OASIS 9

PKCS #11 Cryptographic Token Interface
Current Mechanisms Specification
Version 2.40

Committee Specification Draft 6302 /
Public Review Draft 8102

30 October 2013
23 April 2014

Specification URIs

This version:
http://docs.oasis-open.org/pkcs11/pkes1l-curr/v2.40/csprd02/pkesll-curr-v2.40-csprd02.doc
(Authoritative)
http://docs.oasis-open.org/pkcsll/pkesll-curr/v2.40/csprd02/pkesll-curr-v2.40-csprd02.htmi
http://docs.oasis-open.org/pkcsll/pkesll-curr/v2.40/csprd02/pkesll1-curr-v2.40-csprd02.pdf

Previous version:
http://docs.oasis-open.org/pkcsll/pkesll-curr/v2.40/csprd0l/pkesll-curr-v2.40-csprd01l.docN/A
(Authoritative)
http://docs.oasis-open.org/pkcs11/pkes1l-curr/v2.40/csprd01/pkesll1-curr-v2.40-csprd0l.html
http://docs.oasis-open.org/pkcs11/pkes1l-curr/v2.40/csprd01/pkes11-curr-v2.40-csprd0l.pdf

| Latest version:
http://docs.oasis-open.org/pkcs11/pkesll-curr/iv2.40/pkes11-curr-v2.40.doc (Authoritative)
http://docs.oasis-open.org/pkcs11/pkesl1l-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkesl1l-curr/v2.40/pkcs11-curr-v2.40.pdf

Technical Committee:
OASIS PKCS 11 TC
Chairs:
| Robert Griffin (robert.griffin@rsa.com), EMC Corporation
Valerie Fenwick (valerie.fenwick@oracle.com), Oracle
Editors:

Susan Gleeson (susan.gleeson@oracle.com), Oracle
Chris Zimman (czimman@bloomberg.com), Bloomberg Finance L.P.

Related work:
This specification is related to:

1 PKCS #11 Cryptographic Token Interface Base Specification Version 2.40. Edited by Susan
Gleeson and Chris Zimman. Latest version. http://docs.oasis-open.org/pkcs11/pkecs11-
base/v2.40/pkcs1l-base-v2.40.html.
1 PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification Version 2.40.
| Edited by Susan Gleeson and Chris Zimman. Latest version. http://docs.oasis-
open.org/pkcs11/pkesll-hist/v2.40/pkcsl1-hist-v2.40.html.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 1 of 199

http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/csprd02/pkcs11-curr-v2.40-csprd02.doc
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/csprd02/pkcs11-curr-v2.40-csprd02.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/csprd02/pkcs11-curr-v2.40-csprd02.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/csprd01/pkcs11-curr-v2.40-csprd01.doc
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/csprd01/pkcs11-curr-v2.40-csprd01.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/csprd01/pkcs11-curr-v2.40-csprd01.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.doc
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.pdf
https://www.oasis-open.org/committees/pkcs11/
mailto:robert.griffin@rsa.com
http://www.emc.com/
mailto:valerie.fenwick@oracle.com
http://www.oracle.com/
mailto:susan.gleeson@oracle.com
http://www.oracle.com/
mailto:czimman@bloomberg.com
http://www.bloomberg.com/
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html

‘ 1 PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Edited by John
Leiseboer and Robert Griffin. Latest version. http://docs.oasis-open.org/pkcs11/pkecs11-
ug/v2.40/pkcs11-ug-v2.40.html.
| 1 PKCS #11 Cryptographic Token Interface Profiles Version 2.40. Edited by Tim Hudson.
Latest version. http://docs.oasis-open.org/pkcs11/pkes11-profiles/v2.40/pkcs1l-profiles-
v2.40.html.

Abstract:

This document defines mechanisms that are anticipated for use with the current version of PKCS
#11.

Status:
This document was last revised or approved by the OASIS PKCS 11 TC on the above date. The
level of approval is also listed above. Check the fi L a tve 1s $ ilogatiah noted above for possible
later revisions of this document.

Technical Committee members should send comments on this specification to the Technical

Committeebs email i st . Otthe €achsicabCommitteel by sssgitde ¢ o mme nt s

fSend ACommentd button on the Techni chtps/@ovpasistt eeds web
| open.org/committees/pkcs11-.

For information on whether any patents have been disclosed that may be essential to

implementing this specification, and any offers of patent licensing terms, please refer to the

Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
| open.org/committees/pkcs11/ipr.phpl-.

Citation format:
When referencing this specification the following citation format should be used:

[PKCS11-eu++Curr-v2.40]

PKCS #11 Cryptographic Token Interface Current Mechanisms Specification Version 2.40. 30
Oectober2013-Edited by Susan Gleeson and Chris Zimman. 23 April 2014. OASIS Committee
Specification Draft 6202 / Public Review Draft 82-02. http://docs.oasis-open.org/pkcs11/pkcsll-
curr/v2.40/csprd02/pkcsll-curr-v2.40-csprd02.html._Latest version: http://docs.oasis-
open.org/pkcs11/pkesll-curr/v2.40/pkcs11-curr-v2.40.html.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 2 of 199

http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=pkcs11
https://www.oasis-open.org/committees/pkcs11
https://www.oasis-open.org/committees/pkcs11
https://www.oasis-open.org/committees/pkcs11/ipr.php
https://www.oasis-open.org/committees/pkcs11/ipr.php
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/csprd02/pkcs11-curr-v2.40-csprd02.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/csprd02/pkcs11-curr-v2.40-csprd02.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html

Notices

Copyright © OASIS Open 20134. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 3 of 199

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

Table of Contents

1 T 0o [1 o 1o T o TP PRRRR 12
R =T 1 1T o T V2SR 12
2 L= {1 T1 (o] PSRRI 12
1.3 NOrMALIVE REFEIENCESeeiiiiieie ittt e e e s e st e e e e e e e e snnbbeeeeeaeeeeasnneees 14
1.4 NON-NOIMALIVE REFEIENCEScoiiiieiieiiiee ettt sre e nnn e 15

2 [T g T a1 PP PRRPPR 18
B2 R S Y TSP PP ST 18

% I < 11 01 1o o < PRSPPI 19
2.1.2 RSA PUDIIC KEY ODJECTS....uuiiiiiiee i i ettt e e e e e e e e s e e e e s s et a e e e e e e s e s nnntrneeeeees 20
2.1.3 RSA Private KEY ODJECLSueiiiie it e e s e s r e e e e s e e e e aeae s 20
2.1.4 PKCS #1 RSA KeY Pail GENETALIONcouviieiiiiiiieeiiitiee ettt ettt e et e e e snbe e e e eees 22
2.1.5 X9.31 RSA KeY Pair QENEIALIONcccii it 22
2.1.68 PKCS H#L VLD RSA ottt ettt ettt e et e e e eab e e e e nb bt e e e anbee e e e nene 23
2.1.7 PKCS #1 RSA OAEP mechaniSm Parametersccooieieieie et 23
2. 1.8 PKCS H#HL RSA OAEP ...ttt ettt e et e e e et e e e e e 25
2.1.9 PKCS #1 RSA PSS mMechaniSm Parameterseeeoiiiieeiiiiee ettt e et e e 25
2.1 10 PKCS #1 RSA PSS .ttt ettt sttt ekt s et e br e e s ne e s bn e e snb e e e nnne e e 26
2. 11T ISOMEC 9796 RSA ... ittt ettt e e ettt e e e aab et e e e nb b e e e e anbe e e e e neee 26
2.1.12 X.509 (FAW) RSA ettt ekt st h et b et R e s e rn e r e e nnneennne 27
2. 113 ANSI X931 RSA oottt ettt e et e et e e e e b b e e b r e e e neee 28
2.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-384, SHA-512, RIPE-
MD 128 OF RIPE-MD 180ceiiiiiiiiieiiiiiieiiieee ettt sttt sttt e et e e st e e e snb b e e e esb e e e e enbneeeeneee 29
2.1.15 PKCS #1 v1.5 RSA signature With SHA-224ccciiiiiiiiee et 29
2.1.16 PKCS #1 RSA PSS signature With SHA-224 ...t 29
2.1.17 PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-512...........ccccceveee. 30
2.1.18 ANSI X9.31 RSA signature With SHA-Looiiiiiiiii e 30
2.1.19TPM 1.1b and TPM 1.2 PKCS #1 V1.5 RSA ...t 30
2.1.20 TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEPcoiii ittt 31
2.1. 21 RSA AES KEY WRAP ...ttt ettt e et e et 32
2.1.22 RSA AES KEY WRAP mechanism parameters ..ot 33
2123 FIPS L8B4 ..ottt ettt ettt e e b e e e e e b e e e e aeee 33
P D 1S Y A O T ST PP PP P PPPOPPPN 33
N R D 1= 11 11T] I S PP PSP PPPPRPN 34
2.2.2 DSA PUDIC KEY ODJECES....eiiiiiiiiee ettt e et e e 35
2.2.3 DSA KEY RESIICHONS ...t 36
2.2.4 DSA Private KEY ODJECES ...oeiiiiiiie ittt e e e et e e e 36
2.2.5 DSA domain parameter ODJECLSeiiiiiiiiiiiii ettt e e e e aae s 37
2.2.6 DSA KEY PAIF GENEIALION ...ociitiiieiiiiee et ettt ettt e e st e e e snbe e e e e snbe e e e e snbeeeeeanbeeeeenneee 38
2.2.7 DSA domain parameter gENEIatiONcccuiuiieeiiiiie ettt et e et e e et e e e s snbre e e e snbeeeeeeeee 38
2.2.8 DSA probabilistic domain parameter generation..............ueeeiieeiiiiiiiiieeie e 38
2.2.9 DSA Shawe-Taylor domain parameter geNErationccoovueeeeiriieeeiniiiee e 38
2.2.10 DSA base domain parameter ENEIatiONccuueaiiiiiiiiiiiie et e e e eee e e e e e nbreeeaaeeas 39
2.2.11 DSA WIthOUt NASHINGcoiiiiiiieii e 39
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 4 of 199

2.2 12 DSA WItN SHA-L ..ottt 40

22 A FIPS L8B4 ..ottt ettt ettt ettt b e e e et e e e b e e e e b e e nnes 40
2.2 14 DSA WIth SHA-224 ...ttt 40
2.2.15 DSA WIth SHA-256 ...ttt ettt n e e e 41
2.2.16 DSA WIth SHA-384ottt e et e e 41
2.2.17 DSA WIth SHA-512 ...ttt ettt e e nnne e n e sr e nn e 42
R B = | 1o [O U oY= O OO PT PP PPTPPPPPI 42
A A T O T [T L (1 =Y RSO 44
AR B2 B < 11 011 1o o < TP 44
2.3.3 ECDSA PUDIIC KEY ODJECES.eeiiiiiiiieeiiee et e 45
2.3.4 Elliptic curve private KEY ODJECESuuuiiiieiiiiiiiieiie et s st e e e e e e st are e e e e e s e nnrrreeeeees 45
2.3.5 EIliptic CUrve Key Pair GENEIALION.cciuiiieiiiiiee et e ettt e sttt e et e e e sib e e e anbe e e e e e 46
2.3.6 ECDSA WithOUt haShINGeeeiiieii i e e e e e e s e e e e a7
2.3.7 ECDSA WIth SHA-L ...ttt ettt e et e e e et e e e e anbr e e e e neee 47
2.3.8 EC MEChaNiSM ParamielerScccoi it 48
2.3.9 Elliptic curve Diffie-Hellman key derivation ... 50
2.3.10 Elliptic curve Diffie-Hellman with cofactor key derivationcccccoviiiiniiiniiiceee 51
2.3.11 Elliptic curve Menezes-Qu-Vanstone kKey derivation...........cooeeeve e 51
2.3.12 ECDH AES KEY WRAP ...ttt ettt ettt e et e e 52
2.3.13 ECDH AES KEY WRAP mechanism parameters ... 53
2.3 LA FIPS L8B4 ..ottt ettt ettt e et e e b e e e e e b e e e e e 54
P 1 1= o = g T o SRS USERR 54
A R D = 11 11T I P PP PT SRR PPPRP 54
2.4.2 Diffie-Hellman public KEY ODJECEScoo i 55
2.4.3 X9.42 Diffie-Hellman public KEY ODJECESccooii i 55
2.4.4 Diffie-Hellman private KeY ODJECEScoiuiiiiiiiee e 56
2.4.5 X9.42 Diffie-Hellman private KeY ODJECESeviiiiiiiiiiiiee e 57
2.4.6 Diffie-Hellman domain parameter ODJECISccoooeiiii i 58
2.4.7 X9.42 Diffie-Hellman domain parameters ObJeCtS.........cccooiiiiiiiiiii e 58
2.4.8 PKCS #3 Diffie-Hellman key pair generationccoooeiiiiii e 59
2.4.9 PKCS #3 Diffie-Hellman domain parameter generationcccoocueveeeiieeeeiniieee e 60
2.4.10 PKCS #3 Diffie-Hellman Key derivation...........cccoeie i 60
2.4.11 X9.42 Diffie-Hellman mechanism parameters. ... 61
2.4.12 X9.42 Diffie-Hellman Key pair generation............cueeeiiuireeiiiiiee it 64
2.4.13 X9.42 Diffie-Hellman domain parameter generationccooeeeeeie e 64
2.4.14 X9.42 Diffie-Hellman Key deriVationcueiiiiiiieiiiieee et 64
2.4.15 X9.42 Diffie-Hellman hybrid key derivationcoooooiiiiiiie e, 65
2.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation...........cccccceevvieeeiniieeecniiee e 65
2.5 Wrapping/unwrapping PriVALe KEYSoiiuuiiiiiiiiieeiiiiee ettt ee e sttt e st e e sttt e e s sabee e e s ssbn e e e s anbaeeesanneeeas 66
2.6 GENEIIC SECIEE KBY ...ttt e e ettt e e e e e s e b et e e e e e e e e e s anbbbaeeaeaeaeannns 68
B2 0 A < 11 01 (o SO 69
2.6.2 GENENIC SECIEL KEY ODJECIS ..coiii ittt e e e e eaeeas 69
2.6.3 Generic SECret KEY gENEIALIONuuiii i ettt ettt e st e e et e e e e snbe e e e e et 69
WA A o Y N O 4 1= =V g 1SS 70
2.8 A S .ot bt R b e h e e b e e oAb et e R bt e eh bt e oAb et e eRbe e e be e e abbe e e be e e naneenaes 70
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 5 of 199

P2 TR I 1Y 1114 0] o 70

2.8.2 AES SeCret KEY ODJECTSccoiiiiiieiieie e 71
2.8.3 AES KBY gENEIALION.......uuiiiiiiei e e it e e e e e et e e e e e s s e e e e e e e e st aa e e e e e e s e saantaaeeeeeeeeeasnntrnaneeaes 71
2.8.4 AES-ECB... ..ot 72
2.8.5 AES-CBCttt e et e e et e e e r e e e e e nnne 72
2.8.6 AES-CBC With PKCS PAAUING ...eeiiieieiiieiiiieiee et 73
2.8.7 AES-OFBi.... .ot e e e e 74
2.8.8 AES-CFB ...ttt e 74
2.8.9 General-length AES-MACooo oottt e e e e 74
2.8.10 AES-MAC ...ttt e et e et e e e e e 75
2.8. 00 AES-XT S ittt e e e 75
2.8.12 AES-XCBEC-MAC ...ttt et e et e e e st e e e bt e e e e et et e e e anbreeeeneee 75
2.8.13 AES-XCBC-MAGC-96......eiiiiiriieeiiiiie ettt et e e e e e e e e e s e e e e anes 75
A N VLo O 11 | (= SRS SERR 76
TN R D 1= 11 011 1] I PP PSR PPPRR 76
2.9.2 AES with Counter mechaniSm Parameterscccoooiiii i 76
2.9.3 AES with Counter ENcCryption / DECIYPUION........cccoiuiiieiiiiie ettt 77
2.10 Additional AES MECNANISIMSccoiiiiiiiirieiie ittt e e e e e e e nnnees 77
2% I R = 1 01 o T PR SERRR 77
2.12 AES GCM and CCM MechaniSm ParamMeterS...........ccuuirerieiiieiieiiireeesieeee e snnnee e nnnees 78
2.13 AES-GCM authenticated ENCryption / DECIYPLIONccouuiiiiiiiiiie ittt 79
2.13.1 AES-CCM authenticated ENcryption / DECIYPLIONeveeiiiiieeiiiiie et 80
2132 AES-GMAC .ottt e s 80
2.14 AES CBC with Cipher Text StealiNg CTS.......cuuiiiiiiiee ittt 81
A R B = {1 11T o = PP PSR PP PR 81
2.14.2 AES CTS MechaniSm PAraMELETSoiiiiiiiieiiiiie ettt ettt e e snbee e e nene 81
2.15 Additional AES MECNHANISIMSccciiiiiiiiiee sttt e e et e e e e e s e e e e e e e e s s s tnteeeeeeeeesanrneaeeeeaeseaanns 81
2.15. 0 DEFINITIONS ...ttt e et e e e et e e et e e e et e e et e e e anr e e 82
2.15.2 AES GCM and CCM MechaniSm ParamMeEterS..........coucueeeiiiiieeiiiiie ettt et e e 82
2.15.3 AES-GCM authenticated Encryption / DeCryption..........ccooeeieieie e 83
2.15.4 AES-CCM authenticated ENcryption / DECIYPLIONuvveeiiiieee ittt 84
2,16 AES CIMAC ...ttt ettt h et h e a et n 85
2.16.0 DEFINITIONSeeeee ittt ettt e e e et e e et e e e st e e e nre e e e e anr e e e 85
2.16.2 MECNANISIM PAFBMELEIS ...cciitiiee ittt ettt e bt e e ettt e e e sab et e e e anb e e e e e aabe e e e e anbeeeeeneee 85
2.16.3 General-length AES-CMACo 85
2.168.4 AES-CIMAC ...ttt ettt et e b et bt et e e e b e e e et e e e aees 85
2.07 AES KEY VWGP it ttiiitiiiii ettt s e ettt s e s e ettt et s e e e e e e e e et a e s e e et e e e ta b te e e e et eeetab s e e e e eeeeabaneaeaaaeens 86
20 A T 1 T1 o SO PR 86
2.17.2 AES Key Wrap Mechanism parameters.........coooiuiieeiiiieeeiiee ettt 86
2.07.3 AES KBY WA . oo 86
2.18 Key derivation by data encryption T DES & AESccooiiiiiiiiiiii e 87
A S R B = 11 T1 (o] 1 TP 87
2.18.2 MEChANISM PArAMELEIScciieeiiiceiiieieee e e et e e e e e s e e e e e e e s s st e e e e e e s s snsntaaereaeeeseannreneneeees 87
2.18.3 MeChaniSIm DESCHIPLIONviieeiiieie ettt ettt e e et e e e et e e e e snbeeeeeneee 88
2.19 Double and Triple-1ength DESo ettt e e e e e bbb e e e e e e e aaes 88
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 6 of 199

b2 L TR I I T 11 (0 1 88

2.19.2 DES2 SECret KEY ODJECLSueiiiiiiiie ettt 89
2.19.3 DES3 SECIEt KEY ODJECLS .eeiiiiiiiiiiiiiec ettt e e e e e s e e e e s e st a e e e e e e s e snnreneeeeees 89
2.19.4 Double-length DES KEY gENEIAtIONccciiiiiiieiiee s sttt ee e e e e e st e e e e e e e st aae e e e e e s e s snarnaeeeees 90
2.19.5 Triple-length DES Order Of OPeratiONSeeeeiiiiieeiiiiiee ettt 90
2.19.6 Triple-length DES iN CBC MOUEcccceeiiiiiiiiieieee ettt e e e e e siaee e e e e s e st e e e e e e s e snnrnneeeeees 90
2.19.7 DES and Triple length DES in OFB MOAEcoocuiiiiiiiiiieieee et 91
2.19.8 DES and Triple length DES iN CFB MOGE.......ccuiiiiiiiiiiiiiiee ettt ssrree e e e e snnvnaeaee s 91
2.20 Double and Triple-1ength DES CMACcoiiiiiiiiiiiiiee ittt 92
A O B B = {1 11 (o] 1 PRSPPI 92
2.20.2 MEChANISIM PAIAMELEIS ... eeiiieeiiicitiieie e e e e e ce et e e e e e e s s st e e e e e e s e ssas b rareeeeesssaantaaaeeeeeeseannnrrnnereees 92
2.20.3 General-1ength DES3-MACccoiuiiieiiiie ettt e e e e et e e e 92
2.20.4 DES3B-CMAC ...ttt ettt ettt ettt et e et e e e skttt e e e ettt e e e s a bt e e e e e mbe e e e e e nbe e e e e anbe e e e e anbee e e e nnbeeeeanres 93
A R N SRR 93
A I R B = 11 11 (o] o TP PUP TR PPPPPPPIN 93
A S Ve o 1o =) SRR 94
2.21.3 General-length SHA-L-HMACooiiiiiie e 94
2,214 SHA-L-HMAC ...ttt ettt e e e sttt e e e s a bt e e e e s bt e e e s be e e e e anbbe e e e anbaeeeeantaeeeeanees 94
2.21.5 SHA-L KEY UEIMVALION......eeeiiiiiieeiiiiie ettt e et e e et e e e snb e e e e st e e e e anbneeeenene 94
2,22 SHA-224 ..o e bbbt e b bttt e Rttt e e et b te e e aan b et e e annraeeeennrnees 95
A I = 11 11 (o] TSRS 95
2.22.2 SHA-224 QIgESTveieeeiiiie ettt ettt e a e e e e arreaeaanres 95
2.22.3 General-length SHA-224-HMAC ..o 96
2.22.4 SHA-224-HMAC ..ottt ettt e e e et e e e et e e e e et e e e s s ta e e e e aataeeeeantaeaeeantaeaeennees 96
2.22.5 SHA-224 KEY UEIVALION......ccii i ie e 96
A Y o Ve TSSO 96
b T I = 1 T1 o] TSSO 96
2.23.2 SHA-256 QIgESE ...uveeieeiiiiie e e iiiee e ettt et e ettt e e e st e e e e s bt e e e enbe e e e e anbe e e e e anre e e e e abae e e e antaeeeeanees 97
2.23.3 General-length SHA-256-HMACcuiiiiiiiiie ettt 97
2.23.4 SHA-256-HMAC ...ooi ittt ettt e e e e e e sttt e e e st e e e s s ba e e e e anbe e e e e sntbeeeeantaeeeennees 97
2.23.5 SHA-256 KEY EIHVALION........veiiiiiiiiie ittt e e et e e 97
WY o) USSR 97
A I B = 11 11 (o] o 1 OO PUTT T PPPPPPPIN 98
2.24.2 SHA-384 dIgEST .. .vviieiiiiee ettt ettt e e e e e e e e et e e e e e e et e e e e et rr e e e arrea e e e 98
2.24.3 General-length SHA-384-HMACcooiiiiiii e 98
2.24.4 SHA-38A-HMAC ..o oottt ettt e e et e e e et e e e e et e e e et e e e e et ae e e e antaeaeeantaeeeennees 98
2.24.5 SHA-384 KEY UEIVALION......cccii i 98
2,25 SHA-BL2 oot e e e ——— e e e ——— e e et ——— e e e e ———eeaa——eeeaa——eeeaabaaeesarraeas 99
B T I = 1 1o 1SS 99
2.25.2 SHA-512 GIgESE ..uvveieeiiiiiee et e ettt e e e et e e sttt e e e e sttt e e e e s st e e e e ante e e e e anba e e e e ante e e e e anraeeeeantaeeeeanees 99
2.25.3 General-length SHA-512-HMACcoiuiiiiiiiiee ettt et 99
2.25.4 SHA-SL2-HMAC ..ottt ettt e e sttt e e e sttt e e e e ata e e e e sta e e e e anteeeeeantbeeeeantaeeeennees 99
2.25.5 SHA-512 KEY ENVALION......uteiiiiiiiiie ittt ettt e et e e e st e e s snbe e e e e snbneeeeans 100
2.26 SHA-BL2/224 ...ttt e e e e e e e e e e e e rae e e aaareeeanres 100
A T A B = 1111 (o] o TP EUT TR PO 100
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 7 of 199

2.26.2 SHA-512/224 QIQESL ..ottt 100

2.26.3 General-length SHA-512-HMAC ...ttt e e 100
2.26.4 SHA-512/224-HMACooiiiiie ittt ettt sn e b e e nnne e sne e e snneeenee e 101
2.26.5 SHA-512/224 KeY EIVALION......ceiiiiiiirieitiie ittt e e sne e snneesnee e 101
2.27 SHA-BL2/256 ..ottt ettt h e b et e bt ek et e e bt e e ea b e e et e e bee e ebe e e nreeennneas 101
A R D = {1 1o OO PR PURPURRPPRN 101
2.27.2 SHA-512/256 QIgEST ..cuuveeiuteieiiiie ettt ettt ettt e sttt ettt e e e nbe e e sabe e e bt e e ssbeesbeeesnbeeaneaen 101
2.27.3 General-length SHA-512-HMACcoooo it r e e e e e e e s s sanraaneeeee s 102
2.27.4 SHA-512/256-HMACooiitiieiiie ettt ettt sttt ettt be e ebe e e sabe e s bee e snbeeaneaea 102
2.27.5 SHA-512/256 KEY UEIVALION.cciutiiiiiiiiieeeitiiee ettt ettt et e et e e st e e e e sbe e e e e sbneeeeans 102
2.28 SHA-BL2/ ..ottt r e nnes 102
A S T = {111 (o] o 1P RUT TSR PI 102
2.28.2 SHA-DL2/t QIQEST ..ottt n e e 102
2.28.3 General-length SHA-512-HMACooiuiiiiiiiiiie ettt sbnee e 103
2.28.4 SHA-BL2/t-HMAC ...tttk ettt s e e b e e s bn e e s nbr e snreeanee e 103
2.28.5 SHA-512/t KEY UEIVALION......cccii i 103
2.29 PKCS #5 and PKCS #5-style password-based encryption (PBE)..........cccocciiiiiiiiiiiiiieeee 103
2.29. 0 DEIINITIONSeeee ettt et e e et e e st e e s n et e e s r e e e e s nn e e e e arr e e e e nnneeeeaa 103
2.29.2 Password-based encryption/authentication mechanism parameters...........cccccovviieeiiiieenens 104
2.29.3 PKCS #5 PBKDF2 key generation mechanism parameterscccceeeeeeie e 104
2.29.4 PKCS #5 PBKD2 KEY GENEIALIONccoiuviiiiiiiiiieeitiiee ettt e sttt et e et e st e e s sbn e e s snneeeeans 106
2.30 PKCS #12 password-based encryption/authentication mechanisms............ccccccccveeeiiiiiiieennnn. 107
2.30.1 SHA-1-PBE for 3-key triple-DES-CBCcccoiiiiiiiieeriee ettt 107
2.30.2 SHA-1-PBE for 2-key triple-DES-CBCc..oiiiiiiiieiiiiee ettt 108
2.30.3 SHA-1-PBA fOr SHA-L-HMAGCottt sn e snee e 108

B2 1 S 1 SRR 108
B2 3 I = 1 T1 (o o 1SS 108
2.31.2 SSL MechaniSm Par@mMEtErSccccie i 109
2.31.3 Pre-master KEY gENETALIONccoiuiiiiiiiiiee ittt ettt et e e et e e et e e e sbbee e e sbneeeean 111
2.31.4 MaSter KEY AeIIVALIONcccce i i 111
2.31.5 Master key derivation for Diffie-Hellman ... 112
2.31.6 Key and MAC AeIVALION.......ccoeie i 113
2.31.7 MD5 MACING iN SSL 3.0 1.ttt ettt ettt ettt st e b e e sbn e e st e e e snbeeeneeen 113
2.31.8 SHA-1 MACING iN SSL 3.0 1iiiiiiiiiiiiei ettt s et r e e e e e e st e e e e e s s st ane e e e e e e e annrneeeeeeens 114
2.32 TLS 1.2 MECNANISIMIS ...ttt ittt ettt ettt ettt st e s e e st e s et e s e et e e e snn e e e e nnes 114
A 22 I = {1 T1 (o o 1SS 115
2.32.2 TLS 1.2 MeChanisSm Parametersccooieiiie oo 115

A 7 T I 0 |V 117
2.32.4 MAStEr KEY AEIIVALIONceiiiiiiieiiiiie ettt e et e e et e e e st e e s snbb e e e e abbeeeeans 118
2.32.5 Master key derivation for Diffie-Hellman ... 119
2.32.6 Key and MAC dEIVALION.........coiiiiiiii ittt e et e et e e s sbe e e e e snbaeeeean 119
2.32.7 CKM_TLS12_KEY_SAFE_DERIVE......cccii ittt 120
2.32.8 Generic Key Derivation using the TLS PRFc.uiiiiiiiiiiie e 121

B2 5 T I S 121
PR3 I B = 11111 1 o] o 1P UUT TR POPTPTPI 122
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 8 of 199

2.33.2 WTLS MeChaniSM ParamMELEIS.......uuiiieeiiiiiiiiieeeeeeeiseiiieeeeeeeesssstateeeeeeessssntaaneeeeeessannnsanneeeeees 122

2.33.3 Pre master secret key generation for RSA key exchange suite...........cccccoviiveeiiiiieeeiiieeees 125
2.33.4 Master secret Key deriVationcciiieiiiiiiiiiieee e r e e e e st are e e e e e s s snnrraneeeee s 125
2.33.5 Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography 126
2.33.6 WTLS PRF (pseudorandom fUNCLION)cuueeeiiiieeeniiiiee et e st e st e et e e e i ee e 127
2.33.7 Server Key and MAC AeriVALIONcuiieiiiiiiiiieee e st e e s s e e e e e s s st aae e e e e e s s snnrraneeeees 127
2.33.8 Client key and MAC deriVatiONocuueeeiiiiiee ittt ettt et e et e e sbr e e e sbreeeean 128
2.34 Miscellaneous simple key derivation MechaniSMS...........cuvvveiee i 128
AR 7 I B = 11 11 (o] ST TRPRRPTPI 129
2.34.2 Parameters for miscellaneous simple key derivation mechanisSms...........ccccceeeviieeeeiiieeeens 129
2.34.3 Concatenation of a base key and another Key..........cccuvvvevii e 130
2.34.4 Concatenation of a base Key and data............ccoiuiiiiiiiiiii i 130
2.34.5 Concatenation of data and a base KeY...........eevvveiiiiiiiiiiiice e 131
2.34.6 XORING Of @ KEY AN LAcoeiiiiiiiiiiiiie ittt e e 132
2.34.7 Extraction of one key from another KeY..........ccooooieiiii i, 132
PG 1S3 O 1Y PP RPPRT 133
P 1S T I = 111 (o] o 1RSSR 133
2.35.2 CMS Signature MechaniSm ODJECLScccooiiiie i 134
2.35.3 CMS MEChANISIM PArBMELEIS....cutiiii ittt et e et e e e abb e e s sbreeeesbneeeean 134

A LR A O 1V IS o F= L1 = 135

B2 TG TN 2] (o L] o USRI 136
P2 LG T I = 1 T1 (o] o 1SRRI 137
2.36.2 BLOWFISH SeCret KeY ODJECISccocie i 137
2.36.3 BIOWFISH KEY GENEIALIONeveiieeiiiiiee ettt e et e e et e e e sbneeeean 137
2.36.4 BIOWFISN-CBCetiiiiiiiiiee sttt ettt e e e st e e e st b e e e et et e e e antbe e e e snbbeeeeanbbeeeeans 138
2.36.5 Blowfish -CBC With PKCS Paddingcccoiuuiiiiiiiiiiiiiiiee ittt e ineee e 138
A X110] S 139
PR A A B = 1111 1 o] o O TT P PPPTPPPPN 139
2.37.2 TWOTISh SECIet KEY ODJECESeiiiiiiiei e 139
2.37.3 TWOTiSh KEY gENEIALION ... 140

A A 1LY 1 o T = S SSP 140
2.37.5 Twofish-CBC with PKCS paddingcccoooeiiiiie et 140
2.38 CAMELLIA .ttt ettt ettt e st e e e at et e e ettt e e e Rttt e e e bt e e e s be e e e e nraeeeanaeeeeenees 140
B 1S 0 I = 11 T1 (o] o 1SS 141
2.38.2 Camellia SECret KEY ODJECES.....ccc i 141
2.38.3 Camellia KEY gENETALIONueieiiiiiee ettt e et e e et e e et e e e sbb e e e e sbbeeeean 142
2.38.4 CaMEINA-ECBceiiiiiiiiie sttt e e et e e e st e e e et bt e e e abbe e e e atbeeeeannreeeeans 142
At ST OF- a1 - O = SO 143
2.38.6 Camellia-CBC With PKCS PAAAINGvveiiiiiiiieiiiiiee ettt aneee e 143
2.38.7 General-length Camellia-MAQCo ee e e e s 144
2.38.8 CAMEIIA-IMAC ...coee ettt ettt e e et e e e e e e e e et e e e e e s antat e e e e e e e e e baaan e e e e e e e e nnrraareeeees 144
2.39 Key derivation by data encryption - Camelliacoooiiiiiiiiiiieiiiee e 145
22 1 R I = 1 T1 o] o 1SS 145
2.39.2 MECh@NISM PArAMELEISciiieiiiiiieiiiii e e e ie ettt e e e e s s e e e e e s s et r e e e e e s s snntaaeneeeeeesannnrnnaneeees 145
B AN L PSP RR 145
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 9 of 199

R I T 11 (0 146

2.40.2 Aria SECTEL KEY ODJECES ...eiiiiiiiieiiiiie ettt e et e e st e e e e s bneeeeans 146
2.40.3 ARIA KEY GENEIALIONvvviiiieeeisiiiiiieieee e e se sttt ee e e e e e s s st e e e eaeessssntateeeeaeesssanntnsaeeeeeesssnsnsrnneeeees 147
2.40.4 ARIA-ECB.... .ottt ettt et are e 147
2.40.5 ARIA-CBC ..ottt ettt e bt b e e e b e e e e b e e e e e b e e e e abr e e e e abreeeeaa 147
2.40.6 ARIA-CBC With PKCS PAAUING ...vvviiiiieiiiie ittt 148
2.40.7 General-length ARIA-MAC ...ttt e e sb e e e sbreee e 149
2.40.8 ARIA-MAC ...ttt eane e 149
2.41 Key derivation by data encryption - ARIAuiii e 149
P I = {1 11 (o] RSP TRPRPPPI 150
2.41.2 MeChaniSM PAr@MELETScicueiiiieeriiie e sirie et e e et e st sn e e sne e e snn e e sne e e snneeeneeens 150
2042 SEED ...t h e bt R b e be e e R et e e be e e eabe e e be e e aba e e ebe e e nnbeennneas 150
2.42. 1 DEFINILIONS ...ttt st sh e e s s e s bt e s e R e e n e n e e e nne e 151
2.42.2 SEED SECIet KEY ODJECESviiiiiiiiiee ettt e et e et e e e e sbneeeeen 151
2.42.3 SEED KeY QENEIALION ...ttt ———— 152
2.42.4 SEED-ECB ...ttt b e h e h e r e re e ree e 152
2.42.5 SEED-CBCcoiiitiiie ittt ettt e s b e e b e e ba e e e e abr e e e e abneeeean 152
2.42.6 SEED-CBC With PKCS PAAUING.....ceiiiiiiiiieiiie ittt s esnee e 152
2.42.7 General-length SEED-MAC.........cuuiii ittt e et e e e sbneee e 153
2.42.8 SEED-MAC. ...ttt E et h et anr e s re e e anre e aree e 153
2.43 Key derivation by data encryption - SEEDccoociiiiiiiiiiii e 153
B o T I = {1 11 (o o 1 ST PSSPRI 153
2.43.2 MeChaniSIM ParaMELEISoiiiiiiiieiiriie et e et e e e e s e e s sn e e e s snn e e e s nnreeeean 153
O I USSR 153
A R W Y= Vo [T 0 1Y =T YT 153
2.44.2 Case 1: Generation Of OTP VAIUESooiueiiiiieie et ee e e e s e e e e e s nnnnneaeeeee s 154
2.44.3 Case 2: Verification of provided OTP VAlUEScooiiiiiiiiiiiiiiice e 155
2.44.4 Case 3: Generation Of OTP KEBYSccooiiiiii e 155
2445 OTP ODJECLSceiiitiiee ettt e e e ettt e e st bt e e e aabb e e e e anbbee e e abneeeean 156
2.44.6 OTP-related NOLIfICALIONScciiiiiiiiiiiie ettt e s e e snneee e 159
P A @ N o 1= o o= U 1S o0 PSSP 159
2,44 8 RSA SECUID ...ttt bttt a bttt sa et e be e e sbb e e st e e e snbeeeneeen 164
2.44.9 RSA SecurID KeyY geNEerationcccocieiiie ettt 165
2.44.10 RSA SecurlD OTP generation and validationcccoouiiiiiiieiiiie e 165
244,11 REIUIM VAIUES ..ottt ettt e st e e e e e e sr e e e e s enn e e e e s nnneeeean 165
244,02 OATH HOTP ..ttt ettt s bttt e e st e e e st bt e e e st be e e e abbeeeeabbeeeean 165
2.44.13 ACHVIAENTILY ACT ...ttt ettt ettt ettt e bt s s e e e b e e sbb e e sbreesnbeeebeeens 167
2.44.14 ACTI OTP generation and ValIdationccooiiiiiiiiiiiieiiiiee et 168
P O I | TP 169
2.45.1 PrinCiples Of OPEIALIONcciiiiiiiitiiiiii ettt e e e e e et e e e e e e e e annbreeeeeae s 169

W LT Y = Tod = U 11 o SO 171

P LT B B = 1111 1 o] o PP TR PO 171
2.45.4 CT-KIP MeChaniSImM ParamEterSc.oiuuiieiiiiiee e itiie e attie e st ee e st e e e st e e e sbae e e s sbaeeeesbneeeeans 171
2.45.5 CT-KIP KEY EIMVALIONcoiiiiiiiiiiiiiee ittt ettt e e e st e e e sba e e e anbneeeean 172
2.45.6 CT-KIP key Wrap and KEY UNWIAPcouiiuuriiiieeaeaiaiiiieteteae e e s aitsteeeea e e s s snibeseeeaaeessannsseeeeeeens 172
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 10 of 199

2.45.7 CT-KIP SigNature geNEIatiONuuviieeiiiiiiiiiieeeeeeissiitieeeeeeesssssateeeeeeessssnresneeeeeessansssenneeeeees 172

P Sl €10 1S IO TP PP PP OTPPPO 172
2,47 GOST 28LAT-89 ..ottt ettt h et s e e b e e Rt e st e nn e e e e En e s e 173
P R B = {1 11 o PRSP PURPURRPPRN 173
2.47.2 GOST 28147-89 SECIet KEY ODJECESueiieiiiiiiie ittt et e e e e 173
2.47.3 GOST 28147-89 domain parameter ODJECESccocciiiiiieee e 174
2.47.4 GOST 28147-89 KEY GENETALIONeeiiiitiieeiiitiiee ittt e sttt ettt e et e e st e e s sbee e e s sbe e e e e sbneeeeans 175
2.47.5 GOST 28147-89-ECBccoiiiiiiiiiiie ettt e e e eenee e 175
2.47.6 GOST 28147-89 encryption mode eXCept ECBccuiiiiiiiiiiiiiiiee et 176
2.47.7 GOST 28LAT-89-IMAC ..ot itieeee ittt ettt e et e e st et e e st e e e e sbe e e e s abeeeaeaabreeeeaa 177

2,47 .8 DEIINILIONS ...ttt s e st sa e s n et e ss e e e s e e e nn e s n e e nnre e nre e 178
2.47.9 GOST R 34.11-94 domain parameter ODJECTS..........coiiiiiiiiiiiii i 178
2.47.10 GOST R 34.11-94 dIgESt....cciueiiieeeiiiie it sttt sne e e e e snee e 179
2.47.11 GOST R 34.11-94 HMAC ...ttt ettt ettt e et e e et e e e e sbneeaean 179

2.48 GOST R B4.10-2001.....ccieeeiteee ittt ettt ettt ettt st e e ss b e e s be e e aba e e sabe e e sab e e ssbeesbneesbeeennneennneas 179
B T R B = {1][] o = PP TP PUPPRRPPPPRI 179
2.48.2 GOST R 34.10-2001 publiC KEY ODJECESuviiieeiiiiee ettt 180
2.48.3 GOST R 34.10-2001 private KeY ODJECLScccoeiiie e 181
2.48.4 GOST R 34.10-2001 domain parameter ODJECES.........cuuiiiiiiiiii i 183
2.48.5 GOST R 34.10-2001 mechanism parameters. ..o 184
2.48.6 GOST R 34.10-2001 KeY Pair GENEIALION.cceiiiuiieeeiiiieeeitieeeesiteeeesbee e e et eessbreeeesnineeeeans 186
2.48.7 GOST R 34.10-2001 Without hashingc.c.ceeiiiiiiiiiiiie e 186
2.48.8 GOST R 34.10-2001 With GOST R 34.11-94oiiiiiiiiiii ittt 186
2.48.9 GOST 28147-89 keys wrapping/unwrapping with GOST R 34.10-2001ccccceeeeriineeennne 187

3 PKCS #11 Implementation CONfOIMEANCEuuuuuuiuiuiriiiiieieieieieinreieierererereree———————————————. 188
Appendix A. ACKNOWIEAGMENTS ...ttt st e b e e e e bt ae e e e 189
Appendix B. MANIFEST CONSLANTSeeiiiiiiiie ettt et e e 191
B.1 OTP DEFINILIONS ...itiiiiiitiit ettt ettt ettt st e st e s b et e s b e e e e s e e e e s annnee s 191
B.2 ODJECE CIASSES .. ettt ekttt e skt e e bt e e s bbbt e e e b et e e abn e nnnee s 191
(ST I =) 1Y/ 011 T SRR PT 191

L V1o o = U1 o SRR 191
B.5 ATTIDULES ..o 197
B.6 ALIDULE CONSTANTS.....ciiiiiiiiiiiii et e et e e e s e s nnnnee s 198

(2 A @ oY oo 1] = | £SO 198
B.8 NOTICALIONSeeee ittt s et e sk et e s bt e e st e e sttt e st et e e s e e e s s 198
B.9 RELUIM VAIUESeeiiieiiiiiieeiee ettt ettt e e e e e et e e e e e e e sttt e e e e e e e santateeeeeaeesannntnnaeeeaeensannns 198
Appendix C. LR LNV (o A T 11 (o Y 199
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 11 of 199

1 Introduction

This document defines mechanisms that are anticipated to be used with the current version of PKCS #11.

