
pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 1 of 149

PKCS #11 Cryptographic Token Interface
Base Specification Version 2.40

OASIS Standard

14 April 2015

Specification URIs
This version:

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.doc
(Authoritative)
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.pdf

Previous version:
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-v2.40-cs01.doc
(Authoritative)
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-v2.40-cs01.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-v2.40-cs01.pdf

Latest version:
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.doc (Authoritative)
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.pdf

Technical Committee:

OASIS PKCS 11 TC

Chairs:
Robert Griffin (robert.griffin@rsa.com), EMC Corporation
Valerie Fenwick (valerie.fenwick@oracle.com), Oracle

Editors:
Susan Gleeson (susan.gleeson@oracle.com), Oracle
Chris Zimman (chris@wmpp.com), Individual

Related work:

This specification replaces or supersedes:

 PKCS #11 Base Functionality v2.30: Cryptoki – Draft 4.
http://www.cryptsoft.com/pkcs11doc/STANDARD/pkcs-11v2-30b-d5.doc.

This specification is related to:

 PKCS #11 Cryptographic Token Interface Profiles Version 2.40. Edited by Tim Hudson.
Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-
v2.40.html.

 PKCS #11 Cryptographic Token Interface Current Mechanisms Specification Version 2.40.
Edited by Susan Gleeson and Chris Zimman. Latest version. http://docs.oasis-
open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html.

 PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification Version 2.40.
Edited by Susan Gleeson and Chris Zimman. Latest version. http://docs.oasis-
open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html.

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.doc
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-v2.40-cs01.doc
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-v2.40-cs01.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-v2.40-cs01.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.doc
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.pdf
https://www.oasis-open.org/committees/pkcs11/
mailto:robert.griffin@rsa.com
http://www.emc.com/
mailto:valerie.fenwick@oracle.com
http://www.oracle.com/
mailto:susan.gleeson@oracle.com
http://www.oracle.com/
mailto:chris@wmpp.com
http://www.cryptsoft.com/pkcs11doc/STANDARD/pkcs-11v2-30b-d5.doc
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 2 of 149

 PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Edited by John
Leiseboer and Robert Griffin. Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-
ug/v2.40/pkcs11-ug-v2.40.html.

Abstract:
This document defines data types, functions and other basic components of the PKCS #11
Cryptoki interface.

Status:
This document was last revised or approved by the membership of OASIS on the above date.
The level of approval is also listed above. Check the “Latest version” location noted above for
possible later revisions of this document. Any other numbered Versions and other technical work
produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=pkcs11#technical.

TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/pkcs11/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/pkcs11/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[PKCS11-base-v2.40]

PKCS #11 Cryptographic Token Interface Base Specification Version 2.40. Edited by Susan
Gleeson and Chris Zimman. 14 April 2015. OASIS Standard. http://docs.oasis-
open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html. Latest version:
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html.

http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=pkcs11
https://www.oasis-open.org/committees/pkcs11/
https://www.oasis-open.org/committees/pkcs11/
https://www.oasis-open.org/committees/pkcs11/ipr.php
https://www.oasis-open.org/committees/pkcs11/ipr.php
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 3 of 149

Notices

Copyright © OASIS Open 2015. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 4 of 149

Table of Contents

1 Introduction ... 6

1.1 Terminology .. 6

1.2 Definitions ... 6

1.3 Symbols and abbreviations ... 7

1.4 Normative References .. 10

1.5 Non-Normative References .. 11

2 Platform- and compiler-dependent directives for C or C++ .. 13

2.1 Structure packing .. 13

2.2 Pointer-related macros ... 13

3 General data types ... 15

3.1 General information .. 15

3.2 Slot and token types ... 16

3.3 Session types ... 22

3.4 Object types .. 23

3.5 Data types for mechanisms .. 27

3.6 Function types .. 29

3.7 Locking-related types .. 32

4 Objects ... 35

4.1 Creating, modifying, and copying objects ... 36

4.1.1 Creating objects .. 36

4.1.2 Modifying objects ... 37

4.1.3 Copying objects ... 37

4.2 Common attributes ... 38

4.3 Hardware Feature Objects .. 38

4.3.1 Definitions .. 38

4.3.2 Overview .. 38

4.3.3 Clock .. 39

4.3.4 Monotonic Counter Objects ... 39

4.3.5 User Interface Objects ... 39

4.4 Storage Objects .. 40

4.5 Data objects .. 41

4.5.1 Definitions .. 41

4.5.2 Overview .. 41

4.6 Certificate objects ... 42

4.6.1 Definitions .. 42

4.6.2 Overview .. 42

4.6.3 X.509 public key certificate objects ... 43

4.6.4 WTLS public key certificate objects... 45

4.6.5 X.509 attribute certificate objects .. 47

4.7 Key objects ... 48

4.7.1 Definitions .. 48

4.7.2 Overview .. 48

4.8 Public key objects ... 49

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 5 of 149

4.9 Private key objects .. 50

4.9.1 RSA private key objects .. 52

4.10 Secret key objects .. 53

4.11 Domain parameter objects.. 56

4.11.1 Definitions .. 56

4.11.2 Overview .. 56

4.12 Mechanism objects ... 56

4.12.1 Definitions .. 56

4.12.2 Overview .. 56

5 Functions .. 58

5.1 Function return values .. 61

5.1.1 Universal Cryptoki function return values .. 61

5.1.2 Cryptoki function return values for functions that use a session handle 62

5.1.3 Cryptoki function return values for functions that use a token .. 62

5.1.4 Special return value for application-supplied callbacks .. 62

5.1.5 Special return values for mutex-handling functions .. 63

5.1.6 All other Cryptoki function return values ... 63

5.1.7 More on relative priorities of Cryptoki errors ... 68

5.1.8 Error code “gotchas” .. 68

5.2 Conventions for functions returning output in a variable-length buffer ... 68

5.3 Disclaimer concerning sample code ... 69

5.4 General-purpose functions ... 69

5.5 Slot and token management functions ... 72

5.6 Session management functions.. 81

5.7 Object management functions .. 89

5.8 Encryption functions ... 98

5.9 Decryption functions ... 102

5.10 Message digesting functions .. 105

5.11 Signing and MACing functions.. 108

5.12 Dual-function cryptographic functions .. 116

5.13 Key management functions .. 127

5.14 Random number generation functions ... 135

5.15 Parallel function management functions ... 136

5.16 Callback functions ... 137

5.16.1 Surrender callbacks ... 137

5.16.2 Vendor-defined callbacks .. 137

6 PKCS #11 Implementation Conformance .. 138

Appendix A. Acknowledgments ... 139

Appendix B. Manifest constants .. 142

Appendix C. Revision History .. 149

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 6 of 149

1 Introduction
This document describes the basic PKCS#11 token interface and token behavior.

The PKCS#11 standard specifies an application programming interface (API), called “Cryptoki,” for
devices that hold cryptographic information and perform cryptographic functions. Cryptoki follows a
simple object based approach, addressing the goals of technology independence (any kind of device) and
resource sharing (multiple applications accessing multiple devices), presenting to applications a common,
logical view of the device called a “cryptographic token”.

This document specifies the data types and functions available to an application requiring cryptographic
services using the ANSI C programming language. The supplier of a Cryptoki library implementation
typically provides these data types and functions via ANSI C header files. Generic ANSI C header files
for Cryptoki are available from the PKCS#11 web page. This document and up-to-date errata for Cryptoki
will also be available from the same place.

Additional documents may provide a generic, language-independent Cryptoki interface and/or bindings
between Cryptoki and other programming languages.

Cryptoki isolates an application from the details of the cryptographic device. The application does not
have to change to interface to a different type of device or to run in a different environment; thus, the
application is portable. How Cryptoki provides this isolation is beyond the scope of this document,
although some conventions for the support of multiple types of device will be addressed here and
possibly in a separate document.

Details of cryptographic mechanisms (algorithms) may be found in the associated PKCS#11 Mechanisms
documents.

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described

in [RFC2119].

1.2 Definitions

For the purposes of this standard, the following definitions apply:

 API Application programming interface.

 Application Any computer program that calls the Cryptoki interface.

 ASN.1 Abstract Syntax Notation One, as defined in X.680.

 Attribute A characteristic of an object.

 BER Basic Encoding Rules, as defined in X.690.

 CBC Cipher-Block Chaining mode, as defined in FIPS PUB 81.

 Certificate A signed message binding a subject name and a public key, or a
subject name and a set of attributes.

 CMS Cryptographic Message Syntax (see RFC 5652)

 Cryptographic Device A device storing cryptographic information and possibly performing
cryptographic functions. May be implemented as a smart card,
smart disk, PCMCIA card, or with some other technology, including
software-only.

 Cryptoki The Cryptographic Token Interface defined in this standard.

 Cryptoki library A library that implements the functions specified in this standard.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 7 of 149

 DER Distinguished Encoding Rules, as defined in X.690.

 DES Data Encryption Standard, as defined in FIPS PUB 46-3.

 DSA Digital Signature Algorithm, as defined in FIPS PUB 186-4.

 EC Elliptic Curve

 ECB Electronic Codebook mode, as defined in FIPS PUB 81.

 IV Initialization Vector.

 MAC Message Authentication Code.

 Mechanism A process for implementing a cryptographic operation.

 Object An item that is stored on a token. May be data, a certificate, or a
key.

 PIN Personal Identification Number.

 PKCS Public-Key Cryptography Standards.

 PRF Pseudo random function.

 PTD Personal Trusted Device, as defined in MeT-PTD

 RSA The RSA public-key cryptosystem.

 Reader The means by which information is exchanged with a device.

 Session A logical connection between an application and a token.

 Slot A logical reader that potentially contains a token.

 SSL The Secure Sockets Layer 3.0 protocol.

 Subject Name The X.500 distinguished name of the entity to which a key is
assigned.

 SO A Security Officer user.

 TLS Transport Layer Security.

 Token The logical view of a cryptographic device defined by Cryptoki.

 User The person using an application that interfaces to Cryptoki.

 UTF-8 Universal Character Set (UCS) transformation format (UTF) that
represents ISO 10646 and UNICODE strings with a variable number
of octets.

 WIM Wireless Identification Module.

 WTLS Wireless Transport Layer Security.

1.3 Symbols and abbreviations

The following symbols are used in this standard:

Table 1, Symbols

Symbol Definition

N/A Not applicable

R/O Read-only

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 8 of 149

R/W Read/write

The following prefixes are used in this standard:

Table 2, Prefixes

Prefix Description

C_ Function

CK_ Data type or general constant

CKA_ Attribute

CKC_ Certificate type

CKD_ Key derivation function

CKF_ Bit flag

CKG_ Mask generation function

CKH_ Hardware feature type

CKK_ Key type

CKM_ Mechanism type

CKN_ Notification

CKO_ Object class

CKP_ Pseudo-random function

CKS_ Session state

CKR_ Return value

CKU_ User type

CKZ_ Salt/Encoding parameter source

h a handle

ul a CK_ULONG

p a pointer

pb a pointer to a CK_BYTE

ph a pointer to a handle

pul a pointer to a CK_ULONG

Cryptoki is based on ANSI C types, and defines the following data types:

/* an unsigned 8-bit value */

typedef unsigned char CK_BYTE;

/* an unsigned 8-bit character */

typedef CK_BYTE CK_CHAR;

/* an 8-bit UTF-8 character */

typedef CK_BYTE CK_UTF8CHAR;

/* a BYTE-sized Boolean flag */

typedef CK_BYTE CK_BBOOL;

/* an unsigned value, at least 32 bits long */

typedef unsigned long int CK_ULONG;

/* a signed value, the same size as a CK_ULONG */

typedef long int CK_LONG;

/* at least 32 bits; each bit is a Boolean flag */

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 9 of 149

typedef CK_ULONG CK_FLAGS;

Cryptoki also uses pointers to some of these data types, as well as to the type void, which are
implementation-dependent. These pointer types are:

CK_BYTE_PTR /* Pointer to a CK_BYTE */

CK_CHAR_PTR /* Pointer to a CK_CHAR */

CK_UTF8CHAR_PTR /* Pointer to a CK_UTF8CHAR */

CK_ULONG_PTR /* Pointer to a CK_ULONG */

CK_VOID_PTR /* Pointer to a void */

Cryptoki also defines a pointer to a CK_VOID_PTR, which is implementation-dependent:

CK_VOID_PTR_PTR /* Pointer to a CK_VOID_PTR */

In addition, Cryptoki defines a C-style NULL pointer, which is distinct from any valid pointer:

NULL_PTR /* A NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one environment to another
(e.g., a CK_ULONG will sometimes be 32 bits, and sometimes perhaps 64 bits). However, these details
should not affect an application, assuming it is compiled with Cryptoki header files consistent with the
Cryptoki library to which the application is linked.

All numbers and values expressed in this document are decimal, unless they are preceded by “0x”, in
which case they are hexadecimal values.

The CK_CHAR data type holds characters from the following table, taken from ANSI C:

Table 3, Character Set

Category Characters

Letters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d
e f g h i j k l m n o p q r s t u v w x y z

Numbers 0 1 2 3 4 5 6 7 8 9

Graphic characters ! “ # % & ‘ () * + , - . / : ; < = > ? [\] ^ _ { | } ~

Blank character ‘ ‘

The CK_UTF8CHAR data type holds UTF-8 encoded Unicode characters as specified in RFC2279. UTF-
8 allows internationalization while maintaining backward compatibility with the Local String definition of
PKCS #11 version 2.01.

In Cryptoki, the CK_BBOOL data type is a Boolean type that can be true or false. A zero value means
false, and a nonzero value means true. Similarly, an individual bit flag, CKF_..., can also be set (true) or
unset (false). For convenience, Cryptoki defines the following macros for use with values of type
CK_BBOOL:

#define CK_FALSE 0

#define CK_TRUE 1

For backwards compatibility, header files for this version of Cryptoki also define TRUE and FALSE as
(CK_DISABLE_TRUE_FALSE may be set by the application vendor):

#ifndef CK_DISABLE_TRUE_FALSE

#ifndef FALSE

#define FALSE CK_FALSE

#endif

#ifndef TRUE

#define TRUE CK_TRUE

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 10 of 149

#endif

#endif

1.4 Normative References

 [FIPS PUB 46-3] NIST. FIPS 46-3: Data Encryption Standard. October 1999.

URL: http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[FIPS PUB 81] NIST. FIPS 81: DES Modes of Operation. December 1980.

URL: http://csrc.nist.gov/publications/fips/fips81/fips81.htm

[FIPS PUB 186-4] NIST. FIPS 186-4: Digital Signature Standard. July, 2013.

 URL: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[PKCS11-Curr] PKCS #11 Cryptographic Token Interface Current Mechanisms Specification
Version 2.40. Edited by Susan Gleeson and Chris Zimman. 14 April 2015. OASIS
Standard. http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/os/pkcs11-curr-
v2.40-os.html. Latest version: http://docs.oasis-open.org/pkcs11/pkcs11-
curr/v2.40/pkcs11-curr-v2.40.html.

 [PKCS11-Hist] PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification
Version 2.40. Edited by Susan Gleeson and Chris Zimman. 14 April 2015. OASIS
Standard. http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/os/pkcs11-hist-
v2.40-os.html. Latest version: http://docs.oasis-open.org/pkcs11/pkcs11-
hist/v2.40/pkcs11-hist-v2.40.html.

 [PKCS11-Prof] PKCS #11 Cryptographic Token Interface Profiles Version 2.40. Edited by Tim
Hudson. 14 April 2015. OASIS Standard. http://docs.oasis-
open.org/pkcs11/pkcs11-profiles/v2.40/os/pkcs11-profiles-v2.40-os.html. Latest
version: http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-
v2.40.html.

 [PKCS #1] RSA Laboratories. RSA Cryptography Standard. v2.1, June 14, 2002.

 URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

[PKCS #3] RSA Laboratories. Diffie-Hellman Key-Agreement Standard. v1.4, November
1993.

 URL: ftp://ftp.rsasecurity.com/pub/pkcs/doc/pkcs-3.doc

[PKCS #5] RSA Laboratories. Password-Based Encryption Standard. v2.0, March 25, 1999

 URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf

[PKCS #7] RSA Laboratories. Cryptographic Message Syntax Standard. v1.5, November
1993

 URL : ftp://ftp.rsasecurity.com/pub/pkcs/doc/pkcs-7.doc

[PKCS #8] RSA Laboratories. Private-Key Information Syntax Standard. v1.2, November
1993.

 URL: ftp://ftp.rsasecurity.com/pub/pkcs/doc/pkcs-8.doc

[PKCS11-UG] PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Edited by
John Leiseboer and Robert Griffin. 16 November 2014. OASIS Committee Note
02. http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/cn02/pkcs11-ug-v2.40-
cn02.html. Latest version: http://docs.oasis-open.org/pkcs11/pkcs11-
ug/v2.40/pkcs11-ug-v2.40.html.

