
pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 1 of 200

PKCS #11 Cryptographic Token Interface
Current Mechanisms Specification Version
2.40

Committee Specification 02

16 November 2014

Specification URIs
This version:

http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs02/pkcs11-curr-v2.40-cs02.doc
(Authoritative)
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs02/pkcs11-curr-v2.40-cs02.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs02/pkcs11-curr-v2.40-cs02.pdf

Previous version:
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs01/pkcs11-curr-v2.40-cs01.doc
(Authoritative)
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs01/pkcs11-curr-v2.40-cs01.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs01/pkcs11-curr-v2.40-cs01.pdf

Latest version:
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.doc (Authoritative)
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.pdf

Technical Committee:

OASIS PKCS 11 TC

Chairs:
Robert Griffin (robert.griffin@rsa.com), EMC Corporation
Valerie Fenwick (valerie.fenwick@oracle.com), Oracle

Editors:
Susan Gleeson (susan.gleeson@oracle.com), Oracle
Chris Zimman (chris@wmpp.com), Individual

Related work:

This specification is related to:

 PKCS #11 Cryptographic Token Interface Base Specification Version 2.40. Edited by Susan
Gleeson and Chris Zimman. Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-
base/v2.40/pkcs11-base-v2.40.html.

 PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification Version 2.40.
Edited by Susan Gleeson and Chris Zimman. Latest version. http://docs.oasis-
open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html.

 PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Edited by John
Leiseboer and Robert Griffin. Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-
ug/v2.40/pkcs11-ug-v2.40.html.

 PKCS #11 Cryptographic Token Interface Profiles Version 2.40. Edited by Tim Hudson.
Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-
v2.40.html.

http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs02/pkcs11-curr-v2.40-cs02.doc
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs02/pkcs11-curr-v2.40-cs02.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs02/pkcs11-curr-v2.40-cs02.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs01/pkcs11-curr-v2.40-cs01.doc
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs01/pkcs11-curr-v2.40-cs01.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs01/pkcs11-curr-v2.40-cs01.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.doc
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.pdf
https://www.oasis-open.org/committees/pkcs11/
mailto:robert.griffin@rsa.com
http://www.emc.com/
mailto:valerie.fenwick@oracle.com
http://www.oracle.com/
mailto:susan.gleeson@oracle.com
http://www.oracle.com/
mailto:chris@wmpp.com
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 2 of 200

Abstract:
This document defines mechanisms that are anticipated for use with the current version of PKCS
#11.

Status:
This document was last revised or approved by the OASIS PKCS 11 TC on the above date. The
level of approval is also listed above. Check the “Latest version” location noted above for possible
later revisions of this document. Any other numbered Versions and other technical work produced
by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=pkcs11#technical.

TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/pkcs11/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/pkcs11/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[PKCS11-curr-v2.40]

PKCS #11 Cryptographic Token Interface Current Mechanisms Specification Version 2.40. Edited
by Susan Gleeson and Chris Zimman. 16 November 2014. OASIS Committee Specification 02.
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs02/pkcs11-curr-v2.40-cs02.html. Latest
version: http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=pkcs11
https://www.oasis-open.org/committees/pkcs11/
https://www.oasis-open.org/committees/pkcs11/
https://www.oasis-open.org/committees/pkcs11/ipr.php
https://www.oasis-open.org/committees/pkcs11/ipr.php
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cs02/pkcs11-curr-v2.40-cs02.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 3 of 200

Notices

Copyright © OASIS Open 2014. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 4 of 200

Table of Contents

1 Introduction ... 12

1.1 Terminology .. 12

1.2 Definitions ... 12

1.3 Normative References .. 13

1.4 Non-Normative References .. 15

2 Mechanisms ... 17

2.1 RSA ... 17

2.1.1 Definitions .. 18

2.1.2 RSA public key objects .. 19

2.1.3 RSA private key objects .. 19

2.1.4 PKCS #1 RSA key pair generation ... 21

2.1.5 X9.31 RSA key pair generation ... 22

2.1.6 PKCS #1 v1.5 RSA ... 22

2.1.7 PKCS #1 RSA OAEP mechanism parameters ... 23

2.1.8 PKCS #1 RSA OAEP .. 24

2.1.9 PKCS #1 RSA PSS mechanism parameters .. 25

2.1.10 PKCS #1 RSA PSS ... 25

2.1.11 ISO/IEC 9796 RSA .. 26

2.1.12 X.509 (raw) RSA ... 26

2.1.13 ANSI X9.31 RSA ... 27

2.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-384, SHA-512, RIPE-
MD 128 or RIPE-MD 160 ... 28

2.1.15 PKCS #1 v1.5 RSA signature with SHA-224 .. 29

2.1.16 PKCS #1 RSA PSS signature with SHA-224 .. 29

2.1.17 PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-512 29

2.1.18 ANSI X9.31 RSA signature with SHA-1 .. 29

2.1.19 TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA ... 30

2.1.20 TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP .. 30

2.1.21 RSA AES KEY WRAP ... 31

2.1.22 RSA AES KEY WRAP mechanism parameters .. 32

2.1.23 FIPS 186-4 .. 33

2.2 DSA ... 33

2.2.1 Definitions .. 33

2.2.2 DSA public key objects .. 34

2.2.3 DSA Key Restrictions .. 35

2.2.4 DSA private key objects .. 35

2.2.5 DSA domain parameter objects .. 36

2.2.6 DSA key pair generation ... 37

2.2.7 DSA domain parameter generation ... 37

2.2.8 DSA probabilistic domain parameter generation... 37

2.2.9 DSA Shawe-Taylor domain parameter generation ... 38

2.2.10 DSA base domain parameter generation .. 38

2.2.11 DSA without hashing ... 38

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 5 of 200

2.2.12 DSA with SHA-1 .. 39

2.2.13 FIPS 186-4 .. 39

2.2.14 DSA with SHA-224 .. 39

2.2.15 DSA with SHA-256 .. 40

2.2.16 DSA with SHA-384 .. 40

2.2.17 DSA with SHA-512 .. 41

2.3 Elliptic Curve ... 41

2.3.1 EC Signatures ... 42

2.3.2 Definitions .. 43

2.3.3 ECDSA public key objects ... 43

2.3.4 Elliptic curve private key objects ... 44

2.3.5 Elliptic curve key pair generation... 45

2.3.6 ECDSA without hashing .. 45

2.3.7 ECDSA with SHA-1 ... 46

2.3.8 EC mechanism parameters ... 46

2.3.9 Elliptic curve Diffie-Hellman key derivation ... 49

2.3.10 Elliptic curve Diffie-Hellman with cofactor key derivation .. 49

2.3.11 Elliptic curve Menezes-Qu-Vanstone key derivation ... 50

2.3.12 ECDH AES KEY WRAP .. 50

2.3.13 ECDH AES KEY WRAP mechanism parameters ... 52

2.3.14 FIPS 186-4 .. 52

2.4 Diffie-Hellman ... 52

2.4.1 Definitions .. 53

2.4.2 Diffie-Hellman public key objects .. 53

2.4.3 X9.42 Diffie-Hellman public key objects .. 54

2.4.4 Diffie-Hellman private key objects ... 55

2.4.5 X9.42 Diffie-Hellman private key objects .. 56

2.4.6 Diffie-Hellman domain parameter objects ... 57

2.4.7 X9.42 Diffie-Hellman domain parameters objects ... 57

2.4.8 PKCS #3 Diffie-Hellman key pair generation .. 58

2.4.9 PKCS #3 Diffie-Hellman domain parameter generation ... 58

2.4.10 PKCS #3 Diffie-Hellman key derivation ... 59

2.4.11 X9.42 Diffie-Hellman mechanism parameters ... 59

2.4.12 X9.42 Diffie-Hellman key pair generation .. 62

2.4.13 X9.42 Diffie-Hellman domain parameter generation ... 63

2.4.14 X9.42 Diffie-Hellman key derivation .. 63

2.4.15 X9.42 Diffie-Hellman hybrid key derivation ... 63

2.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation .. 64

2.5 Wrapping/unwrapping private keys .. 65

2.6 Generic secret key .. 67

2.6.1 Definitions .. 67

2.6.2 Generic secret key objects .. 67

2.6.3 Generic secret key generation .. 68

2.7 HMAC mechanisms .. 68

2.8 AES ... 68

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 6 of 200

2.8.1 Definitions .. 69

2.8.2 AES secret key objects ... 69

2.8.3 AES key generation ... 70

2.8.4 AES-ECB ... 70

2.8.5 AES-CBC ... 71

2.8.6 AES-CBC with PKCS padding .. 72

2.8.7 AES-OFB ... 72

2.8.8 AES-CFB ... 73

2.8.9 General-length AES-MAC ... 73

2.8.10 AES-MAC .. 73

2.8.11 AES-XCBC-MAC ... 74

2.8.12 AES-XCBC-MAC-96 .. 74

2.9 AES with Counter ... 74

2.9.1 Definitions .. 74

2.9.2 AES with Counter mechanism parameters ... 75

2.9.3 AES with Counter Encryption / Decryption .. 75

2.10 AES CBC with Cipher Text Stealing CTS ... 76

2.10.1 Definitions .. 76

2.10.2 AES CTS mechanism parameters .. 76

2.11 Additional AES Mechanisms .. 76

2.11.1 Definitions .. 76

2.12 AES-GCM Authenticated Encryption / Decryption.. 77

2.12.1 AES-CCM authenticated Encryption / Decryption ... 77

2.12.2 AES-GMAC ... 78

2.12.3 AES GCM and CCM Mechanism parameters ... 79

2.12.4 AES-GCM authenticated Encryption / Decryption... 80

2.12.5 AES-CCM authenticated Encryption / Decryption ... 80

2.13 AES CMAC ... 81

2.13.1 Definitions .. 81

2.13.2 Mechanism parameters ... 82

2.13.3 General-length AES-CMAC ... 82

2.13.4 AES-CMAC.. 82

2.14 AES Key Wrap .. 82

2.14.1 Definitions .. 83

2.14.2 AES Key Wrap Mechanism parameters .. 83

2.14.3 AES Key Wrap .. 83

2.15 Key derivation by data encryption – DES & AES ... 83

2.15.1 Definitions .. 84

2.15.2 Mechanism Parameters .. 84

2.15.3 Mechanism Description ... 85

2.16 Double and Triple-length DES .. 85

2.16.1 Definitions .. 85

2.16.2 DES2 secret key objects ... 86

2.16.3 DES3 secret key objects ... 86

2.16.4 Double-length DES key generation ... 87

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 7 of 200

2.16.5 Triple-length DES Order of Operations ... 87

2.16.6 Triple-length DES in CBC Mode ... 87

2.16.7 DES and Triple length DES in OFB Mode .. 87

2.16.8 DES and Triple length DES in CFB Mode ... 88

2.17 Double and Triple-length DES CMAC .. 88

2.17.1 Definitions .. 89

2.17.2 Mechanism parameters ... 89

2.17.3 General-length DES3-MAC ... 89

2.17.4 DES3-CMAC ... 89

2.18 SHA-1 ... 90

2.18.1 Definitions .. 90

2.18.2 SHA-1 digest ... 90

2.18.3 General-length SHA-1-HMAC ... 91

2.18.4 SHA-1-HMAC .. 91

2.18.5 SHA-1 key derivation ... 91

2.19 SHA-224 ... 92

2.19.1 Definitions .. 92

2.19.2 SHA-224 digest ... 92

2.19.3 General-length SHA-224-HMAC ... 92

2.19.4 SHA-224-HMAC .. 93

2.19.5 SHA-224 key derivation ... 93

2.20 SHA-256 ... 93

2.20.1 Definitions .. 93

2.20.2 SHA-256 digest ... 93

2.20.3 General-length SHA-256-HMAC ... 94

2.20.4 SHA-256-HMAC .. 94

2.20.5 SHA-256 key derivation ... 94

2.21 SHA-384 ... 94

2.21.1 Definitions .. 94

2.21.2 SHA-384 digest ... 95

2.21.3 General-length SHA-384-HMAC ... 95

2.21.4 SHA-384-HMAC .. 95

2.21.5 SHA-384 key derivation ... 95

2.22 SHA-512 ... 95

2.22.1 Definitions .. 95

2.22.2 SHA-512 digest ... 96

2.22.3 General-length SHA-512-HMAC ... 96

2.22.4 SHA-512-HMAC .. 96

2.22.5 SHA-512 key derivation ... 96

2.23 SHA-512/224 .. 96

2.23.1 Definitions .. 96

2.23.2 SHA-512/224 digest .. 97

2.23.3 General-length SHA-512-HMAC ... 97

2.23.4 SHA-512/224-HMAC ... 97

2.23.5 SHA-512/224 key derivation.. 97

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 8 of 200

2.24 SHA-512/256 .. 97

2.24.1 Definitions .. 98

2.24.2 SHA-512/256 digest .. 98

2.24.3 General-length SHA-512-HMAC ... 98

2.24.4 SHA-512/256-HMAC ... 98

2.24.5 SHA-512/256 key derivation.. 98

2.25 SHA-512/t ... 98

2.25.1 Definitions .. 99

2.25.2 SHA-512/t digest ... 99

2.25.3 General-length SHA-512-HMAC ... 99

2.25.4 SHA-512/t-HMAC .. 99

2.25.5 SHA-512/t key derivation ... 100

2.26 PKCS #5 and PKCS #5-style password-based encryption (PBE).. 100

2.26.1 Definitions .. 100

2.26.2 Password-based encryption/authentication mechanism parameters.................................... 100

2.26.3 PKCS #5 PBKDF2 key generation mechanism parameters ... 101

2.26.4 PKCS #5 PBKD2 key generation .. 103

2.27 PKCS #12 password-based encryption/authentication mechanisms ... 103

2.27.1 SHA-1-PBE for 3-key triple-DES-CBC .. 104

2.27.2 SHA-1-PBE for 2-key triple-DES-CBC .. 104

2.27.3 SHA-1-PBA for SHA-1-HMAC ... 104

2.28 SSL ... 105

2.28.1 Definitions .. 105

2.28.2 SSL mechanism parameters ... 105

2.28.3 Pre-master key generation .. 107

2.28.4 Master key derivation .. 107

2.28.5 Master key derivation for Diffie-Hellman ... 108

2.28.6 Key and MAC derivation .. 109

2.28.7 MD5 MACing in SSL 3.0 ... 110

2.28.8 SHA-1 MACing in SSL 3.0 .. 110

2.29 TLS 1.2 Mechanisms .. 110

2.29.1 Definitions .. 111

2.29.2 TLS 1.2 mechanism parameters ... 111

2.29.3 TLS MAC ... 114

2.29.4 Master key derivation .. 114

2.29.5 Master key derivation for Diffie-Hellman ... 115

2.29.6 Key and MAC derivation .. 116

2.29.7 CKM_TLS12_KEY_SAFE_DERIVE .. 116

2.29.8 Generic Key Derivation using the TLS PRF .. 117

2.30 WTLS .. 117

2.30.1 Definitions .. 118

2.30.2 WTLS mechanism parameters .. 118

2.30.3 Pre master secret key generation for RSA key exchange suite .. 121

2.30.4 Master secret key derivation ... 121

2.30.5 Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography 122

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 9 of 200

2.30.6 WTLS PRF (pseudorandom function) ... 123

2.30.7 Server Key and MAC derivation .. 123

2.30.8 Client key and MAC derivation .. 124

2.31 Miscellaneous simple key derivation mechanisms ... 125

2.31.1 Definitions .. 125

2.31.2 Parameters for miscellaneous simple key derivation mechanisms 125

2.31.3 Concatenation of a base key and another key .. 126

2.31.4 Concatenation of a base key and data .. 126

2.31.5 Concatenation of data and a base key .. 127

2.31.6 XORing of a key and data ... 128

2.31.7 Extraction of one key from another key ... 128

2.32 CMS .. 129

2.32.1 Definitions .. 130

2.32.2 CMS Signature Mechanism Objects ... 130

2.32.3 CMS mechanism parameters .. 130

2.32.4 CMS signatures ... 131

2.33 Blowfish... 132

2.33.1 Definitions .. 133

2.33.2 BLOWFISH secret key objects .. 133

2.33.3 Blowfish key generation .. 134

2.33.4 Blowfish-CBC .. 134

2.33.5 Blowfish-CBC with PKCS padding .. 134

2.34 Twofish .. 135

2.34.1 Definitions .. 135

2.34.2 Twofish secret key objects .. 135

2.34.3 Twofish key generation ... 136

2.34.4 Twofish -CBC .. 136

2.34.5 Twofish-CBC with PKCS padding ... 136

2.35 CAMELLIA .. 136

2.35.1 Definitions .. 137

2.35.2 Camellia secret key objects ... 137

2.35.3 Camellia key generation .. 138

2.35.4 Camellia-ECB .. 138

2.35.5 Camellia-CBC .. 138

2.35.6 Camellia-CBC with PKCS padding ... 139

2.35.7 General-length Camellia-MAC .. 140

2.35.8 Camellia-MAC ... 140

2.36 Key derivation by data encryption - Camellia ... 141

2.36.1 Definitions .. 141

2.36.2 Mechanism Parameters .. 141

2.37 ARIA .. 141

2.37.1 Definitions .. 142

2.37.2 Aria secret key objects .. 142

2.37.3 ARIA key generation ... 143

2.37.4 ARIA-ECB .. 143

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 10 of 200

2.37.5 ARIA-CBC ... 143

2.37.6 ARIA-CBC with PKCS padding ... 144

2.37.7 General-length ARIA-MAC .. 145

2.37.8 ARIA-MAC ... 145

2.38 Key derivation by data encryption - ARIA ... 145

2.38.1 Definitions .. 146

2.38.2 Mechanism Parameters .. 146

2.39 SEED .. 146

2.39.1 Definitions .. 147

2.39.2 SEED secret key objects ... 148

2.39.3 SEED key generation .. 148

2.39.4 SEED-ECB .. 148

2.39.5 SEED-CBC .. 148

2.39.6 SEED-CBC with PKCS padding .. 149

2.39.7 General-length SEED-MAC ... 149

2.39.8 SEED-MAC.. 149

2.40 Key derivation by data encryption - SEED ... 149

2.40.1 Definitions .. 149

2.40.2 Mechanism Parameters .. 149

2.41 OTP ... 150

2.41.1 Usage overview ... 150

2.41.2 Case 1: Generation of OTP values ... 150

2.41.3 Case 2: Verification of provided OTP values .. 151

2.41.4 Case 3: Generation of OTP keys .. 151

2.41.5 OTP objects ... 152

2.41.6 OTP-related notifications ... 154

2.41.7 OTP mechanisms .. 155

2.41.8 RSA SecurID ... 160

2.41.9 RSA SecurID key generation .. 161

2.41.10 RSA SecurID OTP generation and validation ... 161

2.41.11 Return values .. 161

2.41.12 OATH HOTP.. 161

2.41.13 ActivIdentity ACTI .. 163

2.41.14 ACTI OTP generation and validation .. 164

2.42 CT-KIP .. 164

2.42.1 Principles of Operation .. 164

2.42.2 Mechanisms .. 165

2.42.3 Definitions .. 165

2.42.4 CT-KIP Mechanism parameters .. 165

2.42.5 CT-KIP key derivation ... 166

2.42.6 CT-KIP key wrap and key unwrap ... 166

2.42.7 CT-KIP signature generation ... 166

2.43 GOST .. 166

2.44 GOST 28147-89 ... 167

2.44.1 Definitions .. 167

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 11 of 200

2.44.2 GOST 28147-89 secret key objects .. 167

2.44.3 GOST 28147-89 domain parameter objects ... 168

2.44.4 GOST 28147-89 key generation ... 169

2.44.5 GOST 28147-89-ECB ... 169

2.44.6 GOST 28147-89 encryption mode except ECB .. 170

2.44.7 GOST 28147-89-MAC ... 170

2.44.8 Definitions .. 171

2.44.9 GOST R 34.11-94 domain parameter objects ... 172

2.44.10 GOST R 34.11-94 digest ... 172

2.44.11 GOST R 34.11-94 HMAC .. 173

2.45 GOST R 34.10-2001 ... 173

2.45.1 Definitions .. 173

2.45.2 GOST R 34.10-2001 public key objects .. 174

2.45.3 GOST R 34.10-2001 private key objects .. 175

2.45.4 GOST R 34.10-2001 domain parameter objects... 177

2.45.5 GOST R 34.10-2001 mechanism parameters ... 178

2.45.6 GOST R 34.10-2001 key pair generation .. 180

2.45.7 GOST R 34.10-2001 without hashing ... 180

2.45.8 GOST R 34.10-2001 with GOST R 34.11-94 .. 180

2.45.9 GOST 28147-89 keys wrapping/unwrapping with GOST R 34.10-2001 181

3 PKCS #11 Implementation Conformance .. 182

Appendix A. Acknowledgments ... 183

Appendix B. Manifest Constants ... 186

B.1 OTP Definitions .. 186

B.2 Object classes .. 186

B.3 Key types .. 186

B.4 Mechanisms ... 187

B.5 Attributes .. 194

B.6 Attribute constants .. 196

B.7 Other constants .. 196

B.8 Notifications .. 197

B.9 Return values ... 197

Appendix C. Revision History .. 200

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 12 of 200

1 Introduction

This document defines mechanisms that are anticipated to be used with the current version of PKCS #11.

All text is normative unless otherwise labeled.

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119]

1.2 Definitions

For the purposes of this standard, the following definitions apply. Please refer to the [PKCS#11-Base] for
further definitions:

 AES Advanced Encryption Standard, as defined in FIPS PUB 197.

 CAMELLIA The Camellia encryption algorithm, as defined in RFC 3713.

 BLOWFISH The Blowfish Encryption Algorithm of Bruce Schneier,
www.schneier.com.

 CBC Cipher-Block Chaining mode, as defined in FIPS PUB 81.

 CDMF Commercial Data Masking Facility, a block encipherment method
specified by International Business Machines Corporation and
based on DES.

 CMAC Cipher-based Message Authenticate Code as defined in [NIST
sp800-38b] and [RFC 4493].

 CMS Cryptographic Message Syntax (see RFC 2630)

 CT-KIP Cryptographic Token Key Initialization Protocol (as defined in [[CT-
KIP])

 DES Data Encryption Standard, as defined in FIPS PUB 46-3.

 DSA Digital Signature Algorithm, as defined in FIPS PUB 186-2.

 EC Elliptic Curve

 ECB Electronic Codebook mode, as defined in FIPS PUB 81.

 ECDH Elliptic Curve Diffie-Hellman.

 ECDSA Elliptic Curve DSA, as in ANSI X9.62.

 ECMQV Elliptic Curve Menezes-Qu-Vanstone

 GOST 28147-89 The encryption algorithm, as defined in Part 2 [GOST 28147-89]

and [RFC 4357] [RFC 4490], and RFC [4491].

http://www.schneier.com/

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 13 of 200

 GOST R 34.11-94 Hash algorithm, as defined in [GOST R 34.11-94] and [RFC 4357],
[RFC 4490], and [RFC 4491].

 GOST R 34.10-2001 The digital signature algorithm, as defined in [GOST R 34.10-2001]
and [RFC 4357], [RFC 4490], and [RFC 4491].

 IV Initialization Vector.

 MAC Message Authentication Code.

 MQV Menezes-Qu-Vanstone

 OAEP Optimal Asymmetric Encryption Padding for RSA.

 PKCS Public-Key Cryptography Standards.

 PRF Pseudo random function.

 PTD Personal Trusted Device, as defined in MeT-PTD

 RSA The RSA public-key cryptosystem.

 SHA-1 The (revised) Secure Hash Algorithm with a 160-bit message digest,
as defined in FIPS PUB 180-2.

 SHA-224 The Secure Hash Algorithm with a 224-bit message digest, as
defined in RFC 3874. Also defined in FIPS PUB 180-2 with Change
Notice 1.

 SHA-256 The Secure Hash Algorithm with a 256-bit message digest, as
defined in FIPS PUB 180-2.

 SHA-384 The Secure Hash Algorithm with a 384-bit message digest, as
defined in FIPS PUB 180-2.

 SHA-512 The Secure Hash Algorithm with a 512-bit message digest, as
defined in FIPS PUB 180-2.

 SSL The Secure Sockets Layer 3.0 protocol.

 SO A Security Officer user.

 TLS Transport Layer Security.

 WIM Wireless Identification Module.

 WTLS Wireless Transport Layer Security.

1.3 Normative References

[ARIA] National Security Research Institute, Korea, “Block Cipher Algorithm ARIA”,
URL: http://tools.ietf.org/html/rfc5794

http://tools.ietf.org/html/rfc5794

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 14 of 200

[BLOWFISH] B. Schneier. Description of a New Variable-Length Key, 64-Bit Block Cipher
(Blowfish), December 1993.
URL: https://www.schneier.com/paper-blowfish-fse.html

[CAMELLIA] M. Matsui, J. Nakajima, S. Moriai. A Description of the Camellia Encryption
Algorithm, April 2004.
URL: http://www.ietf.org/rfc/rfc3713.txt

[CDMF] Johnson, D.B The Commercial Data Masking Facility (CDMF) data privacy
algorithm, March 1994.
URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5389557

[DH] W. Diffie, M. Hellman. New Directions in Cryptography. Nov, 1976.
URL: http://www-ee.stanford.edu/~hellman/publications/24.pdf

[FIPS PUB 81] NIST. FIPS 81: DES Modes of Operation. December 1980.

URL: http://csrc.nist.gov/publications/fips/fips81/fips81.htm

[FIPS PUB 186-4] NIST. FIPS 186-4: Digital Signature Standard. July 2013.
URL: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[FIPS PUB 197] NIST. FIPS 197: Advanced Encryption Standard. November 26, 2001.
URL: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[GOST] V. Dolmatov, A. Degtyarev. GOST R. 34.11-2012: Hash Function. August 2013.
URL: http://tools.ietf.org/html/rfc6986

[MD2] B. Kaliski. RSA Laboratories. The MD2 Message-Digest Algorithm. April, 1992.
URL: http://tools.ietf.org/html/rfc1319

[MD5] RSA Data Security. R. Rivest. The MD5 Message-Digest Algorithm. April, 1992.
URL: http://tools.ietf.org/html/rfc1319

[OAEP] M. Bellare, P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt with
RSA. Nov 19, 1995.
URL: http://cseweb.ucsd.edu/users/mihir/papers/oae.pdf

[PKCS #11-Base] PKCS #11 Cryptographic Token Interface Base Specification Version 2.40.
Edited by Susan Gleeson and Chris Zimman. Latest version: http://docs.oasis-
open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html.

[PKCS #11-Hist] PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification
Version 2.40. Edited by Susan Gleeson and Chris Zimman. Latest version:
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html.

[PKCS #11-Prof] PKCS #11 Cryptographic Token Interface Profiles Version 2.40. Edited by Tim
Hudson. Latest version: http://docs.oasis-open.org/pkcs11/pkcs11-
profiles/v2.40/pkcs11-profiles-v2.40.html.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
14, RFC 2119, March 1997.
URL: http://www.ietf.org/rfc/rfc2119.txt.

[RIPEMD] H. Dobbertin, A. Bosselaers, B. Preneel. The hash function RIPEMD-160, Feb
13, 2012.
URL: http://homes.esat.kuleuven.be/~bosselae/ripemd160.html

[SEED] KISA. SEED 128 Algorithm Specification. Sep 2003.
URL: http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+1
28_Specification_english_M.pdf

[SHA-1] NIST. FIPS 180-4: Secure Hash Standard. March 2012.
URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[SHA-2] NIST. FIPS 180-4: Secure Hash Standard. March 2012.
URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[TWOFISH] B. Schneier, J. Kelsey, D. Whiting, C. Hall, N. Ferguson. Twofish: A 128-Bit Block
Cipher. June 15, 1998.
URL: https://www.schneier.com/paper-twofish-paper.pdf

https://www.schneier.com/paper-blowfish-fse.html
http://www.ietf.org/rfc/rfc3713.txt
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5389557
http://www-ee.stanford.edu/~hellman/publications/24.pdf
http://csrc.nist.gov/publications/fips/fips81/fips81.htm
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc6986
http://tools.ietf.org/html/rfc1319
http://tools.ietf.org/html/rfc1319
http://cseweb.ucsd.edu/users/mihir/papers/oae.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html
http://www.ietf.org/rfc/rfc2119.txt
http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+128_Specification_english_M.pdf
http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+128_Specification_english_M.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://www.schneier.com/paper-twofish-paper.pdf

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 15 of 200

1.4 Non-Normative References

[CAP-1.2] Common Alerting Protocol Version 1.2. 01 July 2010. OASIS Standard.
URL: http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html

[AES KEYWRAP] AES Key Wrap Specification (Draft)
URL: http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf.

[ANSI C] ANSI/ISO. American National Standard for Programming Languages – C. 1990.

[ANSI X9.31] Accredited Standards Committee X9. Digital Signatures Using Reversible Public
Key Cryptography for the Financial Services Industry (rDSA). 1998.

[ANSI X9.42] Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm
Cryptography. 2003.

[ANSI X9.62] Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). 1998.

[ANSI X9.63] Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: Key Agreement and Key Transport Using Elliptic Curve
Cryptography. 2001.
URL: http://webstore.ansi.org/RecordDetail.aspx?sku=X9.63-2011

[CT-KIP] RSA Laboratories. Cryptographic Token Key Initialization Protocol. Version 1.0,
December 2005.
URL: ftp://ftp.rsasecurity.com/pub/otps/ct-kip/ct-kip-v1-0.pdf.

[CC/PP] CCPP-STRUCT-VOCAB, G. Klyne, F. Reynolds, C. , H. Ohto, J. Hjelm, M. H.
Butler, L. Tran, Editors, W3C Recommendation, 15 January 2004,
URL: http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
Latest version available at http://www.w3.org/TR/CCPP-struct-vocab/

[NIST AES CTS] National Institute of Standards and Technology, Addendum to NIST Special
Publication 800-38A, “Recommendation for Block Cipher Modes of Operation:
Three Variants of Ciphertext Stealing for CBC Mode”
URL: http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-
38A.pdf

[PKCS #11-UG] PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Edited by
John Leiseboer and Robert Griffin. Latest version: http://docs.oasis-
open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html.

[RFC 2865] Rigney et al, “Remote Authentication Dial In User Service (RADIUS)”, IETF
RFC2865, June 2000.
URL: http://www.ietf.org/rfc/rfc2865.txt.

[RFC 3394] J. Schaad, R. Housley, Advanced Encryption Standard (AES) Key Wrap
Algorithm, September 2002.
URL: http://www.ietf.org/rfc/rfc3394.txt.

[RFC 3686] Housley, “Using Advanced Encryption Standard (AES) Counter Mode With IPsec
Encapsulating Security Payload (ESP),” IETF RFC 3686, January 2004.
URL: http://www.ietf.org/rfc/rfc3686.txt.

[RFC 3717] Matsui, et al, ”A Description of the Camellia Encryption Algorithm,” IETF RFC
3717, April 2004.
URL: http://www.ietf.org/rfc/rfc3713.txt.

[RFC 3610] Whiting, D., Housley, R., and N. Ferguson, “Counter with CBC-MAC (CCM)",
IETF RFC 3610, September 2003.
URL: http://www.ietf.org/rfc/rfc3610.txt

[RFC 3874] Smit et al, “A 224-bit One-way Hash Function: SHA-224,” IETF RFC 3874, June
2004.
URL: http://www.ietf.org/rfc/rfc3874.txt.

[RFC 3748] Aboba et al, “Extensible Authentication Protocol (EAP)”, IETF RFC 3748, June
2004.
URL: http://www.ietf.org/rfc/rfc3748.txt.

http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html
http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=X9.63-2011
ftp://ftp.rsasecurity.com/pub/otps/ct-kip/ct-kip-v1-0.pdf
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/TR/CCPP-struct-vocab/
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://ietf.org/rfc/rfc2865.txt
http://www.ietf.org/rfc/rfc3394.txt
http://ietf.org/rfc/rfc3686.txt
http://ietf.org/rfc/rfc3713.txt
http://www.ietf.org/rfc/rfc3610.txt
http://ietf.org/rfc/rfc3874.txt
http://ietf.org/rfc/rfc3748.txt

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 16 of 200

[RFC 4269] South Korean Information Security Agency (KISA) “The SEED Encryption
Algorithm”, December 2005.
URL: ftp://ftp.rfc-editor.org/in-notes/rfc4269.txt

[RFC 4309] Housley, R., “Using Advanced Encryption Standard (AES) CCM Mode with
IPsec Encapsulating Security Payload (ESP),” IETF RFC 4309, December 2005.
URL: http://www.ietf.org/rfc/rfc4309.txt

[RFC 4357] V. Popov, I. Kurepkin, S. Leontiev “Additional Cryptographic Algorithms for Use
with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R
34.11-94 Algorithms”, January 2006.

[RFC 4490] S. Leontiev, Ed. G. Chudov, Ed. “Using the GOST 28147-89, GOST R 34.11-
94,GOST R 34.10-94, and GOST R 34.10-2001 Algorithms with Cryptographic
Message Syntax (CMS)”, May 2006.

[RFC 4491] S. Leontiev, Ed., D. Shefanovski, Ed., “Using the GOST R 34.10-94, GOST R
34.10-2001, and GOST R 34.11-94 Algorithms with the Internet X.509 Public Key
Infrastructure Certificate and CRL Profile”, May 2006.

[RFC 4493] J. Song et al. RFC 4493: The AES-CMAC Algorithm. June 2006.
URL: http://www.ietf.org/rfc/rfc4493.txt

[SEC 1] Standards for Efficient Cryptography Group (SECG). Standards for Efficient
Cryptography (SEC) 1: Elliptic Curve Cryptography. Version 1.0, September 20,
2000.

[SEC 2] Standards for Efficient Cryptography Group (SECG). Standards for Efficient
Cryptography (SEC) 2: Recommended Elliptic Curve Domain Parameters.
Version 1.0, September 20, 2000.

[TLS] [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC 2246,
January 1999. http://www.ietf.org/rfc/rfc2246.txt, superseded by [RFC4346]
Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version
1.1", RFC 4346, April 2006. http://www.ietf.org/rfc/rfc4346.txt, which was
superseded by [5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.
URL: http://www.ietf.org/rfc/rfc5246.txt

[WIM] WAP. Wireless Identity Module. — WAP-260-WIM-20010712-a. July 2001.
URL: http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.as
p?DocName=/wap/wap-260-wim-20010712-a.pdf

[WPKI] Wireless Application Protocol: Public Key Infrastructure Definition. — WAP-217-
WPKI-20010424-a. April 2001.
URL: http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.as
p?DocName=/wap/wap-217-wpki-20010424-a.pdf

[WTLS] WAP. Wireless Transport Layer Security Version — WAP-261-WTLS-20010406-
a. April 2001.
URL: http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.as
p?DocName=/wap/wap-261-wtls-20010406-a.pdf

[X.500] ITU-T. Information Technology — Open Systems Interconnection — The
Directory: Overview of Concepts, Models and Services. February 2001. Identical
to ISO/IEC 9594-1

[X.509] ITU-T. Information Technology — Open Systems Interconnection — The
Directory: Public-key and Attribute Certificate Frameworks. March 2000.
Identical to ISO/IEC 9594-8

[X.680] ITU-T. Information Technology — Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. July 2002. Identical to ISO/IEC 8824-1

[X.690] ITU-T. Information Technology — ASN.1 Encoding Rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished
Encoding Rules (DER). July 2002. Identical to ISO/IEC 8825-1

ftp://ftp.rfc-editor.org/in-notes/rfc4269.txt
http://ietf.org/rfc/rfc4309.txt
http://www.ietf.org/rfc/rfc4493.txt
http://www.ietf.org/rfc/rfc5246.txt
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-260-wim-20010712-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-260-wim-20010712-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-217-wpki-20010424-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-217-wpki-20010424-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-261-wtls-20010406-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-261-wtls-20010406-a.pdf

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 17 of 200

2 Mechanisms
A mechanism specifies precisely how a certain cryptographic process is to be performed. PKCS #11
implementations MAY use one of more mechanisms defined in this document.

The following table shows which Cryptoki mechanisms are supported by different cryptographic
operations. For any particular token, of course, a particular operation may well support only a subset of
the mechanisms listed. There is also no guarantee that a token which supports one mechanism for some
operations supports any other mechanism for any other operation (or even supports that same
mechanism for any other operation). For example, even if a token is able to create RSA digital signatures
with the CKM_RSA_PKCS mechanism, it may or may not be the case that the same token can also
perform RSA encryption with CKM_RSA_PKCS.

Each mechanism description is be preceded by a table, of the following format, mapping mechanisms to
API functions.

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

1

SR = SignRecover, VR = VerifyRecover.

2 Single-part operations only.

3 Mechanism can only be used for wrapping, not unwrapping.

The remainder of this section will present in detail the mechanisms supported by Cryptoki and the parameters which are supplied to them.

In general, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen fields of the CK_MECHANISM_INFO structure, then those fields have no

meaning for that particular mechanism.

2.1 RSA

Table 1, Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_RSA_PKCS_KEY_PAIR_GEN

CKM_RSA_X9_31_KEY_PAIR_GEN

CKM_RSA_PKCS
2

2

CKM_RSA_PKCS_OAEP
2

CKM_RSA_PKCS_PSS
2

CKM_RSA_9796
2

CKM_RSA_X_509
2

2

CKM_RSA_X9_31
2

CKM_SHA1_RSA_PKCS

CKM_SHA256_RSA_PKCS

CKM_SHA384_RSA_PKCS

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 18 of 200

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SHA512_RSA_PKCS

CKM_SHA1_RSA_PKCS_PSS

CKM_SHA256_RSA_PKCS_PSS

CKM_SHA384_RSA_PKCS_PSS

CKM_SHA512_RSA_PKCS_PSS

CKM_SHA1_RSA_X9_31

CKM_RSA_PKCS_TPM_1_1
2

CKM_RSA_PKCS_OAEP_TPM_1_1
2

2.1.1 Definitions

This section defines the RSA key type “CKK_RSA” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of RSA key objects.

Mechanisms:

CKM_RSA_PKCS_KEY_PAIR_GEN

CKM_RSA_PKCS

CKM_RSA_9796

CKM_RSA_X_509

CKM_MD2_RSA_PKCS

CKM_MD5_RSA_PKCS

CKM_SHA1_RSA_PKCS

CKM_SHA224_RSA_PKCS

CKM_SHA256_RSA_PKCS

CKM_SHA384_RSA_PKCS

CKM_SHA512_RSA_PKCS

CKM_RIPEMD128_RSA_PKCS

CKM_RIPEMD160_RSA_PKCS

CKM_RSA_PKCS_OAEP

CKM_RSA_X9_31_KEY_PAIR_GEN

CKM_RSA_X9_31

CKM_SHA1_RSA_X9_31

CKM_RSA_PKCS_PSS

CKM_SHA1_RSA_PKCS_PSS

CKM_SHA224_RSA_PKCS_PSS

CKM_SHA256_RSA_PKCS_PSS

CKM_SHA512_RSA_PKCS_PSS

CKM_SHA384_RSA_PKCS_PSS

CKM_RSA_PKCS_TPM_1_1

CKM_RSA_PKCS_OAEP_TPM_1_1

CKM_RSA_AES_KEY_WRAP

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 19 of 200

2.1.2 RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold RSA public keys.
The following table defines the RSA public key object attributes, in addition to the common attributes
defined for this object class:

Table 2, RSA Public Key Object Attributes

Attribute Data type Meaning

CKA_MODULUS
1,4

 Big integer Modulus n

CKA_MODULUS_BITS
2,3

 CK_ULONG Length in bits of modulus n

CKA_PUBLIC_EXPONENT
1
 Big integer Public exponent e

- Refer to [PKCS #11-Base] table 10 for footnotes

Depending on the token, there may be limits on the length of key components. See PKCS #1 for more
information on RSA keys.

The following is a sample template for creating an RSA public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;

CK_KEY_TYPE keyType = CKK_RSA;

CK_UTF8CHAR label[] = “An RSA public key object”;

CK_BYTE modulus[] = {...};

CK_BYTE exponent[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_WRAP, &true, sizeof(true)},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_MODULUS, modulus, sizeof(modulus)},

 {CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)}

};

2.1.3 RSA private key objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold RSA private keys.
The following table defines the RSA private key object attributes, in addition to the common attributes
defined for this object class:

Table 3, RSA Private Key Object Attributes

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 20 of 200

Attribute Data type Meaning

CKA_MODULUS
1,4,6

 Big integer Modulus n

CKA_PUBLIC_EXPONENT
4,6

 Big integer Public exponent e

CKA_PRIVATE_EXPONENT
1,4,6,7

 Big integer Private exponent d

CKA_PRIME_1
4,6,7

 Big integer Prime p

CKA_PRIME_2
4,6,7

 Big integer Prime q

CKA_EXPONENT_1
4,6,7

 Big integer Private exponent d modulo p-1

CKA_EXPONENT_2
4,6,7

 Big integer Private exponent d modulo q-1

CKA_COEFFICIENT
4,6,7

 Big integer CRT coefficient q
-1

 mod p

- Refer to [PKCS #11-Base] table 10 for footnotes

Depending on the token, there may be limits on the length of the key components. See PKCS #1 for
more information on RSA keys.

Tokens vary in what they actually store for RSA private keys. Some tokens store all of the above
attributes, which can assist in performing rapid RSA computations. Other tokens might store only the
CKA_MODULUS and CKA_PRIVATE_EXPONENT values. Effective with version 2.40, tokens MUST
also store CKA_PUBLIC_EXPONENT. This permits the retrieval of sufficient data to reconstitute the
associated public key.

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a token generates an
RSA private key, it stores whichever of the fields in Table 3 it keeps track of. Later, if an application asks
for the values of the key’s various attributes, Cryptoki supplies values only for attributes whose values it
can obtain (i.e., if Cryptoki is asked for the value of an attribute it cannot obtain, the request fails). Note
that a Cryptoki implementation may or may not be able and/or willing to supply various attributes of RSA
private keys which are not actually stored on the token. E.g., if a particular token stores values only for
the CKA_PRIVATE_EXPONENT, CKA_PRIME_1, and CKA_PRIME_2 attributes, then Cryptoki is
certainly able to report values for all the attributes above (since they can all be computed efficiently from
these three values). However, a Cryptoki implementation may or may not actually do this extra
computation. The only attributes from Table 3 for which a Cryptoki implementation is required to be able
to return values are CKA_MODULUS and CKA_PRIVATE_EXPONENT.

If an RSA private key object is created on a token, and more attributes from Table 3 are supplied to the
object creation call than are supported by the token, the extra attributes are likely to be thrown away. If
an attempt is made to create an RSA private key object on a token with insufficient attributes for that
particular token, then the object creation call fails and returns CKR_TEMPLATE_INCOMPLETE.

Note that when generating an RSA private key, there is no CKA_MODULUS_BITS attribute specified.
This is because RSA private keys are only generated as part of an RSA key pair, and the
CKA_MODULUS_BITS attribute for the pair is specified in the template for the RSA public key.

The following is a sample template for creating an RSA private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;

CK_KEY_TYPE keyType = CKK_RSA;

CK_UTF8CHAR label[] = “An RSA private key object”;

CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK_BYTE modulus[] = {...};

CK_BYTE publicExponent[] = {...};

CK_BYTE privateExponent[] = {...};

CK_BYTE prime1[] = {...};

CK_BYTE prime2[] = {...};

CK_BYTE exponent1[] = {...};

CK_BYTE exponent2[] = {...};

CK_BYTE coefficient[] = {...};

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 21 of 200

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_SUBJECT, subject, sizeof(subject)},

 {CKA_ID, id, sizeof(id)},

 {CKA_SENSITIVE, &true, sizeof(true)},

 {CKA_DECRYPT, &true, sizeof(true)},

 {CKA_SIGN, &true, sizeof(true)},

 {CKA_MODULUS, modulus, sizeof(modulus)},

 {CKA_PUBLIC_EXPONENT, publicExponent,

sizeof(publicExponent)},

 {CKA_PRIVATE_EXPONENT, privateExponent,

sizeof(privateExponent)},

 {CKA_PRIME_1, prime1, sizeof(prime1)},

 {CKA_PRIME_2, prime2, sizeof(prime2)},

 {CKA_EXPONENT_1, exponent1, sizeof(exponent1)},

 {CKA_EXPONENT_2, exponent2, sizeof(exponent2)},

 {CKA_COEFFICIENT, coefficient, sizeof(coefficient)}

};

2.1.4 PKCS #1 RSA key pair generation

The PKCS #1 RSA key pair generation mechanism, denoted CKM_RSA_PKCS_KEY_PAIR_GEN, is a

key pair generation mechanism based on the RSA public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public
exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the
template for the public key. The CKA_PUBLIC_EXPONENT may be omitted in which case the
mechanism shall supply the public exponent attribute using the default value of 0x10001 (65537).
Specific implementations may use a random value or an alternative default if 0x10001 cannot be used by
the token.