All text is normative unless otherwise labeled.

1.1 Terminology

The key MWSTg MESTINOTG fREQUIREDG fSHALLG fSHALL NOTqQ iSHOULDQ fiSHOULD
NOTg fRECOMMENDEDQG fMAYQ and fOPTIONALO i n t his document are to be
in [RFC2119

1.2 Definitions

For the purposes of this standard, the following definitions apply. Please refer to the [PKCS#11-Base] for
further definitions:

AES Advanced Encryption Standard, as defined in FIPS PUB 197.
CAMELLIA The Camellia encryption algorithm, as defined in RFC 3713.

BLOWFISH The Blowfish Encryption Algorithm of Bruce Schneier,
www.schneier.com.

CBC Cipher-Block Chaining mode, as defined in FIPS PUB 81.
CDMF Commercial Data Masking Facility, a block encipherment method
specified by International Business Machines Corporation and

based on DES.

CMAC Cipher-based Message Authenticate Code as defined in [NIST
sp800-38b] and [RFC 4493].

CMS Cryptographic Message Syntax (see RFC 2630)

CT-KIP Cryptographic Token Key Initialization Protocol (as defined in [[CT-
KIP])

DES Data Encryption Standard, as defined in FIPS PUB 46-3.
DSA Digital Signature Algorithm, as defined in FIPS PUB 186-2.
EC Elliptic Curve
ECB Electronic Codebook mode, as defined in FIPS PUB 81.
ECDH Elliptic Curve Diffie-Hellman.
ECDSA Elliptic Curve DSA, as in ANSI X9.62.

ECMQV Elliptic Curve Menezes-Qu-Vanstone

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 12 of 199

http://www.schneier.com/

GOST 28147-89

GOST R 34.11-94

GOST R 34.10-2001

\Y
MAC
MQV

OAEP

PKCS

PRF
PTD
RSA

SHA-1

SHA-224

SHA-256

SHA-384

SHA-512

SSL
SO

TLS

The encryption algorithm, as defined in Part 2 [GOST 28147-89]
and [RFC 4357] [RFC 4490], and RFC [4491].

Hash algorithm, as defined in [GOST R 34.11-94] and [RFC 4357],
[RFC 4490], and [RFC 4491].

The digital signature algorithm, as defined in [GOST R 34.10-2001]
and [RFC 4357], [RFC 4490], and [RFC 4491].

Initialization Vector.

Message Authentication Code.
Menezes-Qu-Vanstone

Optimal Asymmetric Encryption Padding for RSA.
Public-Key Cryptography Standards.

Pseudo random function.

Personal Trusted Device, as defined in MeT-PTD
The RSA public-key cryptosystem.

The (revised) Secure Hash Algorithm with a 160-bit message digest,
as defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 224-bit message digest, as
defined in RFC 3874. Also defined in FIPS PUB 180-2 with Change
Notice 1.

The Secure Hash Algorithm with a 256-bit message digest, as
defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 384-bit message digest, as
defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 512-bit message digest, as
defined in FIPS PUB 180-2.

The Secure Sockets Layer 3.0 protocol.

A Security Officer user.

Transport Layer Security.

WIM

WTLS

pkcs1l-curr-v2.40-csprd02
Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

Wireless ldentification Module.

Wireless Transport Layer Security.

23 April 2014
Page 13 of 199

1.3 Normative References

[ARIA] Nati onal Security Research Institafe, Kor ea,
URL.: http://tools.ietf.org/html/rfc5794

[BLOWEFISH] B. Schneier. Description of a New Variable-Length Key, 64-Bit Block Cipher
(Blowfish), December 1993.

URL: https://www.schneier.com/paper-blowfish-fse.html

[CAMELLIA] M. Matsui, J. Nakajima, S. Moriai. A Description of the Camellia Encryption
Algorithm, April 2004.

URL: http://www.ietf.org/rfc/rfc3713.txt

[CDMF] Johnson, D.B The Commercial Data Masking Facility (CDMF) data privacy
algorithm, March 1994.

URL.: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5389557

[DH] W. Diffie, M. Hellman. New Directions in Cryptography. Nov, 1976.

URL: http://www-ee.stanford.edu/~hellman/publications/24.pdf
[FIPS PUB 81] NIST. FIPS 81: DES Modes of Operation. December 1980.
URL: http://csrc.nist.gov/publications/fips/fips81/fips81.htm
[FIPS PUB 186-4] NIST. FIPS 186-4: Digital Signature Standard. July 2013.
URL: http://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
[FIPS PUB 197] NIST. FIPS 197: Advanced Encryption Standard. November 26, 2001.
URL: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
[GOST] V. Dolmatov, A. Degtyarev. GOST R. 34.11-2012: Hash Function. August
2013. URL: http:/ltools.ietf.org/html/rfc6986
[MD2] B. Kaliski. RSA Laboratories. The MD2 Message-Digest Algorithm. April, 1992.
URL: http://tools.ietf.org/html/rfc1319
[MD5] RSA Data Security. R. Rivest. The MD5 Message-Digest Algorithm. April, 1992.
URL: http://tools.ietf.org/html/rfc1319

[OAEP] M. Bellare, P. Rogaway. Optimal Asymmetric Encryption i How to Encrypt with
RSA. Nov 19, 1995.

URL: http://cseweb.ucsd.edu/users/mihir/papers/oae.pdf

[PKCS #11-Base] PKCS #11 Cryptographic Token Interface Base Specification Version 2.40. Latest
version. http://docs.oasis-open.org/pkcs11/pkcsll-base/v2.40/pkcsll-base-
v2.40.html.

[PKCS #11-Hist] PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification
Version 2.40. Latest version. http://docs.oasis-open.org/pkcs11/pkcsll-
hist/v2.40/pkcs11-hist-v2.40.html.

[PKCS #11-Prof] PKCS #11 Cryptographic Token Interface Profiles Version 2.40. Latest version.
http://docs.oasis-open.org/pkcs11/pkcesl11-profiles/v2.40/pkcsl1-profiles-
v2.40.html.

[RFC2119] Bradner, S., ifiKey words for use in RFCs to |
14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.

[RIPEMD] H. Dobbertin, A. Bosselaers, B. Preneel. The hash function RIPEMD-160, Feb
13, 2012. URL:
http://homes.esat.kuleuven.be/~bosselae/ripemd160.html

[SEED] KISA. SEED 128 Algorithm Specification. Sep 2003.

URL.:
http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+128 S
pecification_english_M.pdf

[SHA-1] NIST. FIPS 180-4: Secure Hash Standard. March 2012.

URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[SHA-2] NIST. FIPS 180-4: Secure Hash Standard. March 2012.

pkcs1l-curr-v2.40-csprd02

URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 14 of 199

http://tools.ietf.org/html/rfc5794
https://www.schneier.com/paper-blowfish-fse.html
http://www.ietf.org/rfc/rfc3713.txt
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5389557
http://www-ee.stanford.edu/~hellman/publications/24.pdf
http://csrc.nist.gov/publications/fips/fips81/fips81.htm
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc6986
http://tools.ietf.org/html/rfc1319
http://tools.ietf.org/html/rfc1319
http://cseweb.ucsd.edu/users/mihir/papers/oae.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html
http://www.ietf.org/rfc/rfc2119.txt
http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+128_Specification_english_M.pdf
http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+128_Specification_english_M.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[TWOFISH] B. Schneier, J. Kelsey, D. Whiting, C. Hall, N. Ferguson. Twofish: A 128-Bit Block
Cipher. June 15, 1998.
URL: https://lwww.schneier.com/paper-twofish-paper.pdf

1.4 Non-Normative References

[CAP-1.2] Common Alerting Protocol Version 1.2. 01 July 2010. OASIS Standard.
URL: http://docs.oasis-open.org/emergency/cap/vl.2/CAP-v1.2-0s.html-
[AES KEYWRAP] AES Key Wrap Specification (Draft)
URL.: http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf.
[ANSI C] ANSI/ISO. American National Standard for Programming Languages i C. 1990.

[ANSI X9.31] Accredited Standards Committee X9. Digital Signatures Using Reversible Public
Key Cryptography for the Financial Services Industry (rDSA). 1998.

[ANSI X9.42] Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm
Cryptography. 2003.

[ANSI X9.62] Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). 1998.

[ANSI X9.63] Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: Key Agreement and Key Transport Using Elliptic Curve
Cryptography. 2001. URL:
http://webstore.ansi.org/RecordDetail.aspx?sku=X9.63-2011

LARIA] Naot—i—o-n-a- Seecurity Rogeareh lLlnst i taf e, Kor ea,
[CT-KIP] RSA Laboratories. Cryptographic Token Key Initialization Protocol. Version 1.0,

December 2005.

URL: ftp://ftp.rsasecurity.com/pub/otps/ct-kip/ct-kip-v1-0.pdf.
[CC/PP] CCPP-STRUCT-VOCAB, G. Klyne, F. Reynolds, C. , H. Ohto, J. Hjelm, M. H.
Butler, L. Tran, Editors, W3C Recommendation, 15 January 2004,

URL: http://www.w3.0rg/TR/2004/REC-CCPP-struct-vocab-

20040115/[cC/PP}——W3C. Composite-Capability/Preference-Profiles

Heture—and-\ocabularie World-Wide-Web-C

URL: Latest version available at http://www.w3.0rg/TR/CCPP-
struct-vocab/

[NIST AES CTS] National Institute of Standards and Technology, Addendum to NIST Special
Publication 800-3 8 A, cofmRendation for Block Cipher Modes of Operation:
Three Variants of Ciphertext Stealing for C
URL: http://csrc.nist.gov/publications/nistpubs/800-
38a/addendum-to-nist_sp800-38A.pdf

[PKCS #11-UG] PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Latest
version. URL: http://docs.oasis-open.org/pkcs11/pkesll-
ug/v2.40/pkcs11-ug-v2.40.html.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 15 of 199

https://www.schneier.com/paper-twofish-paper.pdf
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html
http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf
ftp://ftp.rsasecurity.com/pub/otps/ct-kip/ct-kip-v1-0.pdf
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/TR/CCPP-struct-vocab/
http://www.w3.org/TR/CCPP-struct-vocab/
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html

[RFC 2865] Rigney et al , iRemote AuthenticatlEtn Di al
RFC2865, June 2000.
URL: http://www.ietf.org/rfc/rfc2865.txt.
REC3874] S—mi—t—-=e-t i p-Ha2h
2004
URL-[RFC 3394] J. Schaad, R. Housley, Advanced Encryption Standard (AES) Key Wrap
Algorithm, September 2002.
URL: http://www.ietf.org/rfc/rfc3394.txt=

C 3874,

[RFC 3686] Housl ey, AUsi ng Advmdarc(BES) GounterrMpge WitholPsecSt a
Encapsulating Security Payload (ESP), 0 I ETF
URL: http://www.ietf.org/rfc/rfc3686.txt.

[RFC 3717] Mat sui , et al , OA Descryption AFgdrmiet hCna,noel |
3717, April 2004.
URL: http://www.ietf.org/rfc/rfc3713.txt.

[RFC 3610] Whiting, D. , Housl ey, R. , a n d-MAC. (CCHMg,r guson,
IETF RFC 3610, September 2003.
URL: http://www.ietf.org/rfc/rfc3610.txt

; ; mthi on St a

0 : , AES)-CEMaModen RERAS

2005-

URL-[RFC3874] Smi t et -bit Qne-viapHag8h2Fdinction: SHA-224, 6 | ETF RFC 3874,
2004.
URL: http://www.ietf.org/rfc/rfc3874.txt.

[RFC 3748] Aboba et al, AExtensi ble Authentication Pro
2004.

URL: http://www.ietf.org/rfc/rfc3748.txt.

[RFC 4269] South Korean Information Security Age ncy (KI SA) AThe SEED Encr)
Al gorit hmo, December 2005.
URL: ftp://ftp.rfc-editor.org/in-notes/rfc4269.txt

[REC 4309] Housl ey, R. |, AfUsing Advanced Encryption St
| Psec Encapsulating Security Payload (
2005.
URL.: http://www.ietf.org/rfc/rfc4309.txt

[RFC 4357] V. Popov, | . Kurepkin, S. LeontienseNnAdditio

with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R
3411-94 Al gorithmso, January 2006.

[RFC 4490] S. Leontiev, Ed. G. Chudov,Ed. AiUsi ng t he -8OGOSTR3MULYL 7
94,GOST R 34.10-94, and GOST R 34.10-2001 Algorithms with Cryptographic
Message Syntax (CMS)o, May 2006.

[RFC 4491] S. Leontiev, Ed. , D. Shef anov®kGOSTHREd . , fiusi
34.10-2001, and GOST R 34.11-94 Algorithms with the Internet X.509 Public
Key I nfrastructure Certifé.cate and CRL Prof

[RFC 4493] J. Song et al. RFC 4493: The AES-CMAC Algorithm. June 2006.
URL: http://www.ietf.org/rfc/rfc4493.txt

[SEC 1] Standards for Efficient Cryptography Group (SECG). Standards for Efficient
Cryptography (SEC) 1: Elliptic Curve Cryptography. Version 1.0, September 20,
2000.

[SEC 2] Standards for Efficient Cryptography Group (SECG). Standards for Efficient

Cryptography (SEC) 2: Recommended Elliptic Curve Domain Parameters.
Version 1.0, September 20, 2000.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 16 of 199

http://ietf.org/rfc/rfc2865.txt
http://www.ietf.org/rfc/rfc3394.txt
http://ietf.org/rfc/rfc3686.txt
http://ietf.org/rfc/rfc3713.txt
http://www.ietf.org/rfc/rfc3610.txt
http://ietf.org/rfc/rfc3874.txt
http://ietf.org/rfc/rfc3748.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4269.txt
http://ietf.org/rfc/rfc4309.txt
http://www.ietf.org/rfc/rfc4493.txt

URL[TLS] [REC2246] Dierks, T. and C. Allen, "The TLS Protocol
Version 1.0", RFC 2246, January 1999. http://www.ietf.org/rfc/rfc2246.txt,
superseded by [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer
Security (TLS) Protocol Version 1.1"., RFC 4346, April 2006.
http://www.ietf.org/rfc/rfc4346.txt, which was superseded by [5246] Dierks, T. and
E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC
5246, August 2008.

URL: http://www.ietf.org/rfc/rfc5246.txt

[WIM]

[WPKI]

[WTLS]

[X.500]

[X.509]

[X.680]

[X.690]

pkcs1l-curr-v2.40-csprd02

WAP. Wireless Identity Module. 8 WAP-260-WIM-20010712-a. July 2001.

URL:
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?Doc
Name=/wap/wap-260-wim-20010712-a.pdf

WAP-Wireless PKlApplication Protocol: Public Key Infrastructure Definition. &
WAP-217-WPKI-20010424-a. April 2001.

URL:
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?Doc
Name=/wap/wap-217-wpki-20010424-a.pdf

WAP. Wireless Transport Layer Security Version 8 WAP-261-WTLS-20010406-
a. April 2001.

URL:
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?Doc
Name=/wap/wap-261-wtls-20010406-a.pdf-

ITU-T. Information Technology & Open Systems Interconnection & The
Directory: Overview of Concepts, Models and Services. February 2001.
Identical to ISO/IEC 9594-1

ITU-T. Information Technology & Open Systems Interconnection & The
Directory: Public-key and Attribute Certificate Frameworks. March 2000.
Identical to ISO/IEC 9594-8

ITU-T. Information Technology & Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. July 2002.
Identical to ISO/IEC 8824-1

ITU-T. Information Technology 8 ASN.1 Encoding Rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished
Encoding Rules (DER). July 2002.

Identical to ISO/IEC 8825-1

23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 17 of 199

http://www.ietf.org/rfc/rfc5246.txt
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-260-wim-20010712-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-260-wim-20010712-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-217-wpki-20010424-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-217-wpki-20010424-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-261-wtls-20010406-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-261-wtls-20010406-a.pdf

2 Mechanisms

A mechanism specifies precisely how a certain cryptographic process is to be performed. PKCS #11
implementations MAY use one of more mechanisms defined in this document.

The following table shows which Cryptoki mechanisms are supported by different cryptographic
operations. For any particular token, of course, a particular operation may well support only a subset of
the mechanisms listed. There is also no guarantee that a token which supports one mechanism for some
operations supports any other mechanism for any other operation (or even supports that same
mechanism for any other operation). For example, even if a token is able to create RSA digital signatures
with the CKM_RSA_PKCS mechanism, it may or may not be the case that the same token can also
perform RSA encryption with CKM_RSA_PKCS.

Each mechanism description is be preceded by a table, of the following format, mapping mechanisms to
API functions.

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest | Key/ & Derive
Decrypt | Verify | VR Key Unwrap
Pair

1 SR = SignRecover, VR = VerifyRecover.

2 Single-part operations only.

3 Mechanism can only be used for wrapping, not unwrapping.

The remainder of this section will present in detail the mechanisms supported by Cryptoki and the parameters which are supplied to them.

In general, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen fields of the CK_MECHANISM_INFO structure, then those fields have no

meaning for that particular mechanism.

2.1 RSA
Table 1, Mechanisms vs. Functions
Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest | Key/ & Derive
Decrypt Verify VR Key Unwrap
Pair
CKM_RSA_PKCS_KEY_PAIR_GEN Y
CKM_RSA_X9_31 KEY_PAIR_GEN Y;
CKM_RSA _PKCS V? V? Vv Vv
CKM_RSA_PKCS_OAEP v? v
CKM_RSA_PKCS_PSS V?
CKM_RSA_9796 V? Y
CKM_RSA _X_509 V? V? Vv Vv
CKM_RSA X9 31 v?
CKM_SHA1_RSA_PKCS v
CKM_SHA256_RSA_PKCS v
CKM_SHA384 RSA_PKCS Y;
CKM_SHA512_RSA_PKCS \
CKM_SHA1 RSA_PKCS PSS Y
CKM_SHA256_RSA_PKCS_PSS v
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 18 of 199

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest | Key/ & Derive

Decrypt Verify | VR Key Unwrap

Pair

CKM_SHA384_RSA_PKCS_PSS \Y
CKM_SHA512_RSA_PKCS_PSS \Y
CKM_SHA1_RSA_X9_31 \Y
CKM_RSA_PKCS_TPM_1 1 v? Y
CKM_RSA_OAEP_TPM 1 1 v? Y

2.1.1 Definitions

This section defines the RSA key
CKA_KEY_TYPE attribute of RSA key objects.
Mechanisms:

CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_RSA_PKCS
CKM_RSA_9796
CKM_RSA_X_509
CKM_MD2_RSA_PKCS
CKM_MD5_RSA_PKCS
CKM_SHA1_RSA_PKCS
CKM_SHA224 RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA384 RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_RIPEMD128_RSA_PKCS
CKM_RIPEMD160_RSA_PKCS
CKM_RSA_PKCS_OAEP
CKM_RSA X9 31 _KEY_PAIR_GEN
CKM_RSA X9 31
CKM_SHA1_RSA X9 31
CKM_RSA_PKCS_PSS
CKM_SHA1 RSA_PKCS_PSS
CKM_SHA224 RSA_PKCS_PSS
CKM_SHA256_RSA_PKCS_PSS
CKM_SHA512_RSA_PKCS_PSS
CKM_SHA384_RSA_PKCS_PSS
CKM_RSA_PKCS_TPM_1_1
CKM_RSA_OAEP_TPM_1_1
CKM_RSA AES KEY WRAP

pkcs1l-curr-v2.40-csprd02

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved.

type ACKK_RSADO

23 April 2014
Page 19 of 199

f

or

ty]

2.1.2 RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold RSA public keys.
The following table defines the RSA public key object attributes, in addition to the common attributes

defined for this object class:
Table 2, RSA Public Key Object Attributes

Attribute Data type Meaning
CKA_MODULUS™ Big integer Modulus n
CKA_MODULUS_BITS*® CK_ULONG Length in bits of modulus n
CKA_PUBLIC_EXPONENT" Big integer Public exponent e

- Refer to [PKCS #11-Base] table 4510 for footnotes

Depending on the token, there may be limits on the length of key components. See PKCS #1 for more

information on RSA keys.

The following is a sample template for creating an RSA public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_RSA;

CK_UTF8CHAR | abel[] = AAn RSA public key
CK_BYTE modulus[] ={...};
CK_BYTE exponent[] = {...};
CK _BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA _LABEL, label, sizeo f(label) -1},
{CKA_WRAP, &true, sizeof(true)},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_MODULUS, modulus, sizeof(modulus)},
{CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)}
I3
2.1.3 RSA private key objects
RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold RSA private keys.
The following table defines the RSA private key object attributes, in addition to the common attributes
defined for this object class:
Table 2, RSA Private Key Object Attributes
Attribute Data type Meaning
CKA_MODULUS™*® Big integer | Modulus n
CKA_PUBLIC_EXPONENT™® Big integer | Public exponent e
CKA_PRIVATE_EXPONENT *®’ Big integer | Private exponent d
CKA _PRIME_1*%' Big integer | Prime p
CKA_PRIME_2*%' Big integer | Prime q
CKA_EXPONENT_1*%7 Big integer | Private exponent d modulo p-1
CKA_EXPONENT_ 2%’ Big integer | Private exponent d modulo g-1
CKA_COEFFICIENT™®’ Big integer | CRT coefficient ™ mod p
- Refer to [PKCS #11-Base] table 4510 for footnotes
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

Page 20 of 199

obj

Depending on the token, there may be limits on the length of the key components. See PKCS #1 for
more information on RSA keys.

Tokens vary in what they actually store for RSA private keys. Some tokens store all of the above
attributes, which can assist in performing rapid RSA computations. Other tokens might store only the
CKA_MODULUS and CKA_PRIVATE_EXPONENT values._Effective with version 2.40, tokens MUST
also store CKA PUBLIC EXPONENT. This permits the retrieval of sufficient data to reconstitute the
associated public key.

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a token generates an
RSA private key, it stores whichever of the fields in Table 2 it keeps track of. Later, if an application asks
for the values of the keybés various attributes,
can obtain (i.e., if Cryptoki is asked for the value of an attribute it cannot obtain, the request fails). Note
that a Cryptoki implementation may or may not be able and/or willing to supply various attributes of RSA
private keys which are not actually stored on the token. E.g., if a particular token stores values only for
the CKA_PRIVATE_EXPONENT, CKA_PRIME_1, and CKA_PRIME_2 attributes, then Cryptoki is
certainly able to report values for all the attributes above (since they can all be computed efficiently from
these three values). However, a Cryptoki implementation may or may not actually do this extra
computation. The only attributes from Table 2 for which a Cryptoki implementation is required to be able
to return values are CKA_MODULUS and CKA_PRIVATE_EXPONENT.

If an RSA private key object is created on a token, and more attributes from Table 2 are supplied to the
object creation call than are supported by the token, the extra attributes are likely to be thrown away. If
an attempt is made to create an RSA private key object on a token with insufficient attributes for that
particular token, then the object creation call fails and returns CKR_TEMPLATE_INCOMPLETE.

Note that when generating an RSA private key, there is no CKA_MODULUS_BITS attribute specified.
This is because RSA private keys are only generated as part of an RSA key pair, and the
CKA_MODULUS_BITS attribute for the pair is specified in the template for the RSA public key.

The following is a sample template for creating an RSA private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;

CK_KEY_TYPE keyType = CKK_RSA;

CK_UTF8CHAR | abel[] = AAn RSA private

CK_BYTE subject[] ={...};

CK_BYTE id[] = {123},

CK_BYTE modulus[] ={...};

CK_BYTE publicExponent[] ={...};

CK_BYTE privateExponent[] ={...};

CK_BYTE primel[] ={...};

CK BYTE prime2[] ={...};

CK_BYTE exponentl[] = {...};

CK_BYTE exponent2[] = {...};

CK_BYTE coefficient[]] ={...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) -1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_DECRYPT, &true, sizeof(true)},
{CKA_SIGN, &true, sizeof(true)},

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 21 of 199

Crypt ol

key

o |

{CKA_MODULUS, modulus, sizeof(modulus)},
{CKA_PUBLIC_EXPONENT, publicExponent,
sizeof(publicExponent)},
{CKA_PRIVATE_EXPONENT, privateExponent,
sizeof(privateExponent)},
{CKA_PRIME_1, primel, sizeof(primel)},
{CKA_PRIME_2, prime2, sizeof(prime2)},
{CKA_EXPONENT _1, exponentl, sizeof(exponentl)},
{CKA_EXPONENT_2, exponent2, sizeof(exponent2)},
{CKA_COEFFICIENT, coefficient, sizeof(coefficient)}

h

2.1.4 PKCS #1 RSA key pair generation

The PKCS #1 RSA key pair generation mechanism, denoted CKM_RSA_PKCS_KEY_PAIR_GEN, is a
key pair generation mechanism based on the RSA public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public
exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the
template for the public key. The CKA_PUBLIC_EXPONENT may be omitted in which case the
mechanism shall supply the public exponent attribute using the default value of 0x10001 (65537).
Specific implementations may use a random value or an alternative default if 0x10001 cannot be used by
the token.

Note: Implementations strictly compliant with version 2.11 or prior versions may generate an error
if this attribute is omitted from the template. Experience has shown that many implementations of 2.11
and prior did allow the CKA_PUBLIC_EXPONENT attribute to be omitted from the template, and
behaved as described above. The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE,
CKA_MODULUS, and CKA_PUBLIC_EXPONENT attributes to the new public key.
CKA_PUBLIC_EXPONENT will be copied from the template if supplied.
CKR_TEMPLATE_INCONSISTENT shall be returned if the implementation cannot use the supplied
exponent value. It contributes the CKA_CLASS and CKA_KEY_TYPE attributes to the new private key; it
may also contribute some of the following attributes to the new private key: CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT. Other attributes supported by the
RSA public and private key types (specifically, the flags indicating which functions the keys support) may
also be specified in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.5 X9.31 RSA key pair generation

The X9.31 RSA key pair generation mechanism, denoted CKM_RSA_X9_31_KEY_PAIR_GEN, is a key
pair generation mechanism based on the RSA public-key cryptosystem, as defined in X9.31.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public
exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the
template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS, and
CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes the CKA_CLASS and
CKA_KEY_TYPE attributes to the new private key; it may also contribute some of the following attributes
to the new private key: CKA_MODULUS, CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT,
CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT.
Other attributes supported by the RSA public and private key types (specifically, the flags indicating which

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 22 of 199

functions the keys support) may also be specified in the templates for the keys, or else are assigned
default initial values. Unlike the CKM_RSA_PKCS_KEY_PAIR_GEN mechanism, this mechanism is
guaranteed to generate p and g values, CKA_PRIME_1 and CKA_PRIME_2 respectively, that meet the
strong primes requirement of X9.31.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.6 PKCS #1 v1.5 RSA

The PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS, is a multi-purpose mechanism based
on the RSA public-key cryptosystem and the block formats initially defined in PKCS #1 v1.5. It supports
single-part encryption and decryption; single-part signatures and verification with and without message
recovery; key wrapping; and key unwrapping. This mechanism corresponds only to the part of PKCS #1
v1.5 that involves RSA; it does not compute a message digest or a Digestinfo encoding as specified for
the md2withRSAEnNcryption and md5withRSAEnNcryption algorithms in PKCS #1 v1.5.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token

may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the

Ainputo to the encrypt i oCOKA VALYE attibute of the key thathisevrappad, ue of t h
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the

key, except the key length; the application must convey these separately. In particular, the mechanism

contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes

to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For
encryption, decryption, signatures and signature verification, the input and output data may begin at the
same location in memory. In the table, k is the length in bytes of the RSA modulus.

Table 3, PKCS #1 v1.5 RSA: Key And Data Length

Function Key type Input Output Comments
length length

C_Encrypt’ RSA public key ¢ k-11 k block type 02
C_Decrypt" RSA private key k ¢ k-11 block type 02
C_Sign" RSA private key ¢ k-11 k block type 01
C_SignRecover RSA private key ¢ k-11 k block type 01
C_Verify" RSA public key ¢ k-11, k° N/A block type 01
C_VerifyRecover RSA public key k ¢ k-11 block type 01
C_WrapKey RSA public key ¢ k-11 k block type 02
C_UnwrapKey RSA private key k ¢ k-11 block type 02

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.7 PKCS #1 RSA OAEP mechanism parameters

§ CK_RSA_PKCS MGF TYPE; CK_RSA_PKCS MGF TYPE_PTR

CK_RSA_PKCS_MGF_TYPE is used to indicate the Message Generation Function (MGF) applied to a
message block when formatting a message block for the PKCS #1 OAEP encryption scheme or the
PKCS #1 PSS signature scheme. It is defined as follows:

typedef CK_ULONG CK_RSA_PKCS_MGF_TYPE;

pkcs1l-curr-v2.40-csprd02
Standards Track Work Product

23 April 2014

Copyright © OASIS Open 2014. All Rights Reserved. Page 23 of 199

The following MGFs are defined in PKCS #1. The following table lists the defined functions.
Table 4, PKCS #1 Mask Generation Functions

Source Identifier Value

CKG_MGF1_SHA1 0x00000001UL
CKG_MGF1_SHA224 0x00000005UL
CKG_MGF1_SHA256 0x00000002UL
CKG_MGF1_SHA384 0x00000003UL
CKG_MGF1_SHA512 0x00000004UL

CK_RSA_PKCS_MGF_TYPE_PTR is a pointer to a CK_RSA_PKCS_ MGF_TYPE.

§ CK_RSA_PKCS_OAEP_SOURCE_TYPE;
CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR

CK_RSA_PKCS_OAEP_SOURCE_TYPE is used to indicate the source of the encoding parameter
when formatting a message block for the PKCS #1 OAEP encryption scheme. It is defined as follows:

typedef CK_ULONG CK_RSA_PKCS_OAEP_SOURCE_TYPE;

The following encoding parameter sources are defined in PKCS #1. The following table lists the defined
sources along with the corresponding data type for the pSourceData field in the
CK_RSA_PKCS_OAEP_PARAMS structure defined below.

Table5, PKCS #1 RSA OAEP: Encoding parameter sources

Source Identifier Value Data Type

CKZ_DATA_SPECIFIED 0x00000001UL | Array of CK_BYTE containing the value of
the encoding parameter. If the parameter is
empty, pSourceData must be NULL and
ulSourceDatalen must be zero.

CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR is a pointer to a
CK_RSA_PKCS_OAEP_SOURCE_TYPE.

§ CK_RSA_PKCS_OAEP_PARAMS: CK_RSA PKCS OAEP_PARAMS PTR

CK_RSA_PKCS_OAEP_PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_OAEP mechanism. The structure is defined as follows:
typedef struct CK_RSA PKCS OAEP_PARAMS {
CK_MECHANISM_TYPE hashAlg;
CK_RSA PKCS_MGF_TYPE mdf;
CK_RSA PKCS_OAEP_SOURCE_TYPE source,
CK_VOID_PTR pSourceData,;
CK_ULONG ulSourceDatal en;
} CK_RSA_PKCS_OAEP_PARAMS;

The fields of the structure have the following meanings:

hashAlg mechanism ID of the message digest algorithm used to calculate
the digest of the encoding parameter

mgf mask generation function to use on the encoded block

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 24 of 199

source source of the encoding parameter
pSourceData data used as the input for the encoding parameter source
ulSourceDatalLen length of the encoding parameter source input

CK_RSA_PKCS_OAEP_PARAMS_PTR is a pointer to a CK_RSA_PKCS_OAEP_PARAMS.

2.1.8 PKCS #1 RSA OAEP

The PKCS #1 RSA OAEP mechanism, denoted CKM_RSA_PKCS_OAEP, is a multi-purpose
mechanism based on the RSA public-key cryptosystem and the OAEP block format defined in PKCS #1.
It supports single-part encryption and decryption; key wrapping; and key unwrapping.

It has a parameter, a CK_RSA_PKCS_OAEP_PARAMS structure.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
Ai nput 0 t o tpéraionasrihe valugaf theoCKA &ALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus, and hLen is the output length of the message digest algorithm
specified by the hashAlg field of the CK_RSA PKCS_OAEP_PARAMS structure.

Table6, PKCS #1 RSA OAEP: Key And Data Length

Function Key type Input length Output
length
C_Encrypt’ RSA public key ¢ k-2-2hLen k
C_Decrypt RSA private key k ¢ k-2-2hLen
C_WrapKey RSA public key ¢ k-2-2hLen k
C_UnwrapKey RSA private key k ¢ k-2-2hLen

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.9 PKCS #1 RSA PSS mechanism parameters

§ CK_RSA PKCS PSS _PARAMS: CK_RSA_PKCS PSS PARAMS_PTR

CK_RSA_PKCS_PSS_PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_PSS mechanism. The structure is defined as follows:
typedef struct CK_RSA PKCS PSS PARAMS {
CK_MECHANISM_TYPE hashAlg;
CK_RSA PKCS_MGF_TYPE mdf;
CK_ULONG sLen;
} CK_RSA PKCS PSS PARAMS;

The fields of the structure have the following meanings:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 25 of 199

hashAlg hash algorithm used in the PSS encoding; if the signature
mechanism does not include message hashing, then this value must
be the mechanism used by the application to generate the message
hash; if the signature mechanism includes hashing, then this value
must match the hash algorithm indicated by the signature
mechanism

mgf mask generation function to use on the encoded block

sLen length, in bytes, of the salt value used in the PSS encoding; typical
values are the length of the message hash and zero

CK_RSA_PKCS_PSS_PARAMS_PTR is a pointer to a CK_RSA_PKCS_PSS_PARAMS.

2.1.10 PKCS #1 RSA PSS

The PKCS #1 RSA PSS mechanism, denoted CKM_RSA_PKCS_PSS, is a mechanism based on the
RSA public-key cryptosystem and the PSS block format defined in PKCS #1. It supports single-part
signature generation and verification without message recovery. This mechanism corresponds only to the
part of PKCS #1 that involves block formatting and RSA, given a hash value; it does not compute a hash
value on the message to be signed.

It has a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must be less than or
equal to k*-2-hLen and hLen is the length of the input to the C_Sign or C_Verify function. k* is the length
in bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple
of 8, in which case k* is one less than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table. In the table, k
is the length in bytes of the RSA.

Table 7, PKCS #1 RSA PSS: Key And Data Length

Function Key type Input length Output
length

C_Sign" RSA private key hLen k

C_Verify" RSA public key hLen, k N/A

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.11 ISO/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA_9796, is a mechanism for single-part
signatures and verification with and without message recovery based on the RSA public-key
cryptosystem and the block formats defined in ISO/IEC 9796 and its annex A.

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit strings. Accordingly,
the following transformations are performed:

91 Datais converted between byte and bit string formats by interpreting the most-significant bit of the
leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the
trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of
the data is a multiple of 8).

1 A signature is converted from a bit string to a byte string by padding the bit string on the left with 0 to
7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string
as above; it is converted from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 26 of 199

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus.

Table 8, ISO/IEC 9796 RSA: Key And Data Length

Function Key type Input Output
length length
C_Sign" RSA private key ¢ &/20 k
C_SignRecover RSA private key ¢ &/20 k
C_Verify' RSA public key ¢ &/20 K N/A
C_VerifyRecover RSA public key k ¢ &/20

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.12 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA_X_ 509, is a multi-purpose mechanism based on
the RSA public-key cryptosystem. It supports single-part encryption and decryption; single-part signatures
and verification with and without message recovery; key wrapping; and key unwrapping. All these

operations are basedonso-c al | ed fArawdo RSA, as assumed in X.5009.
ARawdo RSA as defined here encrypts a b-gigniicans biyte first,g by

applying Arawd RSA expon e estltitoaatbytecsting, most-significanhbyte first. i ng t he

The input string, considered as an integer, must be less than the modulus; the output string is also less
than the modulus.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token

may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
Ainput o to the encrypt i oOKA VALYJE attibute of the key thatisenrappad, ue o f
similarly for unwrapping. The mechanism does not wrap the key type, key length, or any other

information about the key; the application must convey these separately, and supply them when

unwrapping the key.

Unfortunately, X.509 does not specify how to perform padding for RSA encryption. For this mechanism,
padding should be performed by prepending plaintext data with 0-valued bytes. In effect, to encrypt the
sequence of plaintext bytes b; b, é p(n ¢ k), Cryptoki forms P=2""p,;+2"?b,+ é + b This number must
be less than the RSA modulus. The k-byte ciphertext (k is the length in bytes of the RSA modulus) is
produced by raising P to the RSA public exponent modulo the RSA modulus. Decryption of a k-byte
ciphertext C is accomplished by raising C to the RSA private exponent modulo the RSA modulus, and
returning the resulting value as a sequence of exactly k bytes. If the resulting plaintext is to be used to
produce an unwrapped key, then however many bytes are specified in the template for the length of the
key are taken from the end of this sequence of bytes.

Technically, the above procedures may differ very slightly from certain details of what is specified in
X.509.

Executing cryptographic operations using this mechanism can result in the error returns
CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA modulus and is
numerically at least as large as the modulus) and CKR_ENCRYPTED_DATA_INVALID (if ciphertext is
supplied which has the same length as the RSA modulus and is numerically at least as large as the
modulus).

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 27 of 199

C Ol

t

h

Table 9, X.509 (Raw) RSA: Key And Data Length

Function Key type Input Output length
length

C_Encrypt’ RSA public key ¢k k

C_Decrypt’ RSA private key k k

C_Sign" RSA private key ¢k k

C_SignRecover RSA private key ¢k k

C_Verify" RSA public key ¢k, K N/A

C_VerifyRecover RSA public key k k

C_WrapKey RSA public key ¢k k

C_UnwrapKey RSA private key k ¢ k (specified in template)

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

This mechanism is intended for compatibility with applications that do not follow the PKCS #1 or ISO/IEC

9796 block formats.

2.1.13 ANSI X9.31 RSA

The ANSI X9.31 RSA mechanism, denoted CKM_RSA_ X9 31, is a mechanism for single-part signatures
and verification without message recovery based on the RSA public-key cryptosystem and the block
formats defined in ANSI X9.31.

This mechanism applies the header and padding fields of the hash encapsulation. The trailer field must
be applied by the application.

This mechanism processes only byte strings, whereas ANSI X9.31 operates on bit strings. Accordingly,

the following transformations are performed:

1 Data is converted between byte and bit string formats by interpreting the most-significant bit of the
leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the
trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of
the data is a multiple of 8).

1 A signature is converted from a bit string to a byte string by padding the bit string on the left with 0 to
7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string
as above; it is converted from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus. For all operations, the k value must be at least
128 and a multiple of 32 as specified in ANSI X9.31.

Table 10, ANSI X9.31 RSA: Key And Data Length

Function Key type Input Output
length length

C_Sign RSA private key ¢ k-2 k

C_Verify" RSA public key ¢ k-2, k° N/A

1 Single-part operations only.

2 Data length, signature length.

pkcs1l-curr-v2.40-csprd02
Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23 April 2014
Page 28 of 199

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-
384, SHA-512, RIPE-MD 128 or RIPE-MD 160

The PKCS #1 v1.5 RSA signature with MD2 mechanism, denoted CKM_MD2_RSA_PKCS, performs
single- and multiple-part digital signatures and verification operations without message recovery. The
operations performed are as described initially in PKCS #1 v1.5 with the object identifier
md2WithRSAEnNcryption, and as in the scheme RSASSA-PKCS1-vl 5 in the current version of PKCS #1,
where the underlying hash function is MD2.

Similarly, the PKCS #1 v1.5 RSA signature with MD5 mechanism, denoted CKM_MD5 RSA_PKCS,
performs the same operations described in PKCS #1 with the object identifier md5WithRSAEncryption.
The PKCS #1 v1.5 RSA signature with SHA-1 mechanism, denoted CKM_SHA1 RSA_ PKCS, performs
the same operations, except that it uses the hash function SHA-1 with object identifier
shalWithRSAEnNcryption.

