUTE template[] = { 919
 {CKA_CLASS, &class, sizeof(class)}, 920
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 921
 {CKA_TOKEN, &true, sizeof(true)}, 922
 {CKA_LABEL, label, sizeof(label)-1}, 923
 {CKA_ENCRYPT, &true, sizeof(true)}, 924
 {CKA_VALUE, value, sizeof(value)} 925
}; 926

2.6.8 General block cipher mechanism parameters 927

2.6.8.1 CK_MAC_GENERAL_PARAMS; CK_MAC_GENERAL_PARAMS_PTR 928

CK_MAC_GENERAL_PARAMS provides the parameters to the general-length MACing mechanisms of 929
the DES, DES3 (triple-DES), CAST, CAST3, CAST128 (CAST5), IDEA, CDMF and AES ciphers. It also 930
provides the parameters to the general-length HMACing mechanisms (i.e., MD2, MD5, SHA-1, SHA-256, 931
SHA-384, SHA-512, RIPEMD-128 and RIPEMD-160) and the two SSL 3.0 MACing mechanisms, (i.e., 932
MD5 and SHA-1). It holds the length of the MAC that these mechanisms will produce. It is defined as 933
follows: 934

typedef CK_ULONG CK_MAC_GENERAL_PARAMS; 935
 936

CK_MAC_GENERAL_PARAMS_PTR is a pointer to a CK_MAC_GENERAL_PARAMS. 937

2.6.9 General block cipher key generation 938

Cipher <NAME> has a key generation mechanism, “<NAME> key generation”, denoted by 939
CKM_<NAME>_KEY_GEN. 940

This mechanism does not have a parameter. 941

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new 942
key. Other attributes supported by the key type (specifically, the flags indicating which functions the key 943
supports) may be specified in the template for the key, or else are assigned default initial values. 944

When DES keys or CDMF keys are generated, their parity bits are set properly, as specified in FIPS PUB 945
46-3. Similarly, when a triple-DES key is generated, each of the DES keys comprising it has its parity bits 946
set properly. 947

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 36 of 67

When DES or CDMF keys are generated, it is token-dependent whether or not it is possible for “weak” or 948
“semi-weak” keys to be generated. Similarly, when triple-DES keys are generated, it is token-dependent 949
whether or not it is possible for any of the component DES keys to be “weak” or “semi-weak” keys. 950

When CAST, CAST3, or CAST128 (CAST5) keys are generated, the template for the secret key must 951
specify a CKA_VALUE_LEN attribute. 952

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 953
may or may not be used. The CAST, CAST3, and CAST128 (CAST5) ciphers have variable key sizes, 954
and so for the key generation mechanisms for these ciphers, the ulMinKeySize and ulMaxKeySize fields 955
of the CK_MECHANISM_INFO structure specify the supported range of key sizes, in bytes. For the DES, 956

DES3 (triple-DES), IDEA and CDMF ciphers, these fields and not used. 957

2.6.10 General block cipher ECB 958

Cipher <NAME> has an electronic codebook mechanism, “<NAME>-ECB”, denoted 959
CKM_<NAME>_ECB. It is a mechanism for single- and multiple-part encryption and decryption; key 960

wrapping; and key unwrapping with <NAME>. 961

It does not have a parameter. 962

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to 963
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the 964
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with null bytes so that the 965
resulting length is a multiple of <NAME>’s blocksize. The output data is the same length as the padded 966
input data. It does not wrap the key type, key length or any other information about the key; the 967
application must convey these separately. 968

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the 969
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the 970
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE 971

attribute of the new key; other attributes required by the key must be specified in the template. 972

Constraints on key types and the length of data are summarized in the following table: 973

Table 26, General Block Cipher ECB: Key and Data Length 974

Function Key
type

Input length Output length Comments

C_Encrypt <NAME> Multiple of
blocksize

Same as input length No final
part

C_Decrypt <NAME> Multiple of
blocksize

Same as input length No final
part

C_WrapKey <NAME> Any Input length rounded up to multiple of
blocksize

C_UnwrapKey <NAME> Any Determined by type of key being unwrapped
or CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySIze fields of the CK_MECHANISM_INFO structure 975
may or may not be used. The CAST, CAST3, and CAST128 (CAST5) ciphers have variable key sizes, 976
and so for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO 977
structure specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES), IDEA and 978
CDMF ciphers, these fields are not used. 979

2.6.11 General block cipher CBC 980

Cipher <NAME> has a cipher-block chaining mode, “<NAME>-CBC”, denoted CKM_<NAME>_CBC. It is 981
a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping 982
with <NAME>. 983

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 37 of 67

It has a parameter, an initialization vector for cipher block chaining mode. The initialization vector has the 984
same length as <NAME>’s blocksize. 985

Constraints on key types and the length of data are summarized in the following table: 986

Table 27, General Block Cipher CBC; Key and Data Length 987

Function Key
type

Input length Output length Comments

C_Encrypt <NAME> Multiple of
blocksize

Same as input length No final
part

C_Decrypt <NAME> Multiple of
blocksize

Same as input length No final
part

C_WrapKey <NAME> Any Input length rounded up to multiple of
blocksize

C_UnwrapKey <NAME> Any Determined by type of key being unwrapped
or CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 988
may or may not be used. The CAST, CAST3, and CAST128 (CAST5) ciphers have variable key sizes, 989
and so for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO 990
structure specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES), IDEA, and 991
CDMF ciphers, these fields are not used. 992

2.6.12 General block cipher CBC with PCKS padding 993

Cipher <NAME> has a cipher-block chaining mode with PKCS padding, “<NAME>-CBC with PKCS 994
padding”, denoted CKM_<NAME>_CBC_PAD. It is a mechanism for single- and multiple-part encryption 995
and decryption; key wrapping; and key unwrapping with <NAME>. All ciphertext is padded with PKCS 996
padding. 997

It has a parameter, an initialization vector for cipher block chaining mode. The initialization vector has the 998
same length as <NAME>’s blocksize. 999

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the 1000
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified 1001
for the CKA_VALUE_LEN attribute. 1002

 1003

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA, 1004
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section 1005
MISSING REFERENCE for details). The entries in the table below for data length constraints when 1006
wrapping and unwrapping keys to not apply to wrapping and unwrapping private keys. 1007

Constraints on key types and the length of data are summarized in the following table: 1008

Table 28, General Block Cipher CBC with PKCS Padding: Key and Data Length 1009

Function Key
type

Input length Output length

C_Encrypt <NAME> Any Input length rounded up to multiple of blocksize

C_Decrypt <NAME> Multiple of
blocksize

Between 1 and blocksize bytes shorter than input
length

C_WrapKey <NAME> Any Input length rounded up to multiple of blocksize

C_UnwrapKey <NAME> Multiple of Between 1 and blocksize bytes shorter than input

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 38 of 67

blocksize length

For this mechanism, the ulMinKeySIze and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 1010
may or may not be used. The CAST, CAST3 and CAST128 (CAST5) ciphers have variable key sizes, 1011
and so for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO 1012
structure specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES), IDEA, and 1013
CDMF ciphers, these fields are not used. 1014

2.6.13 General-length general block cipher MAC 1015

Cipher <NAME> has a general-length MACing mode, “General-length <NAME>-MAC”, denoted 1016
CKM_<NAME>_MAC_GENERAL. It is a mechanism for single-and multiple-part signatures and 1017
verification, based on the <NAME> encryption algorithm and data authentication as defined in FIPS PUB 1018
113. 1019

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the size of the output. 1020

The output bytes from this mechanism are taken from the start of the final cipher block produced in the 1021
MACing process. 1022

Constraints on key types and the length of input and output data are summarized in the following table: 1023

Table 29, General-length General Block Cipher MAC: Key and Data Length 1024

Function Key type Data length Signature length

C_Sign <NAME> Any 0-blocksize, depending on parameters

C_Verify <NAME> Any 0-blocksize, depending on parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 1025
may or may not be used. The CAST, CAST3, and CASt128 (CAST5) ciphers have variable key sizes, 1026
and so for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO 1027
structure specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES), IDEA and 1028
CDMF ciphers, these fields are not used. 1029

2.6.14 General block cipher MAC 1030

Cipher <NAME> has a MACing mechanism, “<NAME>-MAC”, denoted CKM_<NAME>_MAC. This 1031
mechanism is a special case of the CKM_<NAME>_MAC_GENERAL mechanism described above. It 1032

always produces an output of size half as large as <NAME>’s blocksize. 1033

This mechanism has no parameters. 1034

Constraints on key types and the length of data are summarized in the following table: 1035

Table 30, General Block cipher MAC: Key and Data Length 1036

Function Key type Data length Signature length

C_Sign <NAME> Any [blocksize/2]

C_Verify <NAME> Any [blocksize/2]

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure 1037
may or may not be used. The CAST, CAST3, and CASt128 (CAST5) ciphers have variable key sizes, 1038
and so for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO 1039
structure specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES), IDEA and 1040
CDMF ciphers, these fields are not used. 1041

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 39 of 67

2.7 SKIPJACK 1042

2.7.1 Definitions 1043

This section defines the key type “CKK_SKIPJACK” for type CK_KEY_TYPE as used in the 1044
CKA_KEY_TYPE attribute of key objects. 1045

Mechanisms: 1046

 CKM_SKIPJACK_KEY_GEN 1047

 CKM_SKIPJACK_ECB64 1048

 CKM_SKIPJACK_CBC64 1049

 CKM_SKIPJACK_OFB64 1050

 CKM_SKIPJACK_CFB64 1051

 CKM_SKIPJACK_CFB32 1052

 CKM_SKIPJACK_CFB16 1053

 CKM_SKIPJACK_CFB8 1054

 CKM_SKIPJACK_WRAP 1055

 CKM_SKIPJACK_PRIVATE_WRAP 1056

 CKM_SKIPJACK_RELAYX 1057

2.7.2 SKIPJACK secret key objects 1058

SKIPJACK secret key objects (object class CKO_SECRET_KEY, key type CKK_SKIPJACK) holds a 1059
single-length MEK or a TEK. The following table defines the SKIPJACK secret object attributes, in 1060
addition to the common attributes defined for this object class: 1061