Note: Implementations strictly compliant with version 2.11 or prior versions may generate an error
if this attribute is omitted from the template. Experience has shown that many implementations of 2.11
and prior did allow the CKA_PUBLIC_EXPONENT attribute to be omitted from the template, and
behaved as described above. The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE,
CKA_MODULUS, and CKA_PUBLIC_EXPONENT attributes to the new public key.
CKA_PUBLIC_EXPONENT will be copied from the template if supplied.
CKR_TEMPLATE_INCONSISTENT shall be returned if the implementation cannot use the supplied
exponent value. It contributes the CKA_CLASS and CKA_KEY_TYPE attributes to the new private key; it
may also contribute some of the following attributes to the new private key: CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT. Other attributes supported by the
RSA public and private key types (specifically, the flags indicating which functions the keys support) may
also be specified in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of RSA modulus sizes, in bits.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 22 of 200

2.1.5 X9.31 RSA key pair generation

The X9.31 RSA key pair generation mechanism, denoted CKM_RSA_X9_31_KEY_PAIR_GEN, is a key
pair generation mechanism based on the RSA public-key cryptosystem, as defined in X9.31.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public
exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the
template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS, and
CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes the CKA_CLASS and
CKA_KEY_TYPE attributes to the new private key; it may also contribute some of the following attributes
to the new private key: CKA_MODULUS, CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT,
CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT.
Other attributes supported by the RSA public and private key types (specifically, the flags indicating which
functions the keys support) may also be specified in the templates for the keys, or else are assigned
default initial values. Unlike the CKM_RSA_PKCS_KEY_PAIR_GEN mechanism, this mechanism is
guaranteed to generate p and q values, CKA_PRIME_1 and CKA_PRIME_2 respectively, that meet the

strong primes requirement of X9.31.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of RSA modulus sizes, in bits.

2.1.6 PKCS #1 v1.5 RSA

The PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS, is a multi-purpose mechanism based
on the RSA public-key cryptosystem and the block formats initially defined in PKCS #1 v1.5. It supports
single-part encryption and decryption; single-part signatures and verification with and without message
recovery; key wrapping; and key unwrapping. This mechanism corresponds only to the part of PKCS #1
v1.5 that involves RSA; it does not compute a message digest or a DigestInfo encoding as specified for
the md2withRSAEncryption and md5withRSAEncryption algorithms in PKCS #1 v1.5 .

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes

to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For
encryption, decryption, signatures and signature verification, the input and output data may begin at the
same location in memory. In the table, k is the length in bytes of the RSA modulus.

Table 4, PKCS #1 v1.5 RSA: Key And Data Length

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 23 of 200

Function Key type Input
length

Output
length

Comments

C_Encrypt
1
 RSA public key k-11 k block type 02

C_Decrypt
1
 RSA private key k k-11 block type 02

C_Sign
1
 RSA private key k-11 k block type 01

C_SignRecover RSA private key k-11 k block type 01

C_Verify
1
 RSA public key k-11, k

2
 N/A block type 01

C_VerifyRecover RSA public key k k-11 block type 01

C_WrapKey RSA public key k-11 k block type 02

C_UnwrapKey RSA private key k k-11 block type 02

1

Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of RSA modulus sizes, in bits.

2.1.7 PKCS #1 RSA OAEP mechanism parameters

 CK_RSA_PKCS_MGF_TYPE; CK_RSA_PKCS_MGF_TYPE_PTR

CK_RSA_PKCS_MGF_TYPE is used to indicate the Message Generation Function (MGF) applied to a
message block when formatting a message block for the PKCS #1 OAEP encryption scheme or the
PKCS #1 PSS signature scheme. It is defined as follows:

typedef CK_ULONG CK_RSA_PKCS_MGF_TYPE;

The following MGFs are defined in PKCS #1. The following table lists the defined functions.

Table 5, PKCS #1 Mask Generation Functions

Source Identifier Value

CKG_MGF1_SHA1 0x00000001UL

CKG_MGF1_SHA224 0x00000005UL

CKG_MGF1_SHA256 0x00000002UL

CKG_MGF1_SHA384 0x00000003UL

CKG_MGF1_SHA512 0x00000004UL

CK_RSA_PKCS_MGF_TYPE_PTR is a pointer to a CK_RSA_PKCS_ MGF_TYPE.

 CK_RSA_PKCS_OAEP_SOURCE_TYPE;
CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR

CK_RSA_PKCS_OAEP_SOURCE_TYPE is used to indicate the source of the encoding parameter
when formatting a message block for the PKCS #1 OAEP encryption scheme. It is defined as follows:

typedef CK_ULONG CK_RSA_PKCS_OAEP_SOURCE_TYPE;

The following encoding parameter sources are defined in PKCS #1. The following table lists the defined
sources along with the corresponding data type for the pSourceData field in the
CK_RSA_PKCS_OAEP_PARAMS structure defined below.

Table 6, PKCS #1 RSA OAEP: Encoding parameter sources

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 24 of 200

Source Identifier Value Data Type

CKZ_DATA_SPECIFIED 0x00000001UL Array of CK_BYTE containing the value of
the encoding parameter. If the parameter is
empty, pSourceData must be NULL and
ulSourceDataLen must be zero.

CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR is a pointer to a
CK_RSA_PKCS_OAEP_SOURCE_TYPE.

 CK_RSA_PKCS_OAEP_PARAMS; CK_RSA_PKCS_OAEP_PARAMS_PTR

CK_RSA_PKCS_OAEP_PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_OAEP mechanism. The structure is defined as follows:

typedef struct CK_RSA_PKCS_OAEP_PARAMS {

 CK_MECHANISM_TYPE hashAlg;

 CK_RSA_PKCS_MGF_TYPE mgf;

 CK_RSA_PKCS_OAEP_SOURCE_TYPE source;

 CK_VOID_PTR pSourceData;

 CK_ULONG ulSourceDataLen;

} CK_RSA_PKCS_OAEP_PARAMS;

The fields of the structure have the following meanings:

 hashAlg mechanism ID of the message digest algorithm used to calculate
the digest of the encoding parameter

 mgf mask generation function to use on the encoded block

 source source of the encoding parameter

 pSourceData data used as the input for the encoding parameter source

 ulSourceDataLen length of the encoding parameter source input

CK_RSA_PKCS_OAEP_PARAMS_PTR is a pointer to a CK_RSA_PKCS_OAEP_PARAMS.

2.1.8 PKCS #1 RSA OAEP

The PKCS #1 RSA OAEP mechanism, denoted CKM_RSA_PKCS_OAEP, is a multi-purpose
mechanism based on the RSA public-key cryptosystem and the OAEP block format defined in PKCS #1.
It supports single-part encryption and decryption; key wrapping; and key unwrapping.

It has a parameter, a CK_RSA_PKCS_OAEP_PARAMS structure.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes

to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus, and hLen is the output length of the message digest algorithm
specified by the hashAlg field of the CK_RSA_PKCS_OAEP_PARAMS structure.

Table 7, PKCS #1 RSA OAEP: Key And Data Length

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 25 of 200

Function Key type Input length Output
length

C_Encrypt
1
 RSA public key k-2-2hLen k

C_Decrypt
1
 RSA private key k k-2-2hLen

C_WrapKey RSA public key k-2-2hLen k

C_UnwrapKey RSA private key k k-2-2hLen

1

Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of RSA modulus sizes, in bits.

2.1.9 PKCS #1 RSA PSS mechanism parameters

 CK_RSA_PKCS_PSS_PARAMS; CK_RSA_PKCS_PSS_PARAMS_PTR

CK_RSA_PKCS_PSS_PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_PSS mechanism. The structure is defined as follows:

typedef struct CK_RSA_PKCS_PSS_PARAMS {

 CK_MECHANISM_TYPE hashAlg;

 CK_RSA_PKCS_MGF_TYPE mgf;

 CK_ULONG sLen;

} CK_RSA_PKCS_PSS_PARAMS;

The fields of the structure have the following meanings:

 hashAlg hash algorithm used in the PSS encoding; if the signature
mechanism does not include message hashing, then this value must
be the mechanism used by the application to generate the message
hash; if the signature mechanism includes hashing, then this value
must match the hash algorithm indicated by the signature
mechanism

 mgf mask generation function to use on the encoded block

 sLen length, in bytes, of the salt value used in the PSS encoding; typical
values are the length of the message hash and zero

CK_RSA_PKCS_PSS_PARAMS_PTR is a pointer to a CK_RSA_PKCS_PSS_PARAMS.

2.1.10 PKCS #1 RSA PSS

The PKCS #1 RSA PSS mechanism, denoted CKM_RSA_PKCS_PSS, is a mechanism based on the
RSA public-key cryptosystem and the PSS block format defined in PKCS #1. It supports single-part
signature generation and verification without message recovery. This mechanism corresponds only to the
part of PKCS #1 that involves block formatting and RSA, given a hash value; it does not compute a hash
value on the message to be signed.

It has a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must be less than or
equal to k*-2-hLen and hLen is the length of the input to the C_Sign or C_Verify function. k* is the length
in bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple
of 8, in which case k* is one less than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table. In the table, k

is the length in bytes of the RSA.

Table 8, PKCS #1 RSA PSS: Key And Data Length

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 26 of 200

Function Key type Input length Output
length

C_Sign
1
 RSA private key hLen k

C_Verify
1
 RSA public key hLen, k N/A

1

Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of RSA modulus sizes, in bits.

2.1.11 ISO/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA_9796, is a mechanism for single-part
signatures and verification with and without message recovery based on the RSA public-key
cryptosystem and the block formats defined in ISO/IEC 9796 and its annex A.

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit strings. Accordingly,
the following transformations are performed:

 Data is converted between byte and bit string formats by interpreting the most-significant bit of the
leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the
trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of
the data is a multiple of 8).

 A signature is converted from a bit string to a byte string by padding the bit string on the left with 0 to
7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string
as above; it is converted from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus.

Table 9, ISO/IEC 9796 RSA: Key And Data Length

Function Key type Input
length

Output
length

C_Sign
1
 RSA private key k/2 k

C_SignRecover RSA private key k/2 k

C_Verify
1
 RSA public key k/2, k

2
 N/A

C_VerifyRecover RSA public key k k/2

1

Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of RSA modulus sizes, in bits.

2.1.12 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA_X_509, is a multi-purpose mechanism based on
the RSA public-key cryptosystem. It supports single-part encryption and decryption; single-part signatures
and verification with and without message recovery; key wrapping; and key unwrapping. All these
operations are based on so-called “raw” RSA, as assumed in X.509.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-significant byte first,
applying “raw” RSA exponentiation, and converting the result to a byte string, most-significant byte first.
The input string, considered as an integer, must be less than the modulus; the output string is also less
than the modulus.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 27 of 200

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type, key length, or any other
information about the key; the application must convey these separately, and supply them when
unwrapping the key.

Unfortunately, X.509 does not specify how to perform padding for RSA encryption. For this mechanism,
padding should be performed by prepending plaintext data with 0-valued bytes. In effect, to encrypt the

sequence of plaintext bytes b1 b2 … bn (n k), Cryptoki forms P=2
n-1

b1+2
n-2

b2+…+bn. This number must
be less than the RSA modulus. The k-byte ciphertext (k is the length in bytes of the RSA modulus) is
produced by raising P to the RSA public exponent modulo the RSA modulus. Decryption of a k-byte
ciphertext C is accomplished by raising C to the RSA private exponent modulo the RSA modulus, and
returning the resulting value as a sequence of exactly k bytes. If the resulting plaintext is to be used to
produce an unwrapped key, then however many bytes are specified in the template for the length of the
key are taken from the end of this sequence of bytes.

Technically, the above procedures may differ very slightly from certain details of what is specified in
X.509.

Executing cryptographic operations using this mechanism can result in the error returns
CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA modulus and is
numerically at least as large as the modulus) and CKR_ENCRYPTED_DATA_INVALID (if ciphertext is
supplied which has the same length as the RSA modulus and is numerically at least as large as the
modulus).

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus.

Table 10, X.509 (Raw) RSA: Key And Data Length

Function Key type Input
length

Output length

C_Encrypt
1
 RSA public key k k

C_Decrypt
1
 RSA private key k k

C_Sign
1
 RSA private key k k

C_SignRecover RSA private key k k

C_Verify
1
 RSA public key k, k

2
 N/A

C_VerifyRecover RSA public key k k

C_WrapKey RSA public key k k

C_UnwrapKey RSA private key k k (specified in template)

1

Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of RSA modulus sizes, in bits.

This mechanism is intended for compatibility with applications that do not follow the PKCS #1 or ISO/IEC
9796 block formats.

2.1.13 ANSI X9.31 RSA

The ANSI X9.31 RSA mechanism, denoted CKM_RSA_X9_31, is a mechanism for single-part signatures
and verification without message recovery based on the RSA public-key cryptosystem and the block
formats defined in ANSI X9.31.

This mechanism applies the header and padding fields of the hash encapsulation. The trailer field must
be applied by the application.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 28 of 200

This mechanism processes only byte strings, whereas ANSI X9.31 operates on bit strings. Accordingly,
the following transformations are performed:

 Data is converted between byte and bit string formats by interpreting the most-significant bit of the
leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the
trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of
the data is a multiple of 8).

 A signature is converted from a bit string to a byte string by padding the bit string on the left with 0 to
7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string
as above; it is converted from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus. For all operations, the k value must be at least

128 and a multiple of 32 as specified in ANSI X9.31.

Table 11, ANSI X9.31 RSA: Key And Data Length

Function Key type Input
length

Output
length

C_Sign
1
 RSA private key k-2 k

C_Verify
1
 RSA public key k-2, k

2
 N/A

1

Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of RSA modulus sizes, in bits.

2.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-
384, SHA-512, RIPE-MD 128 or RIPE-MD 160

The PKCS #1 v1.5 RSA signature with MD2 mechanism, denoted CKM_MD2_RSA_PKCS, performs
single- and multiple-part digital signatures and verification operations without message recovery. The
operations performed are as described initially in PKCS #1 v1.5 with the object identifier
md2WithRSAEncryption, and as in the scheme RSASSA-PKCS1-v1_5 in the current version of PKCS #1,
where the underlying hash function is MD2.

Similarly, the PKCS #1 v1.5 RSA signature with MD5 mechanism, denoted CKM_MD5_RSA_PKCS,
performs the same operations described in PKCS #1 with the object identifier md5WithRSAEncryption.
The PKCS #1 v1.5 RSA signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_PKCS, performs
the same operations, except that it uses the hash function SHA-1 with object identifier
sha1WithRSAEncryption.

Likewise, the PKCS #1 v1.5 RSA signature with SHA-256, SHA-384, and SHA-512 mechanisms, denoted
CKM_SHA256_RSA_PKCS, CKM_SHA384_RSA_PKCS, and CKM_SHA512_RSA_PKCS respectively,
perform the same operations using the SHA-256, SHA-384 and SHA-512 hash functions with the object
identifiers sha256WithRSAEncryption, sha384WithRSAEncryption and sha512WithRSAEncryption
respectively.

The PKCS #1 v1.5 RSA signature with RIPEMD-128 or RIPEMD-160, denoted
CKM_RIPEMD128_RSA_PKCS and CKM_RIPEMD160_RSA_PKCS respectively, perform the same

operations using the RIPE-MD 128 and RIPE-MD 160 hash functions.

None of these mechanisms has a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For the PKCS #1 v1.5 RSA
signature with MD2 and PKCS #1 v1.5 RSA signature with MD5 mechanisms, k must be at least 27; for
the PKCS #1 v1.5 RSA signature with SHA-1 mechanism, k must be at least 31, and so on for other

underlying hash functions, where the minimum is always 11 bytes more than the length of the hash value.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 29 of 200

Table 12, PKCS #1 v1.5 RSA Signatures with Various Hash Functions: Key And Data Length

Function Key type Input length Output length Comments

C_Sign RSA private key any k block type 01

C_Verify RSA public key any, k
2
 N/A block type 01

2

Data length, signature length.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

structure specify the supported range of RSA modulus sizes, in bits.

2.1.15 PKCS #1 v1.5 RSA signature with SHA-224

The PKCS #1 v1.5 RSA signature with SHA-224 mechanism, denoted CKM_SHA224_RSA_PKCS,
performs similarly as the other CKM_SHAX_RSA_PKCS mechanisms but uses the SHA-224 hash

function.

2.1.16 PKCS #1 RSA PSS signature with SHA-224

The PKCS #1 RSA PSS signature with SHA-224 mechanism, denoted CKM_SHA224_RSA_PKCS_PSS,
performs similarly as the other CKM_SHAX_RSA_PSS mechanisms but uses the SHA-224 hash

function.

2.1.17 PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-
512

The PKCS #1 RSA PSS signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_PKCS_PSS,
performs single- and multiple-part digital signatures and verification operations without message
recovery. The operations performed are as described in PKCS #1 with the object identifier id-RSASSA-
PSS, i.e., as in the scheme RSASSA-PSS in PKCS #1 where the underlying hash function is SHA-1.

The PKCS #1 RSA PSS signature with SHA-256, SHA-384, and SHA-512 mechanisms, denoted
CKM_SHA256_RSA_PKCS_PSS, CKM_SHA384_RSA_PKCS_PSS, and
CKM_SHA512_RSA_PKCS_PSS respectively, perform the same operations using the SHA-256, SHA-

384 and SHA-512 hash functions.

The mechanisms have a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must
be less than or equal to k*-2-hLen where hLen is the length in bytes of the hash value. k* is the length in
bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple of
8, in which case k* is one less than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table. In the table, k
is the length in bytes of the RSA modulus.

Table 13, PKCS #1 RSA PSS Signatures with Various Hash Functions: Key And Data Length

Function Key type Input length Output length

C_Sign RSA private key any k

C_Verify RSA public key any, k
2
 N/A

2

Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of RSA modulus sizes, in bits.

2.1.18 ANSI X9.31 RSA signature with SHA-1

The ANSI X9.31 RSA signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_X9_31, performs
single- and multiple-part digital signatures and verification operations without message recovery. The
operations performed are as described in ANSI X9.31.

This mechanism does not have a parameter.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 30 of 200

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For all operations, the k value

must be at least 128 and a multiple of 32 as specified in ANSI X9.31.

Table 14, ANSI X9.31 RSA Signatures with SHA-1: Key And Data Length

Function Key type Input length Output length

C_Sign RSA private key any k

C_Verify RSA public key any, k
2
 N/A

2

Data length, signature length.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

structure specify the supported range of RSA modulus sizes, in bits.

2.1.19 TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA

The TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS_TPM_1_1, is a
multi-use mechanism based on the RSA public-key cryptosystem and the block formats initially defined in
PKCS #1 v1.5, with additional formatting rules defined in TCPA TPM Specification Version 1.1b.
Additional formatting rules remained the same in TCG TPM Specification 1.2 The mechanism supports
single-part encryption and decryption; key wrapping; and key unwrapping.

This mechanism does not have a parameter. It differs from the standard PKCS#1 v1.5 RSA encryption
mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM
1.2) structure before being submitted to the PKCS#1 v1.5 encryption process. On encryption, the version
field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain 0x01, 0x01,
0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, 0xXX, 0xYY may be accepted.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes

to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the

length in bytes of the RSA modulus.

Table 15, TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA: Key And Data Length

Function Key type Input
length

Output
length

C_Encrypt
1
 RSA public key k-11-5 k

C_Decrypt
1
 RSA private key k k-11-5

C_WrapKey RSA public key k-11-5 k

C_UnwrapKey RSA private key k k-11-5

1

Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.20 TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP

The TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP mechanism, denoted
CKM_RSA_PKCS_OAEP_TPM_1_1, is a multi-purpose mechanism based on the RSA public-key
cryptosystem and the OAEP block format defined in PKCS #1, with additional formatting defined in TCPA

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 31 of 200

TPM Specification Version 1.1b. Additional formatting rules remained the same in TCG TPM
Specification 1.2. The mechanism supports single-part encryption and decryption; key wrapping; and key
unwrapping.

This mechanism does not have a parameter. It differs from the standard PKCS#1 OAEP RSA encryption
mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM
1.2) structure before being submitted to the encryption process and that all of the values of the
parameters that are passed to a standard CKM_RSA_PKCS_OAEP operation are fixed. On encryption,
the version field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain
0x01, 0x01, 0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, 0xXX, 0xYY may be
accepted.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes

to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the

length in bytes of the RSA modulus.

Table 16, TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP: Key And Data Length

Function Key type Input length Output
length

C_Encrypt
1
 RSA public key k-2-40-5 k

C_Decrypt
1
 RSA private key k k-2-40-5

C_WrapKey RSA public key k-2-40-5 k

C_UnwrapKey RSA private key k k-2-40-5

1

Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.21 RSA AES KEY WRAP

The RSA AES key wrap mechanism, denoted CKM_RSA_AES_KEY_WRAP , is a mechanism based on
the RSA public-key cryptosystem and the AES key wrap mechanism. It supports single-part key
wrapping; and key unwrapping.

It has a parameter, a CK_RSA_AES_KEY_WRAP_PARAMS structure.

The mechanism can wrap and unwrap a target asymmetric key of any length and type using an RSA key.

- A temporary AES key is used for wrapping the target key using
CKM_AES_KEY_WRAP_PAD mechanism.

- The temporary AES key is wrapped with the wrapping RSA key using
CKM_RSA_PKCS_OAEP mechanism.

For wrapping, the mechanism -

 Generates temporary random AES key of ulAESKeyBits length. This key is not accessible to the
user - no handle is returned.

 Wraps the AES key with the wrapping RSA key using CKM_RSA_PKCS_OAEP with parameters
of OAEPParams.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 32 of 200

 Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_PAD
(RFC5649) .

 Zeroizes the temporary AES key

 Concatenates two wrapped keys and outputs the concatenated blob.

The recommended format for an asymmetric target key being wrapped is as a PKCS8 PrivateKeyInfo

The use of Attributes in the PrivateKeyInfo structure is OPTIONAL. In case of conflicts between the
object attribute template, and Attributes in the PrivateKeyInfo structure, an error should be thrown

For unwrapping, the mechanism -

 Splits the input into two parts. The first is the wrapped AES key, and the second is the wrapped
target key. The length of the first part is equal to the length of the unwrapping RSA key.

 Un-wraps the temporary AES key from the first part with the private RSA key using
CKM_RSA_PKCS_OAEP with parameters of OAEPParams.

 Un-wraps the target key from the second part with the temporary AES key using
CKM_AES_KEY_WRAP_PAD (RFC5649) .

 Zeroizes the temporary AES key.

 Returns the handle to the newly unwrapped target key.

Table 17, CKM_RSA_AES_KEY_WRAP Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

 CKM_RSA_AES_KEY_WRAP

1SR = SignRecover, VR = VerifyRecover

2.1.22 RSA AES KEY WRAP mechanism parameters

 CK_RSA_AES_KEY_WRAP_PARAMS; CK_RSA_AES_KEY_WRAP_PARAMS_PTR

CK_RSA_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_RSA_AES_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK_RSA_AES_KEY_WRAP_PARAMS {

 CK_ULONG ulAESKeyBits;
 CK_RSA_PKCS_OAEP_PARAMS_PTR pOAEPParams;
} CK_RSA_AES_KEY_WRAP_PARAMS;

The fields of the structure have the following meanings:

 ulAESKeyBits length of the temporary AES key in bits. Can be only 128, 192 or 256.

 pOAEPParams pointer to the parameters of the temporary AES key wrapping. See also the
description of PKCS #1 RSA OAEP mechanism parameters.

CK_RSA_AES_KEY_WRAP_PARAMS_PTR is a pointer to a CK_RSA_AES_KEY_WRAP_PARAMS.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 33 of 200

2.1.23 FIPS 186-4

When CKM_RSA_PKCS is operated in FIPS mode, the length of the modulus SHALL only be 1024,
2048, or 3072 bits.

2.2 DSA

Table 18, DSA Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verif
y

SR

&

VR
1

Digest

Gen.

 Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_DSA_KEY_PAIR_GEN

CKM_DSA_PARAMETER_GEN

CKM_DSA_PROBABALISTIC_P
ARAMETER_GEN

CKM_DSA_SHAWE_TAYLOR_
PARAMETER_GEN

CKM_DSA_FIPS_G_GEN

CKM_DSA
2

CKM_DSA_SHA1

CKM_DSA_SHA224

CKM_DSA_SHA256

CKM_DSA_SHA384

CKM_DSA_SHA512

2.2.1 Definitions

This section defines the key type “CKK_DSA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE
attribute of DSA key objects.

Mechanisms:

CKM_DSA_KEY_PAIR_GEN
CKM_DSA
CKM_DSA_SHA1
CKM_DSA_SHA224
CKM_DSA_SHA256
CKM_DSA_SHA384
CKM_DSA_SHA512
CKM_DSA_PARAMETER_GEN
CKM_DSA_PROBABLISTIC_PARAMETER_GEN
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN
CKM_DSA_FIPS_G_GEN

 CK_DSA_PARAMETER_GEN_PARAM

CK_DSA_PARAMETER_GEN_PARAM is a structure which provides and returns parameters for the
NIST FIPS 186-4 parameter generating algorithms.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 34 of 200

typedef struct CK_DSA_PARAMETER_GEN_PARAM {
CK_MECHANISM_TYPE hash;
CK_BYTE_PTR pSeed;
CK_ULONG ulSeedLen;
CK_ULONG ulIndex;

};

The fields of the structure have the following meanings:

hash Mechanism value for the base hash used in PQG generation, Valid
values are CKM_SHA1, CKM_SHA224, CKM_SHA256, CKM_SHA384,
CKM_SHA512.

pSeed Seed value used to generate PQ and G. This value is returned by
CKM_DSA_PROBABLISTIC_PARAMETER_GEN,
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN, and passed into
CKM_DSA_FIPS_G_GEN.

 ulSeedLen Length of seed value.

 ulIndex Index value for generating G. Input for CKM_DSA_FIPS_G_GEN.
Ignored by CKM_DSA_PROBABALISTIC_PARAMETER_GEN and
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN.

2.2.2 DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold DSA public keys.
The following table defines the DSA public key object attributes, in addition to the common attributes
defined for this object class:

Table 19, DSA Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME
1,3

 Big integer Prime p (512 to 3072 bits, in steps of 64 bits)

CKA_SUBPRIME
1,3

 Big integer Subprime q (160, 224 bits, or 256 bits)

CKA_BASE
1,3

 Big integer Base g

CKA_VALUE
1,4

 Big integer Public value y

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain

parameters”. See FIPS PUB 186-4 for more information on DSA keys.

The following is a sample template for creating a DSA public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;

CK_KEY_TYPE keyType = CKK_DSA;

CK_UTF8CHAR label[] = “A DSA public key object”;

CK_BYTE prime[] = {...};

CK_BYTE subprime[] = {...};

CK_BYTE base[] = {...};

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 35 of 200

 {CKA_PRIME, prime, sizeof(prime)},

 {CKA_SUBPRIME, subprime, sizeof(subprime)},

 {CKA_BASE, base, sizeof(base)},

 {CKA_VALUE, value, sizeof(value)}

};

2.2.3 DSA Key Restrictions

FIPS PUB 186-4 specifies permitted combinations of prime and sub-prime lengths. They are:

 Prime: 1024 bits, Subprime: 160

 Prime: 2048 bits, Subprime: 224

 Prime: 2048 bits, Subprime: 256

 Prime: 3072 bits, Subprime: 256

Earlier versions of FIPS 186 permitted smaller prime lengths, and those are included here for backwards
compatibility. An implementation that is compliant to FIPS 186-4 does not permit the use of primes of
any length less than 1024 bits.

2.2.4 DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA) hold DSA private keys.
The following table defines the DSA private key object attributes, in addition to the common attributes
defined for this object class:

Table 20, DSA Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME
1,4,6

 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)

CKA_SUBPRIME
1,4,6

 Big integer Subprime q (160 bits, 224 bits, or 256 bits)

CKA_BASE
1,4,6

 Big integer Base g

CKA_VALUE
1,4,6,7

 Big integer Private value x

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain

parameters”. See FIPS PUB 186-4 for more information on DSA keys.

Note that when generating a DSA private key, the DSA domain parameters are not specified in the key’s
template. This is because DSA private keys are only generated as part of a DSA key pair, and the DSA

domain parameters for the pair are specified in the template for the DSA public key.

The following is a sample template for creating a DSA private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;

CK_KEY_TYPE keyType = CKK_DSA;

CK_UTF8CHAR label[] = “A DSA private key object”;

CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK_BYTE prime[] = {...};

CK_BYTE subprime[] = {...};

CK_BYTE base[] = {...};

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 36 of 200

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_SUBJECT, subject, sizeof(subject)},

 {CKA_ID, id, sizeof(id)},

 {CKA_SENSITIVE, &true, sizeof(true)},

 {CKA_SIGN, &true, sizeof(true)},

 {CKA_PRIME, prime, sizeof(prime)},

 {CKA_SUBPRIME, subprime, sizeof(subprime)},

 {CKA_BASE, base, sizeof(base)},

 {CKA_VALUE, value, sizeof(value)}

};

2.2.5 DSA domain parameter objects

DSA domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type CKK_DSA) hold
DSA domain parameters. The following table defines the DSA domain parameter object attributes, in
addition to the common attributes defined for this object class:

Table 21, DSA Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_PRIME
1,4

 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)

CKA_SUBPRIME
1,4

 Big integer Subprime q (160 bits, 224 bits, or 256 bits)

CKA_BASE
1,4

 Big integer Base g

CKA_PRIME_BITS
2,3

 CK_ULONG Length of the prime value.

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain
parameters”. See FIPS PUB 186-4 for more information on DSA domain parameters.

To ensure backwards compatibility, if CKA_SUBPRIME_BITS is not specified for a call to
C_GenerateKey, it takes on a default based on the value of CKA_PRIME_BITS as follows:

 If CKA_PRIME_BITS is less than or equal to 1024 then CKA_SUBPRIME_BITS shall be 160 bits

 If CKA_PRIME_BITS equals 2048 then CKA_SUBPRIME_BITS shall be 224 bits

 If CKA_PRIME_BITS equals 3072 then CKA_SUBPRIME_BITS shall be 256 bits

The following is a sample template for creating a DSA domain parameter object:

CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;

CK_KEY_TYPE keyType = CKK_DSA;

CK_UTF8CHAR label[] = “A DSA domain parameter object”;

CK_BYTE prime[] = {...};

CK_BYTE subprime[] = {...};

CK_BYTE base[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_PRIME, prime, sizeof(prime)},

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 37 of 200

 {CKA_SUBPRIME, subprime, sizeof(subprime)},

 {CKA_BASE, base, sizeof(base)},

};

2.2.6 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is a key pair generation

mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-2.

This mechanism does not have a parameter.

The mechanism generates DSA public/private key pairs with a particular prime, subprime and base, as
specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the template for the public

key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and
CKA_VALUE attributes to the new private key. Other attributes supported by the DSA public and private
key types (specifically, the flags indicating which functions the keys support) may also be specified in the
templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of DSA prime sizes, in bits.

2.2.7 DSA domain parameter generation

The DSA domain parameter generation mechanism, denoted CKM_DSA_PARAMETER_GEN, is a
domain parameter generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB
186-2.

This mechanism does not have a parameter.

The mechanism generates DSA domain parameters with a particular prime length in bits, as specified in
the CKA_PRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_BASE and CKA_PRIME_BITS attributes to the new object. Other attributes supported by the DSA

domain parameter types may also be specified in the template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of DSA prime sizes, in bits.

2.2.8 DSA probabilistic domain parameter generation

The DSA probabilistic domain parameter generation mechanism, denoted
CKM_DSA_PROBABLISTIC_PARAMETER_GEN, is a domain parameter generation mechanism based
on the Digital Signature Algorithm defined in FIPS PUB 186-4, section Appendix A.1.1 Generation and
Validation of Probable Primes..

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash and
returns the seed (pSeed) and the length (ulSeedLen).

The mechanism generates DSA the prime and subprime domain parameters with a particular prime
length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as
specified in the CKA_SUBPRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by
this call. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of DSA prime sizes, in bits.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 38 of 200

2.2.9 DSA Shawe-Taylor domain parameter generation

The DSA Shawe-Taylor domain parameter generation mechanism, denoted
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN, is a domain parameter generation mechanism
based on the Digital Signature Algorithm defined in FIPS PUB 186-4, section Appendix A.1.2
Construction and Validation of Provable Primes p and q.

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash and

returns the seed (pSeed) and the length (ulSeedLen).

The mechanism generates DSA the prime and subprime domain parameters with a particular prime
length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as
specified in the CKA_SUBPRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by
this call. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.10 DSA base domain parameter generation

The DSA base domain parameter generation mechanism, denoted CKM_DSA_FIPS_G_GEN, is a base
parameter generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-4,
section Appendix A.2 Generation of Generator G.

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash the seed
(pSeed) and the length (ulSeedLen) and the index value.

The mechanism generates the DSA base with the domain parameter specified in the CKA_PRIME and
CKA_SUBPRIME attributes of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_BASE attributes to the new
object. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of DSA prime sizes, in bits.

2.2.11 DSA without hashing

The DSA without hashing mechanism, denoted CKM_DSA, is a mechanism for single-part signatures and
verification based on the Digital Signature Algorithm defined in FIPS PUB 186-2. (This mechanism
corresponds only to the part of DSA that processes the 20-byte hash value; it does not compute the hash
value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 22, DSA: Key And Data Length

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 39 of 200

Function Key type Input length Output length

C_Sign
1
 DSA private key 20, 28, 32,

48, or 64 bits
2*length of
subprime

C_Verify
1
 DSA public key (20, 28, 32,

48, or 64
bits),

(2*length of
subprime)

2

N/A

1

Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of DSA prime sizes, in bits.

2.2.12 DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA1, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-2.
This mechanism computes the entire DSA specification, including the hashing with SHA-1.

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 23, DSA with SHA-1: Key And Data Length

Function Key type Input length Output length

C_Sign DSA private key any 2*subprime
length

C_Verify DSA public key any,
2*subprime

length
2

N/A

2

Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of DSA prime sizes, in bits.

2.2.13 FIPS 186-4

When CKM_DSA is operated in FIPS mode, only the following bit lengths of p and q, represented by L
and N, SHALL be used:

L = 1024, N = 160

L = 2048, N = 224

L = 2048, N = 256

L = 3072, N = 256

2.2.14 DSA with SHA-224

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA224, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-224.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 40 of 200

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 24, DSA with SHA-244: Key And Data Length

Function Key type Input length Output length

C_Sign DSA private key any 2*subprime
length

C_Verify DSA public key any,
2*subprime

length
2

N/A

2
 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.15 DSA with SHA-256

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA256, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-256.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 25, DSA with SHA-256: Key And Data Length

Function Key type Input length Output length

C_Sign DSA private key any 2*subprime
length

C_Verify DSA public key any,
2*subprime

length
2

N/A

2
 Data length, signature length.

2.2.16 DSA with SHA-384

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA384, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-384.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 26, DSA with SHA-384: Key And Data Length

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 41 of 200

Function Key type Input length Output length

C_Sign DSA private key any 2*subprime
length

C_Verify DSA public key any,
2*subprime

length
2

N/A

2
 Data length, signature length.

2.2.17 DSA with SHA-512

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA512, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-512.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 27, DSA with SHA-512: Key And Data Length

Function Key type Input length Output length

C_Sign DSA private key any 2*subprime
length

C_Verify DSA public key any,
2*subprime

length
2

N/A

2
 Data length, signature length.

2.3 Elliptic Curve

The Elliptic Curve (EC) cryptosystem (also related to ECDSA) in this document is the one described in the
ANSI X9.62 and X9.63 standards developed by the ANSI X9F1 working group.

Table 28, Elliptic Curve Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

 Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_EC_KEY_PAIR_GEN
(CKM_ECDSA_KEY_PAIR_GE
N)

CKM_ECDSA
2

CKM_ECDSA_SHA1

CKM_ECDH1_DERIVE

CKM_ECDH1_COFACTOR_DE
RIVE

CKM_ECMQV_DERIVE

CKM_ECDH_AES_KEY_WRAP

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 42 of 200

Table 29, Mechanism Information Flags

CKF_EC_F_P 0x00100000UL True if the mechanism can be used
with EC domain parameters over Fp

CKF_EC_F_2M 0x00200000UL True if the mechanism can be used

with EC domain parameters over F2m

CKF_EC_ECPARAMETERS 0x00400000UL True if the mechanism can be used
with EC domain parameters of the
choice ecParameters

CKF_EC_NAMEDCURVE 0x00800000UL True if the mechanism can be used
with EC domain parameters of the
choice namedCurve

CKF_EC_UNCOMPRESS 0x01000000UL True if the mechanism can be used
with elliptic curve point uncompressed

CKF_EC_COMPRESS 0x02000000UL True if the mechanism can be used
with elliptic curve point compressed

In these standards, there are two different varieties of EC defined:

1. EC using a field with an odd prime number of elements (i.e. the finite field Fp).

2. EC using a field of characteristic two (i.e. the finite field F2m).

An EC key in Cryptoki contains information about which variety of EC it is suited for. It is preferable that a
Cryptoki library, which can perform EC mechanisms, be capable of performing operations with the two
varieties of EC, however this is not required. The CK_MECHANISM_INFO structure CKF_EC_F_P flag
identifies a Cryptoki library supporting EC keys over Fp whereas the CKF_EC_F_2M flag identifies a

Cryptoki library supporting EC keys over F2m. A Cryptoki library that can perform EC mechanisms must

set either or both of these flags for each EC mechanism.

In these specifications there are also three representation methods to define the domain parameters for
an EC key. Only the ecParameters and the namedCurve choices are supported in Cryptoki. The
CK_MECHANISM_INFO structure CKF_EC_ECPARAMETERS flag identifies a Cryptoki library
supporting the ecParameters choice whereas the CKF_EC_NAMEDCURVE flag identifies a Cryptoki
library supporting the namedCurve choice. A Cryptoki library that can perform EC mechanisms must set

either or both of these flags for each EC mechanism.

In these specifications, an EC public key (i.e. EC point Q) or the base point G when the ecParameters
choice is used can be represented as an octet string of the uncompressed form or the compressed form.
The CK_MECHANISM_INFO structure CKF_EC_UNCOMPRESS flag identifies a Cryptoki library
supporting the uncompressed form whereas the CKF_EC_COMPRESS flag identifies a Cryptoki library
supporting the compressed form. A Cryptoki library that can perform EC mechanisms must set either or
both of these flags for each EC mechanism.

Note that an implementation of a Cryptoki library supporting EC with only one variety, one representation
of domain parameters or one form may encounter difficulties achieving interoperability with other
implementations.

If an attempt to create, generate, derive or unwrap an EC key of an unsupported curve is made, the
attempt should fail with the error code CKR_CURVE_NOT_SUPPORTED. If an attempt to create,
generate, derive, or unwrap an EC key with invalid or of an unsupported representation of domain
parameters is made, that attempt should fail with the error code CKR_DOMAIN_PARAMS_INVALID. If
an attempt to create, generate, derive, or unwrap an EC key of an unsupported form is made, that
attempt should fail with the error code CKR_TEMPLATE_INCONSISTENT.

2.3.1 EC Signatures

For the purposes of these mechanisms, an ECDSA signature is an octet string of even length which is at
most two times nLen octets, where nLen is the length in octets of the base point order n. The signature
octets correspond to the concatenation of the ECDSA values r and s, both represented as an octet string
of equal length of at most nLen with the most significant byte first. If r and s have different octet length,

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 43 of 200

the shorter of both must be padded with leading zero octets such that both have the same octet length.
Loosely spoken, the first half of the signature is r and the second half is s. For signatures created by a
token, the resulting signature is always of length 2nLen. For signatures passed to a token for verification,
the signature may have a shorter length but must be composed as specified before.

If the length of the hash value is larger than the bit length of n, only the leftmost bits of the hash up to the
length of n will be used. Any truncation is done by the token.

Note: For applications, it is recommended to encode the signature as an octet string of length two times
nLen if possible. This ensures that the application works with PKCS#11 modules which have been
implemented based on an older version of this document. Older versions required all signatures to have
length two times nLen. It may be impossible to encode the signature with the maximum length of two
times nLen if the application just gets the integer values of r and s (i.e. without leading zeros), but does
not know the base point order n, because r and s can have any value between zero and the base point
order n.

2.3.2 Definitions

This section defines the key type “CKK_ECDSA” and “CKK_EC” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

Note: CKM_ECDSA_KEY_PAIR_GEN is deprecated in v2.11

CKM_ECDSA_KEY_PAIR_GEN

CKM_EC_KEY_PAIR_GEN

CKM_ECDSA

CKM_ECDSA_SHA1

CKM_ECDH1_DERIVE

CKM_ECDH1_COFACTOR_DERIVE

CKM_ECMQV_DERIVE

CKM_ECDH_AES_KEY_WRAP

CKD_NULL

CKD_SHA1_KDF

2.3.3 ECDSA public key objects

EC (also related to ECDSA) public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC or
CKK_ECDSA) hold EC public keys. The following table defines the EC public key object attributes, in

addition to the common attributes defined for this object class:

Table 30, Elliptic Curve Public Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS
1,3

(CKA_ECDSA_PARAMS)
Byte array DER-encoding of an ANSI X9.62 Parameters

value

CKA_EC_POINT
1,4

 Byte array DER-encoding of ANSI X9.62 ECPoint value
Q

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value is known as the “EC domain
parameters” and is defined in ANSI X9.62 as a choice of three parameter representation methods with
the following syntax:

Parameters ::= CHOICE {

 ecParameters ECParameters,

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 44 of 200

 namedCurve CURVES.&id({CurveNames}),

 implicitlyCA NULL

}

This allows detailed specification of all required values using choice ecParameters, the use of a
namedCurve as an object identifier substitute for a particular set of elliptic curve domain parameters, or
implicitlyCA to indicate that the domain parameters are explicitly defined elsewhere. The use of a
namedCurve is recommended over the choice ecParameters. The choice implicitlyCA must not be

used in Cryptoki.

The following is a sample template for creating an EC (ECDSA) public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;

CK_KEY_TYPE keyType = CKK_EC;

CK_UTF8CHAR label[] = “An EC public key object”;

CK_BYTE ecParams[] = {...};

CK_BYTE ecPoint[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},

 {CKA_EC_POINT, ecPoint, sizeof(ecPoint)}

};

2.3.4 Elliptic curve private key objects

EC (also related to ECDSA) private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC or
CKK_ECDSA) hold EC private keys. See Section 2.3 for more information about EC. The following table
defines the EC private key object attributes, in addition to the common attributes defined for this object
class:

Table 31, Elliptic Curve Private Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS
1,4,6

(CKA_ECDSA_PARAMS)

Byte array DER-encoding of an ANSI X9.62
Parameters value

CKA_VALUE
1,4,6,7

 Big integer ANSI X9.62 private value d

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value is known as the “EC domain
parameters” and is defined in ANSI X9.62 as a choice of three parameter representation methods with
the following syntax:

Parameters ::= CHOICE {

 ecParameters ECParameters,

 namedCurve CURVES.&id({CurveNames}),

 implicitlyCA NULL

}

This allows detailed specification of all required values using choice ecParameters, the use of a
namedCurve as an object identifier substitute for a particular set of elliptic curve domain parameters, or

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 45 of 200

implicitlyCA to indicate that the domain parameters are explicitly defined elsewhere. The use of a
namedCurve is recommended over the choice ecParameters. The choice implicitlyCA must not be

used in Cryptoki.

Note that when generating an EC private key, the EC domain parameters are not specified in the key’s
template. This is because EC private keys are only generated as part of an EC key pair, and the EC
domain parameters for the pair are specified in the template for the EC public key.

The following is a sample template for creating an EC (ECDSA) private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;

CK_KEY_TYPE keyType = CKK_EC;

CK_UTF8CHAR label[] = “An EC private key object”;

CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK_BYTE ecParams[] = {...};

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_SUBJECT, subject, sizeof(subject)},

 {CKA_ID, id, sizeof(id)},

 {CKA_SENSITIVE, &true, sizeof(true)},

 {CKA_DERIVE, &true, sizeof(true)},

 {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},

 {CKA_VALUE, value, sizeof(value)}

};

2.3.5 Elliptic curve key pair generation

The EC (also related to ECDSA) key pair generation mechanism, denoted CKM_EC_KEY_PAIR_GEN or
CKM_ECDSA_KEY_PAIR_GEN, is a key pair generation mechanism for EC.

This mechanism does not have a parameter.

The mechanism generates EC public/private key pairs with particular EC domain parameters, as specified
in the CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute of the template for the public key. Note

that this version of Cryptoki does not include a mechanism for generating these EC domain parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the
new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS or
CKA_ECDSA_PARAMS and CKA_VALUE attributes to the new private key. Other attributes supported
by the EC public and private key types (specifically, the flags indicating which functions the keys support)
may also be specified in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2

200
 and 2

300
 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary

notation, the number 2
200

 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2

300
 is a 301-bit number).

2.3.6 ECDSA without hashing

Refer section 2.3.1 for signature encoding.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 46 of 200

The ECDSA without hashing mechanism, denoted CKM_ECDSA, is a mechanism for single-part
signatures and verification for ECDSA. (This mechanism corresponds only to the part of ECDSA that
processes the hash value, which should not be longer than 1024 bits; it does not compute the hash
value.)

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 32, ECDSA: Key and Data Length

Function Key type Input length Output
length

C_Sign
1
 ECDSA private key any

3
 2nLen

C_Verify
1
 ECDSA public key any

3
, 2nLen

2
 N/A

1

Single-part operations only.

2 Data length, signature length.

3 Input the entire raw digest. Internally, this will be truncated to the appropriate number of bits.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2

200
 and 2

300
 elements (inclusive), then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in

binary notation, the number 2
200

 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2

300
 is a 301-bit number).