Likewise, the PKCS #1 v1.5 RSA signature with SHA-256, SHA-384, and SHA-512 mechanisms, denoted
CKM_SHA256_RSA_PKCS, CKM_SHA384 RSA_PKCS, and CKM_SHA512_RSA_PKCS respectively,
perform the same operations using the SHA-256, SHA-384 and SHA-512 hash functions with the object
identifiers sha256WithRSAEnNcryption, sha384WithRSAEncryption and sha512WithRSAEncryption
respectively.

The PKCS #1 v1.5 RSA signature with RIPEMD-128 or RIPEMD-160, denoted
CKM_RIPEMD128 RSA PKCS and CKM_RIPEMD160_RSA_PKCS respectively, perform the same
operations using the RIPE-MD 128 and RIPE-MD 160 hash functions.

None of these mechanisms has a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For the PKCS #1 v1.5 RSA
signature with MD2 and PKCS #1 v1.5 RSA signature with MD5 mechanisms, k must be at least 27; for
the PKCS #1 v1.5 RSA signature with SHA-1 mechanism, k must be at least 31, and so on for other
underlying hash functions, where the minimum is always 11 bytes more than the length of the hash value.

Table 11, PKCS #1 v1.5 RSA Signatures with Various Hash Functions: Key And Data Length

Function Key type Input length | Output length Comments
C_Sign RSA private key any k block type 01
C_Verify RSA public key any, k° N/A block type 01

2 Data length, signature length.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

2.1.15 PKCS #1 v1.5 RSA signature with SHA-224

The PKCS #1 v1.5 RSA signature with SHA-224 mechanism, denoted CKM_SHA224 RSA_PKCS,
performs similarly as the other CKM_SHAX_RSA_PKCS mechanisms but uses the SHA-224 hash
function.

2.1.16 PKCS #1 RSA PSS signature with SHA-224

The PKCS #1 RSA PSS signature with SHA-224 mechanism, denoted CKM_SHA224 RSA_PKCS_PSS,
performs similarly as the other CKM_SHAX_RSA_PSS mechanisms but uses the SHA-224 hash
function.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 29 of 199

2.1.17 PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-
512

The PKCS #1 RSA PSS signature with SHA-1 mechanism, denoted CKM_SHA1 RSA_PKCS_ PSS,
performs single- and multiple-part digital signatures and verification operations without message
recovery. The operations performed are as described in PKCS #1 with the object identifier id-RSASSA-
PSS, i.e., as in the scheme RSASSA-PSS in PKCS #1 where the underlying hash function is SHA-1.

The PKCS #1 RSA PSS signature with SHA-256, SHA-384, and SHA-512 mechanisms, denoted
CKM_SHA256_RSA PKCS_ PSS, CKM_SHA384 RSA PKCS_ PSS, and
CKM_SHA512 RSA PKCS_ PSS respectively, perform the same operations using the SHA-256, SHA-
384 and SHA-512 hash functions.

The mechanisms have a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must
be less than or equal to k*-2-hLen where hLen is the length in bytes of the hash value. k* is the length in
bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple of
8, in which case k* is one less than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table. In the table, k
is the length in bytes of the RSA modulus.

Table 12, PKCS #1 RSA PSS Signatures with Various Hash Functions: Key And Data Length

Function Key type Input length | Output length
C_Sign RSA private key any k
C_Verify RSA public key any, k° N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.18 ANSI X9.31 RSA signature with SHA-1

The ANSI X9.31 RSA signature with SHA-1 mechanism, denoted CKM_SHA1 RSA X9 31, performs
single- and multiple-part digital signatures and verification operations without message recovery. The
operations performed are as described in ANSI X9.31.

This mechanism does not have a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For all operations, the k value
must be at least 128 and a multiple of 32 as specified in ANSI X9.31.

Table 13, ANSI X9.31 RSA Signatures with SHA-1: Key And Data Length

Function Key type Input length | Output length
C_Sign RSA private key any k
C_Verify RSA public key any, k° N/A

2 Data length, signature length.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

2.1.19 TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA

The TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA PKCS TPM 1 1,isa
multi-use mechanism based on the RSA public-key cryptosystem and the block formats initially defined in
PKCS #1 v1.5, with additional formatting rules defined in TCPA TPM Specification Version 1.1b.
Additional formatting rules remained the same in TCG TPM Specification 1.2 The mechanism supports
single-part encryption and decryption; key wrapping; and key unwrapping.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 30 of 199

This mechanism does not have a parameter. It differs from the standard PKCS#1 v1.5 RSA encryption
mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM
1.2) structure before being submitted to the PKCS#1 v1.5 encryption process. On encryption, the version
field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain 0x01, 0x01,
0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, OxXX, 0xYY may be accepted.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token

may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the

Ainputo to the encrypt i oCKA_VALYE atiibute of thd key thathisevrappad; ue of t h
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the

key, except the key length; the application must convey these separately. In particular, the mechanism

contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes

to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus.

Table 14, TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA: Key And Data Length

Function Key type Input Output
length length
C_Encrypt RSA public key ¢ k-11-5 k
C_Decrypt’ RSA private key K ¢ k-11-5
C_WrapKey RSA public key ¢ k-11-5 k
C_UnwrapKey RSA private key k ¢ k-11-5

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.20 TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP

The TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP mechanism, denoted
CKM_RSA_PKCS_OAEP_TPM_1 1, is a multi-purpose mechanism based on the RSA public-key
cryptosystem and the OAEP block format defined in PKCS #1, with additional formatting defined in TCPA
TPM Specification Version 1.1b. Additional formatting rules remained the same in TCG TPM
Specification 1.2. The mechanism supports single-part encryption and decryption; key wrapping; and key
unwrapping.

This mechanism does not have a parameter. It differs from the standard PKCS#1 OAEP RSA encryption
mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM
1.2) structure before being submitted to the encryption process and that all of the values of the
parameters that are passed to a standard CKM_RSA PKCS_OAEP operation are fixed. On encryption,
the version field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain
0x01, 0x01, 0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, OxXX, 0xYY may be
accepted.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
Ai nput 0 t o t h dionesrhe valugadf theocCKA & ALYJE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 31 of 199

Table 15, TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP: Key And Data Length

Function Key type Input length Output
length
C_Encrypt RSA public key ¢ k-2-40-5 k
C_Decrypt’ RSA private key K ¢ k-2-40-5
C_WrapKey RSA public key ¢ k-2-40-5 k
C_UnwrapKey RSA private key k ¢ k-2-40-5

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.21 RSA AES KEY WRAP

The RSA AES KEY WRAP mechanism, denoted CKM_RSA_AES_KEY_WRAP , is a mechanism based
on the RSA public-key cryptosystem and the AES key wrap mechanism. It supports single-part key
wrapping; and key unwrapping.

It has a parameter, a CK_RSA_AES_KEY_WRAP_PARAMS structure.

The mechanism can wrap and unwrap a target asymmetric key of any length and type using an RSA key.
- Atemporary AES key is used for wrapping the target key using CKM_AES_WRAP
mechanism.
- Thetemporary AES key is wrapped with the wrapping RSA key using
CKM_RSA_PKCS_OAEP mechanism.

For wrapping, the mechanism -

1 Generates temporary random AES key of ulAESKeyBits length. This key is not accessible to the
user - no handle is returned.

1 Wraps the AES key with the wrapping RSA key using CKM_RSA_PKCS_OAEP with parameters
of OAEPParams.

1 Wraps the target key with the temporary AES key using CKM_AES KEY_WRAP_PAD
(RFC5649) .

1 Zeroizes the temporary AES key

Concatenates two wrapped keys and outputs the concatenated blob.
The recommended format for an asymmetric target key being wrapped is as a PKCS8 PrivateKeylnfo

The use of Attributes in the PrivateKeylnfo structure is OPTIONAL. In case of conflicts between the
object attribute template, and Attributes in the PrivateKeylnfo structure, an error should be thrown

For unwrapping, the mechanism -

1 Splits the input into two parts. The first is the wrapped AES key, and the second is the wrapped
target key. The length of the first part is equal to the length of the unwrapping RSA key.

1 Un-wraps the temporary AES key from the first part with the private RSA key using
CKM_RSA_PKCS_OAEP with parameters of OAEPParams.

1 Un-wraps the target key from the second part with the temporary AES key using
CKM_AES_KEY_WRAP_PAD_(RFC5649) .

pkcs1l-curr-v2.40-csprd02
Standards Track Work Product

23 April 2014

Copyright © OASIS Open 2014. All Rights Reserved. Page 32 of 199

1 Zeroizes the temporary AES key.

1 Returns the handle to the newly unwrapped target key.
Table 167, CKM_RSA_AES_KEY_WRAP Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify |1 Key | Unwrap
Pair
CKM_RSA_AES_KEY_WRAP Y;
ISk = SignRecover, VR = VerifyRecover

2.1.22 RSA AES KEY WRAP mechanism parameters
§ CK_RSA_AES_KEY_WRAP_PARAMS; CK_RSA_AES_KEY_WRAP_PARAMS_PTR

CK_RSA_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_RSA_AES_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK_RSA_AES_KEY_WRAP_PARAMS {
CK_ULONG UlAESKeyBiIts;
CK_RSA_PKCS_OAEP_PARAMS_PTR pOAEPParams;
} CK_RSA_AES KEY_WRAP_PARAMS;

The fields of the structure have the following meanings:
UlAESKeyBiIts length of the temporary AES key in bits. Can be only 128, 192 or 256.

pOAEPParams pointer to the parameters of the temporary AES key wrapping. See also the
description of PKCS #1 RSA OAEP mechanism parameters.

CK_RSA_AES_KEY_WRAP_PARAMS_PTR is a pointer to a CK_RSA_AES_KEY_WRAP_PARAMS.

2.1.23 FIPS 186-4

When CKM_RSA_PKCS is operated in FIPS mode, the length of the modulus SHALL only be 1024,
2048, or 3072 bits.

2.2 DSA

Table 178, DSA Mechanisms vs. Functions

Functions

Encrypt | Sign SR Gen. Wrap
Mechanism & & & Di Key/ & Derive

Decrypt | Verif | VR' | g€ Key Unwrap

y st Pair
CKM_DSA_KEY_PAIR_GEN V
CKM_DSA_PARAMETER_GEN Y
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 33 of 199

Functions

Encrypt | Sign SR Gen. Wrap
Mechanism & & & Di Key/ & Derive
Decrypt | Verif | VR* | ge Key Unwrap
y st Pair
CKM_DSA_PROBALISTIC_PAR \
AMETER_GEN
CKM_DSA_SHAWE_TAYLOR_ Y,
PARAMETER_GEN
CKM_DSA_FIPS_G_GEN \%
CKM_DSA v?
CKM_DSA_SHA1 v
CKM_DSA SHA224 \
CKM_DSA SHA256 Y]
CKM_DSA_SHA384 Y,
CKM_DSA SHA512 \

2.2.1 Definitions

This section defines

attribute of DSA key objects.
Mechanisms:

CKM_DSA_KEY_PAIR_GEN

CKM_DSA
CKM_DSA_SHA1
CKM_DSA_SHA224
CKM_DSA_SHA256
CKM_DSA_SHA384
CKM_DSA_SHA512

CKM_DSA PARAMETEEN
CKM_DSA PROBABLISTIC_PARAMETER_GEN

t

h e CK_KBY_TtYREas uséd@Khe CHASKEY TYP&r t ype

CKM_DSA_SHAWE TAYLOR PARAMETER_GEN

CKM_DSA_FIPS G_GEN
1 CK_DSA PARAMETER_GEN_PARAM

CK_DSA_PARAMETER_GEN_PARAM is a structure , which provides and returns parameters for the

NIST FIPS 186-4 parameter generating algorithms.

typedef struct CK_DSA_PARAMTER_GEN_PARAM {

CK_MECHANISM_TYPE hash;

CK_BYTE_PTR
CK_ULONG
CK_ULONG

pkcs1l-curr-v2.40-csprd02
Standards Track Work Product

pSeed,;
ulSeedLen;
ullndex;

Copyright © OASIS Open 2014. All Rights Reserved.

23 April 2014

Page 34 of 199

The fields of the structure have the following meanings:

hash Mechanism value for the base hash used in PQG generation, Valid
values are CKM_SHA1, CKM_SHA244, CKM_SHA256, CKM_SHA384,
CKM_SHA512.

pSeed Seed value used to generate PQ and G. This value is returned by
CKM_DSA PROBABLISTIC_PARAMETER_GEN,
CKM_SHAWE_TAYLOR_PARAMETER_GEN, and passed into
CKM_DSA _FIPS_G_GEN.

ulSeedLen Length of seed value.

ullndex Index value for generating G. Input for CKM_DSA_FIPS_G_GEN.
Ignored by CKM_DSA_PROBALISTIC_PARAMETER_GEN and
CKM_SHAWE_TAYLOR_PARAMETER_GEN.

2.2.2 DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold DSA public keys.
The following table defines the DSA public key object attributes, in addition to the common attributes
defined for this object class:

Table 19, DSA Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME™® Big integer | Prime p (512 to 3072 bits, in steps of 64 bits)
CKA_SUBPRIME"® Big integer | Subprime g (160, 224 bits, or 256 bits)

CKA _BASE™ Big integer | Base g

CKA_VALUE™* Big integer | Public value y

- Refer to [PKCS #11-Base] table 4510 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA BASEat tri bute values are collectiyv
parameterso. S 4 for nfolle RfSrm&AiahBn 0SS Beys.

The following is a sample template for creating a DSA public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;

CK_KEY_TYPE keyType = CKK_DSA;

CK_UTF8CHAR | abel []

CK_BYTE prime[] ={...};

CK_BYTE subprime[] ={...};

CK_BYTE base[] ={...};

CK_BYTE value[] ={...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) - 1},
{CKA_PRIME, prime, si zeof(prime)},
{CKA_SUBPRIME, subprime, sizeof(subprime)},
{CKA_BASE, base, sizeof(base)},
{CKA_VALUE, value, sizeof(value)}

AA DSA public key obj

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 35 of 199

2.2.3 DSA Key Restrictions

FIPS PUB 18Bspecifies permitted combinations of prime and guime lengths. They are:
1 Prime: 102 bits, Subprime: 160
1 Prime: 2048 bits, Subprime: 224
1 Prime: 2048 bits, Subprime: 256
1 Prime: 3072 bits, Subprime: 256

Earlier versions of FIPS 186 permitted smaller prime lengths, and those are included here for backwards
compatibility. An implementian that is compliant to FIPS 186does not permit the use of primes of any
length less than 1024 bits.

2.2.4 DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA) hold DSA private keys.
The following table defines the DSA private key object attributes, in addition to the common attributes
defined for this object class:

Table 20, DSA Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME™*® Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME"® Big integer Subprime q (160 bits, 224 bits, or 256 bits)
CKA_BASE™® Big integer Base g

CKA_VALUE"*®’ Big integer Private value x

- Refer to [PKCS #11-Base] table 4510 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attributeval ues are collectively th
parameterso. S 4 for nfolle RfSrm&AiahBn 0SS Beys.

Note that when generating a DSA private key, the DSA domain parametersarenots peci fi ed i n the |
template. This is because DSA private keys are only generated as part of a DSA key pair, and the DSA
domain parameters for the pair are specified in the template for the DSA public key.

The following is a sample template for creating a DSA private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;

CK_KEY_TYPE keyType = CKK_DSA;

CK_UTF8CHAR | abel[] = AA DSA private key ob]j

CK_BYTE subject[] ={...};

CK_BYTE id[] = {123};

CK_BYTE prime[] ={...};

CK_BYTE subprime[] ={...};

CK_BYTE base[] ={...};

CK_BYTE value[] ={...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) -1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)} ,
{CKA_SENSITIVE, &true, sizeof(true)},

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 36 of 199

{CKA_SIGN, &true, sizeof(true)},

{CKA_PRIME, prime, sizeof(prime)},
{CKA_SUBPRIME, subprime, sizeof(subprime)},
{CKA_BASE, base, sizeof(base)},
{CKA_VALUE, value, sizeof(value)}

|8

2.2.5 DSA domain parameter objects

DSA domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type CKK_DSA) hold
DSA domain parameters. The following table defines the DSA domain parameter object attributes, in
addition to the common attributes defined for this object class:

Table 21, DSA Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_PRIME™* Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME™* Big integer Subprime q (160 bits, 224 bits, or 256 bits)
CKA_BASE™ Big integer Base g

CKA_PRIME_BITS"® CK_ULONG Length of the prime value.

- Refer to [PKCS #11-Base] table 4510 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASEat t ri bute values
erso. S -4 for nfole RfSrm&AidhBn OSB domain parameters.

To ensure backwards compatibility GKA_SUBPRIME_BIF 80t specified for a call t6_GenerateKe)it takes on
a default based on the value 6KA_PRIME_BIES follows:

1 If CKA_PRIME_BITSless than or equal to 1024 then CKSABPRIME_BITS shall be 160 bits
1 If CKA_PRIME_BIEfuals 2048 then CKA_SUBPRIME_BITS shall be 224 bits
1 IfCKA_PRIME_BIEfguals 3072 then CKA_SUBPRIME_BITS shall be 256 bits

par amet

The following is a sample template for creating a DSA domain parameter object:

CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;
CK_KEY_TYPE keyType = CKK_DSA:;

CK_UTF8CHAR

CK_BYTE prime[] ={...};
CK_BYTE subprime[] ={...};
CK_BYTE base[] ={...};
CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[

1={

{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) -1},
{CKA_PRIME, prime, sizeof(prime)},
{CKA_SUBPRIME, subprime, sizeof(subprime)},
{CKA_BASE, base, sizeof(base)},

pkcs1l-curr-v2.40-csprd02

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

are collectiv

|l abel[] = AA DSA domain par amet

23 April 2014
Page 37 of 199

2.2.6 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is a key pair generation
mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-2.

This mechanism does not have a parameter.

The mechanism generates DSA public/private key pairs with a particular prime, subprime and base, as
specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the template for the public
key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and
CKA_VALUE attributes to the new private key. Other attributes supported by the DSA public and private
key types (specifically, the flags indicating which functions the keys support) may also be specified in the
templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.7 DSA domain parameter generation

The DSA domain parameter generation mechanism, denoted CKM_DSA PARAMETER_GEN, is a
domain parameter generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB
186-2.

This mechanism does not have a parameter.

The mechanism generates DSA domain parameters with a particular prime length in bits, as specified in
the CKA_PRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_BASE and CKA_PRIME_BITS attributes to the new object. Other attributes supported by the DSA
domain parameter types may also be specified in the template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.8 DSA probabilistic domain parameter generation

The DSA probabilistic domain parameter generation mechanism, denoted
CKM_DSA_PROBABLISTIC_PARAMETER_GEN, is a domain parameter generation mechanism based
on the Digital Signature Algorithm defined in FIPS PUB 186-34, section Appendix A.1.1 Generation and
Validation of Probable Primes..

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash and
returns the seed (pSeed) and the length (ulSeedLen).
The mechanism generates DSA the prime and subprime domain parameters with a particular prime

length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as
specified in the CKA_SUBPRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by
this call. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.9 DSA Shawe-Taylor domain parameter generation

The DSA Shawe-Taylor domain parameter generation mechanism, denoted
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN, is a domain parameter generation mechanism

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 38 of 199

based on the Digital Signature Algorithm defined in FIPS PUB 186-34, section Appendix A.1.2
Construction and Validation of Provable Primes p and g.

This mechanism takes a CK_DSA_ PARAMETER_GEN_PARAM which supplies the base hash and
returns the seed (pSeed) and the length (ulSeedLen).

The mechanism generates DSA the prime and subprime domain parameters with a particular prime
length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as
specified in the CKA_SUBPRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by
this call. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.10 DSA base domain parameter generation

The DSA base domain parameter generation mechanism, denoted CKM_DSA_FIPS_G_GEN, is a base
parameter generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-34,
section Appendix A.2 Generation of Generator G.

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash the seed
(pSeed) and the length (ulSeedLen) and the index value.

The mechanism generates the DSA base with the domain parameter specified in the CKA_PRIME and
CKA_SUBPRIME attributes of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_BASE attributes to the new
object. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.11 DSA without hashing

The DSA without hashing mechanism, denoted CKM_DSA, is a mechanism for single-part signatures and
verification based on the Digital Signature Algorithm defined in FIPS PUB 186-2. (This mechanism
corresponds only to the part of DSA that processes the 20-byte hash value; it does not compute the hash
value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 182, DSA: Key And Data Length

Function Key type Input length | Output length
C_Sign" DSA private key 20, 28, 32, 2*length of

48, or 64 bits subprime
C_Verify" DSA public key (20, 28, 32, N/A

48, or 64
bits),
(2*length of
subprime)®

1 Single-part operations only.

2 Data length, signature length.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 39 of 199

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.12 DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA1, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-2.
This mechanism computes the entire DSA specification, including the hashing with SHA-1.

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 23, DSA with SHA-1: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
Iength2

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.13 FIPS 186-4

When CKM_DSA is operated in FIPS mode, only the following bit lengths of p and q, represented by L
and N, SHALL be used:

L =1024, N =160
L =2048, N =224
L =2048, N = 256
L =3072, N = 256

2.2.14 DSA with SHA-224

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA224, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-34.
This mechanism computes the entire DSA specification, including the hashing with SHA-224.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 40 of 199

Table 194, DSA with SHA-244: Key And Data Length

Function Key type Input Output
length length
C_Sign DSA private any 2*subprime
key length
C_Verify DSA public key any, N/A
2*subprim
e length®

% Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of DSA prime sizes, in bits.

2.2.15 DSA with SHA-256

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA256, is a mechanism for single- and multiple-
| part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-34.

This mechanism computes the entire DSA specification, including the hashing with SHA-256.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to

the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 205, DSA with SHA-256: Key And Data Length

Function Key type Input Output
length length
C_Sign DSA private any 2*subprime
key length
C_Verify DSA public key any, N/A
2*subprim
e length®

? Data length, signature length.

2.2.16 DSA with SHA-384

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA384, is a mechanism for single- and multiple-
| part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-34.

This mechanism computes the entire DSA specification, including the hashing with SHA-384.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to

the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v2.40-csprd02

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23 April 2014
Page 41 of 199

Table 216, DSA with SHA-384: Key And Data Length

Function Key type Input Output
length length
C_Sign DSA private any 2*subprime
key length
C_Verify DSA public key any, N/A
2*subprim
e length®

% Data length, signature length.

2.2.17 DSA with SHA-512

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA512, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-512.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:

Table 222, DSA with SHA-512: Key And Data Length

Function Key type Input Output
length length
C_Sign DSA private any 2*subprime
key length
C_Verify DSA public key any, N/A
2*subprim
e length?

? Data length, signature length.

2.3 Elliptic Curve

The Elliptic Curve (EC) cryptosystem (also related to ECDSA) in this document is the one described in the
ANSI X9.62 and X9.63 standards developed by the ANSI X9F1 working group.

Table 28, Elliptic Curve Mechanisms vs. Functions

Functions
Encry | Sign SR Gen. Wrap
Mechanism pt & & Digest Key/ & Derive
& Verif | VR! Key Unwrap
Decry y Pair
pt
CKM_EC_KEY_PAIR_GEN Y]
(CKM_ECDSA _KEY_PAIR_GEN)
CKM_ECDSA V?
CKM_ECDSA_SHA1l \Y
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 42 of 199

Functions
Encry | Sign SR Gen. Wrap
Mechanism pt & & Digest Key/ & Derive
& Verif | VR! Key Unwrap
Decry y Pair
pt
CKM_ECDH1_DERIVE Y
CKM_ECDH1_COFACTOR_DERIV Y
E
CKM_ECMQV_DERIVE Y
CKM_ECDH_AES_KEY_WRAP Vv
Table 239, Mechanism Information Flags
CKF_EC_F_P 0x00100000UL | True if the mechanism can be used
with EC domain parameters over Fj
CKF_EC_F _2M 0x00200000UL | True if the mechanism can be used
with EC domain parameters over Fom
CKF_EC_ECPARAMETERS 0x00400000UL | True if the mechanism can be used

with EC domain parameters of the
choice ecParameters

CKF_EC_NAMEDCURVE 0x00800000UL | True if the mechanism can be used
with EC domain parameters of the
choice namedCurve

CKF_EC_UNCOMPRESS 0x01000000UL | True if the mechanism can be used
with elliptic curve point uncompressed
CKF_EC_COMPRESS 0x02000000UL | True if the mechanism can be used

with elliptic curve point compressed

In these standards, there are two different varieties of EC defined:
1. EC using a field with an odd prime number of elements (i.e. the finite field Fp).

2. EC using afield of characteristic two (i.e. the finite field F,m).

An EC key in Cryptoki contains information about which variety of EC it is suited for. It is preferable that a
Cryptoki library, which can perform EC mechanisms, be capable of performing operations with the two
varieties of EC, however this is not required. The CK_MECHANISM_INFO structure CKF_EC_F_P flag
identifies a Cryptoki library supporting EC keys over F, whereas the CKF_EC_F_2M flag identifies a

Cryptoki library supporting EC keys over F,m. A Cryptoki library that can perform EC mechanisms must
set either or both of these flags for each EC mechanism.

In these specifications there are also three representation methods to define the domain parameters for
an EC key. Only the ecParameters and the namedCurve choices are supported in Cryptoki. The
CK_MECHANISM_INFO structure CKF_EC_ECPARAMETERS flag identifies a Cryptoki library
supporting the ecParameters choice whereas the CKF_EC_NAMEDCURVE flag identifies a Cryptoki
library supporting the namedCurve choice. A Cryptoki library that can perform EC mechanisms must set
either or both of these flags for each EC mechanism.

In these specifications, an EC public key (i.e. EC point Q) or the base point G when the ecParameters
choice is used can be represented as an octet string of the uncompressed form or the compressed form.
The CK_MECHANISM_INFO structure CKF_EC_UNCOMPRESS flag identifies a Cryptoki library
supporting the uncompressed form whereas the CKF_EC_COMPRESS flag identifies a Cryptoki library
supporting the compressed form. A Cryptoki library that can perform EC mechanisms must set either or
both of these flags for each EC mechanism.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 43 of 199

Note that an implementation of a Cryptoki library supporting EC with only one variety, one representation
of domain parameters or one form may encounter difficulties achieving interoperability with other
implementations.

If an attempt to create, generate, derive or unwrap an EC key of an unsupported curve is made, the
attempt should fail with the error code CKR_CURVE_NOT_SUPPORTED. If an attempt to create,
generate, derive, or unwrap an EC key with invalid or of an unsupported representation of domain
parameters is made, that attempt should fail with the error code CKR_DOMAIN_PARAMS_INVALID. If
an attempt to create, generate, derive, or unwrap an EC key of an unsupported form is made, that
attempt should fail with the error code CKR_TEMPLATE_INCONSISTENT.

2.3.1 EC Signatures

For the purposes of these mechanisms, an ECDSA signature is an octet string of even length which is at
most two times nLen octets, where nLen is the length in octets of the base point order n. The signature
octets correspond to the concatenation of the ECDSA values r and s, both represented as an octet string
of equal length of at most nLen with the most significant byte first. If r and s have different octet length,
the shorter of both must be padded with leading zero octets such that both have the same octet length.
Loosely spoken, the first half of the signature is r and the second half is s. For signatures created by a
token, the resulting signature is always of length 2nLen. For signatures passed to a token for verification,
the signature may have a shorter length but must be composed as specified before.

If the length of the hash value is larger than the bit length of n, only the leftmost bits of the hash up to the
length of n will be used. Any truncation is done by the token.

Note: For applications, it is recommended to encode the signature as an octet string of length two times
nLen if possible. This ensures that the application works with PKCS#11 modules which have been
implemented based on an older version of this document. Older versions required all signatures to have
length two times nLen. It may be impossible to encode the signature with the maximum length of two
times nLen if the application just gets the integer values of r and s (i.e. without leading zeros), but does
not know the base point order n, because r and s can have any value between zero and the base point
order n.

2.3.2 Definitions
This section defines the key type ACKK_ECDSAO0 and
CKA_KEY_TYPE attribute of key objects.
Mechanisms:
Note: CKM_ECDSA_KEY_PAIR_GEN is deprecated in v2.11
CKM_ECDSA_KEY_PAIR_GEN
CKM_EC_KEY_PAIR_GEN
CKM_ECDSA
CKM_ECDSA_SHA1
CKM_ECDH1_DERIVE
CKM_ECDH1_COFACTOR_DERIVE
CKM_ECMQV_DERIVE
CKM_ECDH_AES_KEY_WRAP

CKD_NULL
CKD SHA1_KDF

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 44 of 199

ACKK

2.3.3 ECDSA public key objects

EC (also related to ECDSA) public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC or
CKK_ECDSA) hold EC public keys. The following table defines the EC public key object attributes, in
addition to the common attributes defined for this object class:

Table 30, Elliptic Curve Public Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS™* Byte array | DER-encoding of an ANSI X9.62 Parameters

(CKA_ECDSA_PARAMS) value

CKA_EC_POINT™* Byte array | DER-encoding of ANSI X9.62 ECPoint value
Q

- Refer to [PKCS #11-Base] table £510 for footnotes

The CKA_EC _PARAMS or CKA_ECDSA PARAMSat tri bute value is known
paramet er s0 and is defined in ANSI X9.62 as a choice
the following syntax:
Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve CURVES.&id({CurveNames}),
implicitlyCA NULL
}
This allows detailed specification of all required values using choice ecParameters, the use of a
namedCurve as an object identifier substitute for a particular set of elliptic curve domain parameters, or
implicitlyCA to indicate that the domain parameters are explicitly defined elsewhere. The use of a
namedCurve is recommended over the choice ecParameters. The choice implicitlyCA must not be
used in Cryptoki.
The following is a sample template for creating an EC (ECDSA) public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KE Y;
CK_KEY_TYPE keyType = CKK_EC;
CK_UTF8CHAR | abel[] = AAn EC public key

CK_BYTE ecParams[] ={...};

CK_BYTE ecPoint[]] ={...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA _KEY_TYPE, &keyType, s izeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) -1},
{CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
{CKA_EC_POINT, ecPoint, sizeof(ecPoint)}

8

2.3.4 Elliptic curve private key objects

EC (also related to ECDSA) private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC or
CKK_ECDSA) hold EC private keys. See Section 2.3 for more information about EC. The following table
defines the EC private key object attributes, in addition to the common attributes defined for this object
class:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 45 of 199

as t he

of

obj ¢

Table 31, Elliptic Curve Private Key Object Attributes

Attribute Data type Meaning
CKA_EC_PARAMS™*®° Byte array DER-encoding of an ANSI X9.62
(CKA_ECDSA_PARAMS) Parameters value
CKA_VALUE™*®’ Big integer | ANSI X9.62 private value d

- Refer to [PKCS #11-Base] table £510 for footnotes

The CKA_EC_PARAMS or CKA_ECDSA_PARAMSat tri bute value is known as t he
parameterso and is defined in ANSI eXedtati6n2nethoslswih c hoi ce o
the following syntax:

Parameters ::= CHOICE {

ecParameters ECParameters,
namedCurve CURVES.&id({CurveNames}),
implicitlyCA NULL

}

This allows detailed specification of all required values using choice ecParameters, the use of a
namedCurve as an object identifier substitute for a particular set of elliptic curve domain parameters, or
implicitlyCA to indicate that the domain parameters are explicitly defined elsewhere. The use of a
namedCurve is recommended over the choice ecParameters. The choice implicitlyCA must not be
used in Cryptoki.

Note that when generating an EC private key, the EC domain parametersarenots peci fi ed i n the Kk
template. This is because EC private keys are only generated as part of an EC key pair, and the EC
domain parameters for the pair are specified in the template for the EC public key.

The following is a sample template for creating an EC (ECDSA) private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;

CK_KEY_TYPE keyType = CKK_EC;

CK UTF8CKAR | abel [] = AAn EC private key object

CK_BYTE subject[] = {...};

CK_BYTE id[] = {123},

CK_BYTE ecParams[] ={...};

CK_BYTE value[] ={...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {
{CKA _CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyT ype, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) -1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_DERIVE, &true, sizeof(true)},
{CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
{CKA_VALUE, value, sizeof(value)}

|8

2.3.5 Elliptic curve key pair generation
The EC (also related to ECDSA) key pair generation mechanism, denoted CKM_EC_KEY_PAIR_GEN or
CKM_ECDSA_KEY_PAIR_GEN, is a key pair generation mechanism for EC.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 46 of 199

This mechanism does not have a parameter.

The mechanism generates EC public/private key pairs with particular EC domain parameters, as specified
in the CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute of the template for the public key. Note
that this version of Cryptoki does not include a mechanism for generating these EC domain parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the
new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS or
CKA_ECDSA_PARAMS and CKA_CKA_VALUE attributes to the new private key. Other attributes
supported by the EC public and private key types (specifically, the flags indicating which functions the
keys support) may also be specified in the templates for the keys, or else are assigned default initial
values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2° and 2°”° elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary
notation, the number 2°% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°* is a 301-bit number).

2.3.6 ECDSA without hashing

Refer section 2.3.1 for signature encoding.

The ECDSA without hashing mechanism, denoted CKM_ECDSA, is a mechanism for single-part
signatures and verification for ECDSA. (This mechanism corresponds only to the part of ECDSA that
processes the hash value, which should not be longer than 1024 bits; it does not compute the hash
value.)

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 32, ECDSA: Key and Data Length

Function Key type Input length Output
length

C_Sign" ECDSA private key any” 2nLen

C_Verify" ECDSA public key any®, ¢2nLen ? N/A

1 Single-part operations only.

2 Data length, signature length.

3 Input the entire raw digest. Internally, this will be truncated to the appropriate number of bits.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2° and 2°® elements (inclusive), then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in

binary notation, the number 2°%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°® is a 301-bit number).

2.3.7 ECDSA with SHA-1

Refer to section 2.3.1 for signature encoding.

The ECDSA with SHA-1 mechanism, denoted CKM_ECDSA_SHA1, is a mechanism for single- and
multiple-part signatures and verification for ECDSA. This mechanism computes the entire ECDSA
specification, including the hashing with SHA-1.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 47 of 199

Table 243, ECDSA with SHA-1: Key and Data Length

Function Key type Input length | Output length
C_Sign ECDSA private key any 2nLen
C_Verify ECDSA public key any, ¢2nLen? N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2°% and 2°% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary
notation, the number 2°%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°* is a 301-bit number).

2.3.8 EC mechanism parameters
§ CK_EC_KDF_TYPE, CK_EC_KDF_TYPE_PTR

CK_EC_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying data
from a shared secret. The key derivation function will be used by the EC key agreement schemes. Itis
defined as follows:

typedef CK_ULONG CK_EC_KDF_TYPE;

The following table lists the defined functions.

Table 254, EC: Key Derivation Functions

Source Identifier
CKD_NULL
CKD_SHA1_KDF
CKD_SHA224 KDF

CKD_SHA256_KDF

CKD_SHA384_KDF

CKD_SHA512_KDF

The key derivation function CKD_NULL produces a raw shared secret value without applying any key
derivation function whereas the key derivation function CKD_SHA1_KDF, which is based on SHA-1,
derives keying data from the shared secret value as defined in ANSI X9.63.

CK_EC_KDF_TYPE_PTR is a pointer to a CK_EC_KDF_TYPE.
§ CK_ECDH1_DERIVE_PARAMS, CK_ECDH1 DERIVE_PARAMS_PTR

CK_ECDH1_DERIVE_PARAMS is a structure that provides the parameters for the
CKM_ECDH1_DERIVE and CKM_ECDH1_COFACTOR_DERIVE key derivation mechanisms, where
each party contributes one key pair. The structure is defined as follows:
typedef struct CK_ECDH1_DERIVE_PARAMS {
CK_EC_KDF_TYPE kdf;
CK_ULONG ulSharedDatalen;
CK_BYTE_PTR pSharedData;
CK_ULONG ulPublicDatalen;
CK_BYTE_PTR pPublicData;
} CK_ECDH1_DERIVE_PARAMS;

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 48 of 199

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulSharedDatalen the length in bytes of the shared info
pSharedData some data shared between the two parties
ulPublicDatalen the I ength in bytes of the other party

pPublicData" pointer to other partyés EC public key
to accept this value encoded as a raw octet string (as per section
A.5.2 of [ANSI X9.62]). A token MAY, in addition, support accepting
this value as a DER-encoded ECPoint (as per section E.6 of [ANSI
X9.62]) i.e. the same as a CKA_EC_POINT encoding. The calling
application is responsible for converting the offered public key to the
compressed or uncompressed forms of these encodings if the token
does not support the offered form.

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDataLen must be
zero. With the key derivation function CKD_SHA1_KDF, an optional pSharedData may be supplied,
which consists of some data shared by the two parties intending to share the shared secret. Otherwise,
pSharedData must be NULL and ulSharedDatalLen must be zero.

CK_ECDH1_DERIVE_PARAMS_PTR is a pointer to a CK_ECDH1_DERIVE_PARAMS.

8§ CK_ECMQV _DERIVE_PARAMS, CK_ECMQV _DERIVE_PARAMS_PTR

CK_ ECMQV_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The
structure is defined as follows:
typedef struct CK_ECMQV_DERIVE_PARAMS {
CK_EC_KDF_TYPE kdf;
CK_ULONG ulSharedDataLen,;
CK_BYTE_PTR pSharedData;
CK_ULONG ulPublicDatalLen,;
CK_BYTE_PTR pPublicData;
CK_ULONG ulPrivateDataLen;
CK_OBJECT_HANDLE hPrivateData,;
CK_ULONG ulPublicDatalLen2;
CK_BYTE_PTR pPublicDataz;
CK_OBJECT_HANDLE publicKey;
} CK_ECMQV_DERIVE_PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

1 The encoding in V2.20 was not specified and resulted in different implementations choosing different encodings. Applications relying only on a V2.20 encoding
(e.g. the DER variant) other than the one specified now (raw) may not work with all V2.30 compliant tokens.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 49 of 199

ulSharedDatalen the length in bytes of the shared info
pSharedData some data shared between the two parties
ulPublicDatalen the lengthinbytesof t he ot her partyods fi

pPublicData pointer to other partyés first
as per pPublicData of CK_ECDH1_DERIVE_PARAMS

ulPrivateDatalLen the length in bytes of the second EC private key
hPrivateData key handle for second EC private key value
ulPublicDatalLen2 the Iength in bytes of the othe

pPublicData2 pointer to other partyébés second
are as per pPublicData of CK_ECDH1_DERIVE_PARAMS

r st EC

EC publ

r party

EC pub

publicKey Handle to the first partyds ephemer al

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDataLen must be
zero. With the key derivation function CKD_SHA1_KDF, an optional pSharedData may be supplied,
which consists of some data shared by the two parties intending to share the shared secret. Otherwise,
pSharedData must be NULL and ulSharedDataLen must be zero.

CK_ECMQV_DERIVE_PARAMS_PTR is a pointer to a CK_ECMQV_DERIVE_PARAMS.

2.3.9 Elliptic curve Diffie-Hellman key derivation

The elliptic curve Diffie-Hellman (ECDH) key derivation mechanism, denoted CKM_ECDH1_DERIVE, is a
mechanism for key derivation based on the Diffie-Hellman version of the elliptic curve key agreement
scheme, as defined in ANSI X9.63, where each party contributes one key pair all using the same EC
domain parameters.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

9 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

1 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For

examg)le, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2
and 2°® elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,

200

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 50 of 199

200 300

the number 27 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2
is a 301-bit number).

2.3.10 Elliptic curve Diffie-Hellman with cofactor key derivation

The elliptic curve Diffie-Hellman (ECDH) with cofactor key derivation mechanism, denoted
CKM_ECDH1_COFACTOR_DERIVE, is a mechanism for key derivation based on the cofactor Diffie-
Hellman version of the elliptic curve key agreement scheme, as defined in ANSI X9.63, where each party
contributes one key pair all using the same EC domain parameters. Cofactor multiplication is
computationally efficient and helps to prevent security problems like small group attacks.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

1 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

1 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2
and 2°° elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 2°%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2°%
is a 301-bit number).

200

2.3.11 Elliptic curve Menezes-Qu-Vanstone key derivation

The elliptic curve Menezes-Qu-Vanstone (ECMQV) key derivation mechanism, denoted
CKM_ECMQV_DERIVE, is a mechanism for key derivation based the MQV version of the elliptic curve
key agreement scheme, as defined in ANSI X9.63, where each party contributes two key pairs all using
the same EC domain parameters.

It has a parameter, a CK_ECMQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

1 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 51 of 199

derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

1 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
examgle, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2
and 2°% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 2°% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2°*
is a 301-bit number).

200

2.3.12 ECDH AES KEY WRAP

The ECDH AES KEY WRAP mechanism, denoted CKM_ECDH_AES_KEY_WRAP, is a mechanism
based on elliptic curve public-key crypto-system and the AES key wrap mechanism. It supports single-
part key wrapping; and key unwrapping.

It has a parameter, a CK_ECDH_AES_KEY_WRAP_PARAMS structure.