Table 31, SKIPJACK Secret Key Object 1062

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (always 12 bytes long)

Refer to [PKCS #11-Base] table 15 for footnotes 1063

 1064

SKIPJACK keys have 16 checksum bits, and these bits must be properly set. Attempting to create or 1065
unwrap a SKIPJACK key with incorrect checksum bits will return an error. 1066

It is not clear that any tokens exist (or ever will exist) which permit an application to create a SKIPJACK 1067
key with a specified value. Nonetheless, we provide templates for doing so. 1068

The following is a sample template for creating a SKIPJACK MEK secret key object: 1069

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 1070
CK_KEY_TYPE keyType = CKK_SKIPJACK; 1071
CK_UTF8CHAR label[] = “A SKIPJACK MEK secret key object”; 1072
CK_BYTE value[12] = {…}; 1073
CK_BBOOL true = CK_TRUE; 1074
CK_ATTRIBUTE template[] = { 1075
 {CKA_CLASS, &class, sizeof(class)}, 1076
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 1077
 {CKA_TOKEN, &true, sizeof(true)}, 1078
 {CKA_LABEL, label, sizeof(label)-1}, 1079
 {CKA_ENCRYPT, &true, sizeof(true)}, 1080
 {CKA_VALUE, value, sizeof(value)} 1081
}; 1082

The following is a sample template for creating a SKIPJACK TEK secret key object: 1083

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 40 of 67

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 1084
CK_KEY_TYPE keyType = CKK_SKIPJACK; 1085
CK_UTF8CHAR label[] = “A SKIPJACK TEK secret key object”; 1086
CK_BYTE value[12] = {…}; 1087
CK_BBOOL true = CK_TRUE; 1088
CK_ATTRIBUTE template[] = { 1089
 {CKA_CLASS, &class, sizeof(class)}, 1090
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 1091
 {CKA_TOKEN, &true, sizeof(true)}, 1092
 {CKA_LABEL, label, sizeof(label)-1}, 1093
 {CKA_ENCRYPT, &true, sizeof(true)}, 1094
 {CKA_WRAP, &true, sizeof(true)}, 1095
 {CKA_VALUE, value, sizeof(value)} 1096
}; 1097

2.7.3 SKIPJACK Mechanism parameters 1098

2.7.3.1 CK_SKIPJACK_PRIVATE_WRAP_PARAMS; 1099

CK_SKIPJACK_PRIVATE_WRAP_PARAMS_PTR 1100

CK_SKIPJACK_PRIVATE_WRAP_PARAMS is a structure that provides the parameters to the 1101
CKM_SKIPJACK_PRIVATE_WRAP mechanism. It is defined as follows: 1102

typedef struct CK_SKIPJACK_PRIVATE_WRAP_PARAMS { 1103
 CK_ULONG ulPasswordLen; 1104
 CK_BYTE_PTR pPassword; 1105
 CK_ULONG ulPublicDataLen; 1106
 CK_BYTE_PTR pPublicData; 1107
 CK_ULONG ulPandGLen; 1108
 CK_ULONG ulQLen; 1109
 CK_ULONG ulRandomLen; 1110
 CK_BYTE_PTR pRandomA; 1111
 CK_BYTE_PTR pPrimeP; 1112
 CK_BYTE_PTR pBaseG; 1113
 CK_BYTE_PTR pSubprimeQ; 1114
} CK_SKIPJACK_PRIVATE_WRAP_PARAMS; 1115

The fields of the structure have the following meanings: 1116

 ulPasswordLen length of the password 1117

 pPassword pointer to the buffer which contains the user-supplied 1118

password 1119

 ulPublicDataLen other party’s key exchange public key size 1120

 pPublicData pointer to other party’s key exchange public key value 1121

 ulPandGLen length of prime and base values 1122

 ulQLen length of subprime value 1123

 ulRandomLen size of random Ra, in bytes 1124

 pPrimeP pointer to Prime, p, value 1125

 pBaseG pointer to Base, b, value 1126

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 41 of 67

 pSubprimeQ pointer to Subprime, q, value 1127

CK_SKIPJACK_PRIVATE_WRAP_PARAMS_PTR is a pointer to a 1128

CK_PRIVATE_WRAP_PARAMS. 1129

2.7.3.2 CK_SKIPJACK_RELAYX_PARAMS; 1130

CK_SKIPJACK_RELAYX_PARAMS_PTR 1131

CK_SKIPJACK_RELAYX_PARAMS is a structure that provides the parameters to the 1132
CKM_SKIPJACK_RELAYX mechanism. It is defined as follows: 1133

typedef struct CK_SKIPJACK_RELAYX_PARAMS { 1134
 CK_ULONG ulOldWrappedXLen; 1135
 CK_BYTE_PTR pOldWrappedX; 1136
 CK_ULONG ulOldPasswordLen; 1137
 CK_BYTE_PTR pOldPassword; 1138
 CK_ULONG ulOldPublicDataLen; 1139
 CK_BYTE_PTR pOldPublicData; 1140
 CK_ULONG ulOldRandomLen; 1141
 CK_BYTE_PTR pOldRandomA; 1142
 CK_ULONG ulNewPasswordLen; 1143
 CK_BYTE_PTR pNewPassword; 1144
 CK_ULONG ulNewPublicDataLen; 1145
 CK_BYTE_PTR pNewPublicData; 1146
 CK_ULONG ulNewRandomLen; 1147
 CK_BYTE_PTR pNewRandomA; 1148
} CK_SKIPJACK_RELAYX_PARAMS; 1149

The fields of the structure have the following meanings: 1150

 ulOldWrappedLen length of old wrapped key in bytes 1151

 pOldWrappedX pointer to old wrapper key 1152

 ulOldPasswordLen length of the old password 1153

 pOldPassword pointer to the buffer which contains the old user-supplied 1154

password 1155

 ulOldPublicDataLen old key exchange public key size 1156

 pOldPublicData pointer to old key exchange public key value 1157

 ulOldRandomLen size of old random Ra in bytes 1158

 pOldRandomA pointer to old Ra data 1159

 ulNewPasswordLen length of the new password 1160

 pNewPassword pointer to the buffer which contains the new user-1161

supplied password 1162

 ulNewPublicDataLen new key exchange public key size 1163

 pNewPublicData pointer to new key exchange public key value 1164

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 42 of 67

 ulNewRandomLen size of new random Ra in bytes 1165

 pNewRandomA pointer to new Ra data 1166

CK_SKIPJACK_RELAYX_PARAMS_PTR is a pointer to a CK_SKIPJACK_RELAYX_PARAMS. 1167

2.7.4 SKIPJACK key generation 1168

The SKIPJACK key generation mechanism, denoted CKM_SKIPJACK_KEY_GEN, is a key generation 1169

mechanism for SKIPJACK. The output of this mechanism is called a Message Encryption Key (MEK). 1170

It does not have a parameter. 1171

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new 1172
key. 1173

2.7.5 SKIPJACK-ECB64 1174

SKIPJACK-ECB64, denoted CKM_SKIPJACK_ECB64, is a mechanism for single- and multiple-part 1175
encryption and decryption with SKIPJACK in 64-bit electronic codebook mode as defined in FIPS PUB 1176
185. 1177

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1178
value generated by the token – in other words, the application cant specify a particular IV when 1179
encrypting. It can, of course, specify a particular IV when decrypting. 1180

Constraints on key types and the length of data are summarized in the following table: 1181

Table 32, SKIPJACK-ECB64: Data and Length 1182

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK Multiple of 8 Same as input length No final part

C_Decrypt SKIPJACK Multiple of 8 Same as input length No final part

2.7.6 SKIPJACK-CBC64 1183

SKIPJACK-CBC64, denoted CKM_SKIPJACK_CBC64, is a mechanism for single- and multiple-part 1184

encryption and decryption with SKIPJACK in 64-bit output feedback mode as defined in FIPS PUB 185. 1185

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1186
value generated by the token – in other words, the application cannot specify a particular IV when 1187
encrypting. It can, of course, specify a particular IV when decrypting. 1188

Constraints on key types and the length of data are summarized in the following table: 1189

Table 33, SKIPJACK-CBC64: Data and Length 1190

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK Multiple of 8 Same as input length No final part

C_Decrypt SKIPJACK Multiple of 8 Same as input length No final part

2.7.7 SKIPJACK-OFB64 1191

SKIPJACK-OFB64, denoted CKM_SKIPJACK_OFB64, is a mechanism for single- and multiple-part 1192

encryption and decryption with SKIPJACK in 64-bit output feedback mode as defined in FIPS PUB 185. 1193

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1194
value generated by the token – in other words, the application cannot specify a particular IV when 1195
encrypting. It can, of course, specify a particular IV when decrypting. 1196

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 43 of 67

Constraints on key types and the length of data are summarized in the following table: 1197

Table 34, SKIPJACK-OFB64: Data and Length 1198

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK Multiple of 8 Same as input length No final part

C_Decrypt SKIPJACK Multiple of 8 Same as input length No final part

2.7.8 SKIPJACK-CFB64 1199

SKIPJACK-CFB64, denoted CKM_SKIPJACK_CFB64, is a mechanism for single- and multiple-part 1200

encryption and decryption with SKIPJACK in 64-bit cipher feedback mode as defined in FIPS PUB 185. 1201