2.3.7 ECDSA with SHA-1

Refer to section 2.3.1 for signature encoding.

The ECDSA with SHA-1 mechanism, denoted CKM_ECDSA_SHA1, is a mechanism for single- and
multiple-part signatures and verification for ECDSA. This mechanism computes the entire ECDSA
specification, including the hashing with SHA-1.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 33, ECDSA with SHA-1: Key and Data Length

Function Key type Input length Output length

C_Sign ECDSA private key any 2nLen

C_Verify ECDSA public key any, 2nLen
 2
 N/A

2

Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2

200
 and 2

300
 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary

notation, the number 2
200

 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2

300
 is a 301-bit number).

2.3.8 EC mechanism parameters

 CK_EC_KDF_TYPE, CK_EC_KDF_TYPE_PTR

CK_EC_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying data
from a shared secret. The key derivation function will be used by the EC key agreement schemes. It is
defined as follows:

typedef CK_ULONG CK_EC_KDF_TYPE;

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 47 of 200

The following table lists the defined functions.

Table 34, EC: Key Derivation Functions

Source Identifier

CKD_NULL

CKD_SHA1_KDF

CKD_SHA224_KDF

CKD_SHA256_KDF

CKD_SHA384_KDF

CKD_SHA512_KDF

The key derivation function CKD_NULL produces a raw shared secret value without applying any key
derivation function whereas the key derivation function CKD_SHA1_KDF, which is based on SHA-1,

derives keying data from the shared secret value as defined in ANSI X9.63.

CK_EC_KDF_TYPE_PTR is a pointer to a CK_EC_KDF_TYPE.

 CK_ECDH1_DERIVE_PARAMS, CK_ECDH1_DERIVE_PARAMS_PTR

CK_ECDH1_DERIVE_PARAMS is a structure that provides the parameters for the
CKM_ECDH1_DERIVE and CKM_ECDH1_COFACTOR_DERIVE key derivation mechanisms, where

each party contributes one key pair. The structure is defined as follows:

typedef struct CK_ECDH1_DERIVE_PARAMS {

 CK_EC_KDF_TYPE kdf;

 CK_ULONG ulSharedDataLen;

 CK_BYTE_PTR pSharedData;

 CK_ULONG ulPublicDataLen;

 CK_BYTE_PTR pPublicData;

} CK_ECDH1_DERIVE_PARAMS;

The fields of the structure have the following meanings:

 kdf key derivation function used on the shared secret value

 ulSharedDataLen the length in bytes of the shared info

 pSharedData some data shared between the two parties

 ulPublicDataLen the length in bytes of the other party’s EC public key

 pPublicData
1
 pointer to other party’s EC public key value. A token MUST be able

to accept this value encoded as a raw octet string (as per section
A.5.2 of [ANSI X9.62]). A token MAY, in addition, support accepting
this value as a DER-encoded ECPoint (as per section E.6 of [ANSI
X9.62]) i.e. the same as a CKA_EC_POINT encoding. The calling
application is responsible for converting the offered public key to the

1

The encoding in V2.20 was not specified and resulted in different implementations choosing different encodings. Applications relying only on a V2.20 encoding

(e.g. the DER variant) other than the one specified now (raw) may not work with all V2.30 compliant tokens.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 48 of 200

compressed or uncompressed forms of these encodings if the token
does not support the offered form.

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDataLen must be
zero. With the key derivation function CKD_SHA1_KDF, an optional pSharedData may be supplied,
which consists of some data shared by the two parties intending to share the shared secret. Otherwise,
pSharedData must be NULL and ulSharedDataLen must be zero.

CK_ECDH1_DERIVE_PARAMS_PTR is a pointer to a CK_ECDH1_DERIVE_PARAMS.

 CK_ECMQV _DERIVE_PARAMS, CK_ECMQV_DERIVE_PARAMS_PTR

CK_ECMQV_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The

structure is defined as follows:

typedef struct CK_ECMQV_DERIVE_PARAMS {

 CK_EC_KDF_TYPE kdf;

 CK_ULONG ulSharedDataLen;

 CK_BYTE_PTR pSharedData;

 CK_ULONG ulPublicDataLen;

 CK_BYTE_PTR pPublicData;

 CK_ULONG ulPrivateDataLen;

 CK_OBJECT_HANDLE hPrivateData;

 CK_ULONG ulPublicDataLen2;

 CK_BYTE_PTR pPublicData2;

 CK_OBJECT_HANDLE publicKey;

} CK_ECMQV_DERIVE_PARAMS;

The fields of the structure have the following meanings:

 kdf key derivation function used on the shared secret value

 ulSharedDataLen the length in bytes of the shared info

 pSharedData some data shared between the two parties

 ulPublicDataLen the length in bytes of the other party’s first EC public key

 pPublicData pointer to other party’s first EC public key value. Encoding rules are
as per pPublicData of CK_ECDH1_DERIVE_PARAMS

 ulPrivateDataLen the length in bytes of the second EC private key

 hPrivateData key handle for second EC private key value

 ulPublicDataLen2 the length in bytes of the other party’s second EC public key

 pPublicData2 pointer to other party’s second EC public key value. Encoding rules
are as per pPublicData of CK_ECDH1_DERIVE_PARAMS

 publicKey Handle to the first party’s ephemeral public key

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDataLen must be
zero. With the key derivation function CKD_SHA1_KDF, an optional pSharedData may be supplied,

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 49 of 200

which consists of some data shared by the two parties intending to share the shared secret. Otherwise,
pSharedData must be NULL and ulSharedDataLen must be zero.

CK_ECMQV_DERIVE_PARAMS_PTR is a pointer to a CK_ECMQV_DERIVE_PARAMS.

2.3.9 Elliptic curve Diffie-Hellman key derivation

The elliptic curve Diffie-Hellman (ECDH) key derivation mechanism, denoted CKM_ECDH1_DERIVE, is a
mechanism for key derivation based on the Diffie-Hellman version of the elliptic curve key agreement
scheme, as defined in ANSI X9.63, where each party contributes one key pair all using the same EC
domain parameters.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2

200

and 2
300

 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 2

200
 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2

300

is a 301-bit number).

2.3.10 Elliptic curve Diffie-Hellman with cofactor key derivation

The elliptic curve Diffie-Hellman (ECDH) with cofactor key derivation mechanism, denoted
CKM_ECDH1_COFACTOR_DERIVE, is a mechanism for key derivation based on the cofactor Diffie-
Hellman version of the elliptic curve key agreement scheme, as defined in ANSI X9.63, where each party
contributes one key pair all using the same EC domain parameters. Cofactor multiplication is
computationally efficient and helps to prevent security problems like small group attacks.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key

type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 50 of 200

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2

200

and 2
300

 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 2

200
 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2

300

is a 301-bit number).

2.3.11 Elliptic curve Menezes-Qu-Vanstone key derivation

The elliptic curve Menezes-Qu-Vanstone (ECMQV) key derivation mechanism, denoted
CKM_ECMQV_DERIVE, is a mechanism for key derivation based the MQV version of the elliptic curve
key agreement scheme, as defined in ANSI X9.63, where each party contributes two key pairs all using
the same EC domain parameters.

It has a parameter, a CK_ECMQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key

type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2

200

and 2
300

 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 2

200
 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2

300

is a 301-bit number).

2.3.12 ECDH AES KEY WRAP

The ECDH AES KEY WRAP mechanism, denoted CKM_ECDH_AES_KEY_WRAP, is a mechanism
based on elliptic curve public-key crypto-system and the AES key wrap mechanism. It supports single-
part key wrapping; and key unwrapping.

It has a parameter, a CK_ECDH_AES_KEY_WRAP_PARAMS structure.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 51 of 200

The mechanism can wrap and un-wrap an asymmetric target key of any length and type using an EC key.

- A temporary AES key is derived from a temporary EC key and the wrapping EC key using the
CKM_ECDH1_DERIVE mechanism.

- The derived AES key is used for wrapping the target key using the
CKM_AES_KEY_WRAP_PAD mechanism.

For wrapping, the mechanism -

 Generates a temporary random EC key (transport key) having the same parameters as the
wrapping EC key (and domain parameters). Saves the transport key public key material.

 Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf,
ulSharedDataLen and pSharedData using the private key of the transport EC key and the public
key of wrapping EC key and gets the first ulAESKeyBits bits of the derived key to be the
temporary AES key

 Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_PAD
(RFC5649).

 Zeroizes the temporary AES key and EC transport private key

 Concatenates public key material of the transport key and output the concatenated blob.

The recommended format for an asymmetric target key being wrapped is as a PKCS8 PrivateKeyInfo

The use of Attributes in the PrivateKeyInfo structure is OPTIONAL. In case of conflicts between the
object attribute template, and Attributes in the PrivateKeyInfo structure, an error should be thrown.

For unwrapping, the mechanism -

 Splits the input into two parts. The first part is the public key material of the transport key and the
second part is the wrapped target key. The length of the first part is equal to the length of the
public key material of the unwrapping EC key

Note: since the transport key and the wrapping EC key share the same domain, the length of the
public key material of the transport key is the same length of the public key material of the
unwrapping EC key.

 Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf,
ulSharedDataLen and pSharedData using the private part of unwrapping EC key and the public
part of the transport EC key and gets first ulAESKeyBits bits of the derived key to be the
temporary AES key

 Un-wraps the target key from the second part with the temporary AES key using
CKM_AES_KEY_WRAP_PAD (RFC5649).

 Zeroizes the temporary AES key

Table 35, CKM_ECDH_AES_KEY_WRAP Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_ECDH_AES_KEY_WRAP

1SR = SignRecover, VR = VerifyRecover

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 52 of 200

2.3.13 ECDH AES KEY WRAP mechanism parameters

 CK_ECDH_AES_KEY_WRAP_PARAMS; CK_ECDH_AES_KEY_WRAP_PARAMS_PTR

CK_ECDH_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_ECDH_AES_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK_ECDH_AES_KEY_WRAP_PARAMS {
CK_ULONG ulAESKeyBits;
CK_EC_KDF_TYPE kdf;
CK_ULONG ulSharedDataLen;
CK_BYTE_PTR pSharedData;

} CK_ECDH_AES_KEY_WRAP_PARAMS;

The fields of the structure have the following meanings:

ulAESKeyBitslength of the temporary AES key in bits. Can be only 128, 192 or 256.

Kdf key derivation function used on the shared secret value to generate AES key.

ulSharedDataLenthe length in bytes of the shared info

pSharedDataSome data shared between the two parties

CK_ECDH_AES_KEY_WRAP_PARAMS_PTR is a pointer to a
CK_ECDH_AES_KEY_WRAP_PARAMS.

2.3.14 FIPS 186-4

When CKM_ECDSA is operated in FIPS mode, the curves SHALL either be NIST recommended curves
(with a fixed set of domain parameters) or curves with domain parameters generated as specified by
ANSI X9.64. The NIST recommended curves are:

P-192, P-224, P-256, P-384, P-521

K-163, B-163, K-233, B-233

K-283, B-283, K-409, B-409

K-571, B-571

2.4 Diffie-Hellman

Table 36, Diffie-Hellman Mechanisms vs. Functions

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 53 of 200

Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_DH_PKCS_KEY_PAIR_GEN

CKM_DH_PKCS_PARAMETER_GEN

CKM_DH_PKCS_DERIVE

CKM_X9_42_DH_KEY_PAIR_GEN

CKM_X9_42_DH_PKCS_PARAMETER_GEN

CKM_X9_42_DH_DERIVE

CKM_X9_42_DH_HYBRID_DERIVE

CKM_X9_42_MQV_DERIVE

2.4.1 Definitions

This section defines the key type “CKK_DH” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE
attribute of [DH] key objects.

Mechanisms:

CKM_DH_PKCS_KEY_PAIR_GEN

CKM_DH_PKCS_DERIVE

CKM_X9_42_DH_KEY_PAIR_GEN

CKM_X9_42_DH_DERIVE

CKM_X9_42_DH_HYBRID_DERIVE

CKM_X9_42_MQV_DERIVE

CKM_DH_PKCS_PARAMETER_GEN

CKM_X9_42_DH_PARAMETER_GEN

2.4.2 Diffie-Hellman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_DH) hold Diffie-
Hellman public keys. The following table defines the Diffie-Hellman public key object attributes, in
addition to the common attributes defined for this object class:

Table 37, Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME
1,3

 Big integer Prime p

CKA_BASE
1,3

 Big integer Base g

CKA_VALUE
1,4

 Big integer Public value y

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;

CK_KEY_TYPE keyType = CKK_DH;

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 54 of 200

CK_UTF8CHAR label[] = “A Diffie-Hellman public key object”;

CK_BYTE prime[] = {...};

CK_BYTE base[] = {...};

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_PRIME, prime, sizeof(prime)},

 {CKA_BASE, base, sizeof(base)},

 {CKA_VALUE, value, sizeof(value)}

};

2.4.3 X9.42 Diffie-Hellman public key objects

X9.42 Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_X9_42_DH)
hold X9.42 Diffie-Hellman public keys. The following table defines the X9.42 Diffie-Hellman public key
object attributes, in addition to the common attributes defined for this object class:

Table 38, X9.42 Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME
1,3

 Big integer Prime p (1024 bits, in steps of 256 bits)

CKA_BASE
1,3

 Big integer Base g

CKA_SUBPRIME
1,3

 Big integer Subprime q (160 bits)

CKA_VALUE
1,4

 Big integer Public value y

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. See the ANSI X9.42 standard for more information on X9.42 Diffie-
Hellman keys.

The following is a sample template for creating a X9.42 Diffie-Hellman public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;

CK_KEY_TYPE keyType = CKK_X9_42_DH;

CK_UTF8CHAR label[] = “A X9.42 Diffie-Hellman public key

object”;

CK_BYTE prime[] = {...};

CK_BYTE base[] = {...};

CK_BYTE subprime[] = {...};

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_PRIME, prime, sizeof(prime)},

 {CKA_BASE, base, sizeof(base)},

 {CKA_SUBPRIME, subprime, sizeof(subprime)},

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 55 of 200

 {CKA_VALUE, value, sizeof(value)}

};

2.4.4 Diffie-Hellman private key objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_DH) hold Diffie-
Hellman private keys. The following table defines the Diffie-Hellman private key object attributes, in
addition to the common attributes defined for this object class:

Table 39, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME
1,4,6

 Big integer Prime p

CKA_BASE
1,4,6

 Big integer Base g

CKA_VALUE
1,4,6,7

 Big integer Private value x

CKA_VALUE_BITS
2,6

 CK_ULONG Length in bits of private value x

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman keys.

Note that when generating a Diffie-Hellman private key, the Diffie-Hellman parameters are not specified in
the key’s template. This is because Diffie-Hellman private keys are only generated as part of a Diffie-
Hellman key pair, and the Diffie-Hellman parameters for the pair are specified in the template for the

Diffie-Hellman public key.

The following is a sample template for creating a Diffie-Hellman private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;

CK_KEY_TYPE keyType = CKK_DH;

CK_UTF8CHAR label[] = “A Diffie-Hellman private key object”;

CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK_BYTE prime[] = {...};

CK_BYTE base[] = {...};

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_SUBJECT, subject, sizeof(subject)},

 {CKA_ID, id, sizeof(id)},

 {CKA_SENSITIVE, &true, sizeof(true)},

 {CKA_DERIVE, &true, sizeof(true)},

 {CKA_PRIME, prime, sizeof(prime)},

 {CKA_BASE, base, sizeof(base)},

 {CKA_VALUE, value, sizeof(value)}

};

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 56 of 200

2.4.5 X9.42 Diffie-Hellman private key objects

X9.42 Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_X9_42_DH)
hold X9.42 Diffie-Hellman private keys. The following table defines the X9.42 Diffie-Hellman private key
object attributes, in addition to the common attributes defined for this object class:

Table 40, X9.42 Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME
1,4,6

 Big integer Prime p (1024 bits, in steps of 256 bits)

CKA_BASE
1,4,6

 Big integer Base g

CKA_SUBPRIME
1,4,6

 Big integer Subprime q (160 bits)

CKA_VALUE
1,4,6,7

 Big integer Private value x

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. Depending on the token, there may be limits on the length of the key
components. See the ANSI X9.42 standard for more information on X9.42 Diffie-Hellman keys.

Note that when generating a X9.42 Diffie-Hellman private key, the X9.42 Diffie-Hellman domain
parameters are not specified in the key’s template. This is because X9.42 Diffie-Hellman private keys are
only generated as part of a X9.42 Diffie-Hellman key pair, and the X9.42 Diffie-Hellman domain

parameters for the pair are specified in the template for the X9.42 Diffie-Hellman public key.

The following is a sample template for creating a X9.42 Diffie-Hellman private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;

CK_KEY_TYPE keyType = CKK_X9_42_DH;

CK_UTF8CHAR label[] = “A X9.42 Diffie-Hellman private key object”;

CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK_BYTE prime[] = {...};

CK_BYTE base[] = {...};

CK_BYTE subprime[] = {...};

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_SUBJECT, subject, sizeof(subject)},

 {CKA_ID, id, sizeof(id)},

 {CKA_SENSITIVE, &true, sizeof(true)},

 {CKA_DERIVE, &true, sizeof(true)},

 {CKA_PRIME, prime, sizeof(prime)},

 {CKA_BASE, base, sizeof(base)},

 {CKA_SUBPRIME, subprime, sizeof(subprime)},

 {CKA_VALUE, value, sizeof(value)}

};

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 57 of 200

2.4.6 Diffie-Hellman domain parameter objects

Diffie-Hellman domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_DH) hold Diffie-Hellman domain parameters. The following table defines the Diffie-Hellman domain

parameter object attributes, in addition to the common attributes defined for this object class:

Table 41, Diffie-Hellman Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_PRIME
1,4

 Big integer Prime p

CKA_BASE
1,4

 Big integer Base g

CKA_PRIME_BITS
2,3

 CK_ULONG Length of the prime value.

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman domain parameters.

The following is a sample template for creating a Diffie-Hellman domain parameter object:

CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;

CK_KEY_TYPE keyType = CKK_DH;

CK_UTF8CHAR label[] = “A Diffie-Hellman domain parameters

object”;

CK_BYTE prime[] = {...};

CK_BYTE base[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_PRIME, prime, sizeof(prime)},

 {CKA_BASE, base, sizeof(base)},

};

2.4.7 X9.42 Diffie-Hellman domain parameters objects

X9.42 Diffie-Hellman domain parameters objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_X9_42_DH) hold X9.42 Diffie-Hellman domain parameters. The following table defines the X9.42
Diffie-Hellman domain parameters object attributes, in addition to the common attributes defined for this
object class:

Table 42, X9.42 Diffie-Hellman Domain Parameters Object Attributes

Attribute Data type Meaning

CKA_PRIME
1,4

 Big integer Prime p (1024 bits, in steps of 256 bits)

CKA_BASE
1,4

 Big integer Base g

CKA_SUBPRIME
1,4

 Big integer Subprime q (160 bits)

CKA_PRIME_BITS
2,3

 CK_ULONG Length of the prime value.

CKA_SUBPRIME_BITS
2,3

 CK_ULONG Length of the subprime value.

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. Depending on the token, there may be limits on the length of the domain

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 58 of 200

parameters components. See the ANSI X9.42 standard for more information on X9.42 Diffie-Hellman
domain parameters.

The following is a sample template for creating a X9.42 Diffie-Hellman domain parameters object:

CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;

CK_KEY_TYPE keyType = CKK_X9_42_DH;

CK_UTF8CHAR label[] = “A X9.42 Diffie-Hellman domain

parameters object”;

CK_BYTE prime[] = {...};

CK_BYTE base[] = {...};

CK_BYTE subprime[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_PRIME, prime, sizeof(prime)},

 {CKA_BASE, base, sizeof(base)},

 {CKA_SUBPRIME, subprime, sizeof(subprime)},

};

2.4.8 PKCS #3 Diffie-Hellman key pair generation

The PKCS #3 Diffie-Hellman key pair generation mechanism, denoted
CKM_DH_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on Diffie-Hellman key

agreement, as defined in PKCS #3. This is what PKCS #3 calls “phase I”. It does not have a parameter.

The mechanism generates Diffie-Hellman public/private key pairs with a particular prime and base, as
specified in the CKA_PRIME and CKA_BASE attributes of the template for the public key. If the
CKA_VALUE_BITS attribute of the private key is specified, the mechanism limits the length in bits of the

private value, as described in PKCS #3.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and CKA_VALUE (and
the CKA_VALUE_BITS attribute, if it is not already provided in the template) attributes to the new private
key; other attributes required by the Diffie-Hellman public and private key types must be specified in the
templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of Diffie-Hellman prime sizes, in bits.

2.4.9 PKCS #3 Diffie-Hellman domain parameter generation

The PKCS #3 Diffie-Hellman domain parameter generation mechanism, denoted
CKM_DH_PKCS_PARAMETER_GEN, is a domain parameter generation mechanism based on Diffie-

Hellman key agreement, as defined in PKCS #3.

It does not have a parameter.

The mechanism generates Diffie-Hellman domain parameters with a particular prime length in bits, as
specified in the CKA_PRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and
CKA_PRIME_BITS attributes to the new object. Other attributes supported by the Diffie-Hellman domain

parameter types may also be specified in the template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of Diffie-Hellman prime sizes, in bits.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 59 of 200

2.4.10 PKCS #3 Diffie-Hellman key derivation

The PKCS #3 Diffie-Hellman key derivation mechanism, denoted CKM_DH_PKCS_DERIVE, is a
mechanism for key derivation based on Diffie-Hellman key agreement, as defined in PKCS #3. This is
what PKCS #3 calls “phase II”.

It has a parameter, which is the public value of the other party in the key agreement protocol, represented
as a Cryptoki “Big integer” (i.e., a sequence of bytes, most-significant byte first).

This mechanism derives a secret key from a Diffie-Hellman private key and the public value of the other
party. It computes a Diffie-Hellman secret value from the public value and private key according to PKCS
#3, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one
and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes
bytes from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the

template.

This mechanism has the following rules about key sensitivity and extractability
2
:

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

2.4.11 X9.42 Diffie-Hellman mechanism parameters

 CK_X9_42_DH_KDF_TYPE, CK_X9_42_DH_KDF_TYPE_PTR

CK_X9_42_DH_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive
keying data from a shared secret. The key derivation function will be used by the X9.42 Diffie-Hellman
key agreement schemes. It is defined as follows:

typedef CK_ULONG CK_X9_42_DH_KDF_TYPE;

The following table lists the defined functions.

Table 43, X9.42 Diffie-Hellman Key Derivation Functions

Source Identifier

CKD_NULL

CKD_SHA1_KDF_ASN1

CKD_SHA1_KDF_CONCATENATE

The key derivation function CKD_NULL produces a raw shared secret value without applying any key
derivation function whereas the key derivation functions CKD_SHA1_KDF_ASN1 and

2

Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have

changed in version 2.11 to match the policy used by other key derivation mechanisms such as CKM_SSL3_MASTER_KEY_DERIVE.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 60 of 200

CKD_SHA1_KDF_CONCATENATE, which are both based on SHA-1, derive keying data from the

shared secret value as defined in the ANSI X9.42 standard.

CK_X9_42_DH_KDF_TYPE_PTR is a pointer to a CK_X9_42_DH_KDF_TYPE.

 CK_X9_42_DH1_DERIVE_PARAMS, CK_X9_42_DH1_DERIVE_PARAMS_PTR

CK_X9_42_DH1_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9_42_DH_DERIVE key derivation mechanism, where each party contributes one key pair. The

structure is defined as follows:

typedef struct CK_X9_42_DH1_DERIVE_PARAMS {

 CK_X9_42_DH_KDF_TYPE kdf;

 CK_ULONG ulOtherInfoLen;

 CK_BYTE_PTR pOtherInfo;

 CK_ULONG ulPublicDataLen;

 CK_BYTE_PTR pPublicData;

} CK_X9_42_DH1_DERIVE_PARAMS;

The fields of the structure have the following meanings:

 kdf key derivation function used on the shared secret value

 ulOtherInfoLen the length in bytes of the other info

 pOtherInfo some data shared between the two parties

 ulPublicDataLen the length in bytes of the other party’s X9.42 Diffie-Hellman public
key

 pPublicData pointer to other party’s X9.42 Diffie-Hellman public key value

With the key derivation function CKD_NULL, pOtherInfo must be NULL and ulOtherInfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherInfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherInfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherInfo must be
NULL and ulOtherInfoLen must be zero.

CK_X9_42_DH1_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_DH1_DERIVE_PARAMS.

 CK_X9_42_DH2_DERIVE_PARAMS, CK_X9_42_DH2_DERIVE_PARAMS_PTR

CK_X9_42_DH2_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9_42_DH_HYBRID_DERIVE and CKM_X9_42_MQV_DERIVE key derivation mechanisms,
where each party contributes two key pairs. The structure is defined as follows:

typedef struct CK_X9_42_DH2_DERIVE_PARAMS {

 CK_X9_42_DH_KDF_TYPE kdf;

 CK_ULONG ulOtherInfoLen;

 CK_BYTE_PTR pOtherInfo;

 CK_ULONG ulPublicDataLen;

 CK_BYTE_PTR pPublicData;

 CK_ULONG ulPrivateDataLen;

 CK_OBJECT_HANDLE hPrivateData;

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 61 of 200

 CK_ULONG ulPublicDataLen2;

 CK_BYTE_PTR pPublicData2;

} CK_X9_42_DH2_DERIVE_PARAMS;

The fields of the structure have the following meanings:

 kdf key derivation function used on the shared secret value

 ulOtherInfoLen the length in bytes of the other info

 pOtherInfo some data shared between the two parties

 ulPublicDataLen the length in bytes of the other party’s first X9.42 Diffie-Hellman
public key

 pPublicData pointer to other party’s first X9.42 Diffie-Hellman public key value

 ulPrivateDataLen the length in bytes of the second X9.42 Diffie-Hellman private key

 hPrivateData key handle for second X9.42 Diffie-Hellman private key value

 ulPublicDataLen2 the length in bytes of the other party’s second X9.42 Diffie-Hellman
public key

 pPublicData2 pointer to other party’s second X9.42 Diffie-Hellman public key
value

With the key derivation function CKD_NULL, pOtherInfo must be NULL and ulOtherInfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherInfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherInfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherInfo must be
NULL and ulOtherInfoLen must be zero.

CK_X9_42_DH2_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_DH2_DERIVE_PARAMS.

 CK_X9_42_MQV_DERIVE_PARAMS, CK_X9_42_MQV_DERIVE_PARAMS_PTR

CK_X9_42_MQV_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9_42_MQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The

structure is defined as follows:

typedef struct CK_X9_42_MQV_DERIVE_PARAMS {

 CK_X9_42_DH_KDF_TYPE kdf;

 CK_ULONG ulOtherInfoLen;

 CK_BYTE_PTR pOtherInfo;

 CK_ULONG ulPublicDataLen;

 CK_BYTE_PTR pPublicData;

 CK_ULONG ulPrivateDataLen;

 CK_OBJECT_HANDLE hPrivateData;

 CK_ULONG ulPublicDataLen2;

 CK_BYTE_PTR pPublicData2;

 CK_OBJECT_HANDLE publicKey;

} CK_X9_42_MQV_DERIVE_PARAMS;

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 62 of 200

The fields of the structure have the following meanings:

 kdf key derivation function used on the shared secret value

 ulOtherInfoLen the length in bytes of the other info

 pOtherInfo some data shared between the two parties

 ulPublicDataLen the length in bytes of the other party’s first X9.42 Diffie-Hellman
public key

 pPublicData pointer to other party’s first X9.42 Diffie-Hellman public key value

 ulPrivateDataLen the length in bytes of the second X9.42 Diffie-Hellman private key

 hPrivateData key handle for second X9.42 Diffie-Hellman private key value

 ulPublicDataLen2 the length in bytes of the other party’s second X9.42 Diffie-Hellman
public key

 pPublicData2 pointer to other party’s second X9.42 Diffie-Hellman public key
value

 publicKey Handle to the first party’s ephemeral public key

With the key derivation function CKD_NULL, pOtherInfo must be NULL and ulOtherInfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherInfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherInfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherInfo must be
NULL and ulOtherInfoLen must be zero.

CK_X9_42_MQV_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_MQV_DERIVE_PARAMS.

2.4.12 X9.42 Diffie-Hellman key pair generation

The X9.42 Diffie-Hellman key pair generation mechanism, denoted CKM_X9_42_DH_KEY_PAIR_GEN,
is a key pair generation mechanism based on Diffie-Hellman key agreement, as defined in the ANSI
X9.42 standard.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman public/private key pairs with a particular prime, base and
subprime, as specified in the CKA_PRIME, CKA_BASE and CKA_SUBPRIME attributes of the template

for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, CKA_SUBPRIME, and
CKA_VALUE attributes to the new private key; other attributes required by the X9.42 Diffie-Hellman

public and private key types must be specified in the templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 63 of 200

2.4.13 X9.42 Diffie-Hellman domain parameter generation

The X9.42 Diffie-Hellman domain parameter generation mechanism, denoted
CKM_X9_42_DH_PARAMETER_GEN, is a domain parameters generation mechanism based on X9.42

Diffie-Hellman key agreement, as defined in the ANSI X9.42 standard.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman domain parameters with particular prime and subprime
length in bits, as specified in the CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes of the

template for the domain parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE,
CKA_SUBPRIME, CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes to the new object. Other
attributes supported by the X9.42 Diffie-Hellman domain parameter types may also be specified in the
template for the domain parameters, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits.

2.4.14 X9.42 Diffie-Hellman key derivation

The X9.42 Diffie-Hellman key derivation mechanism, denoted CKM_X9_42_DH_DERIVE, is a
mechanism for key derivation based on the Diffie-Hellman key agreement scheme, as defined in the
ANSI X9.42 standard, where each party contributes one key pair, all using the same X9.42 Diffie-Hellman
domain parameters.

It has a parameter, a CK_X9_42_DH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA_1_HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

2.4.15 X9.42 Diffie-Hellman hybrid key derivation

The X9.42 Diffie-Hellman hybrid key derivation mechanism, denoted
CKM_X9_42_DH_HYBRID_DERIVE, is a mechanism for key derivation based on the Diffie-Hellman
hybrid key agreement scheme, as defined in the ANSI X9.42 standard, where each party contributes two
key pair, all using the same X9.42 Diffie-Hellman domain parameters.

It has a parameter, a CK_X9_42_DH2_DERIVE_PARAMS structure.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 64 of 200

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA_1_HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

2.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation

The X9.42 Diffie-Hellman Menezes-Qu-Vanstone (MQV) key derivation mechanism, denoted
CKM_X9_42_MQV_DERIVE, is a mechanism for key derivation based the MQV scheme, as defined in
the ANSI X9.42 standard, where each party contributes two key pairs, all using the same X9.42 Diffie-
Hellman domain parameters.

It has a parameter, a CK_X9_42_MQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA_1_HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 65 of 200

2.5 Wrapping/unwrapping private keys

Cryptoki Versions 2.01 and up allow the use of secret keys for wrapping and unwrapping RSA private
keys, Diffie-Hellman private keys, X9.42 Diffie-Hellman private keys, EC (also related to ECDSA) private
keys and DSA private keys. For wrapping, a private key is BER-encoded according to PKCS #8’s
PrivateKeyInfo ASN.1 type. PKCS #8 requires an algorithm identifier for the type of the private key. The
object identifiers for the required algorithm identifiers are as follows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

dhKeyAgreement OBJECT IDENTIFIER ::= { pkcs-3 1 }

dhpublicnumber OBJECT IDENTIFIER ::= { iso(1) member-body(2)

us(840) ansi-x942(10046) number-type(2) 1 }

id-ecPublicKey OBJECT IDENTIFIER ::= { iso(1) member-body(2)

us(840) ansi-x9-62(10045) publicKeyType(2) 1 }

id-dsa OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }

where

pkcs-1 OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) 1 }

pkcs-3 OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) 3 }

These parameters for the algorithm identifiers have the

following types, respectively:

NULL

DHParameter ::= SEQUENCE {

 prime INTEGER, -- p

 base INTEGER, -- g

 privateValueLength INTEGER OPTIONAL

}

DomainParameters ::= SEQUENCE {

 prime INTEGER, -- p

 base INTEGER, -- g

 subprime INTEGER, -- q

 cofactor INTEGER OPTIONAL, -- j

 validationParms ValidationParms OPTIONAL

}

ValidationParms ::= SEQUENCE {

 Seed BIT STRING, -- seed

 PGenCounter INTEGER -- parameter verification

}

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 66 of 200

Parameters ::= CHOICE {

 ecParameters ECParameters,

 namedCurve CURVES.&id({CurveNames}),

 implicitlyCA NULL

}

Dss-Parms ::= SEQUENCE {

 p INTEGER,

 q INTEGER,

 g INTEGER

}

For the X9.42 Diffie-Hellman domain parameters, the cofactor and the validationParms optional fields
should not be used when wrapping or unwrapping X9.42 Diffie-Hellman private keys since their values
are not stored within the token.

For the EC domain parameters, the use of namedCurve is recommended over the choice
ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Within the PrivateKeyInfo type:

 RSA private keys are BER-encoded according to PKCS #1’s RSAPrivateKey ASN.1 type. This type
requires values to be present for all the attributes specific to Cryptoki’s RSA private key objects. In
other words, if a Cryptoki library does not have values for an RSA private key’s CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT2, and CKA_COEFFICIENT values, it must not create an
RSAPrivateKey BER-encoding of the key, and so it must not prepare it for wrapping.

 Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.

 X9.42 Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.

 EC (also related with ECDSA) private keys are BER-encoded according to SECG SEC 1
ECPrivateKey ASN.1 type:

ECPrivateKey ::= SEQUENCE {

 Version INTEGER { ecPrivkeyVer1(1) }

(ecPrivkeyVer1),

 privateKey OCTET STRING,

 parameters [0] Parameters OPTIONAL,

 publicKey [1] BIT STRING OPTIONAL

}

Since the EC domain parameters are placed in the PKCS #8’s privateKeyAlgorithm field, the optional
parameters field in an ECPrivateKey must be omitted. A Cryptoki application must be able to
unwrap an ECPrivateKey that contains the optional publicKey field; however, what is done with this
publicKey field is outside the scope of Cryptoki.

 DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

Once a private key has been BER-encoded as a PrivateKeyInfo type, the resulting string of bytes is
encrypted with the secret key. This encryption must be done in CBC mode with PKCS padding.

Unwrapping a wrapped private key undoes the above procedure. The CBC-encrypted ciphertext is
decrypted, and the PKCS padding is removed. The data thereby obtained are parsed as a
PrivateKeyInfo type, and the wrapped key is produced. An error will result if the original wrapped key
does not decrypt properly, or if the decrypted unpadded data does not parse properly, or its type does not
match the key type specified in the template for the new key. The unwrapping mechanism contributes

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 67 of 200

only those attributes specified in the PrivateKeyInfo type to the newly-unwrapped key; other attributes
must be specified in the template, or will take their default values.

Earlier drafts of PKCS #11 Version 2.0 and Version 2.01 used the object identifier

DSA OBJECT IDENTIFIER ::= { algorithm 12 }

algorithm OBJECT IDENTIFIER ::= {

 iso(1) identifier-organization(3) oiw(14) secsig(3)

algorithm(2) }

with associated parameters

DSAParameters ::= SEQUENCE {

 prime1 INTEGER, -- modulus p

 prime2 INTEGER, -- modulus q

 base INTEGER -- base g

}

for wrapping DSA private keys. Note that although the two structures for holding DSA domain
parameters appear identical when instances of them are encoded, the two corresponding object
identifiers are different.

2.6 Generic secret key

Table 44, Generic Secret Key Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

 Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_GENERIC
_SECRET_KEY
_GEN

2.6.1 Definitions

This section defines the key type “CKK_GENERIC_SECRET” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_GENERIC_SECRET_KEY_GEN

2.6.2 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type CKK_GENERIC_SECRET) hold
generic secret keys. These keys do not support encryption or decryption; however, other keys can be
derived from them and they can be used in HMAC operations. The following table defines the generic
secret key object attributes, in addition to the common attributes defined for this object class:

These key types are used in several of the mechanisms described in this section.

Table 45, Generic Secret Key Object Attributes

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 68 of 200

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

 Byte array Key value (arbitrary
length)

CKA_VALUE_LEN
2,3

 CK_ULONG Length in bytes of key
value

- Refer to [PKCS #11-Base] table 10 for footnotes

The following is a sample template for creating a generic secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_GENERIC_SECRET;

CK_UTF8CHAR label[] = “A generic secret key object”;

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_DERIVE, &true, sizeof(true)},

 {CKA_VALUE, value, sizeof(value)}

};

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the SHA-1 hash of the generic secret key object’s CKA_VALUE attribute.

2.6.3 Generic secret key generation

The generic secret key generation mechanism, denoted CKM_GENERIC_SECRET_KEY_GEN, is used
to generate generic secret keys. The generated keys take on any attributes provided in the template
passed to the C_GenerateKey call, and the CKA_VALUE_LEN attribute specifies the length of the key

to be generated.

It does not have a parameter.

The template supplied must specify a value for the CKA_VALUE_LEN attribute. If the template specifies

an object type and a class, they must have the following values:

 CK_OBJECT_CLASS = CKO_SECRET_KEY;

 CK_KEY_TYPE = CKK_GENERIC_SECRET;

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bits.

2.7 HMAC mechanisms

Refer to RFC2104 and FIPS 198 for HMAC algorithm description.. The HMAC secret key shall
correspond to the PKCS11 generic secret key type or the mechanism specific key types (see mechanism
definition). Such keys, for use with HMAC operations can be created using C_CreateObject or
C_GenerateKey.

The RFC also specifies test vectors for the various hash function based HMAC mechanisms described in
the respective hash mechanism descriptions. The RFC should be consulted to obtain these test vectors.

2.8 AES

For the Advanced Encryption Standard (AES) see [FIPS PUB 197].

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 69 of 200

Table 46, AES Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_AES_KEY_GEN

CKM_AES_ECB

CKM_AES_CBC

CKM_AES_CBC_PAD

CKM_AES_MAC_GENERAL

CKM_AES_MAC

CKM_AES_OFB

CKM_AES_CFB64

CKM_AES_CFB8

CKM_AES_CFB128

CKM_AES_CFB1

CKM_AES_XCBC_MAC

CKM_AES_XCBC_MAC_96

2.8.1 Definitions

This section defines the key type “CKK_AES” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE
attribute of key objects.

Mechanisms:

CKM_AES_KEY_GEN

CKM_AES_ECB

CKM_AES_CBC

CKM_AES_MAC

CKM_AES_MAC_GENERAL

CKM_AES_CBC_PAD

CKM_AES_OFB

CKM_AES_CFB64

CKM_AES_CFB8

CKM_AES_CFB128

CKM_AES_CFB1

CKM_AES_XCBC_MAC

CKM_AES_XCBC_MAC_96

2.8.2 AES secret key objects

AES secret key objects (object class CKO_SECRET_KEY, key type CKK_AES) hold AES keys. The
following table defines the AES secret key object attributes, in addition to the common attributes defined
for this object class:

Table 47, AES Secret Key Object Attributes

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 70 of 200

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

 Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN
2,3,6

 CK_ULONG Length in bytes of key
value

- Refer to [PKCS #11-Base] table 10 for footnotes

The following is a sample template for creating an AES secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_AES;

CK_UTF8CHAR label[] = “An AES secret key object”;

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_VALUE, value, sizeof(value)}

};

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

2.8.3 AES key generation

The AES key generation mechanism, denoted CKM_AES_KEY_GEN, is a key generation mechanism for

NIST’s Advanced Encryption Standard.

It does not have a parameter.

The mechanism generates AES keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the AES key type (specifically, the flags indicating which functions the
key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of AES key sizes, in bytes.

2.8.4 AES-ECB

AES-ECB, denoted CKM_AES_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on NIST Advanced Encryption Standard and
electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 71 of 200

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 48, AES-ECB: Key And Data Length

Function Key
type

Input length Output length Comments

C_Encrypt AES multiple of
block size

same as input length no final part

C_Decrypt AES multiple of
block size

same as input length no final part

C_WrapKey AES any input length rounded up to
multiple of block size

C_UnwrapKey AES multiple of
block size

determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.5 AES-CBC

AES-CBC, denoted CKM_AES_CBC, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on NIST’s Advanced Encryption Standard and
cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 49, AES-CBC: Key And Data Length

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 72 of 200

Function Key
type

Input length Output length Comments

C_Encrypt AES multiple of
block size

same as input length no final part

C_Decrypt AES multiple of
block size

same as input length no final part

C_WrapKey AES any input length rounded up to
multiple of the block size

C_UnwrapKey AES multiple of
block size

determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of AES key sizes, in bytes.

2.8.6 AES-CBC with PKCS padding

AES-CBC with PKCS padding, denoted CKM_AES_CBC_PAD, is a mechanism for single- and multiple-
part encryption and decryption; key wrapping; and key unwrapping, based on NIST’s Advanced
Encryption Standard; cipher-block chaining mode; and the block cipher padding method detailed in PKCS
#7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section 2.5
for details). The entries in the table below for data length constraints when wrapping and unwrapping
keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 50, AES-CBC with PKCS Padding: Key And Data Length

Function Key
type

Input length Output length

C_Encrypt AES any input length rounded up to
multiple of the block size

C_Decrypt AES multiple of
block size

between 1 and block size bytes
shorter than input length

C_WrapKey AES any input length rounded up to
multiple of the block size

C_UnwrapKey AES multiple of
block size

between 1 and block length
bytes shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.7 AES-OFB

AES-OFB, denoted CKM_AES_OFB. It is a mechanism for single and multiple-part encryption and
decryption with AES. AES-OFB mode is described in [NIST sp800-38a].

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 73 of 200

Constraints on key types and the length of data are summarized in the following table:

Table 51, AES-OFB: Key And Data Length

Function Key
type

Input length Output length Comments

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

2.8.8 AES-CFB

Cipher AES has a cipher feedback mode, AES-CFB, denoted CKM_AES_CFB8, CKM_AES_CFB64, and
CKM_AES_CFB128. It is a mechanism for single and multiple-part encryption and decryption with AES.
AES-OFB mode is described [NIST sp800-38a].

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:

Table 52, AES-CFB: Key And Data Length

Function Key
type

Input length Output length Comments

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

2.8.9 General-length AES-MAC

General-length AES-MAC, denoted CKM_AES_MAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on NIST Advanced Encryption Standard as defined in
FIPS PUB 197 and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length

desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 53, General-length AES-MAC: Key And Data Length

Function Key type Data length Signature length

C_Sign AES any 0-block size, as specified in parameters

C_Verify AES any 0-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.10 AES-MAC

AES-MAC, denoted by CKM_AES_MAC, is a special case of the general-length AES-MAC mechanism.
AES-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 74 of 200

Table 54, AES-MAC: Key And Data Length

Function Key type Data length Signature length

C_Sign AES Any ½ block size (8 bytes)

C_Verify AES Any ½ block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.11 AES-XCBC-MAC

AES-XCBC-MAC, denoted CKM_AES_XCBC_MAC, is a mechanism for single and multiple part

signatures and verification; based on NIST’s Advanced Encryption Standard and [RFC 3566].

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 55, AES-XCBC-MAC: Key And Data Length

Function Key type Data length Signature length

C_Sign AES Any 16 bytes

C_Verify AES Any 16 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.12 AES-XCBC-MAC-96

AES-XCBC-MAC-96, denoted CKM_AES_XCBC_MAC-96, is a mechanism for single and multiple part
signatures and verification; based on NIST’s Advanced Encryption Standard and [RFC 3566].

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 56, AES-XCBC-MAC: Key And Data Length

Function Key type Data length Signature length

C_Sign AES Any 12 bytes

C_Verify AES Any 12 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.9 AES with Counter

Table 57, AES with Counter Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_AES_CTR

2.9.1 Definitions

Mechanisms:

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 75 of 200

CKM_AES_CTR

2.9.2 AES with Counter mechanism parameters

 CK_AES_CTR_PARAMS; CK_AES_CTR_PARAMS_PTR

CK_AES_CTR_PARAMS is a structure that provides the parameters to the CKM_AES_CTR mechanism.

It is defined as follows:

typedef struct CK_AES_CTR_PARAMS {

 CK_ULONG ulCounterBits;

 CK_BYTE cb[16];

} CK_AES_CTR_PARAMS;

ulCounterBits specifies the number of bits in the counter block (cb) that shall be incremented. This
number shall be such that 0 < ulCounterBits <= 128. For any values outside this range the mechanism
shall return CKR_MECHANISM_PARAM_INVALID.

It's up to the caller to initialize all of the bits in the counter block including the counter bits. The counter
bits are the least significant bits of the counter block (cb). They are a big-endian value usually starting
with 1. The rest of ‘cb’ is for the nonce, and maybe an optional IV.

E.g. as defined in [RFC 3686]:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Nonce |

 +-+

 | Initialization Vector (IV) |

 | |

 +-+

 | Block Counter |

 +-+

This construction permits each packet to consist of up to 2
32

-1 blocks = 4,294,967,295 blocks =
68,719,476,720 octets.

CK_AES_CTR_PARAMS_PTR is a pointer to a CK_AES_CTR_PARAMS.