The mechanism can wrap and-umap an asymmetrid¢arget key of any length and type using an EC key.
- Atemporary AES key is deriviedm a temporary E leyand the wrapping EC key using the
CKM_ECDH1_DERIMEchanism.
- The derived AES key is used for wrapping the target key tier@KM_AES WRAP_PAI2chanism.

For wrapping, the mechanism

1 Generates a temporary random EC key (transport key) having the same parameters as the
wrapping EC key (and domain parameters). Saves the transport key public key material.

1 Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf,
ulSharedDatalLen and pSharedData using the private key of the transport EC key and the public
key of wrapping EC key and gets the first ulAESKeyBits bits of the derived key to be the
temporary AES key

1 Wraps the target key with the temporary AES key using CKM_AES _KEY_WRAP_PAD
(RFC5649).

I Zeroizes the temporary AES key and EC transport private key

Concatenates public key material of the transport key and output the concatenated blob.

The recommended format for an asymmetric target key being wrapped is as a PKCS8 PrivateKeyInfo

The use of Attributes in the PrivateKefdrstructure is OPTIONAL. In case of conflicts between the object
attribute template, and Attributes in the PrivateKeyInfo structure earor should be thrown

For unwrapping, the mechanism

1 Splits the input into two parts. The first part is the public key material of the transport key and the
second part is the wrapped target key. The length of the first part is equal to the length of the
public key material of the unwrapping EC key

Note: since the transport key and the wrapping EC key share the same domain, the length of the
public key material of the transport key is the same length of the public key material of the
unwrapping EC key.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 52 of 199

1 Performs ECDH operation using CKM_ECDH1 DERIVE with parameters of kdf,
ulSharedDatalLen and pSharedData using the private part of unwrapping EC key and the public
part of the transport EC key and gets first ulAESKeyBits bits of the derived key to be the
temporary AES key

1 Un-wraps the target key from the second part with the temporary AES key using
CKM_AES_KEY_WRAP_PAD (RFC5649).

1 Zeroizes the temporary AES key

Table 35, CKM_ECDH_AES_KEY_WRAP Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify |\p1 Key | Unwrap
Pair
CKM_ECDH_AES_KEY_WRAP \Y,
1SR = SgnRecover, VR = VerifyRecover

2.3.13 ECDH AES KEY WRAP mechanism parameters
§ CK_ECDH_AES_KEY_WRAP_PARAMS; CK_ECDH_AES_KEY_WRAP_PARAMS_PTR

CK_ECDH_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_ECDH_AES_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK_ECDH_AES_KEY_WRAP_PARAMS {

CK_ULONG UlAESKeyBiIts;
CK_EC_KDF_TYPE kdf;

CK_ULONG ulSharedDataLen;
CK_BYTE_PTR pSharedData;

} CK_ECDH_AES_KEY_WRAP_PARAMS;
The fields of the structure have thellowing meanings:

ulAESKeyBisngth of the temporary AES key in bits. Can be only 128, 192 or 256.
Kdf key derivation function used on the shared secret value to generate AES key.
ulSharedDatal éhe length in bytes of the shared info

pSharedDat&ane data shared between the two parties

CK_ECDH_AES_KEY_WRAP_PARAMS_PTR is a pointer to a
CK_ECDH_AES_KEY_WRAP_PARAMS.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 53 of 199

2.3.14 FIPS 186-4

When CKM_ECDSA is operated in FIPS mode, the curves SHALL either be NIST recommended curves
(with a fixed set of domain parameters) or curves with domain parameters generated as specified by

ANSI X9.64. The NIST recommended curves are:

P-192, P-224, P-256, P-384, P-521
K-163, B-163, K-233, B-233
K-283, B-283, K-409, B-409
K-571, B-571

2.4 Diffie-Hellman

Table 36, Diffie-Hellman Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_DH_PKCS_KEY_PAIR_GEN Y,
CKM_DH_PKCS_PARAMETER_GEN Y
CKM_DH_PKCS_DERIVE Y
CKM_X9 42 DH_KEY_PAIR_GEN Y,
CKM_X9 42 DH_PKCS_PARAMETER_GEN Y
CKM_X9_42 DH_DERIVE Y,
CKM_X9 42 DH_HYBRID_DERIVE Y,
CKM_X9_42_MQV_DERIVE Y,
2.4.1 Definitions
This section defines the key type #ACKIKKDHKEY TTYBE t ype

| attribute of [DH] key objects.

Mechanisms:
CKM_DH_PKCS_KEY_PAIR_GEN
CKM_DH_PKCS_DERIVE
CKM_X9_42_DH_KEY_PAIR_GEN
CKM_X9_42 DH_DERIVE
CKM_X9_42_DH_HYBRID_DERIVE
CKM_X9_42 MQV_DERIVE
CKM_DH_PKCS_PARAMETER_GEN
CKM_X9_42_DH_PARAMETER_GEN

pkcs1l-curr-v2.40-csprd02
Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23 April 2014
Page 54 of 199

CK

2.4.2 Diffie-Hellman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_DH) hold Diffie-
Hellman public keys. The following table defines the Diffie-Hellman public key object attributes, in
addition to the common attributes defined for this object class:

Table 267, Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning
CKA_PRIME™® Big integer Prime p

CKA BASE™ Big integer Base g
CKA_VALUE™* Big integer Public value y

- Refer to [PKCS #11-Base] table 2510 for footnotes

The CKA_PRIMEand CKA BASEat tri bute val ues arHellmamodorhamct i vely t he
parameterso. Dependi ng on tthiedengthofkhe key comgorente Semay be | i
PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_DH;
CK UTF8CHARI abel [] = AAHBI fmmae public key objec
CK_BYTE prime[] ={...};
CK_BYTE base[] ={...};
CK_BYTE value[] ={...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA _CLASS, &class, sizeof(class)},

[
m i

{CKA_KEY_TYPE, &keyType, sizeof(keyType) |
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) -1},

{CKA_PRIME, prime, sizeof(prime)},
{CKA BASE, base, sizeof(base)},
{CKA_VALUE, value, sizeof(value)}

h

2.4.3 X9.42 Diffie-Hellman public key objects

X9.42 Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_X9 42 DH)
hold X9.42 Diffie-Hellman public keys. The following table defines the X9.42 Diffie-Hellman public key
object attributes, in addition to the common attributes defined for this object class:

Table 278, X9.42 Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning

CKA PRIME™® Big integer | Prime p (2 1024 bits, in steps of 256 bits)
CKA_BASE™”® Big integer | Base g

CKA_SUBPRIME™ Big integer | Subprime q (2 160 bits)

CKA VALUE™* Big integer | Public value y

- Refer to [PKCS #11-Base] table $510 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIMEat t ri bute values are eollectiyv
Hel |l man domain parameter s o. ornedenformhtien oAXBSI2Diffied . 42 st anda
Hellman keys.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 55 of 199

The following is a sample template for creating a X9.42 Diffie-Hellman public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_X9 42 DH;

CK_UTF8CHAR

objecto;

CK_BYTE prime[] ={...};
CK_BYTE base[] ={...};
CK_BYTE subprime[] ={...};
CK_BYTE value[] ={..};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {

{CKA_CLASS, &class, sizeof(class)},

{CKA_KEY_TYPE, &keyType, sizeof(key Type)},

{CKA_TOKEN, &true, sizeof(true)},

{CKA_LABEL, label, sizeof(label) - 1},

{CKA_PRIME, prime, sizeof(prime)},

{CKA_BASE, base, sizeof(base)},

{CKA_SUBPRIME, subprime, sizeof(subprime)},

{CKA_VALUE, value, sizeof(value)}

h

2.4.4 Diffie-Hellman private key objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_DH) hold Diffie-
Hellman private keys. The following table defines the Diffie-Hellman private key object attributes, in
addition to the common attributes defined for this object class:

Table 289, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME™*® Big integer Prime p

CKA_BASE™® Big integer Base g

CKA_VALUE™*®’ Big integer Private value x

CKA _VALUE_BITS”® CK_ULONG Length in bits of private value x

- Refer to [PKCS #11-Base] table 4510 for footnotes

The CKA_PRIMEand CKA BASEattri bute val ues arHelmarodorhasmct i vely t he
|

parameterso.

the keyds templ ate

l abel [] = @AKelmadpubickeyDi f f i e

Dependi ng on tthiedengthofithe key comgorente Seea y
PKCS #3 for more information on Diffie-Hellman keys.

Note that when generating a Diffie-Hellman private key, the Diffie-Hellman parameters are not specified in

.-HellnTah private keys ate enty gyensrated Bsipértfof adiffie-

Hellman key pair, and the Diffie-Hellman parameters for the pair are specified in the template for the

Diffie-Hellman public key.

The following is a sample template for creating a Diffie-Hellman private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_DH;

CK_UTF8CHAR

CK_BYTE subject[] ={...};
CK_BYTE id[] ={123};
CK_BYTE prime[] ={...};
CK_BYTE base[] ={...};

pkcs1l-curr-v2.40-csprd02
Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

l abel []-He |l i mMmabi fpriieate key

23 April 2014
Page 56 of 199

be i m

obj e

CK_BYTE value[] ={ b

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) - 1},
{CKA_SUBJECT, subject, sizeof(subject)}
{CKA_ID, id, sizeof(id)},
{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_DERIVE, &true, sizeof(true)},
{CKA_PRIME, prime, sizeof(prime)},
{CKA_BASE, base, sizeof(base)},
{CKA _VALUE, value, sizeof(value)}

h

2.4.5 X9.42 Diffie-Hellman private key objects

X9.42 Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_X9_42_DH)
hold X9.42 Diffie-Hellman private keys. The following table defines the X9.42 Diffie-Hellman private key
object attributes, in addition to the common attributes defined for this object class:

Table 40, X9.42 Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME™*® Big integer Prime p (2 1024 bits, in steps of 256 bits)
CKA_BASE™® Big integer Base g

CKA_SUBPRIME™*® Big integer Subprime q (2 160 bits)
CKA_VALUE™*®’ Big integer Private value x

- Refer to [PKCS #11-Base] table 4510 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIMEat t ri bute values are eoll ectiyv
Hel | man domai n p a ring onghe okers, there mapbe pndts ah the length of the key
components. See the ANSI X9.42 standard for more information on X9.42 Diffie-Hellman keys.

Note that when generating a X9.42 Diffie-Hellman private key, the X9.42 Diffie-Hellman domain

parametersarenots peci fi ed in the keyds t e mp-HdlmaeprivatekdySase i s bec ¢
only generated as part of a X9.42 Diffie-Hellman key pair, and the X9.42 Diffie-Hellman domain

parameters for the pair are specified in the template for the X9.42 Diffie-Hellman public key.

The following is a sample template for creating a X9.42 Diffie-Hellman private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_X9_42_ DH,;
CK_UTF8CHAR |l abel [] = ndKelmadprivaz Dikéyf oabg ect 0
CK_BYTE subject[] ={...};
CK_BYTE id[] = {123},
CK_BYTE prime[] ={...};
CK_BYTE base[] ={...};
CK_BYTE subprime[] ={...};
CK_BYTE value[] ={..};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 57 of 199

{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) - 1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA _ID, id, sizeof(id)},

{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_DERIVE, &true, size of(true)},
{CKA_PRIME, prime, sizeof(prime)},
{CKA_BASE, base, sizeof(base)},
{CKA_SUBPRIME, subprime, sizeof(subprime)},
{CKA_VALUE, value, sizeof(value)}

|8

2.4.6 Diffie-Hellman domain parameter objects

Diffie-Hellman domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_DH) hold Diffie-Hellman domain parameters. The following table defines the Diffie-Hellman domain
parameter object attributes, in addition to the common attributes defined for this object class:

Table 41, Diffie-Hellman Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_PRIME™* Big integer Prime p

CKA_BASE™ Big integer Base g
CKA_PRIME_BITS*”® CK_ULONG Length of the prime value.

- Refer to [PKCS #11-Base] table £510 for footnotes

The CKA_PRIMEand CKA_BASEat t ri bute val ues arHellmarodorhamct i vely t he
parameterso. Depending on the token, there may be |
PKCS #3 for more information on Diffie-Hellman domain parameters.

The following is a sample template for creating a Diffie-Hellman domain parameter object:

CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;
CK_KEY_TYPE keyType = CKK_DH;
CK_UTF8CHAR | abel []-HelmdnAomain gatfameters
object o;
CK_BYTE prime[] ={...};
CK_BYTE base[] ={..}
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) - 1},
{CKA_PRIME, prime, sizeof(prime)},
{CKA_BASE, base, sizeof(base)},

|8

2.4.7 X9.42 Diffie-Hellman domain parameters objects

X9.42 Diffie-Hellman domain parameters objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_X9 42 DH) hold X9.42 Diffie-Hellman domain parameters. The following table defines the X9.42

[
mi

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 58 of 199

Diffie-Hellman domain parameters object attributes, in addition to the common attributes defined for this
object class:

Table 42, X9.42 Diffie-Hellman Domain Parameters Object Attributes

Attribute Data type Meaning

CKA_PRIME™* Big integer Prime p (2 1024 bits, in steps of 256 bits)
CKA BASE™ Big integer Base g

CKA_SUBPRIME™" Big integer Subprime q (2 160 bits)
CKA_PRIME_BITS*® CK_ULONG Length of the prime value.
CKA_SUBPRIME_BITS® CK_ULONG Length of the subprime value.

- Refer to [PKCS #11-Base] table 4510 for footnotes

The CKA_PRIME, CKA BASE and CKA SUBPRIMEat tri bute values are eoll ectiyv
Hel | man domain parameterso. Depending on the token, t|
parameters components. See the ANSI X9.42 standard for more information on X9.42 Diffie-Hellman

domain parameters.

The following is a sample template for creating a X9.42 Diffie-Hellman domain parameters object:

CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;
CK_KEY_TYPEkeyType = CKK_X9_42 DH,;
CK_UTF8CHAR |l abel [] = AKellmaddoddn Di f f i e
parameters objecto;
CK_BYTE prime[] ={...};
CK_BYTE base[] ={...};
CK_BYTE subprime[] ={...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA _CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) -1},
{CKA_PRIME, prime, sizeof(prime)},
{CKA_BASE, base, sizeof(base)},
{CKA_SUBPRIME, subprime, sizeof(subprime)},

3
2.4.8 PKCS #3 Diffie-Hellman key pair generation

The PKCS #3 Diffie-Hellman key pair generation mechanism, denoted
CKM_DH_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on Diffie-Hellman key
agreement, as defined in PKCS &8e | ®ohis is what PKCS #:

It does not have a parameter.

The mechanism generates Diffie-Hellman public/private key pairs with a particular prime and base, as
specified in the CKA_PRIME and CKA_BASE attributes of the template for the public key. If the
CKA_VALUE_BITS attribute of the private key is specified, the mechanism limits the length in bits of the
private value, as described in PKCS #3.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and CKA_VALUE (and
the CKA_VALUE_BITS attribute, if it is not already provided in the template) attributes to the new private
key; other attributes required by the Diffie-Hellman public and private key types must be specified in the
templates.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 59 of 199

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

2.4.9 PKCS #3 Diffie-Hellman domain parameter generation

The PKCS #3 Diffie-Hellman domain parameter generation mechanism, denoted
CKM_DH_PKCS_PARAMETER_GEN, is a domain parameter generation mechanism based on Diffie-
Hellman key agreement, as defined in PKCS #3.

It does not have a parameter.

The mechanism generates Diffie-Hellman domain parameters with a particular prime length in bits, as
specified in the CKA_PRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and
CKA_PRIME_BITS attributes to the new object. Other attributes supported by the Diffie-Hellman domain
parameter types may also be specified in the template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

2.4.10 PKCS #3 Diffie-Hellman key derivation

The PKCS #3 Diffie-Hellman key derivation mechanism, denoted CKM_DH_PKCS_DERIVE, is a
mechanism for key derivation based on Diffie-Hellman key agreement, as defined in PKCS #3. This is
what PKCS #3 calls fAphase 1160.

It has a parameter, which is the public value of the other party in the key agreement protocol, represented
as a Crypt oki.e., A 8qgugnce of hytesgneost-gignificant byte first).

This mechanism derives a secret key from a Diffie-Hellman private key and the public value of the other
party. It computes a Diffie-Hellman secret value from the public value and private key according to PKCS
#3, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one
and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes
bytes from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the
template.

This mechanism has the following rules about key sensitivity and extractabilityz:

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

1 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

1 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

2 Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have
changed in version 2.11 to match the policy used by other key derivation mechanisms such as CKM_SSL3_MASTER_KEY_DERIVE.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 60 of 199

2.4.11 X9.42 Diffie-Hellman mechanism parameters
§ CK_X9_42_DH_KDF_TYPE, CK_X9_42_DH_KDF_TYPE_PTR
CK_X9_42_DH_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive

keying data from a shared secret. The key derivation function will be used by the X9.42 Diffie-Hellman
key agreement schemes. It is defined as follows:

typedef CK_ULONG CK_X9_42_DH_KDF_TYPE;

The following table lists the defined functions.
Table 43, X9.42 Diffie-Hellman Key Derivation Functions

Source Identifier

CKD_NULL

CKD_SHA1 KDF_ASN1
CKD_SHA1 KDF_CONCATENATE

The key derivation function CKD_NULL produces a raw shared secret value without applying any key
derivation function whereas the key derivation functions CKD_SHA1_KDF_ASN1 and
CKD_SHA1_KDF_CONCATENATE, which are both based on SHA-1, derive keying data from the
shared secret value as defined in the ANSI X9.42 standard.

CK_X9 42 _DH_KDF_TYPE_PTR is a pointer to a CK_X9_42_DH_KDF_TYPE.

§ CK_X9 42 DH1_DERIVE_PARAMS, CK_X9 42 DH1_DERIVE_PARAMS PTR

CK_X9 42 DH1 DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9 42 DH_DERIVE key derivation mechanism, where each party contributes one key pair. The
structure is defined as follows:
typedef struct CK_X9 42 DH1 DERIVE_PARAMS {
CK_X9 42 DH_KDF_TYPE kdf;
CK_ULONG ulOtherinfoLen;
CK_BYTE_PTR pOtherlinfo;
CK_ULONG ulPublicDatalLen;
CK_BYTE_PTR pPublicData;
} CK_X9 42 DH1 DERIVE_PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulOtherinfoLen the length in bytes of the other info

pOtherinfo some data shared between the two parties

ulPublicDatalLen the length in bytes oftheot her par t y éHslimahPpublc?2

key

pPublicData poi nter to ot her-Hepnaan guhlidkey vige. 4 2

With the key derivation function CKD_NULL, pOtherinfo must be NULL and ulOtherinfoLen must be zero.

With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 61 of 199

Di ffie

Di ffie

CKD_SHA1 _KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9_42_DH1_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_DH1_DERIVE_PARAMS.

1 CK_X9 42 DH2_DERIVE_PARAMS, CK_X9 42 _DH2_DERIVE_PARAMS PTR

CK_X9 42 DH2 DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9 42 DH_HYBRID_DERIVE and CKM_X9 42 MQV_DERIVE key derivation mechanisms,
where each party contributes two key pairs. The structure is defined as follows:
typedef struct CK_X9 42 DH2 DERIVE_PARAMS {
CK _X9 42 DH_KDF_TYPE kdf;
CK_ULONG ulOtherinfoLen;
CK_BYTE_PTR pOtherlinfo;
CK_ULONG ulPublicDatalLen;
CK_BYTE_PTR pPublic Data;
CK_ULONG ulPrivateDatalen;
CK_OBJECT_HANDLE hPrivateData,;
CK_ULONG ulPublicDatalLen2;
CK_BYTE_PTR pPublicDataz;
} CK_X9 42 DH2_DERIVE_PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulOtherinfoLen the length in bytes of the other info
pOtherinfo some data shared between the two parties

ulPublicDatalLen the I ength in bytes of t hdellmant her party
public key

pPublicData pointer t o ictXh4 DiffigpHelimaryplitdic key value
ulPrivateDatalen the length in bytes of the second X9.42 Diffie-Hellman private key
hPrivateData key handle for second X9.42 Diffie-Hellman private key value

ulPublicDatalLen2 the length in bytes of the otherpar t y 6 s s ec on-elliddh. 42 Di f f
public key

pPublicData2 pointer to other pa+tHellmanpubickeayond X9. 42
value

With the key derivation function CKD_NULL, pOtherinfo must be NULL and ulOtherIinfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9_42_DH2_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_DH2_DERIVE_PARAMS.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 62 of 199

1 CK_X9 42 _MQV_DERIVE_PARAMS, CK_X9 42 MQV_DERIVE_PARAMS_PTR

CK_X9 42 MQV_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9 42 MQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The
structure is defined as follows:
typedef struct CK_X9 42 MQV_DERIVE_PARAMS {
CK _X9 42 DH_KDF_TYPE kdf;
CK_ULONG ulOtherInfoLen;
CK_BYTE_PTR pOtherlinfo;
CK_ULONG ulPublicDatalLen;
CK_BYTE_PTR pPublicData;
CK_ULONG ulPrivate Datalen,;
CK_OBJECT_HANDLE hPrivateData,;
CK_ULONG ulPublicDatalLen2;
CK_BYTE_PTR pPublicDataz;
CK_OBJECT_HANDLE publicKey;
} CK_X9 42 MQV_DERIVE_PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value
ulOtherinfoLen the length in bytes of the other info
pOtherinfo some data shared between the two parties

ulPublicDatalLen the I ength in bytes of t hdellmant her party
public key

pPublicData pointer to otherpartyé s f i r st -Helgnandp@blicley value e
ulPrivateDatalen the length in bytes of the second X9.42 Diffie-Hellman private key
hPrivateData key handle for second X9.42 Diffie-Hellman private key value

ulPublicDatalLen2 the length in bytes of theother part y6s s ec-defindan X9. 42 Di
public key

pPublicData2 pointer to other pa+Hellmanpubickeayond X9. 42
value

publicKey Handle to the first partyds ephemer al

With the key derivation function CKD_NULL, pOtherinfo must be NULL and ulOtherinfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9_42_MQV_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_MQV_DERIVE_PARAMS.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 63 of 199

2.4.12 X9.42 Diffie-Hellman key pair generation

The X9.42 Diffie-Hellman key pair generation mechanism, denoted CKM_X9 42 DH_KEY_PAIR_GEN,
is a key pair generation mechanism based on Diffie-Hellman key agreement, as defined in the ANSI
X9.42 standard.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman public/private key pairs with a particular prime, base and
subprime, as specified in the CKA_PRIME, CKA_BASE and CKA_SUBPRIME attributes of the template
for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, CKA_SUBPRIME, and
CKA_VALUE attributes to the new private key; other attributes required by the X9.42 Diffie-Hellman
public and private key types must be specified in the templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

2.4.13 X9.42 Diffie-Hellman domain parameter generation

The X9.42 Diffie-Hellman domain parameter generation mechanism, denoted
CKM_X9 42 DH_PARAMETER_GEN, is a domain parameters generation mechanism based on X9.42
Diffie-Hellman key agreement, as defined in the ANSI X9.42 standard.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman domain parameters with particular prime and subprime
length in bits, as specified in the CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes of the
template for the domain parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE,
CKA_SUBPRIME, CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes to the new object. Other
attributes supported by the X9.42 Diffie-Hellman domain parameter types may also be specified in the
template for the domain parameters, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits.

2.4.14 X9.42 Diffie-Hellman key derivation

The X9.42 Diffie-Hellman key derivation mechanism, denoted CKM_X9 42 DH_DERIVE, is a
mechanism for key derivation based on the Diffie-Hellman key agreement scheme, as defined in the
ANSI X9.42 standard, where each party contributes one key pair, all using the same X9.42 Diffie-Hellman
domain parameters.

It has a parameter, a CK_X9 42 DH1 DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.qg.
CKM_SHA 1 HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:
 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both

be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

9 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 64 of 199

derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

9 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

2.4.15 X9.42 Diffie-Hellman hybrid key derivation

The X9.42 Diffie-Hellman hybrid key derivation mechanism, denoted

CKM_X9 42 DH_HYBRID_DERIVE, is a mechanism for key derivation based on the Diffie-Hellman
hybrid key agreement scheme, as defined in the ANSI X9.42 standard, where each party contributes two
key pair, all using the same X9.42 Diffie-Hellman domain parameters.

It has a parameter, a CK_X9 42 DH2_ DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA 1 HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

1 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

1 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

2.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation

The X9.42 Diffie-Hellman Menezes-Qu-Vanstone (MQV) key derivation mechanism, denoted
CKM_X9 42 MQV_DERIVE, is a mechanism for key derivation based the MQV scheme, as defined in
the ANSI X9.42 standard, where each party contributes two key pairs, all using the same X9.42 Diffie-
Hellman domain parameters.

It has a parameter, a CK_X9 42 MQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA 1 HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 65 of 199

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

1 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

1 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

2.5 Wrapping/unwrapping private keys

Cryptoki Versions 2.01 and up allow the use of secret keys for wrapping and unwrapping RSA private

keys, Diffie-Hellman private keys, X9.42 Diffie-Hellman private keys, EC (also related to ECDSA) private

keys and DSA private keys. For wrapping, a private keyisBER-encoded according to PKCS
PrivateKeyInfo ASN.1 type. PKCS #8 requires an algorithm identifier for the type of the private key. The

object identifiers for the required algorithm identifiers are as follows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs -11}
dhKeyAgreement OBJECT IDENTIFIER ::={p kes-31}
dhpublicnumber OBJECT IDENTIFIER ::= { iso(1) member - body(2)

us(840) ansi - x942(10046) number -type(2) 1}

id - ecPublicKkey OBJECT IDENTIFIER ::= { iso(1) member - body(2)
us(840) ansi - x9- 62(10045) publicKkeyType(2) 1}

id - dsa OBJECT IDENTIFIER ::={
iso(1) member - body(2) us(840) x9 - 57(10040) x9cm(4) 1}

where
pkcs - 1 OBJECT IDENTIFIER ::={
iso(1) member - body(2) US(840) rsadsi(113549) pkcs(1) 1}

pkcs - 3 OBJECT IDENTIFIER ::={
iso(1) member - body(2) US(840) rsadsi(113549) pkcs(1) 3}

These par ameters for the algorithm identifiers have the
following types, respectively:

NULL
DHParameter ::= SEQUENCE {
prime INTEGER, -- p
base INTEGER, -- ¢
privateValuelLength INTEGER OPTIONAL
}
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 66 of 199

DomainParameters ::= SEQUENCE {

prime INTEGER, -- p
base INTEGER, -- ¢
subprime INTEGER, -- (@
cofactor INTEGER OPTIONAL, - |
validationParms ValidationParms OPTIONAL
}
ValidationParms ::= SEQUENCE {
Seed BIT STRING, -- seed
PGenCounter INTEGER -- parameter verification
}
Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve CURVES.&id({CurveNames}),
implicitlyCA NULL
}
Dss- Parms ::= SEQUENCE {
p INTEGER,
g INTEGER,
g INTEGER
}

For the X9.42 Diffie-Hellman domain parameters, the cofactor and the validationParms optional fields
should not be used when wrapping or unwrapping X9.42 Diffie-Hellman private keys since their values
are not stored within the token.

For the EC domain parameters, the use of namedCurve is recommended over the choice
ecParameters. The choice implicitlyCA must not be used in Cryptoki.
Within the PrivateKeylinfo type:

1 RSAprivate keysareBER-encoded according to PKCS #16s RSAPriva
requires values to be presentforallt he attri but es sR5Amivafeikeyobjeds. Br ypt ok i
ot her words, if a Cryptoki l'i brary CKAeBODUDUS, have va
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT2, and CKA_COEFFICIENT values, it eannetmust not create
an RSAPrivateKey BER-encoding of the key, and so it earretmust not prepare it for wrapping.

9 Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.
1 X9.42 Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.

1 EC (also related with ECDSA) private keys are BER-encoded according to SECG SEC 1
ECPrivateKey ASN.1 type:

ECPrivateKey ::= SEQUENCE {

Version INTEGER { ecPrivkeyVerl(1) }
(ecPrivkeyVerl),
privateKey OCTET STRING,
parameters [0] Parameters OPTI ONAL,
publicKey [1] BIT STRING OPTIONAL
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 67 of 199

[
0 s
[

Since the EC domain parameters are placed in t
parameters field in an ECPrivateKey must be omitted. A Cryptoki application must be able to

unwrap an ECPrivateKey that contains the optional publicKey field; however, what is done with this
publicKey field is outside the scope of Cryptoki.

1 DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

Once a private key has been BER-encoded as a PrivateKeylInfo type, the resulting string of bytes is
encrypted with the secret key. This encryption must be done in CBC mode with PKCS padding.

Unwrapping a wrapped private key undoes the above procedure. The CBC-encrypted ciphertext is
decrypted, and the PKCS padding is removed. The data thereby obtained are parsed as a
PrivateKeylInfo type, and the wrapped key is produced. An error will result if the original wrapped key
does not decrypt properly, or if the decrypted unpadded data does not parse properly, or its type does not
match the key type specified in the template for the new key. The unwrapping mechanism contributes
only those attributes specified in the PrivateKeylnfo type to the newly-unwrapped key; other attributes
must be specified in the template, or will take their default values.

Earlier drafts of PKCS #11 Version 2.0 and Version 2.01 used the object identifier
DSA OBJECT IDENTIFIER ::= { algorithm 12 }
algorithm OBJECT IDENTIFIER ::= {
iso(1) identifier - organization(3) oiw(14) secsig(3)
algorithm(2) }

with associated parameters
DSAParameters ::= SEQUENCE {

primel INTEGER, -- modulus p
prime2 INTEGER, -~ modulus q
base INTEGER -- baseg

for wrapping DSA private keys. Note that although the two structures for holding DSA domain
parameters appear identical when instances of them are encoded, the two corresponding object
identifiers are different.

2.6 Generic secret key

Table 44, Generic Secret Key Mechanisms vs. Functions

Functions
Encry | Sign | SR Gen | Wrap
Mechanism pt & & | Dige : & Deriv
& Verif | VR | st Unwra e
Decry | vy ! Key p
pt /
Key
Pair
CKM_GENERIC_SECRET_KEY_G \%
EN
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 68 of 199

he

PKC:

‘ 2.6.1 Definitions

This section defines the key type ACKK_GENERI C_SECRETO
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_GENERIC_SECRET_KEY_GEN

‘ 2.6.2 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type CKK_GENERIC_SECRET) hold
generic secret keys. These keys do not support encryption or decryption; however, other keys can be
derived from them and they can be used in HMAC operations. The following table defines the generic
secret key object attributes, in addition to the common attributes defined for this object class:

These key types are used in several of the mechanisms described in this section.
Table 45, Generic Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE™*®’ Byte array Key value (arbitrary
length)

CKA_VALUE_LEN*® CK_ULONG Length in bytes of key
value

- Refer to [PKCS #11-Base] table 4510 for footnotes

The following is a sample template for creating a generic secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_GENERIC_SECRET;
CK_UTF8CHAR | abel[] = AA generic secret key
CK_BYTE value[] ={..};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template [] ={
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) - 1},
{CKA_DERIVE, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
I3

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes ofthe SHA-1 hash of the generic secret key objectds CKA_\

2.6.3 Generic secret key generation

The generic secret key generation mechanism, denoted CKM_GENERIC_SECRET_KEY_GEN, is used
to generate generic secret keys. The generated keys take on any attributes provided in the template
passed to the C_GenerateKey call, and the CKA_VALUE_LEN attribute specifies the length of the key
to be generated.

It does not have a parameter.

The template supplied must specify a value for the CKA_VALUE_LEN attribute. If the template specifies
an object type and a class, they must have the following values:

CK_OBJECT _CLASS = CKO_SECRET_KEY:;

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 69 of 199

CK_KEY_TYPE = CKK_GENERIC_SECRE

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bits.

2.7 HMAC mechanisms

Refer to RFC2104 and FIPS 198 for HMAC algorithm description.. The HMAC secret key shall
correspond to the PKCS11 generic secret key type or the mechanism specific key types (see mechanism
definition). Such keys, for use with HMAC operations can be created using C_CreateObject or
C_GenerateKey.

The RFC also specifies test vectors for the various hash function based HMAC mechanisms described in
the respective hash mechanism descriptions. The RFC should be consulted to obtain these test vectors.

2.8 AES

For the Advanced Encryption Standard (AES) see [FIPS PUB 197].
Table 46, AES Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_AES_KEY_GEN \Y
CKM_AES _ECB v Y,

CKM_AES_CBC
CKM_AES_CBC_PAD

<
<

<
<

CKM_AES_MAC_GENERAL v
CKM_AES_MAC v
CKM_AES_OFB v v
CKM_AES_CFB64 v v
CKM_AES_CFBS8 v v
CKM_AES_CFB128 v v
CKM_AES_XTS v v
CKM_AES_XCBC_MAC v
CKM_AES_XCBC_MAC_96 v

2.8.1 Definitions
This section defines the key typasuséd@Khie CKAEKEY TYPE& r
attribute of key objects.
Mechanisms:
CKM_AES_KEY_GEN
CKM_AES_ECB
CKM_AES_CBC
CKM_AES_MAC
CKM_AES_MAC_GENERAL
CKM_AES_CBC_PAD

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 70 of 199

type

C

CKM_AES_OFB
CKM_AES_CFB64
CKM_AES_CFBS
CKM_AES_CFB128
CKM_AES_XTS
CKM_AES_XCBC_MAC
CKM_AES_XCBC_MAC_96

2.8.2 AES secret key objects

AES secret key objects (object class CKO_SECRET_KEY, key type CKK_AES) hold AES keys. The
following table defines the AES secret key object attributes, in addition to the common attributes defined
for this object class:

Table 47, AES Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"*®’ Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN**° CK_ULONG Length in bytes of key
value

- Refer to [PKCS #11-Base] table 4510 for footnotes

The following is a sample template for creating an AES secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_AES;
CK_UTF8CHAR | abel[] = AAn AES; secret key
CK_BYTE value[] ={...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA _CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) -1},
{CKA_ENCRYPT, &t rue, sizeof(true)},
{CKA _VALUE, value, sizeof(value)}

h

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

2.8.3 AES key generation

The AES key generation mechanism, denoted CKM_AES KEY_GEN, is a key generation mechanism for
NI STés Advanced Encryption Standard.
It does not have a parameter.

The mechanism generates AES keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 71 of 199

o0bj

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_ VALUE attributes to the new
key. Other attributes supported by the AES key type (specifically, the flags indicating which functions the
key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.4 AES-ECB

AES-ECB, denoted CKM_AES ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on NIST Advanced Encryption Standard and
electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 48, AES-ECB: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of block size
C_UnwrapKey AES multiple of determined by type of key
block size being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.5 AES-CBC
AES-CBC, denoted CKM_AES_CBC, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping;and key unwr apping, based on NI STéds Advancec

cipher-block chaining mode.
It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 72 of 199

CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 49, AES-CBC: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of the block size
C_UnwrapKey AES multiple of determined by type of key
block size being unwrapped or
CKA VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.6 AES-CBC with PKCS padding

AES-CBC with PKCS padding, denoted CKM_AES_CBC_PAD, is a mechanism for single- and multiple-

part encryption and decryption; key wrapping; and key
Encryption Standard; cipher-block chaining mode; and the block cipher padding method detailed in PKCS

#7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section 2.5
for details). The entries in the table below for data length constraints when wrapping and unwrapping
keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:
Table 50, AES-CBC with PKCS Padding: Key And Data Length

Function Key Input length Output length
type
C_Encrypt AES any input length rounded up to
multiple of the block size
C_Decrypt AES multiple of between 1 and block size bytes
block size shorter than input length
C_WrapKey AES any input length rounded up to
multiple of the block size
C_UnwrapKey AES multiple of between 1 and block length
block size bytes shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 73 of 199

2.8.7 AES-OFB

AES-OFB, denoted CKM_AES_OFB. It is a mechanism for single and multiple-part encryption and
decryption with AES. AES-OFB mode is described in [NIST sp800-38a].

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:

Table 51, AES-OFB: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structursgdeased for CBC mode.

2.8.8 AES-CFB

Cipher AES has a cipher feedback mode, AES-CFB, denoted CKM_AES_ CFB8, CKM_AES CFB64, and
CKM_AES_CFB128. It is a mechanism for single and multiple-part encryption and decryption with AES.
AES-OFB mode is described [NIST sp800-38a].

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:

Table 52, AES-CFB: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

2.8.9 General-length AES-MAC

General-length AES-MAC, denoted CKM_AES_MAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on NIST Advanced Encryption Standard as defined in
FIPS PUB 197 and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 53, General-length AES-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES any 0-block size, as specified in parameters
C_Verify AES any 0-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 74 of 199

2.8.10 AES-MAC

AES-MAC, denoted by CKM_AES MAC, is a special case of the general-length AES-MAC mechanism.
AES-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 54, AES-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES Any % block size (8 bytes)
C_Verify AES Any % block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.11 AES-XTS

AES-XTS (XEX-based Tweaked CodeBook mode with CipherText Stealing), denoted CKM_AES_XTS, is
a mechanism for single- and multiple-part encryption and decryption; based on NIST Advanced
Encryption Standard [NIST sp800-38e].

It does not have a parameter.

Its single parameter is a Data Unit Sequence Number 8 bytes long. Supported key lengths are 256 bits
and 512 bits. Keys are internally split into half-length sub-keys of 128 and 256 bits respectively.

Constraints on key types and the length of data are summarized in the following table:
Table 55, AES-XTS: Key And Data Length

Function Key type Data length Output length Comments
C_Encrypt AES Any Same as input length No final part
C_Decrypt AES Any Same as input length No final part

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.12 AES-XCBC-MAC

AES-XCBC-MAC, denoted CKM_AES XCBC_MAC, is a mechanism for single and multiple part
signatures and verification; based on NI STb6s Advanced |

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 56, AES-XCBC-MAC: Key And Data Length

Function Key type Data length Signhature length
C_Sign AES Any 16 bytes
C_Verify AES Any 16 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.13 AES-XCBC-MAC-96

AES-XCBC-MAC-96, denoted CKM_AES XCBC_MAC-96, is a mechanism for single and multiple part
signatures and verification; based on NI STé6s Advanced |
It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 75 of 199

Table 57, AES-XCBC-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES Any 12 bytes
C_Verify AES Any 12 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.9 AES with Counter

Table 58, AES with Counter Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_AES_CTR \Y Y

2.9.1 Definitions

Mechanisms:
CKM_AES _CTR

2.9.2 AES with Counter mechanism parameters

§ CK_AES CTR_PARAMS; CK_AES_CTR_PARAMS_PTR

CK_AES CTR_PARAMS is a structure that provides the parameters to the CKM_AES_CTR mechanism.
It is defined as follows:
typedef struct CK_AES CTR_PARAMS {
CK_ULONG ulCounterBits;
CK_BYTE cb[16];
} CK_AES CTR_PARAMS;

ulCounterBits specifies the number of bits in the counter block (cb) that shall be incremented. This
number shall be such that 0 < ulCounterBits <= 128. For any values outside this range the mechanism
shall return CKR_MECHANISM_PARAM_INVALID.

It's up to the caller to initialize all of the bits in the counter block including the counter bits. The counter
bits are the least significant bits of the counter block (cb). They are a big-endian value usually starting

with 1. The rest of 6cbd is for the nonce, and
E.g. as defined in [RFC 3686]:
0 1 2 3

01234567890123456789012345678901

R e e i i e e i s it S
| Nonce |

R e s T i e e k. S E S S SR
| Initialization Vector (1V) |

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 76 of 199

maybe

a |

B e i i i i i o T T s S S S S R s
Block Counter
B i s e T S e S S T i o e S o S R it w T i S S 3

This construction permits each packet to consist of up to 2°*-1 blocks = 4,294,967,295 blocks =
68,719,476,720 octets.

CK_AES_CTR _PARAMS_PTR is a pointer to a CK_AES_CTR _PARAMS.

2.9.3 AES with Counter Encryption / Decryption

Generic AES counter mode is described in NIST Special Publication 800-38A and in RFC 3686. These
describe encryption using a counter block which may include a nonce to guarantee uniqueness of the
counter block. Since the nonce is not incremented, the mechanism parameter must specify the number of
counter bits in the counter block.

The block counter is incremented by 1 after each block of plaintext is processed. There is no support for
any other increment functions in this mechanism.

I f an attempt to encrypt/decrypt is made which wil!/
then the mechanism shall return CKR_DATA_LEN_RANGE. Note that the mechanism should allow the

final post increment of the counter to overflow (if it implements it this way) but not allow any further

processing after this point. E.g. if ulCounterBits = 2 and the counter bits start as 1 then only 3 blocks of

data can be processed.