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1202
value generated by the token – in other words, the application cannot specify a particular IV when 1203
encrypting. It can, of course, specify a particular IV when decrypting. 1204

Constraints on key types and the length of data are summarized in the following table: 1205

Table 35, SKIPJACK-CFB64: Data and Length 1206

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK Multiple of 8 Same as input length No final part

C_Decrypt SKIPJACK Multiple of 8 Same as input length No final part

2.7.9 SKIPJACK-CFB32 1207

SKIPJACK-CFB32, denoted CKM_SKIPJACK_CFB32, is a mechanism for single- and multiple-part 1208

encryption and decryption with SKIPJACK in 32-bit cipher feedback mode as defined in FIPS PUB 185. 1209

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1210
value generated by the token – in other words, the application cannot specify a particular IV when 1211
encrypting. It can, of course, specify a particular IV when decrypting. 1212

Constraints on key types and the length of data are summarized in the following table: 1213

Table 36, SKIPJACK-CFB32: Data and Length 1214

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK Multiple of 4 Same as input length No final part

C_Decrypt SKIPJACK Multiple of 4 Same as input length No final part

2.7.10 SKIPJACK-CFB16 1215

SKIPJACK-CFB16, denoted CKM_SKIPJACK_CFB16, is a mechanism for single- and multiple-part 1216

encryption and decryption with SKIPJACK in 16-bit cipher feedback mode as defined in FIPS PUB 185. 1217

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1218
value generated by the token – in other words, the application cannot specify a particular IV when 1219
encrypting. It can, of course, specify a particular IV when decrypting. 1220

Constraints on key types and the length of data are summarized in the following table: 1221

Table 37, SKIPJACK-CFB16: Data and Length 1222

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK Multiple of 4 Same as input length No final part

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 44 of 67

C_Decrypt SKIPJACK Multiple of 4 Same as input length No final part

2.7.11 SKIPJACK-CFB8 1223

SKIPJACK-CFB8, denoted CKM_SKIPJACK_CFB8, is a mechanism for single- and multiple-part 1224

encryption and decryption with SKIPJACK in 8-bit cipher feedback mode as defined in FIPS PUB 185. 1225

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1226
value generated by the token – in other words, the application cannot specify a particular IV when 1227
encrypting. It can, of course, specify a particular IV when decrypting. 1228

Constraints on key types and the length of data are summarized in the following table: 1229

Table 38, SKIPJACK-CFB8: Data and Length 1230

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK Multiple of 4 Same as input length No final part

C_Decrypt SKIPJACK Multiple of 4 Same as input length No final part

2.7.12 SKIPJACK-WRAP 1231

The SKIPJACK-WRAP mechanism, denoted CKM_SKIPJACK_WRAP, is used to wrap and unwrap a 1232

secret key (MEK). It can wrap or unwrap SKIPJACK, BATON, and JUNIPER keys. 1233

It does not have a parameter. 1234

2.7.13 SKIPJACK-PRIVATE-WRAP 1235

The SKIPJACK-PRIVATE-WRAP mechanism, denoted CKM_SKIPJACK_PRIVATE_WRAP, is used to 1236

wrap and unwrap a private key. It can wrap KEA and DSA private keys. 1237

It has a parameter, a CK_SKIPJACK_PRIVATE_WRAP_PARAMS structure. 1238

2.7.14 SKIPJACK-RELAYX 1239

The SKIPJACK-RELAYX mechanism, denoted CKM_SKIPJACK_RELAYX, is used with the C_WrapKey 1240
function to “change the wrapping” on a private key which was wrapped with the SKIPJACK-PRIVATE-1241
WRAP mechanism (See Section 2.7.13). 1242

It has a parameter, a CK_SKIPJACK_RELAYX_PARAMS structure. 1243

Although the SKIPJACK-RELAYX mechanism is used with C_WrapKey, it differs from other key-1244
wrapping mechanisms. Other key-wrapping mechanisms take a key handle as one of the arguments to 1245
C_WrapKey; however for the SKIPJACK_RELAYX mechanism, the [always invalid] value 0 should be 1246
passed as the key handle for C_WrapKey, and the already-wrapped key should be passed in as part of 1247
the CK_SKIPJACK_RELAYX_PARAMS structure. 1248

2.8 BATON 1249

2.8.1 Definitions 1250

This section defines the key type “CKK_BATON” for type CK_KEY_TYPE as used in the 1251
CKA_KEY_TYPE attribute of key objects. 1252

Mechanisms: 1253

 CKM_BATON_KEY_GEN 1254

 CKM_BATON_ECB128 1255

 CKM_BATON_ECB96 1256

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 45 of 67

 CKM_BATON_CBC128 1257

 CKM_BATON_COUNTER 1258

 CKM_BATON_SHUFFLE 1259

 CKM_BATON_WRAP 1260

2.8.2 BATON secret key objects 1261

BATON secret key objects (object class CKO_SECRET_KEY, key type CKK_BATON) hold single-length 1262
BATON keys. The following table defines the BATON secret key object attributes, in addition to the 1263
common attributes defined for this object class: 1264

Table 39, BATON Secret Key Object 1265

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (always 40 bytes long)

Refer to [PKCS #11-Base] table 15 for footnotes 1266

 1267

BATON keys have 160 checksum bits, and these bits must be properly set. Attempting to create or 1268
unwrap a BATON key with incorrect checksum bits will return an error. 1269

It is not clear that any tokens exist (or will ever exist) which permit an application to create a BATON key 1270
with a specified value. Nonetheless, we provide templates for doing so. 1271

The following is a sample template for creating a BATON MEK secret key object: 1272

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 1273
CK_KEY_TYPE keyType = CKK_BATON; 1274
CK_UTF8CHAR label[] = “A BATON MEK secret key object”; 1275
CK_BYTE value[40] = {…}; 1276
CK_BBOOL true = CK_TRUE; 1277
CK_ATTRIBUTE template[] = { 1278
 {CKA_CLASS, &class, sizeof(class)}, 1279
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 1280
 {CKA_TOKEN, &true, sizeof(true)}, 1281
 {CKA_LABEL, label, sizeof(label)-1}, 1282
 {CKA_ENCRYPT, &true, sizeof(true)}, 1283
 {CKA_VALUE, value, sizeof(value)} 1284
}; 1285

The following is a sample template for creating a BATON TEK secret key object: 1286

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 1287
CK_KEY_TYPE keyType = CKK_BATON; 1288
CK_UTF8CHAR label[] = “A BATON TEK secret key object”; 1289
CK_BYTE value[40] = {…}; 1290
CK_BBOOL true = CK_TRUE; 1291
CK_ATTRIBUTE template[] = { 1292
 {CKA_CLASS, &class, sizeof(class)}, 1293
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 1294
 {CKA_TOKEN, &true, sizeof(true)}, 1295
 {CKA_LABEL, label, sizeof(label)-1}, 1296
 {CKA_ENCRYPT, &true, sizeof(true)}, 1297
 {CKA_WRAP, &true, sizeof(true)}, 1298
 {CKA_VALUE, value, sizeof(value)} 1299
}; 1300

2.8.3 BATON key generation 1301

The BATON key generation mechanism, denoted CKM_BATON_KEY_GEN, is a key generation 1302

mechanism for BATON. The output of this mechanism is called a Message Encryption Key (MEK). 1303

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 46 of 67

It does not have a parameter. 1304

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new 1305

key. 1306

2.8.4 BATON-ECB128 1307

BATON-ECB128, denoted CKM_BATON_ECB128, is a mechanism for single- and multiple-part 1308

encryption and decryption with BATON in 128-bit electronic codebook mode. 1309

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1310
value generated by the token – in other words, the application cannot specify a particular IV when 1311
encrypting. It can, of course, specify a particular IV when decrypting. 1312

Constraints on key types and the length of data are summarized in the following table: 1313

Table 40, BATON-ECB128: Data and Length 1314

Function Key type Input length Output length Comments

C_Encrypt BATON Multiple of 16 Same as input length No final part

C_Decrypt BATON Multiple of 16 Same as input length No final part

2.8.5 BATON-ECB96 1315

BATON-ECB96, denoted CKM_BATON_ECB96, is a mechanism for single- and multiple-part encryption 1316

and decryption with BATON in 96-bit electronic codebook mode. 1317

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1318
value generated by the token – in other words, the application cannot specify a particular IV when 1319
encrypting. It can, of course, specify a particular IV when decrypting. 1320

Constraints on key types and the length of data are summarized in the following table: 1321

Table 41, BATON-ECB96: Data and Length 1322

Function Key type Input length Output length Comments

C_Encrypt BATON Multiple of 12 Same as input length No final part

C_Decrypt BATON Multiple of 12 Same as input length No final part

2.8.6 BATON-CBC128 1323

BATON-CBC128, denoted CKM_BATON_CBC128, is a mechanism for single- and multiple-part 1324
encryption and decryption with BATON in 128-bit cipher-block chaining mode. 1325

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1326
value generated by the token – in other words, the application cannot specify a particular IV when 1327
encrypting. It can, of course, specify a particular IV when decrypting. 1328

Constraints on key types and the length of data are summarized in the following table: 1329

Table 42, BATON-CBC128 1330

Function Key type Input length Output length Comments

C_Encrypt BATON Multiple of 16 Same as input length No final part

C_Decrypt BATON Multiple of 16 Same as input length No final part

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 47 of 67

2.8.7 BATON-COUNTER 1331

BATON-COUNTER, denoted CKM_BATON_COUNTER, is a mechanism for single- and multiple-part 1332
encryption and decryption with BATON in counter mode. 1333

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1334
value generated by the token – in other words, the application cannot specify a particular IV when 1335
encrypting. It can, of course, specify a particular IV when decrypting. 1336

Constraints on key types and the length of data are summarized in the following table: 1337