2.9.3 AES with Counter Encryption / Decryption

Generic AES counter mode is described in NIST Special Publication 800-38A and in RFC 3686. These
describe encryption using a counter block which may include a nonce to guarantee uniqueness of the
counter block. Since the nonce is not incremented, the mechanism parameter must specify the number of
counter bits in the counter block.

The block counter is incremented by 1 after each block of plaintext is processed. There is no support for
any other increment functions in this mechanism.

If an attempt to encrypt/decrypt is made which will cause an overflow of the counter block’s counter bits,
then the mechanism shall return CKR_DATA_LEN_RANGE. Note that the mechanism should allow the
final post increment of the counter to overflow (if it implements it this way) but not allow any further
processing after this point. E.g. if ulCounterBits = 2 and the counter bits start as 1 then only 3 blocks of
data can be processed.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 76 of 200

2.10 AES CBC with Cipher Text Stealing CTS

Ref [NIST AES CTS]

This mode allows unpadded data that has length that is not a multiple of the block size to be encrypted to
the same length of cipher text.

Table 58, AES CBC with Cipher Text Stealing CTS Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_AES_CTS

2.10.1 Definitions

Mechanisms:

CKM_AES_CTS

2.10.2 AES CTS mechanism parameters

It has a parameter, a 16-byte initialization vector.

Table 59, AES-CTS: Key And Data Length

Function Key
type

Input length Output length Comments

C_Encrypt AES Any, ≥ block
size (16 bytes)

same as input length no final part

C_Decrypt AES any, ≥ block
size (16 bytes)

same as input length no final part

2.11 Additional AES Mechanisms

Table 60, Additional AES Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_AES_GCM

CKM_AES_CCM

CKM_AES_GMAC

2.11.1 Definitions

Mechanisms:

CKM_AES_GCM

CKM_AES_CCM

CKM_AES_GMAC

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 77 of 200

2.12 AES-GCM Authenticated Encryption / Decryption

Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where K
(key) and AAD (additional authenticated data) are as described in [GCM].

Encrypt:

 Set the IV length ulIvLen in the parameter block.

 Set the IV data pIv in the parameter block. pIV may be NULL if ulIvLen is 0.

 Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

 Set the tag length ulTagBits in the parameter block.

 Call C_EncryptInit() for CKM_AES_GCM mechanism with parameters and key K.

 Call C_Encrypt(), or C_EncryptUpdate()*
3
 C_EncryptFinal(), for the plaintext obtaining ciphertext

and authentication tag output.

Decrypt:

 . Set the IV length ulIvLen in the parameter block.

 Set the IV data pIv in the parameter block. pIV may be NULL if ulIvLen is 0.

 Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

 Set the tag length ulTagBits in the parameter block.

 Call C_DecryptInit() for CKM_AES_GCM mechanism with parameters and key K.

 Call C_Decrypt(), or C_DecryptUpdate()*
1
 C_DecryptFinal(), for the ciphertext, including the

appended tag, obtaining plaintext output. Note: since CKM_AES_GCM is an AEAD cipher, no
data should be returned until C_Decrypt() or C_DecryptFinal().

In pIv the least significant bit of the initialization vector is the rightmost bit. ulIvLen is the length of the

initialization vector in bytes.

The tag is appended to the cipher text and the least significant bit of the tag is the rightmost bit and the
tag bits are the rightmost ulTagBits bits.

The key type for K must be compatible with CKM_AES_ECB and the C_EncryptInit/C_DecryptInit calls
shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL

parameters.

2.12.1 AES-CCM authenticated Encryption / Decryption

For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is described in [RFC
3610].

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated

data are as described in [RFC 3610].

Encrypt:

 Set the message/data length ulDataLen in the parameter block.

3

 “*” indicates 0 or more calls may be made as required

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 78 of 200

 Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. pNonce
may be NULL if ulNonceLen is 0.

 Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

 Set the MAC length ulMACLen in the parameter block.

 Call C_EncryptInit() for CKM_AES_CCM mechanism with parameters and key K.

 Call C_Encrypt(),C_DecryptUpdate(), or C_EncryptFinal(), for the plaintext obtaining ciphertext
output obtaining the final ciphertext output and the MAC. The total length of data processed must
be ulDataLen. The output length will be ulDataLen + ulMACLen.

Decrypt:

 Set the message/data length ulDataLen in the parameter block. This length should not include the
length of the MAC that is appended to the cipher text.

 Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. pNonce
may be NULL if ulNonceLen is 0.

 Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

 Set the MAC length ulMACLen in the parameter block.

 Call C_DecryptInit() for CKM_AES_CCM mechanism with parameters and key K.

 Call C_Decrypt(), C_DecryptUpdate(), or C_DecryptFinal(), for the ciphertext, including the
appended MAC, obtaining plaintext output. The total length of data processed must be ulDataLen
+ ulMACLen. Note: since CKM_AES_CCM is an AEAD cipher, no data should be returned until
C_Decrypt() or C_DecryptFinal().

The key type for K must be compatible with CKM_AES_ECB and the C_EncryptInit/C_DecryptInit calls
shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL

parameters.

2.12.2 AES-GMAC

AES-GMAC, denoted CKM_AES_GMAC, is a mechanism for single and multiple-part signatures and
verification. It is described in NIST Special Publication 800-38D [GMAC]. GMAC is a special case of
GCM that authenticates only the Additional Authenticated Data (AAD) part of the GCM mechanism
parameters. When HMAC is used with C_Sign or C_Verify, pData points to the AAD. HMAC does not
use plaintext or ciphertext.

The signature produced by HMAC, also referred to as a Tag, is 16 bytes long.

Its single mechanism parameter is a 12 byte initialization vector (IV).

Constraints on key types and the length of data are summarized in the following table:

Table 61, AES-GMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_AES < 2^64 16 bytes

C_Verify CKK_AES < 2^64 16 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of AES key sizes, in bytes.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 79 of 200

2.12.3 AES GCM and CCM Mechanism parameters

 CK_GCM_PARAMS; CK_GCM_PARAMS_PTR

CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism. It is
defined as follows:

typedef struct CK_GCM_PARAMS {

 CK_BYTE_PTR pIv;

 CK_ULONG ulIvLen;

 CK_BYTE_PTR pAAD;

 CK_ULONG ulAADLen;

 CK_ULONG ulTagBits;

} CK_GCM_PARAMS;

The fields of the structure have the following meanings:

 pIv pointer to initialization vector

 ulIvLen length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and 256. 96-bit (12 byte) IV
values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

 pAAD pointer to additional authentication data. This data is authenticated
but not encrypted.

 ulAADLen length of pAAD in bytes.

 ulTagBits length of authentication tag (output following cipher text) in bits. Can
be any value between 0 and 128.

CK_GCM_PARAMS_PTR is a pointer to a CK_GCM_PARAMS.

 CK_CCM_PARAMS; CK_CCM_PARAMS_PTR

CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism. It is
defined as follows:

typedef struct CK_CCM_PARAMS {

 CK_ULONG ulDataLen; /*plaintext or ciphertext*/

 CK_BYTE_PTR pNonce;

 CK_ULONG ulNonceLen;

 CK_BYTE_PTR pAAD;

 CK_ULONG ulAADLen;

 CK_ULONG ulMACLen;

} CK_CCM_PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s
length (2 < L < 8):

 ulDataLen length of the data where 0 <= ulDataLen < 28L.

 pNonce the nonce.

 ulNonceLen length of pNonce (<= 15-L) in bytes.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 80 of 200

 pAAD Additional authentication data. This data is authenticated but not
encrypted.

 ulAADLen length of pAuthData in bytes.

 ulMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_PARAMS_PTR is a pointer to a CK_CCM_PARAMS.

2.12.4 AES-GCM authenticated Encryption / Decryption

Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where K
(key) and AAD (additional authenticated data) are as described in [GCM].

Encrypt:

 Set the IV length ulIvLen in the parameter block.

 Set the IV data pIv in the parameter block. pIV may be NULL if ulIvLen is 0.

 Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

 Set the tag length ulTagBits in the parameter block.

 Call C_EncryptInit() for CKM_AES_GCM mechanism with parameters and key K.

 Call C_Encrypt(), or C_EncryptUpdate()*
4
 C_EncryptFinal(), for the plaintext obtaining ciphertext

and authentication tag output.

Decrypt:

 . Set the IV length ulIvLen in the parameter block.

 Set the IV data pIv in the parameter block. pIV may be NULL if ulIvLen is 0.

 Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

 Set the tag length ulTagBits in the parameter block.

 Call C_DecryptInit() for CKM_AES_GCM mechanism with parameters and key K.

 Call C_Decrypt(), or C_DecryptUpdate()*
1
 C_DecryptFinal(), for the ciphertext, including the

appended tag, obtaining plaintext output.

In pIv the least significant bit of the initialization vector is the rightmost bit. ulIvLen is the length of the

initialization vector in bytes.

The tag is appended to the cipher text and the least significant bit of the tag is the rightmost bit and the
tag bits are the rightmost ulTagBits bits.

The key type for K must be compatible with CKM_AES_ECB and the C_EncryptInit/C_DecryptInit calls
shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL

parameters.

2.12.5 AES-CCM authenticated Encryption / Decryption

For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is described in [RFC
3610].

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated

data are as described in [RFC 3610].

4

“*” indicates 0 or more calls may be made as required

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 81 of 200

Encrypt:

 Set the message/data length ulDataLen in the parameter block.

 Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. pNonce
may be NULL if ulNonceLen is 0.

 Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

 Set the MAC length ulMACLen in the parameter block.

 Call C_EncryptInit() for CKM_AES_CCM mechanism with parameters and key K.

 Call C_Encrypt(), or C_DecryptUpdate()*
4
 C_EncryptFinal(), for the plaintext obtaining ciphertext

output obtaining the final ciphertext output and the MAC. The total length of data processed must
be ulDataLen. The output length will be ulDataLen + ulMACLen.

Decrypt:

 Set the message/data length ulDataLen in the parameter block. This length should not include the

length of the MAC that is appended to the cipher text.

 Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. pNonce
may be NULL if ulNonceLen is 0.

 Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

 Set the MAC length ulMACLen in the parameter block.

 Call C_DecryptInit() for CKM_AES_CCM mechanism with parameters and key K.

 Call C_Decrypt(), or C_DecryptUpdate()*
4
 C_DecryptFinal(), for the ciphertext, including the

appended MAC, obtaining plaintext output. The total length of data processed must be ulDataLen
+ ulMACLen.

The key type for K must be compatible with CKM_AES_ECB and the C_EncryptInit/C_DecryptInit calls
shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL

parameters.

2.13 AES CMAC

Table 62, Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_AES_CMAC_GENERAL

CKM_AES_CMAC

1

SR = SignRecover, VR = VerifyRecover

.

2.13.1 Definitions

Mechanisms:

CKM_AES_CMAC_GENERAL

CKM_AES_CMAC

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 82 of 200

2.13.2 Mechanism parameters

CKM_AES_CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS structure.
CKM_AES_CMAC does not use a mechanism parameter.

2.13.3 General-length AES-CMAC

General-length AES-CMAC, denoted CKM_AES_CMAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on [NIST SP800-38B] and [RFC 4493].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length

desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 63, General-length AES-CMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_AES any 0-block size, as specified in parameters

C_Verify CKK_AES any 0-block size, as specified in parameters

References [NIST SP800-38B] and [RFC 4493] recommend that the output MAC is not truncated to less
than 64 bits. The MAC length must be specified before the communication starts, and must not be
changed during the lifetime of the key. It is the caller’s responsibility to follow these rules.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of AES key sizes, in bytes.

2.13.4 AES-CMAC

AES-CMAC, denoted CKM_AES_CMAC, is a special case of the general-length AES-CMAC mechanism.
AES-MAC always produces and verifies MACs that are a full block size in length, the default output length
specified by [RFC 4493].

Constraints on key types and the length of data are summarized in the following table:

Table 64, AES-CMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_AES any Block size (16 bytes)

C_Verify CKK_AES any Block size (16 bytes)

References [NIST SP800-38B] and [RFC 4493] recommend that the output MAC is not truncated to less
than 64 bits. The MAC length must be specified before the communication starts, and must not be
changed during the lifetime of the key. It is the caller’s responsibility to follow these rules.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of AES key sizes, in bytes.

2.14 AES Key Wrap

Table 65, AES Key Wrap Mechanisms vs. Functions

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 83 of 200

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest

Gen.

 Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_AES_KEY_WRAP

CKM_AES_KEY_WRAP_PAD

1SR = SignRecover, VR = VerifyRecover

2.14.1 Definitions

Mechanisms:

CKM_AES_KEY_WRAP

CKM_AES_KEY_WRAP_PAD

2.14.2 AES Key Wrap Mechanism parameters

The mechanisms will accept an optional mechanism parameter as the Initialization vector which, if
present, must be a fixed size array of 8 bytes, and, if NULL, will use the default initial value defined in
Section 2.2.3.1 of [AES KEYWRAP].

The type of this parameter is CK_BYTE_PTR and the pointer points to the array of 8 bytes to be used as
the initial value. The length shall be either 0 and the pointer NULL, or 8, and the pointer non-NULL.

2.14.3 AES Key Wrap

The mechanisms support only single-part operations, single part wrapping and unwrapping, and single-
part encryption and decryption.

The CKM_AES_KEY_WRAP mechanism can wrap a key of any length. A key whose length is not a
multiple of the AES Key Wrap block size (8 bytes) will be zero padded to fit. The CKM_AES_KEY_WRAP
mechanism can only encrypt a block of data whose size is an exact multiple of the AES Key Wrap
algorithm block size.

The CKM_AES_KEY_WRAP_PAD mechanism can wrap a key or block of data of any length. It does the
usual padding of inputs (keys or data blocks) that are not multiples of the AES Key Wrap algorithm block
size, always producing wrapped output that is larger than the input key/data to be wrapped. This padding
is done by the token before being passed to the AES key wrap algorithm, which adds an 8 byte AES Key
Wrap algorithm block of data.

2.15 Key derivation by data encryption – DES & AES

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

Table 66, Key derivation by data encryption Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_DES_ECB_ENCRYPT_DATA

CKM_DES_CBC_ENCRYPT_DATA

CKM_DES3_ECB_ENCRYPT_DATA

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 84 of 200

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_DES3_CBC_ENCRYPT_DATA

CKM_AES_ECB_ENCRYPT_DATA

CKM_AES_CBC_ENCRYPT_DATA

2.15.1 Definitions

Mechanisms:

CKM_DES_ECB_ENCRYPT_DATA

CKM_DES_CBC_ENCRYPT_DATA

CKM_DES3_ECB_ENCRYPT_DATA

CKM_DES3_CBC_ENCRYPT_DATA

CKM_AES_ECB_ENCRYPT_DATA

CKM_AES_CBC_ENCRYPT_DATA

typedef struct CK_DES_CBC_ENCRYPT_DATA_PARAMS {

 CK_BYTE iv[8];

 CK_BYTE_PTR pData;

 CK_ULONG length;

} CK_DES_CBC_ENCRYPT_DATA_PARAMS;

typedef CK_DES_CBC_ENCRYPT_DATA_PARAMS CK_PTR

CK_DES_CBC_ENCRYPT_DATA_PARAMS_PTR;

typedef struct CK_AES_CBC_ENCRYPT_DATA_PARAMS {

 CK_BYTE iv[16];

 CK_BYTE_PTR pData;

 CK_ULONG length;

} CK_AES_CBC_ENCRYPT_DATA_PARAMS;

typedef CK_AES_CBC_ENCRYPT_DATA_PARAMS CK_PTR

CK_AES_CBC_ENCRYPT_DATA_PARAMS_PTR;

2.15.2 Mechanism Parameters

Uses CK_KEY_DERIVATION_STRING_DATA as defined in section 2.31.2

Table 67, Mechanism Parameters

CKM_DES_ECB_ENCRYPT_DATA
CKM_DES3_ECB_ENCRYPT_DATA

Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 8 bytes long.

CKM_AES_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.

CKM_DES_CBC_ENCRYPT_DATA

CKM_DES3_CBC_ENCRYPT_DATA

Uses CK_DES_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 8 byte IV value followed by the data.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 85 of 200

The data value part must be a multiple of 8 bytes long.

CKM_AES_CBC_ENCRYPT_DATA Uses CK_AES_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the data.
The data value part

must be a multiple of 16 bytes long.

2.15.3 Mechanism Description

The mechanisms will function by performing the encryption over the data provided using the base key.
The resulting cipher text shall be used to create the key value of the resulting key. If not all the cipher text
is used then the part discarded will be from the trailing end (least significant bytes) of the cipher text data.
The derived key shall be defined by the attribute template supplied but constrained by the length of cipher
text available for the key value and other normal PKCS11 derivation constraints.

Attribute template handling, attribute defaulting and key value preparation will operate as per the SHA-1
Key Derivation mechanism in section 2.18.5.

If the data is too short to make the requested key then the mechanism returns
CKR_DATA_LEN_RANGE.

2.16 Double and Triple-length DES

Table 68, Double and Triple-Length DES Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_DES2_KEY_GEN

CKM_DES3_KEY_GEN

CKM_DES3_ECB

CKM_DES3_CBC

CKM_DES3_CBC_PAD

CKM_DES3_MAC_GENERAL

CKM_DES3_MAC

2.16.1 Definitions

This section defines the key type “CKK_DES2” and “CKK_DES3” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_DES2_KEY_GEN

CKM_DES3_KEY_GEN

CKM_DES3_ECB

CKM_DES3_CBC

CKM_DES3_MAC

CKM_DES3_MAC_GENERAL

CKM_DES3_CBC_PAD

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 86 of 200

2.16.2 DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold double-length
DES keys. The following table defines the DES2 secret key object attributes, in addition to the common
attributes defined for this object class:

Table 69, DES2 Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

 Byte array Key value (always 16 bytes long)

- Refer to [PKCS #11-Base] table 10 for footnotes

DES2 keys must always have their parity bits properly set as described in FIPS PUB 46-3 (i.e., each of
the DES keys comprising a DES2 key must have its parity bits properly set). Attempting to create or
unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_DES2;

CK_UTF8CHAR label[] = “A DES2 secret key object”;

CK_BYTE value[16] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_VALUE, value, sizeof(value)}

};

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

2.16.3 DES3 secret key objects

DES3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold triple-length DES
keys. The following table defines the DES3 secret key object attributes, in addition to the common
attributes defined for this object class:

Table 70, DES3 Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

 Byte array Key value (always 24 bytes long)

- Refer to [PKCS #11-Base] table 10 for footnotes

DES3 keys must always have their parity bits properly set as described in FIPS PUB 46-3 (i.e., each of
the DES keys comprising a DES3 key must have its parity bits properly set). Attempting to create or
unwrap a DES3 key with incorrect parity will return an error.

The following is a sample template for creating a triple-length DES secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_DES3;

CK_UTF8CHAR label[] = “A DES3 secret key object”;

CK_BYTE value[24] = {...};

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 87 of 200

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_VALUE, value, sizeof(value)}

};

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

2.16.4 Double-length DES key generation

The double-length DES key generation mechanism, denoted CKM_DES2_KEY_GEN, is a key
generation mechanism for double-length DES keys. The DES keys making up a double-length DES key
both have their parity bits set properly, as specified in FIPS PUB 46-3.

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the double-length DES key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned default
initial values.

Double-length DES keys can be used with all the same mechanisms as triple-DES keys:
CKM_DES3_ECB, CKM_DES3_CBC, CKM_DES3_CBC_PAD, CKM_DES3_MAC_GENERAL, and
CKM_DES3_MAC. Triple-DES encryption with a double-length DES key is equivalent to encryption with

a triple-length DES key with K1=K3 as specified in FIPS PUB 46-3.

When double-length DES keys are generated, it is token-dependent whether or not it is possible for either
of the component DES keys to be “weak” or “semi-weak” keys.

2.16.5 Triple-length DES Order of Operations

Triple-length DES encryptions are carried out as specified in FIPS PUB 46-3: encrypt, decrypt, encrypt.
Decryptions are carried out with the opposite three steps: decrypt, encrypt, decrypt. The mathematical
representations of the encrypt and decrypt operations are as follows:

DES3-E({K1,K2,K3}, P) = E(K3, D(K2, E(K1, P)))

DES3-D({K1,K2,K3}, C) = D(K1, E(K2, D(K3, P)))

2.16.6 Triple-length DES in CBC Mode

Triple-length DES operations in CBC mode, with double or triple-length keys, are performed using outer
CBC as defined in X9.52. X9.52 describes this mode as TCBC. The mathematical representations of the
CBC encrypt and decrypt operations are as follows:

DES3-CBC-E({K1,K2,K3}, P) = E(K3, D(K2, E(K1, P + I)))

DES3-CBC-D({K1,K2,K3}, C) = D(K1, E(K2, D(K3, P))) + I

The value I is either an 8-byte initialization vector or the previous block of cipher text that is added to the
current input block. The addition operation is used is addition modulo-2 (XOR).

2.16.7 DES and Triple length DES in OFB Mode

Table 71, DES and Triple Length DES in OFB Mode Mechanisms vs. Functions

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 88 of 200

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_DES_OFB64

CKM_DES_OFB8

CKM_DES_CFB64

CKM_DES_CFB8

Cipher DES has a output feedback mode, DES-OFB, denoted CKM_DES_OFB8 and
CKM_DES_OFB64. It is a mechanism for single and multiple-part encryption and decryption with DES.

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:

Table 72, OFB: Key And Data Length

Function Key type Input
length

Output length Comments

C_Encrypt CKK_DES,
CKK_DES2,
CKK_DES3

any same as input length no final part

C_Decrypt CKK_DES,
CKK_DES2,
CKK_DES3

any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

2.16.8 DES and Triple length DES in CFB Mode

Cipher DES has a cipher feedback mode, DES-CFB, denoted CKM_DES_CFB8 and CKM_DES_CFB64.

It is a mechanism for single and multiple-part encryption and decryption with DES.

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:

Table 73, CFB: Key And Data Length

Function Key type Input
length

Output length Comments

C_Encrypt CKK_DES,
CKK_DES2,
CKK_DES3

any same as input length no final part

C_Decrypt CKK_DES,
CKK_DES2,
CKK_DES3

any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

2.17 Double and Triple-length DES CMAC

Table 74, Double and Triple-length DES CMAC Mechanisms vs. Functions

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 89 of 200

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_DES3_CMAC_GENERAL

CKM_DES3_CMAC

1

SR = SignRecover, VR = VerifyRecover.

The following additional DES3 mechanisms have been added.

2.17.1 Definitions

Mechanisms:

CKM_DES3_CMAC_GENERAL

CKM_DES3_CMAC

2.17.2 Mechanism parameters

CKM_DES3_CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS structure.

CKM_DES3_CMAC does not use a mechanism parameter.

2.17.3 General-length DES3-MAC

General-length DES3-CMAC, denoted CKM_DES3_CMAC_GENERAL, is a mechanism for single- and

multiple-part signatures and verification with DES3 or DES2 keys, based on [NIST sp800-38b].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length

desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final DES3 cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 75, General-length DES3-CMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_DES3
CKK_DES2

any 0-block size, as specified in parameters

C_Verify CKK_DES3
CKK_DES2

any 0-block size, as specified in parameters

Reference [NIST sp800-38b] recommends that the output MAC is not truncated to less than 64 bits
(which means using the entire block for DES). The MAC length must be specified before the
communication starts, and must not be changed during the lifetime of the key. It is the caller’s
responsibility to follow these rules.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used

2.17.4 DES3-CMAC

DES3-CMAC, denoted CKM_DES3_CMAC, is a special case of the general-length DES3-CMAC
mechanism. DES3-MAC always produces and verifies MACs that are a full block size in length, since the
DES3 block length is the minimum output length recommended by [NIST sp800-38b].

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 90 of 200

Constraints on key types and the length of data are summarized in the following table:

Table 76, DES3-CMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_DES3
CKK_DES2

any Block size (8 bytes)

C_Verify CKK_DES3
CKK_DES2

any Block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.18 SHA-1

Table 77, SHA-1 Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SHA_1

CKM_SHA_1_HMAC_GENERAL

CKM_SHA_1_HMAC

CKM_SHA1_KEY_DERIVATION

2.18.1 Definitions

Mechanisms:

CKM_SHA_1

CKM_SHA_1_HMAC

CKM_SHA_1_HMAC_GENERAL

CKM_SHA1_KEY_DERIVATION

CKK_SHA_1_HMAC

2.18.2 SHA-1 digest

The SHA-1 mechanism, denoted CKM_SHA_1, is a mechanism for message digesting, following the

Secure Hash Algorithm with a 160-bit message digest defined in FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 78, SHA-1: Data Length

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 91 of 200

Function Input length Digest length

C_Digest any 20

2.18.3 General-length SHA-1-HMAC

The general-length SHA-1-HMAC mechanism, denoted CKM_SHA_1_HMAC_GENERAL, is a
mechanism for signatures and verification. It uses the HMAC construction, based on the SHA-1 hash
function. The keys it uses are generic secret keys and CKK_SHA_1_HMAC.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 0-20 (the output size of SHA-1 is 20 bytes). Signatures
(MACs) produced by this mechanism will be taken from the start of the full 20-byte HMAC output.

Table 79, General-length SHA-1-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret any 0-20, depending on parameters

C_Verify generic secret any 0-20, depending on parameters

2.18.4 SHA-1-HMAC

The SHA-1-HMAC mechanism, denoted CKM_SHA_1_HMAC, is a special case of the general-length

SHA-1-HMAC mechanism in Section 2.18.3.

It has no parameter, and always produces an output of length 20.

2.18.5 SHA-1 key derivation

SHA-1 key derivation, denoted CKM_SHA1_KEY_DERIVATION, is a mechanism which provides the

capability of deriving a secret key by digesting the value of another secret key with SHA-1.

The value of the base key is digested once, and the result is used to make the value of derived secret
key.

 If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be 20 bytes (the output size of SHA-1).

 If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

 If no length was provided in the template, but a key type is, then that key type must have a well-
defined length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

 If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key will be set
properly.

If the requested type of key requires more than 20 bytes, such as DES3, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 92 of 200

CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

2.19 SHA-224

Table 80, SHA-224 Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SHA224

CKM_SHA224_HMAC

CKM_SHA224_HMAC_GENERAL

CKM_SHA224_RSA_PKCS

CKM_SHA224_RSA_PKCS_PSS

CKM_SHA224_KEY_DERIVATION

2.19.1 Definitions

Mechanisms:

CKM_SHA224

CKM_SHA224_HMAC

CKM_SHA224_HMAC_GENERAL

CKM_SHA224_KEY_DERIVATION

CKK_SHA224_HMAC

2.19.2 SHA-224 digest

The SHA-224 mechanism, denoted CKM_SHA224, is a mechanism for message digesting, following the

Secure Hash Algorithm with a 224-bit message digest defined in 0.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 81, SHA-224: Data Length

Function Input length Digest length

C_Digest any 28

2.19.3 General-length SHA-224-HMAC

The general-length SHA-224-HMAC mechanism, denoted CKM_SHA224_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism except that it uses the HMAC construction based
on the SHA-224 hash function and length of the output should be in the range 0-28. The keys it uses are
generic secret keys and CKK_SHA224_HMAC. FIPS-198 compliant tokens may require the key length to
be at least 14 bytes; that is, half the size of the SHA-224 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 0-28 (the output size of SHA-224 is 28 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 14 (half the maximum length).

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 93 of 200

Signatures (MACs) produced by this mechanism will be taken from the start of the full 28-byte HMAC
output.

Table 82, General-length SHA-224-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret Any 0-28, depending on parameters

C_Verify generic secret Any 0-28, depending on parameters

2.19.4 SHA-224-HMAC

The SHA-224-HMAC mechanism, denoted CKM_SHA224_HMAC, is a special case of the general-length

SHA-224-HMAC mechanism.

It has no parameter, and always produces an output of length 28.

2.19.5 SHA-224 key derivation

SHA-224 key derivation, denoted CKM_SHA224_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 12.21.5 except that it uses the SHA-224 hash function and the relevant
length is 28 bytes.

2.20 SHA-256

Table 83, SHA-256 Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SHA256

CKM_SHA256_HMAC_GENERAL

CKM_SHA256_HMAC

CKM_SHA256_KEY_DERIVATION

2.20.1 Definitions

Mechanisms:

CKM_SHA256

CKM_SHA256_HMAC

CKM_SHA256_HMAC_GENERAL

CKM_SHA256_KEY_DERIVATION

CKK_SHA256_HMAC

2.20.2 SHA-256 digest

The SHA-256 mechanism, denoted CKM_SHA256, is a mechanism for message digesting, following the

Secure Hash Algorithm with a 256-bit message digest defined in FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 84, SHA-256: Data Length

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 94 of 200

Function Input length Digest length

C_Digest any 32

2.20.3 General-length SHA-256-HMAC

The general-length SHA-256-HMAC mechanism, denoted CKM_SHA256_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.18.3, except that it uses the HMAC
construction based on the SHA-256 hash function and length of the output should be in the range 0-32.
The keys it uses are generic secret keys and CKK_SHA256_HMAC. FIPS-198 compliant tokens may
require the key length to be at least 16 bytes; that is, half the size of the SHA-256 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 0-32 (the output size of SHA-256 is 32 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 16 (half the maximum length).
Signatures (MACs) produced by this mechanism will be taken from the start of the full 32-byte HMAC
output.

Table 85, General-length SHA-256-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret Any 0-32, depending on parameters

C_Verify generic secret Any 0-32, depending on parameters

2.20.4 SHA-256-HMAC

The SHA-256-HMAC mechanism, denoted CKM_SHA256_HMAC, is a special case of the general-length

SHA-256-HMAC mechanism in Section 2.20.3.

It has no parameter, and always produces an output of length 32.

2.20.5 SHA-256 key derivation

SHA-256 key derivation, denoted CKM_SHA256_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.18.5, except that it uses the SHA-256 hash function and the relevant
length is 32 bytes.

2.21 SHA-384

Table 86, SHA-384 Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SHA384

CKM_SHA384_HMAC_GENERAL

CKM_SHA384_HMAC

CKM_SHA384_KEY_DERIVATION

2.21.1 Definitions

CKM_SHA384

CKM_SHA384_HMAC

CKM_SHA384_HMAC_GENERAL

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 95 of 200

CKM_SHA384_KEY_DERIVATION

CKK_SHA384_HMAC

2.21.2 SHA-384 digest

The SHA-384 mechanism, denoted CKM_SHA384, is a mechanism for message digesting, following the

Secure Hash Algorithm with a 384-bit message digest defined in FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 87, SHA-384: Data Length

Function Input length Digest length

C_Digest any 48

2.21.3 General-length SHA-384-HMAC

The general-length SHA-384-HMAC mechanism, denoted CKM_SHA384_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.18.3, except that it uses the HMAC
construction based on the SHA-384 hash function and length of the output should be in the range 0-48.

2.21.4 SHA-384-HMAC

The SHA-384-HMAC mechanism, denoted CKM_SHA384_HMAC, is a special case of the general-length
SHA-384-HMAC mechanism.

It has no parameter, and always produces an output of length 48.

2.21.5 SHA-384 key derivation

SHA-384 key derivation, denoted CKM_SHA384_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.18.5, except that it uses the SHA-384 hash function and the relevant
length is 48 bytes.

2.22 SHA-512

Table 88, SHA-512 Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SHA512

CKM_SHA512_HMAC_GENERAL

CKM_SHA512_HMAC

CKM_SHA512_KEY_DERIVATION

2.22.1 Definitions

CKM_SHA512

CKM_SHA512_HMAC

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 96 of 200

CKM_SHA512_HMAC_GENERAL

CKM_SHA512_KEY_DERIVATION

CKK_SHA512_HMAC

2.22.2 SHA-512 digest

The SHA-512 mechanism, denoted CKM_SHA512, is a mechanism for message digesting, following the

Secure Hash Algorithm with a 512-bit message digest defined in FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 89, SHA-512: Data Length

Function Input length Digest length

C_Digest any 64

2.22.3 General-length SHA-512-HMAC

The general-length SHA-512-HMAC mechanism, denoted CKM_SHA512_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.18.3, except that it uses the HMAC
construction based on the SHA-512 hash function and length of the output should be in the range 0-64.

2.22.4 SHA-512-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512_HMAC, is a special case of the general-length

SHA-512-HMAC mechanism.

It has no parameter, and always produces an output of length 64.

2.22.5 SHA-512 key derivation

SHA-512 key derivation, denoted CKM_SHA512_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.18.5, except that it uses the SHA-512 hash function and the relevant
length is 64 bytes.

2.23 SHA-512/224

Table 90, SHA-512/224 Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SHA512_224

CKM_SHA512_224_HMAC_GENERAL

CKM_SHA512_224_HMAC

CKM_SHA512_224_KEY_DERIVATION

2.23.1 Definitions

CKM_SHA512_224

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 97 of 200

CKM_SHA512_224_HMAC

CKM_SHA512_224_HMAC_GENERAL

CKM_SHA512_224_KEY_DERIVATION

CKK_SHA512_224_HMAC

2.23.2 SHA-512/224 digest

The SHA-512/224 mechanism, denoted CKM_SHA512_224, is a mechanism for message digesting,
following the Secure Hash Algorithm defined in FIPS PUB 180-4, section 5.3.6. It is based on a 512-bit
message digest with a distinct initial hash value and truncated to 224 bits. CKM_SHA512_224 is the
same as CKM_SHA512_T with a parameter value of 224.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 91, SHA-512/224: Data Length

Function Input length Digest length

C_Digest any 28

2.23.3 General-length SHA-512-HMAC

The general-length SHA-512/224-HMAC mechanism, denoted CKM_SHA512_224_HMAC_GENERAL,
is the same as the general-length SHA-1-HMAC mechanism in Section 2.18.3, except that it uses the
HMAC construction based on the SHA-512/224 hash function and length of the output should be in the
range 0-28.

2.23.4 SHA-512/224-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512_224_HMAC, is a special case of the general-

length SHA-512/224-HMAC mechanism.

It has no parameter, and always produces an output of length 28.

2.23.5 SHA-512/224 key derivation

The SHA-512/224 key derivation, denoted CKM_SHA512_224_KEY_DERIVATION, is the same as the
SHA-512 key derivation mechanism in section 2.25.5, except that it uses the SHA-512/224 hash function
and the relevant length is 28 bytes.

2.24 SHA-512/256

Table 92, SHA-512/256 Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SHA512_256

CKM_SHA512_256_HMAC_GENERAL

CKM_SHA512_256_HMAC

CKM_SHA512_256_KEY_DERIVATION

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 98 of 200

2.24.1 Definitions

CKM_SHA512_256

CKM_SHA512_256_HMAC

CKM_SHA512_256_HMAC_GENERAL

CKM_SHA512_256_KEY_DERIVATION

CKK_SHA512_256_HMAC

2.24.2 SHA-512/256 digest

The SHA-512/256 mechanism, denoted CKM_SHA512_256, is a mechanism for message digesting,
following the Secure Hash Algorithm defined in FIPS PUB 180-4, section 5.3.6. It is based on a 512-bit
message digest with a distinct initial hash value and truncated to 256 bits. CKM_SHA512_256 is the
same as CKM_SHA512_T with a parameter value of 256.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 93, SHA-512/256: Data Length

Function Input length Digest length

C_Digest any 32

2.24.3 General-length SHA-512-HMAC

The general-length SHA-512/256-HMAC mechanism, denoted CKM_SHA512_256_HMAC_GENERAL,
is the same as the general-length SHA-1-HMAC mechanism in Section 2.18.3, except that it uses the
HMAC construction based on the SHA-512/256 hash function and length of the output should be in the
range 0-32.

2.24.4 SHA-512/256-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512_256_HMAC, is a special case of the general-

length SHA-512/256-HMAC mechanism.

It has no parameter, and always produces an output of length 32.

2.24.5 SHA-512/256 key derivation

The SHA-512/256 key derivation, denoted CKM_SHA512_256_KEY_DERIVATION, is the same as the
SHA-512 key derivation mechanism in section 2.25.5, except that it uses the SHA-512/256 hash function
and the relevant length is 32 bytes.

2.25 SHA-512/t

Table 94, SHA-512 / t Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SHA512_T

CKM_SHA512_T_HMAC_GENERAL

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 99 of 200

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SHA512_T_HMAC

CKM_SHA512_T_KEY_DERIVATION

2.25.1 Definitions

CKM_SHA512_T

CKM_SHA512_T_HMAC

CKM_SHA512_T_HMAC_GENERAL

CKM_SHA512_T_KEY_DERIVATION

CKK_SHA512_T_HMAC

2.25.2 SHA-512/t digest

The SHA-512/t mechanism, denoted CKM_SHA512_T, is a mechanism for message digesting, following
the Secure Hash Algorithm defined in FIPS PUB 180-4, section 5.3.6. It is based on a 512-bit message
digest with a distinct initial hash value and truncated to t bits.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the value of t in bits. The length in

bytes of the desired output should be in the range of 0-⌈ t/8⌉, where 0 < t < 512, and t <> 384.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 95, SHA-512/256: Data Length

Function Input length Digest length

C_Digest any
⌈t/8⌉, where 0 < t < 512, and t <> 384

2.25.3 General-length SHA-512-HMAC

The general-length SHA-512/256-HMAC mechanism, denoted CKM_SHA512_T_HMAC_GENERAL, is
the same as the general-length SHA-1-HMAC mechanism in Section 2.18.3, except that it uses the
HMAC construction based on the SHA-512/t hash function and length of the output should be in the range

0 – ⌈t/8⌉, where 0 < t < 512, and t <> 384.

2.25.4 SHA-512/t-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512_T_HMAC, is a special case of the general-

length SHA-512/256-HMAC mechanism.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the value of t in bits. The length in

bytes of the desired output should be in the range of 0-⌈t/8⌉, where 0 < t < 512, and t <> 384.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 100 of 200

2.25.5 SHA-512/t key derivation

The SHA-512/256 key derivation, denoted CKM_SHA512_T_KEY_DERIVATION, is the same as the
SHA-512 key derivation mechanism in section 2.25.5, except that it uses the SHA-512/256 hash function

and the relevant length is ⌈t/8⌉ bytes, where 0 < t < 512, and t <> 384.

2.26 PKCS #5 and PKCS #5-style password-based encryption (PBE)

The mechanisms in this section are for generating keys and IVs for performing password-based
encryption. The method used to generate keys and IVs is specified in PKCS #5.

Table 96, PKCS 5 Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_PBE_SHA1_DES3_EDE_CBC

CKM_PBE_SHA1_DES2_EDE_CBC

CKM_PBA_SHA1_WITH_SHA1_HMAC

CKM_PKCS5_PBKD2

2.26.1 Definitions

Mechanisms:

CKM_PBE_SHA1_DES3_EDE_CBC

CKM_PBE_SHA1_DES2_EDE_CBC

CKM_PKCS5_PBKD2

CKM_PBA_SHA1_WITH_SHA1_HMAC

2.26.2 Password-based encryption/authentication mechanism parameters

 CK_PBE_PARAMS; CK_PBE_PARAMS_PTR

CK_PBE_PARAMS is a structure which provides all of the necessary information required by the
CKM_PBE mechanisms (see PKCS #5 and PKCS #12 for information on the PBE generation
mechanisms) and the CKM_PBA_SHA1_WITH_SHA1_HMAC mechanism. It is defined as follows:

typedef struct CK_PBE_PARAMS {

 CK_BYTE_PTR pInitVector;

 CK_UTF8CHAR_PTR pPassword;

 CK_ULONG ulPasswordLen;

 CK_BYTE_PTR pSalt;

 CK_ULONG ulSaltLen;

 CK_ULONG ulIteration;

} CK_PBE_PARAMS;

The fields of the structure have the following meanings:

 pInitVector pointer to the location that receives the 8-byte initialization vector
(IV), if an IV is required;

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 101 of 200

 pPassword points to the password to be used in the PBE key generation;

 ulPasswordLen length in bytes of the password information;

 pSalt points to the salt to be used in the PBE key generation;

 ulSaltLen length in bytes of the salt information;

 ulIteration number of iterations required for the generation.

CK_PBE_PARAMS_PTR is a pointer to a CK_PBE_PARAMS.

2.26.3 PKCS #5 PBKDF2 key generation mechanism parameters

 CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE;
CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE_PTR

CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE is used to indicate the Pseudo-Random

Function (PRF) used to generate key bits using PKCS #5 PBKDF2. It is defined as follows:

typedef CK_ULONG CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE;

The following PRFs are defined in PKCS #5 v2.1. The following table lists the defined functions.

Table 97, PKCS #5 PBKDF2 Key Generation: Pseudo-random functions

PRF Identifier Value Parameter Type

CKP_PKCS5_PBKD2_HMAC_SHA1 0x00000001UL No Parameter. pPrfData must be
NULL and ulPrfDataLen must be
zero.

CKP_PKCS5_PBKD2_HMAC_GOSTR3411

0x00000002UL

This PRF uses GOST R34.11-94
hash to produce secret key value.
pPrfData should point to DER-
encoded OID, indicating
GOSTR34.11-94 parameters.
ulPrfDataLen holds encoded OID
length in bytes. If pPrfData is set
to NULL_PTR, then id-
GostR3411-94-
CryptoProParamSet parameters
will be used (RFC 4357, 11.2),
and ulPrfDataLen must be 0.

CKP_PKCS5_PBKD2_HMAC_SHA224 0x00000003UL No Parameter. pPrfData must be
NULL and ulPrfDataLen must be
zero.

CKP_PKCS5_PBKD2_HMAC_SHA256 0x00000004UL No Parameter. pPrfData must be
NULL and ulPrfDataLen must be
zero.

CKP_PKCS5_PBKD2_HMAC_SHA384 0x00000005UL No Parameter. pPrfData must be
NULL and ulPrfDataLen must be
zero.

CKP_PKCS5_PBKD2_HMAC_SHA512 0x00000006UL No Parameter. pPrfData must be
NULL and ulPrfDataLen must be
zero.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 102 of 200

CKP_PKCS5_PBKD2_HMAC_SHA512_224 0x00000007UL No Parameter. pPrfData must be
NULL and ulPrfDataLen must be
zero.

CKP_PKCS5_PBKD2_HMAC_SHA512_256 0x00000008UL No Parameter. pPrfData must be
NULL and ulPrfDataLen must be
zero.

CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE_PTR is a pointer to a
CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE.

 CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE;
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE_PTR

CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE is used to indicate the source of the salt value when

deriving a key using PKCS #5 PBKDF2. It is defined as follows:

typedef CK_ULONG CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE;

The following salt value sources are defined in PKCS #5 v2.1. The following table lists the defined
sources along with the corresponding data type for the pSaltSourceData field in the
CK_PKCS5_PBKD2_PARAM structure defined below.

Table 98, PKCS #5 PBKDF2 Key Generation: Salt sources

Source Identifier Value Data Type

CKZ_SALT_SPECIFIED 0x00000001 Array of CK_BYTE containing the value of the
salt value.

CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE_PTR is a pointer to a
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE.

 CK_PKCS5_PBKD2_PARAMS; CK_PKCS5_PBKD2_PARAMS_PTR

CK_PKCS5_PBKD2_PARAMS is a structure that provides the parameters to the CKM_PKCS5_PBKD2

mechanism. The structure is defined as follows:

typedef struct CK_PKCS5_PBKD2_PARAMS {

 CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE saltSource;

 CK_VOID_PTR pSaltSourceData;

 CK_ULONG ulSaltSourceDataLen;

 CK_ULONG iterations;

 CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE prf;

 CK_VOID_PTR pPrfData;

 CK_ULONG ulPrfDataLen;

 CK_UTF8CHAR_PTR pPassword;

 CK_ULONG_PTR ulPasswordLen;

} CK_PKCS5_PBKD2_PARAMS;

The fields of the structure have the following meanings:

 saltSource source of the salt value

 pSaltSourceData data used as the input for the salt source

 ulSaltSourceDataLen length of the salt source input

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 103 of 200

 iterations number of iterations to perform when generating each block of
random data

 prf pseudo-random function used to generate the key

 pPrfData data used as the input for PRF in addition to the salt value

 ulPrfDataLen length of the input data for the PRF

 pPassword points to the password to be used in the PBE key generation

 ulPasswordLen length in bytes of the password information

CK_PKCS5_PBKD2_PARAMS_PTR is a pointer to a CK_PKCS5_PBKD2_PARAMS.

2.26.4 PKCS #5 PBKD2 key generation

PKCS #5 PBKDF2 key generation, denoted CKM_PKCS5_PBKD2, is a mechanism used for generating

a secret key from a password and a salt value. This functionality is defined in PKCS#5 as PBKDF2.

It has a parameter, a CK_PKCS5_PBKD2_PARAMS structure. The parameter specifies the salt value

source, pseudo-random function, and iteration count used to generate the new key.

Since this mechanism can be used to generate any type of secret key, new key templates must contain
the CKA_KEY_TYPE and CKA_VALUE_LEN attributes. If the key type has a fixed length the
CKA_VALUE_LEN attribute may be omitted.

2.27 PKCS #12 password-based encryption/authentication
mechanisms

The mechanisms in this section are for generating keys and IVs for performing password-based
encryption or authentication. The method used to generate keys and IVs is based on a method that was
specified in PKCS #12.

We specify here a general method for producing various types of pseudo-random bits from a password,
p; a string of salt bits, s; and an iteration count, c. The “type” of pseudo-random bits to be produced is
identified by an identification byte, ID, the meaning of which will be discussed later.