2.10 Additional AES Mechanisms

Table 59, Additional AES Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify VR' Key/ | Unwrap
Key
Pair
CKM_AES_GCM \% Y,
CKM_AES_CCM \Y, \%
CKM_AES_GMAC Vv
2.11 Definitions
Mechanisms:
CKM_AES_GCM
CKM_AES_CCM
CKM_AES_GMAC
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 77 of 199

2.12 AES GCM and CCM Mechanism Parameters

§ CK_GCM_PARAMS; CK_GCM_PARAMS_PTR

CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism. It
is defined as follows:
typedef struct CK_GCM_PARAMS {
CK_BYTE_PTR plv;
CK_ULONG ullvLen;
CK_BYTE_PTR pAAD;
CK_ULONG ulAADLen;
CK_ULONG ulTagBits;
} CK_GCM_PARAMS;

The fields of the structure have the following meanings:
plv pointer to the initialization vector

ullvLen length of the initialization vector in bytes. The length of the
initialization vector can be any number between 1 and 2%, 96-bit
(12 byte) IV values can be processed more efficiently, so that length
is recommended for situations in which efficiency is critical.

pAAD pointer to additional authentication data. This data is authenticated
but not encrypted.

ulAADLen length of pAAD in bytes.

ulTagBits length of authentication tag (output following cipher text) in bits.
Can be any value between 0 and 128.

CK_GCM_PARAMS_PTR is a pointer to a CK_GCM_PARAMS.

§ CK_CCM_PARAMS; CK_CCM_PARAMS_PTR

CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism. ltis
defined as follows:
typedef struct CK_CCM_PARAMS {
CK_ULONG ulDataLen; /*plaintext or ciphertext*/
CK_BYTE_PTR pNonce;
CK_ULONG ulNoncelLen;
CK_BYTE_PTR pAAD;
CK_ULONG ulAADLen;
CK_ULONG ulMACLen;
} CK_CCM_PARAMS;

The fields of the structure have the following meanings, where L is the size in bytesofthedata | engt hés
length (2 <L < 8):
ulDataLen length of the data where 0 <= ulDataLen < 2%

pNonce the nonce.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 78 of 199

ulNoncelLen length of pNonce (<= 15-L) in bytes.

pAAD Additional authentication data. This data is authenticated but not
encrypted.

ulAADLen length of pAuthData in bytes.

ulIMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_PARAMS_PTR is a pointer to a CK_CCM_PARAMS.

‘ 2.13 AES-GCM authenticated Encryption / Decryption

Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where K
(key) and AAD (additional authenticated data) are as described in [GCM].

Encrypt:

‘ T
T
T

Set the IV length ullvLen in the parameter block.
Set the IV data plv in the parameter block. plV may be NULL if ullvLen is O.

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

Set the tag length ulTagBits in the parameter block.
Call C_Encryptinit() for CKM_AES_GCM mechanism with parameters and key K.

Call C_Encrypt(), or C_EncryptUpdate()** C_EncryptFinal(), for the plaintext obtaining ciphertext
and authentication tag output.

Decrypt:

f
f
f

. Set the IV length ullvLen in the parameter block.
Set the IV data plv in the parameter block. pIV may be NULL if ullvLen is O.

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

Set the tag length ulTagBits in the parameter block.
Call C_Decryptinit() for CKM_AES_GCM mechanism with parameters and key K.

Call C_Decrypt(), or C_DecryptUpdate()*! C_DecryptFinal(), for the ciphertext, including the
appended tag, obtaining plaintext output. Note: since CKM_AES_GCM is an AEAD cipher, no
data should be returned until C_Decrypt() or C_DecryptFinal().

In plv the least significant bit of the initialization vector is the rightmost bit. ullvLen is the length of the
initialization vector in bytes.

The tag is appended to the cipher text and the least significant bit of the tag is the rightmost bit and the
tag bits are the rightmost ulTagBits bits.

The key type for K must be compatible with CKM_AES_ECB and the C_Encryptlnit/C_Decryptinit calls
shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL

parameters.
3

fi*o indicates 0 oadeasoegugedcal | s may be m
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 79 of 199

‘ 2.13.1 AES-CCM authenticated Encryption / Decryption

For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is described in [RFC
3610].

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated
data are as described in [RFC 3610].

Encrypt:
1 Set the message/data length ulDatalLen in the parameter block.

1 Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. pNonce
may be NULL if ulNonceLen is 0.

1 Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

1 Setthe MAC length uIMACLen in the parameter block.
Call C_Encryptlnit() for CKM_AES_CCM mechanism with parameters and key K.

1 Call C_Encrypt(),C_DecryptUpdate(), or C_EncryptFinal(), for the plaintext obtaining ciphertext
output obtaining the final ciphertext output and the MAC. The total length of data processed must
be ulDatalLen. The output length will be ulDataLen + ulMACLen.

Decrypt:

1 Set the message/data lengthiDataLenin the parameter block. This length should not include lévegth
of the MAC that is appended to the cipher text.

1 Set the nonce lengtlulNoncekn and the nonce datgNoncein the parameter blockpNoncemay be
NULLf ulNonceLetis 0.

Set the AAD datpAADand sizaulAADLerin the parameter blockpAAD nay be NULIE ulAADLers 0.
Set the MAC lengtbhlMACLenn the parameter block.
Call C_Decryptinit() f&KM_AES_CCiMechanism with parameters and k&y

= =4 =4 =4

Call C_Decrypt(), C_DecryptUpdate(), or C_DecryptFinal(), for the ciphertext, including the appended
MAC, obtaining plaintext output. The total length of data processed mustitizatal.en + uIMACLen. Note:
sinceCKM_AES_CGC®lan AEAD cipher, no data should be returned until C_Decrypt() or C_DecryptFinal().

The key type foKmust be compatible wittCKM_AES_EGRdthe C_Encryptlnit/C_Decryptinit calls shall behave,
with respect to K, as if they were called directly wtKM_AES ECIBand NULL parameters.

2.13.2 AES-GMAC

AES-GMAC, denoted CKM_AES_GMAC, is a mechanism for single and multiple-part signatures and
verification. It is described in NIST Special Publication 800-38D [GMAC]. GMAC is a special case of
GCM that authenticates only the Additional Authenticated Data (AAD) part of the GCM mechanism
parameters. When HMAC is used with C_Sign or C_Verify, pData points to the AAD. HMAC does not
use plaintext or ciphertext.

The signature produced by HMAC, also referred to as a Tag, is 16 bytes long.
Its single mechanism parameter is a 12 byte initialization vector (V).
Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 80 of 199

Table 60, AES-GMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES < 2764 16 bytes
C_Verify CKK_AES <2764 16 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields OKtltdECHANISM_INB®ucture specify the
supported range of AES key sizes, in bytes.

‘ 2.14 AES CBC with Cipher Text Stealing CTS

Ref [NIST AES CTS]
This mode allows unpadded data that has length that is not a multiple of the block size to be encrypted to

the same length of cipher text.

Table 629, AES CBC with Cipher Text Stealing CTS Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_AES_CTS \Y, Y
2.14.1 Definitions
Mechanisms:
CKM_AES_CTS
2.14.2 AES CTS mechanism parameters
It has a parameter, a 16-byte initialization vector.
Table 62, AES-CTS: Key And Data Length
Function Key Input length Output length Comments
type
C_Encrypt AES Any,O Dbl o same as input length no final part
size (16 bytes)
C_Decrypt AES any, O same as input length no final part
size (16 bytes)
2.15 Additional AES Mechanisms
Table 63, Additional AES Mechanisms vs. Functions
Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR! Key/ | Unwrap
Key
Pair
CKM_AES_GCM
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

Page 81 of 199

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify VR! Key/ | Unwrap
Key
Pair
CKM_AES_CCM

‘ 2.15.1 Definitions

Mechanisms:
CKM_AES_GCM
CKM_AES_CCM

‘ 2.15.2 AES GCM and CCM Mechanism parameters

§ CK_GCM _PARAMS; CK_GCM PARAMS PTR

CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism. It is
defined as follows:
typedef struct CK_GCM_PARAMS {
CK_BYTE_PTR plv;
CK_ULONG ullvLen;
CK_BYTE_PTR pAAD;
CK_ULONG ulAADLen;
CK_ULONG ulTagBits;
} CK_GCM_PARAMS;

The fields of the structure have the following meanings:
plv pointer to initialization vector

ullvLen length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and 256. 96-bit (12 byte) IV
values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

pAAD pointer to additional authentication data. This data is authenticated
but not encrypted.

ulAADLen length of pAAD in bytes.

ulTagBits length of authentication tag (output following cipher text) in bits. Can
be any value between 0 and 128.

CK GCM_PARAMS_PTR is a pointer to a CK_GCM_PARAMS.

§ CK_CCM _PARAMS: CK_CCM _PARAMS_PTR

CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism. lItis
defined as follows:
typedef struct CK_CCM_PARAMS {
CK_ULONG ulDatalen; /*plaintext or ciphertext*/

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 82 of 199

CK_BYTE_PTR pNonce;

CK_ULONG ulNonceLen;

CK_BYTE_PTR pAAD;

CK_ULONG ulAADLen;

CK_ULONG ulMACLen;
} CK_CCM_PARAMS;

The fields ofthestruct ur e have the following meanings, where

length (2 <L < 8):
ulDatalLen length of the data where 0 <= ulDatalLen < 28L.

pNonce the nonce.
ulNoncelLen length of pNonce (<= 15-L) in bytes.

pAAD Additional authentication data. This data is authenticated but not
encrypted.

ulAADLen length of pAuthData in bytes.

ulMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_PARAMS_PTR is a pointer to a CK_CCM_PARAMS.

2.15.3 AES-GCM authenticated Encryption / Decryption

Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where K
(key) and AAD (additional authenticated data) are as described in [GCM].

Encrypt:
I Setthe IV length ullvLen in the parameter block.
1 Setthe IV data plv in the parameter block. pIV may be NULL if ullvLen is O.

1 Setthe AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

1 Setthe tag length ulTagBits in the parameter block.
1 Call C_Encryptinit() for CKM_AES_GCM mechanism with parameters and key K.

q Call C_Encrypt(), or C_EncryptUpdate()** C_EncryptFinal(), for the plaintext obtaining ciphertext
and authentication tag output.

Decrypt:
I . Setthe IV length ullvLen in the parameter block.
1 Setthe IV data plv in the parameter block. plV may be NULL if ullvLen is O.

1 Setthe AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

1 Set the tag length ulTagBits in the parameter block.
1 Call C_Decryptlnit() for CKM_AES_ GCM mechanism with parameters and key K.

4fi*0 indicates 0O or more calls may be made as required

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 83 of 199

L

S

1 Call C_Decrypt(), or C_DecryptUpdate()*' C_DecryptFinal(), for the ciphertext, including the
appended tag, obtaining plaintext output.

In plv the least significant bit of the initialization vector is the rightmost bit. ullvLen is the length of the
initialization vector in bytes.

The tag is appended to the cipher text and the least significant bit of the tag is the rightmost bit and the
tag bits are the rightmost ulTagBits bits.

The key type for K must be compatible with CKM_AES_ECB and the C_Encryptlnit/C_Decryptlnit calls
shall behave, with respect to K, as if they were called directly with CKM_AES ECB, K and NULL
parameters.

2.15.4 AES-CCM authenticated Encryption / Decryption
For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is described in [RFC
3610].

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated
data are as described in [RFC 3610].

Encrypt:
1 Setthe message/data length ulDatalLen in the parameter block.

1 Set the nonce length ulNoncelLen and the nonce data pNonce in the parameter block. pNonce
may be NULL if ulNonceLen is 0.

1 Setthe AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

1 Setthe MAC length uIMACLen in the parameter block.
1 Call C_Encryptinit() for CKM_AES_CCM mechanism with parameters and key K.

1 Call C_Encrypt(), or C_DecryptUpdate()** C_EncryptFinal(), for the plaintext obtaining ciphertext
output obtaining the final ciphertext output and the MAC. The total length of data processed must
be ulDatalLen. The output length will be ulDataLen + ulMACLen.

Decrypt:

1 Setthe message/data length ulDataLen in the parameter block. This length should not include the
length of the MAC that is appended to the cipher text.

I Set the nonce length ulNoncelLen and the nonce data pNonce in the parameter block. pNonce
may be NULL if ulNoncelLen is O.

1 Setthe AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

1 Setthe MAC length uIMACLen in the parameter block.
1 Call C_Decryptlnit() for CKM_AES_CCM mechanism with parameters and key K.

q Call C_Decrypt(), or C_DecryptUpdate()** C_DecryptFinal(), for the ciphertext, including the
appended MAC, obtaining plaintext output. The total length of data processed must be ulDatalLen
+ ulMACLen.

The key type for K must be compatible with CKM_AES_ECB and the C_Encryptlnit/C_Decryptinit calls
shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL
parameters.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 84 of 199

2.16 AES CMAC

Table 64, Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_AES_CMAC_GENERAL Y
CKM_AES_CMAC Y

1 SR = SignRecover, VR = VerifyRecover

2.16.1 Definitions

Mechanisms:
CKM_AES_CMAC_GENERAL
CKM_AES_CMAC

2.16.2 Mechanism parameters

CKM_AES_CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS structure.
CKM_AES_CMAC does not use a mechanism parameter.

2.16.3 General-length AES-CMAC
General-length AES-CMAC, denoted CKM_AES_CMAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on [NIST sp800-38b] and [RFC 4493]..

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 65, General-length AES-CMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES any 0-block size, as specified in parameters
C_Verify CKK_AES any 0-block size, as specified in parameters

References [NIST sp800-38b] and [RFC 4493] recommend that the output MAC is not truncated to less
than 64 bits. The MAC length must be specified before the communication starts, and must not be
changed during the | ifetime of the key. It is the

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.16.4 AES-CMAC

AES-CMAC, denoted CKM_AES_CMAC, is a special case of the general-length AES-CMAC mechanism.
AES-MAC always produces and verifies MACs that are a full block size in length, the default output length
specified by [RFC 4493].

Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 85 of 199

cal

er

C

Table 6630, AES-CMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES any Block size (16 bytes)
C_Verify CKK_AES any Block size (16 bytes)

References [NIST sp800-38b] and [RFC 4493] recommend that the output MAC is not truncated to less
than 64 bits. The MAC length must be specified before the communication starts, and must not be
changed during the |ifeti me Dbiliytotfoiosvthksemules. 't i s the cal l

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.17 AES Key Wrap

Table 67, AES Key Wrap Mechanisms vs. Functions

Functions

Encrypt| Sign | SR Gen. | Wrap
Mechanism & & & |Digest| Key/ & Derive

Decrypt| Verify | /g1 Key |Unwrap

Pair

CKM_AES_KEY_WRAP
CKM_AES_KEY_WRAP_PAD
lsr = SignRecover, VR = VerifyRecover

2.17.1 Definitions

Mechanisms:
CKM_AES_KEY_WRAP
CKM_AES_KEY_WRAP_PAD

2.17.2 AES Key Wrap Mechanism parameters

The mechanisms will accept an optional mechanism parameter as the Initialization vector which, if
present, must be a fixed size array of 8 bytes, and, if NULL, will use the default initial value defined in
Section 2.2.3.1 of [AES KEYWRAP].

The type of this parameter is CK_BYTE_PTR and the pointer points to the array of 8 bytes to be used as
the initial value. The length shall be either 0 and the pointer NULL, or 8, and the pointer non-NULL.

2.17.3 AES Key Wrap

The mechanisms support only single-part operations, single part wrapping and unwrapping, and single-
part encryption and decryption.

The CKM_AES_KEY_WRAP mechanism can wrap a key of any length. A key whose length is not a
multiple of the AES Key Wrap block size (8 bytes) will be zero padded to fit. The CKM_AES_KEY_WRAP
mechanism can only encrypt a block of data whose size is an exact multiple of the AES Key Wrap
algorithm block size.

The CKM_AES_KEY_WRAP_PAD mechanism can wrap a key or block of data of any length. It does the
usual padding of inputs (keys or data blocks) that are not multiples of the AES Key Wrap algorithm block

size, always producing wrapped output that is larger than the input key/data to be wrapped. This padding
is done by the token before being passed to the AES key wrap algorithm, which adds an 8 byte AES Key
Wrap algorithm block of data.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 86 of 199

2.18 Key derivation by data encryption i DES & AES

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

Table 68,Key derivation by data encrzption Mechanisms vs. Functions

Mechanism

Functions

Encrypt
&
Decrypt

Sign
&
Verify

SR

VR!

Digest

Gen.

Key/
Key
Pair

Wrap

Unwrap

Derive

CKM_DES_ECB_ENCRYPT_DATA

CKM_DES_CBC_ENCRYPT_DATA

CKM_DES3_ECB_ENCRYPT_DATA

CKM_DES3_CBC_ENCRYPT_DATA

CKM_AES_ECB_ENCRYPT_DATA

CKM_AES_CBC_ENCRYPT_DATA

<[<K<K <

2.18.1 Definitions

Mechanisms:

CKM_DES_ECB_ENCRYPT_DATA
CKM_DES_CBC_ENCRYPT_DATA
CKM_DES3_ECB_ENCRYPT_DATA
CKM_DES3_CBC_ENCRYPT_DATA
CKM_AES_ECB_ENCRYPT_DATA
CKM_AES_CBC_ENCRYPT_DATA

typedef struct CK_DES_CBC_ENCRYPT_DATA_PARAMS {

CK_BYTE iv[8];
CK_BYTE_PTR pData,
CK_ULONG length;

} CK_DES_CBC_ENCRYPT_DATA_PARAMS;
typedef CK_DES_CBC _ENCRYPT_DATA_PARAMS CK_PTR
CK_DES_CBC_ENCRYPT_DATA_PARAMS_PTR;

typedef struct CK_AES_CBC_ENCRYPT_DATA_PARAMS {

CK_BYTE iv[16];
CK_BYTE_PTR pData,
CK_ULONG length;

} CK_AES_CBC_ENCRYPT_DATA PARAMS;

typedef CK_AES_CBC_ENCRYPT_DATA_PARAMS CKPTR

CK_AES_CBC_ENCRYPT_DATA_PARAMS_PTR;

2.18.2 Mechanism Parameters
Uses CK_KEY_DERIVATION_STRING_DATA as defined in section 2.34.2

pkcs1l-curr-v2.40-csprd02
Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23 April 2014
Page 87 of 199

Table 69, Mechanism Parameters

CKM_DES_ECB_ENCRYPT_DATA
CKM_DES3_ECB_ENCRYPT_DATA

Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 8 bytes long.

CKM_AES_ECB_ENCRYPT_DATA

Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.

CKM_DES_CBC_ENCRYPT_DATA
CKM_DES3_CBC_ENCRYPT_DATA

Uses CK_DES_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 8 byte IV value followed by the data.

The data value part must be a multiple of 8 bytes long.

CKM_AES_CBC_ENCRYPT_DATA

Uses CK_AES_CBC_ENCRYPT_DATA_PARAMS.

Parameter is an 16 byte IV value followed by the data.

The data value part

must be a multiple of 16 bytes long.

2.18.3 Mechanism Description

The mechanisms will function by performing the encryption over the data provided using the base key.

The resulting cipher text shall be used to create the key value of the resulting key. If not all the cipher text
is used then the part discarded will be from the trailing end (least significant bytes) of the cipher text data.
The derived key shall be defined by the attribute template supplied but constrained by the length of cipher
text available for the key value and other normal PKCS11 derivation constraints.

Attribute template handling, attribute defaulting and key value preparation will operate as per the SHA-1
Key Derivation mechanism in section 2.21.5.

If the data is too short to make the requested key then the mechanism returns

CKR_DATA_LENGTH_INVALID.

2.19 Double and Triple-length DES

Table 70, Double and Triple-Length DES Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_DES2_KEY_GEN Y
CKM_DES3_KEY_GEN Y
CKM_DES3_ECB Vv Y,
CKM_DES3_CBC Y Vv
CKM_DES3_CBC_PAD Y Y;
CKM_DES3_MAC_GENERAL Y
CKM_DES3_MAC Y

2.19.1 Definitions

This section

defines t he

key type

CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_DES2_KEY_GEN

pkcs1l-curr-v2.40-csprd02
Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

ACKK_DES20

and

23 April 2014

Page 88 of 199

ACKK _ |

CKM_DES3_KEY_GEN
CKM_DES3_ECB
CKM_DES3_CBC
CKM_DES3_MAC
CKM_DES3_MAC_GENERAL
CKM_DES3_CBC_PAD

2.19.2 DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold double-length
DES keys. The following table defines the DES2 secret key object attributes, in addition to the common
attributes defined for this object class:

Table 71, DES2 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE™*®’ Byte array Key value (always 16 bytes long)

- Refer to [PKCS #11-Base] table 4510 for footnotes

DESZ2 keys must always have their parity bits properly set as described in FIPS PUB 46-3 (i.e., each of
the DES keys comprising a DES2 key must have its parity bits properly set). Attempting to create or
unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:

CK_OBJECT_CLASS class = CK O_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES2;
CK_UTF8CHAR | abel[] = AA DES2 secret key
CK_BYTE value[16] ={...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},

{CKA_KEY_TYPE, &keyType, sizeof(keyType) 1
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) - 1},

{CKA_ENCRYPT, &true, sizeof(true)},
{CKA _VALUE, value, sizeof(value)}

h

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

2.19.3 DES3 secret key objects

DESS secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold triple-length DES
keys. The following table defines the DES3 secret key object attributes, in addition to the common
attributes defined for this object class:

Table 72, DES3 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE™*®’ Byte array Key value (always 24 bytes long)

- Refer to [PKCS #11-Base] table $510 for footnotes

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 89 of 199

DES3 keys must always have their parity bits properly set as described in FIPS PUB 46-3 (i.e., each of
the DES keys comprising a DES3 key must have its parity bits properly set). Attempting to create or
unwrap a DES3 key with incorrect parity will return an error.

The following is a sample template for creating a triple-length DES secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_DESS;

CK_ UTFB8CHAR |l abel[] = AA DES3 secret key

CK_BYTE value[24] ={...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) - 1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

h

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

2.19.4 Double-length DES key generation

The double-length DES key generation mechanism, denoted CKM_DES2_KEY_GEN, is a key
generation mechanism for double-length DES keys. The DES keys making up a double-length DES key
both have their parity bits set properly, as specified in FIPS PUB 46-3.

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the double-length DES key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned default
initial values.

Double-length DES keys can be used with all the same mechanisms as triple-DES keys:
CKM_DES3_ECB, CKM_DES3_CBC, CKM_DES3_CBC_PAD, CKM_DES3_MAC_GENERAL, and
CKM_DES3_MAC. Triple-DES encryption with a double-length DES key is equivalent to encryption with
a triple-length DES key with K1=K3 as specified in FIPS PUB 46-3.

When double-length DES keys are generated, it is token-dependent whether or not it is possible for either
of the component DES kewesaktoo kbeey sihhweak o or fAsemi

2.19.5 Triple-length DES Order of Operations

Triple-length DES encryptions are carried out as specified in FIPS PUB 46-3: encrypt, decrypt, encrypt.
Decryptions are carried out with the opposite three steps: decrypt, encrypt, decrypt. The mathematical
representations of the encrypt and decrypt operations are as follows:

DES3 E({K1,K2,K3}, P)=E(K3,D(K2,E(K1,P)))

DES3 D({K1,K2,K3}, C)=D(K1, E(K2,D(K3,P)))

2.19.6 Triple-length DES in CBC Mode

Triple-length DES operations in CBC mode, with double or triple-length keys, are performed using outer
CBC as defined in X9.52. X9.52 describes this mode as TCBC. The mathematical representations of the
CBC encrypt and decrypt operations are as follows:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 90 of 199

obj

DES3 CBG E({K1,K2,K3}, P) = E(K3, D(K2, E(K1, P +1))

)
DES3 CBGC D({K1,K2,K3}, C)=D(K1, E(K2, D(KS, P)))+
I

The value | is either an 8-byte initialization vector or the previous block of cipher text that is added to the
current input block. The addition operation is used is addition modulo-2 (XOR).

2.19.7 DES and Triple length DES in OFB Mode
Table 73, DES and Triple Length DES in OFB Mode Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR Key/ | Unwrap
Key
Pair

CKM_DES_OFB64
CKM_DES_ OFBS8
CKM_DES_ CFB64
CKM_DES_ CFB8

<[<I <<

Cipher DES has a output feedback mode, DES-OFB, denoted CKM_DES OFB8 and
CKM_DES_OFB®64. Itis a mechanism for single and multiple-part encryption and decryption with DES.

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:
Table 74, OFB: Key And Data Length

Function Key type Input Output length Comments
length

C_Encrypt CKK_DES, any same as input length no final part
CKK_DES2,
CKK_DES3

C_Decrypt CKK_DES, any same as input length no final part
CKK_DES?2,
CKK_DES3

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

2.19.8 DES and Triple length DES in CFB Mode
Cipher DES has a cipher feedback mode, DES-CFB, denoted CKM_DES_CFB8 and CKM_DES_ CFB64.
It is a mechanism for single and multiple-part encryption and decryption with DES.

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 91 of 199

Table 75, CFB: Key And Data Length

Function Key type Input Output length Comments
length

C_Encrypt CKK_DES, any same as input length no final part
CKK_DES?2,
CKK_DES3

C_Decrypt CKK_DES, any same as input length no final part
CKK_DES?2,
CKK_DES3

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

2.20 Double and Triple-length DES CMAC

Table76, Double and Triple-length DES CMAC Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_DES3_CMAC_GENERAL Y
CKM_DES3 CMAC Y,

1 SR = SignRecover, VR = VerifyRecover.

The following additional DES3 mechanisms have been added.

2.20.1 Definitions

Mechanisms:
CKM_DES3 CMAC_GENERAL
CKM_DES3 CMAC

2.20.2 Mechanism parameters

CKM_DES3_CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS structure.
CKM_DES3_CMAC does not use a mechanism parameter.

2.20.3 General-length DES3-MAC
General-length DES3-CMAC, denoted CKM_DES3_CMAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification with DES3 or DES2 keys, based on [NIST sp800-38b].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final DES3 cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 92 of 199

Table 77, General-length DES3-CMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_DES3 any 0-block size, as specified in parameters
CKK_DES2

C_Verify CKK_DES3 any 0-block size, as specified in parameters
CKK_DES2

Reference [NIST sp800-38b] recommends that the output MAC is not truncated to less than 64 bits

(which means using the entire block for DES). The MAC length must be specified before the

communication starts,and must not be changed during the |lifetime of
responsibility to follow these rules.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used

2.20.4 DES3-CMAC

DES3-CMAC, denoted CKM_DES3 CMAC, is a special case of the general-length DES3-CMAC
mechanism. DES3-MAC always produces and verifies MACs that are a full block size in length, since the
DES3 block length is the minimum output length recommended by [NIST sp800-38b].

Constraints on key types and the length of data are summarized in the following table:
Table 78, DES3-CMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_DES3 any Block size (8 bytes)
CKK_DES2

C_Verify CKK_DES3 any Block size (8 bytes)
CKK_DES2

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.21 SHA-1

Table 79, SHA-1 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_SHA 1 Y
CKM_SHA 1 HMAC_GENERAL Y
CKM_SHA 1 _HMAC Y;
CKM_SHA1_KEY_DERIVATION Y
2.21.1 Definitions
Mechanisms:
CKM_SHA 1
CKM_SHA 1 HMAC
CKM_SHA 1 HMAC_GENERAL
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 93 of 199

CKM_SHA1_KEY_DERIVATION
CKK_SHA_1_HMAC

2.21.2 SHA-1 digest

The SHA-1 mechanism, denoted CKM_SHA 1, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 160-bit message digest defined in FIPS PUB 180-2.
It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 80, SHA-1: Data Length

Function Input length | Digest length
C_Digest any 20

2.21.3 General-length SHA-1-HMAC

The general-length SHA-1-HMAC mechanism, denoted CKM_SHA_ 1 HMAC_GENERAL, is a
mechanism for signatures and verification. It uses the HMAC construction, based on the SHA-1 hash
function. The keys it uses are generic secret keys and CKK_SHA 1 HMAC.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 0-20 (the output size of SHA-1 is 20 bytes). Signatures
(MACs) produced by this mechanism will be taken from the start of the full 20-byte HMAC output.

Table 81, General-length SHA-1-HMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign generic secret any 0-20, depending on parameters
C_Verify generic secret any 0-20, depending on parameters

2.21.4 SHA-1-HMAC

The SHA-1-HMAC mechanism, denoted CKM_SHA_1 HMAUC, is a special case of the general-length
SHA-1-HMAC mechanism in Section 2.21.3.

It has no parameter, and always produces an output of length 20.

2.21.5 SHA-1 key derivation

SHA-1 key derivation, denoted CKM_SHA1 KEY_DERIVATION, is a mechanism which provides the
capability of deriving a secret key by digesting the value of another secret key with SHA-1.

The value of the base key is digested once, and the result is used to make the value of derived secret

key.

1 If nolength or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be 20 bytes (the output size of SHA-1).

1 If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

1 If no length was provided in the template, but a key type is, then that key type must have a well-
defined length. If it does, then the key produced by this mechanism will be of the type specified in the
templ at e. If it doesné6t, an error wil!/l be returned.

1 If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 94 of 199

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key will be set
properly.

If the requested type of key requires more than 20 bytes, such as DESS3, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

1 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

1 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

2.22 SHA-224

Table 82, SHA-224 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify VR! Key/ | Unwrap
Key
Pair

CKM_SHA224 v
CKM_SHA224_HMAC
CKM_SHA224 HMAC_GENERAL
CKM_SHA224_RSA_PKCS
CKM_SHA224_RSA_PKCS_PSS
CKM_SHA224_KEY_DERIVATION v

<I<|I<|I<

2.22.1 Definitions

Mechanisms:
CKM_SHA224
CKM_SHA224_HMAC
CKM_SHA224 HMAC_GENERAL
CKM_SHA224_KEY_DERIVATION
CKK_SHA224 HMAC

2.22.2 SHA-224 digest

The SHA-224 mechanism, denoted CKM_SHA224, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 224-bit message digest defined in 0.
It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 95 of 199

Table 83, SHA-224: Data Length

Function Input length | Digest length
C_Digest any 28

2.22.3 General-length SHA-224-HMAC

The general-length SHA-224-HMAC mechanism, denoted CKM_SHA224 HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism except that it uses the HMAC construction based
on the SHA-224 hash function and length of the output should be in the range 0-28. The keys it uses are
generic secret keys and CKK_SHA224_HMAC. FIPS-198 compliant tokens may require the key length to
be at least 14 bytes; that is, half the size of the SHA-224 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 0-28 (the output size of SHA-224 is 28 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 14 (half the maximum length).
Signatures (MACSs) produced by this mechanism will be taken from the start of the full 28-byte HMAC
output.

Table 84, General-length SHA-224-HMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign generic secret Any 0-28, depending on parameters
C_Verify generic secret Any 0-28, depending on parameters

2.22.4 SHA-224-HMAC

The SHA-224-HMAC mechanism, denoted CKM_SHA224 HMAC, is a special case of the general-length
SHA-224-HMAC mechanism.

It has no parameter, and always produces an output of length 28.

2.22.5 SHA-224 key derivation

SHA-224 key derivation, denoted CKM_SHA224_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 12.21.5 except that it uses the SHA-224 hash function and the relevant
length is 28 bytes.

2.23 SHA-256

Table 85, SHA-256 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_SHA256 Y
CKM_SHA256_HMAC_GENERAL vV
CKM_SHA256_HMAC \%
CKM_SHA256_KEY_DERIVATION Y
2.23.1 Definitions
Mechanisms:
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 96 of 199

CKM_SHA256
CKM_SHA256_HMAC
CKM_SHA256_HMAC_GENERAL
CKM_SHA256_KEY_DERIVATION
CKK_SHA256_HMAC

2.23.2 SHA-256 digest

The SHA-256 mechanism, denoted CKM_SHAZ256, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 256-bit message digest defined in FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 86, SHA-256: Data Length

Function Input length | Digest length
C_Digest any 32

2.23.3 General-length SHA-256-HMAC

The general-length SHA-256-HMAC mechanism, denoted CKM_SHA256_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.21.3, except that it uses the HMAC
construction based on the SHA-256 hash function and length of the output should be in the range 0-32.
The keys it uses are generic secret keys and CKK_SHA256_HMAC. FIPS-198 compliant tokens may
require the key length to be at least 16 bytes; that is, half the size of the SHA-256 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMSch holds the length in bytes of the desired output.
This length should be in the range 0-32 (the output size of SHA-256 is 32 bytes). FIPS-198 compliant
tokens may constrain the output length to be at least 4 or 16 (half the maximum length). Signatures
(MACs) produced by this mechanism will be taken from the start of the full 32-byte HMAC output.

Table 87, General-length SHA-256-HMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign generic secret Any 0-32, depending on parameters
C_Verify generic secret Any 0-32, depending on parameters

2.23.4 SHA-256-HMAC

The SHA-256-HMAC mechanism, denoted CKM_SHA256_HMAC, is a special case of the general-length
SHA-256-HMAC mechanism in Section 2.23.3.

It has no parameter, and always produces an output of length 32.

2.23.5 SHA-256 key derivation

SHA-256 key derivation, denoted CKM_SHA256_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.21.5, except that it uses the SHA-256 hash function and the relevant
length is 32 bytes.

2.24 SHA-384

Table 88, SHA-384 Mechanisms vs. Functions

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 97 of 199

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify VR? Key/ | Unwrap
Key
Pair
CKM_SHA384 Y
CKM_SHA384_HMAC_GENERAL Y
CKM_SHA384_HMAC Y,
CKM_SHA384_KEY_DERIVATION Y

‘ 2.24.1 Definitions

CKM_SHA384
CKM_SHA384_HMAC
CKM_SHA384 HMAC_GENERAL
CKM_SHA384_KEY_DERIVATION

CKK_SHA384_HMAC

2.24.2 SHA-384 digest

The SHA-384 mechanism, denoted CKM_SHA384, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 384-bit message digest defined in FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 89, SHA-384: Data Length

Function Input length | Digest length
C_Digest any 48

‘ 2.24.3 General-length SHA-384-HMAC

The general-length SHA-384-HMAC mechanism, denoted CKM_SHA384_ HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.21.3, except that it uses the HMAC
construction based on the SHA-384 hash function and length of the output should be in the range 0-48.

‘ 2.24.4 SHA-384-HMAC

The SHA-384-HMAC mechanism, denoted CKM_SHA384_HMAC, is a special case of the general-length
SHA-384-HMAC mechanism.

It has no parameter, and always produces an output of length 48.

‘ 2.24.5 SHA-384 key derivation

SHA-384 key derivation, denoted CKM_SHA384 KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.21.5, except that it uses the SHA-384 hash function and the relevant
length is 48 bytes.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 98 of 199

2.25 SHA-512

Table 90, SHA-512 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_SHA512 Vv
CKM_SHA512 HMAC_GENERAL Y,
CKM_SHA512_HMAC Y
CKM_SHA512_KEY_DERIVATION Y

‘ 2.25.1 Definitions

CKM_SHA512
CKM_SHA512_HMAC
CKM_SHA512_HMAC_GENERAL
CKM_SHA512_KEY_DERIVATION

CKK_SHA512_HMAC

2.25.2 SHA-512 digest

The SHA-512 mechanism, denoted CKM_SHA512, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 512-bit message digest defined in FIPS PUB 180-2.
It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 91, SHA-512: Data Length

Function Input length Digest length
C_Digest any 64

‘ 2.25.3 General-length SHA-512-HMAC

The general-length SHA-512-HMAC mechanism, denoted CKM_SHA512 HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.21.3, except that it uses the HMAC
construction based on the SHA-512 hash function and length of the output should be in the range 0-64.

‘ 2.25.4 SHA-512-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512_HMAC, is a special case of the general-length
SHA-512-HMAC mechanism.

It has no parameter, and always produces an output of length 64.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 99 of 199

‘ 2.25.5 SHA-512 key derivation

SHA-512 key derivation, denoted CKM_SHA512 KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.21.5, except that it uses the SHA-512 hash function and the relevant
length is 64 bytes.

‘ 2.26 SHA-512/224

Table 92, SHA-512/224 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_SHA512 224 Vv
CKM_SHA512 224 HMAC_GENERAL Y
CKM_SHA512_224 HMAC Vv
CKM_SHA512_224 KEY_DERIVATION Y

‘ 2.26.1 Definitions

CKM_SHA512_224
CKM_SHA512_224 HMAC

CKM_SHA512_224 HMAC_GENERAL
CKM_SHA512_224 KEY_DERIVATION

CKK_SHA512_224 HMAC

2.26.2 SHA-512/224 digest

The SHA-512/224 mechanism, denoted CKM_SHA512_224, is a mechanism for message digesting,
following the Secure Hash Algorithm defined in FIPS PUB 180-4, section 5.3.6. It is based on a 512-bit
message digest with a distinct initial hash value and truncated to 224 bits. CKM_SHA512_224 is the
same as CKM_SHA512_T with a parameter value of 224.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 93, SHA-512/224: Data Length

Function Input length | Digest length
C_Digest any 28

2.26.3 General-length SHA-512-HMAC

The general-length SHA-512/224-HMAC mechanism, denoted CKM_SHA512 224 HMAC_GENERAL,
is the same as the general-length SHA-1-HMAC mechanism in Section 2.21.3, except that it uses the
HMAC construction based on the SHA-512/224 hash function and length of the output should be in the
range 0-28.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 100 of 199

‘ 2.26.4 SHA-512/224-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512 224 HMAC, is a special case of the general-
length SHA-512/224-HMAC mechanism.

It has no parameter, and always produces an output of length 28.

‘ 2.26.5 SHA-512/224 key derivation

The SHA-512/224 key derivation, denoted CKM_SHA512 224 KEY_DERIVATION, is the same as the
SHA-512 key derivation mechanism in section 2.25.5, except that it uses the SHA-512/224 hash function
and the relevant length is 28 bytes.

‘ 2.27 SHA-512/256

Table 94,SHA-512/256 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_SHA512_256 \Y
CKM_SHA512_256_HMAC_GENERAL \Y
CKM_SHA512 256 _HMAC Y
CKM_SHA512_256_KEY_DERIVATION Y

‘ 2.27.1 Definitions

CKM_SHA512_256
CKM_SHA512_256_HMAC
CKM_SHA512_256_HMAC_GENERAL
CKM_SHAS512_256_KEY_DERIVATION

CKK_SHA512_256_HMAC

2.27.2 SHA-512/256 digest

The SHA-512/256 mechanism, denoted CKM_SHA512_256, is a mechanism for message digesting,
following the Secure Hash Algorithm defined in FIPS PUB 180-4, section 5.3.6. Itis based on a 512-bit
message digest with a distinct initial hash value and truncated to 256 bits. CKM_SHA512 256 is the
same as CKM_SHA512_T with a parameter value of 256.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 101 of 199

Table 95, SHA-512/256: Data Length

Function Input length | Digest length
C_Digest any 32

‘ 2.27.3 General-length SHA-512-HMAC

The general-length SHA-512/256-HMAC mechanism, denoted CKM_SHA512 256 HMAC_GENERAL,
is the same as the general-length SHA-1-HMAC mechanism in Section 2.21.3, except that it uses the
HMAC construction based on the SHA-512/256 hash function and length of the output should be in the
range 0-32.

‘ 2.27.4 SHA-512/256-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512 256 HMAC, is a special case of the general-
length SHA-512/256-HMAC mechanism.

It has no parameter, and always produces an output of length 32.

‘ 2.27.5 SHA-512/256 key derivation

The SHA-512/256 key derivation, denoted CKM_SHA512 256 KEY_DERIVATION, is the same as the
SHA-512 key derivation mechanism in section 2.25.5, except that it uses the SHA-512/256 hash function
and the relevant length is 32 bytes.

‘ 2.28 SHA-512/t

Table 96,SHA-512 / t Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_SHA512_ T Y
CKM_SHA512 T_HMAC_GENERAL Y;
CKM_SHA512_ T_HMAC Y]
CKM_SHA512_T_KEY_DERIVATION Y

‘ 2.28.1 Definitions
CKM_SHA512_ T
CKM_SHA512_T_HMAC
CKM_SHA512_T_HMAC_GENERAL
CKM_SHA512_T_KEY_DERIVATION

CKK_SHA512_T_HMAC

2.28.2 SHA-512/t digest

The SHA-512/t mechanism, denoted CKM_SHA512_T, is a mechanism for message digesting, following
the Secure Hash Algorithm defined in FIPS PUB 180-4, section 5.3.6. It is based on a 512-bit message
digest with a distinct initial hash value and truncated to t bits.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 102 of 199

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the value of t in bits. The length in
bytes of the desired output should be in the range of 0- t/8 , where 0 <t<512, and t <> 384.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 97, SHA-512/256: Data Length

Function Input length Digest length
C_Digest any

t/8 , where 0 <t<512, and t <> 384

2.28.3 General-length SHA-512-HMAC

The general-length SHA-512/256-HMAC mechanism, denoted CKM_SHA512 T _HMAC_GENERAL, is
the same as the general-length SHA-1-HMAC mechanism in Section 2.21.3, except that it uses the
HMAC construction based on the SHA-512/t hash function and length of the output should be in the range

07 t/8 ,where0<t<512,andt<> 384.

2.28.4 SHA-512/t-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512 T _HMAC, is a special case of the general-
length SHA-512/256-HMAC mechanism.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the value of t in bits. The length in

bytes of the desired output should be in the range of 0- t/8 , where 0 <t <512, and t <> 384.

2.28.5 SHA-512/t key derivation

The SHA-512/256 key derivation, denoted CKM_SHA512 T _KEY_DERIVATION, is the same as the
SHA-512 key derivation mechanism in section 2.25.5, except that it uses the SHA-512/256 hash function

and the relevant length is t/8 bytes, where 0 <t <512, and t <> 384.