Table 43, BATON-COUNTER: Data and Length 1338

Function Key type Input length Output length Comments

C_Encrypt BATON Multiple of 16 Same as input length No final part

C_Decrypt BATON Multiple of 16 Same as input length No final part

2.8.8 BATON-SHUFFLE 1339

BATON-SHUFFLE, denoted CKM_BATON_SHUFFLE, is a mechanism for single- and multiple-part 1340

encryption and decryption with BATON in shuffle mode. 1341

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1342
value generated by the token – in other words, the application cannot specify a particular IV when 1343
encrypting. It can, of course, specify a particular IV when decrypting. 1344

Constraints on key types and the length of data are summarized in the following table: 1345

Table 44, BATON-SHUFFLE: Data and Length 1346

Function Key type Input length Output length Comments

C_Encrypt BATON Multiple of 16 Same as input length No final part

C_Decrypt BATON Multiple of 16 Same as input length No final part

2.8.9 BATON WRAP 1347

The BATON wrap and unwrap mechanism, denoted CKM_BATON_WRAP, is a function used to wrap 1348

and unwrap a secret key (MEK). It can wrap and unwrap SKIPJACK, BATON and JUNIPER keys. 1349

It has no parameters. 1350

When used to unwrap a key, this mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and 1351
CKA_VALUE attributes to it. 1352

2.9 JUNIPER 1353

2.9.1 Definitions 1354

This section defines the key type “CKK_JUNIPER” for type CK_KEY_TYPE as used in the 1355
CKA_KEY_TYPE attribute of key objects. 1356

Mechanisms: 1357

 CKM_JUNIPER_KEY_GEN 1358

 CKM_JUNIPER_ECB128 1359

 CKM_JUNIPER_CBC128 1360

 CKM_JUNIPER_COUNTER 1361

 CKM_JUNIPER_SHUFFLE 1362

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 48 of 67

 CKM_JUNIPER_WRAP 1363

2.9.2 JUNIPER secret key objects 1364

JUNIPER secret key objects (object class CKO_SECRET_KEY, key type CKK_JUNIPER) hold single-1365
length JUNIPER keys. The following table defines the BATON secret key object attributes, in addition to 1366
the common attributes defined for this object class: 1367

Table 45, JUNIPER Secret Key Object 1368

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

Byte array Key value (always 40 bytes long)

Refer to [PKCS #11-Base] table 15 for footnotes 1369

 1370

JUNIPER keys have 160 checksum bits, and these bits must be properly set. Attempting to create or 1371
unwrap a BATON key with incorrect checksum bits will return an error. 1372

It is not clear that any tokens exist (or will ever exist) which permit an application to create a BATON key 1373
with a specified value. Nonetheless, we provide templates for doing so. 1374

The following is a sample template for creating a JUNIPER MEK secret key object: 1375

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 1376
CK_KEY_TYPE keyType = CKK_JUNIPER; 1377
CK_UTF8CHAR label[] = “A JUNIPER MEK secret key object”; 1378
CK_BYTE value[40] = {…}; 1379
CK_BBOOL true = CK_TRUE; 1380
CK_ATTRIBUTE template[] = { 1381
 {CKA_CLASS, &class, sizeof(class)}, 1382
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 1383
 {CKA_TOKEN, &true, sizeof(true)}, 1384
 {CKA_LABEL, label, sizeof(label)-1}, 1385
 {CKA_ENCRYPT, &true, sizeof(true)}, 1386
 {CKA_VALUE, value, sizeof(value)} 1387
}; 1388

The following is a sample template for creating a JUNIPER TEK secret key object: 1389

CK_OBJECT_CLASS class = CKO_SECRET_KEY; 1390
CK_KEY_TYPE keyType = CKK_JUNIPER; 1391
CK_UTF8CHAR label[] = “A JUNIPER TEK secret key object”; 1392
CK_BYTE value[40] = {…}; 1393
CK_BBOOL true = CK_TRUE; 1394
CK_ATTRIBUTE template[] = { 1395
 {CKA_CLASS, &class, sizeof(class)}, 1396
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)}, 1397
 {CKA_TOKEN, &true, sizeof(true)}, 1398
 {CKA_LABEL, label, sizeof(label)-1}, 1399
 {CKA_ENCRYPT, &true, sizeof(true)}, 1400
 {CKA_WRAP, &true, sizeof(true)}, 1401
 {CKA_VALUE, value, sizeof(value)} 1402
}; 1403

2.9.3 JUNIPER key generation 1404

The JUNIPER key generation mechanism, denoted CKM_JUNIPER_KEY_GEN, is a key generation 1405
mechanism for JUNIPER. The output of this mechanism is called a Message Encryption Key (MEK). 1406

It does not have a parameter. 1407

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new 1408

key. 1409

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 49 of 67

2.9.4 JUNIPER-ECB128 1410

JUNIPER-ECB128, denoted CKM_JUNIPER_ECB128, is a mechanism for single- and multiple-part 1411
encryption and decryption with JUNIPER in 128-bit electronic codebook mode. 1412

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1413
value generated by the token – in other words, the application cannot specify a particular IV when 1414
encrypting. It can, of course, specify a particular IV when decrypting. 1415

Constraints on key types and the length of data are summarized in the following table. For encryption 1416
and decryption, the input and output data (parts) may begin at the same location in memory. 1417

Table 46, JUNIPER-ECB128: Data and Length 1418

Function Key type Input length Output length Comments

C_Encrypt JUNIPER Multiple of 16 Same as input length No final part

C_Decrypt JUNIPER Multiple of 16 Same as input length No final part

2.9.5 JUNIPER-CBC128 1419

JUNIPER-CBC128, denoted CKM_JUNIPER_CBC128, is a mechanism for single- and multiple-part 1420

encryption and decryption with JUNIPER in 128-bit cipher block chaining mode. 1421

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1422
value generated by the token – in other words, the application cannot specify a particular IV when 1423
encrypting. It can, of course, specify a particular IV when decrypting. 1424

Constraints on key types and the length of data are summarized in the following table. For encryption 1425
and decryption, the input and output data (parts) may begin at the same location in memory. 1426

Table 47, JUNIPER-CBC128: Data and Length 1427

Function Key type Input length Output length Comments

C_Encrypt JUNIPER Multiple of 16 Same as input length No final part

C_Decrypt JUNIPER Multiple of 16 Same as input length No final part

2.9.6 JUNIPER-COUNTER 1428

JUNIPER-COUNTER, denoted CKM_JUNIPER_COUNTER, is a mechanism for single- and multiple-1429

part encryption and decryption with JUNIPER in counter mode. 1430

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1431
value generated by the token – in other words, the application cannot specify a particular IV when 1432
encrypting. It can, of course, specify a particular IV when decrypting. 1433

Constraints on key types and the length of data are summarized in the following table. For encryption 1434
and decryption, the input and output data (parts) may begin at the same location in memory. 1435

Table 48, JUNIPER-COUNTER: Data and Length 1436

Function Key type Input length Output length Comments

C_Encrypt JUNIPER Multiple of 16 Same as input length No final part

C_Decrypt JUNIPER Multiple of 16 Same as input length No final part

2.9.7 JUNIPER-SHUFFLE 1437

JUNIPER-SHUFFLE, denoted CKM_JUNIPER_SHUFFLE, is a mechanism for single- and multiple-part 1438

encryption and decryption with JUNIPER in shuffle mode. 1439

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 50 of 67

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some 1440
value generated by the token – in other words, the application cannot specify a particular IV when 1441
encrypting. It can, of course, specify a particular IV when decrypting. 1442

Constraints on key types and the length of data are summarized in the following table. For encryption 1443
and decryption, the input and output data (parts) may begin at the same location in memory. 1444

Table 49, JUNIPER-SHUFFLE: Data and Length 1445

Function Key type Input length Output length Comments

C_Encrypt JUNIPER Multiple of 16 Same as input length No final part

C_Decrypt JUNIPER Multiple of 16 Same as input length No final part

2.9.8 JUNIPER WRAP 1446

The JUNIPER wrap and unwrap mechanism, denoted CKM_JUNIPER_WRAP, is a function used to wrap 1447

and unwrap an MEK. It can wrap or unwrap SKIPJACK, BATON and JUNIPER keys. 1448

It has no parameters. 1449

When used to unwrap a key, this mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and 1450
CKA_VALUE attributes to it. 1451

2.10 MD2 1452

2.10.1 Definitions 1453

Mechanisms: 1454

 CKM_MD2 1455

 CKM_MD2_HMAC 1456

 CKM_MD2_HMAC_GENERAL 1457

 CKM_MD2_KEY_DERIVATION 1458

2.10.2 MD2 digest 1459

The MD2 mechanism, denoted CKM_MD2, is a mechanism for message digesting, following the MD2 1460

message-digest algorithm defined in RFC 1319. 1461

It does not have a parameter. 1462

Constraints on the length of data are summarized in the following table: 1463

Table 50, MD2: Data Length 1464

Function Data length Digest Length

C_Digest Any 16

2.10.3 General-length MD2-HMAC 1465

The general-length MD2-HMAC mechanism, denoted CKM_MD2_HMAC_GENERAL, is a mechanism for 1466
signatures and verification. It uses the HMAC construction, based on the MD2 hash function. The keys it 1467
uses are generic secret keys. 1468

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired 1469
output. This length should be in the range 0-16 (the output size of MD2 is 16 bytes). Signatures (MACs) 1470
produced by this mechanism will be taken from the start of the full 16-byte HMAC output. 1471

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 51 of 67

Table 51, General-length MD2-HMAC: Key and Data Length 1472

Function Key type Data length Signature length

C_Sign Generic secret Any 0-16, depending on parameters

C_Verify Generic secret Any 0-16, depending on parameters

2.10.4 MD2-HMAC 1473

The MD2-HMAC mechanism, denoted CKM_MD2_HMAC, is a special case of the general-length MD2-1474