Let H be a hash function built around a compression function f: Z2
u
 Z2

v
 Z2

u
 (that is, H has a chaining

variable and output of length u bits, and the message input to the compression function of H is v bits).
For MD2 and MD5, u=128 and v=512; for SHA-1, u=160 and v=512.

We assume here that u and v are both multiples of 8, as are the lengths in bits of the password and salt
strings and the number n of pseudo-random bits required. In addition, u and v are of course nonzero.

1. Construct a string, D (the “diversifier”), by concatenating v/8 copies of ID.

2. Concatenate copies of the salt together to create a string S of length vs/v bits (the final copy of the
salt may be truncated to create S). Note that if the salt is the empty string, then so is S.

3. Concatenate copies of the password together to create a string P of length vp/v bits (the final copy
of the password may be truncated to create P). Note that if the password is the empty string, then so
is P.

4. Set I=S||P to be the concatenation of S and P.

5. Set j=n/u.

6. For i=1, 2, …, j, do the following:

a. Set Ai=H
c
(D||I), the c

th
 hash of D||I. That is, compute the hash of D||I; compute the hash of

that hash; etc.; continue in this fashion until a total of c hashes have been computed, each on
the result of the previous hash.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 104 of 200

b. Concatenate copies of Ai to create a string B of length v bits (the final copy of Ai may be
truncated to create B).

c. Treating I as a concatenation I0, I1, …, Ik-1 of v-bit blocks, where k=s/v+p/v, modify I by
setting Ij=(Ij+B+1) mod 2

v
 for each j. To perform this addition, treat each v-bit block as a

binary number represented most-significant bit first.

7. Concatenate A1, A2, …, Aj together to form a pseudo-random bit string, A.

8. Use the first n bits of A as the output of this entire process.

When the password-based encryption mechanisms presented in this section are used to generate a key
and IV (if needed) from a password, salt, and an iteration count, the above algorithm is used. To
generate a key, the identifier byte ID is set to the value 1; to generate an IV, the identifier byte ID is set to

the value 2.

When the password based authentication mechanism presented in this section is used to generate a key
from a password, salt, and an iteration count, the above algorithm is used. The identifier byte ID is set to

the value 3.

2.27.1 SHA-1-PBE for 3-key triple-DES-CBC

SHA-1-PBE for 3-key triple-DES-CBC, denoted CKM_PBE_SHA1_DES3_EDE_CBC, is a mechanism
used for generating a 3-key triple-DES secret key and IV from a password and a salt value by using the
SHA-1 digest algorithm and an iteration count. The method used to generate the key and IV is described
above. Each byte of the key produced will have its low-order bit adjusted, if necessary, so that a valid 3-
key triple-DES key with proper parity bits is obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the
key generation process and the location of the application-supplied buffer which will receive the 8-byte IV
generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing password-based
encryption.

2.27.2 SHA-1-PBE for 2-key triple-DES-CBC

SHA-1-PBE for 2-key triple-DES-CBC, denoted CKM_PBE_SHA1_DES2_EDE_CBC, is a mechanism
used for generating a 2-key triple-DES secret key and IV from a password and a salt value by using the
SHA-1 digest algorithm and an iteration count. The method used to generate the key and IV is described
above. Each byte of the key produced will have its low-order bit adjusted, if necessary, so that a valid 2-
key triple-DES key with proper parity bits is obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the
key generation process and the location of the application-supplied buffer which will receive the 8-byte IV
generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing password-based
encryption.

2.27.3 SHA-1-PBA for SHA-1-HMAC

SHA-1-PBA for SHA-1-HMAC, denoted CKM_PBA_SHA1_WITH_SHA1_HMAC, is a mechanism used
for generating a 160-bit generic secret key from a password and a salt value by using the SHA-1 digest
algorithm and an iteration count. The method used to generate the key is described above.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the
key generation process. The parameter also has a field to hold the location of an application-supplied
buffer which will receive an IV; for this mechanism, the contents of this field are ignored, since
authentication with SHA-1-HMAC does not require an IV.

The key generated by this mechanism will typically be used for computing a SHA-1 HMAC to perform
password-based authentication (not password-based encryption). At the time of this writing, this is

primarily done to ensure the integrity of a PKCS #12 PDU.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 105 of 200

2.28 SSL

Table 99,SSL Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SSL3_PRE_MASTER_KEY_GEN

CKM_SSL3_MASTER_KEY_DERIVE

CKM_SSL3_MASTER_KEY_DERIVE_DH

CKM_SSL3_KEY_AND_MAC_DERIVE

CKM_SSL3_MD5_MAC

CKM_SSL3_SHA1_MAC

2.28.1 Definitions

Mechanisms:

CKM_SSL3_PRE_MASTER_KEY_GEN

CKM_SSL3_MASTER_KEY_DERIVE

CKM_SSL3_KEY_AND_MAC_DERIVE

CKM_SSL3_MASTER_KEY_DERIVE_DH

CKM_SSL3_MD5_MAC

CKM_SSL3_SHA1_MAC

2.28.2 SSL mechanism parameters

 CK_SSL3_RANDOM_DATA

CK_SSL3_RANDOM_DATA is a structure which provides information about the random data of a client
and a server in an SSL context. This structure is used by both the CKM_SSL3_MASTER_KEY_DERIVE
and the CKM_SSL3_KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:

typedef struct CK_SSL3_RANDOM_DATA {

 CK_BYTE_PTR pClientRandom;

 CK_ULONG ulClientRandomLen;

 CK_BYTE_PTR pServerRandom;

 CK_ULONG ulServerRandomLen;

} CK_SSL3_RANDOM_DATA;

The fields of the structure have the following meanings:

 pClientRandom pointer to the client’s random data

 ulClientRandomLen length in bytes of the client’s random data

 pServerRandom pointer to the server’s random data

 ulServerRandomLen length in bytes of the server’s random data

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 106 of 200

 CK_SSL3_MASTER_KEY_DERIVE_PARAMS;
CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR

CK_SSL3_MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_SSL3_MASTER_KEY_DERIVE mechanism. It is defined as follows:

typedef struct CK_SSL3_MASTER_KEY_DERIVE_PARAMS {

 CK_SSL3_RANDOM_DATA RandomInfo;

 CK_VERSION_PTR pVersion;

} CK_SSL3_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:

 RandomInfo client’s and server’s random data information.

 pVersion pointer to a CK_VERSION structure which receives the SSL
protocol version information

CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
CK_SSL3_MASTER_KEY_DERIVE_PARAMS.

 CK_SSL3_KEY_MAT_OUT; CK_SSL3_KEY_MAT_OUT_PTR

CK_SSL3_KEY_MAT_OUT is a structure that contains the resulting key handles and initialization vectors
after performing a C_DeriveKey function with the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism. It

is defined as follows:

typedef struct CK_SSL3_KEY_MAT_OUT {
 CK_OBJECT_HANDLE hClientMacSecret;
 CK_OBJECT_HANDLE hServerMacSecret;
 CK_OBJECT_HANDLE hClientKey;
 CK_OBJECT_HANDLE hServerKey;
 CK_BYTE_PTR pIVClient;
 CK_BYTE_PTR pIVServer;
} CK_SSL3_KEY_MAT_OUT;

The fields of the structure have the following meanings:

 hClientMacSecret key handle for the resulting Client MAC Secret key

 hServerMacSecret key handle for the resulting Server MAC Secret key

 hClientKey key handle for the resulting Client Secret key

 hServerKey key handle for the resulting Server Secret key

 pIVClient pointer to a location which receives the initialization vector (IV)
created for the client (if any)

 pIVServer pointer to a location which receives the initialization vector (IV)
created for the server (if any)

CK_SSL3_KEY_MAT_OUT_PTR is a pointer to a CK_SSL3_KEY_MAT_OUT.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 107 of 200

 CK_SSL3_KEY_MAT_PARAMS; CK_SSL3_KEY_MAT_PARAMS_PTR

CK_SSL3_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_SSL3_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:

typedef struct CK_SSL3_KEY_MAT_PARAMS {

 CK_ULONG ulMacSizeInBits;

 CK_ULONG ulKeySizeInBits;

 CK_ULONG ulIVSizeInBits;

 CK_BBOOL bIsExport;

 CK_SSL3_RANDOM_DATA RandomInfo;

 CK_SSL3_KEY_MAT_OUT_PTR pReturnedKeyMaterial;

} CK_SSL3_KEY_MAT_PARAMS;

The fields of the structure have the following meanings:

 ulMacSizeInBits the length (in bits) of the MACing keys agreed upon during the
protocol handshake phase

 ulKeySizeInBits the length (in bits) of the secret keys agreed upon during the
protocol handshake phase

 ulIVSizeInBits the length (in bits) of the IV agreed upon during the protocol
handshake phase. If no IV is required, the length should be set to 0

 bIsExport a Boolean value which indicates whether the keys have to be
derived for an export version of the protocol

 RandomInfo client’s and server’s random data information.

 pReturnedKeyMaterial points to a CK_SSL3_KEY_MAT_OUT structures which receives
the handles for the keys generated and the IVs

CK_SSL3_KEY_MAT_PARAMS_PTR is a pointer to a CK_SSL3_KEY_MAT_PARAMS.

2.28.3 Pre-master key generation

Pre-master key generation in SSL 3.0, denoted CKM_SSL3_PRE_MASTER_KEY_GEN, is a mechanism
which generates a 48-byte generic secret key. It is used to produce the "pre_master" key used in SSL
version 3.0 for RSA-like cipher suites.

It has one parameter, a CK_VERSION structure, which provides the client’s SSL version number.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may

be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

both indicate 48 bytes.

2.28.4 Master key derivation

Master key derivation in SSL 3.0, denoted CKM_SSL3_MASTER_KEY_DERIVE, is a mechanism used
to derive one 48-byte generic secret key from another 48-byte generic secret key. It is used to produce

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 108 of 200

the "master_secret" key used in the SSL protocol from the "pre_master" key. This mechanism returns the
value of the client version, which is built into the "pre_master" key as well as a handle to the derived
"master_secret" key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token as well as the returning of the protocol version number which is part
of the pre-master key. This structure is defined in Section 2.28.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may

be specified in the template; otherwise they are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the CK_SSL3_MASTER_KEY_DERIVE_PARAMS
structure’s pVersion field will be modified by the C_DeriveKey call. In particular, when the call returns,

this structure will hold the SSL version associated with the supplied pre_master key.

Note that this mechanism is only useable for cipher suites that use a 48-byte “pre_master” secret with an
embedded version number. This includes the RSA cipher suites, but excludes the Diffie-Hellman cipher
suites.

2.28.5 Master key derivation for Diffie-Hellman

Master key derivation for Diffie-Hellman in SSL 3.0, denoted CKM_SSL3_MASTER_KEY_DERIVE_DH,
is a mechanism used to derive one 48-byte generic secret key from another arbitrary length generic
secret key. It is used to produce the "master_secret" key used in the SSL protocol from the "pre_master"
key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token. This structure is defined in Section 2.28. The pVersion field of the
structure must be set to NULL_PTR since the version number is not embedded in the "pre_master" key
as it is for RSA-like cipher suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may

be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 109 of 200

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length 48-byte
“pre_master” secret with an embedded version number. This includes the Diffie-Hellman cipher suites, but
excludes the RSA cipher suites.

2.28.6 Key and MAC derivation

Key, MAC and IV derivation in SSL 3.0, denoted CKM_SSL3_KEY_AND_MAC_DERIVE, is a
mechanism used to derive the appropriate cryptographic keying material used by a "CipherSuite" from the
"master_secret" key and random data. This mechanism returns the key handles for the keys generated in
the process, as well as the IVs created.

It has a parameter, a CK_SSL3_KEY_MAT_PARAMS structure, which allows for the passing of random
data as well as the characteristic of the cryptographic material for the given CipherSuite and a pointer to a
structure which receives the handles and IVs which were generated. This structure is defined in Section
2.28.

This mechanism contributes to the creation of four distinct keys on the token and returns two IVs (if IVs
are requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The two MACing keys ("client_write_MAC_secret" and "server_write_MAC_secret") are always given a
type of CKK_GENERIC_SECRET. They are flagged as valid for signing, verification, and derivation

operations.

The other two keys ("client_write_key" and "server_write_key") are typed according to information found
in the template sent along with this mechanism during a C_DeriveKey function call. By default, they are
flagged as valid for encryption, decryption, and derivation operations.

IVs will be generated and returned if the ulIVSizeInBits field of the CK_SSL3_KEY_MAT_PARAMS field
has a nonzero value. If they are generated, their length in bits will agree with the value in the
ulIVSizeInBits field.

All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes which differ from those held

by the base key.

Note that the CK_SSL3_KEY_MAT_OUT structure pointed to by the CK_SSL3_KEY_MAT_PARAMS
structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the four
key handle fields in the CK_SSL3_KEY_MAT_OUT structure will be modified to hold handles to the
newly-created keys; in addition, the buffers pointed to by the CK_SSL3_KEY_MAT_OUT structure’s
pIVClient and pIVServer fields will have IVs returned in them (if IVs are requested by the caller).

Therefore, these two fields must point to buffers with sufficient space to hold any IVs that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism returns
all of its key handles in the CK_SSL3_KEY_MAT_OUT structure pointed to by the

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 110 of 200

CK_SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be created on the

token.

2.28.7 MD5 MACing in SSL 3.0

MD5 MACing in SSL3.0, denoted CKM_SSL3_MD5_MAC, is a mechanism for single- and multiple-part
signatures (data authentication) and verification using MD5, based on the SSL 3.0 protocol. This
technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the

signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the following table:

Table 100, MD5 MACing in SSL 3.0: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret any 4-8, depending on
parameters

C_Verify generic secret any 4-8, depending on
parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of generic secret key sizes, in bits.

2.28.8 SHA-1 MACing in SSL 3.0

SHA-1 MACing in SSL3.0, denoted CKM_SSL3_SHA1_MAC, is a mechanism for single- and multiple-
part signatures (data authentication) and verification using SHA-1, based on the SSL 3.0 protocol. This
technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the

signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the following table:

Table 101, SHA-1 MACing in SSL 3.0: Key And Data Length

Function Key type Data
length

Signature length

C_Sign generic secret any 4-8, depending on parameters

C_Verify generic secret any 4-8, depending on parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of generic secret key sizes, in bits.

2.29 TLS 1.2 Mechanisms

Details for TLS 1.2 and its key derivation and MAC mechanisms can be found in [TLS 1.2]. TLS 1.2
mechanisms differ from TLS 1.0 and 1.1 mechanisms in that the base hash used in the underlying TLS
PRF (pseudo-random function) can be negotiated. Therefore each mechanism parameter for the TLS 1.2
mechanisms contains a new value in the parameters structure to specify the hash function.

This section also specifies CKM_TLS_MAC which should be used in place of CKM_TLS_PRF to

calculate the verify_data in the TLS "finished" message.

This section also specifies CKM_TLS_KDF that can be used in place of CKM_TLS_PRF to implement
key material exporters.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 111 of 200

Table 102, TLS 1.2 Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_TLS12_MASTER_KEY_DERIVE

CKM_TLS12_MASTER_KEY_DERIVE_DH

CKM_TLS12_KEY_AND_MAC_DERIVE

CKM_TLS12_KEY_SAFE_DERIVE

CKM_TLS10_MAC_SERVER

CKM_TLS10_MAC_CLIENT

CKM_TLS_KDF

CKM_TLS12_MAC

2.29.1 Definitions

Mechanisms:

CKM_TLS12_MASTER_KEY_DERIVE

CKM_TLS12_MASTER_KEY_DERIVE_DH

CKM_TLS12_KEY_AND_MAC_DERIVE

CKM_TLS12_KEY_SAFE_DERIVE

CKM_TLS10_MAC_SERVER

CKM_TLS10_MAC_CLIENT

CKM_TLS_KDF

CKM_TLS12_MAC

2.29.2 TLS 1.2 mechanism parameters

 CK_TLS12_MASTER_KEY_DERIVE_PARAMS;
CK_TLS12_MASTER_KEY_DERIVE_PARAMS_PTR

CK_TLS12_MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_TLS12_MASTER_KEY_DERIVE mechanism. It is defined as follows:

typedef struct CK_TLS12_MASTER_KEY_DERIVE_PARAMS {

 CK_SSL3_RANDOM_DATA RandomInfo;

 CK_VERSION_PTR pVersion;

 CK_MECHANISM_TYPE prfHashMechanism;

} CK_TLS12_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:

 RandomInfo client’s and server’s random data information.

 pVersion pointer to a CK_VERSION structure which receives the SSL
protocol version information

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 112 of 200

 prfHashMechanism base hash used in the underlying TLS1.2 PRF operation used to
derive the master key.

CK_TLS12_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
CK_TLS12_MASTER_KEY_DERIVE_PARAMS.

 CK_TLS12_KEY_MAT_PARAMS; CK_TLS12_KEY_MAT_PARAMS_PTR

CK_TLS12_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_TLS12_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:

typedef struct CK_TLS12_KEY_MAT_PARAMS {

 CK_ULONG ulMacSizeInBits;

 CK_ULONG ulKeySizeInBits;

 CK_ULONG ulIVSizeInBits;

 CK_BBOOL bIsExport;

 CK_SSL3_RANDOM_DATA RandomInfo;

 CK_SSL3_KEY_MAT_OUT_PTR pReturnedKeyMaterial;

 CK_MECHANISM_TYPE prfHashMechanism;

} CK_TLS12_KEY_MAT_PARAMS;

The fields of the structure have the following meanings:

 ulMacSizeInBits the length (in bits) of the MACing keys agreed upon during the
protocol handshake phase. If no MAC key is required, the length
should be set to 0.

 ulKeySizeInBits the length (in bits) of the secret keys agreed upon during the
protocol handshake phase

 ulIVSizeInBits the length (in bits) of the IV agreed upon during the protocol
handshake phase. If no IV is required, the length should be set to 0

 bIsExport must be set to CK_FALSE because export cipher suites must not be
used in TLS 1.1 and later.

 RandomInfo client’s and server’s random data information.

 pReturnedKeyMaterial points to a CK_SSL3_KEY_MAT_OUT structures which receives
the handles for the keys generated and the IVs

 prfHashMechanism base hash used in the underlying TLS1.2 PRF operation used to
derive the master key.

CK_TLS12_KEY_MAT_PARAMS_PTR is a pointer to a CK_TLS12_KEY_MAT_PARAMS.

 CK_TLS_KDF_PARAMS; CK_TLS_KDF_PARAMS_PTR

CK_TLS_KDF_PARAMS is a structure that provides the parameters to the CKM_TLS_KDF mechanism.

It is defined as follows:

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 113 of 200

typedef struct CK_TLS_KDF_PARAMS {

 CK_MECHANISM_TYPE prfMechanism;

 CK_BYTE_PTR pLabel;

 CK_ULONG ulLabelLength;

 CK_SSL3_RANDOM_DATA RandomInfo;

 CK_BYTE_PTR pContextData;

 CK_ULONG ulContextDataLength;

} CK_TLS_KDF_PARAMS;

The fields of the structure have the following meanings:

 prfMechanism the hash mechanism used in the TLS1.2 PRF construct or
CKM_TLS_PRF to use with the TLS1.0 and 1.1 PRF construct.

 pLabel a pointer to the label for this key derivation

 ulLabelLength length of the label in bytes

 RandomInfo the random data for the key derivation

 pContextData a pointer to the context data for this key derivation. NULL_PTR if not
present

 ulContextDataLength length of the context data in bytes. 0 if not present.

 CK_TLS_MAC_PARAMS; CK_TLS_MAC_PARAMS_PTR

CK_TLS_MAC_PARAMS is a structure that provides the parameters to the CKM_TLS_MAC

mechanism. It is defined as follows:

typedef struct CK_TLS_MAC_PARAMS {

 CK_MECHANISM_TYPE prfMechanism;

 CK_ULONG ulMacLength;

 CK_ULONG ulServerOrClient;

} CK_TLS_MAC_PARAMS;

The fields of the structure have the following meanings:

 prfMechanism the hash mechanism used in the TLS12 PRF construct or
CKM_TLS_PRF to use with the TLS1.0 and 1.1 PRF construct.

 ulMacLength the length of the MAC tag required or offered. Always 12 octets in
TLS 1.0 and 1.1. Generally 12 octets, but may be negotiated to a
longer value in TLS1.2.

 ulServerOrClient 1 to use the label "server finished", 2 to use the label "client
finished". All other values are invalid.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 114 of 200

CK_TLS_MAC_PARAMS_PTR is a pointer to a CK_TLS_MAC_PARAMS.

2.29.3 TLS MAC

The TLS MAC mechanism is used to generate integrity tags for the TLS "finished" message. It replaces
the use of the CKM_TLS_PRF function for TLS1.0 and 1.1 and that mechanism is deprecated.

CKM_TLS_MAC takes a parameter of CK_TLS_MAC_PARAMS. To use this mechanism with TLS1.0
and TLS1.1, use CKM_TLS_PRF as the value for prfMechanism in place of a hash mechanism. Note:
Although CKM_TLS_PRF is deprecated as a mechanism for C_DeriveKey, the manifest value is retained

for use with this mechanism to indicate the use of the TLS1.0/1.1 pseudo-random function.

In TLS1.0 and 1.1 the "finished" message verify_data (i.e. the output signature from the MAC mechanism)
is always 12 bytes. In TLS1.2 the "finished" message verify_data is a minimum of 12 bytes, defaults to 12
bytes, but may be negotiated to longer length.

Table 103, General-length TLS MAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret any >=12 bytes

C_Verify generic secret any >=12 bytes

2.29.4 Master key derivation

Master key derivation in TLS 1.0, denoted CKM_TLS_MASTER_KEY_DERIVE, is a mechanism used to
derive one 48-byte generic secret key from another 48-byte generic secret key. It is used to produce the
"master_secret" key used in the TLS protocol from the "pre_master" key. This mechanism returns the
value of the client version, which is built into the "pre_master" key as well as a handle to the derived
"master_secret" key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token as well as the returning of the protocol version number which is part
of the pre-master key. This structure is defined in Section 2.28.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may

be specified in the template, or else are assigned default values.

The mechanism also contributes the CKA_ALLOWED_MECHANISMS attribute consisting only of
CKM_TLS12_KEY_AND_MAC_DERIVE, CKM_TLS12_KEY_SAFE_DERIVE, CKM_TLS12_KDF and
CKM_TLS12_MAC.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 115 of 200

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the CK_SSL3_MASTER_KEY_DERIVE_PARAMS
structure’s pVersion field will be modified by the C_DeriveKey call. In particular, when the call returns,

this structure will hold the SSL version associated with the supplied pre_master key.

Note that this mechanism is only useable for cipher suites that use a 48-byte “pre_master” secret with an
embedded version number. This includes the RSA cipher suites, but excludes the Diffie-Hellman cipher
suites.

2.29.5 Master key derivation for Diffie-Hellman

Master key derivation for Diffie-Hellman in TLS 1.0, denoted CKM_TLS_MASTER_KEY_DERIVE_DH, is
a mechanism used to derive one 48-byte generic secret key from another arbitrary length generic secret
key. It is used to produce the "master_secret" key used in the TLS protocol from the "pre_master" key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token. This structure is defined in Section 2.28. The pVersion field of the
structure must be set to NULL_PTR since the version number is not embedded in the "pre_master" key
as it is for RSA-like cipher suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may

be specified in the template, or else are assigned default values.

The mechanism also contributes the CKA_ALLOWED_MECHANISMS attribute consisting only of
CKM_TLS12_KEY_AND_MAC_DERIVE, CKM_TLS12_KEY_SAFE_DERIVE, CKM_TLS12_KDF and
CKM_TLS12_MAC.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length 48-byte
“pre_master” secret with an embedded version number. This includes the Diffie-Hellman cipher suites, but
excludes the RSA cipher suites.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 116 of 200

2.29.6 Key and MAC derivation

Key, MAC and IV derivation in TLS 1.0, denoted CKM_TLS_KEY_AND_MAC_DERIVE, is a mechanism
used to derive the appropriate cryptographic keying material used by a "CipherSuite" from the
"master_secret" key and random data. This mechanism returns the key handles for the keys generated in
the process, as well as the IVs created.

It has a parameter, a CK_SSL3_KEY_MAT_PARAMS structure, which allows for the passing of random
data as well as the characteristic of the cryptographic material for the given CipherSuite and a pointer to a
structure which receives the handles and IVs which were generated. This structure is defined in Section
2.28.

This mechanism contributes to the creation of four distinct keys on the token and returns two IVs (if IVs
are requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The two MACing keys ("client_write_MAC_secret" and "server_write_MAC_secret") (if present) are
always given a type of CKK_GENERIC_SECRET. They are flagged as valid for signing and verification.

The other two keys ("client_write_key" and "server_write_key") are typed according to information found
in the template sent along with this mechanism during a C_DeriveKey function call. By default, they are

flagged as valid for encryption, decryption, and derivation operations.

For CKM_TLS12_KEY_AND_MAC_DERIVE, IVs will be generated and returned if the ulIVSizeInBits
field of the CK_SSL3_KEY_MAT_PARAMS field has a nonzero value. If they are generated, their length
in bits will agree with the value in the ulIVSizeInBits field.

Note Well: CKM_TLS12_KEY_AND_MAC_DERIVE produces both private (key) and public (IV)
data. It is possible to "leak" private data by the simple expedient of decreasing the length of
private data requested. E.g. Setting ulMacSizeInBits and ulKeySizeInBits to 0 (or other lengths
less than the key size) will result in the private key data being placed in the destination
designated for the IV's. Repeated calls with the same master key and same RandomInfo but with

differing lengths for the private key material will result in different data being leaked.<

All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes which differ from those held
by the base key.

Note that the CK_SSL3_KEY_MAT_OUT structure pointed to by the CK_SSL3_KEY_MAT_PARAMS
structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the four
key handle fields in the CK_SSL3_KEY_MAT_OUT structure will be modified to hold handles to the
newly-created keys; in addition, the buffers pointed to by the CK_SSL3_KEY_MAT_OUT structure’s
pIVClient and pIVServer fields will have IVs returned in them (if IVs are requested by the caller).

Therefore, these two fields must point to buffers with sufficient space to hold any IVs that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism returns
all of its key handles in the CK_SSL3_KEY_MAT_OUT structure pointed to by the
CK_SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be created on the

token.

2.29.7 CKM_TLS12_KEY_SAFE_DERIVE

CKM_TLS12_KEY_SAFE_DERIVE is identical to CKM_TLS12_KEY_AND_MAC_DERIVE except that it
shall never produce IV data, and the ulIvSizeInBits field of CK_TLS12_KEY_MAT_PARAMS is ignored
and treated as 0. All of the other conditions and behavior described for

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 117 of 200

CKM_TLS12_KEY_AND_MAC_DERIVE, with the exception of the black box warning, apply to this
mechanism.

CKM_TLS12_KEY_SAFE_DERIVE is provided as a separate mechanism to allow a client to control the
export of IV material (and possible leaking of key material) through the use of the
CKA_ALLOWED_MECHANISMS key attribute.

2.29.8 Generic Key Derivation using the TLS PRF

CKM_TLS_KDF is the mechanism defined in RFC5705. It uses the TLS key material and TLS PRF
function to produce additional key material for protocols that want to leverage the TLS key negotiation
mechanism. CKM_TLS_KDF has a parameter of CK_TLS_KDF_PARAMS. If the protocol using this
mechanism does not use context information, the pContextData field shall be set to NULL_PTR and the
ulContextDataLength field shall be set to 0.

To use this mechanism with TLS1.0 and TLS1.1, use CKM_TLS_PRF as the value for prfMechanism in
place of a hash mechanism. Note: Although CKM_TLS_PRF is deprecated as a mechanism for
C_DeriveKey, the manifest value is retained for use with this mechanism to indicate the use of the
TLS1.0/1.1 Pseudo-random function.

This mechanism can be used to derive multiple keys (e.g. similar to
CKM_TLS12_KEY_AND_MAC_DERIVE) by first deriving the key stream as a CKK_GENERIC_SECRET
of the necessary length and doing subsequent derives against that derived key stream using the
CKM_EXTRACT_KEY_FROM_KEY mechanism to split the key stream into the actual operational keys.

The mechanism should not be used with the labels defined for use with TLS, but the token does not
enforce this behavior.

This mechanism has the following rules about key sensitivity and extractability:

 If the original key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from the
original key.

 Similarly, if the original key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the
supplied template or from the original key.

 The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the original
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

 Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the original key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.30 WTLS

Details can be found in [WTLS].

When comparing the existing TLS mechanisms with these extensions to support WTLS one could argue
that there would be no need to have distinct handling of the client and server side of the handshake.
However, since in WTLS the server and client use different sequence numbers, there could be instances
(e.g. when WTLS is used to protect asynchronous protocols) where sequence numbers on the client and
server side differ, and hence this motivates the introduced split.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 118 of 200

Table 104, WTLS Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_WTLS_PRE_MASTER_KEY_GEN

CKM_WTLS_MASTER_KEY_DERIVE

CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC

CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE

CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE

CKM_WTLS_PRF

2.30.1 Definitions

Mechanisms:

CKM_WTLS_PRE_MASTER_KEY_GEN

CKM_WTLS_MASTER_KEY_DERIVE

CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC

CKM_WTLS_PRF

CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE

CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE

2.30.2 WTLS mechanism parameters

 CK_WTLS_RANDOM_DATA; CK_WTLS_RANDOM_DATA_PTR

CK_WTLS_RANDOM_DATA is a structure, which provides information about the random data of a client
and a server in a WTLS context. This structure is used by the CKM_WTLS_MASTER_KEY_DERIVE

mechanism. It is defined as follows:

typedef struct CK_WTLS_RANDOM_DATA {

 CK_BYTE_PTR pClientRandom;

 CK_ULONG ulClientRandomLen;

 CK_BYTE_PTR pServerRandom;

 CK_ULONG ulServerRandomLen;

} CK_WTLS_RANDOM_DATA;

The fields of the structure have the following meanings:

 pClientRandom pointer to the client’s random data

 pClientRandomLen length in bytes of the client’s random data

 pServerRaondom pointer to the server’s random data

 ulServerRandomLen length in bytes of the server’s random data

CK_WTLS_RANDOM_DATA_PTR is a pointer to a CK_WTLS_RANDOM_DATA.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 119 of 200

 CK_WTLS_MASTER_KEY_DERIVE_PARAMS;
CK_WTLS_MASTER_KEY_DERIVE_PARAMS _PTR

CK_WTLS_MASTER_KEY_DERIVE_PARAMS is a structure, which provides the parameters to the
CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as follows:

typedef struct CK_WTLS_MASTER_KEY_DERIVE_PARAMS {

 CK_MECHANISM_TYPE DigestMechanism;

 CK_WTLS_RANDOM_DATA RandomInfo;

 CK_BYTE_PTR pVersion;

} CK_WTLS_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:

 DigestMechanism the mechanism type of the digest mechanism to be used (possible
types can be found in [WTLS])

 RandomInfo Client’s and server’s random data information

 pVersion pointer to a CK_BYTE which receives the WTLS protocol version
information

CK_WTLS_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
CK_WTLS_MASTER_KEY_DERIVE_PARAMS.

 CK_WTLS_PRF_PARAMS; CK_WTLS_PRF_PARAMS_PTR

CK_WTLS_PRF_PARAMS is a structure, which provides the parameters to the CKM_WTLS_PRF

mechanism. It is defined as follows:

typedef struct CK_WTLS_PRF_PARAMS {

 CK_MECHANISM_TYPE DigestMechanism;

 CK_BYTE_PTR pSeed;

 CK_ULONG ulSeedLen;

 CK_BYTE_PTR pLabel;

 CK_ULONG ulLabelLen;

 CK_BYTE_PTR pOutput;

 CK_ULONG_PTR pulOutputLen;

} CK_WTLS_PRF_PARAMS;

The fields of the structure have the following meanings:

 Digest Mechanism the mechanism type of the digest mechanism to be used (possible
types can be found in [WTLS])

 pSeed pointer to the input seed

 ulSeedLen length in bytes of the input seed

 pLabel pointer to the identifying label

 ulLabelLen length in bytes of the identifying label

 pOutput pointer receiving the output of the operation

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 120 of 200

 pulOutputLen pointer to the length in bytes that the output to be created shall
have, has to hold the desired length as input and will receive the
calculated length as output

CK_WTLS_PRF_PARAMS_PTR is a pointer to a CK_WTLS_PRF_PARAMS.

 CK_WTLS_KEY_MAT_OUT; CK_WTLS_KEY_MAT_OUT_PTR

CK_WTLS_KEY_MAT_OUT is a structure that contains the resulting key handles and initialization
vectors after performing a C_DeriveKey function with the
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE or with the
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:

typedef struct CK_WTLS_KEY_MAT_OUT {

 CK_OBJECT_HANDLE hMacSecret;

 CK_OBJECT_HANDLE hKey;

 CK_BYTE_PTR pIV;

} CK_WTLS_KEY_MAT_OUT;

The fields of the structure have the following meanings:

 hMacSecret Key handle for the resulting MAC secret key

 hKey Key handle for the resulting secret key

 pIV Pointer to a location which receives the initialization vector (IV)
created (if any)

CK_WTLS_KEY_MAT_OUT _PTR is a pointer to a CK_WTLS_KEY_MAT_OUT.

 CK_WTLS_KEY_MAT_PARAMS; CK_WTLS_KEY_MAT_PARAMS_PTR

CK_WTLS_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE and the
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:

typedef struct CK_WTLS_KEY_MAT_PARAMS {

 CK_MECHANISM_TYPE DigestMechanism;

 CK_ULONG ulMacSizeInBits;

 CK_ULONG ulKeySizeInBits;

 CK_ULONG ulIVSizeInBits;

 CK_ULONG ulSequenceNumber;

 CK_BBOOL bIsExport;

 CK_WTLS_RANDOM_DATA RandomInfo;

 CK_WTLS_KEY_MAT_OUT_PTR pReturnedKeyMaterial;

} CK_WTLS_KEY_MAT_PARAMS;

The fields of the structure have the following meanings:

 Digest Mechanism the mechanism type of the digest mechanism to be used (possible
types can be found in [WTLS])

 ulMaxSizeInBits the length (in bits) of the MACing key agreed upon during the
protocol handshake phase

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 121 of 200

 ulKeySizeInBits the length (in bits) of the secret key agreed upon during the
handshake phase

 ulIVSizeInBits the length (in bits) of the IV agreed upon during the handshake
phase. If no IV is required, the length should be set to 0.

 ulSequenceNumber the current sequence number used for records sent by the client
and server respectively

 bIsExport a boolean value which indicates whether the keys have to be
derives for an export version of the protocol. If this value is true
(i.e., the keys are exportable) then ulKeySizeInBits is the length of
the key in bits before expansion. The length of the key after
expansion is determined by the information found in the template
sent along with this mechanism during a C_DeriveKey function call
(either the CKA_KEY_TYPE or the CKA_VALUE_LEN attribute).

 RandomInfo client’s and server’s random data information

 pReturnedKeyMaterial points to a CK_WTLS_KEY_MAT_OUT structure which receives
the handles for the keys generated and the IV

CK_WTLS_KEY_MAT_PARAMS_PTR is a pointer to a CK_WTLS_KEY_MAT_PARAMS.

2.30.3 Pre master secret key generation for RSA key exchange suite

Pre master secret key generation for the RSA key exchange suite in WTLS denoted
CKM_WTLS_PRE_MASTER_KEY_GEN, is a mechanism, which generates a variable length secret key.
It is used to produce the pre master secret key for RSA key exchange suite used in WTLS. This
mechanism returns a handle to the pre master secret key.

It has one parameter, a CK_BYTE, which provides the client’s WTLS version.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may

be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN

attribute indicates the length of the pre master secret key.

For this mechanism, the ulMinKeySize field of the CK_MECHANISM_INFO structure shall indicate 20

bytes.

2.30.4 Master secret key derivation

Master secret derivation in WTLS, denoted CKM_WTLS_MASTER_KEY_DERIVE, is a mechanism used
to derive a 20 byte generic secret key from variable length secret key. It is used to produce the master
secret key used in WTLS from the pre master secret key. This mechanism returns the value of the client
version, which is built into the pre master secret key as well as a handle to the derived master secret key.

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which allows for passing
the mechanism type of the digest mechanism to be used as well as the passing of random data to the
token as well as the returning of the protocol version number which is part of the pre master secret key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 122 of 200

attribute has value 20. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be
specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default
value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will
as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived
key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE,
then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

both indicate 20 bytes.

Note that the CK_BYTE pointed to by the CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure’s
pVersion field will be modified by the C_DeriveKey call. In particular, when the call returns, this byte will

hold the WTLS version associated with the supplied pre master secret key.

Note that this mechanism is only useable for key exchange suites that use a 20-byte pre master secret
key with an embedded version number. This includes the RSA key exchange suites, but excludes the
Diffie-Hellman and Elliptic Curve Cryptography key exchange suites.

2.30.5 Master secret key derivation for Diffie-Hellman and Elliptic Curve
Cryptography

Master secret derivation for Diffie-Hellman and Elliptic Curve Cryptography in WTLS, denoted
CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC, is a mechanism used to derive a 20 byte generic
secret key from variable length secret key. It is used to produce the master secret key used in WTLS from
the pre master secret key. This mechanism returns a handle to the derived master secret key.

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of the mechanism type of the digest mechanism to be used as well as random data to the token.
The pVersion field of the structure must be set to NULL_PTR since the version number is not embedded

in the pre master secret key as it is for RSA-like key exchange suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may

be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 20. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be
specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default
value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will
as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived
key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE,
then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 123 of 200

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

both indicate 20 bytes.

Note that this mechanism is only useable for key exchange suites that do not use a fixed length 20-byte
pre master secret key with an embedded version number. This includes the Diffie-Hellman and Elliptic
Curve Cryptography key exchange suites, but excludes the RSA key exchange suites.

2.30.6 WTLS PRF (pseudorandom function)

PRF (pseudo random function) in WTLS, denoted CKM_WTLS_PRF, is a mechanism used to produce a

securely generated pseudo-random output of arbitrary length. The keys it uses are generic secret keys.

It has a parameter, a CK_WTLS_PRF_PARAMS structure, which allows for passing the mechanism type
of the digest mechanism to be used, the passing of the input seed and its length, the passing of an
identifying label and its length and the passing of the length of the output to the token and for receiving
the output.

This mechanism produces securely generated pseudo-random output of the length specified in the
parameter.

This mechanism departs from the other key derivation mechanisms in Cryptoki in not using the template
sent along with this mechanism during a C_DeriveKey function call, which means the template shall be a
NULL_PTR. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result
of a successful completion. However, since the CKM_WTLS_PRF mechanism returns the requested
number of output bytes in the CK_WTLS_PRF_PARAMS structure specified as the mechanism
parameter, the parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then no output will be generated.

2.30.7 Server Key and MAC derivation

Server key, MAC and IV derivation in WTLS, denoted
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE, is a mechanism used to derive the appropriate
cryptographic keying material used by a cipher suite from the master secret key and random data. This
mechanism returns the key handles for the keys generated in the process, as well as the IV created.

It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the passing of the
mechanism type of the digest mechanism to be used, random data, the characteristic of the cryptographic
material for the given cipher suite, and a pointer to a structure which receives the handles and IV which
were generated.

This mechanism contributes to the creation of two distinct keys and returns one IV (if an IV is requested
by the caller) back to the caller. The keys are all given an object class of CKO_SECRET_KEY.

The MACing key (server write MAC secret) is always given a type of CKK_GENERIC_SECRET. It is
flagged as valid for signing, verification and derivation operations.

The other key (server write key) is typed according to information found in the template sent along with
this mechanism during a C_DeriveKey function call. By default, it is flagged as valid for encryption,

decryption, and derivation operations.

An IV (server write IV) will be generated and returned if the ulIVSizeInBits field of the
CK_WTLS_KEY_MAT_PARAMS field has a nonzero value. If it is generated, its length in bits will agree
with the value in the ulIVSizeInBits field

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes that differ from those held by

the base key.

Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the CK_WTLS_KEY_MAT_PARAMS
structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the two key
handle fields in the CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT structure’s pIV field will

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 124 of 200

have the IV returned in them (if an IV is requested by the caller). Therefore, this field must point to a
buffer with sufficient space to hold any IV that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE
mechanism returns all of its key handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created.

2.30.8 Client key and MAC derivation

Client key, MAC and IV derivation in WTLS, denoted CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE,
is a mechanism used to derive the appropriate cryptographic keying material used by a cipher suite from
the master secret key and random data. This mechanism returns the key handles for the keys generated
in the process, as well as the IV created.

It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the passing of the
mechanism type of the digest mechanism to be used, random data, the characteristic of the cryptographic
material for the given cipher suite, and a pointer to a structure which receives the handles and IV which
were generated.

This mechanism contributes to the creation of two distinct keys and returns one IV (if an IV is requested
by the caller) back to the caller. The keys are all given an object class of CKO_SECRET_KEY.

The MACing key (client write MAC secret) is always given a type of CKK_GENERIC_SECRET. It is

flagged as valid for signing, verification and derivation operations.

The other key (client write key) is typed according to information found in the template sent along with this
mechanism during a C_DeriveKey function call. By default, it is flagged as valid for encryption,

decryption, and derivation operations.

An IV (client write IV) will be generated and returned if the ulIVSizeInBits field of the
CK_WTLS_KEY_MAT_PARAMS field has a nonzero value. If it is generated, its length in bits will agree
with the value in the ulIVSizeInBits field

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes that differ from those held by

the base key.

Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the CK_WTLS_KEY_MAT_PARAMS
structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the two key
handle fields in the CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT structure’s pIV field will
have the IV returned in them (if an IV is requested by the caller). Therefore, this field must point to a
buffer with sufficient space to hold any IV that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism
returns all of its key handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 125 of 200

2.31 Miscellaneous simple key derivation mechanisms

Table 105, Miscellaneous simple key derivation Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_CONCATENATE_BASE_AND_KEY

CKM_CONCATENATE_BASE_AND_DATA

CKM_CONCATENATE_DATA_AND_BASE

CKM_XOR_BASE_AND_DATA

CKM_EXTRACT_KEY_FROM_KEY

2.31.1 Definitions

Mechanisms:

CKM_CONCATENATE_BASE_AND_DATA

CKM_CONCATENATE_DATA_AND_BASE

CKM_XOR_BASE_AND_DATA

CKM_EXTRACT_KEY_FROM_KEY

CKM_CONCATENATE_BASE_AND_KEY

2.31.2 Parameters for miscellaneous simple key derivation mechanisms

 CK_KEY_DERIVATION_STRING_DATA;
CK_KEY_DERIVATION_STRING_DATA_PTR

CK_KEY_DERIVATION_STRING_DATA provides the parameters for the
CKM_CONCATENATE_BASE_AND_DATA, CKM_CONCATENATE_DATA_AND_BASE, and
CKM_XOR_BASE_AND_DATA mechanisms. It is defined as follows:

typedef struct CK_KEY_DERIVATION_STRING_DATA {

 CK_BYTE_PTR pData;

 CK_ULONG ulLen;

} CK_KEY_DERIVATION_STRING_DATA;

The fields of the structure have the following meanings:

 pData pointer to the byte string

 ulLen length of the byte string

CK_KEY_DERIVATION_STRING_DATA_PTR is a pointer to a CK_KEY_DERIVATION_STRING_DATA.

 CK_EXTRACT_PARAMS; CK_EXTRACT_PARAMS_PTR

CK_EXTRACT_PARAMS provides the parameter to the CKM_EXTRACT_KEY_FROM_KEY
mechanism. It specifies which bit of the base key should be used as the first bit of the derived key. It is
defined as follows:

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 126 of 200

typedef CK_ULONG CK_EXTRACT_PARAMS;

CK_EXTRACT_PARAMS_PTR is a pointer to a CK_EXTRACT_PARAMS.

2.31.3 Concatenation of a base key and another key

This mechanism, denoted CKM_CONCATENATE_BASE_AND_KEY, derives a secret key from the
concatenation of two existing secret keys. The two keys are specified by handles; the values of the keys
specified are concatenated together in a buffer.

This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle produces the key value
information which is appended to the end of the base key’s value information (the base key is the key
whose handle is supplied as an argument to C_DeriveKey).

For example, if the value of the base key is 0x01234567, and the value of the other key is 0x89ABCDEF,
then the value of the derived key will be taken from a buffer containing the string 0x0123456789ABCDEF.

 If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the sum of the lengths of the values of the two original
keys.

 If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

 If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

 If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set
properly.

If the requested type of key requires more bytes than are available by concatenating the two original keys’
values, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

 If either of the two original keys has its CKA_SENSITIVE attribute set to CK_TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied

template or from a default value.

 Similarly, if either of the two original keys has its CKA_EXTRACTABLE attribute set to CK_FALSE,
so does the derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either
from the supplied template or from a default value.

 The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if both of the
original keys have their CKA_ALWAYS_SENSITIVE attributes set to CK_TRUE.

 Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
both of the original keys have their CKA_NEVER_EXTRACTABLE attributes set to CK_TRUE.

2.31.4 Concatenation of a base key and data

This mechanism, denoted CKM_CONCATENATE_BASE_AND_DATA, derives a secret key by

concatenating data onto the end of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which

specifies the length and value of the data which will be appended to the base key to derive another key.