2.29 PKCS #5 and PKCS #5-style password-based encryption (PBE)

The mechanisms in this section are for generating keys and IVs for performing password-based
encryption. The method used to generate keys and 1Vs is specified in PKCS #5.

Table 98,PKCS 5 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_PBE_SHA1 DES3 _EDE_CBC Y
CKM_PBE_SHA1_DES2_EDE_CBC Y,
CKM_PBA SHA1 WITH_SHA1 HMAC Y
CKM_PKCS5_PBKD2 Y,

2.29.1 Definitions

Mechanisms:

CKM_PBE_SHA1_DES3_EDE_CBC

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 103 of 199

CKM_PBE_SHA1_DES2_EDE_CBC
CKM_PKCS5_PBKD?2
CKM_PBA_SHA1 WITH_SHA1 _HMAC

2.29.2 Password-based encryption/authentication mechanism parameters

§ CK_PBE_PARAMS; CK_PBE_PARAMS_PTR

CK_PBE_PARAMS is a structure which provides all of the necessary information required by the
CKM_PBE mechanisms (see PKCS #5 and PKCS #12 for information on the PBE generation
mechanisms) and the CKM_PBA_SHA1 WITH_SHA1 HMAC mechanism. It is defined as follows:

typedef struct CK_PBE_PARAMS {
CK_BYTE_PTR plnitVector;
CK_UTF8CHAR_PTR pPassword;
CK_ULONG ulPasswordLen;
CK_BYTE_PTR pSal;
CK_ULONG ulSaltLen;
CK_ULONG ullteration;

} CK_PBE_PARAMS;

The fields of the structure have the following meanings:

plnitVector pointer to the location that receives the 8-byte initialization vector
(IV), if an IV is required;

pPassword points to the password to be used in the PBE key generation;
ulPasswordLen length in bytes of the password information;
pSalt points to the salt to be used in the PBE key generation;
ulSaltLen length in bytes of the salt information;
ullteration number of iterations required for the generation.

CK_PBE_PARAMS_PTR is a pointer to a CK_PBE_PARAMS.
2.29.3 PKCS #5 PBKDF2 key generation mechanism parameters

§ CK_PKCS5 PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE;
CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE_PTR

CK_PKCS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE is used to indicate the Pseudo-Random
Function (PRF) used to generate key bits using PKCS #5 PBKDF2. It is defined as follows:

typedef CK_ULONG CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE;

The following PRFs are defined in PKCS #5 v2.01. The following table lists the defined functions.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 104 of 199

Table 99, PKCS #5 PBKDF2 Key Generation: Pseudo-random functions

PRF Identifier Value Parameter Type

CKP_PKCS5 PBKD2 HMAC SHA1 0x00000001UL | No Parameter. pPrfData must be
NULL and ulPrfDataLen must be
Zero.

CKP_PKCS5_PBKD2_HMAC_GOSTR3411 | 0x00000002UL | This PRE uses GOST R34.11-94

hash to produce secret key value.
pPrfData should point to DER-
encoded OID, indicating
GOSTR34.11-94 parameters.
ulPrfDatalLen holds encoded OID
length in bytes. If pPrfData is set
to NULL_PTR, then id-
GostR3411-94-
CryptoProParamSet parameters
will be used (RFC 4357, 11.2),
and ulPrfDataLen must be 0.

CKP_PKCS5 PBKD2 HMAC SHA224 0x00000003UL | No parameter. pPrfData must be

NULL and ulPrfDataLen must be
Zero.

CKP_PKCS5 PBKD2 HMAC SHA256 0x00000004UL | no parameter. pPrfData must be

NULL and ulPrfDataLen must be
Zero.

CKP_PKCS5 PBKD2 HMAC SHA384 0x00000005UL

No Parameter. pPrfData must be
NULL and ulPrfDataLen must be
Zero.

CKP_PKCS5 PBKD2 HMAC SHA512 0x00000006UL | N parameter. pPrfData must be

NULL and ulPrfDataLen must be
Zero.

CKP_PKCS5 PBKD2 HMAC SHA512 224 | 0x00000007UL

No Parameter. pPrfData must be
NULL and ulPrfDataLen must be
Zero.

CKP_PKCS5_PBKD2 HMAC SHA512 256 | 0x00000008UL | No parameter. pPriData must be

NULL and ulPrfDataLen must be
zero.

CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE_PTR is a pointer to a
CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE.

§ CK_PKCS5 PBKDF2 SALT SOURCE_TYPE;
CK_PKCS5_PBKDF2_SALT _SOURCE_TYPE_PTR

CK_PKCS5 PBKDF2_SALT SOURCE_TYPE is used to indicate the source of the salt value when
deriving a key using PKCS #5 PBKDF2. It is defined as follows:

typedef CK_ULONG CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE;

The following salt value sources are defined in PKCS #5 v2.01. The following table lists the defined
sources along with the corresponding data type for the pSaltSourceData field in the
CK_PKCS5 _PBKD2_PARAM structure defined below.

Table 100, PKCS #5 PBKDF2 Key Generation: Salt sources

Source Identifier Value Data Type

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 105 of 199

CKZ_SALT_SPECIFIED 0x00000001 | Array of CK_BYTE containing the value of the
salt value.

CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE_PTR is a pointer to a
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE.

§ CK_PKCS5_PBKD2_PARAMS; CK_PKCS5 PBKD2_PARAMS_PTR

CK_PKCS5_PBKD2_PARAMS is a structure that provides the parameters to the CKM_PKCS5_PBKD2
mechanism. The structure is defined as follows:

typedef struct CK_PKCS5 PBKD2_ PARAMS {
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE saltSource;
CK_VOID_PTR pSaltSourceData;
CK_ULONG ulSaltSourceDataLen;
CK_ULONG iterations;
CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE prf;
CK_VOID_PTR pPrfData;
CK_ULOIE ulPrfDataLen; CK_UTF8CHAR_PTR pPassword,;
CK_ULONG_PTR ulPasswordLen;

} CK_PKCS5_PBKD2_PARAMS;

The fields of the structure have the following meanings:
saltSource source of the salt value
pSaltSourceData data used as the input for the salt source

ulSaltSourceDatalLen length of the salt source input

iterations number of iterations to perform when generating each block of
random data

prf pseudo-random function used to generate the key
pPrfData data used as the input for PRF in addition to the salt value
ulPrfDataLen length of the input data for the PRF
pPassword points to the password to be used in the PBE key generation
ulPasswordLen length in bytes of the password information
CK_PKCS5_PBKD2_PARAMS PTR is a pointer to a CK_PKCS5_PBKD2_PARAMS.

2.29.4 PKCS #5 PBKD2 key generation

PKCS #5 PBKDF2 key generation, denoted CKM_PKCS5_PBKD2, is a mechanism used for generating
a secret key from a password and a salt value. This functionality is defined in PKCS#5 as PBKDF2.

It has a parameter, a CK_PKCS5 _PBKD2_PARAMS structure. The parameter specifies the salt value
source, pseudo-random function, and iteration count used to generate the new key.

Since this mechanism can be used to generate any type of secret key, new key templates must contain
the CKA_KEY_TYPE and CKA_VALUE_LEN attributes. If the key type has a fixed length the
CKA_VALUE_LEN attribute may be omitted.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 106 of 199

2.30 PKCS #12 password-based encryption/authentication
mechanisms

The mechanisms in this section are for generating keys and Vs for performing password-based
encryption or authentication. The method used to generate keys and IVs is based on a method that was
specified in PKCS #12.

We specify here a general method for producing various types of pseudo-random bits from a password,
p; a string of salt bits, s; and an iteration count, c. The #t y prandom bifs to pespeoduded is
identified by an identification byte, 1D, the meaning of which will be discussed later.

Let H be a hash function built around a compression function f: Z," 3 Z,' - Z," (that is, H has a chaining
variable and output of length u bits, and the message input to the compression function of H is v bits).
For MD2 and MD5, u=128 and v=512; for SHA-1, u=160 and v=512.

We assume here that u and v are both multiples of 8, as are the lengths in bits of the password and salt
strings and the number n of pseudo-random bits required. In addition, u and v are of course nonzero.

1. Constructastring,D(t he fAdi versi fi ewB&kopiesoblp. concatenating

2. Concatenate copies of the salt together to create a string S of length v@s/vabits (the final copy of the
salt may be truncated to create S). Note that if the salt is the empty string, then so is S.

3. Concatenate copies of the password together to create a string P of length v@/vabits (the final copy
of the password may be truncated to create P). Note that if the password is the empty string, then so
is P.
Set I=S||P to be the concatenation of S and P.

5. Setj=én/ua

6. Fori=1, 3, do tige following:

a. Set A=H(D||l), the ¢ hash of D||I. Thatis, compute the hash of D||l; compute the hash of
that hash; etc.; continue in this fashion until a total of ¢ hashes have been computed, each on
the result of the previous hash.

b. Concatenate copies of A; to create a string B of length v bits (the final copy of A, may be
truncated to create B).

c. Treating | as a concatenation o, |5, &, of v-bit blocks, where k=és/vat+ep/vg modify | by
setting I;=(l;+B+1) mod 2" for each j. To perform this addition, treat each v-bit block as a
binary number represented most-significant bit first.

7. Concatenate A, A,, &, together to form a pseudo-random bit string, A.
8. Use the first n bits of A as the output of this entire process.

When the password-based encryption mechanisms presented in this section are used to generate a key
and IV (if needed) from a password, salt, and an iteration count, the above algorithm is used. To
generate a key, the identifier byte ID is set to the value 1; to generate an 1V, the identifier byte ID is set to
the value 2.

When the password based authentication mechanism presented in this section is used to generate a key
from a password, salt, and an iteration count, the above algorithm is used. The identifier byte ID is set to
the value 3.

2.30.1 SHA-1-PBE for 3-key triple-DES-CBC

SHA-1-PBE for 3-key triple-DES-CBC, denoted CKM_PBE_SHA1 DES3 EDE_CBC, is a mechanism
used for generating a 3-key triple-DES secret key and IV from a password and a salt value by using the
SHA-1 digest algorithm and an iteration count. The method used to generate the key and IV is described
above. Each byte of the key produced will have its low-order bit adjusted, if necessary, so that a valid 3-
key triple-DES key with proper parity bits is obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the
key generation process and the location of the application-supplied buffer which will receive the 8-byte IV
generated by the mechanism.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 107 of 199

The key and IV produced by this mechanism will typically be used for performing password-based

encryption.

2.30.2 SHA-1-PBE for 2-key triple-DES-CBC

SHA-1-PBE for 2-key triple-DES-CBC, denoted CKM_PBE_SHA1 DES2 EDE_CBC, is a mechanism
used for generating a 2-key triple-DES secret key and IV from a password and a salt value by using the
SHA-1 digest algorithm and an iteration count. The method used to generate the key and IV is described
above. Each byte of the key produced will have its low-order bit adjusted, if necessary, so that a valid 2-
key triple-DES key with proper parity bits is obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the
key generation process and the location of the application-supplied buffer which will receive the 8-byte IV

generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing password-based

encryption.

2.30.3 SHA-1-PBA for SHA-1-HMAC

SHA-1-PBA for SHA-1-HMAC, denoted CKM_PBA_SHA1 WITH_SHA1 HMAC, is a mechanism used
for generating a 160-bit generic secret key from a password and a salt value by using the SHA-1 digest
algorithm and an iteration count. The method used to generate the key is described above.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the
key generation process. The parameter also has a field to hold the location of an application-supplied
buffer which will receive an IV; for this mechanism, the contents of this field are ignored, since

authentication with SHA-1-HMAC does not require an IV.

The key generated by this mechanism will typically be used for computing a SHA-1 HMAC to perform

password-based authentication (not password-based encryption). At the time of this writing, this is

primarily done to ensure the integrity of a PKCS #12 PDU.

2.31 SSL

Table 101,SSL Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_SSL3 PRE_MASTER_KEY_GEN \%
CKM_SSL3 _MASTER_KEY_DERIVE \%
CKM_SSL3_MASTER_KEY_DERIVE_DH \%
CKM_SSL3 KEY_AND_MAC_DERIVE \%
CKM_SSL3 _MD5_MAC \%
CKM_SSL3 SHA1 MAC V
2.31.1 Definitions
Mechanisms:
CKM_SSL3_PRE_MASTER_KEY_GEN
CKM_SSL3 MASTER_KEY_DERIVE
CKM_SSL3 KEY_AND_MAC_DERIVE
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

Page 108 of 199

CKM_SSL3_MASTER_KEY_DERIVE_DH
CKM_SSL3_MD5_MAC
CKM_SSL3_SHA1_MAC

2.31.2 SSL mechanism parameters

§ CK_SSL3 RANDOM_DATA

CK_SSL3_RANDOM_DATA is a structure which provides information about the random data of a client
and a server in an SSL context. This structure is used by both the CKM_SSL3_MASTER_KEY_DERIVE
and the CKM_SSL3 KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:

typedef struct CK_SSL3 _RANDOM_DATA {
CK_BYTE_PTR pClientRandom;
CK_ULONG ulClientRandomLen;
CK_BYTE_PTR pServerRandom;
CK_ULONG ulServerRandomLen,;

} CK_SSL3_RANDOM_DATA;

The fields of the structure have the following meanings:
pClientRandom pointer to the clientds random dat a
ulClientRandomLen l ength in bytes of the clientds randon
pServerRandom pointer to the serverds random dat a

ulServerRandomLen l ength in bytes of the serverds randon

§ CK_SSL3 MASTER_KEY DERIVE_PARAMS;
CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR

CK_SSL3_MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_SSL3_MASTER_KEY_DERIVE mechanism. It is defined as follows:

typedef struct CK_SSL3_MASTER_KEY_DERIVE_PARAMS {
CK_SSL3_RANDOM_DATA Randominfo;
CK_VERSION_PTR pVersion;

} CK_SSL3_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:
Randomlinfo client ds @aanddm dam mfermatidns

pVersion pointer to a CK_VERSION structure which receives the SSL
protocol version information

CK_SSL3_MASTER_KEY_DERIVE_PARANSa PORter to &£K_SSL3_MASTER_KEY_DERIVE_PARAMS

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 109 of 199

§ CK_SSL3 KEY_MAT OUT; CK_SSL3_KEY_MAT_OUT_PTR

K_SSL3_KEY_MAT_QWba structure that contains the resulting key handles and initialization vectors after
performing a C_DeriveKey function with t&&M_SSL3_KEY_AND_MAC_DERB¢Eanism. It is defined as
follows:
typedef struct CK_SSL3_KEY_MAT_OUT {
(K_OBJECT_HANDLE hClientMacSecret;
CK_OBJECT_HANDLE hServerMacSecret;
CK_OBJECT_HANDLE hClientKey;
CK_OBJECT_HANDLE hServerKey;
CK_BYTE_PTR plIVClient;
CK_BYTE_PTR plVServer;
} CK_SSL3_KEY_MAT _OUT;

The fields of the structure have the following meanings:
hClientMacSecret key handle for the resulting Client MAC Secret key

hServerMacSecret key handle for the resulting Server MAC Secret key
hClientKey key handle for the resulting Client Secret key
hServerKey key handle for the resulting Server Secret key

plVClient pointer to a location which receives the initialization vector (IV)
created for the client (if any)

plVServer pointer to a location which receives the initialization vector (IV)
created for the server (if any)

CK_SSL3_KEY_MAT_OUT_PTR is a pointer to a CK_SSL3_KEY_MAT_OUT.

§ CK_SSL3_KEY_MAT_PARAMS: CK_SSL3 KEY_MAT_PARAMS_PTR

CK_SSL3_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_SSL3_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:
typedef struct CK_SSL3 _KEY_ MAT_PARAMS {
CK_ULONG ulMacSizelnBits;
CK_ULONG ulKeySizelnBits;
CK_ULONG ullVSizelnBits;
CK_BBOOL bisExport;
CK_SSL3_RANDOM_DATA Randominfo;
CK_SSL3_KEY_MAT_OUT_PTR pReturnedKeyMaterial;
} CK_SSL3_KEY_MAT_PARAMS,;

The fields of the structure have the following meanings:

ulMacSizelnBits the length (in bits) of the MACing keys agreed upon during the
protocol handshake phase

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 110 of 199

ulKeySizelnBits the length (in bits) of the secret keys agreed upon during the
protocol handshake phase

ullVSizelnBits the length (in bits) of the IV agreed upon during the protocol
handshake phase. If no IV is required, the length should be set to 0

bisExport a Boolean value which indicates whether the keys have to be
derived for an export version of the protocol

Randomlinfo clientds and serverds random data info

pReturnedKeyMaterial points to a CK_SSL3 KEY_MAT_OUT structures which receives
the handles for the keys generated and the IVs

CK_SSL3_KEY_MAT_PARAMS_PTR is a pointer to a CK_SSL3_KEY_MAT_PARAMS.

2.31.3 Pre-master key generation

Pre-master key generation in SSL 3.0, denoted CKM_SSL3 PRE_MASTER_KEY_GEN, is a mechanism
which generates a 48-byte generic secret key. It is used to produce the "pre_master" key used in SSL
version 3.0 for RSA-like cipher suites.

It has one parameter,aCK_VERSIONst ruct ur e, which provides the clienté

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

2.31.4 Master key derivation

Master key derivation in SSL 3.0, denoted CKM_SSL3 MASTER_KEY_DERIVE, is a mechanism used
to derive one 48-byte generic secret key from another 48-byte generic secret key. It is used to produce
the "master_secret" key used in the SSL protocol from the "pre_master" key. This mechanism returns the
value of the client version, which is built into the "pre_master" key as well as a handle to the derived
"master_secret" key.

It has a parameter, a CK_SSL3 MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token as well as the returning of the protocol version number which is part
of the pre-master key. This structure is defined in Section 2.31.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template; otherwise they are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 111 of 199

1 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

1 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the CK_SSL3_MASTER_KEY_DERIVE_PARAMS
st r u c pVersian diedd will be modified by the C_DeriveKey call. In particular, when the call returns,
this structure will hold the SSL version associated with the supplied pre_master key.

Note that this mechanism is only useable for cipher suites thatusea48-byt e fipr e _master 0 secr

embedded version number. This includes the RSA cipher suites, but excludes the Diffie-Hellman cipher
suites.

2.31.5 Master key derivation for Diffie-Hellman

Master key derivation for Diffie-Hellman in SSL 3.0, denoted CKM_SSL3_MASTER_KEY_DERIVE_DH,
is a mechanism used to derive one 48-byte generic secret key from another arbitrary length generic
secret key. Itis used to produce the "master_secret" key used in the SSL protocol from the "pre_master"
key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token. This structure is defined in Section 2.31. The pVersion field of the
structure must be set to NULL_PTR since the version number is not embedded in the "pre_master" key
as it is for RSA-like cipher suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

1 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

1 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length 48-byte

Apre_mastero secret with an embedde eHelmanrciphersutesnbutmb e r .

excludes the RSA cipher suites.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 112 of 199

T

2.31.6 Key and MAC derivation

Key, MAC and IV derivation in SSL 3.0, denoted CKM_SSL3 KEY_AND_MAC_DERIVE, is a
mechanism used to derive the appropriate cryptographic keying material used by a "CipherSuite" from the
"master_secret" key and random data. This mechanism returns the key handles for the keys generated in
the process, as well as the IVs created.

It has a parameter, a CK_SSL3 KEY_MAT_PARAMS structure, which allows for the passing of random
data as well as the characteristic of the cryptographic material for the given CipherSuite and a pointer to a
structure which receives the handles and 1Vs which were generated. This structure is defined in Section
2.31.

This mechanism contributes to the creation of four distinct keys on the token and returns two Vs (if IVs
are requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The two MACing keys (“client_write_ MAC_secret" and "server_write_ MAC_secret") are always given a
type of CKK_GENERIC_SECRET. They are flagged as valid for signing, verification, and derivation
operations.

The other two keys ("client_write_key" and "server_write_key") are typed according to information found
in the template sent along with this mechanism during a C_DeriveKey function call. By default, they are
flagged as valid for encryption, decryption, and derivation operations.

IVs will be generated and returned if the ullVSizelnBits field of the CK_SSL_KEY_MAT_PARAMS field
has a nonzero value. If they are generated, their length in bits will agree with the value in the
ullVSizelnBits field.

All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes which differ from those held
by the base key.

Note that the CK_SSL3 KEY_MAT_OUT structure pointed to by the CK_SSL3_KEY_MAT_PARAMS

s t r u c pRetureedkeyMaterial field will be modified by the C_DeriveKey call. In particular, the four
key handle fields in the CK_SSL3 KEY_MAT_OUT structure will be modified to hold handles to the
newly-created keys; in addition, the buffers pointed to by the CK_SSL3 KEY_MAT OUTst ruct ur eds
plVClient and plVServer fields will have IVs returned in them (if IVs are requested by the caller).
Therefore, these two fields must point to buffers with sufficient space to hold any 1Vs that will be returned.
This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism returns
all of its key handles in the CK_SSL3_KEY_MAT_OUT structure pointed to by the
CK_SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be created on the
token.

2.31.7 MD5 MACing in SSL 3.0

MD5 MACing in SSL3.0, denoted CKM_SSL3_MD5_MAC, is a mechanism for single- and multiple-part
signatures (data authentication) and verification using MD5, based on the SSL 3.0 protocol. This
technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the
signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the following table:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 113 of 199

Table 102, MD5 MACing in SSL 3.0: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret any 4-8, depending on
parameters

C_Verify generic secret any 4-8, depending on
parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of generic secret key sizes, in bits.

2.31.8 SHA-1 MACing in SSL 3.0

SHA-1 MACing in SSL3.0, denoted CKM_SSL3_SHA1_MAC, is a mechanism for single- and multiple-
part signatures (data authentication) and verification using SHA-1, based on the SSL 3.0 protocol. This
technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the
signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the following table:
Table 103, SHA-1 MACing in SSL 3.0: Key And Data Length

Function Key type Data Signature length
length

C_Sign generic secret any 4-8, depending on parameters

C_Verify generic secret any 4-8, depending on parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of generic secret key sizes, in bits.

2.32 TLS 1.2 Mechanisms

Details for TLS 1.2 and its key derivation and MAC mechanisms can be found in [TLS 1.2]. TLS 1.2
mechanisms differ from TLS 1.0 and 1.1 mechanisms in that the base hash used in the underlying TLS
PRF (pseudo-random function) can be negotiated. Therefore each mechanism parameter for the TLS 1.2
mechanisms contains a new value in the parameters structure to specify the hash function.

This section also specifies CKM_TLS_MAC which should be used in place of CKM_TLS_PRF to
calculate the verify_data in the TLS "finished" message.

This section also specifies CKM_TLS KDF that can be used in place of CKM_TLS PRF to implement
key material exporters.

Table 104, TLS 1.2 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify VR Key/ | Unwrap
Key
Pair
CKM_TLS12 MASTER_KEY_DERIVE \%
CKM_TLS12_MASTER_KEY_DERIVE_DH \%
CKM_TLS12_KEY_AND_MAC_DERIVE \%
CKM_TLS12 KEY_SAFE_DERIVE \%
CKM_TLS10_MAC_SERVER \%
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 114 of 199

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify VR! Key/ | Unwrap
Key
Pair
CKM_TLS10_MAC_CLIENT \Y
CKM_TLS_KDF Y
CKM_TLS12_MAC \Y

2.32.1 Definitions

Mechanisms:
CKM_TLS12_MASTER_KEY_DERIVE
CKM_TLS12_MASTER_KEY_DERIVE_DH
CKM_TLS12_KEY_AND_MAC _DERIVE
CKM_TLS12_KEY_SAFE_DERIVE
CKM TLS10 MAC SERVER
CKM TLS10 MAC CLIENT
CKM_TLS KDF
CKM_TLS12 MAC

2.32.2 TLS 1.2 mechanism parameters

§ CK_TLS12_MASTER_KEY_DERIVE_PARAMS;
CK_TLS12 MASTER _KEY DERIVE_PARAMS_PTR

CK_TLS12 MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_TLS12_MASTER_KEY_DERIVE mechanism. It is defined as follows:
typedef struct CK_TLS12 MASTER_KEY_DERIVE_PARAMS {
CK_SSL3 RANDOM_DATA Randominfo;
CK_VERSION_PTR pVersion;
CK_MECHANISM_TYPE prfHashMechanism;
} CK_TLS12_MASTER_KEY_ DERIVE_PARAMS;

The fields of the structure have the following meanings:
Randominfo clientdés and serverods random data info

pVersion pointer to a CK_VERSION structure which receives the SSL
protocol version information

prfHashMechanism base hash used in the underlying TLS1.2 PRF operation used to
derive the master key.

CK_TLS12_MASTER_KEY_DERIVE_PARANSa PORter to 2CK_TLS12_MASTER_KEY_DERIVE_PARAMS

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 115 of 199

8 CK_TLS12 KEY_MAT PARAMS; CK_TLS12 KEY MAT PARAMS PTR

CK_TLS12 KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_TLS12 KEY_AND_MAC_DERIVE mechanism. ltis defined as follows:

typedef struct CK_TLS12 KEY_MAT_PARAMS {
CK_ULONG ulMacSizelnBits;
CK_ULONG ulKeySizelnBits;
CK_ULONG ullVSizelnBits;
CK_BBOL blsExport;
CK_SSL3_RANDOM_DATA Randominfo;
CK_SSL3_KEY_MAT_OUT_PTR ReturnedKeyMaterial;
CK_MECHANISM_TYPE prfHashMechanism;

} CK_TLS12_KEY_MAT_PARAMS;

The fields of the structure have the following meanings:

ulMacSizelnBits the length (in bits) of the MACing keys agreed upon during the
protocol handshake phase. If no MAC key is required, the length
should be set to 0.

ulKeySizelnBits the length (in bits) of the secret keys agreed upon during the
protocol handshake phase

ullVSizelnBits the length (in bits) of the IV agreed upon during the protocol
handshake phase. If no IV is required, the length should be set to 0

bisExport must be set to CK_FALSE because export cipher suites must not be
used in TLS 1.1 and later.

Randominfo clientdés and serverods random data info

pReturnedKeyMaterial points to a CK_SSL3_KEY_MAT_OUT structures which receives
the handles for the keys generated and the 1Vs

prfHashMechanism base hash used in the underlying TLS1.2 PRF operation used to
derive the master key.

CK_TLS12_KEY_MAT_PARAMS_PTR is a pointer to a CK_TLS12_KEY_MAT_PARAMS.

8 CK_TLS_KDF_PARAMS; CK_TLS_KDF_PARAMS_PTR

CK_TLS_KDF_PARAMS is a structure that provides the parameters to the CKM_TLS_KDF mechanism.
It is defined as follows:

typedef struct CK_TLS KDF_PARAMS {
CK_MECHANISM_TYPE prfMechanism;
CK_BYTE_PTR pLabel;
CK_ULONG ulLabelLength;
CK_SSL3_RANDOM_DATA Randominfo;
CK_BYTE_PTR pContextData;

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 116 of 199

CK_ULONG ulContextDatalLength;
} CK_TLS_KDF_PARAMS;

The fields of the structure have the following meanings:

prfMechanism the hash mechanism used in the TLS1.2 PRF construct or
CKM_TLS_PREF to use with the TLS1.0 and 1.1 PRF construct.

pLabel a pointer to the label for this key derivation
ulLabelLength length of the label in bytes
Randomlinfo the random data for the key derivation

pContextData a pointer to the context data for this key derivation. NULL_PTR if not
present

ulContextDatalLength length of the context data in bytes. 0 if not present.

§ CK_TLS_MAC_PARAMS; CK_TLS_MAC_PARAMS_PTR

CK_TLS MAC_PARAMS is a structure that provides the parameters to the CKM_TLS MAC
mechanism. It is defined as follows:
typedef struct CK_TLS MAC_PARAMS {
CK_MECHANISM_TYPE prfMechanism,;
CK_ULONG ulMacLength;
CK_ULONG ulServerOrClient;
} CK_TLS MAC_PARAMS;

The fields of the structure have the following meanings:

prfMechanism the hash mechanism used in the TLS12 PRF construct or
CKM_TLS_PRF to use with the TLS1.0 and 1.1 PRF construct.

ulMacLength the length of the MAC tag required or offered. Always 12 octets in
TLS 1.0 and 1.1. Generally 12 octets, but may be negotiated to a
longer value in TLS1.2.

ulServerOrClient 1 to use the label "server finished", 2 to use the label "client
finished". All other values are invalid.

CK_TLS_MAC_PARAMS_PTR is a pointer to a CK_TLS_MAC_PARAMS.

2.32.3 TLS MAC

The TLS MAC mechanism is used to generate integrity tags for the TLS "finished" message. It replaces
the use of the CKM_TLS_PRF function for TLS1.0 and 1.1 and that mechanism is deprecated.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 117 of 199

CKM_TLS_MAC takes a parameter of CK_TLS _MAC_PARAMS. To use this mechanism with TLS1.0
and TLS1.1, use CKM_TLS_PREF as the value for prfMechanism in place of a hash mechanism. Note:
Although CKM_TLS_PRF is deprecated as a mechanism for C_DeriveKey, the manifest value is retained
for use with this mechanism to indicate the use of the TLS1.0/1.1 pseudo-random function.

In TLS1.0 and 1.1 the "finished" message verify_data (i.e. the output signature from the MAC mechanism)
is always 12 bytes. In TLS1.2 the "finished" message verify_data is a minimum of 12 bytes, defaults to 12
bytes, but may be negotiated to longer length.

Table 105, General-length TLS MAC: Key And Data Length

Function Key type Data Signature length
length

C_Sign generic secre any >=12 bytes

C_Verify generic secre any >=12 bytes

2.32.4 Master key derivation

Master key derivation in TLS 1.0, denoted CKM_TLS_MASTER_KEY_DERIVE, is a mechanism used to
derive one 48-byte generic secret key from another 48-byte generic secret key. It is used to produce the
"master_secret" key used in the TLS protocol from the "pre_master" key. This mechanism returns the
value of the client version, which is built into the "pre_master" key as well as a handle to the derived
"master_secret" key.

It has a parameter, a CK_SSL3 _MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token as well as the returning of the protocol version number which is part
of the pre-master key. This structure is defined in Section 2.31.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The mechanism also contributes the CKA_ALLOWED_MECHANISMS attribute consisting only of
CKM_TLS12_KEY_AND_MAC_DERIVE, CKM_TLS12_KEY_SAFE_DERIVE, CKM_TLS12_KDF and
CKM_TLS12 MAC.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

9 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

1 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 118 of 199

Note that the CK_VERSION structure pointed to by the CK_SSL3_MASTER_KEY_DERIVE_PARAMS
st r u c pVersian diedd will be modified by the C_DeriveKey call. In particular, when the call returns,
this structure will hold the SSL version associated with the supplied pre_master key.

Note that this mechanism is only useable for cipher suitesthatuse a48-b yt e fipireer Omassecr et wi t h
embedded version number. This includes the RSA cipher suites, but excludes the Diffie-Hellman cipher
suites.

2.32.5 Master key derivation for Diffie-Hellman

Master key derivation for Diffie-Hellman in TLS 1.0, denoted CKM_TLS MASTER_KEY_DERIVE_DH, is
a mechanism used to derive one 48-byte generic secret key from another arbitrary length generic secret
key. Itis used to produce the "master_secret" key used in the TLS protocol from the "pre_master" key.

It has a parameter, a CK_SSL3 MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token. This structure is defined in Section 2.31. The pVersion field of the
structure must be set to NULL_PTR since the version number is not embedded in the "pre_master" key
as it is for RSA-like cipher suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The mechanism also contributes the CKA_ALLOWED_MECHANISMS attribute consisting only of
CKM_TLS12_KEY_AND_MAC_DERIVE, CKM_TLS12_KEY_SAFE_DERIVE, CKM_TLS12_KDF and
CKM_TLS12_MAC.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

1 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

1 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length 48-byte
Apre_masterodo secret with an embedde eHelmanrciphersutesnputmber . T
excludes the RSA cipher suites.

2.32.6 Key and MAC derivation

Key, MAC and IV derivation in TLS 1.0, denoted CKM_TLS_KEY_AND_MAC_DERIVE, is a mechanism
used to derive the appropriate cryptographic keying material used by a "CipherSuite" from the
"master_secret" key and random data. This mechanism returns the key handles for the keys generated in
the process, as well as the IVs created.

It has a parameter, a CK_SSL3 KEY_MAT_PARAMS structure, which allows for the passing of random
data as well as the characteristic of the cryptographic material for the given CipherSuite and a pointer to a

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 119 of 199

structure which receives the handles and Vs which were generated. This structure is defined in Section
2.31.

This mechanism contributes to the creation of four distinct keys on the token and returns two IVs (if IVs
are requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The two MACing keys ("client_write. MAC_secret" and "server_write_ MAC_secret") (if present) are
always given a type of CKK_GENERIC_SECRET. They are flagged as valid for signing and verification.

The other two keys ("client_write_key" and "server_write_key") are typed according to information found
in the template sent along with this mechanism during a C_DeriveKey function call. By default, they are
flagged as valid for encryption, decryption, and derivation operations.

For CKM_TLS12_KEY_AND_MAC_DERIVE, IVs will be generated and returned if the ullVSizelnBits
field of the CK_SSL_KEY_MAT_PARAMS field has a nonzero value. If they are generated, their length
in bits will agree with the value in the ullVSizelnBits field.

Note Well: CKM_TLS12_KEY_AND_MAC_DERIVE produces both private (key) and public (1V)
data. Itis possible to "leak” private data by the simple expedient of decreasing the length of
private data requested. E.g. Setting ulMacSizelnBits and ulKeySizelnBits to O (or other lengths
less than the key size) will result in the private key data being placed in the destination
designated for the IV's. Repeated calls with the same master key and same Randominfo but with
differing lengths for the private key material will result in different data being leaked.<

All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes which differ from those held
by the base key.

Note that the CK_SSL3 KEY_MAT_OUT structure pointed to by the CK_SSL3_KEY_MAT_PARAMS

s t r u c pRetureedkeyMaterial field will be modified by the C_DeriveKey call. In particular, the four

key handle fields in the CK_SSL3 KEY_MAT_OUT structure will be modified to hold handles to the
newly-created keys; in addition, the buffers pointed to by the CK_SSL3 KEY_MAT OUTst ruct ur eds
plVClient and plVServer fields will have IVs returned in them (if IVs are requested by the caller).

Therefore, these two fields must point to buffers with sufficient space to hold any IVs that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism returns
all of its key handles in the CK_SSL3 _KEY_MAT_OUT structure pointed to by the
CK_SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be created on the
token.

2.32.7 CKM_TLS12 KEY_SAFE_DERIVE

CKM_TLS12_KEY_SAFE_DERIVE is identical to CKM_TLS12_KEY_AND_MAC_DERIVE except that it
shall never produce IV data, and the ullvSizelnBits field of CK_TLS12 KEY_MAT_PARAMS is ignored
and treated as 0. All of the other conditions and behavior described for
CKM_TLS12_KEY_AND_MAC_DERIVE, with the exception of the black box warning, apply to this
mechanism.

CKM_TLS12_KEY_SAFE_DERIVE is provided as a separate mechanism to allow a client to control the
export of IV material (and possible leaking of key material) through the use of the
CKA_ALLOWED_MECHANISMS key attribute.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 120 of 199

2.32.8 Generic Key Derivation using the TLS PRF

CKM_TLS_KDF is the mechanism defined in RFC5705. It uses the TLS key material and TLS PRF
function to produce additional key material for protocols that want to leverage the TLS key negotiation
mechanism. CKM_TLS_KDF has a parameter of CK_TLS_KDF_PARAMS. If the protocol using this
mechanism does not use context information, the pContextData field shall be set to NULL_PTR and the
ulContextDataLength field shall be set to 0.

To use this mechanism with TLS1.0 and TLS1.1, use CKM_TLS PRF as the value for prfMechanism in
place of a hash mechanism. Note: Although CKM_TLS_PRF is deprecated as a mechanism for
C_DeriveKey, the manifest value is retained for use with this mechanism to indicate the use of the
TLS1.0/1.1 Pseudo-random function.

This mechanism can be used to derive multiple keys (e.g. similar to

CKM_TLS12 KEY_AND_MAC_DERIVE) by first deriving the key stream as a CKK_GENERIC_SECRET

of the necessary length and doing subsequent derives against that derived key stream using the
CKM_EXTRACT_KEY_FROM_KEY mechanism to split the key stream into the actual operational keys.

The mechanism should not be used with the labels defined for use with TLS, but the token does not
enforce this behavior.

This mechanism has the following rules about key sensitivity and extractability:

1 If the original key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the deEKA SENSITNKEeatribuse is set either from the supplied template or from the
original key.

1 Similarly, if the original key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. | f n ot CKAIEKTERACTABLE attdbete is vet dithek feom dhe
supplied template or from the original key.

T The der i CEKA AUNMAYS SENSITIVE attribute is set to CK_TRUE if and only if the original
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

T Similarly, t KA NEVER EXTRACHKABY B atribute is set to CK_TRUE if and only if
the original key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.33 WTLS

Details can be found in [WTLS].

When comparing the existing TLS mechanisms with these extensions to support WTLS one could argue
that there would be no need to have distinct handling of the client and server side of the handshake.
However, since in WTLS the server and client use different sequence numbers, there could be instances
(e.g. when WTLS is used to protect asynchronous protocols) where sequence numbers on the client and
server side differ, and hence this motivates the introduced split.

Table 106, WTLS Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify VR Key/ | Unwrap
Key
Pair
CKM_WTLS PRE_MASTER_KEY_GEN \%
CKM_WTLS_MASTER_KEY_DERIVE \%
CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC \%
CKM_WTLS SERVER_KEY_AND_MAC_DERIVE \%
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 121 of 199

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify VR! Key/ Unwrap
Key
Pair
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE \%
CKM_WTLS_PRF \%

2.33.1 Definitions

Mechanisms:
CKM_WTLS_PRE_MASTER_KEY_GEN
CKM_WTLS MASTER_KEY_DERIVE
CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC
CKM_WTLS PRF
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE

2.33.2 WTLS mechanism parameters

§ CK_WTLS RANDOM_DATA;: CK_WTLS_RANDOM DATA PTR

CK_WTLS_RANDOM_DATA is a structure, which provides information about the random data of a client
and a server in a WTLS context. This structure is used by the CKM_WTLS_MASTER_KEY_DERIVE
mechanism. It is defined as follows:

typedef struct CK_WTLS RANDOM_DATA {
CK_BYTE_PTR pClientRandom;
CK_ULONG ulClientRandomLen;
CK_BYTE_PTR pServerRan dom,;
CK_ULONG ulServerRandomLen,;

} CK_WTLS_RANDOM_DATA;

The fields of the structure have the following meanings:
pClientRandom pointer to the clientés random dat a
pClientRandomLen l ength in bytes of the clientbés randon
pServerRaondom pointert o t he serverds random dat a
ulServerRandomLen l ength in bytes of the serverod6s randon

CK_WTLS_RANDOM_DATA_PTR is a pointer to a CK_WTLS_RANDOM_DATA.

§ CK_WTLS MASTER_KEY_DERIVE_PARAMS;
CK_WTLS_MASTER_KEY DERIVE_PARAMS PTR

CK_WTLS_MASTER_KEY_DERIVE_PARAMS is a structure, which provides the parameters to the
CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as follows:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 122 of 199

typedef struct CK_WTLS_MASTER_KEY_DERIVE_PARAMS {
CK_MECHANISM_TYPE DigestMechanism,;
CK_WTLS_RANDOM_DATA Randominfo;
CK_BYTE_PTR pVersion;

} CK_WTLS_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:

DigestMechanism the mechanism type of the digest mechanism to be used (possible
types can be found in [WTLS])

Randominfo Cli ent 6 s saamdbm dagannfornation

pVersion pointer to a CK_BYTE which receives the WTLS protocol version
information

CK_WTLS_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
CK_WTLS_MASTER_KEY_DERIVE_PARAMS.