HMAC mechanism in Section 2.10.3. 1475

It has no parameter, and always produces an output of length 16. 1476

2.10.5 MD2 key derivation 1477

MD2 key derivation, denoted CKM_MD2_KEY_DERIVATION, is a mechanism which provides the 1478
capability of deriving a secret key by digesting the value of another secret key with MD2. 1479

The value of the base key is digested once, and the result is used to make the value of the derived secret 1480
key. 1481

 If no length or key type is provided in the template, then the key produced by this mechanism will be a 1482
generic secret key. Its length will be 16 bytes (the output size of MD2).. 1483

 If no key type is provided in the template, but a length is, then the key produced by this mechanism 1484
will be a generic secret key of the specified length. 1485

 If no length was provided in the template, but a key type is, then that key type must have a well-1486
defined length. If it does, then the key produced by this mechanism will be of the type specified in the 1487
template. If it doesn’t, an error will be returned. 1488

 If both a key type and a length are provided in the template, the length must be compatible with that 1489
key type. The key produced by this mechanism will be of the specified type and length. 1490

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key will be set 1491
properly. 1492

If the requested type of key requires more than 16 bytes, such as DES2, an error is generated. 1493

This mechanism has the following rules about key sensitivity and extractability: 1494

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both 1495
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some 1496
default value. 1497

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key 1498
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the 1499
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its 1500
CKA_SENSITIVE attribute. 1501

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the 1502
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to 1503
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite 1504
value from its CKA_EXTRACTABLE attribute. 1505

2.11 MD5 1506

2.11.1 Definitions 1507

Mechanisms: 1508

 CKM_MD5 1509

 CKM_MD5_HMAC 1510

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 52 of 67

 CKM_MD5_HMAC_GENERAL 1511

 CKM_MD5_KEY_DERIVATION 1512

2.11.2 MD5 Digest 1513

The MD5 mechanism, denoted CKM_MD5, is a mechanism for message digesting, following the MD5 1514
message-digest algorithm defined in RFC 1321. 1515

It does not have a parameter. 1516

Constraints on the length of input and output data are summarized in the following table. For single-part 1517
digesting, the data and the digest may begin at the same location in memory. 1518

Table 52, MD5: Data Length 1519

Function Data length Digest length

C_Digest Any 16

2.11.3 General-length MD5-HMAC 1520

The general-length MD5-HMAC mechanism, denoted CKM_MD5_HMAC_GENERAL, is a mechanism for 1521
signatures and verification. It uses the HMAC construction, based on the MD5 hash function. The keys it 1522
uses are generic secret keys. 1523

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired 1524
output. This length should be in the range 0-16 (the output size of MD5 is 16 bytes). Signatures (MACs) 1525
produced by this mechanism will be taken from the start of the full 16-byte HMAC output. 1526

Table 53, General-length MD5-HMAC: Key and Data Length 1527

Function Key type Data length Signature length

C_Sign Generic secret Any 0-16, depending on parameters

C_Verify Generic secret Any 0-16, depending on parameters

2.11.4 MD5-HMAC 1528

The MD5-HMAC mechanism, denoted CKM_MD5_HMAC, is a special case of the general-length MD5-1529

HMAC mechanism in Section 2.11.3. 1530

It has no parameter, and always produces an output of length 16. 1531

2.11.5 MD5 key derivation 1532

MD5 key derivation denoted CKM_MD5_KEY_DERIVATION, is a mechanism which provides the 1533

capability of deriving a secret key by digesting the value of another secret key with MD5. 1534

The value of the base key is digested once, and the result is used to make the value of derived secret 1535
key. 1536

 If no length or key type is provided in the template, then the key produced by this mechanism will be a 1537
generic secret key. Its length will be 16 bytes (the output size of MD5). 1538

 If no key type is provided in the template, but a length is, then the key produced by this mechanism 1539
will be a generic secret key of the specified length. 1540

 If no length was provided in the template, but a key type is, then that key type must have a well-1541
defined length. If it does, then the key produced by this mechanism will be of the type specified in the 1542
template. If it doesn’t, an error will be returned. 1543

 If both a key type and a length are provided in the template, the length must be compatible with that 1544
key type. The key produced by this mechanism will be of the specified type and length. 1545

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 53 of 67

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key will be set 1546
properly. 1547

If the requested type of key requires more than 16 bytes, such as DES3, an error is generated. 1548

This mechanism has the following rules about key sensitivity and extractability. 1549

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both 1550
be specified to either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some 1551
default value. 1552

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key 1553
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the 1554
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its 1555
CKA_SENSITIVE attribute. 1556

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the 1557
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to 1558
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite 1559
value from its CKA_EXTRACTABLE attribute. 1560

2.12 FASTHASH 1561

2.12.1 Definitions 1562

Mechanisms: 1563

 CKM_FASTHASH 1564

2.12.2 FASTHASH digest 1565

The FASTHASH mechanism, denoted CKM_FASTHASH, is a mechanism for message digesting, 1566

following the U.S. government’s algorithm. 1567

It does not have a parameter. 1568

Constraints on the length of input and output data are summarized in the following table: 1569

Table 54, FASTHASH: Data Length 1570

Function Input length Digest length

C_Digest Any 40

2.13 PKCS #5 and PKCS #5-style password-based encryption (PBD) 1571

The mechanisms in this section are for generating keys and IVs for performing password-based 1572
encryption. The method used to generate keys and IVs is specified in PKCS #5. 1573

2.13.1 Definitions 1574

Mechanisms: 1575

 CKM_PBE_MD2_DES_CBC 1576

 CKM_PBE_MD5_DES_CBC 1577

 CKM_PBE_MD5_CAST_CBC 1578

 CKM_PBE_MD5_CAST3_CBC 1579

 CKM_PBE_MD5_CAST5_CBC 1580

 CKM_PBE_MD5_CAST128_CBC 1581

 CKM_PBE_SHA1_CAST5_CBC 1582

 CKM_PBE_SHA1_CAST128_CBC 1583

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 54 of 67

 CKM_PBE_SHA1_RC4_128 1584

 CKM_PBE_SHA1_RC4_40 1585

 CKM_PBE_SHA1_RC2_128_CBC 1586

 CKM_PBE_SHA1_RC2_40_CBC 1587

2.13.2 Password-based encryption/authentication mechanism parameters 1588

2.13.2.1 CK_PBE_PARAMS; CK_PBE_PARAMS_PTR 1589

CK_PBE_PARAMS is a structure which provides all of the necessary information required by the 1590
CKM_PBE mechanisms (see PKCS #5 and PKCS #12 for information on the PBE generation 1591
mechanisms) and the CKM_PBA_SHA1_WITH_SHA1_HMAC mechanism. It is defined as follows: 1592

typedef struct CK_PBE_PARAMS { 1593
 CK_BYTE_PTR pInitVector; 1594
 CK_UTF8CHAR_PTR pPassword; 1595
 CK_ULONG ulPasswordLen; 1596
 CK_BYTE_PTR pSalt; 1597
 CK_ULONG ulSaltLen; 1598
 CK_ULONG ulIteration; 1599
} CK_PBE_PARAMS; 1600

The fields of the structure have the following meanings: 1601

 pInitVector pointer to the location that receives the 8-byte 1602

initialization vector (IV), if an IV is required 1603

 pPassword points to the password to be used in the PBE key 1604

generation 1605

 ulPasswordLen length in bytes of the password information 1606

 pSalt points to the salt to be used in the PBE key generation 1607

 ulSaltLen length in bytes of the salt information 1608

 ulIteration number of iterations required for the generation 1609

CK_PBE_PARAMS_PTR is a pointer to a CK_PBE_PARAMS. 1610

2.13.3 MD2-PBE for DES-CBC 1611

MD2-PBE for DES-CBC, denoted CKM_PBE_MD2_DES_CBC, is a mechanism used for generating a 1612
DES secret key and an IV from a password and a salt value by using the MD2 digest algorithm and an 1613
iteration count. This functionality is defined in PKCS #5 as PBKDF1. 1614

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the 1615
key generation process and the location of the application-supplied buffer which will receive the 8-byte IV 1616
generated by the mechanism. 1617

2.13.4 MD5-PBE for DES-CBC 1618

MD5-PBE for DES-CBC, denoted CKM_PBE_MD5_DES_CBC, is a mechanism used for generating a 1619
DES secret key and an IV from a password and a salt value by using the MD5 digest algorithm and an 1620
iteration count. This functionality is defined in PKCS #5 as PBKDF1. 1621

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 55 of 67

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the 1622
key generation process and the location of the application-supplied buffer which will receive the 8-byte IV 1623
generated by the mechanism. 1624

2.13.5 MD5-PBE for CAST-CBC 1625

MD5-PBE for CAST-CBC, denoted CKM_PBE_MD5_CAST_CBC, is a mechanism used for generating a 1626
CAST secret key and an IV from a password and a salt value by using the MD5 digest algorithm and an 1627
iteration count. This functionality is analogous to that defined in PKCS #5 PBKDF1 for MD5 and DES. 1628

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the 1629
key generation process and the location of the application-supplied buffer which will receive the 8-byte IV 1630
generated by the mechanism 1631

The length of the CAST key generated by this mechanism may be specified in the supplied template; if it 1632
is not present in the template, it defaults to 8 bytes. 1633

2.13.6 MD5-PBE for CAST3-CBC 1634

MD5-PBE for CAST3-CBC, denoted CKM_PBE_MD5_CAST3_CBC, is a mechanism used for generating 1635
a CAST3 secret key and an IV from a password and a salt value by using the MD5 digest algorithm and 1636
an iteration count. This functionality is analogous to that defined in PKCS #5 PBKDF1 for MD5 and DES. 1637