[PKCS #12] RSA Laboratories. Personal Information Exchange Syntax Standard. v1.0,
June 1999.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
14, RFC 2119, March 1997.

URL: http://www.ietf.org/rfc/rfc2119.txt.

[RFC 2279] F. Yergeau. RFC 2279: UTF-8, a transformation format of ISO 10646 Alis
Technologies, January 1998. URL: http://www.ietf.org/rfc/rfc2279.txt

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips81/fips81.htm
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/os/pkcs11-curr-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/os/pkcs11-curr-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/os/pkcs11-hist-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/os/pkcs11-hist-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/os/pkcs11-profiles-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/os/pkcs11-profiles-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/cn02/pkcs11-ug-v2.40-cn02.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/cn02/pkcs11-ug-v2.40-cn02.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://www.ietf.org/rfc/rfc2119.txt
http://ietf.org/rfc/rfc2279.txt

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 11 of 149

[RFC 2534] Masinter, L., Wing, D., Mutz, A., and K. Holtman. RFC 2534: Media Features for
Display, Print, and Fax. March 1999. URL: http://www.ietf.org/rfc/rfc2534.txt

[TLS] IETF. RFC 2246: The TLS Protocol Version 1.0 . January 1999.

URL: http://www.ietf.org/rfc/rfc2246.txt

[RFC 5652] R. Housley. RFC 5652: Cryptographic Message Syntax. Septmber 2009. URL:
http://www.ietf.org/rfc/rfc5652.txt

[X.500] ITU-T. Information Technology — Open Systems Interconnection — The
Directory: Overview of Concepts, Models and Services. February 2001. Identical
to ISO/IEC 9594-1

[X.509] ITU-T. Information Technology — Open Systems Interconnection — The
Directory: Public-key and Attribute Certificate Frameworks. March 2000.

 Identical to ISO/IEC 9594-8

[X.680] ITU-T. Information Technology — Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. July 2002.

 Identical to ISO/IEC 8824-1

[X.690] ITU-T. Information Technology — ASN.1 Encoding Rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished
Encoding Rules (DER). July 2002.

 Identical to ISO/IEC 8825-1

1.5 Non-Normative References

[ANSI C] ANSI/ISO. American National Standard for Programming Languages – C. 1990.

[CC/PP] W3C. Composite Capability/Preference Profiles (CC/PP): Structure and
Vocabularies. World Wide Web Consortium, January 2004.

URL: http://www.w3.org/TR/CCPP-struct-vocab/

[CDPD] Ameritech Mobile Communications et al. Cellular Digital Packet Data System
Specifications: Part 406: Airlink Security. 1993.

 [GCS-API] X/Open Company Ltd. Generic Cryptographic Service API (GCS-API), Base -
Draft 2. February 14, 1995.

[ISO/IEC 7816-1] ISO. Information Technology — Identification Cards — Integrated Circuit(s) with
Contacts — Part 1: Physical Characteristics. 1998.

[ISO/IEC 7816-4] ISO. Information Technology — Identification Cards — Integrated Circuit(s) with
Contacts — Part 4: Interindustry Commands for Interchange. 1995.

[ISO/IEC 8824-1] ISO. Information Technology-- Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. 2002.

[ISO/IEC 8825-1] ISO. Information Technology—ASN.1 Encoding Rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished
Encoding Rules (DER). 2002.

[ISO/IEC 9594-1] ISO. Information Technology — Open Systems Interconnection — The Directory:
Overview of Concepts, Models and Services. 2001.

[ISO/IEC 9594-8] ISO. Information Technology — Open Systems Interconnection — The Directory:
Public-key and Attribute Certificate Frameworks. 2001

[ISO/IEC 9796-2] ISO. Information Technology — Security Techniques — Digital Signature
Scheme Giving Message Recovery — Part 2: Integer factorization based
mechanisms. 2002.

[Java MIDP] Java Community Process. Mobile Information Device Profile for Java 2 Micro
Edition. November 2002.

URL: http://jcp.org/jsr/detail/118.jsp

[MeT-PTD] MeT. MeT PTD Definition – Personal Trusted Device Definition, Version 1.0,
February 2003.

http://ietf.org/rfc/rfc2534.txt
http://ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc5652.txt
http://www.w3.org/TR/CCPP-struct-vocab/
http://jcp.org/jsr/detail/118.jsp

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 12 of 149

URL: http://www.mobiletransaction.org

[PCMCIA] Personal Computer Memory Card International Association. PC Card Standard,
Release 2.1,. July 1993.

[SEC 1] Standards for Efficient Cryptography Group (SECG). Standards for Efficient
Cryptography (SEC) 1: Elliptic Curve Cryptography. Version 1.0, September 20,
2000.

[SEC 2] Standards for Efficient Cryptography Group (SECG). Standards for Efficient
Cryptography (SEC) 2: Recommended Elliptic Curve Domain Parameters.
Version 1.0, September 20, 2000.

[WIM] WAP. Wireless Identity Module. — WAP-260-WIM-20010712-a. July 2001.

URL:
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?Doc
Name=/wap/wap-260-wim-20010712-a.pdf

[WPKI] Wireless Application Protocol: Public Key Infrastructure Definition. — WAP-217-
WPKI-20010424-a. April 2001.

URL:
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?Doc
Name=/wap/wap-217-wpki-20010424-a.pdf

[WTLS] WAP. Wireless Transport Layer Security Version — WAP-261-WTLS-20010406-
a. April 2001.

URL:
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?Doc
Name=/wap/wap-261-wtls-20010406-a.pdf

http://www.mobiletransaction.org/
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-260-wim-20010712-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-260-wim-20010712-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-217-wpki-20010424-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-217-wpki-20010424-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-261-wtls-20010406-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-261-wtls-20010406-a.pdf

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 13 of 149

2 Platform- and compiler-dependent directives for C
or C++

There is a large array of Cryptoki-related data types that are defined in the Cryptoki header files. Certain
packing and pointer-related aspects of these types are platform and compiler-dependent; these aspects
are therefore resolved on a platform-by-platform (or compiler-by-compiler) basis outside of the Cryptoki
header files by means of preprocessor directives.

This means that when writing C or C++ code, certain preprocessor directives MUST be issued before
including a Cryptoki header file. These directives are described in the remainder of Section 6.

2.1 Structure packing

Cryptoki structures are packed to occupy as little space as is possible. Cryptoki structures SHALL be
packed with 1-byte alignment.

2.2 Pointer-related macros

Because different platforms and compilers have different ways of dealing with different types of pointers,
the following 6 macros SHALL be set outside the scope of Cryptoki:

 CK_PTR

CK_PTR is the “indirection string” a given platform and compiler uses to make a pointer to an object. It is

used in the following fashion:

typedef CK_BYTE CK_PTR CK_BYTE_PTR;

 CK_DEFINE_FUNCTION

CK_DEFINE_FUNCTION(returnType, name), when followed by a parentheses-enclosed list of

arguments and a function definition, defines a Cryptoki API function in a Cryptoki library. returnType is
the return type of the function, and name is its name. It SHALL be used in the following fashion:

CK_DEFINE_FUNCTION(CK_RV, C_Initialize)(

 CK_VOID_PTR pReserved

)

{

 ...

}

 CK_DECLARE_FUNCTION

CK_DECLARE_FUNCTION(returnType, name), when followed by a parentheses-enclosed

list of arguments and a semicolon, declares a Cryptoki API function in a Cryptoki library. returnType is

the return type of the function, and name is its name. It SHALL be used in the following fashion:

CK_DECLARE_FUNCTION(CK_RV, C_Initialize)(

 CK_VOID_PTR pReserved

);

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 14 of 149

 CK_DECLARE_FUNCTION_POINTER

CK_DECLARE_FUNCTION_POINTER(returnType, name), when followed by a

parentheses-enclosed list of arguments and a semicolon, declares a variable or type which is a pointer to
a Cryptoki API function in a Cryptoki library. returnType is the return type of the function, and name is its
name. It SHALL be used in either of the following fashions to define a function pointer variable,
myC_Initialize, which can point to a C_Initialize function in a Cryptoki library (note that neither of the
following code snippets actually assigns a value to myC_Initialize):

CK_DECLARE_FUNCTION_POINTER(CK_RV, myC_Initialize)(

 CK_VOID_PTR pReserved

);

or:

typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, myC_InitializeType)(

 CK_VOID_PTR pReserved

);

myC_InitializeType myC_Initialize;

 CK_CALLBACK_FUNCTION

CK_CALLBACK_FUNCTION(returnType, name), when followed by a parentheses-enclosed

list of arguments and a semicolon, declares a variable or type which is a pointer to an application callback
function that can be used by a Cryptoki API function in a Cryptoki library. returnType is the return type of
the function, and name is its name. It SHALL be used in either of the following fashions to define a
function pointer variable, myCallback, which can point to an application callback which takes arguments
args and returns a CK_RV (note that neither of the following code snippets actually assigns a value to
myCallback):

CK_CALLBACK_FUNCTION(CK_RV, myCallback)(args);

or:

typedef CK_CALLBACK_FUNCTION(CK_RV, myCallbackType)(args);

myCallbackType myCallback;

 NULL_PTR

NULL_PTR is the value of a NULL pointer. In any ANSI C environment—and in many others as well—

NULL_PTR SHALL be defined simply as 0.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 15 of 149

3 General data types
The general Cryptoki data types are described in the following subsections. The data types for holding
parameters for various mechanisms, and the pointers to those parameters, are not described here; these
types are described with the information on the mechanisms themselves, in Section 12.

A C or C++ source file in a Cryptoki application or library can define all these types (the types described
here and the types that are specifically used for particular mechanism parameters) by including the top-
level Cryptoki include file, pkcs11.h. pkcs11.h, in turn, includes the other Cryptoki include files, pkcs11t.h
and pkcs11f.h. A source file can also include just pkcs11t.h (instead of pkcs11.h); this defines most (but
not all) of the types specified here.

When including either of these header files, a source file MUST specify the preprocessor directives
indicated in Section 2.

3.1 General information

Cryptoki represents general information with the following types:

 CK_VERSION; CK_VERSION_PTR

CK_VERSION is a structure that describes the version of a Cryptoki interface, a Cryptoki library, or an

SSL implementation, or the hardware or firmware version of a slot or token. It is defined as follows:

typedef struct CK_VERSION {

 CK_BYTE major;

 CK_BYTE minor;

} CK_VERSION;

The fields of the structure have the following meanings:

 major major version number (the integer portion of the version)

 minor minor version number (the hundredths portion of the version)

Example: For version 1.0, major = 1 and minor = 0. For version 2.10, major = 2 and minor = 10. Table 4

below lists the major and minor version values for the officially published Cryptoki specifications.

Table 4, Major and minor version values for published Cryptoki specifications

Version major minor

1.0 0x01 0x00

2.01 0x02 0x01

2.10 0x02 0x0a

2.11 0x02 0x0b

2.20 0x02 0x14

2.30 0x02 0x1e

2.40 0x02 0x28

Minor revisions of the Cryptoki standard are always upwardly compatible within the same major version
number.

CK_VERSION_PTR is a pointer to a CK_VERSION.

 CK_INFO; CK_INFO_PTR

CK_INFO provides general information about Cryptoki. It is defined as follows:

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 16 of 149

typedef struct CK_INFO {

 CK_VERSION cryptokiVersion;

 CK_UTF8CHAR manufacturerID[32];

 CK_FLAGS flags;

 CK_UTF8CHAR libraryDescription[32];

 CK_VERSION libraryVersion;

} CK_INFO;

The fields of the structure have the following meanings:

 cryptokiVersion Cryptoki interface version number, for compatibility with future
revisions of this interface

 manufacturerID ID of the Cryptoki library manufacturer. MUST be padded with the
blank character (‘ ‘). Should not be null-terminated.

 flags bit flags reserved for future versions. MUST be zero for this version

 libraryDescription character-string description of the library. MUST be padded with the
blank character (‘ ‘). Should not be null-terminated.

 libraryVersion Cryptoki library version number

For libraries written to this document, the value of cryptokiVersion should match the version of this
specification; the value of libraryVersion is the version number of the library software itself.

CK_INFO_PTR is a pointer to a CK_INFO.

 CK_NOTIFICATION

CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an application. It is defined
as follows:

typedef CK_ULONG CK_NOTIFICATION;

For this version of Cryptoki, the following types of notifications are defined:

CKN_SURRENDER

The notifications have the following meanings:

 CKN_SURRENDER Cryptoki is surrendering the execution of a function executing in a
session so that the application may perform other operations. After
performing any desired operations, the application should indicate
to Cryptoki whether to continue or cancel the function (see Section
5.16.1).

3.2 Slot and token types

Cryptoki represents slot and token information with the following types:

 CK_SLOT_ID; CK_SLOT_ID_PTR

CK_SLOT_ID is a Cryptoki-assigned value that identifies a slot. It is defined as follows:

typedef CK_ULONG CK_SLOT_ID;

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 17 of 149

A list of CK_SLOT_IDs is returned by C_GetSlotList. A priori, any value of CK_SLOT_ID can be a valid
slot identifier—in particular, a system may have a slot identified by the value 0. It need not have such a
slot, however.

CK_SLOT_ID_PTR is a pointer to a CK_SLOT_ID.

 CK_SLOT_INFO; CK_SLOT_INFO_PTR

CK_SLOT_INFO provides information about a slot. It is defined as follows:

typedef struct CK_SLOT_INFO {

 CK_UTF8CHAR slotDescription[64];

 CK_UTF8CHAR manufacturerID[32];

 CK_FLAGS flags;

 CK_VERSION hardwareVersion;

 CK_VERSION firmwareVersion;

} CK_SLOT_INFO;

The fields of the structure have the following meanings:

 slotDescription character-string description of the slot. MUST be padded with the
blank character (‘ ‘). MUST NOT be null-terminated.

 manufacturerID ID of the slot manufacturer. MUST be padded with the blank
character (‘ ‘). MUST NOT be null-terminated.

 flags bits flags that provide capabilities of the slot. The flags are defined
below

 hardwareVersion version number of the slot’s hardware

 firmwareVersion version number of the slot’s firmware

The following table defines the flags field:

Table 5, Slot Information Flags

Bit Flag Mask Meaning

CKF_TOKEN_PRESENT 0x00000001 True if a token is present in the slot (e.g.,
a device is in the reader)

CKF_REMOVABLE_DEVICE 0x00000002 True if the reader supports removable
devices

CKF_HW_SLOT 0x00000004 True if the slot is a hardware slot, as
opposed to a software slot implementing
a “soft token”

For a given slot, the value of the CKF_REMOVABLE_DEVICE flag never changes. In addition, if this flag
is not set for a given slot, then the CKF_TOKEN_PRESENT flag for that slot is always set. That is, if a

slot does not support a removable device, then that slot always has a token in it.

CK_SLOT_INFO_PTR is a pointer to a CK_SLOT_INFO.