For example, if the value of the base key is 0x01234567, and the value of the data is 0x89ABCDEF, then
the value of the derived key will be taken from a buffer containing the string 0x0123456789ABCDEF.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 127 of 200

 If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the sum of the lengths of the value of the original key
and the data.

 If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

 If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

 If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set
properly.

If the requested type of key requires more bytes than are available by concatenating the original key’s
value and the data, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

 If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from a
default value.

 Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the

supplied template or from a default value.

 The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

 Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.31.5 Concatenation of data and a base key

This mechanism, denoted CKM_CONCATENATE_DATA_AND_BASE, derives a secret key by

prepending data to the start of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which

specifies the length and value of the data which will be prepended to the base key to derive another key.

For example, if the value of the base key is 0x01234567, and the value of the data is 0x89ABCDEF, then
the value of the derived key will be taken from a buffer containing the string 0x89ABCDEF01234567.

 If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the sum of the lengths of the data and the value of the
original key.

 If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

 If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

 If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set
properly.

If the requested type of key requires more bytes than are available by concatenating the data and the
original key’s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 128 of 200

 If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from a

default value.

 Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the

supplied template or from a default value.

 The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

 Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.31.6 XORing of a key and data

XORing key derivation, denoted CKM_XOR_BASE_AND_DATA, is a mechanism which provides the
capability of deriving a secret key by performing a bit XORing of a key pointed to by a base key handle
and some data.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which

specifies the data with which to XOR the original key’s value.

For example, if the value of the base key is 0x01234567, and the value of the data is 0x89ABCDEF, then
the value of the derived key will be taken from a buffer containing the string 0x88888888.

 If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the minimum of the lengths of the data and the value of
the original key.

 If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

 If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

 If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set
properly.

If the requested type of key requires more bytes than are available by taking the shorter of the data and
the original key’s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

 If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from a
default value.

 Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the

supplied template or from a default value.

 The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

 Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.31.7 Extraction of one key from another key

Extraction of one key from another key, denoted CKM_EXTRACT_KEY_FROM_KEY, is a mechanism
which provides the capability of creating one secret key from the bits of another secret key.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 129 of 200

This mechanism has a parameter, a CK_EXTRACT_PARAMS, which specifies which bit of the original
key should be used as the first bit of the newly-derived key.

We give an example of how this mechanism works. Suppose a token has a secret key with the 4-byte
value 0x329F84A9. We will derive a 2-byte secret key from this key, starting at bit position 21 (i.e., the
value of the parameter to the CKM_EXTRACT_KEY_FROM_KEY mechanism is 21).

1. We write the key’s value in binary: 0011 0010 1001 1111 1000 0100 1010 1001. We regard this
binary string as holding the 32 bits of the key, labeled as b0, b1, …, b31.

2. We then extract 16 consecutive bits (i.e., 2 bytes) from this binary string, starting at bit b21. We
obtain the binary string 1001 0101 0010 0110.

3. The value of the new key is thus 0x9526.

Note that when constructing the value of the derived key, it is permissible to wrap around the end of the
binary string representing the original key’s value.

If the original key used in this process is sensitive, then the derived key must also be sensitive for the
derivation to succeed.

 If no length or key type is provided in the template, then an error will be returned.

 If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

 If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

 If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set
properly.

If the requested type of key requires more bytes than the original key has, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

 If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from a

default value.

 Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the

supplied template or from a default value.

 The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

 Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.32 CMS

Table 106, CMS Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

 Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_CMS_SIG

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 130 of 200

2.32.1 Definitions

Mechanisms:

CKM_CMS_SIG

2.32.2 CMS Signature Mechanism Objects

These objects provide information relating to the CKM_CMS_SIG mechanism. CKM_CMS_SIG
mechanism object attributes represent information about supported CMS signature attributes in the token.
They are only present on tokens supporting the CKM_CMS_SIG mechanism, but must be present on

those tokens.

Table 107, CMS Signature Mechanism Object Attributes

Attribute Data type Meaning

CKA_REQUIRED_CMS_ATTRIBUTE
S

Byte array Attributes the token always will include
in the set of CMS signed attributes

CKA_DEFAULT_CMS_ATTRIBUTES Byte array Attributes the token will include in the
set of CMS signed attributes in the
absence of any attributes specified by
the application

CKA_SUPPORTED_CMS_ATTRIBUT
ES

Byte array Attributes the token may include in the
set of CMS signed attributes upon
request by the application

The contents of each byte array will be a DER-encoded list of CMS Attributes with optional accompanying
values. Any attributes in the list shall be identified with its object identifier, and any values shall be DER-
encoded. The list of attributes is defined in ASN.1 as:

 Attributes ::= SET SIZE (1..MAX) OF Attribute

 Attribute ::= SEQUENCE {

 attrType OBJECT IDENTIFIER,

 attrValues SET OF ANY DEFINED BY OBJECT IDENTIFIER

OPTIONAL

 }

The client may not set any of the attributes.

2.32.3 CMS mechanism parameters

 CK_CMS_SIG_PARAMS, CK_CMS_SIG_PARAMS_PTR

CK_CMS_SIG_PARAMS is a structure that provides the parameters to the CKM_CMS_SIG mechanism.
It is defined as follows:

typedef struct CK_CMS_SIG_PARAMS {

CK_OBJECT_HANDLE certificateHandle;

CK_MECHANISM_PTR pSigningMechanism;

CK_MECHANISM_PTR pDigestMechanism;

CK_UTF8CHAR_PTR pContentType;

CK_BYTE_PTR pRequestedAttributes;

CK_ULONG ulRequestedAttributesLen;

CK_BYTE_PTR pRequiredAttributes;

CK_ULONG ulRequiredAttributesLen;

} CK_CMS_SIG_PARAMS;

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 131 of 200

The fields of the structure have the following meanings:

 certificateHandle Object handle for a certificate associated with the signing key. The
token may use information from this certificate to identify the signer
in the SignerInfo result value. CertificateHandle may be NULL_PTR
if the certificate is not available as a PKCS #11 object or if the
calling application leaves the choice of certificate completely to the
token.

 pSigningMechanism Mechanism to use when signing a constructed CMS
SignedAttributes value. E.g. CKM_SHA1_RSA_PKCS.

 pDigestMechanism Mechanism to use when digesting the data. Value shall be
NULL_PTR when the digest mechanism to use follows from the
pSigningMechanism parameter.

 pContentType NULL-terminated string indicating complete MIME Content-type of
message to be signed; or the value NULL_PTR if the message is a
MIME object (which the token can parse to determine its MIME
Content-type if required). Use the value “application/octet-stream“ if
the MIME type for the message is unknown or undefined. Note that
the pContentType string shall conform to the syntax specified in
RFC 2045, i.e. any parameters needed for correct presentation of
the content by the token (such as, for example, a non-default
“charset”) must be present. The token must follow rules and
procedures defined in RFC 2045 when presenting the content.

 pRequestedAttributes Pointer to DER-encoded list of CMS Attributes the caller requests to
be included in the signed attributes. Token may freely ignore this list
or modify any supplied values.

 ulRequestedAttributesLen Length in bytes of the value pointed to by pRequestedAttributes

 pRequiredAttributes Pointer to DER-encoded list of CMS Attributes (with accompanying
values) required to be included in the resulting signed attributes.
Token must not modify any supplied values. If the token does not
support one or more of the attributes, or does not accept provided
values, the signature operation will fail. The token will use its own
default attributes when signing if both the pRequestedAttributes and
pRequiredAttributes field are set to NULL_PTR.

 ulRequiredAttributesLen Length in bytes, of the value pointed to by pRequiredAttributes.

2.32.4 CMS signatures

The CMS mechanism, denoted CKM_CMS_SIG, is a multi-purpose mechanism based on the structures
defined in PKCS #7 and RFC 2630. It supports single- or multiple-part signatures with and without
message recovery. The mechanism is intended for use with, e.g., PTDs (see MeT-PTD) or other capable
tokens. The token will construct a CMS SignedAttributes value and compute a signature on this value.
The content of the SignedAttributes value is decided by the token, however the caller can suggest some
attributes in the parameter pRequestedAttributes. The caller can also require some attributes to be
present through the parameters pRequiredAttributes. The signature is computed in accordance with the
parameter pSigningMechanism.

When this mechanism is used in successful calls to C_Sign or C_SignFinal, the pSignature return value
will point to a DER-encoded value of type SignerInfo. SignerInfo is defined in ASN.1 as follows (for a
complete definition of all fields and types, see RFC 2630):

SignerInfo ::= SEQUENCE {

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 132 of 200

 version CMSVersion,

 sid SignerIdentifier,

 digestAlgorithm DigestAlgorithmIdentifier,

 signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,

 signatureAlgorithm SignatureAlgorithmIdentifier,

 signature SignatureValue,

 unsignedAttrs [1] IMPLICIT UnsignedAttributes

OPTIONAL }

The certificateHandle parameter, when set, helps the token populate the sid field of the SignerInfo value.
If certificateHandle is NULL_PTR the choice of a suitable certificate reference in the SignerInfo result

value is left to the token (the token could, e.g., interact with the user).

This mechanism shall not be used in calls to C_Verify or C_VerifyFinal (use the pSigningMechanism

mechanism instead).

For the pRequiredAttributes field, the token may have to interact with the user to find out whether to
accept a proposed value or not. The token should never accept any proposed attribute values without
some kind of confirmation from its owner (but this could be through, e.g., configuration or policy settings
and not direct interaction). If a user rejects proposed values, or the signature request as such, the value
CKR_FUNCTION_REJECTED shall be returned.

When possible, applications should use the CKM_CMS_SIG mechanism when generating CMS-
compatible signatures rather than lower-level mechanisms such as CKM_SHA1_RSA_PKCS. This is
especially true when the signatures are to be made on content that the token is able to present to a user.
Exceptions may include those cases where the token does not support a particular signing attribute. Note
however that the token may refuse usage of a particular signature key unless the content to be signed is
known (i.e. the CKM_CMS_SIG mechanism is used).

When a token does not have presentation capabilities, the PKCS #11-aware application may avoid
sending the whole message to the token by electing to use a suitable signature mechanism (e.g.
CKM_RSA_PKCS) as the pSigningMechanism value in the CK_CMS_SIG_PARAMS structure, and

digesting the message itself before passing it to the token.

PKCS #11-aware applications making use of tokens with presentation capabilities, should attempt to
provide messages to be signed by the token in a format possible for the token to present to the user.
Tokens that receive multipart MIME-messages for which only certain parts are possible to present may
fail the signature operation with a return value of CKR_DATA_INVALID, but may also choose to add a

signing attribute indicating which parts of the message were possible to present.

2.33 Blowfish

Blowfish, a secret-key block cipher. It is a Feistel network, iterating a simple encryption function 16 times.
The block size is 64 bits, and the key can be any length up to 448 bits. Although there is a complex
initialization phase required before any encryption can take place, the actual encryption of data is very
efficient on large microprocessors.

Table 108, Blowfish Mechanisms vs. Functions

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 133 of 200

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest

Gen.

 Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_BLOWFISH_CBC ✓ ✓

CKM_BLOWFISH_CBC_PAD ✓ ✓

2.33.1 Definitions

This section defines the key type “CKK_BLOWFISH” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_BLOWFISH_KEY_GEN

CKM_BLOWFISH_CBC

CKM_BLOWFISH_CBC_PAD

2.33.2 BLOWFISH secret key objects

Blowfish secret key objects (object class CKO_SECRET_KEY, key type CKK_BLOWFISH) hold Blowfish
keys. The following table defines the Blowfish secret key object attributes, in addition to the common
attributes defined for this object class:

Table 109, BLOWFISH Secret Key Object

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

 Byte array Key value the key can be
any length up to 448 bits.
Bit length restricted to a
byte array.

CKA_VALUE_LEN
2,3

 CK_ULONG Length in bytes of key
value

- Refer to [PKCS #11-Base] table 10 for footnotes

The following is a sample template for creating an Blowfish secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_BLOWFISH;

CK_UTF8CHAR label[] = “A blowfish secret key object”;

CK_BYTE value[16] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_VALUE, value, sizeof(value)}

};

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 134 of 200

2.33.3 Blowfish key generation

The Blowfish key generation mechanism, denoted CKM_BLOWFISH_KEY_GEN, is a key generation
mechanism Blowfish.

It does not have a parameter.

The mechanism generates Blowfish keys with a particular length, as specified in the CKA_VALUE_LEN

attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the key type (specifically, the flags indicating which functions the key
supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes in bytes.

2.33.4 Blowfish-CBC

Blowfish-CBC, denoted CKM_BLOWFISH_CBC, is a mechanism for single- and multiple-part encryption

and decryption; key wrapping; and key unwrapping.

It has a parameter, a 8-byte initialization vector.

This mechanism can wrap and unwrap any secret key. For wrapping, the mechanism encrypts the value
of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size
minus one null bytes so that the resulting length is a multiple of the block size. The output data is the
same length as the padded input data. It does not wrap the key type, key length, or any other information
about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE

attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 110, BLOWFISH-CBC: Key and Data Length

Function Key type Input Length Output Length

C_Encrypt BLOWFISH Multiple of block size Same as input length

C_Decrypt BLOWFISH Multiple of block size Same as input length

C_WrapKey BLOWFISH Any Input length rounded up to
multiple of the block size

C_UnwrapKey BLOWFISH Multiple of block size Determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of BLOWFISH key sizes, in bytes.

2.33.5 Blowfish-CBC with PKCS padding

Blowfish-CBC-PAD, denoted CKM_BLOWFISH_CBC_PAD, is a mechanism for single- and multiple-part
encryption and decryption, key wrapping and key unwrapping, cipher-block chaining mode and the block
cipher padding method detailed in PKCS #7.

It has a parameter, a 8-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for
the CKA_VALUE_LEN attribute.

The entries in the table below for data length constraints when wrapping and unwrapping keys do not
apply to wrapping and unwrapping private keys.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 135 of 200

Constraints on key types and the length of data are summarized in the following table:

Table 111, BLOWFISH-CBC with PKCS Padding: Key and Data Length

Function Key type Input Length Output Length

C_Encrypt BLOWFISH Any Input length rounded up to
multiple of the block size

C_Decrypt BLOWFISH Multiple of block size Between 1 and block
length block size bytes
shorter than input length

C_WrapKey BLOWFISH Any Input length rounded up to
multiple of the block size

C_UnwrapKey BLOWFISH Multiple of block size Between 1 and block length
block size bytes shorter than
input length

2.34 Twofish

Ref. https://www.schneier.com/twofish.html

2.34.1 Definitions

This section defines the key type “CKK_TWOFISH” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_TWOFISH_KEY_GEN

CKM_TWOFISH_CBC

CKM_TWOFISH_CBC_PAD

2.34.2 Twofish secret key objects

Twofish secret key objects (object class CKO_SECRET_KEY, key type CKK_TWOFISH) hold Twofish
keys. The following table defines the Twofish secret key object attributes, in addition to the common
attributes defined for this object class:

Table 112, Twofish Secret Key Object

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

 Byte array Key value 128-, 192-, or
256-bit key

CKA_VALUE_LEN
2,3

 CK_ULONG Length in bytes of key
value

- Refer to [PKCS #11-Base] table 10 for footnotes

The following is a sample template for creating an TWOFISH secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_TWOFISH;

CK_UTF8CHAR label[] = “A twofish secret key object”;

CK_BYTE value[16] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

file:///D:/blp/data/.%20http:/www.counterpane.com/twofish-brief.html

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 136 of 200

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_VALUE, value, sizeof(value)}

};

2.34.3 Twofish key generation

The Twofish key generation mechanism, denoted CKM_TWOFISH_KEY_GEN, is a key generation

mechanism Twofish.

It does not have a parameter.

The mechanism generates Blowfish keys with a particular length, as specified in the CKA_VALUE_LEN

attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the key type (specifically, the flags indicating which functions the key
supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of key sizes, in bytes.

2.34.4 Twofish -CBC

Twofish-CBC, denoted CKM_TWOFISH_CBC, is a mechanism for single- and multiple-part encryption

and decryption; key wrapping; and key unwrapping.

It has a parameter, a 16-byte initialization vector.

2.34.5 Twofish-CBC with PKCS padding

Twofish-CBC-PAD, denoted CKM_TWOFISH_CBC_PAD, is a mechanism for single- and multiple-part
encryption and decryption, key wrapping and key unwrapping, cipher-block chaining mode and the block
cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for
the CKA_VALUE_LEN attribute.

2.35 CAMELLIA

Camellia is a block cipher with 128-bit block size and 128-, 192-, and 256-bit keys, similar to AES.
Camellia is described e.g. in IETF RFC 3713.

Table 113, Camellia Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_CAMELLIA_KEY_GEN

CKM_CAMELLIA_ECB

CKM_CAMELLIA_CBC

CKM_CAMELLIA_CBC_PAD

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 137 of 200

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_CAMELLIA_MAC_GENERAL

CKM_CAMELLIA_MAC

CKM_CAMELLIA_ECB_ENCRYPT_DATA

CKM_CAMELLIA_CBC_ENCRYPT_DATA

2.35.1 Definitions

This section defines the key type “CKK_CAMELLIA” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_CAMELLIA_KEY_GEN

CKM_CAMELLIA_ECB

CKM_CAMELLIA_CBC

CKM_CAMELLIA_MAC

CKM_CAMELLIA_MAC_GENERAL

CKM_CAMELLIA_CBC_PAD

2.35.2 Camellia secret key objects

Camellia secret key objects (object class CKO_SECRET_KEY, key type CKK_CAMELLIA) hold
Camellia keys. The following table defines the Camellia secret key object attributes, in addition to the
common attributes defined for this object class:

Table 114, Camellia Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

 Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN
2,3,6

 CK_ULONG Length in bytes of key
value

- Refer to [PKCS #11-Base] table 10 for footnotes.

The following is a sample template for creating a Camellia secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_CAMELLIA;

CK_UTF8CHAR label[] = “A Camellia secret key object”;

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_VALUE, value, sizeof(value)}

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 138 of 200

};

2.35.3 Camellia key generation

The Camellia key generation mechanism, denoted CKM_CAMELLIA_KEY_GEN, is a key generation
mechanism for Camellia.

It does not have a parameter.

The mechanism generates Camellia keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the Camellia key type (specifically, the flags indicating which functions
the key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of Camellia key sizes, in bytes.

2.35.4 Camellia-ECB

Camellia-ECB, denoted CKM_CAMELLIA_ECB, is a mechanism for single- and multiple-part encryption

and decryption; key wrapping; and key unwrapping, based on Camellia and electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE

attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 115, Camellia-ECB: Key and Data Length

Function Key type Input
length

Output length Comments

C_Encrypt CKK_CAMELLIA multiple of
block size

same as input length no final part

C_Decrypt CKK_CAMELLIA multiple of
block size

same as input length no final part

C_WrapKey CKK_CAMELLIA any input length rounded up
to multiple of block size

C_UnwrapKey CKK_CAMELLIA multiple of
block size

determined by type of
key being unwrapped or

CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.35.5 Camellia-CBC

Camellia-CBC, denoted CKM_CAMELLIA_CBC, is a mechanism for single- and multiple-part encryption

and decryption; key wrapping; and key unwrapping, based on Camellia and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 139 of 200

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE

attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 116, Camellia-CBC: Key and Data Length

Function Key type Input
length

Output length Comments

C_Encrypt CKK_CAMELLIA multiple of
block size

same as input length no final part

C_Decrypt CKK_CAMELLIA multiple of
block size

same as input length no final part

C_WrapKey CKK_CAMELLIA any input length rounded
up to multiple of the

block size

C_UnwrapKey CKK_CAMELLIA multiple of
block size

determined by type of
key being unwrapped
or CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.35.6 Camellia-CBC with PKCS padding

Camellia-CBC with PKCS padding, denoted CKM_CAMELLIA_CBC_PAD, is a mechanism for single-
and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on Camellia;
cipher-block chaining mode; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section
TBA for details). The entries in the table below for data length constraints when wrapping and
unwrapping keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 117, Camellia-CBC with PKCS Padding: Key and Data Length

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 140 of 200

Function Key type Input
length

Output length

C_Encrypt CKK_CAMELLIA any input length rounded up to
multiple of the block size

C_Decrypt CKK_CAMELLIA multiple of
block size

between 1 and block size
bytes shorter than input length

C_WrapKey CKK_CAMELLIA any input length rounded up to
multiple of the block size

C_UnwrapKey CKK_CAMELLIA multiple of
block size

between 1 and block length
bytes shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.35.7 General-length Camellia-MAC

General-length Camellia -MAC, denoted CKM_CAMELLIA_MAC_GENERAL, is a mechanism for single-
and multiple-part signatures and verification, based on Camellia and data authentication as defined
in.[CAMELLIA]

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length

desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final Camellia cipher block produced
in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 118, General-length Camellia-MAC: Key and Data Length

Function Key type Data
length

Signature length

C_Sign CKK_CAMELLIA any 0-block size, as specified in parameters

C_Verify CKK_CAMELLIA any 0-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.35.8 Camellia-MAC

Camellia-MAC, denoted by CKM_CAMELLIA_MAC, is a special case of the general-length Camellia-
MAC mechanism. Camellia-MAC always produces and verifies MACs that are half the block size in
length.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 119, Camellia-MAC: Key and Data Length

Function Key type Data
length

Signature length

C_Sign CKK_CAMELLIA any ½ block size (8 bytes)

C_Verify CKK_CAMELLIA any ½ block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 141 of 200

2.36 Key derivation by data encryption - Camellia

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

2.36.1 Definitions

Mechanisms:

CKM_CAMELLIA_ECB_ENCRYPT_DATA

CKM_CAMELLIA_CBC_ENCRYPT_DATA

typedef struct CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS {

 CK_BYTE iv[16];

 CK_BYTE_PTR pData;

 CK_ULONG length;

} CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS;

typedef CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS CK_PTR

CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS_PTR;

2.36.2 Mechanism Parameters

Uses CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS, and CK_KEY_DERIVATION_STRING_DATA.

Table 120, Mechanism Parameters for Camellia-based key derivation

CKM_CAMELLIA_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.

CKM_CAMELLIA_CBC_ENCRYPT_DATA Uses
CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the
data. The data value part must be a multiple of 16
bytes long.

2.37 ARIA

ARIA is a block cipher with 128-bit block size and 128-, 192-, and 256-bit keys, similar to AES. ARIA is
described in NSRI “Specification of ARIA”.

Table 121, ARIA Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_ARIA_KEY_GEN

CKM_ARIA_ECB

CKM_ARIA_CBC

CKM_ARIA_CBC_PAD

CKM_ARIA_MAC_GENERAL

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 142 of 200

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_ARIA_MAC

CKM_ARIA_ECB_ENCRYPT_DATA

CKM_ARIA_CBC_ENCRYPT_DATA

2.37.1 Definitions

This section defines the key type “CKK_ARIA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE
attribute of key objects.

Mechanisms:

CKM_ARIA_KEY_GEN

CKM_ARIA_ECB

CKM_ARIA_CBC

CKM_ARIA_MAC

CKM_ARIA_MAC_GENERAL

CKM_ARIA_CBC_PAD

2.37.2 Aria secret key objects

ARIA secret key objects (object class CKO_SECRET_KEY, key type CKK_ARIA) hold ARIA keys. The
following table defines the ARIA secret key object attributes, in addition to the common attributes defined
for this object class:

Table 122, ARIA Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

 Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN
2,3,6

 CK_ULONG Length in bytes of key
value

- Refer to [PKCS #11-Base] table 10 for footnotes.

The following is a sample template for creating an ARIA secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_ARIA;

CK_UTF8CHAR label[] = “An ARIA secret key object”;

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_VALUE, value, sizeof(value)}

};

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 143 of 200

2.37.3 ARIA key generation

The ARIA key generation mechanism, denoted CKM_ARIA_KEY_GEN, is a key generation mechanism
for Aria.

It does not have a parameter.

The mechanism generates ARIA keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the ARIA key type (specifically, the flags indicating which functions the
key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2.37.4 ARIA-ECB

ARIA-ECB, denoted CKM_ARIA_ECB, is a mechanism for single- and multiple-part encryption and

decryption; key wrapping; and key unwrapping, based on Aria and electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE

attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 123, ARIA-ECB: Key and Data Length

Function Key type Input
length

Output length Comments

C_Encrypt CKK_ARIA multiple of
block size

same as input length no final part

C_Decrypt CKK_ARIA multiple of
block size

same as input length no final part

C_WrapKey CKK_ARIA any input length rounded up
to multiple of block size

C_UnwrapKey CKK_ARIA multiple of
block size

determined by type of
key being unwrapped or

CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of ARIA key sizes, in bytes.

2.37.5 ARIA-CBC

ARIA-CBC, denoted CKM_ARIA_CBC, is a mechanism for single- and multiple-part encryption and

decryption; key wrapping; and key unwrapping, based on ARIA and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 144 of 200

CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE

attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 124, ARIA-CBC: Key and Data Length

Function Key type Input
length

Output length Comments

C_Encrypt CKK_ARIA multiple of
block size

same as input length no final part

C_Decrypt CKK_ARIA multiple of
block size

same as input length no final part

C_WrapKey CKK_ARIA any input length rounded
up to multiple of the

block size

C_UnwrapKey CKK_ARIA multiple of
block size

determined by type of
key being unwrapped
or CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Aria key sizes, in bytes.

2.37.6 ARIA-CBC with PKCS padding

ARIA-CBC with PKCS padding, denoted CKM_ARIA_CBC_PAD, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on ARIA; cipher-block
chaining mode; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section
TBA for details). The entries in the table below for data length constraints when wrapping and
unwrapping keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 125, ARIA-CBC with PKCS Padding: Key and Data Length

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 145 of 200

Function Key type Input
length

Output length

C_Encrypt CKK_ARIA any input length rounded up to
multiple of the block size

C_Decrypt CKK_ARIA multiple of
block size

between 1 and block size
bytes shorter than input length

C_WrapKey CKK_ARIA any input length rounded up to
multiple of the block size

C_UnwrapKey CKK_ARIA multiple of
block size

between 1 and block length
bytes shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2.37.7 General-length ARIA-MAC

General-length ARIA -MAC, denoted CKM_ARIA_MAC_GENERAL, is a mechanism for single- and

multiple-part signatures and verification, based on ARIA and data authentication as defined in [FIPS 113].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length

desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final ARIA cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 126, General-length ARIA-MAC: Key and Data Length

Function Key type Data
length

Signature length

C_Sign CKK_ARIA any 0-block size, as specified in parameters

C_Verify CKK_ARIA any 0-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2.37.8 ARIA-MAC

ARIA-MAC, denoted by CKM_ARIA_MAC, is a special case of the general-length ARIA-MAC
mechanism. ARIA-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 127, ARIA-MAC: Key and Data Length

Function Key type Data
length

Signature length

C_Sign CKK_ARIA any ½ block size (8 bytes)

C_Verify CKK_ARIA any ½ block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2.38 Key derivation by data encryption - ARIA

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 146 of 200

2.38.1 Definitions

Mechanisms:

CKM_ARIA_ECB_ENCRYPT_DATA

CKM_ARIA_CBC_ENCRYPT_DATA

typedef struct CK_ARIA_CBC_ENCRYPT_DATA_PARAMS {

 CK_BYTE iv[16];

 CK_BYTE_PTR pData;

 CK_ULONG length;

} CK_ARIA_CBC_ENCRYPT_DATA_PARAMS;

typedef CK_ARIA_CBC_ENCRYPT_DATA_PARAMS CK_PTR

CK_ARIA_CBC_ENCRYPT_DATA_PARAMS_PTR;

2.38.2 Mechanism Parameters

Uses CK_ARIA_CBC_ENCRYPT_DATA_PARAMS, and CK_KEY_DERIVATION_STRING_DATA.

Table 128, Mechanism Parameters for Aria-based key derivation

CKM_ARIA_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted
and must be a multiple of 16 long.

CKM_ARIA_CBC_ENCRYPT_DATA Uses
CK_ARIA_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the
data. The data value part must be a multiple of 16
bytes long.

2.39 SEED

SEED is a symmetric block cipher developed by the South Korean Information Security Agency (KISA). It
has a 128-bit key size and a 128-bit block size.

Its specification has been published as Internet [RFC 4269].

RFCs have been published defining the use of SEED in

TLS ftp://ftp.rfc-editor.org/in-notes/rfc4162.txt

IPsec ftp://ftp.rfc-editor.org/in-notes/rfc4196.txt

CMS ftp://ftp.rfc-editor.org/in-notes/rfc4010.txt

TLS cipher suites that use SEED include:

 CipherSuite TLS_RSA_WITH_SEED_CBC_SHA = { 0x00,

0x96};

 CipherSuite TLS_DH_DSS_WITH_SEED_CBC_SHA = { 0x00,

0x97};

 CipherSuite TLS_DH_RSA_WITH_SEED_CBC_SHA = { 0x00,

0x98};

 CipherSuite TLS_DHE_DSS_WITH_SEED_CBC_SHA = { 0x00,

0x99};

 CipherSuite TLS_DHE_RSA_WITH_SEED_CBC_SHA = { 0x00,

ftp://ftp.rfc-editor.org/in-notes/rfc4162.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4196.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4010.txt

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 147 of 200

0x9A};

 CipherSuite TLS_DH_anon_WITH_SEED_CBC_SHA = { 0x00,

0x9B};

As with any block cipher, it can be used in the ECB, CBC, OFB and CFB modes of operation, as well as
in a MAC algorithm such as HMAC.

OIDs have been published for all these uses. A list may be seen at
http://www.alvestrand.no/objectid/1.2.410.200004.1.html

Table 129, SEED Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SEED_KEY_GEN

CKM_SEED_ECB

CKM_SEED_CBC

CKM_SEED_CBC_PAD

CKM_SEED_MAC_GENERAL

CKM_SEED_MAC

CKM_SEED_ECB_ENCRYPT_DATA

CKM_SEED_CBC_ENCRYPT_DATA

2.39.1 Definitions

This section defines the key type “CKK_SEED” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE
attribute of key objects.

Mechanisms:

CKM_SEED_KEY_GEN

CKM_SEED_ECB

CKM_SEED_CBC

CKM_SEED_MAC

CKM_SEED_MAC_GENERAL

CKM_SEED_CBC_PAD

For all of these mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
are always 16.

http://www.alvestrand.no/objectid/1.2.410.200004.1.html

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 148 of 200

2.39.2 SEED secret key objects

SEED secret key objects (object class CKO_SECRET_KEY, key type CKK_SEED) hold SEED keys.
The following table defines the secret key object attributes, in addition to the common attributes defined
for this object class:

Table 130, SEED Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

 Byte array Key value (always 16
bytes long)

- Refer to [PKCS #11-Base] table 10 for footnotes.

The following is a sample template for creating a SEED secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_SEED;

CK_UTF8CHAR label[] = “A SEED secret key object”;

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_VALUE, value, sizeof(value)}

};

2.39.3 SEED key generation

The SEED key generation mechanism, denoted CKM_SEED_KEY_GEN, is a key generation mechanism
for SEED.

It does not have a parameter.

The mechanism generates SEED keys.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SEED key type (specifically, the flags indicating which functions
the key supports) may be specified in the template for the key, or else are assigned default initial values.

2.39.4 SEED-ECB

SEED-ECB, denoted CKM_SEED_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on SEED and electronic codebook mode.

It does not have a parameter.

2.39.5 SEED-CBC

SEED-CBC, denoted CKM_SEED_CBC, is a mechanism for single- and multiple-part encryption and

decryption; key wrapping; and key unwrapping, based on SEED and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 149 of 200

2.39.6 SEED-CBC with PKCS padding

SEED-CBC with PKCS padding, denoted CKM_SEED_CBC_PAD, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on SEED; cipher-
block chaining mode; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

2.39.7 General-length SEED-MAC

General-length SEED-MAC, denoted CKM_SEED_MAC_GENERAL, is a mechanism for single- and

multiple-part signatures and verification, based on SEED and data authentication as defined in 0.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length

desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final cipher block produced in the
MACing process.

2.39.8 SEED-MAC

SEED-MAC, denoted by CKM_SEED_MAC, is a special case of the general-length SEED-MAC

mechanism. SEED-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.

2.40 Key derivation by data encryption - SEED

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

2.40.1 Definitions

Mechanisms:

CKM_SEED_ECB_ENCRYPT_DATA

CKM_SEED_CBC_ENCRYPT_DATA

typedef struct CK_SEED_CBC_ENCRYPT_DATA_PARAMS

CK_CBC_ENCRYPT_DATA_PARAMS;

typedef CK_CBC_ENCRYPT_DATA_PARAMS CK_PTR

CK_CBC_ENCRYPT_DATA_PARAMS_PTR;

2.40.2 Mechanism Parameters

Table 131, Mechanism Parameters for SEED-based key derivation

CKM_SEED_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.

CKM_SEED_CBC_ENCRYPT_DATA Uses CK_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the data.
The data value part must be a multiple of 16 bytes
long.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 150 of 200

2.41 OTP

2.41.1 Usage overview

OTP tokens represented as PKCS #11 mechanisms may be used in a variety of ways. The usage cases
can be categorized according to the type of sought functionality.

2.41.2 Case 1: Generation of OTP values

.

Figure 1: Retrieving OTP values through C_Sign

Figure 1 shows an integration of PKCS #11 into an application that needs to authenticate users holding
OTP tokens. In this particular example, a connected hardware token is used, but a software token is
equally possible. The application invokes C_Sign to retrieve the OTP value from the token. In the
example, the application then passes the retrieved OTP value to a client API that sends it via the network
to an authentication server. The client API may implement a standard authentication protocol such as
RADIUS [RFC 2865] or EAP [RFC 3748], or a proprietary protocol such as that used by RSA Security's
ACE/Agent

®
 software.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 151 of 200

2.41.3 Case 2: Verification of provided OTP values

Server Application

PKCS #11 Library

C_Verify()

Internal Token API

Token (or query to
authentication

server)

Figure 2: Server-side verification of OTP values

Figure 2 illustrates the server-side equivalent of the scenario depicted in Figure 1. In this case, a server
application invokes C_Verify with the received OTP value as the signature value to be verified.

2.41.4 Case 3: Generation of OTP keys

Client Application

PKCS #11 Library

C_GenerateKey()

Internal Token API

Token (or software
version thereof)

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 152 of 200

Figure 3: Generation of an OTP key

Figure 3 shows an integration of PKCS #11 into an application that generates OTP keys. The application
invokes C_GenerateKey to generate an OTP key of a particular type on the token. The key may

subsequently be used as a basis to generate OTP values.

2.41.5 OTP objects

2.41.5.1 Key objects

OTP key objects (object class CKO_OTP_KEY) hold secret keys used by OTP tokens. The following
table defines the attributes common to all OTP keys, in addition to the attributes defined for secret keys,
all of which are inherited by this class:

Table 132: Common OTP key attributes

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 153 of 200

Attribute Data type Meaning

CKA_OTP_FORMAT CK_ULONG Format of OTP values produced
with this key:

CK_OTP_FORMAT_DECIMAL =
Decimal (default) (UTF8-encoded)

CK_OTP_FORMAT_HEXADECIMA
L = Hexadecimal (UTF8-encoded)

CK_OTP_FORMAT_ALPHANUME
RIC = Alphanumeric (UTF8-
encoded)

CK_OTP_FORMAT_BINARY =
Only binary values.

CKA_OTP_LENGTH
9
 CK_ULONG Default length of OTP values (in the

CKA_OTP_FORMAT) produced
with this key.

CKA_OTP_USER_FRIENDLY_MODE
9
 CK_BBOOL Set to CK_TRUE when the token is

capable of returning OTPs suitable
for human consumption. See the
description of
CKF_USER_FRIENDLY_OTP
below.

CKA_OTP
_CHALLENGE_REQUIREMENT

9

CK_ULONG Parameter requirements when
generating or verifying OTP values
with this key:

CK_OTP_PARAM_MANDATORY =
A challenge must be supplied.

CK_OTP_PARAM_OPTIONAL = A
challenge may be supplied but need
not be.
CK_OTP_PARAM_IGNORED = A
challenge, if supplied, will be
ignored.

CKA_OTP_TIME_REQUIREMENT
9
 CK_ULONG Parameter requirements when

generating or verifying OTP values
with this key:

CK_OTP_PARAM_MANDATORY =
A time value must be supplied.

CK_OTP_PARAM_OPTIONAL = A
time value may be supplied but
need not be.
CK_OTP_PARAM_IGNORED = A
time value, if supplied, will be
ignored.

CKA_OTP_COUNTER_REQUIREMEN
T

9

CK_ULONG Parameter requirements when
generating or verifying OTP values
with this key:

CK_OTP_PARAM_MANDATORY =
A counter value must be supplied.

CK_OTP_PARAM_OPTIONAL = A
counter value may be supplied but
need not be.
CK_OTP_PARAM_IGNORED = A
counter value, if supplied, will be
ignored.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 154 of 200

Attribute Data type Meaning

CKA_OTP_PIN_REQUIREMENT
9
 CK_ULONG Parameter requirements when

generating or verifying OTP values
with this key:

CK_OTP_PARAM_MANDATORY =
A PIN value must be supplied.

CK_OTP_PARAM_OPTIONAL = A
PIN value may be supplied but
need not be (if not supplied, then
library will be responsible for
collecting it)

CK_OTP_PARAM_IGNORED = A
PIN value, if supplied, will be
ignored.

CKA_OTP_COUNTER Byte array Value of the associated internal
counter. Default value is empty (i.e.
ulValueLen = 0).

CKA_OTP_TIME RFC 2279
string

Value of the associated internal
UTC time in the form
YYYYMMDDhhmmss. Default value
is empty (i.e. ulValueLen= 0).

CKA_OTP_USER_IDENTIFIER RFC 2279
string

Text string that identifies a user
associated with the OTP key (may
be used to enhance the user
experience). Default value is empty
(i.e. ulValueLen = 0).

CKA_OTP_SERVICE_IDENTIFIER RFC 2279
string

Text string that identifies a service
that may validate OTPs generated
by this key. Default value is empty
(i.e. ulValueLen = 0).

CKA_OTP_SERVICE_LOGO Byte array Logotype image that identifies a
service that may validate OTPs
generated by this key. Default value
is empty (i.e. ulValueLen = 0).

CKA_OTP_SERVICE_LOGO_TYPE RFC 2279
string

MIME type of the
CKA_OTP_SERVICE_LOGO
attribute value. Default value is
empty (i.e. ulValueLen = 0).

CKA_VALUE
1, 4, 6, 7

 Byte array Value of the key.

CKA_VALUE_LEN
2, 3

 CK_ULONG Length in bytes of key value.

Refer to [PKCS #11-Base] table 10 for footnotes.
Note: A Cryptoki library may support PIN-code caching in order to reduce

user interactions. An OTP-PKCS #11 application should therefore always consult the state of the
CKA_OTP_PIN_REQUIREMENT attribute before each call to C_SignInit, as the value of this attribute

may change dynamically.

For OTP tokens with multiple keys, the keys may be enumerated using C_FindObjects. The
CKA_OTP_SERVICE_IDENTIFIER and/or the CKA_OTP_SERVICE_LOGO attribute may be used to
distinguish between keys. The actual choice of key for a particular operation is however application-
specific and beyond the scope of this document.

For all OTP keys, the CKA_ALLOWED_MECHANISMS attribute should be set as required.

2.41.6 OTP-related notifications

This document extends the set of defined notifications as follows:

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 155 of 200

 CKN_OTP_CHANGED Cryptoki is informing the application that the OTP for a key on a
connected token just changed. This notification is particularly useful
when applications wish to display the current OTP value for time-
based mechanisms.

2.41.7 OTP mechanisms

The following table shows, for the OTP mechanisms defined in this document, their support by different
cryptographic operations. For any particular token, of course, a particular operation may well support
only a subset of the mechanisms listed. There is also no guarantee that a token that supports one
mechanism for some operation supports any other mechanism for any other operation (or even supports
that same mechanism for any other operation).

Table 133: OTP mechanisms vs. applicable functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SECURID_KEY_GEN

CKM_SECURID

CKM_HOTP_KEY_GEN

CKM_HOTP

CKM_ACTI_KEY_GEN

CKM_ACTI

The remainder of this section will present in detail the OTP mechanisms and the parameters that are
supplied to them.

2.41.7.1 OTP mechanism parameters

 CK_PARAM_TYPE

CK_PARAM_TYPE is a value that identifies an OTP parameter type. It is defined as follows:

typedef CK_ULONG CK_PARAM_TYPE;

The following CK_PARAM_TYPE types are defined:

Table 134, OTP parameter types

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 156 of 200

Parameter Data type Meaning

CK_OTP_PIN RFC 2279
string

A UTF8 string containing a PIN for use
when computing or verifying PIN-based
OTP values.

CK_OTP_CHALLENGE Byte array Challenge to use when computing or
verifying challenge-based OTP values.

CK_OTP_TIME RFC 2279
string

UTC time value in the form
YYYYMMDDhhmmss to use when
computing or verifying time-based OTP
values.

CK_OTP_COUNTER Byte array Counter value to use when computing or
verifying counter-based OTP values.

CK_OTP_FLAGS CK_FLAGS Bit flags indicating the characteristics of the
sought OTP as defined below.

CK_OTP_OUTPUT_LENGTH CK_ULONG Desired output length (overrides any default
value). A Cryptoki library will return
CKR_MECHANISM_PARAM_INVALID if a
provided length value is not supported.

CK_OTP_FORMAT CK_ULONG Returned OTP format (allowed values are
the same as for CKA_OTP_FORMAT). This
parameter is only intended for C_Sign
output, see paragraphs below. When not
present, the returned OTP format will be the
same as the value of the
CKA_OTP_FORMAT attribute for the key in
question.

CK_OTP_VALUE Byte array An actual OTP value. This parameter type is
intended for C_Sign output, see paragraphs
below.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 157 of 200

The following table defines the possible values for the CK_OTP_FLAGS type:

Table 135: OTP Mechanism Flags

Bit flag Mask Meaning

CKF_NEXT_OTP 0x00000001 True (i.e. set) if the OTP computation shall
be for the next OTP, rather than the current
one (current being interpreted in the context
of the algorithm, e.g. for the current counter
value or current time window). A Cryptoki
library shall return
CKR_MECHANISM_PARAM_INVALID if the
CKF_NEXT_OTP flag is set and the OTP
mechanism in question does not support the
concept of “next” OTP or the library is not
capable of generating the next OTP

5
.

CKF_EXCLUDE_TIME 0x00000002 True (i.e. set) if the OTP computation must
not include a time value. Will have an effect
only on mechanisms that do include a time
value in the OTP computation and then only
if the mechanism (and token) allows
exclusion of this value. A Cryptoki library
shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_EXCLUDE_COUNTER 0x00000004 True (i.e. set) if the OTP computation must
not include a counter value. Will have an
effect only on mechanisms that do include a
counter value in the OTP computation and
then only if the mechanism (and token)
allows exclusion of this value. A Cryptoki
library shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_EXCLUDE_CHALLENGE 0x00000008 True (i.e. set) if the OTP computation must
not include a challenge. Will have an effect
only on mechanisms that do include a
challenge in the OTP computation and then
only if the mechanism (and token) allows
exclusion of this value. A Cryptoki library
shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

5 Applications that may need to retrieve the next OTP should be prepared to handle this situation. For example, an

application could store the OTP value returned by C_Sign so that, if a next OTP is required, it can compare it to the

OTP value returned by subsequent calls to C_Sign should it turn out that the library does not support the

CKF_NEXT_OTP flag.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 158 of 200

Bit flag Mask Meaning

CKF_EXCLUDE_PIN 0x00000010 True (i.e. set) if the OTP computation must
not include a PIN value. Will have an effect
only on mechanisms that do include a PIN in
the OTP computation and then only if the
mechanism (and token) allows exclusion of
this value. A Cryptoki library shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_USER_FRIENDLY_OTP 0x00000020 True (i.e. set) if the OTP returned shall be in
a form suitable for human consumption. If
this flag is set, and the call is successful,
then the returned CK_OTP_VALUE shall be
a UTF8-encoded printable string. A Cryptoki
library shall return
CKR_MECHANISM_PARAM_INVALID if this
flag is set when
CKA_OTP_USER_FRIENDLY_MODE for
the key in question is CK_FALSE.

Note: Even if CKA_OTP_FORMAT is not set to CK_OTP_FORMAT_BINARY, then there may still be
value in setting the CKF_USER_FRIENDLY_OTP flag (assuming CKA_OTP_USER_FRIENDLY_MODE
is CK_TRUE, of course) if the intent is for a human to read the generated OTP value, since it may
become shorter or otherwise better suited for a user. Applications that do not intend to provide a returned
OTP value to a user should not set the CKF_USER_FRIENDLY_OTP flag.

 CK_OTP_PARAM; CK_OTP_PARAM_PTR

CK_OTP_PARAM is a structure that includes the type, value, and length of an OTP parameter. It is

defined as follows:

typedef struct CK_OTP_PARAM {

 CK_PARAM_TYPE type;

 CK_VOID_PTR pValue;

 CK_ULONG ulValueLen;

} CK_OTP_PARAM;

The fields of the structure have the following meanings:

 type the parameter type

 pValue pointer to the value of the parameter

 ulValueLen length in bytes of the value

If a parameter has no value, then ulValueLen = 0, and the value of pValue is irrelevant. Note that pValue
is a “void” pointer, facilitating the passing of arbitrary values. Both the application and the Cryptoki library
must ensure that the pointer can be safely cast to the expected type (i.e., without word-alignment errors).