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the 1638
key generation process and the location of the application-supplied buffer which will receive the 8-byte IV 1639
generated by the mechanism 1640

The length of the CAST3 key generated by this mechanism may be specified in the supplied template; if it 1641
is not present in the template, it defaults to 8 bytes. 1642

2.13.7 MD5-PBE for CAST128-CBC (CAST5-CBC) 1643

MD5-PBE for CAST128-CBC (CAST5-CBC), denoted CKM_PBE_MD5_CAST128_CBC or 1644
CKM_PBE_MD5_CAST5_CBC, is a mechanism used for generating a CAST128 (CAST5) secret key 1645
and an IV from a password and a salt value by using the MD5 digest algorithm and an iteration count. 1646
This functionality is analogous to that defined in PKCS #5 PBKDF1 for MD5 and DES. 1647

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the 1648
key generation process and the location of the application-supplied buffer which will receive the 8-byte IV 1649
generated by the mechanism 1650

The length of the CAST128 (CAST5) key generated by this mechanism may be specified in the supplied 1651
template; if it is not present in the template, it defaults to 8 bytes. 1652

2.13.8 SHA-1-PBE for CAST128-CBC (CAST5-CBC) 1653

SHA-1-PBE for CAST128-CBC (CAST5-CBC), denoted CKM_PBE_SHA1_CAST128_CBC or 1654
CKM_PBE_SHA1_CAST5_CBC, is a mechanism used for generating a CAST128 (CAST5) secret key 1655
and an IV from a password and salt value using the SHA-1 digest algorithm and an iteration count. This 1656
functionality is analogous to that defined in PKCS #5 PBKDF1 for MD5 and DES. 1657

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the 1658
key generation process and the location of the application-supplied buffer which will receive the 8-byte IV 1659
generated by the mechanism 1660

The length of the CAST128 (CAST5) key generated by this mechanism may be specified in the supplied 1661
template; if it is not present in the template, it defaults to 8 bytes 1662

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 56 of 67

2.14 PKCS #12 password-based encryption/authentication 1663

mechanisms 1664

The mechanisms in this section are for generating keys and IVs for performing password-based 1665
encryption or authentication. The method used to generate keys and IVs is based on a method that was 1666
specified in PKCS #12. 1667

We specify here a general method for producing various types of pseudo-random bits from a password, 1668
p; a string of salt bits, s; and an iteration count, c. The “type” of pseudo-random bits to be produced is 1669
identified by an identification byte, ID, the meaning of which will be discussed later. 1670

Let H be a hash function built around a compression function ∫:Z2
u
 × Z2

v
 → Z2

u
 (that is, H has a chaining 1671

variable and output of length u bits, and the message input to the compression function of H is v bits). For 1672
MD2 and MD5, u=128 and v=512; for SHA-1, u=160 and v=512. 1673

We assume here that u and v are both multiples of 8, as are the lengths in bits of the password and salt 1674
strings and the number n of pseudo-random bits required. In addition, u and v are of course nonzero. 1675

1. Construct a string, D (the “diversifier”), by concatenating v/8 copies of ID. 1676

2. Concatenate copies of the salt together to create a string S of length v⋅⎡s/v⎤ bits (the final copy of 1677

the salt may be truncated to create S). Note that if the salt is the empty string, then so is S 1678

3. Concatenate copies of the password together to create a string P of length v⋅⎡p/v⎤ bits (the final 1679

copy of the password may be truncated to create P). Note that if the password is the empty string, 1680
then so is P. 1681

4. Set I=S||P to be the concatenation of S and P. 1682

5. Set j=⎡n/u⎤. 1683

6. For i=1, 2, …, j, do the following: 1684

a. Set Ai=Hc(D||I), the cth hash of D||I. That is, compute the hash of D||I; compute the hash 1685
of that hash; etc.; continue in this fashion until a total of c hashes have been computed, 1686
each on the result of the previous hash. 1687

b. Concatenate copies of Ai to create a string B of length v bits (the final copy of Ai may be 1688
truncated to create B). 1689

c. Treating I as a concatenation I0, I1, …, Ik-1 of v-bit blocks, where k=⎡s/v⎤+⎡p/v⎤, modify I 1690
by setting Ij=(Ij+B+1) mod 2v for each j. To perform this addition, treat each v-bit block as 1691

a binary number represented most-significant bit first 1692

7. Concatenate A1, A2, …, Aj together to form a pseudo-random bit string, A. 1693

8. Use the first n bits of A as the output of this entire process 1694

When the password-based encryption mechanisms presented in this section are used to generate a key 1695
and IV (if needed) from a password, salt, and an iteration count, the above algorithm is used. To 1696
generate a key, the identifier byte ID is set to the value 1; to generate an IV, the identifier byte ID is set to 1697

the value 2. 1698

When the password-based authentication mechanism presented in this section is used to generate a key 1699
from a password, salt and an iteration count, the above algorithm is used. The identifier ID is set to the 1700

value 3. 1701

2.14.1 SHA-1-PBE for 128-bit RC4 1702

SHA-1-PBE for 128-bit RC4, denoted CKM_PBE_SHA1_RC4_128, is a mechanism used for generating 1703
a 128-bit RC4 secret key from a password and a salt value by using the SHA-1 digest algorithm and an 1704
iteration count. The method used to generate the key is described above. 1705

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the 1706
key generation process. The parameter also has a field to hold the location of an application-supplied 1707
buffer which will receive an IV; for this mechanism, the contents of this field are ignored, since RC4 does 1708
not require an IV. 1709

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 57 of 67

The key produced by this mechanism will typically be used for performing password-based encryption. 1710

2.14.2 SHA-1_PBE for 40-bit RC4 1711

SHA-1-PBE for 40-bit RC4, denoted CKM_PBE_SHA1_RC4_40, is a mechanism used for generating a 1712
40-bit RC4 secret key from a password and a salt value by using the SHA-1 digest algorithm and an 1713
iteration count. The method used to generate the key is described above. 1714

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the 1715
key generation process. The parameter also has a field to hold the location of an application-supplied 1716
buffer which will receive an IV; for this mechanism, the contents of this field are ignored, since RC4 does 1717
not require an IV. 1718

The key produced by this mechanism will typically be used for performing password-based encryption. 1719

2.14.3 SHA-1_PBE for 128-bit RC2-CBC 1720

SHA-1-PBE for 128-bit RC2-CBC, denoted CKM_PBE_SHA1_RC2_128_CBC, is a mechanism used for 1721
generating a 128-bit RC2 secret key from a password and a salt value by using the SHA-1 digest 1722
algorithm and an iteration count. The method used to generate the key and IV is described above. 1723

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the 1724
key generation process and the location of an application-supplied buffer which will receive the 8-byte IV 1725
generated by the mechanism. 1726

When the key and IV generated by this mechanism are used to encrypt or decrypt, the effective number 1727
of bits in the RC2 search space should be set to 128. This ensures compatibility with the ASN.1 Object 1728

Identifier pbeWithSHA1And128BitRC2-CBC. 1729

 The key and IV produced by this mechanism will typically be used for performing password-based 1730
encryption. 1731

2.14.4 SHA-1_PBE for 40-bit RC2-CBC 1732

SHA-1-PBE for 40-bit RC2-CBC, denoted CKM_PBE_SHA1_RC2_40_CBC, is a mechanism used for 1733
generating a 40-bit RC2 secret key from a password and a salt value by using the SHA-1 digest algorithm 1734
and an iteration count. The method used to generate the key and IV is described above. 1735

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the 1736
key generation process and the location of an application-supplied buffer which will receive the 8-byte IV 1737
generated by the mechanism. 1738

When the key and IV generated by this mechanism are used to encrypt or decrypt, the effective number 1739
of bits in the RC2 search space should be set to 40. This ensures compatibility with the ASN.1 Object 1740

Identifier pbeWithSHA1And40BitRC2-CBC. 1741

 The key and IV produced by this mechanism will typically be used for performing password-based 1742
encryption 1743

2.15 RIPE-MD 1744

2.15.1 Definitions 1745

Mechanisms: 1746

 CKM_RIPEMD128 1747

 CKM_RIPEMD128_HMAC 1748

 CKM_RIPEMD128_HMAC_GENERAL 1749

 CKM_RIPEMD160 1750

 CKM_RIPEMD160_HMAC 1751

 CKM_RIPEMD160_HMAC_GENERAL 1752

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 58 of 67

2.15.2 RIPE-MD 128 Digest 1753

The RIPE-MD 128 mechanism, denoted CKM_RIMEMD128, is a mechanism for message digesting, 1754
following the RIPE-MD 128 message-digest algorithm. 1755

It does not have a parameter. 1756

Constraints on the length of data are summarized in the following table: 1757

Table 55, RIPE-MD 128: Data Length 1758

Function Data length Digest length

C_Digest Any 16

 1759

2.15.3 General-length RIPE-MD 128-HMAC 1760

The general-length RIPE-MD 128-HMAC mechanism, denoted CKM_RIPEMD128_HMAC_GENERAL, is 1761
a mechanism for signatures and verification. It uses the HMAC construction, based on the RIPE-MD 128 1762
hash function. The keys it uses are generic secret keys. 1763

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired 1764
output. This length should be in the range 0-16 (the output size of RIPE-MD 128 is 16 bytes). Signatures 1765
(MACs) produced by this mechanism will be taken from the start of the full 16-byte HMAC output. 1766