 CK_TOKEN_INFO; CK_TOKEN_INFO_PTR

CK_TOKEN_INFO provides information about a token. It is defined as follows:

typedef struct CK_TOKEN_INFO {

 CK_UTF8CHAR label[32];

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 18 of 149

 CK_UTF8CHAR manufacturerID[32];

 CK_UTF8CHAR model[16];

 CK_CHAR serialNumber[16];

 CK_FLAGS flags;

 CK_ULONG ulMaxSessionCount;

 CK_ULONG ulSessionCount;

 CK_ULONG ulMaxRwSessionCount;

 CK_ULONG ulRwSessionCount;

 CK_ULONG ulMaxPinLen;

 CK_ULONG ulMinPinLen;

 CK_ULONG ulTotalPublicMemory;

 CK_ULONG ulFreePublicMemory;

 CK_ULONG ulTotalPrivateMemory;

 CK_ULONG ulFreePrivateMemory;

 CK_VERSION hardwareVersion;

 CK_VERSION firmwareVersion;

 CK_CHAR utcTime[16];

} CK_TOKEN_INFO;

The fields of the structure have the following meanings:

 label application-defined label, assigned during token initialization. MUST
be padded with the blank character (‘ ‘). MUST NOT be null-
terminated.

 manufacturerID ID of the device manufacturer. MUST be padded with the blank
character (‘ ‘). MUST NOT be null-terminated.

 model model of the device. MUST be padded with the blank character (‘ ‘).
MUST NOT be null-terminated.

 serialNumber character-string serial number of the device. MUST be padded with
the blank character (‘ ‘). MUST NOT be null-terminated.

 flags bit flags indicating capabilities and status of the device as defined
below

 ulMaxSessionCount maximum number of sessions that can be opened with the token at
one time by a single application (see CK_TOKEN_INFO Note
below)

 ulSessionCount number of sessions that this application currently has open with the
token (see CK_TOKEN_INFO Note below)

 ulMaxRwSessionCount maximum number of read/write sessions that can be opened with
the token at one time by a single application (see
CK_TOKEN_INFO Note below)

 ulRwSessionCount number of read/write sessions that this application currently has
open with the token (see CK_TOKEN_INFO Note below)

 ulMaxPinLen maximum length in bytes of the PIN

 ulMinPinLen minimum length in bytes of the PIN

 ulTotalPublicMemory the total amount of memory on the token in bytes in which public
objects may be stored (see CK_TOKEN_INFO Note below)

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 19 of 149

 ulFreePublicMemory the amount of free (unused) memory on the token in bytes for public
objects (see CK_TOKEN_INFO Note below)

 ulTotalPrivateMemory the total amount of memory on the token in bytes in which private
objects may be stored (see CK_TOKEN_INFO Note below)

 ulFreePrivateMemory the amount of free (unused) memory on the token in bytes for
private objects (see CK_TOKEN_INFO Note below)

 hardwareVersion version number of hardware

 firmwareVersion version number of firmware

 utcTime current time as a character-string of length 16, represented in the
format YYYYMMDDhhmmssxx (4 characters for the year; 2
characters each for the month, the day, the hour, the minute, and
the second; and 2 additional reserved ‘0’ characters). The value of
this field only makes sense for tokens equipped with a clock, as
indicated in the token information flags (see below)

The following table defines the flags field:

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 20 of 149

Table 6, Token Information Flags

Bit Flag Mask Meaning

CKF_RNG 0x00000001 True if the token has its own
random number generator

CKF_WRITE_PROTECTED 0x00000002 True if the token is write-
protected (see below)

CKF_LOGIN_REQUIRED 0x00000004 True if there are some
cryptographic functions that a
user MUST be logged in to
perform

CKF_USER_PIN_INITIALIZED 0x00000008 True if the normal user’s PIN
has been initialized

CKF_RESTORE_KEY_NOT_NEEDED 0x00000020 True if a successful save of a
session’s cryptographic
operations state always
contains all keys needed to
restore the state of the session

CKF_CLOCK_ON_TOKEN 0x00000040 True if token has its own
hardware clock

CKF_PROTECTED_AUTHENTICATION_PA
TH

0x00000100 True if token has a “protected
authentication path”, whereby
a user can log into the token
without passing a PIN through
the Cryptoki library

CKF_DUAL_CRYPTO_OPERATIONS 0x00000200 True if a single session with
the token can perform dual
cryptographic operations (see
Section 5.12)

CKF_TOKEN_INITIALIZED 0x00000400 True if the token has been
initialized using C_InitToken or
an equivalent mechanism
outside the scope of this
standard. Calling C_InitToken
when this flag is set will cause
the token to be reinitialized.

CKF_SECONDARY_AUTHENTICATION 0x00000800 True if the token supports
secondary authentication for
private key objects.
(Deprecated; new
implementations MUST NOT
set this flag)

CKF_USER_PIN_COUNT_LOW 0x00010000 True if an incorrect user login
PIN has been entered at least
once since the last successful
authentication.

CKF_USER_PIN_FINAL_TRY 0x00020000 True if supplying an incorrect
user PIN will cause it to
become locked.

CKF_USER_PIN_LOCKED 0x00040000 True if the user PIN has been
locked. User login to the token
is not possible.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 21 of 149

Bit Flag Mask Meaning

CKF_USER_PIN_TO_BE_CHANGED 0x00080000 True if the user PIN value is
the default value set by token
initialization or manufacturing,
or the PIN has been expired
by the card.

CKF_SO_PIN_COUNT_LOW 0x00100000 True if an incorrect SO login
PIN has been entered at least
once since the last successful
authentication.

CKF_SO_PIN_FINAL_TRY 0x00200000 True if supplying an incorrect
SO PIN will cause it to
become locked.

CKF_SO_PIN_LOCKED 0x00400000 True if the SO PIN has been
locked. SO login to the token
is not possible.

CKF_SO_PIN_TO_BE_CHANGED 0x00800000 True if the SO PIN value is the
default value set by token
initialization or manufacturing,
or the PIN has been expired
by the card.

CKF_ERROR_STATE

0x01000000 True if the token failed a FIPS
140-2 self-test and entered an
error state.

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki. An application may
be unable to perform certain actions on a write-protected token; these actions can include any of the
following, among others:

 Creating/modifying/deleting any object on the token.

 Creating/modifying/deleting a token object on the token.

 Changing the SO’s PIN.

 Changing the normal user’s PIN.

The token may change the value of the CKF_WRITE_PROTECTED flag depending on the session state
to implement its object management policy. For instance, the token may set the
CKF_WRITE_PROTECTED flag unless the session state is R/W SO or R/W User to implement a policy
that does not allow any objects, public or private, to be created, modified, or deleted unless the user has
successfully called C_Login.

The CKF_USER_PIN_COUNT_LOW, CKF_USER_PIN_COUNT_LOW, CKF_USER_PIN_FINAL_TRY,
and CKF_SO_PIN_FINAL_TRY flags may always be set to false if the token does not support the

functionality or will not reveal the information because of its security policy.

The CKF_USER_PIN_TO_BE_CHANGED and CKF_SO_PIN_TO_BE_CHANGED flags may always be
set to false if the token does not support the functionality. If a PIN is set to the default value, or has
expired, the appropriate CKF_USER_PIN_TO_BE_CHANGED or CKF_SO_PIN_TO_BE_CHANGED
flag is set to true. When either of these flags are true, logging in with the corresponding PIN will succeed,
but only the C_SetPIN function can be called. Calling any other function that required the user to be
logged in will cause CKR_PIN_EXPIRED to be returned until C_SetPIN is called successfully.

CK_TOKEN_INFO Note: The fields ulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount,
ulRwSessionCount, ulTotalPublicMemory, ulFreePublicMemory, ulTotalPrivateMemory, and
ulFreePrivateMemory can have the special value CK_UNAVAILABLE_INFORMATION, which means that
the token and/or library is unable or unwilling to provide that information. In addition, the fields
ulMaxSessionCount and ulMaxRwSessionCount can have the special value
CK_EFFECTIVELY_INFINITE, which means that there is no practical limit on the number of sessions
(resp. R/W sessions) an application can have open with the token.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 22 of 149

It is important to check these fields for these special values. This is particularly true for
CK_EFFECTIVELY_INFINITE, since an application seeing this value in the ulMaxSessionCount or
ulMaxRwSessionCount field would otherwise conclude that it can’t open any sessions with the token,
which is far from being the case.

The upshot of all this is that the correct way to interpret (for example) the ulMaxSessionCount field is
something along the lines of the following:

CK_TOKEN_INFO info;

.

.

if ((CK_LONG) info.ulMaxSessionCount

 == CK_UNAVAILABLE_INFORMATION) {

 /* Token refuses to give value of ulMaxSessionCount */

 .

 .

} else if (info.ulMaxSessionCount == CK_EFFECTIVELY_INFINITE) {

 /* Application can open as many sessions as it wants */

 .

 .

} else {

 /* ulMaxSessionCount really does contain what it should */

 .

 .

}

CK_TOKEN_INFO_PTR is a pointer to a CK_TOKEN_INFO.

3.3 Session types

Cryptoki represents session information with the following types:

 CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTR

CK_SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is defined as follows:

typedef CK_ULONG CK_SESSION_HANDLE;

Valid session handles in Cryptoki always have nonzero values. For developers’ convenience, Cryptoki
defines the following symbolic value:

CK_INVALID_HANDLE

CK_SESSION_HANDLE_PTR is a pointer to a CK_SESSION_HANDLE.

 CK_USER_TYPE

CK_USER_TYPE holds the types of Cryptoki users described in [PKCS11-UG] and, in addition, a

context-specific type described in Section 4.9. It is defined as follows:

typedef CK_ULONG CK_USER_TYPE;

For this version of Cryptoki, the following types of users are defined:

CKU_SO

CKU_USER

CKU_CONTEXT_SPECIFIC

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 23 of 149

 CK_STATE

CK_STATE holds the session state, as described in [PKCS11-UG]. It is defined as follows:

typedef CK_ULONG CK_STATE;

For this version of Cryptoki, the following session states are defined:

CKS_RO_PUBLIC_SESSION

CKS_RO_USER_FUNCTIONS

CKS_RW_PUBLIC_SESSION

CKS_RW_USER_FUNCTIONS

CKS_RW_SO_FUNCTIONS

 CK_SESSION_INFO; CK_SESSION_INFO_PTR

CK_SESSION_INFO provides information about a session. It is defined as follows:

typedef struct CK_SESSION_INFO {

 CK_SLOT_ID slotID;

 CK_STATE state;

 CK_FLAGS flags;

 CK_ULONG ulDeviceError;

} CK_SESSION_INFO;

The fields of the structure have the following meanings:

 slotID ID of the slot that interfaces with the token

 state the state of the session

 flags bit flags that define the type of session; the flags are defined below

 ulDeviceError an error code defined by the cryptographic device. Used for errors
not covered by Cryptoki.

The following table defines the flags field:

Table 7, Session Information Flags

Bit Flag Mask Meaning

CKF_RW_SESSION 0x00000002 True if the session is read/write; false if the
session is read-only

CKF_SERIAL_SESSION 0x00000004 This flag is provided for backward compatibility,
and should always be set to true

CK_SESSION_INFO_PTR is a pointer to a CK_SESSION_INFO.

3.4 Object types

Cryptoki represents object information with the following types:

 CK_OBJECT_HANDLE; CK_OBJECT_HANDLE_PTR

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as follows:

typedef CK_ULONG CK_OBJECT_HANDLE;

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 24 of 149

When an object is created or found on a token by an application, Cryptoki assigns it an object handle for
that application’s sessions to use to access it. A particular object on a token does not necessarily have a
handle which is fixed for the lifetime of the object; however, if a particular session can use a particular
handle to access a particular object, then that session will continue to be able to use that handle to
access that object as long as the session continues to exist, the object continues to exist, and the object
continues to be accessible to the session.

Valid object handles in Cryptoki always have nonzero values. For developers’ convenience, Cryptoki

defines the following symbolic value:

CK_INVALID_HANDLE

CK_OBJECT_HANDLE_PTR is a pointer to a CK_OBJECT_HANDLE.

 CK_OBJECT_CLASS; CK_OBJECT_CLASS_PTR

CK_OBJECT_CLASS is a value that identifies the classes (or types) of objects that Cryptoki recognizes.

It is defined as follows:

typedef CK_ULONG CK_OBJECT_CLASS;

Object classes are defined with the objects that use them. The type is specified on an object through the
CKA_CLASS attribute of the object.

Vendor defined values for this type may also be specified.

CKO_VENDOR_ DEFINED

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their object classes through the PKCS process.

CK_OBJECT_CLASS_PTR is a pointer to a CK_OBJECT_CLASS.

 CK_HW_FEATURE_TYPE

CK_HW_FEATURE_TYPE is a value that identifies a hardware feature type of a device. It is defined as

follows:

typedef CK_ULONG CK_HW_FEATURE_TYPE;

Hardware feature types are defined with the objects that use them. The type is specified on an object
through the CKA_HW_FEATURE_TYPE attribute of the object.

Vendor defined values for this type may also be specified.

CKH_VENDOR_DEFINED

Feature types CKH_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their feature types through the PKCS process.

 CK_KEY_TYPE

CK_KEY_TYPE is a value that identifies a key type. It is defined as follows:

typedef CK_ULONG CK_KEY_TYPE;

Key types are defined with the objects and mechanisms that use them. The key type is specified on an
object through the CKA_KEY_TYPE attribute of the object.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 25 of 149

Vendor defined values for this type may also be specified.

CKK_VENDOR_DEFINED

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their key types through the PKCS process.

 CK_CERTIFICATE_TYPE

CK_CERTIFICATE_TYPE is a value that identifies a certificate type. It is defined as follows:

typedef CK_ULONG CK_CERTIFICATE_TYPE;

Certificate types are defined with the objects and mechanisms that use them. The certificate type is
specified on an object through the CKA_CERTIFICATE_TYPE attribute of the object.

Vendor defined values for this type may also be specified.

CKC_VENDOR_DEFINED

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their certificate types through the PKCS process.

 CK_CERTIFICATE_CATEGORY

CK_CERTIFICATE_CATEGORY is a value that identifies a certificate category. It is defined as follows:

typedef CK_ULONG CK_CERTIFICATE_CATEGORY;

For this version of Cryptoki, the following certificate categories are defined:

Constant Value Meaning

CK_CERTIFICATE_CATEGORY_UNSPECIFIED 0x00000000UL No category specified

CK_CERTIFICATE_CATEGORY_TOKEN_USER 0x00000001UL Certificate belongs to
owner of the token

CK_CERTIFICATE_CATEGORY_AUTHORITY 0x00000002UL Certificate belongs to a
certificate authority

CK_CERTIFICATE_CATEGORY_OTHER_ENTITY 0x00000003UL Certificate belongs to
an end entity (i.e.: not a
CA)

 CK_ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as follows:

typedef CK_ULONG CK_ATTRIBUTE_TYPE;

Attributes are defined with the objects and mechanisms that use them. Attributes are specified on an
object as a list of type, length value items. These are often specified as an attribute template.

Vendor defined values for this type may also be specified.

CKA_VENDOR_DEFINED

Attribute types CKA_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their attribute types through the PKCS process.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 26 of 149

 CK_ATTRIBUTE; CK_ATTRIBUTE_PTR

CK_ATTRIBUTE is a structure that includes the type, value, and length of an attribute. It is defined as

follows:

typedef struct CK_ATTRIBUTE {

 CK_ATTRIBUTE_TYPE type;

 CK_VOID_PTR pValue;

 CK_ULONG ulValueLen;

} CK_ATTRIBUTE;

The fields of the structure have the following meanings:

 type the attribute type

 pValue pointer to the value of the attribute

 ulValueLen length in bytes of the value

If an attribute has no value, then ulValueLen = 0, and the value of pValue is irrelevant. An array of
CK_ATTRIBUTEs is called a “template” and is used for creating, manipulating and searching for objects.
The order of the attributes in a template never matters, even if the template contains vendor-specific
attributes. Note that pValue is a “void” pointer, facilitating the passing of arbitrary values. Both the
application and Cryptoki library MUST ensure that the pointer can be safely cast to the expected type
(i.e., without word-alignment errors).

The constant CK_UNAVAILABLE_INFORMATION is used in the ulValueLen field to denote an invalid or
unavailable value. See C_GetAttributeValue for further details.

CK_ATTRIBUTE_PTR is a pointer to a CK_ATTRIBUTE.

 CK_DATE

CK_DATE is a structure that defines a date. It is defined as follows:

typedef struct CK_DATE {

 CK_CHAR year[4];

 CK_CHAR month[2];

 CK_CHAR day[2];

} CK_DATE;

The fields of the structure have the following meanings:

 year the year (“1900” - “9999”)

 month the month (“01” - “12”)

 day the day (“01” - “31”)

The fields hold numeric characters from the character set in Table 3, not the literal byte values.

When a Cryptoki object carries an attribute of this type, and the default value of the attribute is specified
to be "empty," then Cryptoki libraries SHALL set the attribute's ulValueLen to 0.

Note that implementations of previous versions of Cryptoki may have used other methods to identify an
"empty" attribute of type CK_DATE, and applications that needs to interoperate with these libraries
therefore have to be flexible in what they accept as an empty value.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 27 of 149

 CK_JAVA_MIDP_SECURITY_DOMAIN

CK_JAVA_MIDP_SECURITY_DOMAIN is a value that identifies the Java MIDP security domain of a
certificate. It is defined as follows:

typedef CK_ULONG CK_JAVA_MIDP_SECURITY_DOMAIN;

For this version of Cryptoki, the following security domains are defined. See the Java MIDP specification
for further information:

Constant Value Meaning

CK_SECURITY_DOMAIN_UNSPECIFIED 0x00000000UL No domain specified

CK_SECURITY_DOMAIN_MANUFACTURER 0x00000001UL Manufacturer protection
domain

CK_SECURITY_DOMAIN_OPERATOR 0x00000002UL Operator protection
domain

CK_SECURITY_DOMAIN_THIRD_PARTY 0x00000003UL Third party protection
domain

3.5 Data types for mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to them:

 CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE is a value that identifies a mechanism type. It is defined as follows:

typedef CK_ULONG CK_MECHANISM_TYPE;

Mechanism types are defined with the objects and mechanism descriptions that use them.

Vendor defined values for this type may also be specified.

CKM_VENDOR_DEFINED

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their mechanism types through the PKCS process.

CK_MECHANISM_TYPE_PTR is a pointer to a CK_MECHANISM_TYPE.