§ CK_WTLS PRF_PARAMS; CK_WTLS PRF _PARAMS PTR

CK_WTLS_PRF_PARAMS is a structure, which provides the parameters to the CKM_WTLS_PRF
mechanism. It is defined as follows:
typedef struct CK_WTLS_ PRF_PARAMS {
CK_MECHANISM_TYPE DigestMechanism;
CK_BYTE_PTR pSeed;

CK_ULONG ulSeedLen,;
CK_BYTE_PTR pLabel;
CK_ULONG ulLabellLen;

CK_BYTE_PTR pOutput;
CK_ULONG_PTR pulOutputLen;
} CK_WTLS_ PRF_PARAMS;

The fields of the structure have the following meanings:

Digest Mechanism the mechanism type of the digest mechanism to be used (possible
types can be found in [WTLS])

pSeed pointer to the input seed
ulSeedLen length in bytes of the input seed
pLabel pointer to the identifying label
ulLabelLen length in bytes of the identifying label
pOutput pointer receiving the output of the operation
pulOutputLen pointer to the length in bytes that the output to be created shall
have, has to hold the desired length as input and will receive the

calculated length as output

CK_WTLS_PRF_PARAMS_PTR is a pointer to a CK_WTLS_PRF_PARAMS.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 123 of 199

§ CK_WTLS KEY MAT OUT; CK_WTLS_KEY_MAT OUT PTR

CK_WTLS_KEY_MAT_OUT is a structure that contains the resulting key handles and initialization
vectors after performing a C_DeriveKey function with the
CKM_WTLS_SEVER_KEY_AND_MAC_DERIVE or with the
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:
typedef struct CK_WTLS_KEY_MAT_OUT {
CK_OBJECT_HANDLE hMacSecret;
CK_OBJECT_HANDLE hKey;
CK_BYTE_PTR plV;
} CK_WTLS_KEY_MAT_OUT;

The fields of the structure have the following meanings:
hMacSecret Key handle for the resulting MAC secret key
hKey Key handle for the resulting secret key

plv Pointer to a location which receives the initialization vector (V)
created (if any)

CK_WTLS_KEY_MAT_OUT _PTR is a pointer to a CK_WTLS_KEY_MAT_OUT.
§ CK_WTLS KEY_MAT _PARAMS; CK_WTLS_KEY_MAT_PARAMS_PTR
CK_WTLS_KEY_MAT_PARAMS is a structure that provides the parameters to the

CKM_WTLS_SEVER_KEY_AND_MAC_DERIVE and the
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:

typedef struct CK_WTLS _KEY_MAT_PARAMS {
CK_MECHANISM_TYPE DigestMechanism;
CK_ULONG ulMacSizelnBits;
CK_ULONG ulKeySizelnBits;
CK_ULONG ullVSizelnBits;
CK_ULONG ulSequenceNumber;
CK_BBOOL bisExport;

CK_WTLS _RANDOM_DATA Randominfo;
CK_WTLS_KEY_MAT_OUT_PTR pReturnedKeyMaterial;
} CK_WTLS_KEY_MAT_PARAMS:;

The fields of the structure have the following meanings:

Digest Mechanism the mechanism type of the digest mechanism to be used (possible
types can be found in [WTLS])

ulMaxSizelnBits the length (in bits) of the MACing key agreed upon during the
protocol handshake phase

ulKeySizelnBits the length (in bits) of the secret key agreed upon during the
handshake phase

ullVSizelnBits the length (in bits) of the IV agreed upon during the handshake
phase. If no IV is required, the length should be set to 0.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 124 of 199

ulSequenceNumber the current sequence number used for records sent by the client
and server respectively

bisExport a boolean value which indicates whether the keys have to be
derives for an export version of the protocol. If this value is true
(i.e., the keys are exportable) then ulKeySizelnBits is the length of
the key in bits before expansion. The length of the key after
expansion is determined by the information found in the template
sent along with this mechanism during a C_DeriveKey function call
(either the CKA_KEY_TYPE or the CKA_VALUE_LEN attribute).

Randominfo clientdés and serverods random data info

pReturnedKeyMaterial points to a CK_WTLS_KEY_MAT_OUT structure which receives
the handles for the keys generated and the IV

CK_WTLS_KEY_MAT_PARAMS_PTR is a pointer to a CK_WTLS_KEY_MAT_PARAMS.

2.33.3 Pre master secret key generation for RSA key exchange suite

Pre master secret key generation for the RSA key exchange suite in WTLS denoted
CKM_WTLS_PRE_MASTER_KEY_GEN, is a mechanism, which generates a variable length secret key.
It is used to produce the pre master secret key for RSA key exchange suite used in WTLS. This
mechanism returns a handle to the pre master secret key.

It has one parameter,aCK_BYTE, whi ch provides the clientdés WTLS vers

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute indicates the length of the pre master secret key.

For this mechanism, the ulMinKeySize field of the CK_MECHANISM_INFO structure shall indicate 20
bytes.

2.33.4 Master secret key derivation

Master secret derivation in WTLS, denoted CKM_WTLS_MASTER_KEY_DERIVE, is a mechanism used
to derive a 20 byte generic secret key from variable length secret key. It is used to produce the master
secret key used in WTLS from the pre master secret key. This mechanism returns the value of the client
version, which is built into the pre master secret key as well as a handle to the derived master secret key.

It has a parameter, a CK_WTLS _MASTER_KEY_DERIVE_PARAMS structure, which allows for passing
the mechanism type of the digest mechanism to be used as well as the passing of random data to the
token as well as the returning of the protocol version number which is part of the pre master secret key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 20. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be
specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default
value.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 125 of 199

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will
as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived
key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE,
then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 20 bytes.

Note that the CK_BYTE pointed to by the CK_WTLS MASTER_KEY_DERIVE_PARAMSst ruct ur eds
pVersion field will be modified by the C_DeriveKey call. In particular, when the call returns, this byte will
hold the WTLS version associated with the supplied pre master secret key.

Note that this mechanism is only useable for key exchange suites that use a 20-byte pre master secret
key with an embedded version number. This includes the RSA key exchange suites, but excludes the
Diffie-Hellman and Elliptic Curve Cryptography key exchange suites.

2.33.5 Master secret key derivation for Diffie-Hellman and Elliptic Curve
Curve Cryptography

Master secret derivation for Diffie-Hellman and Elliptic Curve Cryptography in WTLS, denoted
CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC, is a mechanism used to derive a 20 byte generic
secret key from variable length secret key. It is used to produce the master secret key used in WTLS from
the pre master secret key. This mechanism returns a handle to the derived master secret key.

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of the mechanism type of the digest mechanism to be used as well as random data to the token.
The pVersion field of the structure must be set to NULL_PTR since the version number is not embedded
in the pre master secret key as it is for RSA-like key exchange suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 20. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be
specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default
value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will
as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived
key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE,
then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 20 bytes.

Note that this mechanism is only useable for key exchange suites that do not use a fixed length 20-byte
pre master secret key with an embedded version number. This includes the Diffie-Hellman and Elliptic
Curve Cryptography key exchange suites, but excludes the RSA key exchange suites.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 126 of 199

2.33.6 WTLS PRF (pseudorandom function)

PRF (pseudo random function) in WTLS, denoted CKM_WTLS_PRF, is a mechanism used to produce a
securely generated pseudo-random output of arbitrary length. The keys it uses are generic secret keys.

It has a parameter, a CK_WTLS PRF_PARAMS structure, which allows for passing the mechanism type
of the digest mechanism to be used, the passing of the input seed and its length, the passing of an
identifying label and its length and the passing of the length of the output to the token and for receiving
the output.

This mechanism produces securely generated pseudo-random output of the length specified in the
parameter.

This mechanism departs from the other key derivation mechanisms in Cryptoki in not using the template
sent along with this mechanism during a C_DeriveKey function call, which means the template shall be a
NULL_PTR. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result
of a successful completion. However, since the CKM_WTLS_PRF mechanism returns the requested
number of output bytes in the CK_WTLS_ PRF_PARAMS structure specified as the mechanism
parameter, the parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then no output will be generated.

2.33.7 Server Key and MAC derivation

Server key, MAC and IV derivation in WTLS, denoted
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE, is a mechanism used to derive the appropriate
cryptographic keying material used by a cipher suite from the master secret key and random data. This
mechanism returns the key handles for the keys generated in the process, as well as the IV created.

It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the passing of the
mechanism type of the digest mechanism to be used, random data, the characteristic of the cryptographic
material for the given cipher suite, and a pointer to a structure which receives the handles and IV which
were generated.

This mechanism contributes to the creation of two distinct keys and returns one IV (if an IV is requested
by the caller) back to the caller. The keys are all given an object class of CKO_SECRET_KEY.

The MACing key (server write MAC secret) is always given a type of CKK_GENERIC_SECRET. It is
flagged as valid for signing, verification and derivation operations.

The other key (server write key) is typed according to information found in the template sent along with
this mechanism during a C_DeriveKey function call. By default, it is flagged as valid for encryption,
decryption, and derivation operations.

An IV (server write 1V) will be generated and returned if the ullVSizelnBits field of the
CK_WTLS_KEY_MAT_PARAMS field has a nonzero value. If it is generated, its length in bits will agree
with the value in the ullVSizelnBits field

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes that differ from those held by
the base key.

Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the CK_WTLS_KEY_MAT_PARAMS

s t r u c pRetureedkeyMaterial field will be modified by the C_DeriveKey call. In particular, the two key
handle fields in the CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT s t r u c pl\field Wils
have the IV returned in them (if an IV is requested by the caller). Therefore, this field must point to a

buffer with sufficient space to hold any IV that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE
mechanism returns all of its key handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 127 of 199

CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created.

2.33.8 Client key and MAC derivation

Client key, MAC and IV derivation in WTLS, denoted CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE,
is a mechanism used to derive the appropriate cryptographic keying material used by a cipher suite from
the master secret key and random data. This mechanism returns the key handles for the keys generated
in the process, as well as the IV created.

It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the passing of the
mechanism type of the digest mechanism to be used, random data, the characteristic of the cryptographic
material for the given cipher suite, and a pointer to a structure which receives the handles and IV which
were generated.

This mechanism contributes to the creation of two distinct keys and returns one IV (if an IV is requested
by the caller) back to the caller. The keys are all given an object class of CKO_SECRET_KEY.

The MACing key (client write MAC secret) is always given a type of CKK_GENERIC_SECRET. Itis
flagged as valid for signing, verification and derivation operations.

The other key (client write key) is typed according to information found in the template sent along with this
mechanism during a C_DeriveKey function call. By default, it is flagged as valid for encryption,
decryption, and derivation operations.

An 1V (client write 1V) will be generated and returned if the ullVSizelnBits field of the
CK_WTLS_KEY_MAT_PARAMS field has a nonzero value. If it is generated, its length in bits will agree
with the value in the ullVSizelnBits field

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes that differ from those held by
the base key.

Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the CK_WTLS_KEY_MAT_PARAMS

s t r u c pRetureedkeyMaterial field will be modified by the C_DeriveKey call. In particular, the two key
handle fields in the CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT s t r u c pl\freld \dilk
have the IV returned in them (if an 1V is requested by the caller). Therefore, this field must point to a

buffer with sufficient space to hold any IV that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism
returns all of its key handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created.

2.34 Miscellaneous simple key derivation mechanisms

Table 107,Miscellaneous simple key derivation Mechanisms vs. Functions

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 128 of 199

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify VR' Key/ | Unwrap
Key
Pair

CKM_CONCATENATE_BASE_AND_KEY

CKM_CONCATENATE_BASE_AND_DATA

CKM_CONCATENATE_DATA_AND_BASE

CKM_XOR_BASE_AND_DATA

<[<K< <

CKM_EXTRACT_KEY_FROM_KEY

‘ 2.34.1 Definitions

Mechanisms:
CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE
CKM_XOR_BASE_AND_DATA
CKM_EXTRACT_KEY_FROM_KEY
CKM_CONCATENATE_BASE_AND_KEY

2.34.2 Parameters for miscellaneous simple key derivation mechanisms
mechanisms

§ CK_KEY_DERIVATION_STRING DATA;
CK_KEY_DERIVATION_STRING_DATA_PTR

CK_KEY_DERIVATION_STRING_DATA provides the parameters for the
CKM_CONCATENATE_BASE_AND_DATA, CKM_CONCATENATE_DATA_AND_BASE, and
CKM_XOR_BASE_AND_DATA mechanisms. lItis defined as follows:

typedef struct CK_KEY_DERIVATION_STRING_DATA {
CK_BYTE_PTR pData;
CK_ULONG ulLen;

} CK_KEY_DERIVATION_STRING_DATA,;

The fields of the structure have the following meanings:
pData pointer to the byte string
ulLen length of the byte string

CK_KEY_DERIVATION_STRING_DATA_PTR is a pointer to a CK_KEY_DERIVATION_STRING_DATA.

§ CK_EXTRACT_PARAMS; CK_EXTRACT_PARAMS_PTR

CK_KEY_EXTRACT_PARAMS provides the parameter to the CKM_EXTRACT_KEY_FROM_KEY
mechanism. It specifies which bit of the base key should be used as the first bit of the derived key. Itis
defined as follows:

typedef CK_ULONG CK_EXTRACT_PARAMS;

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 129 of 199

CK_EXTRACT_PARAMS_PTR is a pointer to a CK_EXTRACT_PARAMS.

2.34.3 Concatenation of a base key and another key

This mechanism, denoted CKM_CONCATENATE_BASE_AND_KEY, derives a secret key from the
concatenation of two existing secret keys. The two keys are specified by handles; the values of the keys
specified are concatenated together in a buffer.

This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle produces the key value

information which is appended to the end of the base
whose handle is supplied as an argument to C_DeriveKey).
For example, if the value of the base key is 0x01234567, and the value of the other key is 0X89ABCDEF,
then the value of the derived key will be taken from a buffer containing the string 0x0123456789ABCDEF-.
1 If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the sum of the lengths of the values of the two original
keys.
1 If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.
1 If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
templ at e. If it doesnoét, an error wild/l be returned.

91 If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set

properly.

If the requested type of key requires more bytes than are available by concatenatingt he t wo or i gi nal

values, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:

1 If either of the two original keys has its CKA_SENSITIVE attribute set to CK_TRUE, so does the
derived key. Ifnot,thent he der i QKAASENSHTIWE attribute is set either from the supplied
template or from a default value.

91 Similarly, if either of the two original keys has its CKA_EXTRACTABLE attribute set to CK_FALSE,
so does the derived key. If not, then the derived k e yGKé& EXTRACTABLE attribute is set either
from the supplied template or from a default value.

T The der i CKA ALNAYS SENSITIVE attribute is set to CK_TRUE if and only if both of the
original keys have their CKA_ALWAYS_SENSITIVE attributes set to CK_TRUE.

T Similarly, t ICKA NE/ER_EXTRACKABY Baitribute is set to CK_TRUE if and only if
both of the original keys have their CKA_NEVER_EXTRACTABLE attributes set to CK_TRUE.

2.34.4 Concatenation of a base key and data

This mechanism, denoted CKM_CONCATENATE_BASE_AND_DATA, derives a secret key by
concatenating data onto the end of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which
specifies the length and value of the data which will be appended to the base key to derive another key.

For example, if the value of the base key is 0x01234567, and the value of the data is 0X89ABCDEF, then
the value of the derived key will be taken from a buffer containing the string 0x0123456789ABCDEF.

1 If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the sum of the lengths of the value of the original key
and the data.

1 If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 130 of 199

k

1 If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
templ at e. If it doesn6t, an error wild/l be returned.

1 If both a key type and a length are provided in the template, the length must be compatible with that

key type. The key produced by this mechanism will be of the specified type and length.
If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set
properly.
If the requested type of key requires more bytes than are available by concatenating the original keyds
value and the data, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:

1 If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the dEKA _SEANSITINMEatribute is set either from the supplied template or from a
default value.

1 Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. I f no€KA BXTRAGTABLUEattriduteiisiset ather flora thed s
supplied template or from a default value.

T The der i CKEA ALWAYS SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

T Similarly, t ICKA NE/ER_EXTRACKABY Baitribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.34.5 Concatenation of data and a base key

This mechanism, denoted CKM_CONCATENATE_DATA_AND_BASE, derives a secret key by
prepending data to the start of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which
specifies the length and value of the data which will be prepended to the base key to derive another key.

For example, if the value of the base key is 0x01234567, and the value of the data is 0OX89ABCDEF, then
the value of the derived key will be taken from a buffer containing the string OX89ABCDEF01234567.

91 If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the sum of the lengths of the data and the value of the
original key.

1 If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

1 If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. Ifitdoe s no6t , an error wil/l be returned.

91 If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DESS3, or CDMF key is derived with this mechanism, the parity bits of the key will be set

properly.

If the requested type of key requires more bytes than are available by concatenating the data and the

original keybébs value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

1 If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the deEKA_SENSITIMEaWiBute is set either from the supplied template or from a
default value.

1 Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. I f no@CKA_BXTRAGTABLUEattridueiisiset ather flore thed s
supplied template or from a default value.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 131 of 199

T The der i CKAI ALWAYS SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

T Similarly, t ICKA NE/ER_EXTRACKAB| Baitribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.34.6 XORing of a key and data

XORing key derivation, denoted CKM_XOR_BASE_AND_DATA, is a mechanism which provides the

capability of deriving a secret key by performing a bit XORing of a key pointed to by a base key handle

and some data.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which

specifies the data with which to XOR the original keyd:

For example, if the value of the base key is 0x01234567, and the value of the data is 0X89ABCDEF, then
the value of the derived key will be taken from a buffer containing the string 0x88888888.

1 If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the minimum of the lengths of the data and the value of
the original key.

1 If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

1 If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
templ at e. If it doesn6t, an error wil/l be returned.

1 If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set

properly.

If the requested type of key requires more bytes than are available by taking the shorter of the data and

the original keyés value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

1 If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then t he deEKA _SEANAITINEaribute is set either from the supplied template or from a
default value.

9 Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. I f noC€KA BXTRAGTABLUEattriduteiisiset ather flore thed s
supplied template or from a default value.

T The der i CKA ALNAYS SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

T Similarly, t ICKA NE/ER_EXTRACKABY Batribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.34.7 Extraction of one key from another key

Extraction of one key from another key, denoted CKM_EXTRACT_KEY_FROM_KEY, is a mechanism
which provides the capability of creating one secret key from the bits of another secret key.

This mechanism has a parameter, a CK_EXTRACT_PARAMS, which specifies which bit of the original
key should be used as the first bit of the newly-derived key.

We give an example of how this mechanism works. Suppose a token has a secret key with the 4-byte
value 0x329F84A9. We will derive a 2-byte secret key from this key, starting at bit position 21 (i.e., the
value of the parameter to the CKM_EXTRACT_KEY_FROM_KEY mechanism is 21).

1. We write the keybébs value in binary: 0011 0010 1001 11
binary string as holding the 32 bitsof t he key, | abeled as b0, bl, é, b3l

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 132 of 199

2. We then extract 16 consecutive bits (i.e., 2 bytes) from this binary string, starting at bit b21. We
obtain the binary string 1001 0101 0010 0110.

3. The value of the new key is thus 0x9526.

Note that when constructing the value of the derived key, it is permissible to wrap around the end of the
binary string representing the original keyds value.

If the original key used in this process is sensitive, then the derived key must also be sensitive for the
derivation to succeed.

1 If no length or key type is provided in the template, then an error will be returned.

1 If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

1 If nolength is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
templ at e. If it doesnb6t, an error wild/l be returned.

91 If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set
properly.

If the requested type of key requires more bytes than the original key has, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

1 If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then t he deEKA SEANSITIMEatribuse is set either from the supplied template or from a
default value.

1 Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. I f no€KA BXTRAGTABLUEattriduteiisiset ather flore thed s
supplied template or from a default value.

T The der i CKEA ALWAYS SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

T Similarly, tICKA NE/ER EXTHACKABLBAatribute is setto CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.35 CMS

Table 108, CMS Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR Key/ | Unwrap
Key
Pair
CKM_CMS_SIG \% \%
2.35.1 Definitions
Mechanisms:
CKM_CMS_SIG
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 133 of 199

2.35.2 CMS Signature Mechanism Objects

These objects provide information relating to the CKM_CMS_SIG mechanism. CKM_CMS_SIG
mechanism object attributes represent information about supported CMS signature attributes in the token.
They are only present on tokens supporting the CKM_CMS_SIG mechanism, but must be present on
those tokens.

Table 109, CMS Signature Mechanism Object Attributes

Attribute Data type Meaning
CKA_REQUIRED_CMS_ATTRIBUTE | Byte array | Attributes the token always will include
S in the set of CMS signed attributes

CKA_DEFAULT_CMS_ATTRIBUTES | Byte array | Attributes the token will include in the
set of CMS signed attributes in the
absence of any attributes specified by
the application

CKA_SUPPORTED_CMS_ATTRIBUT | Byte array | Attributes the token may include in the
ES set of CMS signed attributes upon
request by the application

The contents of each byte array will be a DER-encoded list of CMS Attributes with optional accompanying
values. Any attributes in the list shall be identified with its object identifier, and any values shall be DER-
encoded. The list of attributes is defined in ASN.1 as:
Attributes ::= SET SIZE (1..MAX) OF Attribute
Attribute ::= SEQUENCE {
attrType OBJECT IDENTIFIER,
attrValues SET OF ANY DEFINED BY OBJECT IDENTIFIER
OPTIONAL

}

The client may not set any of the attributes.
2.35.3 CMS mechanism parameters

1 CK_CMS_SIG_PARAMS, CK_CMS_SIG_PARAMS_PTR

CK_CMS_SIG_PARAMS is a structure that provides the parameters to the CKM_CMS_SIG mechanism.
It is defined as follows:

typedef struct CK_CMS_SIG_PARAMS {

CK_OBJECT_HANDLE certificateHandle;

CK_MECHANISM_PTR pSign ingMechanism,;

CK_MECHANISM_PTR pDigestMechanism;

CK_UTF8CHAR_PTR pContentType;
CK_BYTE_PTR pRequestedAttributes;
CK_ULONG ulRequestedAttributesLen;
CK_BYTE_PTR pRequiredAttributes;
CK_ULONG ulRequiredAttributesLen;

} CK_CMS_SIG_PARAMS;

The fields of the structure have the following meanings:

certificateHandle Object handle for a certificate associated with the signing key. The
token may use information from this certificate to identify the signer
in the Signerinfo result value. CertificateHandle may be NULL_PTR
if the certificate is not available as a PKCS #11 object or if the

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 134 of 199

calling application leaves the choice of certificate completely to the
token.

pSigningMechanism Mechanism to use when signing a constructed CMS
SignedAttributes value. E.g. CKM_SHA1 RSA_ PKCS.

pDigestMechanism Mechanism to use when digesting the data. Value shall be
NULL_PTR when the digest mechanism to use follows from the
pSigningMechanism parameter.

pContentType NULL-terminated string indicating complete MIME Content-type of
message to be signed; or the value NULL_PTR if the message is a
MIME object (which the token can parse to determine its MIME
Content-t ype i f r equi r egplcationldbstet-streamiif val ue 0
the MIME type for the message is unknown or undefined. Note that
the pContentType string shall conform to the syntax specified in
RFC 2045, i.e. any parameters needed for correct presentation of
the content by the token (such as, for example, a non-default
fcharsetd) must be present . uldstarel t oken must
procedures defined in RFC 2045 when presenting the content.

pRequestedAttributes Pointer to DER-encoded list of CMS Attributes the caller requests to
be included in the signed attributes. Token may freely ignore this list
or modify any supplied values.

ulRequestedAttributesLen Length in bytes of the value pointed to by pRequestedAttributes

pRequiredAttributes Pointer to DER-encoded list of CMS Attributes (with accompanying
values) required to be included in the resulting signed attributes.
Token must not modify any supplied values. If the token does not
support one or more of the attributes, or does not accept provided
values, the signature operation will fail. The token will use its own
default attributes when signing if both the pRequestedAttributes and
pRequiredAttributes field are set to NULL_PTR.

ulRequiredAttributesLen Length in bytes, of the value pointed to by pRequiredAttributes.

2.35.4 CMS signatures

The CMS mechanism, denoted CKM_CMS_SIG, is a multi-purpose mechanism based on the structures
defined in PKCS #7 and RFC 2630. It supports single- or multiple-part signatures with and without
message recovery. The mechanism is intended for use with, e.g., PTDs (see MeT-PTD) or other capable
tokens. The token will construct a CMS SignedAttributes value and compute a signature on this value.
The content of the SignedAttributes value is decided by the token, however the caller can suggest some
attributes in the parameter pRequestedAttributes. The caller can also require some attributes to be
present through the parameters pRequiredAttributes. The signature is computed in accordance with the
parameter pSigningMechanism.

When this mechanism is used in successful calls to C_Sign or C_SignFinal, the pSignature return value
will point to a DER-encoded value of type Signerinfo. Signerinfo is defined in ASN.1 as follows (for a
complete definition of all fields and types, see RFC 2630):
Signerinfo ::= SEQUENCE {

version CMSVersion,

sid Signerldentifier,

digestAlgorithm DigestAlgorithmlde ntifier,

signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 135 of 199

signatureAlgorithm SignatureAlgorithmlidentifier,
signature SignatureValue,

unsignedAttrs [1] IMPLICIT UnsignedAttributes
OPTIONAL }

The certificateHandle parameter, when set, helps the token populate the sid field of the Signerinfo value.
If certificateHandle is NULL_PTR the choice of a suitable certificate reference in the Signerinfo result
value is left to the token (the token could, e.g., interact with the user).

This mechanism shall not be used in calls to C_Verify or C_VerifyFinal (use the pSigningMechanism
mechanism instead).

In order for an application to find out what attributes are supported by a token, what attributes that will be
added by default, and what attributes that always will be added, it shall analyze the contents of the
CKH_CMS_ATTRIBUTES hardware feature object.

For the pRequiredAttributes field, the token may have to interact with the user to find out whether to
accept a proposed value or not. The token should never accept any proposed attribute values without
some kind of confirmation from its owner (but this could be through, e.g., configuration or policy settings
and not direct interaction). If a user rejects proposed values, or the signature request as such, the value
CKR_FUNCTION_REJECTED shall be returned.

When possible, applications should use the CKM_CMS_SIG mechanism when generating CMS-
compatible signatures rather than lower-level mechanisms such as CKM_SHA1 RSA PKCS. This is
especially true when the signatures are to be made on content that the token is able to present to a user.
Exceptions may include those cases where the token does not support a particular signing attribute. Note
however that the token may refuse usage of a particular signature key unless the content to be signed is
known (i.e. the CKM_CMS_SIG mechanism is used).

When a token does not have presentation capabilities, the PKCS #11-aware application may avoid
sending the whole message to the token by electing to use a suitable signature mechanism (e.g.
CKM_RSA_PKCS) as the pSigningMechanism value in the CKM_CMS_SIG_PARAMS structure, and
digesting the message itself before passing it to the token.

PKCS #11-aware applications making use of tokens with presentation capabilities, should attempt to
provide messages to be signed by the token in a format possible for the token to present to the user.
Tokens that receive multipart MIME-messages for which only certain parts are possible to present may
fail the signature operation with a return value of CKR_DATA_INVALID, but may also choose to add a
signing attribute indicating which parts of the message were possible to present.

2.36 Blowfish

Blowfish, a secret-key block cipher. It is a Feistel network, iterating a simple encryption function 16 times.
The block size is 64 bits, and the key can be any length up to 448 bits. Although there is a complex
initialization phase required before any encryption can take place, the actual encryption of data is very
efficient on large microprocessors.-Ref:

Table 110, Blowfish Mechanisms vs. Functions

Functions

Encrypt| Sign | SR Gen. | Wrap
Mechanism & & & |Digest| Key/ & Derive

Decrypt| Verify | gl Key |Unwrap

Pair

CKM_BLOWFISH_CBC "H "H
CKM_BLOWFISH_CBC_PAD "H "H
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 136 of 199

‘ 2.36.1 Definitions

This section defines the key type ACKK_BLOWFI SHO for
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_BLOWFISH_KEY_GEN
CKM_BLOWFISH_CBC
CKM_BLOWFISH_CBC_PAD

2.36.2 BLOWFISH secret key objects

Blowfish secret key objects (object class CKO_SECRET_KEY, key type CKK_BLOWFISH) hold Blowfish
keys. The following table defines the Blowfish secret key object attributes, in addition to the common
attributes defined for this object class:

Table 111, BLOWFISH Secret Key Object

Attribute Data type Meaning
CKA_VALUE"*®’ Byte array Key value the key can be
any length up to 448 bits.
Bit length restricted to a
byte array.
CKA_VALUE_LEN*® CK_ULONG Length in bytes of key
value

- Refer to [PKCS #11-Base] table £510 for footnotes

The following is a sample template for creating an Blowfish secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BLOWFISH;
CK_UTF8CHAR | abel [] h=siArlkltowfeiys obj ect 0;
CK_BYTE value[16] ={...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA _CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) - 1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA _VALUE, value, sizeof(value)}

h

2.36.3 Blowfish key generation

The Blowfish key generation mechanism, denoted CKM_BLOWFISH_KEY_GEN, is a key generation
mechanism Blowfish.

It does not have a parameter.

The mechanism generates Blowfish keys with a particular length, as specified in the CKA_VALUE_LEN
attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new

key. Other attributes supported by the key type (specifically, the flags indicating which functions the key
supports) may be specified in the template for the key, or else are assigned default initial values.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 137 of 199

t

A

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes in bytes.

2.36.4 Blowfish-CBC

Blowfish-CBC, denoted CKM_BLOWFISH_CBC, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping.

It has a parameter, a 8-byte initialization vector.

This mechanism can wrap and unwrap any secret key. For wrapping, the mechanism encrypts the value
of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size
minus one null bytes so that the resulting length is a multiple of the block size. The output data is the
same length as the padded input data. It does not wrap the key type, key length, or any other information
about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 112, BLOWFISEBC: Key and Data Length

Function Key type Input length Output length
C_Encrypt BLOWFISH multiple of block size same as input length
C_Decrypt BLOWFISH multiple of block size same as input length
C_WrapKey BLOWFISH any input length rounded up to

multiple of the block size

C_UnwrapKey BLOWFISH multiple of block size determined by type of key being
unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of BLOWFISH key sizes, in bytes.

2.36.5 Blowfish -CBC with PKCS padding

Blowfish-CBC-PAD, denoted CKM_BLOWFISH_CBC_PAD, is a mechanism for single- and multiple-part
encryption and decryption, key wrapping and key unwrapping, cipher-block chaining mode and the block
cipher padding method detailed in PKCS #7.

It has a parameter, a 8-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for
the CKA_VALUE_LEN attribute.

The entries in the table below for data length constraints when wrapping and unwrapping keys do not
apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 113, BLOWFISEBC with PKCS Padding: Key and Data Length

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 138 of 199

Function Key type Input length Output length

C_Encrypt BLOWFISH any input length rounded up to
multiple of the block size
C_Decrypt BLOWFISH multiple of block size between 1 and block length
block size bytes shorter than
input length
C_WrapKey BLOWFISH any input length rounded up to
multiple of the block size
C_UnwrapKey BLOWFISH multiple of block size between 1 and block length
block size bytes shorter than
input length
2.37 Twofish

Ref. https://www.schneier.com/twofish.html

2.37.1 Definitions

This section defines the key type ACKK_TWOFI SHO
CKA_KEY_TYPE attribute of key objects.
Mechanisms:

CKM_TWOFISH_KEY_GEN

CKM_TWOFISH_CBC

CKM_TWOFISH_CBC_PAD

2.37.2 Twofish secret key objects

Twofish secret key objects (object class CKO_SECRET_KEY, key type CKK_TWOFISH) hold Twofish
keys. The following table defines the Twofish secret key object attributes, in addition to the common
attributes defined for this object class:

Table 114, Twofish Secret Key Object

Attribute Data type Meaning

CKA_VALUE™*®’ Byte array Key value 128-, 192-, or
256-bit key

CKA _VALUE_LEN®® CK_ULONG Length in bytes of key
value

- Refer to [PKCS #11-Base] table $510 for footnotes

The following is a sample template for creating an TWOFISH secret key object:

CK_OBJECT_CLASS class = CKO_SECRET _KEY:;
CK_KEY_TYPE keyType = CKK _TWOFISH;

f

CK_UTF8CHAR | abel[] = AA twofish secret

CK_BYTE value[16] ={...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 139 of 199

or

ty|

key

file:///D:/blp/data/.%20http:/www.counterpane.com/twofish-brief.html

{CKA_CLASS, &class, sizeof(class)},

{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(tr

{CKA_LABEL, label, sizeof(label)
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

|8

2.37.3 Twofish key generation

The Twofish key generation mechanism, denoted CKM_TWOFISH_KEY_GEN, is a key generation

mechanism Twofish.
It does not have a parameter.

ue)},
-1}

The mechanism generates Blowfish keys with a particular length, as specified in the CKA_VALUE_LEN
attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the key type (specifically, the flags indicating which functions the key

supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bytes.

2.37.4 Twofish -CBC

Twofish-CBC, denoted CKM_TWOFISH_CBC, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping.

It has a parameter, a 16-byte initialization vector.

2.37.5 Twofish-CBC with PKCS padding

Twofish-CBC-PAD, denoted CKM_TOWFISH_CBC_PAD, is a mechanism for single- and multiple-part
encryption and decryption, key wrapping and key unwrapping, cipher-block chaining mode and the block
cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for
the CKA_VALUE_LEN attribute.

2.38 CAMELLIA

Camellia is a block cipher with 128-bit block size and 128-, 192-, and 256-bit keys, similar to AES.
Camellia is described e.g. in IETF RFC 3713.

Table 115, Camellia Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR! Key/ | Unwrap
Key
Pair
CKM_CAMELLIA_KEY_GEN \Y,
CKM_CAMELLIA_ECB \Y Y
pkcs11-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

Page 140 of 199

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify VR! Key/ Unwrap
Key
Pair
CKM_CAMELLIA CBC \% Y,
CKM_CAMELLIA CBC_PAD V Vv
CKM_CAMELLIA_ MAC_GENERAL Vv
CKM_CAMELLIA MAC \%
CKM_CAMELLIA_ ECB_ENCRYPT_DATA \%
CKM_CAMELLIA CBC_ENCRYPT_DATA \%

2.38.1 Definitions
This section defines the key type ACKK_CAMELLI A0 for t
CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_CAMELLIA_KEY_GEN
CKM_CAMELLIA_ECB
CKM_CAMELLIA_CBC
CKM_CAMELLIA MAC
CKM_CAMELLIA_MAC_GENERAL
CKM_CAMELLIA_CBC_PAD

2.38.2 Camellia secret key objects

Camellia secret key objects (object class CKO_SECRET_KEY, key type CKK_CAMELLIA) hold
Camellia keys. The following table defines the Camellia secret key object attributes, in addition to the
common attributes defined for this object class:

Table 116, Camellia Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"*®’ Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN*®® CK_ULONG Length in bytes of key
value

- Refer to [PKCS #11-Base] table 4510 for footnotes.

The following is a sample template for creating a Camellia secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAMELLIA;
CK_UTF8CHAR | abel [] = AA Camellia secret ke\
CK_BYTE value[] ={...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 141 of 199

{CKA_LABEL, label, sizeof(label) - 1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof(value)}

I3

2.38.3 Camellia key generation

The Camellia key generation mechanism, denoted CKM_CAMELLIA KEY_GEN, is a key generation
mechanism for Camellia.

It does not have a parameter.

The mechanism generates Camellia keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the Camellia key type (specifically, the flags indicating which functions
the key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.38.4 Camellia-ECB

Camellia-ECB, denoted CKM_CAMELLIA_ECB, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping, based on Camellia and electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 117, Camellia-ECB: Key and Data Length

Function Key type Input Output length Comments
length

C_Encrypt CKK_CAMELLIA multiple of same as input length no final part
block size

C_Decrypt CKK_CAMELLIA multiple of same as input length no final part
block size

C_WrapKey CKK_CAMELLIA any input length rounded up

to multiple of block size

C_UnwrapKey CKK_CAMELLIA multiple of determined by type of

block size | key being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 142 of 199

2.38.5 Camellia-CBC

Camellia-CBC, denoted CKM_CAMELLIA_CBC, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping, based on Camellia and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 118, Camellia-CBC: Key and Data Length

Function Key type Input Output length Comments
length
C_Encrypt CKK_CAMELLIA multiple of same as input length no final part
block size
C_Decrypt CKK_CAMELLIA multiple of same as input length no final part
block size
C_WrapKey CKK_CAMELLIA any input length rounded
up to multiple of the
block size
C_UnwrapKey CKK_CAMELLIA multiple of determined by type of
block size key being unwrapped
or CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.38.6 Camellia-CBC with PKCS padding

Camellia-CBC with PKCS padding, denoted CKM_CAMELLIA_CBC_PAD, is a mechanism for single-
and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on Camellia;
cipher-block chaining mode; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section
TBA for details). The entries in the table below for data length constraints when wrapping and
unwrapping keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 143 of 199

Table 119, Camellia-CBC with PKCS Padding: Key and Data Length

Function Key type Input Output length
length
C_Encrypt CKK_CAMELLIA any input length rounded up to
multiple of the block size
C_Decrypt CKK_CAMELLIA multiple of between 1 and block size
block size bytes shorter than input length
C_WrapKey CKK_CAMELLIA any input length rounded up to
multiple of the block size
C_UnwrapKey CKK_CAMELLIA multiple of between 1 and block length
block size bytes shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.38.7 General-length Camellia-MAC

General-length Camellia -MAC, denoted CKM_CAMELLIA_MAC_GENERAL, is a mechanism for single-
and multiple-part signatures and verification, based on Camellia and data authentication as defined
in.[CAMELLIA]

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final Camellia cipher block produced
in the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 120, General-length Camellia-MAC: Key and Data Length

Function Key type Data Signature length

length
C_Sign CKK_CAMELLIA any 0-block size, as specified in parameters
C_Verify CKK_CAMELLIA any 0-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.38.8 Camellia-MAC

Camellia-MAC, denoted by CKM_CAMELLIA_MAC, is a special case of the general-length Camellia-
MAC mechanism. Camellia-MAC always produces and verifies MACs that are half the block size in
length.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 121, Camellia-MAC: Key and Data Length

Function | Key type Data Signhature length
length

C_Sign CKK_CAMELLIA any % block size (8 bytes)

C_Verify CKK_CAMELLIA any ¥ block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 144 of 199

‘ 2.39 Key derivation by data encryption - Camellia

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

2.39.1 Definitions

Mechanisms:
CKM_CAMELLIA_ECB_ENCRYPT_DATA
CKM_CAMELLIA_CBC_ENCRYPT_DATA

typedef struct CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS {
CK_BYTE iv[16];
CK_BYTE_PTR pData;
CK_ULONG length;

} CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS;

typedef CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS CK_PTR
CK_CAMELLIA CBC_ENCRYPT _DATA_PARAMS_PTR;

2.39.2 Mechanism Parameters
Uses CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS, and CK_KEY_DERIVATION_STRING_DATA.

Table 122, Mechanism Parameters for Camellia-based key derivation

CKM_CAMELLIA_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.

CKM_CAMELLIA_CBC_ENCRYPT_DATA Uses
CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte 1V value followed by the
data. The data value part must be a multiple of 16
bytes long.

2.40 ARIA

ARIA is a block cipher with 128-bit block size and 128-, 192-, and 256-bit keys, similar to AES. ARIA is
described in NSRI ASpecification of ARI AO.

Table 123, ARIA Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify VR Key/ | Unwrap
Key
Pair
CKM_ARIA KEY_GEN \%
CKM_ARIA_ECB \Y, \%
CKM_ARIA_CBC \% \%
CKM_ARIA CBC_PAD \Y, \%
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 145 of 199

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify VR! Key/ Unwrap
Key
Pair
CKM_ARIA_MAC_GENERAL Y
CKM_ARIA_MAC \Y
CKM_ARIA ECB_ENCRYPT_DATA Y,
CKM_ARIA_CBC_ENCRYPT_DATA Y,
2.40.1 Definitions
This section defines the key type ACKK_ARI A0 for type
attribute of key objects.
Mechanisms:
CKM_ARIA_KEY_GEN
CKM_ARIA_ECB
CKM_ARIA_CBC
CKM_ARIA_MAC
CKM_ARIA_MAC_GENERAL
CKM_ARIA_CBC_PAD
2.40.2 Aria secret key objects
ARIA secret key objects (object class CKO_SECRET_KEY, key type CKK_ARIA) hold ARIA keys. The
following table defines the ARIA secret key object attributes, in addition to the common attributes defined
for this object class:
Table 124, ARIA Secret Key Object Attributes
Attribute Data type Meaning
CKA_VALUE"*®’ Byte array Key value (16, 24, or 32
bytes)
CKA_VALUE_LEN”*® CK_ULONG Length in bytes of key
value
- Refer to [PKCS #11-Base] table 4510 for footnotes.
The following is a sample template for creating an ARIA secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_ARIA,;
CK UTF8CHAR | abel[] = AAn ARI A secret key
CK_BYTE value[] ={...};
CK _BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) -1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

Page 146 of 199

1

ob

|5

2.40.3 ARIA key generation

The ARIA key generation mechanism, denoted CKM_ARIA_KEY_GEN, is a key generation mechanism
for Aria.

It does not have a parameter.

The mechanism generates ARIA keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the ARIA key type (specifically, the flags indicating which functions the
key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2.40.4 ARIA-ECB

ARIA-ECB, denoted CKM_ARIA_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on Aria and electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 125, ARIA-ECB: Key and Data Length

Function Key type Input Output length Comments
length

C_Encrypt CKK_ARIA multiple of same as input length no final part
block size

C_Decrypt CKK_ARIA multiple of same as input length no final part
block size

C_WrapKey CKK_ARIA any input length rounded up

to multiple of block size

C_UnwrapKey CKK_ARIA multiple of determined by type of

block size | key being unwrapped or
CKA_VALUE_LEN

For this mechanism, thelMinKeySizand ulMaxKeySizéelds of theCK_MECHANISM_INB@ucture specify the
supported range of ARIA key sizes, in bytes.