Table 56, General-length RIPE-MD 128-HMAC 1767

Function Key type Data length Signature length

C_Sign Generic secret Any 0-16, depending on parameters

C_Verify Generic secret Any 0-16, depending on parameters

2.15.4 RIPE-MD 128-HMAC 1768

The RIPE-MD 128-HMAC mechanism, denoted CKM_RIPEMD128_HMAC, is a special case of the 1769

general-length RIPE-MD 128-HMAC mechanism in Section 2.15.3. 1770

It has no parameter, and always produces an output of length 16. 1771

2.15.5 RIPE-MD 160 1772

The RIPE-MD 160 mechanism, denoted CKM_RIPEMD160, is a mechanism for message digesting, 1773

following the RIPE-MD 160 message-digest defined in ISO-10118. 1774

It does not have a parameter. 1775

Constraints on the length of data are summarized in the following table: 1776

Table 57, RIPE-MD 160: Data Length 1777

Function Data length Digest length

C_Digest Any 20

2.15.6 General-length RIPE-MD 160-HMAC 1778

The general-length RIPE-MD 160-HMAC mechanism, denoted CKM_RIPEMD160_HMAC_GENERAL, is 1779
a mechanism for signatures and verification. It uses the HMAC construction, based on the RIPE-MD 160 1780
hash function. The keys it uses are generic secret keys. 1781

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 59 of 67

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired 1782
output. This length should be in the range 0-20 (the output size of RIPE-MD 160 is 20 bytes). Signatures 1783
(MACs) produced by this mechanism will be taken from the start of the full 20-byte HMAC output. 1784

Table 58, General-length RIPE-MD 160-HMAC: Data and Length 1785

Function Key type Data length Signature length

C_Sign Generic secret Any 0-20, depending on parameters

C_Verify Generic secret Any 0-20, depending on parameters

2.15.7 RIPE-MD 160-HMAC 1786

The RIPE-MD 160-HMAC mechanism, denoted CKM_RIPEMD160_HMAC, is a special case of the 1787

general-length RIPE-MD 160HMAC mechanism in Section 2.15.6. 1788

It has no parameter, and always produces an output of length 20. 1789

2.16 SET 1790

2.16.1 Definitions 1791

Mechanisms: 1792

 CKM_KEY_WRAP_SET_OAEP 1793

2.16.2 SET mechanism parameters 1794

2.16.2.1 CK_KEY_WRAP_SET_OAEP_PARAMS; 1795

CK_KEY_WRAP_SET_OAEP_PARAMS_PTR 1796

CK_KEY_WRAP_SET_OAEP_PARAMS is a structure that provides the parameters to the 1797
CKM_KEY_WRAP_SET_OAEP mechanism. It is defined as follows: 1798

typedef struct CK_KEY_WRAP_SET_OAEP_PARAMS { 1799
 CK_BYTE bBC; 1800
 CK_BYTE_PTR pX; 1801
 CK_ULONG ulXLen; 1802
} CK_KEY_WRAP_SET_OAEP_PARAMS; 1803

The fields of the structure have the following meanings: 1804

 bBC block contents byte 1805

 pX concatenation of hash of plaintext data (if present) and 1806

extra data (if present) 1807

 ulXLen length in bytes of concatenation of hash of plaintext data 1808

(if present) and extra data (if present). 0 if neither is 1809

present. 1810

CK_KEY_WRAP_SET_OAEP_PARAMS_PTR is a pointer to a 1811
CK_KEY_WRAP_SET_OAEP_PARAMS. 1812

2.16.3 OAEP key wrapping for SET 1813

The OAEP key wrapping for SET mechanism, denoted CKM_KEY_WRAP_SET_OAEP, is a mechanism 1814
for wrapping and unwrapping a DES key with an RSA key. The hash of some plaintext data and/or some 1815

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 60 of 67

extra data may optionally be wrapped together with the DES key. This mechanism is defined in the SET 1816
protocol specifications. 1817

It takes a parameter, a CK_KEY_WRAP_SET_OAEP_PARAMS structure. This structure holds the 1818
“Block Contents” byte of the data and the concatenation of the hash of plaintext data (if present) and the 1819
extra data to be wrapped (if present). If neither the hash nor the extra data is present, this is indicated by 1820
the ulXLen field having the value 0. 1821

When this mechanism is used to unwrap a key, the concatenation of the hash of plaintext data (if present) 1822
and the extra data (if present) is returned following the convention described in Section ***MISSING 1823
REFERENCE*** on producing output. Note that if the inputs to C_UnwrapKey are such that the extra 1824
data is not returned (e.g. the buffer supplied in the CK_KEY_WRAP_SET_OAEP_PARAMS structure is 1825

NULL_PTR), then the unwrapped key object will not be created, either. 1826

Be aware that when this mechanism is used to unwrap a key, the bBC and pX fields of the parameter 1827

supplied to the mechanism may be modified. 1828

If an application uses C_UnwrapKey with CKM_KEY_WRAP_SET_OAEP, it may be preferable for it 1829
simply to allocate a 128-byte buffer for the concatenation of the hash of plaintext data and the extra data 1830
(this concatenation is never larger than 128 bytes), rather than calling C_UnwrapKey twice. Each call of 1831
C_UnwrapKey with CKM_KEY_WRAP_SET_OAEP requires an RSA decryption operation to be 1832
performed, and this computational overhead can be avoided by this means. 1833

2.17 LYNKS 1834

2.17.1 Definitions 1835

Mechanisms: 1836

 CKM_KEY_WRAP_LYNKS 1837

2.17.2 LYNKS key wrapping 1838

The LYNKS key wrapping mechanism, denoted CKM_KEY_WRAP_LYNKS, is a mechanism for 1839
wrapping and unwrapping secret keys with DES keys. It can wrap any 8-byte secret key, and it produces 1840
a 10-byte wrapped key, containing a cryptographic checksum. 1841

It does not have a parameter. 1842

To wrap an 8-byte secret key K with a DES key W, this mechanism performs the following steps: 1843

1. Initialize two 16-bit integers, sum1 and sum2, to 0 1844

2. Loop through the bytes of K from first to last. 1845

3. Set sum1= sum1+the key byte (treat the key byte as a number in the range 0-255). 1846

4. Set sum2= sum2+ sum1. 1847
5. Encrypt K with W in ECB mode, obtaining an encrypted key, E. 1848

6. Concatenate the last 6 bytes of E with sum2, representing sum2 most-significant bit first. The 1849
result is an 8-byte block, T 1850

7. Encrypt T with W in ECB mode, obtaining an encrypted checksum, C. 1851

8. Concatenate E with the last 2 bytes of C to obtain the wrapped key. 1852

When unwrapping a key with this mechanism, if the cryptographic checksum does not check out properly, 1853
an error is returned. In addition, if a DES key or CDMF key is unwrapped with this mechanism, the parity 1854
bits on the wrapped key must be set appropriately. If they are not set properly, an error is returned. 1855

 1856

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 61 of 67

3 PKCS #11 Implementation Conformance 1857

An implementation is a conforming implementation if it meets the conditions specified in one or more 1858
server profiles specified in [PKCS #11-Prof]. 1859

A PKCS #11 implementation SHALL be a conforming PKCS #11 implementation. 1860

If a PKCS #11 implementation claims support for a particular profile, then the implementation SHALL 1861
conform to all normative statements within the clauses specified for that profile and for any subclauses to 1862

each of those clauses. 1863

 1864

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 62 of 67

Appendix A. Acknowledgments 1865

The following individuals have participated in the creation of this specification and are gratefully 1866
acknowledged: 1867

 1868

Participants: 1869

Gil Abel, Athena Smartcard Solutions, Inc. 1870

Warren Armstrong, QuintessenceLabs 1871

Peter Bartok, Venafi, Inc. 1872

Anthony Berglas, Cryptsoft 1873

Kelley Burgin, National Security Agency 1874

Robert Burns, Thales e-Security 1875

Wan-Teh Chang, Google Inc. 1876

Hai-May Chao, Oracle 1877

Janice Cheng, Vormetric, Inc. 1878

Sangrae Cho, Electronics and Telecommunications Research Institute (ETRI) 1879

Doron Cohen, SafeNet, Inc. 1880

Fadi Cotran, Futurex 1881

Tony Cox, Cryptsoft 1882

Christopher Duane, EMC 1883

Chris Dunn, SafeNet, Inc. 1884

Valerie Fenwick, Oracle 1885

Terry Fletcher, SafeNet, Inc. 1886

Susan Gleeson, Oracle 1887

Sven Gossel, Charismathics 1888

Robert Griffin, EMC 1889

Paul Grojean, Individual 1890

Peter Gutmann, Individual 1891

Dennis E. Hamilton, Individual 1892

Thomas Hardjono, M.I.T. 1893

Tim Hudson, Cryptsoft 1894

Gershon Janssen, Individual 1895

Seunghun Jin, Electronics and Telecommunications Research Institute (ETRI) 1896

Andrey Jivsov, Symantec Corp. 1897

Greg Kazmierczak, Wave Systems Corp. 1898

Mark Knight, Thales e-Security 1899

Darren Krahn, Google Inc. 1900

Alex Krasnov, Infineon Technologies AG 1901

Dina Kurktchi-Nimeh, Oracle 1902

Mark Lambiase, SecureAuth Corporation 1903

Lawrence Lee, GoTrust Technology Inc. 1904

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 63 of 67

John Leiseboer, QuintessenceLabs 1905

Hal Lockhart, Oracle 1906

Robert Lockhart, Thales e-Security 1907

Dale Moberg, Axway Software 1908

Darren Moffat, Oracle 1909

Valery Osheter, SafeNet, Inc. 1910

Sean Parkinson, EMC 1911

Rob Philpott, EMC 1912

Mark Powers, Oracle 1913

Ajai Puri, SafeNet, Inc. 1914

Robert Relyea, Red Hat 1915

Saikat Saha, Oracle 1916

Subhash Sankuratripati, NetApp 1917

Johann Schoetz, Infineon Technologies AG 1918

Rayees Shamsuddin, Wave Systems Corp. 1919

Radhika Siravara, Oracle 1920

Brian Smith, Mozilla Corporation 1921

David Smith, Venafi, Inc. 1922

Ryan Smith, Futurex 1923

Jerry Smith, US Department of Defense (DoD) 1924

Oscar So, Oracle 1925

Michael Stevens, QuintessenceLabs 1926

Michael StJohns, Individual 1927

Sander Temme, Thales e-Security 1928

Kiran Thota, VMware, Inc. 1929

Walter-John Turnes, Gemini Security Solutions, Inc. 1930

Stef Walter, Red Hat 1931

Jeff Webb, Dell 1932

Magda Zdunkiewicz, Cryptsoft 1933

Chris Zimman, Bloomberg Finance L.P. 1934

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 64 of 67

Appendix B. Manifest constants 1935

The following constants have been defined for PKCS #11 V2.40. Also, refer to [PKCS #11-Base] and 1936
[PKCS #11-Curr] for additional definitions. 1937