 CK_MECHANISM; CK_MECHANISM_PTR

CK_MECHANISM is a structure that specifies a particular mechanism and any parameters it requires. It

is defined as follows:

typedef struct CK_MECHANISM {

 CK_MECHANISM_TYPE mechanism;

 CK_VOID_PTR pParameter;

 CK_ULONG ulParameterLen;

} CK_MECHANISM;

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 28 of 149

The fields of the structure have the following meanings:

 mechanism the type of mechanism

 pParameter pointer to the parameter if required by the mechanism

 ulParameterLen length in bytes of the parameter

Note that pParameter is a “void” pointer, facilitating the passing of arbitrary values. Both the application
and the Cryptoki library MUST ensure that the pointer can be safely cast to the expected type (i.e.,

without word-alignment errors).

CK_MECHANISM_PTR is a pointer to a CK_MECHANISM.

 CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR

CK_MECHANISM_INFO is a structure that provides information about a particular mechanism. It is

defined as follows:

typedef struct CK_MECHANISM_INFO {

 CK_ULONG ulMinKeySize;

 CK_ULONG ulMaxKeySize;

 CK_FLAGS flags;

} CK_MECHANISM_INFO;

The fields of the structure have the following meanings:

 ulMinKeySize the minimum size of the key for the mechanism (whether this is
measured in bits or in bytes is mechanism-dependent)

 ulMaxKeySize the maximum size of the key for the mechanism (whether this is
measured in bits or in bytes is mechanism-dependent)

 flags bit flags specifying mechanism capabilities

For some mechanisms, the ulMinKeySize and ulMaxKeySize fields have meaningless values.

The following table defines the flags field:

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 29 of 149

Table 8, Mechanism Information Flags

Bit Flag Mask Meaning

CKF_HW 0x00000001 True if the mechanism is performed by
the device; false if the mechanism is
performed in software

CKF_ENCRYPT 0x00000100 True if the mechanism can be used with
C_EncryptInit

CKF_DECRYPT 0x00000200 True if the mechanism can be used with
C_DecryptInit

CKF_DIGEST 0x00000400 True if the mechanism can be used with
C_DigestInit

CKF_SIGN 0x00000800 True if the mechanism can be used with
C_SignInit

CKF_SIGN_RECOVER 0x00001000 True if the mechanism can be used with
C_SignRecoverInit

CKF_VERIFY 0x00002000 True if the mechanism can be used with
C_VerifyInit

CKF_VERIFY_RECOVER 0x00004000 True if the mechanism can be used with
C_VerifyRecoverInit

CKF_GENERATE 0x00008000 True if the mechanism can be used with
C_GenerateKey

CKF_GENERATE_KEY_PAIR 0x00010000 True if the mechanism can be used with
C_GenerateKeyPair

CKF_WRAP 0x00020000 True if the mechanism can be used with
C_WrapKey

CKF_UNWRAP 0x00040000 True if the mechanism can be used with
C_UnwrapKey

CKF_DERIVE 0x00080000 True if the mechanism can be used with
C_DeriveKey

CKF_EXTENSION 0x80000000 True if there is an extension to the
flags; false if no extensions. MUST be
false for this version.

CK_MECHANISM_INFO_PTR is a pointer to a CK_MECHANISM_INFO.

3.6 Function types

Cryptoki represents information about functions with the following data types:

 CK_RV

CK_RV is a value that identifies the return value of a Cryptoki function. It is defined as follows:

typedef CK_ULONG CK_RV;

Vendor defined values for this type may also be specified.

CKR_VENDOR_DEFINED

Section 5.1 defines the meaning of each CK_RV value. Return values CKR_VENDOR_DEFINED and
above are permanently reserved for token vendors. For interoperability, vendors should register their
return values through the PKCS process.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 30 of 149

 CK_NOTIFY

CK_NOTIFY is the type of a pointer to a function used by Cryptoki to perform notification callbacks. It is

defined as follows:

typedef CK_CALLBACK_FUNCTION(CK_RV, CK_NOTIFY)(

 CK_SESSION_HANDLE hSession,

 CK_NOTIFICATION event,

 CK_VOID_PTR pApplication

);

The arguments to a notification callback function have the following meanings:

 hSession The handle of the session performing the callback

 event The type of notification callback

 pApplication An application-defined value. This is the same value as was passed
to C_OpenSession to open the session performing the callback

 CK_C_XXX

Cryptoki also defines an entire family of other function pointer types. For each function C_XXX in the
Cryptoki API (see Section 4.12 for detailed information about each of them), Cryptoki defines a type
CK_C_XXX, which is a pointer to a function with the same arguments and return value as C_XXX has.
An appropriately-set variable of type CK_C_XXX may be used by an application to call the Cryptoki
function C_XXX.

 CK_FUNCTION_LIST; CK_FUNCTION_LIST_PTR;
CK_FUNCTION_LIST_PTR_PTR

CK_FUNCTION_LIST is a structure which contains a Cryptoki version and a function pointer to each

function in the Cryptoki API. It is defined as follows:

typedef struct CK_FUNCTION_LIST {

 CK_VERSION version;

 CK_C_Initialize C_Initialize;

 CK_C_Finalize C_Finalize;

 CK_C_GetInfo C_GetInfo;

 CK_C_GetFunctionList C_GetFunctionList;

 CK_C_GetSlotList C_GetSlotList;

 CK_C_GetSlotInfo C_GetSlotInfo;

 CK_C_GetTokenInfo C_GetTokenInfo;

 CK_C_GetMechanismList C_GetMechanismList;

 CK_C_GetMechanismInfo C_GetMechanismInfo;

 CK_C_InitToken C_InitToken;

 CK_C_InitPIN C_InitPIN;

 CK_C_SetPIN C_SetPIN;

 CK_C_OpenSession C_OpenSession;

 CK_C_CloseSession C_CloseSession;

 CK_C_CloseAllSessions C_CloseAllSessions;

 CK_C_GetSessionInfo C_GetSessionInfo;

 CK_C_GetOperationState C_GetOperationState;

 CK_C_SetOperationState C_SetOperationState;

 CK_C_Login C_Login;

 CK_C_Logout C_Logout;

 CK_C_CreateObject C_CreateObject;

 CK_C_CopyObject C_CopyObject;

 CK_C_DestroyObject C_DestroyObject;

 CK_C_GetObjectSize C_GetObjectSize;

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 31 of 149

 CK_C_GetAttributeValue C_GetAttributeValue;

 CK_C_SetAttributeValue C_SetAttributeValue;

 CK_C_FindObjectsInit C_FindObjectsInit;

 CK_C_FindObjects C_FindObjects;

 CK_C_FindObjectsFinal C_FindObjectsFinal;

 CK_C_EncryptInit C_EncryptInit;

 CK_C_Encrypt C_Encrypt;

 CK_C_EncryptUpdate C_EncryptUpdate;

 CK_C_EncryptFinal C_EncryptFinal;

 CK_C_DecryptInit C_DecryptInit;

 CK_C_Decrypt C_Decrypt;

 CK_C_DecryptUpdate C_DecryptUpdate;

 CK_C_DecryptFinal C_DecryptFinal;

 CK_C_DigestInit C_DigestInit;

 CK_C_Digest C_Digest;

 CK_C_DigestUpdate C_DigestUpdate;

 CK_C_DigestKey C_DigestKey;

 CK_C_DigestFinal C_DigestFinal;

 CK_C_SignInit C_SignInit;

 CK_C_Sign C_Sign;

 CK_C_SignUpdate C_SignUpdate;

 CK_C_SignFinal C_SignFinal;

 CK_C_SignRecoverInit C_SignRecoverInit;

 CK_C_SignRecover C_SignRecover;

 CK_C_VerifyInit C_VerifyInit;

 CK_C_Verify C_Verify;

 CK_C_VerifyUpdate C_VerifyUpdate;

 CK_C_VerifyFinal C_VerifyFinal;

 CK_C_VerifyRecoverInit C_VerifyRecoverInit;

 CK_C_VerifyRecover C_VerifyRecover;

 CK_C_DigestEncryptUpdate C_DigestEncryptUpdate;

 CK_C_DecryptDigestUpdate C_DecryptDigestUpdate;

 CK_C_SignEncryptUpdate C_SignEncryptUpdate;

 CK_C_DecryptVerifyUpdate C_DecryptVerifyUpdate;

 CK_C_GenerateKey C_GenerateKey;

 CK_C_GenerateKeyPair C_GenerateKeyPair;

 CK_C_WrapKey C_WrapKey;

 CK_C_UnwrapKey C_UnwrapKey;

 CK_C_DeriveKey C_DeriveKey;

 CK_C_SeedRandom C_SeedRandom;

 CK_C_GenerateRandom C_GenerateRandom;

 CK_C_GetFunctionStatus C_GetFunctionStatus;

 CK_C_CancelFunction C_CancelFunction;

 CK_C_WaitForSlotEvent C_WaitForSlotEvent;

} CK_FUNCTION_LIST;

Each Cryptoki library has a static CK_FUNCTION_LIST structure, and a pointer to it (or to a copy of it
which is also owned by the library) may be obtained by the C_GetFunctionList function (see Section
5.2). The value that this pointer points to can be used by an application to quickly find out where the
executable code for each function in the Cryptoki API is located. Every function in the Cryptoki API
MUST have an entry point defined in the Cryptoki library’s CK_FUNCTION_LIST structure. If a particular
function in the Cryptoki API is not supported by a library, then the function pointer for that function in the
library’s CK_FUNCTION_LIST structure should point to a function stub which simply returns

CKR_FUNCTION_NOT_SUPPORTED.

In this structure ‘version’ is the cryptoki specification version number. It should match the value of
‘cryptokiVersion’ returned in the CK_INFO structure.

An application may or may not be able to modify a Cryptoki library’s static CK_FUNCTION_LIST

structure. Whether or not it can, it should never attempt to do so.

CK_FUNCTION_LIST_PTR is a pointer to a CK_FUNCTION_LIST.

CK_FUNCTION_LIST_PTR_PTR is a pointer to a CK_FUNCTION_LIST_PTR.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 32 of 149

3.7 Locking-related types

The types in this section are provided solely for applications which need to access Cryptoki from multiple
threads simultaneously. Applications which will not do this need not use any of these types.

 CK_CREATEMUTEX

CK_CREATEMUTEX is the type of a pointer to an application-supplied function which creates a new
mutex object and returns a pointer to it. It is defined as follows:

typedef CK_CALLBACK_FUNCTION(CK_RV, CK_CREATEMUTEX)(

 CK_VOID_PTR_PTR ppMutex

);

Calling a CK_CREATEMUTEX function returns the pointer to the new mutex object in the location pointed
to by ppMutex. Such a function should return one of the following values:

CKR_OK, CKR_GENERAL_ERROR

CKR_HOST_MEMORY

 CK_DESTROYMUTEX

CK_DESTROYMUTEX is the type of a pointer to an application-supplied function which destroys an

existing mutex object. It is defined as follows:

typedef CK_CALLBACK_FUNCTION(CK_RV, CK_DESTROYMUTEX)(

 CK_VOID_PTR pMutex

);

The argument to a CK_DESTROYMUTEX function is a pointer to the mutex object to be destroyed. Such
a function should return one of the following values:

CKR_OK, CKR_GENERAL_ERROR

CKR_HOST_MEMORY

CKR_MUTEX_BAD

 CK_LOCKMUTEX and CK_UNLOCKMUTEX

CK_LOCKMUTEX is the type of a pointer to an application-supplied function which locks an existing
mutex object. CK_UNLOCKMUTEX is the type of a pointer to an application-supplied function which

unlocks an existing mutex object. The proper behavior for these types of functions is as follows:

 If a CK_LOCKMUTEX function is called on a mutex which is not locked, the calling thread obtains a
lock on that mutex and returns.

 If a CK_LOCKMUTEX function is called on a mutex which is locked by some thread other than the
calling thread, the calling thread blocks and waits for that mutex to be unlocked.

 If a CK_LOCKMUTEX function is called on a mutex which is locked by the calling thread, the
behavior of the function call is undefined.

 If a CK_UNLOCKMUTEX function is called on a mutex which is locked by the calling thread, that
mutex is unlocked and the function call returns. Furthermore:

o If exactly one thread was blocking on that particular mutex, then that thread stops blocking,
obtains a lock on that mutex, and its CK_LOCKMUTEX call returns.

o If more than one thread was blocking on that particular mutex, then exactly one of the
blocking threads is selected somehow. That lucky thread stops blocking, obtains a lock on
the mutex, and its CK_LOCKMUTEX call returns. All other threads blocking on that particular
mutex continue to block.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 33 of 149

 If a CK_UNLOCKMUTEX function is called on a mutex which is not locked, then the function call
returns the error code CKR_MUTEX_NOT_LOCKED.

 If a CK_UNLOCKMUTEX function is called on a mutex which is locked by some thread other than the
calling thread, the behavior of the function call is undefined.

CK_LOCKMUTEX is defined as follows:

typedef CK_CALLBACK_FUNCTION(CK_RV, CK_LOCKMUTEX)(

 CK_VOID_PTR pMutex

);

The argument to a CK_LOCKMUTEX function is a pointer to the mutex object to be locked. Such a
function should return one of the following values:

CKR_OK, CKR_GENERAL_ERROR

CKR_HOST_MEMORY,

CKR_MUTEX_BAD

CK_UNLOCKMUTEX is defined as follows:

typedef CK_CALLBACK_FUNCTION(CK_RV, CK_UNLOCKMUTEX)(

 CK_VOID_PTR pMutex

);

The argument to a CK_UNLOCKMUTEX function is a pointer to the mutex object to be unlocked. Such a
function should return one of the following values:

CKR_OK, CKR_GENERAL_ERROR

CKR_HOST_MEMORY

CKR_MUTEX_BAD

CKR_MUTEX_NOT_LOCKED

 CK_C_INITIALIZE_ARGS; CK_C_INITIALIZE_ARGS_PTR

CK_C_INITIALIZE_ARGS is a structure containing the optional arguments for the C_Initialize function.
For this version of Cryptoki, these optional arguments are all concerned with the way the library deals
with threads. CK_C_INITIALIZE_ARGS is defined as follows:

typedef struct CK_C_INITIALIZE_ARGS {

 CK_CREATEMUTEX CreateMutex;

 CK_DESTROYMUTEX DestroyMutex;

 CK_LOCKMUTEX LockMutex;

 CK_UNLOCKMUTEX UnlockMutex;

 CK_FLAGS flags;

 CK_VOID_PTR pReserved;

} CK_C_INITIALIZE_ARGS;

The fields of the structure have the following meanings:

 CreateMutex pointer to a function to use for creating mutex objects

 DestroyMutex pointer to a function to use for destroying mutex objects

 LockMutex pointer to a function to use for locking mutex objects

 UnlockMutex pointer to a function to use for unlocking mutex objects

 flags bit flags specifying options for C_Initialize; the flags are defined
below

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 34 of 149

 pReserved reserved for future use. Should be NULL_PTR for this version of
Cryptoki

The following table defines the flags field:

Table 9, C_Initialize Parameter Flags

Bit Flag Mask Meaning

CKF_LIBRARY_CANT_CREATE_OS_THREADS 0x00000001 True if application
threads which are
executing calls to
the library may not
use native
operating system
calls to spawn
new threads; false
if they may

CKF_OS_LOCKING_OK 0x00000002 True if the library
can use the native
operation system
threading model
for locking; false
otherwise

CK_C_INITIALIZE_ARGS_PTR is a pointer to a CK_C_INITIALIZE_ARGS.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 35 of 149

4 Objects
Cryptoki recognizes a number of classes of objects, as defined in the CK_OBJECT_CLASS data type.
An object consists of a set of attributes, each of which has a given value. Each attribute that an object
possesses has precisely one value. The following figure illustrates the high-level hierarchy of the
Cryptoki objects and some of the attributes they support:

Object

Class

Storage

Token
Private
Label
Modifiable

Hardware feature

Feature type

Mechanism

Mechanism type

Data

Application
Object Identifier
Value Certificate

Key

Domain
parameters

Mechanism type

Figure 1, Object Attribute Hierarchy

Cryptoki provides functions for creating, destroying, and copying objects in general, and for obtaining and
modifying the values of their attributes. Some of the cryptographic functions (e.g., C_GenerateKey) also

create key objects to hold their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains all required attributes,
and the attributes are always consistent with one another from the time the object is created. This
contrasts with some object-based paradigms where an object has no attributes other than perhaps a
class when it is created, and is uninitialized for some time. In Cryptoki, objects are always initialized.

Tables throughout most of Section 4 define each Cryptoki attribute in terms of the data type of the
attribute value and the meaning of the attribute, which may include a default initial value. Some of the
data types are defined explicitly by Cryptoki (e.g., CK_OBJECT_CLASS). Attribute values may also take
the following types:

 Byte array an arbitrary string (array) of CK_BYTEs

 Big integer a string of CK_BYTEs representing an unsigned integer of arbitrary
size, most-significant byte first (e.g., the integer 32768 is
represented as the 2-byte string 0x80 0x00)

 Local string an unpadded string of CK_CHARs (see Table 3) with no null-
termination

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 36 of 149

 RFC2279 string an unpadded string of CK_UTF8CHARs with no null-termination

A token can hold several identical objects, i.e., it is permissible for two or more objects to have exactly the

same values for all their attributes.