CK_OTP_PARAM_PTR is a pointer to a CK_OTP_PARAM.

CK_OTP_PARAMS; CK_OTP_PARAMS_PTR

CK_OTP_PARAMS is a structure that is used to provide parameters for OTP mechanisms in a generic

fashion. It is defined as follows:

typedef struct CK_OTP_PARAMS {

 CK_OTP_PARAM_PTR pParams;

 CK_ULONG ulCount;

} CK_OTP_PARAMS;

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 159 of 200

The fields of the structure have the following meanings:

 pParams pointer to an array of OTP parameters

 ulCount the number of parameters in the array

CK_OTP_PARAMS_PTR is a pointer to a CK_OTP_PARAMS.

When calling C_SignInit or C_VerifyInit with a mechanism that takes a CK_OTP_PARAMS structure as a
parameter, the CK_OTP_PARAMS structure shall be populated in accordance with the
CKA_OTP_X_REQUIREMENT key attributes for the identified key, where X is PIN, CHALLENGE, TIME,
or COUNTER.

For example, if CKA_OTP_TIME_REQUIREMENT = CK_OTP_PARAM_MANDATORY, then the
CK_OTP_TIME parameter shall be present. If CKA_OTP_TIME_REQUIREMENT =
CK_OTP_PARAM_OPTIONAL, then a CK_OTP_TIME parameter may be present. If it is not present,
then the library may collect it (during the C_Sign call). If CKA_OTP_TIME_REQUIREMENT =
CK_OTP_PARAM_IGNORED, then a provided CK_OTP_TIME parameter will always be ignored.
Additionally, a provided CK_OTP_TIME parameter will always be ignored if CKF_EXCLUDE_TIME is set
in a CK_OTP_FLAGS parameter. Similarly, if this flag is set, a library will not attempt to collect the value
itself, and it will also instruct the token not to make use of any internal value, subject to token policies. It is
an error (CKR_MECHANISM_PARAM_INVALID) to set the CKF_EXCLUDE_TIME flag when the
CKA_OTP_TIME_REQUIREMENT attribute is CK_OTP_PARAM_MANDATORY.

The above discussion holds for all CKA_OTP_X_REQUIREMENT attributes (i.e.,
CKA_OTP_PIN_REQUIREMENT, CKA_OTP_CHALLENGE_REQURIEMENT,
CKA_OTP_COUNTER_REQUIREMENT, CKA_OTP_TIME_REQUIREMENT). A library may set a
particular CKA_OTP_X_REQUIREMENT attribute to CK_OTP_PARAM_OPTIONAL even if it is required
by the mechanism as long as the token (or the library itself) has the capability of providing the value to the
computation. One example of this is a token with an on-board clock.

In addition, applications may use the CK_OTP_FLAGS, the CK_OTP_FORMAT and the
CKA_OTP_LENGTH parameters to set additional parameters.

CK_OTP_SIGNATURE_INFO, CK_OTP_SIGNATURE_INFO_PTR

CK_OTP_SIGNATURE_INFO is a structure that is returned by all OTP mechanisms in successful calls to
C_Sign (C_SignFinal). The structure informs applications of actual parameter values used in particular
OTP computations in addition to the OTP value itself. It is used by all mechanisms for which the key
belongs to the class CKO_OTP_KEY and is defined as follows:

typedef struct CK_OTP_SIGNATURE_INFO {

 CK_OTP_PARAM_PTR pParams;

 CK_ULONG ulCount;

} CK_OTP_SIGNATURE_INFO;

The fields of the structure have the following meanings:

 pParams pointer to an array of OTP parameter values

 ulCount the number of parameters in the array

After successful calls to C_Sign or C_SignFinal with an OTP mechanism, the pSignature parameter will
be set to point to a CK_OTP_SIGNATURE_INFO structure. One of the parameters in this structure will be
the OTP value itself, identified with the CK_OTP_VALUE tag. Other parameters may be present for
informational purposes, e.g. the actual time used in the OTP calculation. In order to simplify OTP
validations, authentication protocols may permit authenticating parties to send some or all of these
parameters in addition to OTP values themselves. Applications should therefore check for their presence
in returned CK_OTP_SIGNATURE_INFO values whenever such circumstances apply.

Since C_Sign and C_SignFinal follows the convention described in Section 11.2 on producing output, a
call to C_Sign (or C_SignFinal) with pSignature set to NULL_PTR will return (in the pulSignatureLen
parameter) the required number of bytes to hold the CK_OTP_SIGNATURE_INFO structure as well as all

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 160 of 200

the data in all its CK_OTP_PARAM components. If an application allocates a memory block based on
this information, it shall therefore not subsequently de-allocate components of such a received value but
rather de-allocate the complete CK_OTP_PARAMS structure itself. A Cryptoki library that is called with a
non-NULL pSignature pointer will assume that it points to a contiguous memory block of the size
indicated by the pulSignatureLen parameter.

When verifying an OTP value using an OTP mechanism, pSignature shall be set to the OTP value itself,
e.g. the value of the CK_OTP_VALUE component of a CK_OTP_PARAMS structure returned by a call to
C_Sign. The CK_OTP_PARAMS value supplied in the C_VerifyInit call sets the values to use in the

verification operation.

CK_OTP_SIGNATURE_INFO_PTR points to a CK_OTP_SIGNATURE_INFO.

2.41.8 RSA SecurID

2.41.8.1 RSA SecurID secret key objects

RSA SecurID secret key objects (object class CKO_OTP_KEY, key type CKK_SECURID) hold RSA
SecurID secret keys. The following table defines the RSA SecurID secret key object attributes, in
addition to the common attributes defined for this object class:

Table 136, RSA SecurID secret key object attributes

Attribute Data type Meaning

CKA_OTP_TIME_INTERVAL
1
 CK_ULONG Interval between OTP values produced

with this key, in seconds. Default is 60.

Refer to [PKCS #11-Base] table 10 for footnotes.
.

The following is a sample template for creating an RSA SecurID secret key object:

CK_OBJECT_CLASS class = CKO_OTP_KEY;

CK_KEY_TYPE keyType = CKK_SECURID;

CK_DATE endDate = {...};

CK_UTF8CHAR label[] = “RSA SecurID secret key object”;

CK_BYTE keyId[]= {...};

CK_ULONG outputFormat = CK_OTP_FORMAT_DECIMAL;

CK_ULONG outputLength = 6;

CK_ULONG needPIN = CK_OTP_PARAM_MANDATORY;

CK_ULONG timeInterval = 60;

CK_BYTE value[] = {...};

 CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_END_DATE, &endDate, sizeof(endDate)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_SENSITIVE, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_SIGN, &true, sizeof(true)},

 {CKA_VERIFY, &true, sizeof(true)},

 {CKA_ID, keyId, sizeof(keyId)},

 {CKA_OTP_FORMAT, &outputFormat, sizeof(outputFormat)},

 {CKA_OTP_LENGTH, &outputLength, sizeof(outputLength)},

 {CKA_OTP_PIN_REQUIREMENT, &needPIN, sizeof(needPIN)},

 {CKA_OTP_TIME_INTERVAL, &timeInterval,

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 161 of 200

sizeof(timeInterval)},

 {CKA_VALUE, value, sizeof(value)}

};

2.41.9 RSA SecurID key generation

The RSA SecurID key generation mechanism, denoted CKM_SECURID_KEY_GEN, is a key generation

mechanism for the RSA SecurID algorithm.

It does not have a parameter.

The mechanism generates RSA SecurID keys with a particular set of attributes as specified in the
template for the key.

The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE_LEN, and
CKA_VALUE attributes to the new key. Other attributes supported by the RSA SecurID key type may be

specified in the template for the key, or else are assigned default initial values

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of SecurID key sizes, in bytes.

2.41.10 RSA SecurID OTP generation and validation

CKM_SECURID is the mechanism for the retrieval and verification of RSA SecurID OTP values.

The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

When signing or verifying using the CKM_SECURID mechanism, pData shall be set to NULL_PTR and
ulDataLen shall be set to 0.

2.41.11 Return values

Support for the CKM_SECURID mechanism extends the set of return values for C_Verify with the
following values:

 CKR_NEW_PIN_MODE: The supplied OTP was not accepted and the library requests a new OTP
computed using a new PIN. The new PIN is set through means out of scope for this document.

 CKR_NEXT_OTP: The supplied OTP was correct but indicated a larger than normal drift in the
token's internal state (e.g. clock, counter). To ensure this was not due to a temporary problem, the
application should provide the next one-time password to the library for verification.

2.41.12 OATH HOTP

2.41.12.1 OATH HOTP secret key objects

HOTP secret key objects (object class CKO_OTP_KEY, key type CKK_HOTP) hold generic secret keys

and associated counter values.

The CKA_OTP_COUNTER value may be set at key generation; however, some tokens may set it to a
fixed initial value. Depending on the token’s security policy, this value may not be modified and/or may
not be revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its
CKA_EXTRACTABLE attribute set to CK_FALSE.

For HOTP keys, the CKA_OTP_COUNTER value shall be an 8 bytes unsigned integer in big endian (i.e.
network byte order) form. The same holds true for a CK_OTP_COUNTER value in a CK_OTP_PARAM

structure.

The following is a sample template for creating a HOTP secret key object:

CK_OBJECT_CLASS class = CKO_OTP_KEY;

CK_KEY_TYPE keyType = CKK_HOTP;

CK_UTF8CHAR label[] = “HOTP secret key object”;

CK_BYTE keyId[]= {...};

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 162 of 200

CK_ULONG outputFormat = CK_OTP_FORMAT_DECIMAL;

CK_ULONG outputLength = 6;

CK_DATE endDate = {...};

CK_BYTE counterValue[8] = {0};

CK_BYTE value[] = {...};

 CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_END_DATE, &endDate, sizeof(endDate)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_SENSITIVE, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_SIGN, &true, sizeof(true)},

 {CKA_VERIFY, &true, sizeof(true)},

 {CKA_ID, keyId, sizeof(keyId)},

 {CKA_OTP_FORMAT, &outputFormat, sizeof(outputFormat)},

 {CKA_OTP_LENGTH, &outputLength, sizeof(outputLength)},

 {CKA_OTP_COUNTER, counterValue, sizeof(counterValue)},

 {CKA_VALUE, value, sizeof(value)}

};

2.41.12.2 HOTP key generation

The HOTP key generation mechanism, denoted CKM_HOTP_KEY_GEN, is a key generation mechanism

for the HOTP algorithm.

It does not have a parameter.

The mechanism generates HOTP keys with a particular set of attributes as specified in the template for
the key.

The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_OTP_COUNTER,
CKA_VALUE and CKA_VALUE_LEN attributes to the new key. Other attributes supported by the HOTP

key type may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of HOTP key sizes, in bytes.

2.41.12.3 HOTP OTP generation and validation

CKM_HOTP is the mechanism for the retrieval and verification of HOTP OTP values based on the current

internal counter, or a provided counter.

The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

As for the CKM_SECURID mechanism, when signing or verifying using the CKM_HOTP mechanism,
pData shall be set to NULL_PTR and ulDataLen shall be set to 0.

For verify operations, the counter value CK_OTP_COUNTER must be provided as a CK_OTP_PARAM
parameter to C_VerifyInit. When verifying an OTP value using the CKM_HOTP mechanism, pSignature
shall be set to the OTP value itself, e.g. the value of the CK_OTP_VALUE component of a
CK_OTP_PARAMS structure in the case of an earlier call to C_Sign.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 163 of 200

2.41.13 ActivIdentity ACTI

2.41.13.1 ACTI secret key objects

ACTI secret key objects (object class CKO_OTP_KEY, key type CKK_ACTI) hold ActivIdentity ACTI
secret keys.

For ACTI keys, the CKA_OTP_COUNTER value shall be an 8 bytes unsigned integer in big endian (i.e.
network byte order) form. The same holds true for the CK_OTP_COUNTER value in the
CK_OTP_PARAM structure.

The CKA_OTP_COUNTER value may be set at key generation; however, some tokens may set it to a
fixed initial value. Depending on the token’s security policy, this value may not be modified and/or may
not be revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its
CKA_EXTRACTABLE attribute set to CK_FALSE.

The CKA_OTP_TIME value may be set at key generation; however, some tokens may set it to a fixed
initial value. Depending on the token’s security policy, this value may not be modified and/or may not be
revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its CKA_EXTRACTABLE
attribute set to CK_FALSE.

The following is a sample template for creating an ACTI secret key object:

CK_OBJECT_CLASS class = CKO_OTP_KEY;

CK_KEY_TYPE keyType = CKK_ACTI;

CK_UTF8CHAR label[] = “ACTI secret key object”;

CK_BYTE keyId[]= {...};

CK_ULONG outputFormat = CK_OTP_FORMAT_DECIMAL;

CK_ULONG outputLength = 6;

CK_DATE endDate = {...};

CK_BYTE counterValue[8] = {0};

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_END_DATE, &endDate, sizeof(endDate)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_SENSITIVE, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_SIGN, &true, sizeof(true)},

 {CKA_VERIFY, &true, sizeof(true)},

 {CKA_ID, keyId, sizeof(keyId)},

 {CKA_OTP_FORMAT, &outputFormat,

 sizeof(outputFormat)},

 {CKA_OTP_LENGTH, &outputLength,

 sizeof(outputLength)},

 {CKA_OTP_COUNTER, counterValue,

 sizeof(counterValue)},

 {CKA_VALUE, value, sizeof(value)}

};

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 164 of 200

2.41.13.2 ACTI key generation

The ACTI key generation mechanism, denoted CKM_ACTI_KEY_GEN, is a key generation mechanism

for the ACTI algorithm.

It does not have a parameter.

The mechanism generates ACTI keys with a particular set of attributes as specified in the template for the
key.

The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE and
CKA_VALUE_LEN attributes to the new key. Other attributes supported by the ACTI key type may be

specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of ACTI key sizes, in bytes.

2.41.14 ACTI OTP generation and validation

CKM_ACTI is the mechanism for the retrieval and verification of ACTI OTP values.

The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

When signing or verifying using the CKM_ACTI mechanism, pData shall be set to NULL_PTR and
ulDataLen shall be set to 0.

When verifying an OTP value using the CKM_ACTI mechanism, pSignature shall be set to the OTP value
itself, e.g. the value of the CK_OTP_VALUE component of a CK_OTP_PARAMS structure in the case of
an earlier call to C_Sign.

2.42 CT-KIP

2.42.1 Principles of Operation

C_DeriveKey,
C_WrapKey,

C_Verify

Client Application

PKCS #11 Library

Internal Token API

Token (or software
version thereof)

Server Application

Figure 4: PKCS #11 and CT-KIP integration

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 165 of 200

Figure 3 shows an integration of PKCS #11 into an application that generates cryptographic keys through
the use of CT-KIP. The application invokes C_DeriveKey to derive a key of a particular type on the token.
The key may subsequently be used as a basis to e.g., generate one-time password values. The
application communicates with a CT-KIP server that participates in the key derivation and stores a copy
of the key in its database. The key is transferred to the server in wrapped form, after a call to
C_WrapKey. The server authenticates itself to the client and the client verifies the authentication by calls
to C_Verify.

2.42.2 Mechanisms

The following table shows, for the mechanisms defined in this document, their support by different
cryptographic operations. For any particular token, of course, a particular operation may well support
only a subset of the mechanisms listed. There is also no guarantee that a token that supports one
mechanism for some operation supports any other mechanism for any other operation (or even supports
that same mechanism for any other operation).

Table 137: CT-KIP Mechanisms vs. applicable functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_KIP_DERIVE

CKM_KIP_WRAP

CKM_KIP_MAC

The remainder of this section will present in detail the mechanisms and the parameters that are supplied
to them.

2.42.3 Definitions

Mechanisms:

CKM_KIP_DERIVE

CKM_KIP_WRAP

CKM_KIP_MAC

2.42.4 CT-KIP Mechanism parameters

 CK_KIP_PARAMS; CK_KIP_PARAMS_PTR

CK_KIP_PARAMS is a structure that provides the parameters to all the CT-KIP related mechanisms: The
CKM_KIP_DERIVE key derivation mechanism, the CKM_KIP_WRAP key wrap and key unwrap
mechanism, and the CKM_KIP_MAC signature mechanism. The structure is defined as follows:

typedef struct CK_KIP_PARAMS {

 CK_MECHANISM_PTR pMechanism;

 CK_OBJECT_HANDLE hKey;

 CK_BYTE_PTR pSeed;

 CK_ULONG ulSeedLen;

} CK_KIP_PARAMS;

The fields of the structure have the following meanings:

 pMechanism pointer to the underlying cryptographic mechanism (e.g. AES, SHA-
256), see further 0, Appendix D

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 166 of 200

 hKey handle to a key that will contribute to the entropy of the derived key
(CKM_KIP_DERIVE) or will be used in the MAC operation
(CKM_KIP_MAC)

 pSeed pointer to an input seed

 ulSeedLen length in bytes of the input seed

CK_KIP_PARAMS_PTR is a pointer to a CK_KIP_PARAMS structure.

2.42.5 CT-KIP key derivation

The CT-KIP key derivation mechanism, denoted CKM_KIP_DERIVE, is a key derivation mechanism that
is capable of generating secret keys of potentially any type, subject to token limitations.

It takes a parameter of type CK_KIP_PARAMS which allows for the passing of the desired underlying
cryptographic mechanism as well as some other data. In particular, when the hKey parameter is a handle
to an existing key, that key will be used in the key derivation in addition to the hBaseKey of C_DeriveKey.
The pSeed parameter may be used to seed the key derivation operation.

The mechanism derives a secret key with a particular set of attributes as specified in the attributes of the
template for the key.

The mechanism contributes the CKA_CLASS and CKA_VALUE attributes to the new key. Other
attributes supported by the key type may be specified in the template for the key, or else will be assigned
default initial values. Since the mechanism is generic, the CKA_KEY_TYPE attribute should be set in the

template, if the key is to be used with a particular mechanism.

2.42.6 CT-KIP key wrap and key unwrap

The CT-KIP key wrap and unwrap mechanism, denoted CKM_KIP_WRAP, is a key wrap mechanism that

is capable of wrapping and unwrapping generic secret keys.

It takes a parameter of type CK_KIP_PARAMS, which allows for the passing of the desired underlying
cryptographic mechanism as well as some other data. It does not make use of the hKey parameter of
CK_KIP_PARAMS.

2.42.7 CT-KIP signature generation

The CT-KIP signature (MAC) mechanism, denoted CKM_KIP_MAC, is a mechanism used to produce a

message authentication code of arbitrary length. The keys it uses are secret keys.

It takes a parameter of type CK_KIP_PARAMS, which allows for the passing of the desired underlying
cryptographic mechanism as well as some other data. The mechanism does not make use of the pSeed
and the ulSeedLen parameters of CT_KIP_PARAMS.

This mechanism produces a MAC of the length specified by pulSignatureLen parameter in calls to
C_Sign.

If a call to C_Sign with this mechanism fails, then no output will be generated.

2.43 GOST

The remainder of this section will present in detail the mechanisms and the parameters which are
supplied to them.

Table 138, GOST Mechanisms vs. Functions

Mechanism Functions

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 167 of 200

Encrypt
&

Decrypt

Sign
&

Verify

SR &
VR

Digest

Gen.
Key/
Key
Pair

Wrap
&

Unwrap

Derive

CKM_GOST28147_KEY_GEN

CKM_ GOST28147_ECB

CKM_GOST28147

CKM_ GOST28147_MAC

CKM_ GOST28147_KEY_WRAP

CKM_GOSTR3411

CKM_GOSTR3411_HMAC

CKM_GOSTR3410_KEY_PAIR_GEN

CKM_GOSTR3410
1

CKM_GOSTR3410_WITH_GOST3411

CKM_GOSTR3410_KEY_WRAP

CKM_GOSTR3410_DERIVE

1

Single-part operations only

2.44 GOST 28147-89

GOST 28147-89 is a block cipher with 64-bit block size and 256-bit keys.

2.44.1 Definitions

This section defines the key type “CKK_GOST28147” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects and domain parameter objects.

Mechanisms:

CKM_GOST28147_KEY_GEN

CKM_GOST28147_ECB

CKM_GOST28147

 CKM_GOST28147_MAC

 CKM_GOST28147_KEY_WRAP

2.44.2 GOST 28147-89 secret key objects

GOST 28147-89 secret key objects (object class CKO_SECRET_KEY, key type CKK_GOST28147) hold
GOST 28147-89 keys. The following table defines the GOST 28147-89 secret key object attributes, in
addition to the common attributes defined for this object class:

Table 139, GOST 28147-89 Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE
1,4,6,7

 Byte array 32 bytes in little endian order

CKA_GOST28147_PARAMS
1,3,5

 Byte array DER-encoding of the object identifier
indicating the data object type of
GOST 28147-89.

When key is used the domain parameter

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 168 of 200

object of key type CKK_GOST28147
must be specified with the same attribute
CKA_OBJECT_ID

Refer to [PKCS #11-Base] Table 10 for footnotes

The following is a sample template for creating a GOST 28147-89 secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_GOST28147;

CK_UTF8CHAR label[] = “A GOST 28147-89 secret key object”;

CK_BYTE value[32] = {...};

CK_BYTE params_oid[] = {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02,

0x02, 0x1f, 0x00};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_GOST28147_PARAMS, params_oid, sizeof(params_oid)},

 {CKA_VALUE, value, sizeof(value)}

};

2.44.3 GOST 28147-89 domain parameter objects

GOST 28147-89 domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_GOST28147) hold GOST 28147-89 domain parameters.

The following table defines the GOST 28147-89 domain parameter object attributes, in addition to the
common attributes defined for this object class:

Table 140, GOST 28147-89 Domain Parameter Object Attributes

Attribute Data Type Meaning

CKA_VALUE
1
 Byte array DER-encoding of the domain parameters as it

was introduced in [4] section 8.1 (type
Gost28147-89-ParamSetParameters)

CKA_OBJECT_ID
1
 Byte array DER-encoding of the object identifier indicating

the domain parameters

Refer to [PKCS #11-Base] Table 10 for footnotes

For any particular token, there is no guarantee that a token supports domain parameters loading up
and/or fetching out. Furthermore, applications, that make direct use of domain parameters objects, should
take in account that CKA_VALUE attribute may be inaccessible.

The following is a sample template for creating a GOST 28147-89 domain parameter object:

CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;

CK_KEY_TYPE keyType = CKK_GOST28147;

CK_UTF8CHAR label[] = “A GOST 28147-89 cryptographic

parameters object”;

CK_BYTE oid[] = {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02,

0x1f, 0x00};

CK_BYTE value[] = {

 0x30,0x62,0x04,0x40,0x4c,0xde,0x38,0x9c,0x29,0x89,0xef,0xb

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 169 of 200

6,0xff,0xeb,0x56,

 0xc5,0x5e,0xc2,0x9b,0x02,0x98,0x75,0x61,0x3b,0x11,0x3f,0x8

9,0x60,0x03,0x97,

 0x0c,0x79,0x8a,0xa1,0xd5,0x5d,0xe2,0x10,0xad,0x43,0x37,0x5

d,0xb3,0x8e,0xb4,

 0x2c,0x77,0xe7,0xcd,0x46,0xca,0xfa,0xd6,0x6a,0x20,0x1f,0x7

0,0xf4,0x1e,0xa4,

 0xab,0x03,0xf2,0x21,0x65,0xb8,0x44,0xd8,0x02,0x01,0x00,0x0

2,0x01,0x40,

 0x30,0x0b,0x06,0x07,0x2a,0x85,0x03,0x02,0x02,0x0e,0x00,0x0

5,0x00

};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_OBJECT_ID, oid, sizeof(oid)},

 {CKA_VALUE, value, sizeof(value)}

};

2.44.4 GOST 28147-89 key generation

The GOST 28147-89 key generation mechanism, denoted CKM_GOST28147_KEY_GEN, is a key

generation mechanism for GOST 28147-89.

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the GOST 28147-89 key type may be specified for objects of object
class CKO_SECRET_KEY.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO are not

used.

2.44.5 GOST 28147-89-ECB

GOST 28147-89-ECB, denoted CKM_GOST28147_ECB, is a mechanism for single and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on GOST 28147-89 and electronic
codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports.

For wrapping (C_WrapKey), the mechanism encrypts the value of the CKA_VALUE attribute of the key
that is wrapped, padded on the trailing end with up to block size so that the resulting length is a multiple
of the block size.

For unwrapping (C_UnwrapKey), the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the
CKA_VALUE attribute of the new key.

Constraints on key types and the length of data are summarized in the following table:

Table 141, GOST 28147-89-ECB: Key and Data Length

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 170 of 200

Function Key type Input length Output length

C_Encrypt CKK_GOST28147 Multiple of
block size

Same as input length

C_Decrypt CKK_GOST28147 Multiple of
block size

Same as input length

C_WrapKey CKK_GOST28147
Any

Input length rounded up to
multiple of block size

C_UnwrapKey CKK_GOST28147 Multiple of
block size

Determined by type of key
being unwrapped

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.44.6 GOST 28147-89 encryption mode except ECB

GOST 28147-89 encryption mode except ECB, denoted CKM_GOST28147, is a mechanism for single
and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on
[GOST 28147-89] and CFB, counter mode, and additional CBC mode defined in [RFC 4357] section 2.
Encryption’s parameters are specified in object identifier of attribute CKA_GOST28147_PARAMS.

It has a parameter, which is an 8-byte initialization vector. This parameter may be omitted then a zero
initialization vector is used.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports.

For wrapping (C_WrapKey), the mechanism encrypts the value of the CKA_VALUE attribute of the key

that is wrapped.

For unwrapping (C_UnwrapKey), the mechanism decrypts the wrapped key, and contributes the result as
the CKA_VALUE attribute of the new key.

Constraints on key types and the length of data are summarized in the following table:

Table 142, GOST 28147-89 encryption modes except ECB: Key and Data Length

Function Key type
Input
length

Output length

C_Encrypt CKK_GOST28147 Any For counter mode and CFB is
the same as input length. For
CBC is the same as input length
padded on the trailing end with
up to block size so that the
resulting length is a multiple of
the block size

C_Decrypt CKK_GOST28147 Any

C_WrapKey CKK_GOST28147 Any

C_UnwrapKey CKK_GOST28147 Any

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

are not used.

2.44.7 GOST 28147-89-MAC

GOST 28147-89-MAC, denoted CKM_GOST28147_MAC, is a mechanism for data integrity and
authentication based on GOST 28147-89 and key meshing algorithms [RFC 4357] section 2.3.

MACing parameters are specified in object identifier of attribute CKA_GOST28147_PARAMS.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 171 of 200

The output bytes from this mechanism are taken from the start of the final GOST 28147-89 cipher block
produced in the MACing process.

It has a parameter, which is an 8-byte MAC initialization vector. This parameter may be omitted then a
zero initialization vector is used.

Constraints on key types and the length of data are summarized in the following table:

Table 143, GOST28147-89-MAC: Key and Data Length

Function Key type Data length Signature length

C_Sign CKK_GOST28147 Any 4 bytes

C_Verify CKK_GOST28147 Any 4 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

GOST 28147-89 keys wrapping/unwrapping with GOST 28147-89

GOST 28147-89 keys as a KEK (key encryption keys) for encryption GOST 28147-89 keys, denoted by
CKM_GOST28147_KEY_WRAP, is a mechanism for key wrapping; and key unwrapping, based on
GOST 28147-89. Its purpose is to encrypt and decrypt keys have been generated by key generation
mechanism for GOST 28147-89.

For wrapping (C_WrapKey), the mechanism first computes MAC from the value of the CKA_VALUE
attribute of the key that is wrapped and then encrypts in ECB mode the value of the CKA_VALUE

attribute of the key that is wrapped. The result is 32 bytes of the key that is wrapped and 4 bytes of MAC.

For unwrapping (C_UnwrapKey), the mechanism first decrypts in ECB mode the 32 bytes of the key that
was wrapped and then computes MAC from the unwrapped key. Then compared together 4 bytes MAC
has computed and 4 bytes MAC of the input. If these two MACs do not match the wrapped key is
disallowed. The mechanism contributes the result as the CKA_VALUE attribute of the unwrapped key.

It has a parameter, which is an 8-byte MAC initialization vector. This parameter may be omitted then a
zero initialization vector is used.

Constraints on key types and the length of data are summarized in the following table:

Table 144, GOST 28147-89 keys as KEK: Key and Data Length

Function Key type Input length Output length

C_WrapKey CKK_GOST28147 32 bytes 36 bytes

C_UnwrapKey CKK_GOST28147 32 bytes 36 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

GOST R 34.11-94

GOST R 34.11-94 is a mechanism for message digesting, following the hash algorithm with 256-bit
message digest defined in [GOST R 34.11-94].

2.44.8 Definitions

This section defines the key type “CKK_GOSTR3411” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of domain parameter objects.

Mechanisms:

CKM_GOSTR3411

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 172 of 200

CKM_GOSTR3411_HMAC

2.44.9 GOST R 34.11-94 domain parameter objects

GOST R 34.11-94 domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_GOSTR3411) hold GOST R 34.11-94 domain parameters.

The following table defines the GOST R 34.11-94 domain parameter object attributes, in addition to the
common attributes defined for this object class:

Table 145, GOST R 34.11-94 Domain Parameter Object Attributes

Attribute Data Type Meaning

CKA_VALUE
1
 Byte array DER-encoding of the domain parameters as it

was introduced in [4] section 8.2 (type
GostR3411-94-ParamSetParameters)

CKA_OBJECT_ID
1
 Byte array DER-encoding of the object identifier indicating

the domain parameters

Refer to [PKCS #11-Base] Table 10 for footnotes

For any particular token, there is no guarantee that a token supports domain parameters loading up
and/or fetching out. Furthermore, applications, that make direct use of domain parameters objects, should
take in account that CKA_VALUE attribute may be inaccessible.

The following is a sample template for creating a GOST R 34.11-94 domain parameter object:

CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;

CK_KEY_TYPE keyType = CKK_GOSTR3411;

CK_UTF8CHAR label[] = “A GOST R34.11-94 cryptographic parameters object”;

CK_BYTE oid[] = {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x1e, 0x00};

CK_BYTE value[] = {

 0x30,0x64,0x04,0x40,0x4e,0x57,0x64,0xd1,0xab,0x8d,0xcb,0xbf,0x94,0x1a,

0x7a,

 0x4d,0x2c,0xd1,0x10,0x10,0xd6,0xa0,0x57,0x35,0x8d,0x38,0xf2,0xf7,0x0f,

0x49,

 0xd1,0x5a,0xea,0x2f,0x8d,0x94,0x62,0xee,0x43,0x09,0xb3,0xf4,0xa6,0xa2,

0x18,

 0xc6,0x98,0xe3,0xc1,0x7c,0xe5,0x7e,0x70,0x6b,0x09,0x66,0xf7,0x02,0x3c,

0x8b,

 0x55,0x95,0xbf,0x28,0x39,0xb3,0x2e,0xcc,0x04,0x20,0x00,0x00,0x00,0x00,

0x00,

 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,

 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00

};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_OBJECT_ID, oid, sizeof(oid)},

 {CKA_VALUE, value, sizeof(value)}

};

2.44.10 GOST R 34.11-94 digest

GOST R 34.11-94 digest, denoted CKM_GOSTR3411, is a mechanism for message digesting based on

GOST R 34.11-94 hash algorithm [GOST R 34.11-94].

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 173 of 200

As a parameter this mechanism utilizes a DER-encoding of the object identifier. A mechanism parameter
may be missed then parameters of the object identifier id-GostR3411-94-CryptoProParamSet [RFC 4357]

(section 11.2) must be used.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 146, GOST R 34.11-94: Data Length

Function Input length Digest length

C_Digest Any 32 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

are not used.

2.44.11 GOST R 34.11-94 HMAC

GOST R 34.11-94 HMAC mechanism, denoted CKM_GOSTR3411_HMAC, is a mechanism for
signatures and verification. It uses the HMAC construction, based on the GOST R 34.11-94 hash
function [GOST R 34.11-94] and core HMAC algorithm [RFC 2104]. The keys it uses are of generic key
type CKK_GENERIC_SECRET or CKK_GOST28147.

To be conformed to GOST R 34.11-94 hash algorithm [GOST R 34.11-94] the block length of core HMAC
algorithm is 32 bytes long (see [RFC 2104] section 2, and [RFC 4357] section 3).

As a parameter this mechanism utilizes a DER-encoding of the object identifier. A mechanism parameter
may be missed then parameters of the object identifier id-GostR3411-94-CryptoProParamSet [RFC 4357]

(section 11.2) must be used.

Signatures (MACs) produced by this mechanism are of 32 bytes long.

Constraints on the length of input and output data are summarized in the following table:

Table 147, GOST R 34.11-94 HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_GENERIC_SECRET or
CKK_GOST28147

Any 32 byte

C_Verify CKK_GENERIC_SECRET or
CKK_GOST28147

Any 32 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.45 GOST R 34.10-2001

GOST R 34.10-2001 is a mechanism for single- and multiple-part signatures and verification, following
the digital signature algorithm defined in [GOST R 34.10-2001].

2.45.1 Definitions

This section defines the key type “CKK_GOSTR3410” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects and domain parameter objects.

Mechanisms:

CKM_GOSTR3410_KEY_PAIR_GEN

CKM_GOSTR3410

CKM_GOSTR3410_WITH_GOSTR3411

CKM_GOSTR3410

CKM_GOSTR3410_KEY_WRAP

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 174 of 200

CKM_GOSTR3410_DERIVE

2.45.2 GOST R 34.10-2001 public key objects

GOST R 34.10-2001 public key objects (object class CKO_PUBLIC_KEY, key type CKK_GOSTR3410)

hold GOST R 34.10-2001 public keys.

The following table defines the GOST R 34.10-2001 public key object attributes, in addition to the
common attributes defined for this object class:

Table 148, GOST R 34.10-2001 Public Key Object Attributes

Attribute Data Type Meaning

CKA_VALUE
1,4

 Byte array 64 bytes for public key; 32 bytes for each
coordinates X and Y of elliptic curve point
P(X, Y) in little endian order

CKA_GOSTR3410_PARAMS
1,3

 Byte array DER-encoding of the object identifier
indicating the data object type of GOST R
34.10-2001.

When key is used the domain parameter
object of key type CKK_GOSTR3410
must be specified with the same attribute
CKA_OBJECT_ID

CKA_GOSTR3411_PARAMS
1,3,8

 Byte array DER-encoding of the object identifier
indicating the data object type of GOST R
34.11-94.

When key is used the domain parameter
object of key type CKK_GOSTR3411
must be specified with the same attribute
CKA_OBJECT_ID

CKA_GOST28147_PARAMS
8
 Byte array DER-encoding of the object identifier

indicating the data object type of
GOST 28147-89.

When key is used the domain parameter
object of key type CKK_GOST28147
must be specified with the same attribute
CKA_OBJECT_ID. The attribute value
may be omitted

Refer to [PKCS #11-Base] Table 10 for footnotes

The following is a sample template for creating an GOST R 34.10-2001 public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;

CK_KEY_TYPE keyType = CKK_GOSTR3410;

CK_UTF8CHAR label[] = “A GOST R34.10-2001 public key object”;

CK_BYTE gostR3410params_oid[] =

 {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x23, 0x00};

CK_BYTE gostR3411params_oid[] =

 {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x1e, 0x00};

CK_BYTE gost28147params_oid[] =

 {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x1f, 0x00};

CK_BYTE value[64] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 175 of 200

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_GOSTR3410_PARAMS, gostR3410params_oid,

sizeof(gostR3410params_oid)},

 {CKA_GOSTR3411_PARAMS, gostR3411params_oid,

sizeof(gostR3411params_oid)},

 {CKA_GOST28147_PARAMS, gost28147params_oid,

sizeof(gost28147params_oid)},

 {CKA_VALUE, value, sizeof(value)}

};

2.45.3 GOST R 34.10-2001 private key objects

GOST R 34.10-2001 private key objects (object class CKO_PRIVATE_KEY, key type
CKK_GOSTR3410) hold GOST R 34.10-2001 private keys.

The following table defines the GOST R 34.10-2001 private key object attributes, in addition to the
common attributes defined for this object class:

Table 149, GOST R 34.10-2001 Private Key Object Attributes

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 176 of 200

Attribute Data Type Meaning

CKA_VALUE
1,4,6,7

 Byte array 32 bytes for private key in little endian
order

CKA_GOSTR3410_PARAMS
1,4,6

 Byte array DER-encoding of the object identifier
indicating the data object type of GOST
R 34.10-2001.

When key is used the domain
parameter object of key type
CKK_GOSTR3410 must be specified
with the same attribute
CKA_OBJECT_ID

CKA_GOSTR3411_PARAMS
1,4,6,8

 Byte array DER-encoding of the object identifier
indicating the data object type of GOST
R 34.11-94.

When key is used the domain
parameter object of key type
CKK_GOSTR3411 must be specified
with the same attribute
CKA_OBJECT_ID

CKA_GOST28147_PARAMS4
4,6,8

 Byte array DER-encoding of the object identifier
indicating the data object type of
GOST 28147-89.

When key is used the domain
parameter object of key type
CKK_GOST28147 must be specified
with the same attribute
CKA_OBJECT_ID. The attribute value
may be omitted

Refer to [PKCS #11-Base] Table 10 for footnotes

Note that when generating an GOST R 34.10-2001 private key, the GOST R 34.10-2001 domain
parameters are not specified in the key’s template. This is because GOST R 34.10-2001 private keys are
only generated as part of an GOST R 34.10-2001 key pair, and the GOST R 34.10-2001 domain

parameters for the pair are specified in the template for the GOST R 34.10-2001 public key.

The following is a sample template for creating an GOST R 34.10-2001 private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;

CK_KEY_TYPE keyType = CKK_GOSTR3410;

CK_UTF8CHAR label[] = “A GOST R34.10-2001 private key

object”;

CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK_BYTE gostR3410params_oid[] =

 {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x23, 0x00};

CK_BYTE gostR3411params_oid[] =

 {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x1e, 0x00};

CK_BYTE gost28147params_oid[] =

 {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x1f, 0x00};

CK_BYTE value[32] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 177 of 200

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_SUBJECT, subject, sizeof(subject)},

 {CKA_ID, id, sizeof(id)},

 {CKA_SENSITIVE, &true, sizeof(true)},

 {CKA_SIGN, &true, sizeof(true)},

 {CKA_GOSTR3410_PARAMS, gostR3410params_oid,

sizeof(gostR3410params_oid)},

 {CKA_GOSTR3411_PARAMS, gostR3411params_oid,

sizeof(gostR3411params_oid)},

 {CKA_GOST28147_PARAMS, gost28147params_oid,

sizeof(gost28147params_oid)},

 {CKA_VALUE, value, sizeof(value)}

};

2.45.4 GOST R 34.10-2001 domain parameter objects

GOST R 34.10-2001 domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_GOSTR3410) hold GOST R 34.10-2001 domain parameters.

The following table defines the GOST R 34.10-2001 domain parameter object attributes, in addition to the
common attributes defined for this object class:

Table 150, GOST R 34.10-2001 Domain Parameter Object Attributes

Attribute Data Type Meaning

CKA_VALUE
1
 Byte array DER-encoding of the domain parameters as it

was introduced in [4] section 8.4 (type
GostR3410-2001-ParamSetParameters)

CKA_OBJECT_ID
1
 Byte array DER-encoding of the object identifier indicating

the domain parameters

Refer to [PKCS #11-Base] Table 10 for footnotes

For any particular token, there is no guarantee that a token supports domain parameters loading up
and/or fetching out. Furthermore, applications, that make direct use of domain parameters objects, should
take in account that CKA_VALUE attribute may be inaccessible.

The following is a sample template for creating a GOST R 34.10-2001 domain parameter object:

CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;

CK_KEY_TYPE keyType = CKK_GOSTR3410;

CK_UTF8CHAR label[] = “A GOST R34.10-2001 cryptographic

parameters object”;

CK_BYTE oid[] =

 {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x23, 0x00};

CK_BYTE value[] = {

 0x30,0x81,0x90,0x02,0x01,0x07,0x02,0x20,0x5f,0xbf,0xf4,0x9

8,

 0xaa,0x93,0x8c,0xe7,0x39,0xb8,0xe0,0x22,0xfb,0xaf,0xef,0x4

0,

 0x56,0x3f,0x6e,0x6a,0x34,0x72,0xfc,0x2a,0x51,0x4c,0x0c,0xe

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 178 of 200

9,

 0xda,0xe2,0x3b,0x7e,0x02,0x21,0x00,0x80,0x00,0x00,0x00,0x0

0,

 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0

0,

 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0

0,

 0x00,0x04,0x31,0x02,0x21,0x00,0x80,0x00,0x00,0x00,0x00,0x0

0,

 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x50,0xf

e,

 0x8a,0x18,0x92,0x97,0x61,0x54,0xc5,0x9c,0xfc,0x19,0x3a,0xc

c,

 0xf5,0xb3,0x02,0x01,0x02,0x02,0x20,0x08,0xe2,0xa8,0xa0,0xe

6,

 0x51,0x47,0xd4,0xbd,0x63,0x16,0x03,0x0e,0x16,0xd1,0x9c,0x8

5,

 0xc9,0x7f,0x0a,0x9c,0xa2,0x67,0x12,0x2b,0x96,0xab,0xbc,0xe

a,

 0x7e,0x8f,0xc8

};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_OBJECT_ID, oid, sizeof(oid)},

 {CKA_VALUE, value, sizeof(value)}

};

2.45.5 GOST R 34.10-2001 mechanism parameters

♦ CK_GOSTR3410_KEY_WRAP_PARAMS

CK_GOSTR3410_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_GOSTR3410_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK_GOSTR3410_KEY_WRAP_PARAMS {

 CK_BYTE_PTR pWrapOID;

 CK_ULONG ulWrapOIDLen;

 CK_BYTE_PTR pUKM;

 CK_ULONG ulUKMLen;

 CK_OBJECT_HANDLE hKey;

} CK_GOSTR3410_KEY_WRAP_PARAMS;

The fields of the structure have the following meanings:

pWrapOID pointer to a data with DER-encoding of the object
identifier indicating the data object type of

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 179 of 200

GOST 28147-89. If pointer takes NULL_PTR value in
C_WrapKey operation then parameters are specified in
object identifier of attribute
CKA_GOSTR3411_PARAMS must be used. For
C_UnwrapKey operation the pointer is not used and
must take NULL_PTR value anytime

ulWrapOIDLen length of data with DER-encoding of the object identifier
indicating the data object type of GOST 28147-89

pUKM pointer to a data with UKM. If pointer takes NULL_PTR
value in C_WrapKey operation then random value of
UKM will be used. If pointer takes non-NULL_PTR value
in C_UnwrapKey operation then the pointer value will be
compared with UKM value of wrapped key. If these two
values do not match the wrapped key will be rejected

ulUKMLen length of UKM data. If pUKM-pointer is different from
NULL_PTR then equal to 8

hKey key handle. Key handle of a sender for C_WrapKey
operation. Key handle of a receiver for C_UnwrapKey
operation. When key handle takes
CK_INVALID_HANDLE value then an ephemeral (one
time) key pair of a sender will be used

♦ CK_GOSTR3410_DERIVE_PARAMS

CK_GOSTR3410_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_GOSTR3410_DERIVE mechanism. It is defined as follows:

typedef struct CK_GOSTR3410_DERIVE_PARAMS {

 CK_EC_KDF_TYPE kdf;

 CK_BYTE_PTR pPublicData;

 CK_ULONG ulPublicDataLen;

 CK_BYTE_PTR pUKM;

 CK_ULONG ulUKMLen;

} CK_GOSTR3410_DERIVE_PARAMS;

The fields of the structure have the following meanings:

kdf additional key diversification algorithm identifier.
Possible values are CKD_NULL and
CKD_CPDIVERSIFY_KDF. In case of CKD_NULL,
result of the key derivation function

described in [RFC 4357], section 5.2 is used directly; In
case of CKD_CPDIVERSIFY_KDF, the resulting key
value is additionally processed with algorithm from [RFC
4357], section 6.5.

pPublicData
1
 pointer to data with public key of a receiver

ulPublicDataLen length of data with public key of a receiver (must be 64)

pUKM pointer to a UKM data

ulUKMLen length of UKM data in bytes (must be 8)

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 180 of 200

1 Public key of a receiver is an octet string of 64 bytes long. The public key octets correspond to the concatenation of X and Y coordinates of a point. Any one of

them is 32 bytes long and represented in little endian order.

2.45.6 GOST R 34.10-2001 key pair generation

The GOST R 34.10-2001 key pair generation mechanism, denoted
CKM_GOSTR3410_KEY_PAIR_GEN, is a key pair generation mechanism for GOST R 34.10-2001.

This mechanism does not have a parameter.

The mechanism generates GOST R 34.10-2001 public/private key pairs with particular
GOST R 34.10-2001 domain parameters, as specified in the CKA_GOSTR3410_PARAMS,
CKA_GOSTR3411_PARAMS, and CKA_GOST28147_PARAMS attributes of the template for the public
key. Note that CKA_GOST28147_PARAMS attribute may not be present in the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE, and CKA_GOSTR3410_PARAMS,
CKA_GOSTR3411_PARAMS, CKA_GOST28147_PARAMS attributes to the new private key.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

are not used.