/* 1938
* Copyright OASIS Open 2013. All rights reserved. 1939
* OASIS trademark, IPR and other policies apply. 1940
* http://www.oasis-open.org/policies-guidelines/ipr 1941
*/ 1942
 1943
#define CKK_KEA 0x00000005 1944
#define CKK_RC2 0x00000011 1945
#define CKK_RC4 0x00000012 1946
#define CKK_DES 0x00000013 1947
#define CKK_CAST 0x00000016 1948
#define CKK_CAST3 0x00000017 1949
#define CKK_CAST5 0x00000018 1950
#define CKK_CAST128 0x00000018 1951
#define CKK_RC5 0x00000019 1952
#define CKK_IDEA 0x0000001A 1953
#define CKK_SKIPJACK 0x0000001B 1954
#define CKK_BATON 0x0000001C 1955
#define CKK_JUNIPER 0x0000001D 1956
#define CKM_MD2_RSA_PKCS 0x00000004 1957
#define CKM_MD5_RSA_PKCS 0x00000005 1958
#define CKM_RIPEMD128_RSA_PKCS 0x00000007 1959
#define CKM_RIPEMD160_RSA_PKCS 0x00000008 1960
#define CKM_RC2_KEY_GEN 0x00000100 1961
#define CKM_RC2_ECB 0x00000101 1962
#define CKM_RC2_CBC 0x00000102 1963
#define CKM_RC2_MAC 0x00000103 1964
#define CKM_RC2_MAC_GENERAL 0x00000104 1965
#define CKM_RC2_CBC_PAD 0x00000105 1966
#define CKM_RC4_KEY_GEN 0x00000110 1967
#define CKM_RC4 0x00000111 1968
#define CKM_DES_KEY_GEN 0x00000120 1969
#define CKM_DES_ECB 0x00000121 1970
#define CKM_DES_CBC 0x00000122 1971
#define CKM_DES_MAC 0x00000123 1972
#define CKM_DES_MAC_GENERAL 0x00000124 1973
#define CKM_DES_CBC_PAD 0x00000125 1974
#define CKM_MD2 0x00000200 1975
#define CKM_MD2_HMAC 0x00000201 1976
#define CKM_MD2_HMAC_GENERAL 0x00000202 1977
#define CKM_MD5 0x00000210 1978
#define CKM_MD5_HMAC 0x00000211 1979
#define CKM_MD5_HMAC_GENERAL 0x00000212 1980
#define CKM_RIPEMD128 0x00000230 1981
#define CKM_RIPEMD128_HMAC 0x00000231 1982
#define CKM_RIPEMD128_HMAC_GENERAL 0x00000232 1983
#define CKM_RIPEMD160 0x00000240 1984
#define CKM_RIPEMD160_HMAC 0x00000241 1985
#define CKM_RIPEMD160_HMAC_GENERAL 0x00000242 1986
#define CKM_CAST_KEY_GEN 0x00000300 1987
#define CKM_CAST_ECB 0x00000301 1988
#define CKM_CAST_CBC 0x00000302 1989
#define CKM_CAST_MAC 0x00000303 1990
#define CKM_CAST_MAC_GENERAL 0x00000304 1991
#define CKM_CAST_CBC_PAD 0x00000305 1992
#define CKM_CAST3_KEY_GEN 0x00000310 1993

http://www.oasis-open.org/policies-guidelines/ipr

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 65 of 67

#define CKM_CAST3_ECB 0x00000311 1994
#define CKM_CAST3_CBC 0x00000312 1995
#define CKM_CAST3_MAC 0x00000313 1996
#define CKM_CAST3_MAC_GENERAL 0x00000314 1997
#define CKM_CAST3_CBC_PAD 0x00000315 1998
#define CKM_CAST5_KEY_GEN 0x00000320 1999
#define CKM_CAST128_KEY_GEN 0x00000320 2000
#define CKM_CAST5_ECB 0x00000321 2001
#define CKM_CAST128_ECB 0x00000321 2002
#define CKM_CAST5_CBC 0x00000322 2003
#define CKM_CAST128_CBC 0x00000322 2004
#define CKM_CAST5_MAC 0x00000323 2005
#define CKM_CAST128_MAC 0x00000323 2006
#define CKM_CAST5_MAC_GENERAL 0x00000324 2007
#define CKM_CAST128_MAC_GENERAL 0x00000324 2008
#define CKM_CAST5_CBC_PAD 0x00000325 2009
#define CKM_CAST128_CBC_PAD 0x00000325 2010
#define CKM_RC5_KEY_GEN 0x00000330 2011
#define CKM_RC5_ECB 0x00000331 2012
#define CKM_RC5_CBC 0x00000332 2013
#define CKM_RC5_MAC 0x00000333 2014
#define CKM_RC5_MAC_GENERAL 0x00000334 2015
#define CKM_RC5_CBC_PAD 0x00000335 2016
#define CKM_IDEA_KEY_GEN 0x00000340 2017
#define CKM_IDEA_ECB 0x00000341 2018
#define CKM_IDEA_CBC 0x00000342 2019
#define CKM_IDEA_MAC 0x00000343 2020
#define CKM_IDEA_MAC_GENERAL 0x00000344 2021
#define CKM_IDEA_CBC_PAD 0x00000345 2022
#define CKM_MD5_KEY_DERIVATION 0x00000390 2023
#define CKM_MD2_KEY_DERIVATION 0x00000391 2024
#define CKM_PBE_MD2_DES_CBC 0x000003A0 2025
#define CKM_PBE_MD5_DES_CBC 0x000003A1 2026
#define CKM_PBE_MD5_CAST_CBC 0x000003A2 2027
#define CKM_PBE_MD5_CAST3_CBC 0x000003A3 2028
#define CKM_PBE_MD5_CAST5_CBC 0x000003A4 2029
#define CKM_PBE_MD5_CAST128_CBC 0x000003A4 2030
#define CKM_PBE_SHA1_CAST5_CBC 0x000003A5 2031
#define CKM_PBE_SHA1_CAST128_CBC 0x000003A5 2032
#define CKM_PBE_SHA1_RC4_128 0x000003A6 2033
#define CKM_PBE_SHA1_RC4_40 0x000003A7 2034
#define CKM_PBE_SHA1_RC2_128_CBC 0x000003AA 2035
#define CKM_PBE_SHA1_RC2_40_CBC 0x000003AB 2036
#define CKM_KEY_WRAP_LYNKS 0x00000400 2037
#define CKM_KEY_WRAP_SET_OAEP 0x00000401 2038
#define CKM_SKIPJACK_KEY_GEN 0x00001000 2039
#define CKM_SKIPJACK_ECB64 0x00001001 2040
#define CKM_SKIPJACK_CBC64 0x00001002 2041
#define CKM_SKIPJACK_OFB64 0x00001003 2042
#define CKM_SKIPJACK_CFB64 0x00001004 2043
#define CKM_SKIPJACK_CFB32 0x00001005 2044
#define CKM_SKIPJACK_CFB16 0x00001006 2045
#define CKM_SKIPJACK_CFB8 0x00001007 2046
#define CKM_SKIPJACK_WRAP 0x00001008 2047
#define CKM_SKIPJACK_PRIVATE_WRAP 0x00001009 2048
#define CKM_SKIPJACK_RELAYX 0x0000100a 2049
#define CKM_KEA_KEY_PAIR_GEN 0x00001010 2050
#define CKM_KEA_KEY_DERIVE 0x00001011 2051
#define CKM_FORTEZZA_TIMESTAMP 0x00001020 2052
#define CKM_BATON_KEY_GEN 0x00001030 2053
#define CKM_BATON_ECB128 0x00001031 2054
#define CKM_BATON_ECB96 0x00001032 2055
#define CKM_BATON_CBC128 0x00001033 2056
#define CKM_BATON_COUNTER 0x00001034 2057

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 66 of 67

#define CKM_BATON_SHUFFLE 0x00001035 2058
#define CKM_BATON_WRAP 0x00001036 2059
#define CKM_JUNIPER_KEY_GEN 0x00001060 2060
#define CKM_JUNIPER_ECB128 0x00001061 2061
#define CKM_JUNIPER_CBC128 0x00001062 2062
#define CKM_JUNIPER_COUNTER 0x00001063 2063
#define CKM_JUNIPER_SHUFFLE 0x00001064 2064
#define CKM_JUNIPER_WRAP 0x00001065 2065
#define CKM_FASTHASH 0x00001070 2066

 2067

pkcs11-hist-v2.40-csprd01 30 October 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 67 of 67

Appendix C. Revision History 2068

 2069

Revision Date Editor Changes Made

wd01 May 16,
2013

Susan Gleeson Initial Template import

wd02 July 7, 2013 Susan Gleeson Fix references, add participants list, minor
cleanup

wd03 October 27,
2013

Robert Griffin Final participant list and other editorial changes
for Committee Specification Draft

 2070

 2071