In most cases each type of object in the Cryptoki specification possesses a completely well-defined set of
Cryptoki attributes. Some of these attributes possess default values, and need not be specified when
creating an object; some of these default values may even be the empty string (“”). Nonetheless, the
object possesses these attributes. A given object has a single value for each attribute it possesses, even
if the attribute is a vendor-specific attribute whose meaning is outside the scope of Cryptoki.

In addition to possessing Cryptoki attributes, objects may possess additional vendor-specific attributes
whose meanings and values are not specified by Cryptoki.

4.1 Creating, modifying, and copying objects

All Cryptoki functions that create, modify, or copy objects take a template as one of their arguments,
where the template specifies attribute values. Cryptographic functions that create objects (see Section
5.13) may also contribute some additional attribute values themselves; which attributes have values
contributed by a cryptographic function call depends on which cryptographic mechanism is being
performed (see [PKCS11-Curr] and [PKCS11-Hist] for specification of mechanisms for PKCS #11). In
any case, all the required attributes supported by an object class that do not have default values MUST
be specified when an object is created, either in the template or by the function itself.

4.1.1 Creating objects

Objects may be created with the Cryptoki functions C_CreateObject (see Section 5.7), C_GenerateKey,
C_GenerateKeyPair, C_UnwrapKey, and C_DeriveKey (see Section 5.13). In addition, copying an
existing object (with the function C_CopyObject) also creates a new object, but we consider this type of

object creation separately in Section 4.1.3.

Attempting to create an object with any of these functions requires an appropriate template to be
supplied.

1. If the supplied template specifies a value for an invalid attribute, then the attempt should fail with the
error code CKR_ATTRIBUTE_TYPE_INVALID. An attribute is valid if it is either one of the attributes
described in the Cryptoki specification or an additional vendor-specific attribute supported by the
library and token.

2. If the supplied template specifies an invalid value for a valid attribute, then the attempt should fail with
the error code CKR_ATTRIBUTE_VALUE_INVALID. The valid values for Cryptoki attributes are
described in the Cryptoki specification.

3. If the supplied template specifies a value for a read-only attribute, then the attempt should fail with the
error code CKR_ATTRIBUTE_READ_ONLY. Whether or not a given Cryptoki attribute is read-only is
explicitly stated in the Cryptoki specification; however, a particular library and token may be even
more restrictive than Cryptoki specifies. In other words, an attribute which Cryptoki says is not read-
only may nonetheless be read-only under certain circumstances (i.e., in conjunction with some
combinations of other attributes) for a particular library and token. Whether or not a given non-
Cryptoki attribute is read-only is obviously outside the scope of Cryptoki.

4. If the attribute values in the supplied template, together with any default attribute values and any
attribute values contributed to the object by the object-creation function itself, are insufficient to fully
specify the object to create, then the attempt should fail with the error code
CKR_TEMPLATE_INCOMPLETE.

5. If the attribute values in the supplied template, together with any default attribute values and any
attribute values contributed to the object by the object-creation function itself, are inconsistent, then
the attempt should fail with the error code CKR_TEMPLATE_INCONSISTENT. A set of attribute
values is inconsistent if not all of its members can be satisfied simultaneously by the token, although

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 37 of 149

each value individually is valid in Cryptoki. One example of an inconsistent template would be using a
template which specifies two different values for the same attribute. Another example would be trying
to create a secret key object with an attribute which is appropriate for various types of public keys or
private keys, but not for secret keys. A final example would be a template with an attribute that
violates some token specific requirement. Note that this final example of an inconsistent template is
token-dependent—on a different token, such a template might not be inconsistent.

6. If the supplied template specifies the same value for a particular attribute more than once (or the
template specifies the same value for a particular attribute that the object-creation function itself
contributes to the object), then the behavior of Cryptoki is not completely specified. The attempt to
create an object can either succeed—thereby creating the same object that would have been created
if the multiply-specified attribute had only appeared once—or it can fail with error code
CKR_TEMPLATE_INCONSISTENT. Library developers are encouraged to make their libraries
behave as though the attribute had only appeared once in the template; application developers are
strongly encouraged never to put a particular attribute into a particular template more than once.

If more than one of the situations listed above applies to an attempt to create an object, then the error
code returned from the attempt can be any of the error codes from above that applies.

4.1.2 Modifying objects

Objects may be modified with the Cryptoki function C_SetAttributeValue (see Section 5.7). The
template supplied to C_SetAttributeValue can contain new values for attributes which the object already
possesses; values for attributes which the object does not yet possess; or both.

Some attributes of an object may be modified after the object has been created, and some may not. In
addition, attributes which Cryptoki specifies are modifiable may actually not be modifiable on some
tokens. That is, if a Cryptoki attribute is described as being modifiable, that really means only that it is
modifiable insofar as the Cryptoki specification is concerned. A particular token might not actually
support modification of some such attributes. Furthermore, whether or not a particular attribute of an
object on a particular token is modifiable might depend on the values of certain attributes of the object.
For example, a secret key object’s CKA_SENSITIVE attribute can be changed from CK_FALSE to
CK_TRUE, but not the other way around.

All the scenarios in Section 4.1.1—and the error codes they return—apply to modifying objects with
C_SetAttributeValue, except for the possibility of a template being incomplete.

4.1.3 Copying objects

Unless an object's CKA_COPYABLE (see table 21) attribute is set to CK_FALSE, it may be copied with
the Cryptoki function C_CopyObject (see Section 5.7). In the process of copying an object,
C_CopyObject also modifies the attributes of the newly-created copy according to an application-

supplied template.

The Cryptoki attributes which can be modified during the course of a C_CopyObject operation are the
same as the Cryptoki attributes which are described as being modifiable, plus the three special attributes
CKA_TOKEN, CKA_PRIVATE, CKA_MODIFIABLE and CKA_DESTROYABLE. To be more precise,
these attributes are modifiable during the course of a C_CopyObject operation insofar as the Cryptoki
specification is concerned. A particular token might not actually support modification of some such
attributes during the course of a C_CopyObject operation. Furthermore, whether or not a particular
attribute of an object on a particular token is modifiable during the course of a C_CopyObject operation
might depend on the values of certain attributes of the object. For example, a secret key object’s
CKA_SENSITIVE attribute can be changed from CK_FALSE to CK_TRUE during the course of a
C_CopyObject operation, but not the other way around.

If the CKA_COPYABLE attribute of the object to be copied is set to CK_FALSE, C_CopyObject returns
CKR_ACTION_PROHIBITED. Otherwise, the scenarios described in 10.1.1 - and the error codes they
return - apply to copying objects with C_CopyObject, except for the possibility of a template being
incomplete.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 38 of 149

4.2 Common attributes

Table 10, Common footnotes for object attribute tables

1 MUST be specified when object is created with C_CreateObject.
2
 MUST not be specified when object is created with C_CreateObject.

3
 MUST be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

4
 MUST not be specified when object is generated with C_GenerateKey or

C_GenerateKeyPair.
5
 MUST be specified when object is unwrapped with C_UnwrapKey.

6
 MUST not be specified when object is unwrapped with C_UnwrapKey.

7
 Cannot be revealed if object has its CKA_SENSITIVE attribute set to CK_TRUE or its

CKA_EXTRACTABLE attribute set to CK_FALSE.
8
 May be modified after object is created with a C_SetAttributeValue call, or in the process of

copying object with a C_CopyObject call. However, it is possible that a particular token may
not permit modification of the attribute during the course of a C_CopyObject call.
9
 Default value is token-specific, and may depend on the values of other attributes.

10
Can only be set to CK_TRUE by the SO user.

11
 Attribute cannot be changed once set to CK_TRUE. It becomes a read only attribute.

12
 Attribute cannot be changed once set to CK_FALSE. It becomes a read only attribute.

Table 11, Common Object Attributes

Attribute Data Type Meaning

CKA_CLASS
1
 CK_OBJECT_CLASS Object class (type)

Refer to Table 10 for footnotes

The above table defines the attributes common to all objects.

4.3 Hardware Feature Objects

4.3.1 Definitions

This section defines the object class CKO_HW_FEATURE for type CK_OBJECT_CLASS as used in the
CKA_CLASS attribute of objects.

4.3.2 Overview

Hardware feature objects (CKO_HW_FEATURE) represent features of the device. They provide an easily

expandable method for introducing new value-based features to the Cryptoki interface.

When searching for objects using C_FindObjectsInit and C_FindObjects, hardware feature objects are
not returned unless the CKA_CLASS attribute in the template has the value CKO_HW_FEATURE. This
protects applications written to previous versions of Cryptoki from finding objects that they do not
understand.

Table 12, Hardware Feature Common Attributes

Attribute Data Type Meaning

CKA_HW_FEATURE_TYPE
1
 CK_HW_FEATURE_TYPE Hardware feature (type)

-
Refer to Table 10 for footnotes

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 39 of 149

4.3.3 Clock

4.3.3.1 Definition

The CKA_HW_FEATURE_TYPE attribute takes the value CKH_CLOCK of type CK_HW_FEATURE.

4.3.3.2 Description

Clock objects represent real-time clocks that exist on the device. This represents the same clock source
as the utcTime field in the CK_TOKEN_INFO structure.

Table 13, Clock Object Attributes

Attribute Data Type Meaning

CKA_VALUE CK_CHAR[16] Current time as a character-string of length 16,
represented in the format YYYYMMDDhhmmssxx (4
characters for the year; 2 characters each for the
month, the day, the hour, the minute, and the second;
and 2 additional reserved ‘0’ characters).

The CKA_VALUE attribute may be set using the C_SetAttributeValue function if permitted by the
device. The session used to set the time MUST be logged in. The device may require the SO to be the
user logged in to modify the time value. C_SetAttributeValue will return the error

CKR_USER_NOT_LOGGED_IN to indicate that a different user type is required to set the value.

4.3.4 Monotonic Counter Objects

4.3.4.1 Definition

The CKA_HW_FEATURE_TYPE attribute takes the value CKH_MONOTONIC_COUNTER of type
CK_HW_FEATURE.

4.3.4.2 Description

Monotonic counter objects represent hardware counters that exist on the device. The counter is
guaranteed to increase each time its value is read, but not necessarily by one. This might be used by an
application for generating serial numbers to get some assurance of uniqueness per token.

Table 14, Monotonic Counter Attributes

Attribute Data Type Meaning

CKA_RESET_ON_INIT
1
 CK_BBOOL The value of the counter will reset to a

previously returned value if the token is
initialized using C_InitToken.

CKA_HAS_RESET
1
 CK_BBOOL The value of the counter has been reset at

least once at some point in time.

CKA_VALUE
1
 Byte Array The current version of the monotonic counter.

The value is returned in big endian order.

1
Read Only

The CKA_VALUE attribute may not be set by the client.

4.3.5 User Interface Objects

4.3.5.1 Definition

The CKA_HW_FEATURE_TYPE attribute takes the value CKH_USER_INTERFACE of type
CK_HW_FEATURE.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 40 of 149

4.3.5.2 Description

User interface objects represent the presentation capabilities of the device.

Table 15, User Interface Object Attributes

Attribute Data type Meaning

CKA_PIXEL_X CK_ULONG Screen resolution (in pixels) in X-axis
(e.g. 1280)

CKA_PIXEL_Y CK_ULONG Screen resolution (in pixels) in Y-axis
(e.g. 1024)

CKA_RESOLUTION CK_ULONG DPI, pixels per inch

CKA_CHAR_ROWS CK_ULONG For character-oriented displays; number
of character rows (e.g. 24)

CKA_CHAR_COLUMNS CK_ULONG For character-oriented displays: number
of character columns (e.g. 80). If display
is of proportional-font type, this is the
width of the display in “em”-s (letter “M”),
see CC/PP Struct.

CKA_COLOR CK_BBOOL Color support

CKA_BITS_PER_PIXEL CK_ULONG The number of bits of color or grayscale
information per pixel.

CKA_CHAR_SETS RFC 2279
string

String indicating supported character
sets, as defined by IANA MIBenum sets
(www.iana.org). Supported character
sets are separated with “;”. E.g. a token
supporting iso-8859-1 and US-ASCII
would set the attribute value to “4;3”.

CKA_ENCODING_METHODS RFC 2279
string

String indicating supported content
transfer encoding methods, as defined by
IANA (www.iana.org). Supported
methods are separated with “;”. E.g. a
token supporting 7bit, 8bit and base64
could set the attribute value to
“7bit;8bit;base64”.

CKA_MIME_TYPES RFC 2279
string

String indicating supported (presentable)
MIME-types, as defined by IANA
(www.iana.org). Supported types are
separated with “;”. E.g. a token
supporting MIME types "a/b", "a/c" and
"a/d" would set the attribute value to
“a/b;a/c;a/d”.

The selection of attributes, and associated data types, has been done in an attempt to stay as aligned
with RFC 2534 and CC/PP Struct as possible. The special value CK_UNAVAILABLE_INFORMATION
may be used for CK_ULONG-based attributes when information is not available or applicable.

None of the attribute values may be set by an application.

The value of the CKA_ENCODING_METHODS attribute may be used when the application needs to

send MIME objects with encoded content to the token.

4.4 Storage Objects

This is not an object class; hence no CKO_ definition is required. It is a category of object classes with
common attributes for the object classes that follow.

http://www.iana.org/
http://www.iana.org/
http://www.iana.org/

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 41 of 149

Table 16, Common Storage Object Attributes

Attribute Data Type Meaning

CKA_TOKEN CK_BBOOL CK_TRUE if object is a token object;
CK_FALSE if object is a session object.
Default is CK_FALSE.

CKA_PRIVATE CK_BBOOL CK_TRUE if object is a private object;
CK_FALSE if object is a public object.
Default value is token-specific, and may
depend on the values of other attributes of
the object.

CKA_MODIFIABLE CK_BBOOL CK_TRUE if object can be modified
Default is CK_TRUE.

CKA_LABEL RFC2279 string Description of the object (default empty).

CKA_COPYABLE CK_BBOOL CK_TRUE if object can be copied using
C_CopyObject. Defaults to CK_TRUE.
Can’t be set to TRUE once it is set to
FALSE.

CKA_DESTROYABLE CK_BBOOL CK_TRUE if the object can be destroyed
using C_DestroyObject. Default is
CK_TRUE.

Only the CKA_LABEL attribute can be modified after the object is created. (The CKA_TOKEN,
CKA_PRIVATE, and CKA_MODIFIABLE attributes can be changed in the process of copying an object,

however.)

The CKA_TOKEN attribute identifies whether the object is a token object or a session object.

When the CKA_PRIVATE attribute is CK_TRUE, a user may not access the object until the user has

been authenticated to the token.

The value of the CKA_MODIFIABLE attribute determines whether or not an object is read-only.

The CKA_LABEL attribute is intended to assist users in browsing.

The value of the CKA_COPYABLE attribute determines whether or not an object can be copied. This
attribute can be used in conjunction with CKA_MODIFIABLE to prevent changes to the permitted usages
of keys and other objects.

The value of the CKA_DESTROYABLE attribute determines whether the object can be destroyed using
C_DestroyObject.

4.5 Data objects

4.5.1 Definitions

This section defines the object class CKO_DATA for type CK_OBJECT_CLASS as used in the
CKA_CLASS attribute of objects.

4.5.2 Overview

Data objects (object class CKO_DATA) hold information defined by an application. Other than providing
access to it, Cryptoki does not attach any special meaning to a data object. The following table lists the
attributes supported by data objects, in addition to the common attributes defined for this object class:

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 42 of 149

Table 17, Data Object Attributes

Attribute Data type Meaning

CKA_APPLICATION RFC2279
string

Description of the application that manages the
object (default empty)

CKA_OBJECT_ID Byte Array DER-encoding of the object identifier indicating the
data object type (default empty)

CKA_VALUE Byte array Value of the object (default empty)

The CKA_APPLICATION attribute provides a means for applications to indicate ownership of the data
objects they manage. Cryptoki does not provide a means of ensuring that only a particular application has
access to a data object, however.

The CKA_OBJECT_ID attribute provides an application independent and expandable way to indicate the
type of the data object value. Cryptoki does not provide a means of insuring that the data object identifier
matches the data value.

The following is a sample template containing attributes for creating a data object:

CK_OBJECT_CLASS class = CKO_DATA;

CK_UTF8CHAR label[] = “A data object”;

CK_UTF8CHAR application[] = “An application”;

CK_BYTE data[] = “Sample data”;

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_APPLICATION, application, sizeof(application)-1},

 {CKA_VALUE, data, sizeof(data)}

};

4.6 Certificate objects

4.6.1 Definitions

This section defines the object class CKO_CERTIFICATE for type CK_OBJECT_CLASS as used in the
CKA_CLASS attribute of objects.