2.45.7 GOST R 34.10-2001 without hashing

The GOST R 34.10-2001 without hashing mechanism, denoted CKM_GOSTR3410, is a mechanism for
single-part signatures and verification for GOST R 34.10-2001. (This mechanism corresponds only to the
part of GOST R 34.10-2001 that processes the 32-bytes hash value; it does not compute the hash value.)

This mechanism does not have a parameter.

For the purposes of these mechanisms, a GOST R 34.10-2001 signature is an octet string of 64 bytes
long. The signature octets correspond to the concatenation of the GOST R 34.10-2001 values s and r’,
both represented as a 32 bytes octet string in big endian order with the most significant byte first [RFC
4490] section 3.2, and [RFC 4491] section 2.2.2.

The input for the mechanism is an octet string of 32 bytes long with digest has computed by means of
GOST R 34.11-94 hash algorithm in the context of signed or should be signed message.

Table 151, GOST R 34.10-2001 without hashing: Key and Data Length

Function Key type Input length Output length

C_Sign
1
 CKK_GOSTR3410 32 bytes 64 bytes

C_Verify
1
 CKK_GOSTR3410 32 bytes 64 bytes

1

Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

are not used.

2.45.8 GOST R 34.10-2001 with GOST R 34.11-94

The GOST R 34.10-2001 with GOST R 34.11-94, denoted CKM_GOSTR3410_WITH_GOSTR3411, is a
mechanism for signatures and verification for GOST R 34.10-2001. This mechanism computes the entire
GOST R 34.10-2001 specification, including the hashing with GOST R 34.11-94 hash algorithm.

As a parameter this mechanism utilizes a DER-encoding of the object identifier indicating
GOST R 34.11-94 data object type. A mechanism parameter may be missed then parameters are
specified in object identifier of attribute CKA_GOSTR3411_PARAMS must be used.

For the purposes of these mechanisms, a GOST R 34.10-2001 signature is an octet string of 64 bytes
long. The signature octets correspond to the concatenation of the GOST R 34.10-2001 values s and r’,
both represented as a 32 bytes octet string in big endian order with the most significant byte first [RFC
4490] section 3.2, and [RFC 4491] section 2.2.2.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 181 of 200

The input for the mechanism is signed or should be signed message of any length. Single- and multiple-
part signature operations are available.

Table 152, GOST R 34.10-2001 with GOST R 34.11-94: Key and Data Length

Function Key type Input length Output length

C_Sign CKK_GOSTR3410 Any 64 bytes

C_Verify CKK_GOSTR3410 Any 64 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.45.9 GOST 28147-89 keys wrapping/unwrapping with GOST R 34.10-2001

GOST R 34.10-2001 keys as a KEK (key encryption keys) for encryption GOST 28147 keys, denoted by
CKM_GOSTR3410_KEY_WRAP, is a mechanism for key wrapping; and key unwrapping, based on
GOST R 34.10-2001. Its purpose is to encrypt and decrypt keys have been generated by key generation
mechanism for GOST 28147-89. An encryption algorithm from [RFC 4490] (section 5.2) must be used.
Encrypted key is a DER-encoded structure of ASN.1 GostR3410-KeyTransport type [RFC 4490] section

4.2.

It has a parameter, a CK_GOSTR3410_KEY_WRAP_PARAMS structure defined in section 2.45.5.

For unwrapping (C_UnwrapKey), the mechanism decrypts the wrapped key, and contributes the result as
the CKA_VALUE attribute of the new key.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

are not used.

2.45.9.1 Common key derivation with assistance of GOST R 34.10-2001 keys

Common key derivation, denoted CKM_GOSTR3410_DERIVE, is a mechanism for key derivation with
assistance of GOST R 34.10-2001 private and public keys. The key of the mechanism must be of object
class CKO_DOMAIN_PARAMETERS and key type CKK_GOSTR3410. An algorithm for key derivation

from [RFC 4357] (section 5.2) must be used.

The mechanism contributes the result as the CKA_VALUE attribute of the new private key. All other

attributes must be specified in a template for creating private key object.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 182 of 200

3 PKCS #11 Implementation Conformance
An implementation is a conforming implementation if it meets the conditions specified in one or more
server profiles specified in [PKCS #11-Prof].

If a PKCS #11 implementation claims support for a particular profile, then the implementation SHALL
conform to all normative statements within the clauses specified for that profile and for any subclauses to

each of those clauses.

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 183 of 200

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:

Participants:

Gil Abel, Athena Smartcard Solutions, Inc.

Warren Armstrong, QuintessenceLabs

Jeff Bartell, Semper Foris Solutions LLC

Peter Bartok, Venafi, Inc.

Anthony Berglas, Cryptsoft

Joseph Brand, Semper Fortis Solutions LLC

Kelley Burgin, National Security Agency

Robert Burns, Thales e-Security

Wan-Teh Chang, Google Inc.

Hai-May Chao, Oracle

Janice Cheng, Vormetric, Inc.

Sangrae Cho, Electronics and Telecommunications Research Institute (ETRI)

Doron Cohen, SafeNet, Inc.

Fadi Cotran, Futurex

Tony Cox, Cryptsoft

Christopher Duane, EMC

Chris Dunn, SafeNet, Inc.

Valerie Fenwick, Oracle

Terry Fletcher, SafeNet, Inc.

Susan Gleeson, Oracle

Sven Gossel, Charismathics

John Green, QuintessenceLabs

Robert Griffin, EMC

Paul Grojean, Individual

Peter Gutmann, Individual

Dennis E. Hamilton, Individual

Thomas Hardjono, M.I.T.

Tim Hudson, Cryptsoft

Gershon Janssen, Individual

Seunghun Jin, Electronics and Telecommunications Research Institute (ETRI)

Wang Jingman, Feitan Technologies

Andrey Jivsov, Symantec Corp.

Mark Joseph, P6R

Stefan Kaesar, Infineon Technologies

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 184 of 200

Greg Kazmierczak, Wave Systems Corp.

Mark Knight, Thales e-Security

Darren Krahn, Google Inc.

Alex Krasnov, Infineon Technologies AG

Dina Kurktchi-Nimeh, Oracle

Mark Lambiase, SecureAuth Corporation

Lawrence Lee, GoTrust Technology Inc.

John Leiseboer, QuintessenceLabs

Sean Leon, Infineon Technologies

Geoffrey Li, Infineon Technologies

Howie Liu, Infineon Technologies

Hal Lockhart, Oracle

Robert Lockhart, Thales e-Security

Dale Moberg, Axway Software

Darren Moffat, Oracle

Valery Osheter, SafeNet, Inc.

Sean Parkinson, EMC

Rob Philpott, EMC

Mark Powers, Oracle

Ajai Puri, SafeNet, Inc.

Robert Relyea, Red Hat

Saikat Saha, Oracle

Subhash Sankuratripati, NetApp

Anthony Scarpino, Oracle

Johann Schoetz, Infineon Technologies AG

Rayees Shamsuddin, Wave Systems Corp.

Radhika Siravara, Oracle

Brian Smith, Mozilla Corporation

David Smith, Venafi, Inc.

Ryan Smith, Futurex

Jerry Smith, US Department of Defense (DoD)

Oscar So, Oracle

Graham Steel, Cryptosense

Michael Stevens, QuintessenceLabs

Michael StJohns, Individual

Jim Susoy, P6R

Sander Temme, Thales e-Security

Kiran Thota, VMware, Inc.

Walter-John Turnes, Gemini Security Solutions, Inc.

Stef Walter, Red Hat

James Wang, Vormetric

Jeff Webb, Dell

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 185 of 200

Peng Yu, Feitian Technologies

Magda Zdunkiewicz, Cryptsoft

Chris Zimman, Individual

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 186 of 200

Appendix B. Manifest Constants

The following definitions can be found in [PKCS11_T_H].

 /*

 Copyright © OASIS Open 2013. All Rights Reserved.

 All capitalized terms in the following text have the meanings assigned to them in the

 OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy").

*/

Also, refer [PKCS #11-Base] and [PKCS #11-Hist] for additional definitions.

B.1 OTP Definitions

Note: A C or C++ source file in a Cryptoki application or library can define all the types, mechanisms, and
other constants described here by including the header file otp-pkcs11.h. When including the otp-
pkcs11.h header file, it should be preceded by an inclusion of the top-level Cryptoki header file pkcs11.h,
and the source file must also specify the preprocessor directives indicated in Section 8 of [PKCS #11-B].

B.2 Object classes

#define CKO_DATA 0x00000000

#define CKO_CERTIFICATE 0x00000001

#define CKO_PUBLIC_KEY 0x00000002

#define CKO_PRIVATE_KEY 0x00000003

#define CKO_SECRET_KEY 0x00000004

#define CKO_HW_FEATURE 0x00000005

#define CKO_DOMAIN_PARAMETERS 0x00000006

#define CKO_MECHANISM 0x00000007

#define CKO_OTP_KEY 0x00000008

#define CKO_VENDOR_DEFINED 0x80000000

B.3 Key types

#define CKK_RSA 0x00000000

#define CKK_DSA 0x00000001

#define CKK_DH 0x00000002

#define CKK_ECDSA 0x00000003

#define CKK_EC 0x00000003

#define CKK_X9_42_DH 0x00000004

#define CKK_KEA 0x00000005

#define CKK_GENERIC_SECRET 0x00000010

#define CKK_RC2 0x00000011

#define CKK_RC4 0x00000012

#define CKK_DES 0x00000013

#define CKK_DES2 0x00000014

#define CKK_DES3 0x00000015

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 187 of 200

#define CKK_CAST 0x00000016

#define CKK_CAST3 0x00000017

#define CKK_CAST5 0x00000018

#define CKK_CAST128 0x00000018

#define CKK_RC5 0x00000019

#define CKK_IDEA 0x0000001A

#define CKK_SKIPJACK 0x0000001B

#define CKK_BATON 0x0000001C

#define CKK_JUNIPER 0x0000001D

#define CKK_CDMF 0x0000001E

#define CKK_AES 0x0000001F

#define CKK_BLOWFISH 0x00000020

#define CKK_TWOFISH 0x00000021

#define CKK_SECURID 0x00000022

#define CKK_HOTP 0x00000023

#define CKK_ACTI 0x00000024

#define CKK_CAMELLIA 0x00000025

#define CKK_ARIA 0x00000026

#define CKK_SHA512_224_HMAC 0x00000027

#define CKK_SHA512_256_HMAC 0x00000028

#define CKK_SHA512_T_HMAC 0x00000029

#define CKK_VENDOR_DEFINED 0x80000000

B.4 Mechanisms

#define CKM_RSA_PKCS_KEY_PAIR_GEN 0x00000000

#define CKM_RSA_PKCS 0x00000001

#define CKM_RSA_9796 0x00000002

#define CKM_RSA_X_509 0x00000003

#define CKM_MD2_RSA_PKCS 0x00000004

#define CKM_MD5_RSA_PKCS 0x00000005

#define CKM_SHA1_RSA_PKCS 0x00000006

#define CKM_RIPEMD128_RSA_PKCS 0x00000007

#define CKM_RIPEMD160_RSA_PKCS 0x00000008

#define CKM_RSA_PKCS_OAEP 0x00000009

#define CKM_RSA_X9_31_KEY_PAIR_GEN 0x0000000A

#define CKM_RSA_X9_31 0x0000000B

#define CKM_SHA1_RSA_X9_31 0x0000000C

#define CKM_RSA_PKCS_PSS 0x0000000D

#define CKM_SHA1_RSA_PKCS_PSS 0x0000000E

#define CKM_DSA_KEY_PAIR_GEN 0x00000010

#define CKM_DSA 0x00000011

#define CKM_DSA_SHA1 0x00000012

#define CKM_DSA_FIPS_G_GEN 0x00000013

#define CKM_DSA_SHA224 0x00000014

#define CKM_DSA_SHA256 0x00000015

#define CKM_DSA_SHA384 0x00000016

#define CKM_DSA_SHA512 0x00000017

#define CKM_DH_PKCS_KEY_PAIR_GEN 0x00000020

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 188 of 200

#define CKM_DH_PKCS_DERIVE 0x00000021

#define CKM_X9_42_DH_KEY_PAIR_GEN 0x00000030

#define CKM_X9_42_DH_DERIVE 0x00000031

#define CKM_X9_42_DH_HYBRID_DERIVE 0x00000032

#define CKM_X9_42_MQV_DERIVE 0x00000033

#define CKM_SHA256_RSA_PKCS 0x00000040

#define CKM_SHA384_RSA_PKCS 0x00000041

#define CKM_SHA512_RSA_PKCS 0x00000042

#define CKM_SHA256_RSA_PKCS_PSS 0x00000043

#define CKM_SHA384_RSA_PKCS_PSS 0x00000044

#define CKM_SHA512_RSA_PKCS_PSS 0x00000045

#define CKM_SHA224_RSA_PKCS 0x00000046

#define CKM_SHA224_RSA_PKCS_PSS 0x00000047

#define CKM_SHA512_224 0x00000048

#define CKM_SHA512_224_HMAC 0x00000049

#define CKM_SHA512_224_HMAC_GENERAL 0x0000004A

#define CKM_SHA512_224_KEY_DERIVATION 0x0000004B

#define CKM_SHA512_256 0x0000004C

#define CKM_SHA512_256_HMAC 0x0000004D

#define CKM_SHA512_256_HMAC_GENERAL 0x0000004E

#define CKM_SHA512_256_KEY_DERIVATION 0x0000004F

#define CKM_SHA512_T 0x00000050

#define CKM_SHA512_T_HMAC 0x00000051

#define CKM_SHA512_T_HMAC_GENERAL 0x00000052

#define CKM_SHA512_T_KEY_DERIVATION 0x00000053

#define CKM_RC2_KEY_GEN 0x00000100

#define CKM_RC2_ECB 0x00000101

#define CKM_RC2_CBC 0x00000102

#define CKM_RC2_MAC 0x00000103

#define CKM_RC2_MAC_GENERAL 0x00000104

#define CKM_RC2_CBC_PAD 0x00000105

#define CKM_RC4_KEY_GEN 0x00000110

#define CKM_RC4 0x00000111

#define CKM_DES_KEY_GEN 0x00000120

#define CKM_DES_ECB 0x00000121

#define CKM_DES_CBC 0x00000122

#define CKM_DES_MAC 0x00000123

#define CKM_DES_MAC_GENERAL 0x00000124

#define CKM_DES_CBC_PAD 0x00000125

#define CKM_DES2_KEY_GEN 0x00000130

#define CKM_DES3_KEY_GEN 0x00000131

#define CKM_DES3_ECB 0x00000132

#define CKM_DES3_CBC 0x00000133

#define CKM_DES3_MAC 0x00000134

#define CKM_DES3_MAC_GENERAL 0x00000135

#define CKM_DES3_CBC_PAD 0x00000136

#define CKM_CDMF_KEY_GEN 0x00000140

#define CKM_CDMF_ECB 0x00000141

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 189 of 200

#define CKM_CDMF_CBC 0x00000142

#define CKM_CDMF_MAC 0x00000143

#define CKM_CDMF_MAC_GENERAL 0x00000144

#define CKM_CDMF_CBC_PAD 0x00000145

#define CKM_DES_OFB64 0x00000150

#define CKM_DES_OFB8 0x00000151

#define CKM_DES_CFB64 0x00000152

#define CKM_DES_CFB8 0x00000153

#define CKM_MD2 0x00000200

#define CKM_MD2_HMAC 0x00000201

#define CKM_MD2_HMAC_GENERAL 0x00000202

#define CKM_MD5 0x00000210

#define CKM_MD5_HMAC 0x00000211

#define CKM_MD5_HMAC_GENERAL 0x00000212

#define CKM_SHA_1 0x00000220

#define CKM_SHA_1_HMAC 0x00000221

#define CKM_SHA_1_HMAC_GENERAL 0x00000222

#define CKM_RIPEMD128 0x00000230

#define CKM_RIPEMD128_HMAC 0x00000231

#define CKM_RIPEMD128_HMAC_GENERAL 0x00000232

#define CKM_RIPEMD160 0x00000240

#define CKM_RIPEMD160_HMAC 0x00000241

#define CKM_RIPEMD160_HMAC_GENERAL 0x00000242

#define CKM_SHA256 0x00000250

#define CKM_SHA256_HMAC 0x00000251

#define CKM_SHA256_HMAC_GENERAL 0x00000252

#define CKM_SHA224 0x00000255

#define CKM_SHA224_HMAC 0x00000256

#define CKM_SHA224_HMAC_GENERAL 0x00000257

#define CKM_SHA384 0x00000260

#define CKM_SHA384_HMAC 0x00000261

#define CKM_SHA384_HMAC_GENERAL 0x00000262

#define CKM_SHA512 0x00000270

#define CKM_SHA512_HMAC 0x00000271

#define CKM_SHA512_HMAC_GENERAL 0x00000272

#define CKM_SECURID_KEY_GEN 0x00000280

#define CKM_SECURID 0x00000282

#define CKM_HOTP_KEY_GEN 0x00000290

#define CKM_HOTP 0x00000291

#define CKM_ACTI 0x000002A0

#define CKM_ACTI_KEY_GEN 0x000002A1

#define CKM_CAST_KEY_GEN 0x00000300

#define CKM_CAST_ECB 0x00000301

#define CKM_CAST_CBC 0x00000302

#define CKM_CAST_MAC 0x00000303

#define CKM_CAST_MAC_GENERAL 0x00000304

#define CKM_CAST_CBC_PAD 0x00000305

#define CKM_CAST3_KEY_GEN 0x00000310

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 190 of 200

#define CKM_CAST3_ECB 0x00000311

#define CKM_CAST3_CBC 0x00000312

#define CKM_CAST3_MAC 0x00000313

#define CKM_CAST3_MAC_GENERAL 0x00000314

#define CKM_CAST3_CBC_PAD 0x00000315

#define CKM_CAST5_KEY_GEN 0x00000320

#define CKM_CAST128_KEY_GEN 0x00000320

#define CKM_CAST5_ECB 0x00000321

#define CKM_CAST128_ECB 0x00000321

#define CKM_CAST5_CBC 0x00000322

#define CKM_CAST128_CBC 0x00000322

#define CKM_CAST5_MAC 0x00000323

#define CKM_CAST128_MAC 0x00000323

#define CKM_CAST5_MAC_GENERAL 0x00000324

#define CKM_CAST128_MAC_GENERAL 0x00000324

#define CKM_CAST5_CBC_PAD 0x00000325

#define CKM_CAST128_CBC_PAD 0x00000325

#define CKM_RC5_KEY_GEN 0x00000330

#define CKM_RC5_ECB 0x00000331

#define CKM_RC5_CBC 0x00000332

#define CKM_RC5_MAC 0x00000333

#define CKM_RC5_MAC_GENERAL 0x00000334

#define CKM_RC5_CBC_PAD 0x00000335

#define CKM_IDEA_KEY_GEN 0x00000340

#define CKM_IDEA_ECB 0x00000341

#define CKM_IDEA_CBC 0x00000342

#define CKM_IDEA_MAC 0x00000343

#define CKM_IDEA_MAC_GENERAL 0x00000344

#define CKM_IDEA_CBC_PAD 0x00000345

#define CKM_GENERIC_SECRET_KEY_GEN 0x00000350

#define CKM_CONCATENATE_BASE_AND_KEY 0x00000360

#define CKM_CONCATENATE_BASE_AND_DATA 0x00000362

#define CKM_CONCATENATE_DATA_AND_BASE 0x00000363

#define CKM_XOR_BASE_AND_DATA 0x00000364

#define CKM_EXTRACT_KEY_FROM_KEY 0x00000365

#define CKM_SSL3_PRE_MASTER_KEY_GEN 0x00000370

#define CKM_SSL3_MASTER_KEY_DERIVE 0x00000371

#define CKM_SSL3_KEY_AND_MAC_DERIVE 0x00000372

#define CKM_SSL3_MASTER_KEY_DERIVE_DH 0x00000373

#define CKM_TLS_PRE_MASTER_KEY_GEN 0x00000374

#define CKM_TLS_MASTER_KEY_DERIVE 0x00000375

#define CKM_TLS_KEY_AND_MAC_DERIVE 0x00000376

#define CKM_TLS_MASTER_KEY_DERIVE_DH 0x00000377

#define CKM_TLS_PRF 0x00000378

#define CKM_SSL3_MD5_MAC 0x00000380

#define CKM_SSL3_SHA1_MAC 0x00000381

#define CKM_MD5_KEY_DERIVATION 0x00000390

#define CKM_MD2_KEY_DERIVATION 0x00000391

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 191 of 200

#define CKM_SHA1_KEY_DERIVATION 0x00000392

#define CKM_SHA256_KEY_DERIVATION 0x00000393

#define CKM_SHA384_KEY_DERIVATION 0x00000394

#define CKM_SHA512_KEY_DERIVATION 0x00000395

#define CKM_SHA224_KEY_DERIVATION 0x00000396

#define CKM_PBE_MD2_DES_CBC 0x000003A0

#define CKM_PBE_MD5_DES_CBC 0x000003A1

#define CKM_PBE_MD5_CAST_CBC 0x000003A2

#define CKM_PBE_MD5_CAST3_CBC 0x000003A3

#define CKM_PBE_MD5_CAST5_CBC 0x000003A4

#define CKM_PBE_MD5_CAST128_CBC 0x000003A4

#define CKM_PBE_SHA1_CAST5_CBC 0x000003A5

#define CKM_PBE_SHA1_CAST128_CBC 0x000003A5

#define CKM_PBE_SHA1_RC4_128 0x000003A6

#define CKM_PBE_SHA1_RC4_40 0x000003A7

#define CKM_PBE_SHA1_DES3_EDE_CBC 0x000003A8

#define CKM_PBE_SHA1_DES2_EDE_CBC 0x000003A9

#define CKM_PBE_SHA1_RC2_128_CBC 0x000003AA

#define CKM_PBE_SHA1_RC2_40_CBC 0x000003AB

#define CKM_PKCS5_PBKD2 0x000003B0

#define CKM_PBA_SHA1_WITH_SHA1_HMAC 0x000003C0

#define CKM_WTLS_PRE_MASTER_KEY_GEN 0x000003D0

#define CKM_WTLS_MASTER_KEY_DERIVE 0x000003D1

#define CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC 0x000003D2

#define CKM_WTLS_PRF 0x000003D3

#define CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE 0x000003D4

#define CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE 0x000003D5

#define CKM_TLS10_MAC_SERVER 0x000003D6

#define CKM_TLS10_MAC_CLIENT 0x000003D7

#define CKM_TLS12_MAC 0x000003D8

#define CKM_TLS12_MASTER_KEY_DERIVE 0x000003E0

#define CKM_TLS12_KEY_AND_MAC_DERIVE 0x000003E1

#define CKM_TLS12_MASTER_KEY_DERIVE_DH 0x000003E2

#define CKM_TLS12_KEY_SAFE_DERIVE 0x000003E3

 #define CKM_TLS_MAC 0x000003E4

#define CKM_TLS_KDF 0x000003E5

#define CKM_KEY_WRAP_LYNKS 0x00000400

#define CKM_KEY_WRAP_SET_OAEP 0x00000401

#define CKM_CMS_SIG 0x00000500

#define CKM_KIP_DERIVE 0x00000510

#define CKM_KIP_WRAP 0x00000511

#define CKM_KIP_MAC 0x00000512

#define CKM_CAMELLIA_KEY_GEN 0x00000550

#define CKM_CAMELLIA_ECB 0x00000551

#define CKM_CAMELLIA_CBC 0x00000552

#define CKM_CAMELLIA_MAC 0x00000553

#define CKM_CAMELLIA_MAC_GENERAL 0x00000554

#define CKM_CAMELLIA_CBC_PAD 0x00000555

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 192 of 200

#define CKM_CAMELLIA_ECB_ENCRYPT_DATA 0x00000556

#define CKM_CAMELLIA_CBC_ENCRYPT_DATA 0x00000557

#define CKM_CAMELLIA_CTR 0x00000558

#define CKM_ARIA_KEY_GEN 0x00000560

#define CKM_ARIA_ECB 0x00000561

#define CKM_ARIA_CBC 0x00000562

#define CKM_ARIA_MAC 0x00000563

#define CKM_ARIA_MAC_GENERAL 0x00000564

#define CKM_ARIA_CBC_PAD 0x00000565

#define CKM_ARIA_ECB_ENCRYPT_DATA 0x00000566

#define CKM_ARIA_CBC_ENCRYPT_DATA 0x00000567

#define CKM_SKIPJACK_KEY_GEN 0x00001000

#define CKM_SKIPJACK_ECB64 0x00001001

#define CKM_SKIPJACK_CBC64 0x00001002

#define CKM_SKIPJACK_OFB64 0x00001003

#define CKM_SKIPJACK_CFB64 0x00001004

#define CKM_SKIPJACK_CFB32 0x00001005

#define CKM_SKIPJACK_CFB16 0x00001006

#define CKM_SKIPJACK_CFB8 0x00001007

#define CKM_SKIPJACK_WRAP 0x00001008

#define CKM_SKIPJACK_PRIVATE_WRAP 0x00001009

#define CKM_SKIPJACK_RELAYX 0x0000100a

#define CKM_KEA_KEY_PAIR_GEN 0x00001010

#define CKM_KEA_KEY_DERIVE 0x00001011

#define CKM_FORTEZZA_TIMESTAMP 0x00001020

#define CKM_BATON_KEY_GEN 0x00001030

#define CKM_BATON_ECB128 0x00001031

#define CKM_BATON_ECB96 0x00001032

#define CKM_BATON_CBC128 0x00001033

#define CKM_BATON_COUNTER 0x00001034

#define CKM_BATON_SHUFFLE 0x00001035

#define CKM_BATON_WRAP 0x00001036

#define CKM_ECDSA_KEY_PAIR_GEN 0x00001040

#define CKM_EC_KEY_PAIR_GEN 0x00001040

#define CKM_ECDSA 0x00001041

#define CKM_ECDSA_SHA1 0x00001042

#define CKM_ECDH1_DERIVE 0x00001050

#define CKM_ECDH1_COFACTOR_DERIVE 0x00001051

#define CKM_ECMQV_DERIVE 0x00001052

#define CKM_ECDH_AES_KEY_WRAP 0x00001053

#define CKM_RSA_AES_KEY_WRAP 0x00001054

#define CKM_JUNIPER_KEY_GEN 0x00001060

#define CKM_JUNIPER_ECB128 0x00001061

#define CKM_JUNIPER_CBC128 0x00001062

#define CKM_JUNIPER_COUNTER 0x00001063

#define CKM_JUNIPER_SHUFFLE 0x00001064

#define CKM_JUNIPER_WRAP 0x00001065

#define CKM_FASTHASH 0x00001070

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 193 of 200

#define CKM_AES_KEY_GEN 0x00001080

#define CKM_AES_ECB 0x00001081

#define CKM_AES_CBC 0x00001082

#define CKM_AES_MAC 0x00001083

#define CKM_AES_MAC_GENERAL 0x00001084

#define CKM_AES_CBC_PAD 0x00001085

#define CKM_AES_CTR 0x00001086

#define CKM_AES_GCM 0x00001087

#define CKM_AES_CCM 0x00001088

#define CKM_AES_CMAC_GENERAL 0x00001089

#define CKM_AES_CMAC 0x0000108A

#define CKM_AES_CTS 0x0000108B

#define CKM_AES_XCBC_MAC 0x0000108C

#define CKM_AES_XCBC_MAC_96 0x0000108D

#define CKM_BLOWFISH_KEY_GEN 0x00001090

#define CKM_BLOWFISH_CBC 0x00001091

#define CKM_TWOFISH_KEY_GEN 0x00001092

#define CKM_TWOFISH_CBC 0x00001093

#define CKM_BLOWFISH_CBC_PAD 0x00001094

#define CKM_TWOFISH_CBC_PAD 0x00001095

#define CKM_DES_ECB_ENCRYPT_DATA 0x00001100

#define CKM_DES_CBC_ENCRYPT_DATA 0x00001101

#define CKM_DES3_ECB_ENCRYPT_DATA 0x00001102

#define CKM_DES3_CBC_ENCRYPT_DATA 0x00001103

#define CKM_AES_ECB_ENCRYPT_DATA 0x00001104

#define CKM_AES_CBC_ENCRYPT_DATA 0x00001105

#define CKM_GOSTR3410_KEY_PAIR_GEN 0x00001200

#define CKM_GOSTR3410 0x00001201

#define CKM_GOSTR3410_WITH_GOSTR3411 0x00001202

#define CKM_GOSTR3410_KEY_WRAP 0x00001203

#define CKM_GOSTR3410_DERIVE 0x00001204

#define CKM_GOSTR3411 0x00001210

#define CKM_GOSTR3411_HMAC 0x00001211

#define CKM_GOST28147_KEY_GEN 0x00001220

#define CKM_GOST28147_ECB 0x00001221

#define CKM_GOST28147 0x00001222

#define CKM_GOST28147_MAC 0x00001223

#define CKM_GOST28147_KEY_WRAP 0x00001224

#define CKM_DSA_PARAMETER_GEN 0x00002000

#define CKM_DH_PKCS_PARAMETER_GEN 0x00002001

#define CKM_X9_42_DH_PKCS_PARAMETER_GEN 0x00002002

#define CKM_DSA_PROBABLISTIC_PARAMETER_GEN 0x00002003

#define CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN 0x00002004

#define CKM_AES_OFB 0x00002104

#define CKM_AES_CFB64 0x00002105

#define CKM_AES_CFB8 0x00002106

#define CKM_AES_CFB128 0x00002107

#define CKM_AES_CFB1 0x00002108

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 194 of 200

#define CKM_AES_KEY_WRAP 0x00002109

#define CKM_AES_KEY_WRAP_PAD 0x0000210A

 #define CKM_RSA_PKCS_TPM_1_1 0x00004001

#define CKM_RSA_PKCS_OAEP_TPM_1_1 0x00004002

#define CKM_VENDOR_DEFINED 0x80000000

B.5 Attributes

#define CKA_CLASS 0x00000000

#define CKA_TOKEN 0x00000001

#define CKA_PRIVATE 0x00000002

#define CKA_LABEL 0x00000003

#define CKA_APPLICATION 0x00000010

#define CKA_VALUE 0x00000011

#define CKA_OBJECT_ID 0x00000012

#define CKA_CERTIFICATE_TYPE 0x00000080

#define CKA_ISSUER 0x00000081

#define CKA_SERIAL_NUMBER 0x00000082

#define CKA_AC_ISSUER 0x00000083

#define CKA_OWNER 0x00000084

#define CKA_ATTR_TYPES 0x00000085

#define CKA_TRUSTED 0x00000086

#define CKA_CERTIFICATE_CATEGORY 0x00000087

#define CKA_JAVA_MIDP_SECURITY_DOMAIN 0x00000088

#define CKA_URL 0x00000089

#define CKA_HASH_OF_SUBJECT_PUBLIC_KEY 0x0000008A

#define CKA_HASH_OF_ISSUER_PUBLIC_KEY 0x0000008B

#define CKA_CHECK_VALUE 0x00000090

#define CKA_KEY_TYPE 0x00000100

#define CKA_SUBJECT 0x00000101

#define CKA_ID 0x00000102

#define CKA_SENSITIVE 0x00000103

#define CKA_ENCRYPT 0x00000104

#define CKA_DECRYPT 0x00000105

#define CKA_WRAP 0x00000106

#define CKA_UNWRAP 0x00000107

#define CKA_SIGN 0x00000108

#define CKA_SIGN_RECOVER 0x00000109

#define CKA_VERIFY 0x0000010A

#define CKA_VERIFY_RECOVER 0x0000010B

#define CKA_DERIVE 0x0000010C

#define CKA_START_DATE 0x00000110

#define CKA_END_DATE 0x00000111

#define CKA_MODULUS 0x00000120

#define CKA_MODULUS_BITS 0x00000121

#define CKA_PUBLIC_EXPONENT 0x00000122

#define CKA_PRIVATE_EXPONENT 0x00000123

#define CKA_PRIME_1 0x00000124

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 195 of 200

#define CKA_PRIME_2 0x00000125

#define CKA_EXPONENT_1 0x00000126

#define CKA_EXPONENT_2 0x00000127

#define CKA_COEFFICIENT 0x00000128

#define CKA_PUBLIC_KEY_INFO 0x00000129

#define CKA_PRIME 0x00000130

#define CKA_SUBPRIME 0x00000131

#define CKA_BASE 0x00000132

#define CKA_PRIME_BITS 0x00000133

#define CKA_SUBPRIME_BITS 0x00000134

#define CKA_SUB_PRIME_BITS CKA_SUBPRIME_BITS

#define CKA_VALUE_BITS 0x00000160

#define CKA_VALUE_LEN 0x00000161

#define CKA_EXTRACTABLE 0x00000162

#define CKA_LOCAL 0x00000163

#define CKA_NEVER_EXTRACTABLE 0x00000164

#define CKA_ALWAYS_SENSITIVE 0x00000165

#define CKA_KEY_GEN_MECHANISM 0x00000166

#define CKA_MODIFIABLE 0x00000170

#define CKA_DESTROYABLE 0x00000172

#define CKA_ECDSA_PARAMS 0x00000180

#define CKA_EC_PARAMS 0x00000180

#define CKA_EC_POINT 0x00000181

#define CKA_SECONDARY_AUTH 0x00000200

#define CKA_AUTH_PIN_FLAGS 0x00000201

#define CKA_ALWAYS_AUTHENTICATE 0x00000202

#define CKA_WRAP_WITH_TRUSTED 0x00000210

#define CKA_WRAP_TEMPLATE (CKF_ARRAY_ATTRIBUTE|0x00000211)

#define CKA_UNWRAP_TEMPLATE (CKF_ARRAY_ATTRIBUTE|0x00000212)

#define CKA_OTP_FORMAT 0x00000220

#define CKA_OTP_LENGTH 0x00000221

#define CKA_OTP_TIME_INTERVAL 0x00000222

#define CKA_OTP_USER_FRIENDLY_MODE 0x00000223

#define CKA_OTP_CHALLENGE_REQUIREMENT 0x00000224

#define CKA_OTP_TIME_REQUIREMENT 0x00000225

#define CKA_OTP_COUNTER_REQUIREMENT 0x00000226

#define CKA_OTP_PIN_REQUIREMENT 0x00000227

#define CKA_OTP_USER_IDENTIFIER 0x0000022A

#define CKA_OTP_SERVICE_IDENTIFIER 0x0000022B

#define CKA_OTP_SERVICE_LOGO 0x0000022C

#define CKA_OTP_SERVICE_LOGO_TYPE 0x0000022D

#define CKA_OTP_COUNTER 0x0000022E

#define CKA_OTP_TIME 0x0000022F

#define CKA_GOSTR3410_PARAMS 0x00000250

#define CKA_GOSTR3411_PARAMS 0x00000251

#define CKA_GOST28147_PARAMS 0x00000252

#define CKA_HW_FEATURE_TYPE 0x00000300

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 196 of 200

#define CKA_RESET_ON_INIT 0x00000301

#define CKA_HAS_RESET 0x00000302

#define CKA_PIXEL_X 0x00000400

#define CKA_PIXEL_Y 0x00000401

#define CKA_RESOLUTION 0x00000402

#define CKA_CHAR_ROWS 0x00000403

#define CKA_CHAR_COLUMNS 0x00000404

#define CKA_COLOR 0x00000405

#define CKA_BITS_PER_PIXEL 0x00000406

#define CKA_CHAR_SETS 0x00000480

#define CKA_ENCODING_METHODS 0x00000481

#define CKA_MIME_TYPES 0x00000482

#define CKA_MECHANISM_TYPE 0x00000500

#define CKA_REQUIRED_CMS_ATTRIBUTES 0x00000501

#define CKA_DEFAULT_CMS_ATTRIBUTES 0x00000502

#define CKA_SUPPORTED_CMS_ATTRIBUTES 0x00000503

#define CKA_ALLOWED_MECHANISMS

 (CKF_ARRAY_ATTRIBUTE|0x00000600)

#define CKA_VENDOR_DEFINED 0x80000000

B.6 Attribute constants

#define CK_OTP_FORMAT_DECIMAL 0UL

#define CK_OTP_FORMAT_HEXADECIMAL 1UL

#define CK_OTP_FORMAT_ALPHANUMERIC 2UL

#define CK_OTP_FORMAT_BINARY 3UL

#define CK_OTP_PARAM_IGNORED 0UL

#define CK_OTP_PARAM_OPTIONAL 1UL

#define CK_OTP_PARAM_MANDATORY 2UL

B.7 Other constants

#define CK_OTP_VALUE 0UL

#define CK_OTP_PIN 1UL

#define CK_OTP_CHALLENGE 2UL

#define CK_OTP_TIME 3UL

#define CK_OTP_COUNTER 4UL

#define CK_OTP_FLAGS 5UL

#define CK_OTP_OUTPUT_LENGTH 6UL

#define CK_OTP_FORMAT 7UL

#define CKF_NEXT_OTP 0x00000001UL

#define CKF_EXCLUDE_TIME 0x00000002UL

#define CKF_EXCLUDE_COUNTER 0x00000004UL

#define CKF_EXCLUDE_CHALLENGE 0x00000008UL

#define CKF_EXCLUDE_PIN 0x00000010UL

#define CKF_USER_FRIENDLY_OTP 0x00000020UL

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 197 of 200

B.8 Notifications

#define CKN_OTP_CHANGED 1UL

B.9 Return values

#define CKR_OK 0x00000000

#define CKR_CANCEL 0x00000001

#define CKR_HOST_MEMORY 0x00000002

#define CKR_SLOT_ID_INVALID 0x00000003

#define CKR_GENERAL_ERROR 0x00000005

#define CKR_FUNCTION_FAILED 0x00000006

#define CKR_ARGUMENTS_BAD 0x00000007

#define CKR_NO_EVENT 0x00000008

#define CKR_NEED_TO_CREATE_THREADS 0x00000009

#define CKR_CANT_LOCK 0x0000000A

#define CKR_ATTRIBUTE_READ_ONLY 0x00000010

#define CKR_ATTRIBUTE_SENSITIVE 0x00000011

#define CKR_ATTRIBUTE_TYPE_INVALID 0x00000012

#define CKR_ATTRIBUTE_VALUE_INVALID 0x00000013

#define CKR_ACTION_PROHIBITED 0x0000001B

#define CKR_DATA_INVALID 0x00000020

#define CKR_DATA_LEN_RANGE 0x00000021

#define CKR_DEVICE_ERROR 0x00000030

#define CKR_DEVICE_MEMORY 0x00000031

#define CKR_DEVICE_REMOVED 0x00000032

#define CKR_ENCRYPTED_DATA_INVALID 0x00000040

#define CKR_ENCRYPTED_DATA_LEN_RANGE 0x00000041

#define CKR_FUNCTION_CANCELED 0x00000050

#define CKR_FUNCTION_NOT_PARALLEL 0x00000051

#define CKR_FUNCTION_NOT_SUPPORTED 0x00000054

#define CKR_KEY_HANDLE_INVALID 0x00000060

#define CKR_KEY_SIZE_RANGE 0x00000062

#define CKR_KEY_TYPE_INCONSISTENT 0x00000063

#define CKR_KEY_NOT_NEEDED 0x00000064

#define CKR_KEY_CHANGED 0x00000065

#define CKR_KEY_NEEDED 0x00000066

#define CKR_KEY_INDIGESTIBLE 0x00000067

#define CKR_KEY_FUNCTION_NOT_PERMITTED 0x00000068

#define CKR_KEY_NOT_WRAPPABLE 0x00000069

#define CKR_KEY_UNEXTRACTABLE 0x0000006A

#define CKR_MECHANISM_INVALID 0x00000070

#define CKR_MECHANISM_PARAM_INVALID 0x00000071

#define CKR_OBJECT_HANDLE_INVALID 0x00000082

#define CKR_OPERATION_ACTIVE 0x00000090

#define CKR_OPERATION_NOT_INITIALIZED 0x00000091

#define CKR_PIN_INCORRECT 0x000000A0

#define CKR_PIN_INVALID 0x000000A1

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 198 of 200

#define CKR_PIN_LEN_RANGE 0x000000A2

#define CKR_PIN_EXPIRED 0x000000A3

#define CKR_PIN_LOCKED 0x000000A4

#define CKR_SESSION_CLOSED 0x000000B0

#define CKR_SESSION_COUNT 0x000000B1

#define CKR_SESSION_HANDLE_INVALID 0x000000B3

#define CKR_SESSION_PARALLEL_NOT_SUPPORTED 0x000000B4

#define CKR_SESSION_READ_ONLY 0x000000B5

#define CKR_SESSION_EXISTS 0x000000B6

#define CKR_SESSION_READ_ONLY_EXISTS 0x000000B7

#define CKR_SESSION_READ_WRITE_SO_EXISTS 0x000000B8

#define CKR_SIGNATURE_INVALID 0x000000C0

#define CKR_SIGNATURE_LEN_RANGE 0x000000C1

#define CKR_TEMPLATE_INCOMPLETE 0x000000D0

#define CKR_TEMPLATE_INCONSISTENT 0x000000D1

#define CKR_TOKEN_NOT_PRESENT 0x000000E0

#define CKR_TOKEN_NOT_RECOGNIZED 0x000000E1

#define CKR_TOKEN_WRITE_PROTECTED 0x000000E2

#define CKR_UNWRAPPING_KEY_HANDLE_INVALID 0x000000F0

#define CKR_UNWRAPPING_KEY_SIZE_RANGE 0x000000F1

#define CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT 0x000000F2

#define CKR_USER_ALREADY_LOGGED_IN 0x00000100

#define CKR_USER_NOT_LOGGED_IN 0x00000101

#define CKR_USER_PIN_NOT_INITIALIZED 0x00000102

#define CKR_USER_TYPE_INVALID 0x00000103

#define CKR_USER_ANOTHER_ALREADY_LOGGED_IN 0x00000104

#define CKR_USER_TOO_MANY_TYPES 0x00000105

#define CKR_WRAPPED_KEY_INVALID 0x00000110

#define CKR_WRAPPED_KEY_LEN_RANGE 0x00000112

#define CKR_WRAPPING_KEY_HANDLE_INVALID 0x00000113

#define CKR_WRAPPING_KEY_SIZE_RANGE 0x00000114

#define CKR_WRAPPING_KEY_TYPE_INCONSISTENT 0x00000115

#define CKR_RANDOM_SEED_NOT_SUPPORTED 0x00000120

#define CKR_RANDOM_NO_RNG 0x00000121

#define CKR_DOMAIN_PARAMS_INVALID 0x00000130

#define CKR_CURVE_NOT_SUPPORTED 0x00000140

#define CKR_BUFFER_TOO_SMALL 0x00000150

#define CKR_SAVED_STATE_INVALID 0x00000160

#define CKR_INFORMATION_SENSITIVE 0x00000170

#define CKR_STATE_UNSAVEABLE 0x00000180

#define CKR_CRYPTOKI_NOT_INITIALIZED 0x00000190

#define CKR_CRYPTOKI_ALREADY_INITIALIZED 0x00000191

#define CKR_MUTEX_BAD 0x000001A0

#define CKR_MUTEX_NOT_LOCKED 0x000001A1

#define CKR_NEW_PIN_MODE 0x000001B0

#define CKR_NEXT_OTP 0x000001B1

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 199 of 200

#define CKR_EXCEEDED_MAX_ITERATIONS 0x000001C0

#define CKR_FIPS_SELF_TEST_FAILED 0x000001C1

#define CKR_LIBRARY_LOAD_FAILED 0x000001C2

#define CKR_PIN_TOO_WEAK 0x000001C3

#define CKR_PUBLIC_KEY_INVALID 0x000001C4

#define CKR_FUNCTION_REJECTED 0x00000200

#define CKR_VENDOR_DEFINED 0x80000000

pkcs11-curr-v2.40-cs02 16 November 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 200 of 200

Appendix C. Revision History

Revision Date Editor Changes Made

wd01 Apr 29, 2013 Chris Zimman Initial Template Import

wd02 July 7, 2013 Chris Zimman 2
nd

 Working Draft

wd03 Aug 16, 2013 Chris Zimman 3
rd

 Working Draft

wd04 Oct 1, 2013 Chris Zimman Incorporation of ballot items, prep for
Committee Specification Draft promotion

wd05 Oct 7, 2013 Chris Zimman Reviewed for typos and proof. Candidate for
Committee Specification Draft promotion.

wd06 Oct 27, 2013 Robert Griffin Final participants list and other editorial
changes for Committee Specification Draft

Cds01 Oct. 30, 2013 OASIS Committee Specification Draft

wd07 Feb 18, 2014 Chris Zimman Incorporation of changes and feedback from
public review

wd08 Feb 27, 2014 Chris Zimman Incorporation of changes and feedback from
public review

wd09 Mar 10, 2014 Chris Zimman Incorporation of voted upon changes from last
meeting

csd02 Apr. 23, 2014 OASIS Committee Specification Draft

wd10 Jun 11, 2014 Chris Zimman Removed AES-XTS mechanism

wd11 Jul. 2, 2014 Chris Zimman Corrections to manifest constants

csd03 Jul. 16, 2014 OASIS Committee Specification Draft

csd03a Sep 3 2014 Robert Griffin Updated revision history and participant list in
preparation for Committee Specification ballot

wd12 Nov 3 2014 Robert Griffin Editorial corrections