2.40.5 ARIA-CBC

ARIA-CBC, denoted CKM_ARIA_CBC, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on ARIA and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 147 of 199

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 126, ARIA-CBC: Key and Data Length

Function Key type Input Output length Gomments
length
C_Encrypt CKK_ARIA multiple of | same as input lengtl no final
block size part
C_Decrypt CKK_ARIA multiple of | same as input lengtf no final
block size part
| C_WrapKey | CKK_ARIA any input length
rounded up to
multiple of the block
size
| C_UnwrapKey| CKK_ARIA multiple of | determined by type
block size of key being
unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Aria key sizes, in bytes.

‘ 2.40.6 ARIA-CBC with PKCS padding

ARIA-CBC with PKCS padding, denoted CKM_ARIA_CBC_PAD, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on ARIA; cipher-block
chaining mode; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section
TBA for details). The entries in the table below for data length constraints when wrapping and
unwrapping keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v2.40-csprd02
Standards Track Work Product

23 April 2014

Copyright © OASIS Open 2014. All Rights Reserved. Page 148 of 199

Table 127, ARIA-CBC with PKCS Padding: Key and Data Length

Function Key type Input Output length
length
C_Encrypt CKK_ARIA any input length rounded up to
multiple of the block size
C_Decrypt CKK_ARIA multiple of between 1 and block size
block size bytes shorter than input length
C_WrapKey CKK_ARIA any input length rounded up to
multiple of the block size
C_UnwrapKey CKK_ARIA multiple of between 1 and block length
block size bytes shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2.40.7 General-length ARIA-MAC
General-length ARIA -MAC, denoted CKM_ARIA_MAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on ARIA and data authentication as defined in [FIPS 113].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final ARIA cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 128, General-length ARIA-MAC: Key and Data Length

Function Key type Data Signature length

length
C_Sign CKK_ARIA any 0-block size, as specified in parameters
C_Verify CKK_ARIA any 0-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2.40.8 ARIA-MAC

ARIA-MAC, denoted by CKM_ARIA_MAC, is a special case of the general-length ARIA-MAC
mechanism. ARIA-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 129, ARIA-MAC: Key and Data Length

Function Key type Data Signature length
length

C_Sign CKK_ARIA any % block size (8 bytes)

C_Verify CKK_ARIA any % block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.
2.41 Key derivation by data encryption - ARIA

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 149 of 199

2.41.1 Definitions

Mechanisms:
CKM_ARIA ECB_ENCRYPT_DATA
CKM_ARIA CBC_ENCRYPT_DATA

typedef struct CK_ARIA_CBC_ENCRYPT_DATA_PARAMS {
CK_BYTE iv[16];
CK_BYTE_PTR pData;
CK_ULONG length ;
} CK_ARIA_CBC_ENCRYPT_DATA_PARAMS;
typedef CK_ARIA_CBC_ENCRYPT_DATA PARAMS CK_PTR
CK_ARIA_CBC_ENCRYPT_DATA PARAMS_PTR;

2.41.2 Mechanism Parameters
Uses CK_ARIA_CBC_ENCRYPT _DATA_PARAMS, and CK_KEY_DERIVATION_STRING_DATA.

Table 130, Mechanism Parameters for Aria-based key derivation

CKM_ARIA_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted
and must be a multiple of 16 long.

CKM_ARIA_CBC_ENCRYPT_DATA Uses
CK_ARIA_CBC_ENCRYPT_DATA PARAMS.
Parameter is an 16 byte 1V value followed by the
data. The data value part must be a multiple of 16
bytes long.

2.42 SEED

SEED is a symmetric block cipher developed by the South Korean Information Security Agency (KISA). It
has a 128-bit key size and a 128-bit block size.

Its specification has been published as Internet [RFC 4269].
RFCs have been published defining the use of SEED in
TLS ftp://ftp.rfc-editor.org/in-notes/rfc4162.txt

IPsec ftp://ftp.rfc-editor.org/in-notes/rfc4196.txt

CMS ftp://ftp.rfc-editor.org/in-notes/rfc4010.txt

TLS cipher suites that use SEED include:

CipherSuit e TLS_RSA_WITH_SEED_CBC_SHA = {0x00,
Cir?kifr(ss}ﬂite TLS_DH_DSS_WITH_SEED_CBC_SHA ={0x00,
Cipf)rﬁr?s}ﬂite TLS_DH_RSA_WITH_SEED_CBC_SHA ={0x00,
Cip?rﬁrss}ﬂite TLS_DHE_DSS_WITH_SEED_CBC_SHA ={ 0x00,
Ci g)ri?é’uite TLS_DHE_RSA_WITH_SEED_CBC_SHA ={ 0x00,

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 150 of 199

ftp://ftp.rfc-editor.org/in-notes/rfc4162.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4196.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4010.txt

Ox9A};
CipherSuite TLS_DH_anon_WITH_SEED_CBC_SHA = { 0x00,
0x9B};

As with any block cipher, it can be used in the ECB, CBC, OFB and CFB modes of operation, as well as
in a MAC algorithm such as HMAC.

OIDs have been published for all these uses. A list may be seen at
http://www.alvestrand.no/objectid/1.2.410.200004.1.html

Table 131, SEED Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify VR! Key/ | Unwrap
Key
Pair
CKM_SEED_KEY_GEN Y
CKM_SEED_ECB Y
CKM_SEED_CBC Y
CKM_SEED_CBC_PAD \Y, vV
CKM_SEED_MAC_GENERAL Y
CKM_SEED_MAC Y
CKM_SEED_ECB_ENCRYPT_DATA Y
CKM_SEED_CBC_ENCRYPT_DATA Y

2.42.1 Definitions
This section defines the key type ACKK_SEEDO for
attribute of key objects.
Mechanisms:
CKM_SEED KEY_GEN
CKM_SEED_ECB
CKM_SEED_CBC
CKM_SEED_MAC
CKM_SEED_MAC_GENERAL
CKM_SEED CBC_PAD

For all of these mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
are always 16.

2.42.2 SEED secret key objects

SEED secret key objects (object class CKO_SECRET_KEY, key type CKK_SEED) hold SEED keys.
The following table defines the secret key object attributes, in addition to the common attributes defined
for this object class:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 151 of 199

type

http://www.alvestrand.no/objectid/1.2.410.200004.1.html

Table 132, SEED Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE™*®’ Byte array Key value (always 16
bytes long)

- Refer to [PKCS #11-Base] table 4510 for footnotes.

The following is a sample template for creating a SEED secret key object:

CK_OBJECT_CLASS dass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SEED;
CK_UTF8CHAR |l abel []
CK_BYTE value[] ={..};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(k eyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA _LABEL, label, sizeof(label) -1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}

h

‘ 2.42.3 SEED key generation

The SEED key generation mechanism, denoted CKM_SEED_KEY_GEN, is a key generation mechanism
for SEED.

It does not have a parameter.

The mechanism generates SEED keys.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SEED key type (specifically, the flags indicating which functions
the key supports) may be specified in the template for the key, or else are assigned default initial values.

AA SEED secret key

2.42.4 SEED-ECB

SEED-ECB, denoted CKM_SEED_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on SEED and electronic codebook mode.

It does not have a parameter.

2.42.5 SEED-CBC

SEED-CBC, denoted CKM_SEED_CBC, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on SEED and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

2.42.6 SEED-CBC with PKCS padding

SEED-CBC with PKCS padding, denoted CKM_SEED _CBC_PAD, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on SEED; cipher-
block chaining mode; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 152 of 199

obj

‘ 2.42.7 General-length SEED-MAC

General-length SEED-MAC, denoted CKM_SEED MAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on SEED and data authentication as defined in 0.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final cipher block produced in the
MACing process.

‘ 2.42.8 SEED-MAC

SEED-MAC, denoted by CKM_SEED_MAC, is a special case of the general-length SEED-MAC
mechanism. SEED-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.

2.43 Key derivation by data encryption - SEED

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

2.43.1 Definitions

Mechanisms:
CKM_SEED_ECB_ENCRYPT_DATA
CKM_SEED_CBC_ENCRYPT_DATA

typedef struct CK_SEED_CBC_ENCRYPT_DATA_PARAMS
CK_CBC_ENCRYPT_DATA_PARAMS;

typedef CK_CBC_ENCRYPT_DATA_PARAMS CK_PTR

CK_CBCENCRYPT_DATA_PARAMS_PTR:

2.43.2 Mechanism Parameters
Table 133, Mechanism Parameters for SEED-based key derivation

CKM_SEED_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.
CKM_SEED_CBC_ENCRYPT_DATA Uses CK_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte 1V value followed by the data.
The data value part must be a multiple of 16 bytes
long.

2.44 OTP

2.44.1 Usage overview

OTP tokens represented as PKCS #11 mechanisms may be used in a variety of ways. The usage cases
can be categorized according to the type of sought functionality.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 153 of 199

2.44.2 Case 1: Generation of OTP values

&.

User

Client Application

C_Sign()

PRTS #11 Library

User

Client Application

C_Sign()

PKCS #11 Library

Client API Connected Token AP Client AP Connected Token AP
Authentication Connected Authentication Connected
Server Token Server Token

Figure 1: Retrieving OTP values through C_Sign

Figure 1 shows an integration of PKCS #11 into an application that needs to authenticate users holding
OTP tokens. In this particular example, a connected hardware token is used, but a software token is
equally possible. The application invokes C_Sign to retrieve the OTP value from the token. In the
example, the application then passes the retrieved OTP value to a client API that sends it via the network
to an authentication server. The client API may implement a standard authentication protocol such as
RADIUS [RFC 2865] or EAP [RFC 3748], or a proprietary protocol such as that used by RSA Security's

ACE/Agent® software.

pkcs1l-curr-v2.40-csprd02
Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23 April 2014
Page 154 of 199

Server Application

I C_Verify()

PKCS #11 Library

A

2.44.3 Case 2: Verification of provided OTP values

Server Application

1 C_Verify()

PKCS #11 Library

v

Internal Token API

!

Token (or query to
authentication
server)

!

Internal Token API

!

Token (or query to
authentication
server)

Figure 2: Server-side verification of OTP values

Figure 2 illustrates the server-side equivalent of the scenario depicted in Figure 1. In this case, a server
application invokes C_Verify with the received OTP value as the signature value to be verified.

2.44.4 Case 3: Generation of OTP keys

Client Application Client Application

I C_GenerateKey() I C_GenerateKey()

PKCS #11 Library PKCS #11 Library

: !

Internal Token API

Internal Token API

i

i

Token (or software
version thereof)

Token (or software
version thereof)

pkcs1l-curr-v2.40-csprd02
Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23 April 2014
Page 155 of 199

Figure 3: Generation of an OTP key

Figure 3 shows an integration of PKCS #11 into an application that generates OTP keys. The application
invokes C_GenerateKey to generate an OTP key of a particular type on the token. The key may
subsequently be used as a basis to generate OTP values.

2.44.5 OTP objects

2.44.5.1 Key objects

OTP key objects (object class CKO_OTP_KEY) hold secret keys used by OTP tokens. The following
table defines the attributes common to all OTP keys, in addition to the attributes defined for secret keys,
all of which are inherited by this class:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 156 of 199

Table134: Common OTP key attributes

Attribute Data type Meaning
CKA _OTP_FORMAT CK_ULONG Format of OTP values produced
with this key:

CK_OTP_FORMAT_DECIMAL =
Decimal (default) (UTF8-encoded)
CK_OTP_FORMAT_HEXADECIMA
L = Hexadecimal (UTF8-encoded)
CK_OTP_FORMAT_ALPHANUME
RIC = Alphanumeric (UTF8-
encoded)
CK_OTP_FORMAT_BINARY =
Only binary values.

CKA_OTP_LENGTH® CK_ULONG | Default length of OTP values (in the
CKA_OTP_FORMAT) produced
with this key.

CKA_OTP_USER_FRIENDLY_MODE’ | CK_BBOOL | Setto CK_TRUE when the token is
capable of returning OTPs suitable
for human consumption. See the
description of
CKF_USER_FRIENDLY_OTP

below.
CKA_OTP CK_ULONG | Parameter requirements when
_CHALLENGE_REQUIREMENTg generating or verifying OTP values
with this key:

CK_OTP_PARAM_MANDATORY =
A challenge must be supplied.

CK_OTP_PARAM_OPTIONAL = A
challenge may be supplied but need
not be.
CK_OTP_PARAM_IGNORED = A
challenge, if supplied, will be
ignored.
CKA_OTP_TIME_REQUIREMENT9 CK_ULONG Parameter requirements when
generating or verifying OTP values
with this key:
CK_OTP_PARAM_MANDATORY =
A time value must be supplied.

CK_OTP_PARAM_OPTIONAL = A
time value may be supplied but
need not be.
CK_OTP_PARAM_IGNORED =A
time value, if supplied, will be
ignored.
CKA_OTP_COUNTER_REQUIREMEN | CK_ULONG Parameter requirements when

T° generating or verifying OTP values
with this key:
CK_OTP_PARAM_MANDATORY =
A counter value must be supplied.
CK_OTP_PARAM_OPTIONAL = A
counter value may be supplied but
need not be.

CK OTP_PARAM IGNORED = A

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 157 of 199

Attribute Data type Meaning

counter value, if supplied, will be
ignored.

CKA_OTP_PIN_REQUIREMENTg CK_ULONG Parameter requirements when
generating or verifying OTP values
with this key:
CK_OTP_PARAM_MANDATORY =
A PIN value must be supplied.

CK_OTP_PARAM_OPTIONAL = A
PIN value may be supplied but
need not be (if not supplied, then
library will be responsible for
collecting it)
CK_OTP_PARAM_IGNORED = A
PIN value, if supplied, will be
ignored.

CKA_OTP_COUNTER Byte array Value of the associated internal
counter. Default value is empty (i.e.
ulValueLen = 0).

CKA_OTP_TIME RFC 2279 Value of the associated internal
string UTC time in the form
YYYYMMDDhhmmss. Default value
is empty (i.e. ulValueLen= 0).

CKA_OTP_USER_IDENTIFIER RFC 2279 Text string that identifies a user
string associated with the OTP key (may
be used to enhance the user
experience). Default value is empty
(i.e. ulvValueLen = 0).

CKA_OTP_SERVICE_IDENTIFIER RFC 2279 Text string that identifies a service
string that may validate OTPs generated
by this key. Default value is empty
(i.e. ulValueLen = 0).
CKA_OTP_SERVICE_LOGO Byte array Logotype image that identifies a
service that may validate OTPs
generated by this key. Default value
is empty (i.e. ulValueLen = 0).
CKA_OTP_SERVICE_LOGO_TYPE RFC 2279 MIME type of the

string CKA_OTP_SERVICE_LOGO
attribute value. Default value is
empty (i.e. ulvValueLen = 0).

CKA_VALUE"**7 Byte array Value of the key.
CKA_VALUE_LEN*® CK_ULONG | Length in bytes of key value.

Refer to [PKCS #11-Base] Table 15 for table footnotes..

Note: A Cryptoki library may support PIN-code caching in order to reduce user interactions. An OTP-
PKCS #11 application should therefore always consult the state of the CKA_OTP_PIN_REQUIREMENT
attribute before each call to C_SignlInit, as the value of this attribute may change dynamically.

For OTP tokens with multiple keys, the keys may be enumerated using C_FindObjects. The
CKA_OTP_SERVICE_IDENTIFIER and/or the CKA_OTP_SERVICE_LOGO attribute may be used to
distinguish between keys. The actual choice of key for a particular operation is however application-
specific and beyond the scope of this document.

For all OTP keys, the CKA_ALLOWED_MECHANISMS attribute should be set as required.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 158 of 199

‘ 2.44.6 OTP-related notifications

This document extends the set of defined notifications as follows:

CKN_OTP_CHANGED Cryptoki is informing the application that the OTP for a key on a
connected token just changed. This notification is particularly useful
when applications wish to display the current OTP value for time-
based mechanisms.

2.44.7 OTP mechanisms

The following table shows, for the OTP mechanisms defined in this document, their support by different
cryptographic operations. For any particular token, of course, a particular operation may well support
only a subset of the mechanisms listed. There is also no guarantee that a token that supports one
mechanism for some operation supports any other mechanism for any other operation (or even supports
that same mechanism for any other operation).

Table 135: OTP mechanisms vs. applicable functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_SECURID_KEY_GEN Vv
CKM_SECURID Y,
CKM_HOTP_KEY_GEN Vv
CKM_HOTP Vv
CKM_ACTI_KEY_GEN Y
CKM_ACTI Vv

The remainder of this section will present in detail the OTP mechanisms and the parameters that are
supplied to them.

2.44.7.1 OTP mechanism parameters

| 8 CK_PARAM_TYPE
CK_PARAM_TYPE is a value that identifies an OTP parameter type. It is defined as follows:
typedef CK_ULONG CK_PARAM_TYPE;
The following CK_PARAM_TYPE types are defined:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 159 of 199

Table 136, OTP parameter types

Parameter Data type Meaning
CK_OTP_PIN RFC 2279 A UTF8 string containing a PIN for use
string when computing or verifying PIN-based
OTP values.
CK_OTP_CHALLENGE Byte array Challenge to use when computing or
verifying challenge-based OTP values.
CK_OTP_TIME RFC 2279 UTC time value in the form
string YYYYMMDDhhmmss to use when
computing or verifying time-based OTP
values.
CK_OTP_COUNTER Byte array Counter value to use when computing or
verifying counter-based OTP values.
CK_OTP_FLAGS CK_FLAGS Bit flags indicating the characteristics of the

sought OTP as defined below.

CK_OTP_OUTPUT_LENGTH | CK_ULONG Desired output length (overrides any default
value). A Cryptoki library will return
CKR_MECHANISM_PARAM_INVALID if a
provided length value is not supported.

CK_OTP_FORMAT CK_ULONG Returned OTP format (allowed values are
the same as for CKA_OTP_FORMAT). This
parameter is only intended for C_Sign
output, see paragraphs below. When not
present, the returned OTP format will be the
same as the value of the
CKA_OTP_FORMAT attribute for the key in

guestion.
CK_OTP_VALUE Byte array An actual OTP value. This parameter type is
intended for C_Sign output, see paragraphs
below.
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 160 of 199

The following table defines the possible values for the CK_OTP_FLAGS type:

Table 137:: OTP Mechanism Flags

Bit flag

Mask

Meaning

CKF_NEXT_OTP

0x00000001

True (i.e. set) if the OTP computation shall
be for the next OTP, rather than the current
one (current being interpreted in the context
of the algorithm, e.g. for the current counter
value or current time window). A Cryptoki
library shall return
CKR_MECHANISM_PARAM_INVALID if the
CKF_NEXT_OTP flag is set and the OTP
mechanism in question does not support the
concept of Anexto OTH
capable of generating the next OTP>.

CKF_EXCLUDE_TIME

0x00000002

True (i.e. set) if the OTP computation must
not include a time value. Will have an effect
only on mechanisms that do include a time
value in the OTP computation and then only
if the mechanism (and token) allows
exclusion of this value. A Cryptoki library
shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_EXCLUDE_COUNTER

0x00000004

True (i.e. set) if the OTP computation must
not include a counter value. Will have an
effect only on mechanisms that do include a
counter value in the OTP computation and
then only if the mechanism (and token)
allows exclusion of this value. A Cryptoki
library shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_EXCLUDE_CHALLENGE

0x00000008

True (i.e. set) if the OTP computation must
not include a challenge. Will have an effect
only on mechanisms that do include a
challenge in the OTP computation and then
only if the mechanism (and token) allows
exclusion of this value. A Cryptoki library
shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

5 Applications that may need to retrieve the next OTP should be prepared to handle this situation. For example, an

application could store the OTP value returned by C_Sign so that, if a next OTP is required, it can compare it to the

OTP value returned by subsequent calls to C_Sign should it turn out that the library does not support the

CKF_NEXT_OTP flag.

pkcs1l-curr-v2.40-csprd02

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved.

23 April 2014
Page 161 of 199

Bit flag

Mask

Meaning

CKF_EXCLUDE_PIN

0x00000010

True (i.e. set) if the OTP computation must
not include a PIN value. Will have an effect
only on mechanisms that do include a PIN in
the OTP computation and then only if the
mechanism (and token) allows exclusion of
this value. A Cryptoki library shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_USER_FRIENDLY_OTP

0x00000020

True (i.e. set) if the OTP returned shall be in
a form suitable for human consumption. If
this flag is set, and the call is successful,
then the returned CK_OTP_VALUE shall be
a UTF8-encoded printable string. A Cryptoki
library shall return
CKR_MECHANISM_PARAM_INVALID if this
flag is set when
CKA_OTP_USER_FRIENDLY_MODE for
the key in question is CK_FALSE.

Note: Even if CKA_OTP_FORMAT is not set to CK_OTP_FORMAT_BINARY, then there may still be

value in setting the CKF_USER_FRIENDLY flag (assuming CKA_USER_FRIENDLY_MODE is
CK_TRUE, of course) if the intent is for a human to read the generated OTP value, since it may become

shorter or otherwise better suited for a user. Applications that do not intend to provide a returned OTP

value to a user should not set the CKF_USER_FRIENDLY_OTP flag.
8 CK_OTP_PARAM; CK_OTP_PARAM PTR

CK_OTP_PARAM is a structure that includes the type, value, and length of an OTP parameter. It is

defined as follows:

typedef struct CK_OTP_PARAM {

CK_PARAM_TYP

E type;

CK_VOID_PTR pValue;
CK_ULONGulValueLen;

} CK_OTP_PARAM:;

The fields of the structure have the following meanings:

type
pValue

ulValuelLen

the parameter type
pointer to the value of the parameter

length in bytes of the value

If a parameter has no value, then ulValueLen = 0, and the value of pValue is irrelevant. Note that pValue

is a Avoido po

inter, facilitating the passing

of

must ensure that the pointer can be safely cast to the expected type (i.e., without word-alignment errors).
CK_OTP_PARAM_PTR is a pointer to a CK_OTP_PARAM.
CK_OTP_PARAMS; CK_OTP_PARAMS_PTR

CK_OTP_PARAMS is a structure that is used to provide parameters for OTP mechanisms in a generic

fashion. It is defined as follows:

typedef struct CK_OTP_PARAMS

CK_OTP_PARAM_PTR pParams;

CK_ULONG ulCount;

} CK_OTP_PARAMS;

pkcs1l-curr-v2.40-csprd02
Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

{

23 April 2014

Page 162 of 199

ar bi t

The fields of the structure have the following meanings:
pParams pointer to an array of OTP parameters

ulCount the number of parameters in the array

CK_OTP_PARAMS_PTR is a pointer to a CK_OTP_PARAMS.

When calling C_Signlnit or C_Verifylnit with a mechanism that takes a CK_OTP_PARAMS structure as a
parameter, the CK_OTP_PARAMS structure shall be populated in accordance with the
CKA_OTP_X_REQUIREMENT key attributes for the identified key, where X is PIN, CHALLENGE, TIME,
or COUNTER.

For example, if CKA_OTP_TIME_REQUIREMENT = CK_OTP_PARAM_MANDATORY, then the
CK_OTP_TIME parameter shall be present. If CKA_OTP_TIME_REQUIREMENT =
CK_OTP_PARAM_OPTIONAL, then a CK_OTP_TIME parameter may be present. If it is not present,
then the library may collect it (during the C_Sign call). If CKA_OTP_TIME_REQUIREMENT =
CK_OTP_PARAM_IGNORED, then a provided CK_OTP_TIME parameter will always be ignored.
Additionally, a provided CK_OTP_TIME parameter will always be ignored if CKF_EXCLUDE_TIME is set
in a CK_OTP_FLAGS parameter. Similarly, if this flag is set, a library will not attempt to collect the value
itself, and it will also instruct the token not to make use of any internal value, subject to token policies. It is
an error (CKR_MECHANISM_PARAM_INVALID) to set the CKF_EXCLUDE_TIME flag when the
CKA_TIME_REQUIREMENT attribute is CK_OTP_PARAM_MANDATORY.

The above discussion holds for all CKA_OTP_X_REQUIREMENT attributes (i.e.,
CKA_OTP_PIN_REQUIREMENT, CKA_OTP_CHALLENGE_REQURIEMENT,
CKA_OTP_COUNTER_REQUIREMENT, CKA_OTP_TIME_REQUIREMENT). A library may set a
particular CKA_OTP_X REQUIREMENT attribute to CK_OTP_PARAM_OPTIONAL even if it is required
by the mechanism as long as the token (or the library itself) has the capability of providing the value to the
computation. One example of this is a token with an on-board clock.

In addition, applications may use the CK_OTP_FLAGS, the CK_OTP_OUTPUT_FORMAT and the
CK_OUTPUT_LENGTH parameters to set additional parameters.

CK_OTP_SIGNATURE_INFO, CK_OTP_SIGNATURE_INFO_PTR

CK_OTP_SIGNATURE_INFO is a structure that is returned by all OTP mechanisms in successful calls to
C_Sign (C_sSignFinal). The structure informs applications of actual parameter values used in particular
OTP computations in addition to the OTP value itself. It is used by all mechanisms for which the key
belongs to the class CKO_OTP_KEY and is defined as follows:

typedef struct CK_OTP_SIGNATURE_INFO {
CK_OTP_PARAM_PTR pParams;
CK_ULONG ulCount;

} CK_OTP_SIGNATURE_INFO;

The fields of the structure have the following meanings:
pParams pointer to an array of OTP parameter values

ulCount the number of parameters in the array

After successful calls to C_Sign or C_SignFinal with an OTP mechanism, the pSignature parameter will
be set to pointto a CK_OTP_SIGNATURE_INFO structure. One of the parameters in this structure will be
the OTP value itself, identified with the CK_OTP_VALUE tag. Other parameters may be present for
informational purposes, e.g. the actual time used in the OTP calculation. In order to simplify OTP
validations, authentication protocols may permit authenticating parties to send some or all of these
parameters in addition to OTP values themselves. Applications should therefore check for their presence
in returned CK_OTP_SIGNATURE_INFO values whenever such circumstances apply.

Since C_Sign and C_SignFinal follows the convention described in Section 11.2 on producing output, a
call to C_Sign (or C_SignFinal) with pSignature set to NULL_PTR will return (in the pulSignatureLen
parameter) the required number of bytes to hold the CK_OTP_SIGNATURE_INFO structure as well as all

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 163 of 199

the data in all its CK_OTP_PARAM components. If an application allocates a memory block based on
this information, it shall therefore not subsequently de-allocate components of such a received value but
rather de-allocate the complete CK_OTP_PARAMS structure itself. A Cryptoki library that is called with a
non-NULL pSignature pointer will assume that it points to a contiguous memory block of the size
indicated by the pulSignatureLen parameter.

When verifying an OTP value using an OTP mechanism, pSignature shall be set to the OTP value itself,
e.g. the value of the CK_OTP_VALUE component of a CK_OTP_PARAMS structure returned by a call to
C_Sign. The CK_OTP_PARAMS value supplied in the C_Verifylnit call sets the values to use in the
verification operation.

CK_OTP_SIGNATURE_INFO_PTR points to a CK_OTP_SIGNATURE_INFO.
2.44.8 RSA SecurlD

2.44.8.1 RSA SecurlD secret key objects

RSA SecurlD secret key objects (object class CKO_OTP_KEY, key type CKK_SECURID) hold RSA
SecurlD secret keys. The following table defines the RSA SecurlD secret key object attributes, in
addition to the common attributes defined for this object class:

Table 31138, RSA SecurlD secret key object attributes

Attribute Data type Meaning

CKA_OTP_TIME_INTERVAL" CK_ULONG | Interval between OTP values produced
with this key, in seconds. Default is 60.

Refer to [PKCS #11-Base] Table 15 for table footnotes

The following is a sample template for creating an RSA SecurlD secret key object:

CK_OBJECT_CLASS class = CKO_OTP_KEY;
CK_KEY_TYPE keyType = CKK_SECURID;
CK_DATE endDate = {...};
CK_UTF8CHAR | abel[][] = ARSA Securl D secret
CK_BYTE keyld[]={...};
CK_ULONG outputF ormat = CK_OTP_FORMAT_DECIMAL;
CK_ULONG outputLength = 6;
CK_ULONG needPIN = CK_OTP_PARAM_MANDATORY;
CK_ULONG timelnterval = 60;
CK_BYTE value[] ={...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_END_DATE, &endDate, sizeof(endDate)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) - 1},
{CKA_SIGN, &true, sizeof(true)},
{CKA_VERIFY, &true, sizeof(tru e},
{CKA_ID, keyld, sizeof(keyld)},
{CKA_OTP_FORMAT, &outputFormat, sizeof(outputFormat)},
{CKA_OTP_LENGTH, &outputLength, sizeof(outputLength)},
{CKA_OTP_PIN_REQUIREMENT, &needPIN, sizeof(needPIN)},
{CKA_OTP_TIME_INTERVAL, &timelnterval,

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 164 of 199

K

sizeof(time Interval)},
{CKA_VALUE, value, sizeof(value)}

|5

2.44.9 RSA SecurlD key generation

The RSA SecurlD key generation mechanism, denoted CKM_SECURID_KEY_GEN, is a key generation
mechanism for the RSA SecurlD algorithm.

It does not have a parameter.

The mechanism generates RSA SecurlD keys with a particular set of attributes as specified in the
template for the key.

The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE_LEN, and
CKA_VALUE attributes to the new key. Other attributes supported by the RSA SecurID key type may be
specified in the template for the key, or else are assigned default initial values

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of SecurlD key sizes, in bytes.

2.44.10 RSA SecurID OTP generation and validation

CKM_SECURID is the mechanism for the retrieval and verification of RSA SecurlD OTP values.
The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

When signing or verifying using the CKM_SECURID mechanism, pData shall be set to NULL_PTR and
ulDatalLen shall be set to 0.

2.44.11 Return values

Support for the CKM_SECURID mechanism extends the set of return values for C_Verify with the
following values:

1 CKR_NEW_PIN_MODE: The supplied OTP was not accepted and the library requests a new OTP
computed using a new PIN. The new PIN is set through means out of scope for this document.

1 CKR_NEXT_OTP: The supplied OTP was correct but indicated a larger than normal drift in the
token's internal state (e.g. clock, counter). To ensure this was not due to a temporary problem, the
application should provide the next one-time password to the library for verification.

2.44.12 OATH HOTP

2.44.12.1 OATH HOTP secret key objects

HOTP secret key objects (object class CKO_OTP_KEY, key type CKK_HOTP) hold generic secret keys
and associated counter values.

The CKA_OTP_COUNTER value may be set at key generation; however, some tokens may set it to a

fixed initial val ue. Depending on the tokemwmy security
not be revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its

CKA_EXTRACTABLE attribute set to CK_FALSE.

For HOTP keys, the CKA_OTP_COUNTER value shall be an 8 bytes unsigned integer in big endian (i.e.
network byte order) form. The same holds true for a CK_OTP_COUNTER value in a CK_OTP_PARAM
structure.

The following is a sample template for creating a HOTP secret key object:

CK_OBJECT_CLASS class = CKO_OTP_KEY:;
CK_KEY_TYPE keyType = CKK_HOTP;

CK_UTF8CHAR | abel[] =ka#HoOdobP]jsetdet
CK_BYTE keyld[]={...};
pkcs1l-curr-v2.40-csprd02 23 April 2014

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 165 of 199

CK_ULONG outputFormat = CK_OTP_FORMAT_DECIMAL,;
CK_ULONG outputLength = 6;
CK_DATE endDate ={...};
CK_BYTE counterValue[8] = {0};
CK_BYTE value[] ={...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_END_DATE, &endDate, sizeof(endDate)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) -1},
{CKA_SIGN, &true, sizeof(t rue)},
{CKA_VERIFY, &true, sizeof(true)},
{CKA _ID, keyld, sizeof(keyld)},
{CKA_OTP_FORMAT, &outputFormat, sizeof(outputFormat)},
{CKA_OTP_LENGTH, &outputLength, sizeof(outputLength)},
{CKA_OTP_COUNTER, counterValue, sizeof(counterValue)},
{CKA_VALUE, value, sizeof(value)}

h

2.44.12.2 HOTP key generation

The HOTP key generation mechanism, denoted CKM_HOTP_KEY_GEN, is a key generation mechanism
for the HOTP algorithm.

It does not have a parameter.
The mechanism generates HOTP keys with a particular set of attributes as specified in the template for
the key.

The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_OTP_COUNTER,
CKA_VALUE and CKA_VALUE_LEN attributes to the new key. Other attributes supported by the HOTP
key type may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of HOTP key sizes, in bytes.

2.44.12.3 HOTP OTP generation and validation

CKM_HOTP is the mechanism for the retrieval and verification of HOTP OTP values based on the current
internal counter, or a provided counter.

The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

As for the CKM_SECURID mechanism, when signing or verifying using the CKM_HOTP mechanism,
pData shall be set to NULL_PTR and ulDatalLen shall be set to 0.

For verify operations, the counter value CK_OTP_COUNTER must be provided as a CK_OTP_PARAM
parameter to C_Verifylnit. When verifying an OTP value using the CKM_HOTP mechanism, pSignature
shall be set to the OTP value itself, e.g. the value of the CK_OTP_VALUE component of a
CK_OTP_PARAMS structure in the case of an earlier call to C_Sign.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 166 of 199

2.44.13 Activildentity ACTI

2.44.13.1 ACTI secret key objects

ACTI secret key objects (object class CKO_OTP_KEY, key type CKK_ACT]I) hold Actividentity ACTI
secret keys.

For ACTI keys, the CKA_OTP_COUNTER value shall be an 8 bytes unsigned integer in big endian (i.e.

network byte order) form. The same holds true for the CK_OTP_COUNTER value in the
CK_OTP_PARAM structure.

The CKA_OTP_COUNTER value may be set at key generation; however, some tokens may set it to a
fixed initial value. Depending on the tokenods
not be revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its
CKA_EXTRACTABLE attribute set to CK_FALSE.

The CKA_OTP_TIME value may be set at key generation; however, some tokens may set it to a fixed

initial value. Dependi licy, this valua nag nottbe rkoglified and/&r may nat et y

revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its CKA_EXTRACTABLE
attribute set to CK_FALSE.

The following is a sample template for creating an ACTI secret key object:

CK_OB.ECT_CLASS class = CKO_OTP_KEY;
CK_KEY_TYPE keyType = CKK_ACTI,

CK_UTF8CHAR | abel][] = AACTI secret key

CK_BYTE keyld[]={...};

CK_ULONG outputFormat = CK_OTP_FORMAT_DECIMAL;

CK_ULONG outputLength = 6;

CK_DATE endDate ={...};

CK_BYTE counterValue[8]={0};

CK_BYTE value[] ={..};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_END_DATE, &endDate, sizeof(endDate)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) - 1},
{CKA_SIGN, &true, sizeof(true)},
{CKA _VERIFY, &true, sizeof(true)},
{CKA_ID, keyld, sizeof(keyld)},
{CKA_OTP_FORMAT, &outputFormat,
sizeof(outputFormat)},
{CKA_OTP_LENGTH, &outputLen gth,
sizeof(outputLength)},
{CKA_OTP_COUNTER, counterValue,
sizeof(counterValue)},
{CKA_VALUE, value, sizeof(value)}

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 167 of 199

security

po

obj e

2.44.13.2 ACTI key generation

The ACTI key generation mechanism, denoted CKM_ACTI_KEY_GEN, is a key generation mechanism
for the ACTI algorithm.

It does not have a parameter.

The mechanism generates ACTI keys with a particular set of attributes as specified in the template for the
key.

The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE and

CKA_VALUE_LEN attributes to the new key. Other attributes supported by the ACTI key type may be
specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ACTI key sizes, in bytes.

2.44.14 ACTI OTP generation and validation

CKM_ACTI is the mechanism for the retrieval and verification of ACTI OTP values.
The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

When signing or verifying using the CKM_ACTI mechanism, pData shall be set to NULL_PTR and
ulDatalLen shall be set to 0.

When verifying an OTP value using the CKM_ACTI mechanism, pSignature shall be set to the OTP value
itself, e.g. the value of the CK_OTP_VALUE component of a CK_OTP_PARAMS structure in the case of
an earlier call to C_Sign.

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 168 of 199

2.45 CT-KIP

2.45.1 Principles of Operation

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 169 of 199

Server Application

A

Client Application

C_DeriveKey,
C_WrapKey,
C_Verify

PKCS #11 Library

A

Internal Token API

Token (or software
version thereof)

Server Application

A

Client Application

C_DeriveKey,
C_WrapKey,
C_Verify

PKCS #11 Library

A

Internal Token API

Token (or software
version thereof)

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 170 of 199

Figure 4: PKCS #11 and CT-KIP integration

Figure 3 shows an integration of PKCS #11 into an application that generates cryptographic keys through
the use of CT-KIP. The application invokes C_DeriveKey to derive a key of a particular type on the token.
The key may subsequently be used as a basis to e.g., generate one-time password values. The
application communicates with a CT-KIP server that participates in the key derivation and stores a copy
of the key in its database. The key is transferred to the server in wrapped form, after a call to
C_WrapKey. The server authenticates itself to the client and the client verifies the authentication by calls
to C_Verify.

2.45.2 Mechanisms

The following table shows, for the mechanisms defined in this document, their support by different
cryptographic operations. For any particular token, of course, a particular operation may well support
only a subset of the mechanisms listed. There is also no guarantee that a token that supports one
mechanism for some operation supports any other mechanism for any other operation (or even supports
that same mechanism for any other operation).

Table 13932: CT-KIP Mechanisms vs. applicable functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR* Key/ | Unwrap
Key
Pair
CKM_KIP_DERIVE Y
CKM_KIP_WRAP Y
CKM_KIP_MAC Vv

The remainder of this section will present in detail the mechanisms and the parameters that are supplied
to them.

2.45.3 Definitions

Mechanisms:
CKM_KIP_DERIVE
CKM_KIP_WRAP
CKM_KIP_MAC

2.45.4 CT-KIP Mechanism parameters

§ CK_KIP_ PARAMS; CK_KIP_ PARAMS_PTR

CK_KIP_PARAMS is a structure that provides the parameters to all the CT-KIP related mechanisms: The
CKM_KIP_DERIVE key derivation mechanism, the CKM_KIP_WRAP key wrap and key unwrap
mechanism, and the CKM_KIP_MAC signature mechanism. The structure is defined as follows:
typedef struct CK_KIP_PARAMS {
CK_MECHANISM_PTR pMechanism,;
CK_OBJECT_HANDLE hKey;
CK_BYTE_PTR pSeed,;
CK_ULONG ulSeedLen,;
} CK_KIP_PARAMS;

The fields of the structure have the following meanings:

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 171 of 199

pMechanism pointer to the underlying cryptographic mechanism (e.g. AES, SHA-
256), see further 0, Appendix D

hKey handle to a key that will contribute to the entropy of the derived key
(CKM_KIP_DERIVE) or will be used in the MAC operation
(CKM_KIP_MAC)

pSeed pointer to an input seed
ulSeedLen length in bytes of the input seed

CK_KIP_PARAMS_PTR is a pointer to a CK_KIP_PARAMS structure.

2.45.5 CT-KIP key derivation

The CT-KIP key derivation mechanism, denoted CKM_KIP_DERIVE, is a key derivation mechanism that
is capable of generating secret keys of potentially any type, subject to token limitations.

It takes a parameter of type CK_KIP_PARAMS which allows for the passing of the desired underlying
cryptographic mechanism as well as some other data. In particular, when the hKey parameter is a handle
to an existing key, that key will be used in the key derivation in addition to the hBaseKey of C_DeriveKey.
The pSeed parameter may be used to seed the key derivation operation.

The mechanism derives a secret key with a particular set of attributes as specified in the attributes of the
template for the key.

The mechanism contributes the CKA_CLASS and CKA_VALUE attributes to the new key. Other
attributes supported by the key type may be specified in the template for the key, or else will be assigned
default initial values. Since the mechanism is generic, the CKA_KEY_TYPE attribute should be set in the
template, if the key is to be used with a particular mechanism.

2.45.6 CT-KIP key wrap and key unwrap
The CT-KIP key wrap and unwrap mechanism, denoted CKM_KIP_WRAP, is a key wrap mechanism that
is capable of wrapping and unwrapping generic secret keys.

It takes a parameter of type CK_KIP_PARAMS, which allows for the passing of the desired underlying
cryptographic mechanism as well as some other data. It does not make use of the hKey parameter of
CK_KIP_PARAMS.

2.45.7 CT-KIP signature generation
The CT-KIP signature (MAC) mechanism, denoted CKM_KIP_MAC, is a mechanism used to produce a
message authentication code of arbitrary length. The keys it uses are secret keys.

It takes a parameter of type CK_KIP_PARAMS, which allows for the passing of the desired underlying
cryptographic mechanism as well as some other data. The mechanism does not make use of the pSeed
and the ulSeedLen parameters of CT_KIP_PARAMS.

This mechanism produces a MAC of the length specified by pulSignatureLen parameter in calls to
C_Sign.

If a call to C_Sign with this mechanism fails, then no output will be generated.

2.46 GOST

The remainder of this section will present in detail the mechanisms and the parameters which are
supplied to them.

Table 140, GOST Mechanisms vs. Functions

pkcs1l-curr-v2.40-csprd02 23 April 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 172 of 199