4.6.2 Overview

Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute certificates. Other than
providing access to certificate objects, Cryptoki does not attach any special meaning to certificates. The
following table defines the common certificate object attributes, in addition to the common attributes
defined for this object class:

Table 18, Common Certificate Object Attributes

Attribute Data type Meaning

CKA_CERTIFICATE_TYPE
1
 CK_CERTIFICATE_TYPE Type of certificate

CKA_TRUSTED
10

CK_BBOOL The certificate can
be trusted for the
application that it
was created.

CKA_CERTIFICATE_CATEGORY CKA_CERTIFICATE_CATEGORY (default
CK_CERTIFICATE_
CATEGORY_UNSP
ECIFIED)

CKA_CHECK_VALUE Byte array Checksum

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 43 of 149

Attribute Data type Meaning

CKA_START_DATE CK_DATE Start date for the
certificate (default
empty)

CKA_END_DATE CK_DATE End date for the
certificate (default
empty)

CKA_PUBLIC_KEY_INFO Byte Array DER-encoding of
the
SubjectPublicKeyInf
o for the public key
contained in this
certificate (default
empty)

-
Refer to Table 10 for footnotes

Cryptoki does not enforce the relationship of the CKA_PUBLIC_KEY_INFO to the public key in the
certificate, but does recommend that the key be extracted from the certificate to create this value.

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is created. This version of

Cryptoki supports the following certificate types:

 X.509 public key certificate

 WTLS public key certificate

 X.509 attribute certificate

The CKA_TRUSTED attribute cannot be set to CK_TRUE by an application. It MUST be set by a token

initialization application or by the token’s SO. Trusted certificates cannot be modified.

The CKA_CERTIFICATE_CATEGORY attribute is used to indicate if a stored certificate is a user
certificate for which the corresponding private key is available on the token (“token user”), a CA certificate
(“authority”), or another end-entity certificate (“other entity”). This attribute may not be modified after an
object is created.

The CKA_CERTIFICATE_CATEGORY and CKA_TRUSTED attributes will together be used to map to

the categorization of the certificates.

CKA_CHECK_VALUE: The value of this attribute is derived from the certificate by taking the first three

bytes of the SHA-1 hash of the certificate object’s CKA_VALUE attribute.

The CKA_START_DATE and CKA_END_DATE attributes are for reference only; Cryptoki does not
attach any special meaning to them. When present, the application is responsible to set them to values
that match the certificate’s encoded “not before” and “not after” fields (if any).

4.6.3 X.509 public key certificate objects

X.509 certificate objects (certificate type CKC_X_509) hold X.509 public key certificates. The following
table defines the X.509 certificate object attributes, in addition to the common attributes defined for this
object class:

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 44 of 149

Table 19, X.509 Certificate Object Attributes

Attribute Data type Meaning

CKA_SUBJECT
1
 Byte array DER-encoding of the certificate

subject name

CKA_ID Byte array Key identifier for public/private key
pair (default empty)

CKA_ISSUER Byte array DER-encoding of the certificate issuer
name (default empty)

CKA_SERIAL_NUMBER Byte array DER-encoding of the certificate serial
number (default empty)

CKA_VALUE
2
 Byte array BER-encoding of the certificate

CKA_URL
3
 RFC2279

string
If not empty this attribute gives the
URL where the complete certificate
can be obtained (default empty)

CKA_HASH_OF_SUBJECT_PUB
LIC_KEY

4

Byte array Hash of the subject public key (default
empty). Hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM

CKA_HASH_OF_ISSUER_PUBLI
C_KEY

4

Byte array Hash of the issuer public key (default
empty). Hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM

CKA_JAVA_MIDP_SECURITY_D
OMAIN

CK_JAVA_
MIDP_SEC
URITY_DO
MAIN

Java MIDP security domain. (default
CK_SECURITY_DOMAIN_UNSPECI
FIED)

CKA_NAME_HASH_ALGORITH
M

CK_MECH
ANISM_TY
PE

Defines the mechanism used to
calculate
CKA_HASH_OF_SUBJECT_PUBLIC
_KEY and
CKA_HASH_OF_ISSUER_PUBLIC_K
EY. If the attribute is not present then
the type defaults to SHA-1.

1
MUST be specified when the object is created.

2
MUST be specified when the object is created. MUST be non-empty if CKA_URL is empty.

3
MUST be non-empty if CKA_VALUE is empty.

4
Can only be empty if CKA_URL is empty.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be modified after the

object is created.

The CKA_ID attribute is intended as a means of distinguishing multiple public-key/private-key pairs held
by the same subject (whether stored in the same token or not). (Since the keys are distinguished by
subject name as well as identifier, it is possible that keys for different subjects may have the same
CKA_ID value without introducing any ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier for a certificate will
be the same as those for the corresponding public and private keys (though it is not required that all be
stored in the same token). However, Cryptoki does not enforce this association, or even the uniqueness
of the key identifier for a given subject; in particular, an application may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with PKCS #7 and
Privacy Enhanced Mail (RFC1421). Note that with the version 3 extensions to X.509 certificates, the key
identifier may be carried in the certificate. It is intended that the CKA_ID value be identical to the key

identifier in such a certificate extension, although this will not be enforced by Cryptoki.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 45 of 149

The CKA_URL attribute enables the support for storage of the URL where the certificate can be found
instead of the certificate itself. Storage of a URL instead of the complete certificate is often used in mobile
environments.

The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and CKA_HASH_OF_ISSUER_PUBLIC_KEY
attributes are used to store the hashes of the public keys of the subject and the issuer. They are
particularly important when only the URL is available to be able to correlate a certificate with a private key
and when searching for the certificate of the issuer. The hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM.

The CKA_JAVA_MIDP_SECURITY_DOMAIN attribute associates a certificate with a Java MIDP security

domain.

The following is a sample template for creating an X.509 certificate object:

CK_OBJECT_CLASS class = CKO_CERTIFICATE;

CK_CERTIFICATE_TYPE certType = CKC_X_509;

CK_UTF8CHAR label[] = “A certificate object”;

CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK_BYTE certificate[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_SUBJECT, subject, sizeof(subject)},

 {CKA_ID, id, sizeof(id)},

 {CKA_VALUE, certificate, sizeof(certificate)}

};

4.6.4 WTLS public key certificate objects

WTLS certificate objects (certificate type CKC_WTLS) hold WTLS public key certificates. The following
table defines the WTLS certificate object attributes, in addition to the common attributes defined for this
object class.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 46 of 149

Table 20: WTLS Certificate Object Attributes

Attribute Data type Meaning

CKA_SUBJECT
1
 Byte array WTLS-encoding (Identifier type) of

the certificate subject

CKA_ISSUER Byte array WTLS-encoding (Identifier type) of
the certificate issuer (default empty)

CKA_VALUE
2
 Byte array WTLS-encoding of the certificate

CKA_URL
3
 RFC2279

string
If not empty this attribute gives the
URL where the complete certificate
can be obtained

CKA_HASH_OF_SUBJECT_PU
BLIC_KEY

4

Byte array SHA-1 hash of the subject public key
(default empty). Hash algorithm is
defined by
CKA_NAME_HASH_ALGORITHM

CKA_HASH_OF_ISSUER_PUB
LIC_KEY

4

Byte array SHA-1 hash of the issuer public key
(default empty). Hash algorithm is
defined by
CKA_NAME_HASH_ALGORITHM

CKA_NAME_HASH_ALGORITH
M

CK_MECHANI
SM_TYPE

Defines the mechanism used to
calculate
CKA_HASH_OF_SUBJECT_PUBLIC
_KEY and
CKA_HASH_OF_ISSUER_PUBLIC_
KEY. If the attribute is not present
then the type defaults to SHA-1.

1
MUST be specified when the object is created. Can only be empty if CKA_VALUE is empty.

2
MUST be specified when the object is created. MUST be non-empty if CKA_URL is empty.

3
MUST be non-empty if CKA_VALUE is empty.

4
Can only be empty if CKA_URL is empty.

Only the CKA_ISSUER attribute may be modified after the object has been created.

The encoding for the CKA_SUBJECT, CKA_ISSUER, and CKA_VALUE attributes can be found in

[WTLS] (see References).

The CKA_URL attribute enables the support for storage of the URL where the certificate can be found
instead of the certificate itself. Storage of a URL instead of the complete certificate is often used in mobile
environments.

The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and CKA_HASH_OF_ISSUER_PUBLIC_KEY
attributes are used to store the hashes of the public keys of the subject and the issuer. They are
particularly important when only the URL is available to be able to correlate a certificate with a private key
and when searching for the certificate of the issuer. The hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM.

The following is a sample template for creating a WTLS certificate object:

CK_OBJECT_CLASS class = CKO_CERTIFICATE;

CK_CERTIFICATE_TYPE certType = CKC_WTLS;

CK_UTF8CHAR label[] = “A certificate object”;

CK_BYTE subject[] = {...};

CK_BYTE certificate[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] =

{

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 47 of 149

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_SUBJECT, subject, sizeof(subject)},

 {CKA_VALUE, certificate, sizeof(certificate)}

};

4.6.5 X.509 attribute certificate objects

X.509 attribute certificate objects (certificate type CKC_X_509_ATTR_CERT) hold X.509 attribute
certificates. The following table defines the X.509 attribute certificate object attributes, in addition to the
common attributes defined for this object class:

Table 21, X.509 Attribute Certificate Object Attributes

Attribute Data Type Meaning

CKA_OWNER
1
 Byte Array DER-encoding of the attribute certificate's subject

field. This is distinct from the CKA_SUBJECT
attribute contained in CKC_X_509 certificates
because the ASN.1 syntax and encoding are
different.

CKA_AC_ISSUER Byte Array DER-encoding of the attribute certificate's issuer
field. This is distinct from the CKA_ISSUER
attribute contained in CKC_X_509 certificates
because the ASN.1 syntax and encoding are
different. (default empty)

CKA_SERIAL_NUMBER Byte Array DER-encoding of the certificate serial number.
(default empty)

CKA_ATTR_TYPES Byte Array BER-encoding of a sequence of object identifier
values corresponding to the attribute types
contained in the certificate. When present, this field
offers an opportunity for applications to search for a
particular attribute certificate without fetching and
parsing the certificate itself. (default empty)

CKA_VALUE
1
 Byte Array BER-encoding of the certificate.

1
MUST be specified when the object is created

Only the CKA_AC_ISSUER, CKA_SERIAL_NUMBER and CKA_ATTR_TYPES attributes may be

modified after the object is created.

The following is a sample template for creating an X.509 attribute certificate object:

CK_OBJECT_CLASS class = CKO_CERTIFICATE;

CK_CERTIFICATE_TYPE certType = CKC_X_509_ATTR_CERT;

CK_UTF8CHAR label[] = "An attribute certificate object";

CK_BYTE owner[] = {...};

CK_BYTE certificate[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_OWNER, owner, sizeof(owner)},

 {CKA_VALUE, certificate, sizeof(certificate)}

};

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 48 of 149

4.7 Key objects

4.7.1 Definitions

There is no CKO_ definition for the base key object class, only for the key types derived from it.

This section defines the object class CKO_PUBLIC_KEY, CKO_PRIVATE_KEY and
CKO_SECRET_KEY for type CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.

4.7.2 Overview

Key objects hold encryption or authentication keys, which can be public keys, private keys, or secret
keys. The following common footnotes apply to all the tables describing attributes of keys:

The following table defines the attributes common to public key, private key and secret key classes, in
addition to the common attributes defined for this object class:

Table 22, Common Key Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE
1,5

 CK_KEY_TYPE Type of key

CKA_ID
8
 Byte array Key identifier for key (default empty)

CKA_START_DATE
8
 CK_DATE Start date for the key (default empty)

CKA_END_DATE
8
 CK_DATE End date for the key (default empty)

CKA_DERIVE
8
 CK_BBOOL CK_TRUE if key supports key derivation

(i.e., if other keys can be derived from
this one (default CK_FALSE)

CKA_LOCAL
2,4,6

 CK_BBOOL CK_TRUE only if key was either

 generated locally (i.e., on the token)
with a C_GenerateKey or
C_GenerateKeyPair call

 created with a C_CopyObject call
as a copy of a key which had its
CKA_LOCAL attribute set to
CK_TRUE

CKA_KEY_GEN_
MECHANISM

2,4,6

CK_MECHANISM
_TYPE

Identifier of the mechanism used to
generate the key material.

CKA_ALLOWED_MECHANI
SMS

CK_MECHANISM
_TYPE _PTR,
pointer to a
CK_MECHANISM
_TYPE array

A list of mechanisms allowed to be used
with this key. The number of
mechanisms in the array is the
ulValueLen component of the attribute
divided by the size

of CK_MECHANISM_TYPE.

-
Refer to Table 10 for footnotes

The CKA_ID field is intended to distinguish among multiple keys. In the case of public and private keys,
this field assists in handling multiple keys held by the same subject; the key identifier for a public key and
its corresponding private key should be the same. The key identifier should also be the same as for the
corresponding certificate, if one exists. Cryptoki does not enforce these associations, however. (See
Section 4.6 for further commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.

Note that the CKA_START_DATE and CKA_END_DATE attributes are for reference only; Cryptoki does
not attach any special meaning to them. In particular, it does not restrict usage of a key according to the
dates; doing this is up to the application.

The CKA_DERIVE attribute has the value CK_TRUE if and only if it is possible to derive other keys from

the key.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 49 of 149

The CKA_LOCAL attribute has the value CK_TRUE if and only if the value of the key was originally
generated on the token by a C_GenerateKey or C_GenerateKeyPair call.

The CKA_KEY_GEN_MECHANISM attribute identifies the key generation mechanism used to generate
the key material. It contains a valid value only if the CKA_LOCAL attribute has the value CK_TRUE. If
CKA_LOCAL has the value CK_FALSE, the value of the attribute is
CK_UNAVAILABLE_INFORMATION.

4.8 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. The following table defines the

attributes common to all public keys, in addition to the common attributes defined for this object class:

Table 23, Common Public Key Attributes

Attribute Data type Meaning

CKA_SUBJECT
8
 Byte array DER-encoding of the key subject

name (default empty)

CKA_ENCRYPT
8
 CK_BBOOL CK_TRUE if key supports

encryption
9

CKA_VERIFY
8
 CK_BBOOL CK_TRUE if key supports verification

where the signature is an appendix
to the data

9

CKA_VERIFY_RECOVER
8
 CK_BBOOL CK_TRUE if key supports verification

where the data is recovered from the
signature

9

CKA_WRAP
8
 CK_BBOOL CK_TRUE if key supports wrapping

(i.e., can be used to wrap other
keys)

9

CKA_TRUSTED
10

CK_BBOOL The key can be trusted for the
application that it was created.

The wrapping key can be used to
wrap keys with
CKA_WRAP_WITH_TRUSTED set
to CK_TRUE.

CKA_WRAP_TEMPLATE CK_ATTRIBUTE_PTR For wrapping keys. The attribute
template to match against any keys
wrapped using this wrapping key.
Keys that do not match cannot be
wrapped. The number of attributes in
the array is the ulValueLen
component of the attribute divided by
the size of CK_ATTRIBUTE.

CKA_PUBLIC_KEY_INFO Byte array DER-encoding of the
SubjectPublicKeyInfo for this public
key. (MAY be empty, DEFAULT
derived from the underlying public
key data)

-
Refer to Table 10 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier for a public key will
be the same as those for the corresponding certificate and private key. However, Cryptoki does not
enforce this, and it is not required that the certificate and private key also be stored on the token.

To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS #11 attributes for

public keys, use the following table.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 50 of 149

Table 24, Mapping of X.509 key usage flags to Cryptoki attributes for public keys

The
value
of the
CKA_
PUBLI
C_KE
Y_INF
O
attribut
e is
the
DER

encoded value of SubjectPublicKeyInfo:

 SubjectPublicKeyInfo ::= SEQUENCE {

 algorithm AlgorithmIdentifier,

 subjectPublicKey BIT_STRING }

The encodings for the subjectPublicKey field are specified in the description of the public key types in the
appropriate [PKCS11-Curr] document for the key types defined within this specification.

4.9 Private key objects

Private key objects (object class CKO_PRIVATE_KEY) hold private keys. The following table defines the

attributes common to all private keys, in addition to the common attributes defined for this object class:

Table 25, Common Private Key Attributes

Attribute Data type Meaning

CKA_SUBJECT
8
 Byte array DER-encoding of certificate

subject name (default empty)

CKA_SENSITIVE
8,11

 CK_BBOOL CK_TRUE if key is sensitive
9

CKA_DECRYPT
8
 CK_BBOOL CK_TRUE if key supports

decryption
9

CKA_SIGN
8
 CK_BBOOL CK_TRUE if key supports

signatures where the signature is
an appendix to the data

9

CKA_SIGN_RECOVER
8
 CK_BBOOL CK_TRUE if key supports

signatures where the data can be
recovered from the signature

9

CKA_UNWRAP
8
 CK_BBOOL CK_TRUE if key supports

unwrapping (i.e., can be used to
unwrap other keys)

9

CKA_EXTRACTABLE
8,12

 CK_BBOOL CK_TRUE if key is extractable
and can be wrapped

 9

CKA_ALWAYS_SENSITIVE
2,4,6

 CK_BBOOL CK_TRUE if key has always had
the CKA_SENSITIVE attribute set
to CK_TRUE

CKA_NEVER_EXTRACTABLE
2,4,6

 CK_BBOOL CK_TRUE if key has never had
the CKA_EXTRACTABLE
attribute set to CK_TRUE

CKA_WRAP_WITH_TRUSTED
11

 CK_BBOOL CK_TRUE if the key can only be
wrapped with a wrapping key that
has CKA_TRUSTED set to

Key usage flags for public keys in X.509
public key certificates

Corresponding cryptoki attributes for
public keys.

dataEncipherment CKA_ENCRYPT

digitalSignature, keyCertSign, cRLSign CKA_VERIFY

digitalSignature, keyCertSign, cRLSign CKA_VERIFY_RECOVER

keyAgreement CKA_DERIVE

keyEncipherment CKA_WRAP

nonRepudiation CKA_VERIFY

nonRepudiation CKA_VERIFY_RECOVER

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 51 of 149

Attribute Data type Meaning

CK_TRUE.

Default is CK_FALSE.

CKA_UNWRAP_TEMPLATE CK_ATTRIBUTE_PTR For wrapping keys. The attribute
template to apply to any keys
unwrapped using this wrapping
key. Any user supplied template
is applied after this template as if
the object has already been
created. The number of attributes
in the array is the ulValueLen
component of the attribute
divided by the size of

CK_ATTRIBUTE.

CKA_ALWAYS_AUTHENTICATE CK_BBOOL If CK_TRUE, the user has to
supply the PIN for each use (sign
or decrypt) with the key. Default
is CK_FALSE.

CKA_PUBLIC_KEY_INFO
8
 Byte Array DER-encoding of the

SubjectPublicKeyInfo for the
associated public key (MAY be
empty; DEFAULT derived from
the underlying private key data;
MAY be manually set for specific
key types; if set; MUST be
consistent with the underlying
private key data)

-
Refer to Table 10 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier for a private key
will be the same as those for the corresponding certificate and public key. However, this is not enforced
by Cryptoki, and it is not required that the certificate and public key also be stored on the token.

If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE attribute is CK_FALSE,
then certain attributes of the private key cannot be revealed in plaintext outside the token. Which
attributes these are is specified for each type of private key in the attribute table in the section describing
that type of key.

The CKA_ALWAYS_AUTHENTICATE attribute can be used to force re-authentication (i.e. force the user
to provide a PIN) for each use of a private key. “Use” in this case means a cryptographic operation such
as sign or decrypt. This attribute may only be set to CK_TRUE when CKA_PRIVATE is also CK_TRUE.

Re-authentication occurs by calling C_Login with userType set to CKU_CONTEXT_SPECIFIC
immediately after a cryptographic operation using the key has been initiated (e.g. after C_SignInit). In
this call, the actual user type is implicitly given by the usage requirements of the active key. If C_Login
returns CKR_OK the user was successfully authenticated and this sets the active key in an authenticated
state that lasts until the cryptographic operation has successfully or unsuccessfully been completed (e.g.
by C_Sign, C_SignFinal,..). A return value CKR_PIN_INCORRECT from C_Login means that the user
was denied permission to use the key and continuing the cryptographic operation will result in a behavior
as if C_Login had not been called. In both of these cases the session state will remain the same,
however repeated failed re-authentication attempts may cause the PIN to be locked. C_Login returns in
this case CKR_PIN_LOCKED and this also logs the user out from the token. Failing or omitting to re-
authenticate when CKA_ALWAYS_AUTHENTICATE is set to CK_TRUE will result in
CKR_USER_NOT_LOGGED_IN to be returned from calls using the key. C_Login will return
CKR_OPERATION_NOT_INITIALIZED, but the active cryptographic operation will not be affected, if an
attempt is made to re-authenticate when CKA_ALWAYS_AUTHENTICATE is set to CK_FALSE.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 52 of 149

The CKA_PUBLIC_KEY_INFO attribute represents the public key associated with this private key. The
data it represents may either be stored as part of the private key data, or regenerated as needed from the
private key.

If this attribute is supplied as part of a template for C_CreateObject, C_CopyObject or
C_SetAttributeValue for a private key, the token MUST verify correspondence between the private key
data and the public key data as supplied in CKA_PUBLIC_KEY_INFO. This can be done either by
deriving a public key from the private key and comparing the values, or by doing a sign and verify
operation. If there is a mismatch, the command SHALL return CKR_ATTRIBUTE_VALUE_INVALID. A
token MAY choose not to support the CKA_PUBLIC_KEY_INFO attribute for commands which create
new private keys. If it does not support the attribute, the command SHALL return
CKR_ATTRIBUTE_TYPE_INVALID.

As a general guideline, private keys of any type SHOULD store sufficient information to retrieve the public
key information. In particular, the RSA private key description has been modified in <this version> to add
the CKA_PUBLIC_EXPONENT to the list of attributes required for an RSA private key. All other private
key types described in this specification contain sufficient information to recover the associated public
key.

4.9.1 RSA private key objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold RSA private keys.
The following table defines the RSA private key object attributes, in addition to the common attributes
defined for this object class:

Table 26, RSA Private Key Object Attributes

Attribute Data type Meaning

CKA_MODULUS
1,4,6

 Big integer Modulus n

CKA_PUBLIC_EXPONENT
1,4,6

 Big integer Public exponent e

CKA_PRIVATE_EXPONENT
1,4,6,7

 Big integer Private exponent d

CKA_PRIME_1
4,6,7

 Big integer Prime p

CKA_PRIME_2
4,6,7

 Big integer Prime q

CKA_EXPONENT_1
4,6,7

 Big integer Private exponent d modulo p-1

CKA_EXPONENT_2
4,6,7

 Big integer Private exponent d modulo q-1

CKA_COEFFICIENT
4,6,7

 Big integer CRT coefficient q
-1

 mod p

Refer to Table 10 for footnotes

Depending on the token, there may be limits on the length of the key components. See PKCS #1 for
more information on RSA keys.

Tokens vary in what they actually store for RSA private keys. Some tokens store all of the above
attributes, which can assist in performing rapid RSA computations. Other tokens might store only the
CKA_MODULUS and CKA_PRIVATE_EXPONENT values. Effective with version 2.40, tokens MUST
also store CKA_PUBLIC_EXPONENT. This permits the retrieval of sufficient data to reconstitute the
associated public key.

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a token generates an
RSA private key, it stores whichever of the fields in Table 26 it keeps track of. Later, if an application
asks for the values of the key’s various attributes, Cryptoki supplies values only for attributes whose
values it can obtain (i.e., if Cryptoki is asked for the value of an attribute it cannot obtain, the request
fails). Note that a Cryptoki implementation may or may not be able and/or willing to supply various
attributes of RSA private keys which are not actually stored on the token. E.g., if a particular token stores
values only for the CKA_PRIVATE_EXPONENT, CKA_PUBLIC_EXPONENT, CKA_PRIME_1, and
CKA_PRIME_2 attributes, then Cryptoki is certainly able to report values for all the attributes above
(since they can all be computed efficiently from these four values). However, a Cryptoki implementation
may or may not actually do this extra computation. The only attributes from Table 26 for which a Cryptoki

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 53 of 149

implementation is required to be able to return values are CKA_MODULUS,
CKA_PRIVATE_EXPONENT, and CKA_PUBLIC_EXPONENT. A token SHOULD also be able to return
CKA_PUBLIC_KEY_INFO for an RSA private key. See the general guidance for Private Keys above.

4.10 Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. The following table defines the

attributes common to all secret keys, in addition to the common attributes defined for this object class:

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 54 of 149

Table 27, Common Secret Key Attributes

Attribute Data type Meaning

CKA_SENSITIVE
8,11

 CK_BBOOL CK_TRUE if object is sensitive
(default CK_FALSE)

CKA_ENCRYPT
8
 CK_BBOOL CK_TRUE if key supports

encryption
9

CKA_DECRYPT
8
 CK_BBOOL CK_TRUE if key supports

decryption
9

CKA_SIGN
8
 CK_BBOOL CK_TRUE if key supports

signatures (i.e., authentication
codes) where the signature is an
appendix to the data

9

CKA_VERIFY
8
 CK_BBOOL CK_TRUE if key supports

verification (i.e., of authentication
codes) where the signature is an
appendix to the data

9

CKA_WRAP
8
 CK_BBOOL CK_TRUE if key supports

wrapping (i.e., can be used to
wrap other keys)

9

CKA_UNWRAP
8
 CK_BBOOL CK_TRUE if key supports

unwrapping (i.e., can be used to
unwrap other keys)

9

CKA_EXTRACTABLE
8,12

 CK_BBOOL CK_TRUE if key is extractable
and can be wrapped

9

CKA_ALWAYS_SENSITIVE
2,4,6

 CK_BBOOL CK_TRUE if key has always had
the CKA_SENSITIVE attribute
set to CK_TRUE

CKA_NEVER_EXTRACTABLE
2,4,6

 CK_BBOOL CK_TRUE if key has never had
the CKA_EXTRACTABLE
attribute set to CK_TRUE

CKA_CHECK_VALUE Byte array Key checksum

CKA_WRAP_WITH_TRUSTED
11

 CK_BBOOL CK_TRUE if the key can only be
wrapped with a wrapping key
that has CKA_TRUSTED set to
CK_TRUE.

Default is CK_FALSE.

CKA_TRUSTED
10

CK_BBOOL The wrapping key can be used
to wrap keys with
CKA_WRAP_WITH_TRUSTED
set to CK_TRUE.

CKA_WRAP_TEMPLATE CK_ATTRIBUTE_PTR For wrapping keys. The attribute
template to match against any
keys wrapped using this
wrapping key. Keys that do not
match cannot be wrapped. The
number of attributes in the array
is the

ulValueLen component of the
attribute divided by the size of

CK_ATTRIBUTE

CKA_UNWRAP_TEMPLATE CK_ATTRIBUTE_PTR For wrapping keys. The attribute
template to apply to any keys

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 55 of 149

Attribute Data type Meaning

unwrapped using this wrapping
key. Any user supplied template
is applied after this template as if
the object has already been
created. The number of
attributes in the array is the
ulValueLen component of the
attribute divided by the size of

CK_ATTRIBUTE.

-
Refer to Table 10 for footnotes

If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE attribute is CK_FALSE,
then certain attributes of the secret key cannot be revealed in plaintext outside the token. Which
attributes these are is specified for each type of secret key in the attribute table in the section describing
that type of key.

The key check value (KCV) attribute for symmetric key objects to be called CKA_CHECK_VALUE, of
type byte array, length 3 bytes, operates like a fingerprint, or checksum of the key. They are intended to
be used to cross-check symmetric keys against other systems where the same key is shared, and as a
validity check after manual key entry or restore from backup. Refer to object definitions of specific key
types for KCV algorithms.

Properties:

1. For two keys that are cryptographically identical the value of this attribute should be identical.

2. CKA_CHECK_VALUE should not be usable to obtain any part of the key value.

3. Non-uniqueness. Two different keys can have the same CKA_CHECK_VALUE. This is unlikely
(the probability can easily be calculated) but possible.

The attribute is optional, but if supported, regardless of how the key object is created or derived, the value
of the attribute is always supplied. It SHALL be supplied even if the encryption operation for the key is
forbidden (i.e. when CKA_ENCRYPT is set to CK_FALSE).

If a value is supplied in the application template (allowed but never necessary) then, if supported, it MUST
match what the library calculates it to be or the library returns a CKR_ATTRIBUTE_VALUE_INVALID. If
the library does not support the attribute then it should ignore it. Allowing the attribute in the template this
way does no harm and allows the attribute to be treated like any other attribute for the purposes of key
wrap and unwrap where the attributes are preserved also.

The generation of the KCV may be prevented by the application supplying the attribute in the template as
a no-value (0 length) entry. The application can query the value at any time like any other attribute using
C_GetAttributeValue. C_SetAttributeValue may be used to destroy the attribute, by supplying no-value.

Unless otherwise specified for the object definition, the value of this attribute is derived from the key
object by taking the first three bytes of an encryption of a single block of null (0x00) bytes, using the
default cipher and mode (e.g. ECB) associated with the key type of the secret key object.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 56 of 149

4.11 Domain parameter objects

4.11.1 Definitions

This section defines the object class CKO_DOMAIN_PARAMETERS for type CK_OBJECT_CLASS as
used in the CKA_CLASS attribute of objects.

4.11.2 Overview

This object class was created to support the storage of certain algorithm's extended parameters. DSA
and DH both use domain parameters in the key-pair generation step. In particular, some libraries support
the generation of domain parameters (originally out of scope for PKCS11) so the object class was added.

To use a domain parameter object you MUST extract the attributes into a template and supply them (still
in the template) to the corresponding key-pair generation function.

Domain parameter objects (object class CKO_DOMAIN_PARAMETERS) hold public domain parameters.

The following table defines the attributes common to domain parameter objects in addition to the common
attributes defined for this object class:

Table 28, Common Domain Parameter Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE
1
 CK_KEY_TYPE Type of key the domain parameters can be

used to generate.

CKA_LOCAL
2,4

 CK_BBOOL CK_TRUE only if domain parameters were
either

 generated locally (i.e., on the token)
with a C_GenerateKey

 created with a C_CopyObject call as a
copy of domain parameters which had
its CKA_LOCAL attribute set to
CK_TRUE

-
Refer to Table 10 for footnotes

The CKA_LOCAL attribute has the value CK_TRUE if and only if the values of the domain parameters
were originally generated on the token by a C_GenerateKey call.

4.12 Mechanism objects

4.12.1 Definitions

This section defines the object class CKO_MECHANISM for type CK_OBJECT_CLASS as used in the
CKA_CLASS attribute of objects.

4.12.2 Overview

Mechanism objects provide information about mechanisms supported by a device beyond that given by
the CK_MECHANISM_INFO structure.

When searching for objects using C_FindObjectsInit and C_FindObjects, mechanism objects are not
returned unless the CKA_CLASS attribute in the template has the value CKO_MECHANISM. This
protects applications written to previous versions of Cryptoki from finding objects that they do not
understand.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 57 of 149

Table 29, Common Mechanism Attributes

Attribute Data Type Meaning

CKA_MECHANISM_TYPE CK_MECHANISM_TYPE The type of mechanism
object

The CKA_MECHANISM_TYPE attribute may not be set.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 58 of 149

5 Functions
Cryptoki's functions are organized into the following categories:

 general-purpose functions (4 functions)

 slot and token management functions (9 functions)

 session management functions (8 functions)

 object management functions (9 functions)

 encryption functions (4 functions)

 decryption functions (4 functions)

 message digesting functions (5 functions)

 signing and MACing functions (6 functions)

 functions for verifying signatures and MACs (6 functions)

 dual-purpose cryptographic functions (4 functions)

 key management functions (5 functions)

 random number generation functions (2 functions)

 parallel function management functions (2 functions)

In addition to these functions, Cryptoki can use application-supplied callback functions to notify an
application of certain events, and can also use application-supplied functions to handle mutex objects for
safe multi-threaded library access.

The Cryptoki API functions are presented in the following table:

Table 30, Summary of Cryptoki Functions

Category Function Description

General C_Initialize initializes Cryptoki

purpose
functions

C_Finalize clean up miscellaneous Cryptoki-associated
resources

 C_GetInfo obtains general information about Cryptoki

 C_GetFunctionList obtains entry points of Cryptoki library
functions

Slot and token C_GetSlotList obtains a list of slots in the system

management C_GetSlotInfo obtains information about a particular slot

functions C_GetTokenInfo obtains information about a particular token

 C_WaitForSlotEvent waits for a slot event (token insertion,
removal, etc.) to occur

 C_GetMechanismList obtains a list of mechanisms supported by a
token

 C_GetMechanismInfo obtains information about a particular
mechanism

 C_InitToken initializes a token

 C_InitPIN initializes the normal user’s PIN

 C_SetPIN modifies the PIN of the current user

Session
management

C_OpenSession opens a connection between an application
and a particular token or sets up an

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 59 of 149

Category Function Description

functions application callback for token insertion

 C_CloseSession closes a session

 C_CloseAllSessions closes all sessions with a token

 C_GetSessionInfo obtains information about the session

 C_GetOperationState obtains the cryptographic operations state of a
session

 C_SetOperationState sets the cryptographic operations state of a
session

 C_Login logs into a token

 C_Logout logs out from a token

Object C_CreateObject creates an object

management C_CopyObject creates a copy of an object

functions C_DestroyObject destroys an object

 C_GetObjectSize obtains the size of an object in bytes

 C_GetAttributeValue obtains an attribute value of an object

 C_SetAttributeValue modifies an attribute value of an object

 C_FindObjectsInit initializes an object search operation

 C_FindObjects continues an object search operation

 C_FindObjectsFinal finishes an object search operation

Encryption C_EncryptInit initializes an encryption operation

functions C_Encrypt encrypts single-part data

 C_EncryptUpdate continues a multiple-part encryption operation

 C_EncryptFinal finishes a multiple-part encryption operation

Decryption C_DecryptInit initializes a decryption operation

functions C_Decrypt decrypts single-part encrypted data

 C_DecryptUpdate continues a multiple-part decryption operation

 C_DecryptFinal finishes a multiple-part decryption operation

Message C_DigestInit initializes a message-digesting operation

digesting C_Digest digests single-part data

functions C_DigestUpdate continues a multiple-part digesting operation

 C_DigestKey digests a key

 C_DigestFinal finishes a multiple-part digesting operation

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 60 of 149

Category Function Description

Signing C_SignInit initializes a signature operation

and MACing C_Sign signs single-part data

functions C_SignUpdate continues a multiple-part signature operation

 C_SignFinal finishes a multiple-part signature operation

 C_SignRecoverInit initializes a signature operation, where the
data can be recovered from the signature

 C_SignRecover signs single-part data, where the data can be
recovered from the signature

Functions for
verifying

C_VerifyInit initializes a verification operation

signatures C_Verify verifies a signature on single-part data

and MACs C_VerifyUpdate continues a multiple-part verification operation

 C_VerifyFinal finishes a multiple-part verification operation

 C_VerifyRecoverInit initializes a verification operation where the
data is recovered from the signature

 C_VerifyRecover verifies a signature on single-part data, where
the data is recovered from the signature

Dual-purpose
cryptographic

C_DigestEncryptUpdate continues simultaneous multiple-part digesting
and encryption operations

functions C_DecryptDigestUpdate continues simultaneous multiple-part
decryption and digesting operations

 C_SignEncryptUpdate continues simultaneous multiple-part
signature and encryption operations

 C_DecryptVerifyUpdate continues simultaneous multiple-part
decryption and verification operations

Key C_GenerateKey generates a secret key

management C_GenerateKeyPair generates a public-key/private-key pair

functions C_WrapKey wraps (encrypts) a key

 C_UnwrapKey unwraps (decrypts) a key

 C_DeriveKey derives a key from a base key

Random number
generation

C_SeedRandom mixes in additional seed material to the
random number generator

functions C_GenerateRandom generates random data

Parallel function
management

C_GetFunctionStatus legacy function which always returns
CKR_FUNCTION_NOT_PARALLEL

functions C_CancelFunction legacy function which always returns
CKR_FUNCTION_NOT_PARALLEL

Callback function application-supplied function to process
notifications from Cryptoki

Execution of a Cryptoki function call is in general an all-or-nothing affair, i.e., a function call accomplishes

either its entire goal, or nothing at all.

 If a Cryptoki function executes successfully, it returns the value CKR_OK.

 If a Cryptoki function does not execute successfully, it returns some value other than CKR_OK, and
the token is in the same state as it was in prior to the function call. If the function call was supposed
to modify the contents of certain memory addresses on the host computer, these memory addresses
may have been modified, despite the failure of the function.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 61 of 149

 In unusual (and extremely unpleasant!) circumstances, a function can fail with the return value
CKR_GENERAL_ERROR. When this happens, the token and/or host computer may be in an
inconsistent state, and the goals of the function may have been partially achieved.

There are a small number of Cryptoki functions whose return values do not behave precisely as
described above; these exceptions are documented individually with the description of the functions
themselves.

A Cryptoki library need not support every function in the Cryptoki API. However, even an unsupported
function MUST have a “stub” in the library which simply returns the value
CKR_FUNCTION_NOT_SUPPORTED. The function’s entry in the library’s CK_FUNCTION_LIST
structure (as obtained by C_GetFunctionList) should point to this stub function (see Section 3.6).

5.1 Function return values

The Cryptoki interface possesses a large number of functions and return values. In Section 5.1, we
enumerate the various possible return values for Cryptoki functions; most of the remainder of Section 5.1
details the behavior of Cryptoki functions, including what values each of them may return.

Because of the complexity of the Cryptoki specification, it is recommended that Cryptoki applications
attempt to give some leeway when interpreting Cryptoki functions’ return values. We have attempted to
specify the behavior of Cryptoki functions as completely as was feasible; nevertheless, there are
presumably some gaps. For example, it is possible that a particular error code which might apply to a
particular Cryptoki function is unfortunately not actually listed in the description of that function as a
possible error code. It is conceivable that the developer of a Cryptoki library might nevertheless permit
his/her implementation of that function to return that error code. It would clearly be somewhat ungraceful
if a Cryptoki application using that library were to terminate by abruptly dumping core upon receiving that
error code for that function. It would be far preferable for the application to examine the function’s return
value, see that it indicates some sort of error (even if the application doesn’t know precisely what kind of

error), and behave accordingly.

See Section 5.1.8 for some specific details on how a developer might attempt to make an application that
accommodates a range of behaviors from Cryptoki libraries.

5.1.1 Universal Cryptoki function return values

Any Cryptoki function can return any of the following values:

 CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In the worst case, it is
possible that the function only partially succeeded, and that the computer and/or token is in an
inconsistent state.

 CKR_HOST_MEMORY: The computer that the Cryptoki library is running on has insufficient memory
to perform the requested function.

 CKR_FUNCTION_FAILED: The requested function could not be performed, but detailed information
about why not is not available in this error return. If the failed function uses a session, it is possible
that the CK_SESSION_INFO structure that can be obtained by calling C_GetSessionInfo will hold
useful information about what happened in its ulDeviceError field. In any event, although the function
call failed, the situation is not necessarily totally hopeless, as it is likely to be when
CKR_GENERAL_ERROR is returned. Depending on what the root cause of the error actually was, it
is possible that an attempt to make the exact same function call again would succeed.

 CKR_OK: The function executed successfully. Technically, CKR_OK is not quite a “universal” return
value; in particular, the legacy functions C_GetFunctionStatus and C_CancelFunction (see Section
5.15) cannot return CKR_OK.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_GENERAL_ERROR or CKR_HOST_MEMORY would be an appropriate error return, then
CKR_GENERAL_ERROR should be returned.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 62 of 149

5.1.2 Cryptoki function return values for functions that use a session
handle

Any Cryptoki function that takes a session handle as one of its arguments (i.e., any Cryptoki function
except for C_Initialize, C_Finalize, C_GetInfo, C_GetFunctionList, C_GetSlotList, C_GetSlotInfo,
C_GetTokenInfo, C_WaitForSlotEvent, C_GetMechanismList, C_GetMechanismInfo, C_InitToken,

C_OpenSession, and C_CloseAllSessions) can return the following values:

 CKR_SESSION_HANDLE_INVALID: The specified session handle was invalid at the time that the
function was invoked. Note that this can happen if the session’s token is removed before the function

invocation, since removing a token closes all sessions with it.

 CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the function.

 CKR_SESSION_CLOSED: The session was closed during the execution of the function. Note that,
as stated in [PKCS11-UG], the behavior of Cryptoki is undefined if multiple threads of an application
attempt to access a common Cryptoki session simultaneously. Therefore, there is actually no
guarantee that a function invocation could ever return the value CKR_SESSION_CLOSED. An
example of multiple threads accessing a common session simultaneously is where one thread is
using a session when another thread closes that same session.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_SESSION_HANDLE_INVALID or CKR_DEVICE_REMOVED would be an appropriate error return,
then CKR_SESSION_HANDLE_INVALID should be returned.

In practice, it is often not crucial (or possible) for a Cryptoki library to be able to make a distinction
between a token being removed before a function invocation and a token being removed during a

function execution.

5.1.3 Cryptoki function return values for functions that use a token

Any Cryptoki function that uses a particular token (i.e., any Cryptoki function except for C_Initialize,
C_Finalize, C_GetInfo, C_GetFunctionList, C_GetSlotList, C_GetSlotInfo, or C_WaitForSlotEvent)

can return any of the following values:

 CKR_DEVICE_MEMORY: The token does not have sufficient memory to perform the requested
function.

 CKR_DEVICE_ERROR: Some problem has occurred with the token and/or slot. This error code can
be returned by more than just the functions mentioned above; in particular, it is possible for
C_GetSlotInfo to return CKR_DEVICE_ERROR.

 CKR_TOKEN_NOT_PRESENT: The token was not present in its slot at the time that the function was
invoked.

 CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the function.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_DEVICE_MEMORY or CKR_DEVICE_ERROR would be an appropriate error return, then
CKR_DEVICE_MEMORY should be returned.

In practice, it is often not critical (or possible) for a Cryptoki library to be able to make a distinction
between a token being removed before a function invocation and a token being removed during a

function execution.

5.1.4 Special return value for application-supplied callbacks

There is a special-purpose return value which is not returned by any function in the actual Cryptoki API,
but which may be returned by an application-supplied callback function. It is:

 CKR_CANCEL: When a function executing in serial with an application decides to give the application
a chance to do some work, it calls an application-supplied function with a CKN_SURRENDER
callback (see Section 5.16). If the callback returns the value CKR_CANCEL, then the function aborts
and returns CKR_FUNCTION_CANCELED.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 63 of 149

5.1.5 Special return values for mutex-handling functions

There are two other special-purpose return values which are not returned by any actual Cryptoki
functions. These values may be returned by application-supplied mutex-handling functions, and they may
safely be ignored by application developers who are not using their own threading model. They are:

 CKR_MUTEX_BAD: This error code can be returned by mutex-handling functions that are passed a
bad mutex object as an argument. Unfortunately, it is possible for such a function not to recognize a
bad mutex object. There is therefore no guarantee that such a function will successfully detect bad
mutex objects and return this value.

 CKR_MUTEX_NOT_LOCKED: This error code can be returned by mutex-unlocking functions. It
indicates that the mutex supplied to the mutex-unlocking function was not locked.

5.1.6 All other Cryptoki function return values

Descriptions of the other Cryptoki function return values follow. Except as mentioned in the descriptions
of particular error codes, there are in general no particular priorities among the errors listed below, i.e., if
more than one error code might apply to an execution of a function, then the function may return any
applicable error code.

 CKR_ACTION_PROHIBITED: This value can only be returned by C_CopyObject,
C_SetAttributeValue and C_DestroyObject. It denotes that the action may not be taken, either
because of underlying policy restrictions on the token, or because the object has the the relevant
CKA_COPYABLE, CKA_MODIFIABLE or CKA_DESTROYABLE policy attribute set to CK_FALSE.

 CKR_ARGUMENTS_BAD: This is a rather generic error code which indicates that the arguments
supplied to the Cryptoki function were in some way not appropriate.

 CKR_ATTRIBUTE_READ_ONLY: An attempt was made to set a value for an attribute which may not
be set by the application, or which may not be modified by the application. See Section 4.1 for more
information.

 CKR_ATTRIBUTE_SENSITIVE: An attempt was made to obtain the value of an attribute of an object
which cannot be satisfied because the object is either sensitive or un-extractable.

 CKR_ATTRIBUTE_TYPE_INVALID: An invalid attribute type was specified in a template. See
Section 4.1 for more information.

 CKR_ATTRIBUTE_VALUE_INVALID: An invalid value was specified for a particular attribute in a
template. See Section 4.1 for more information.

 CKR_BUFFER_TOO_SMALL: The output of the function is too large to fit in the supplied buffer.

 CKR_CANT_LOCK: This value can only be returned by C_Initialize. It means that the type of locking
requested by the application for thread-safety is not available in this library, and so the application
cannot make use of this library in the specified fashion.

 CKR_CRYPTOKI_ALREADY_INITIALIZED: This value can only be returned by C_Initialize. It
means that the Cryptoki library has already been initialized (by a previous call to C_Initialize which
did not have a matching C_Finalize call).

 CKR_CRYPTOKI_NOT_INITIALIZED: This value can be returned by any function other than
C_Initialize and C_GetFunctionList. It indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to C_Initialize.

 CKR_CURVE_NOT_SUPPORTED: This curve is not supported by this token. Used with Elliptic
Curve mechanisms.

 CKR_DATA_INVALID: The plaintext input data to a cryptographic operation is invalid. This return
value has lower priority than CKR_DATA_LEN_RANGE.

 CKR_DATA_LEN_RANGE: The plaintext input data to a cryptographic operation has a bad length.
Depending on the operation’s mechanism, this could mean that the plaintext data is too short, too
long, or is not a multiple of some particular block size. This return value has higher priority than
CKR_DATA_INVALID.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 64 of 149

 CKR_DOMAIN_PARAMS_INVALID: Invalid or unsupported domain parameters were supplied to the
function. Which representation methods of domain parameters are supported by a given mechanism
can vary from token to token.

 CKR_ENCRYPTED_DATA_INVALID: The encrypted input to a decryption operation has been
determined to be invalid ciphertext. This return value has lower priority than
CKR_ENCRYPTED_DATA_LEN_RANGE.

 CKR_ENCRYPTED_DATA_LEN_RANGE: The ciphertext input to a decryption operation has been
determined to be invalid ciphertext solely on the basis of its length. Depending on the operation’s
mechanism, this could mean that the ciphertext is too short, too long, or is not a multiple of some
particular block size. This return value has higher priority than CKR_ENCRYPTED_DATA_INVALID.

 CKR_EXCEEDED_MAX_ITERATIONS: An iterative algorithm (for key pair generation, domain
parameter generation etc.) failed because we have exceeded the maximum number of iterations.
This error code has precedence over CKR_FUNCTION_FAILED. Examples of iterative algorithms
include DSA signature generation (retry if either r = 0 or s = 0) and generation of DSA primes p and q
specified in FIPS 186-4.

 CKR_FIPS_SELF_TEST_FAILED: A FIPS 140-2 power-up self-test or conditional self-test failed.
The token entered an error state. Future calls to cryptographic functions on the token will return
CKR_GENERAL_ERROR. CKR_FIPS_SELF_TEST_FAILED has a higher precedence over
CKR_GENERAL_ERROR. This error may be returned by C_Initialize, if a power-up self-test failed,
by C_GenerateRandom or C_SeedRandom, if the continuous random number generator test failed,
or by C_GenerateKeyPair, if the pair-wise consistency test failed.

 CKR_FUNCTION_CANCELED: The function was canceled in mid-execution. This happens to a
cryptographic function if the function makes a CKN_SURRENDER application callback which returns
CKR_CANCEL (see CKR_CANCEL). It also happens to a function that performs PIN entry through a
protected path. The method used to cancel a protected path PIN entry operation is device dependent.

 CKR_FUNCTION_NOT_PARALLEL: There is currently no function executing in parallel in the
specified session. This is a legacy error code which is only returned by the legacy functions
C_GetFunctionStatus and C_CancelFunction.

 CKR_FUNCTION_NOT_SUPPORTED: The requested function is not supported by this Cryptoki
library. Even unsupported functions in the Cryptoki API should have a “stub” in the library; this stub
should simply return the value CKR_FUNCTION_NOT_SUPPORTED.

 CKR_FUNCTION_REJECTED: The signature request is rejected by the user.

 CKR_INFORMATION_SENSITIVE: The information requested could not be obtained because the
token considers it sensitive, and is not able or willing to reveal it.

 CKR_KEY_CHANGED: This value is only returned by C_SetOperationState. It indicates that one of
the keys specified is not the same key that was being used in the original saved session.

 CKR_KEY_FUNCTION_NOT_PERMITTED: An attempt has been made to use a key for a
cryptographic purpose that the key’s attributes are not set to allow it to do. For example, to use a key
for performing encryption, that key MUST have its CKA_ENCRYPT attribute set to CK_TRUE (the
fact that the key MUST have a CKA_ENCRYPT attribute implies that the key cannot be a private

key). This return value has lower priority than CKR_KEY_TYPE_INCONSISTENT.

 CKR_KEY_HANDLE_INVALID: The specified key handle is not valid. It may be the case that the
specified handle is a valid handle for an object which is not a key. We reiterate here that 0 is never a
valid key handle.

 CKR_KEY_INDIGESTIBLE: This error code can only be returned by C_DigestKey. It indicates that
the value of the specified key cannot be digested for some reason (perhaps the key isn’t a secret key,
or perhaps the token simply can’t digest this kind of key).

 CKR_KEY_NEEDED: This value is only returned by C_SetOperationState. It indicates that the
session state cannot be restored because C_SetOperationState needs to be supplied with one or
more keys that were being used in the original saved session.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 65 of 149

 CKR_KEY_NOT_NEEDED: An extraneous key was supplied to C_SetOperationState. For
example, an attempt was made to restore a session that had been performing a message digesting
operation, and an encryption key was supplied.

 CKR_KEY_NOT_WRAPPABLE: Although the specified private or secret key does not have its
CKA_EXTRACTABLE attribute set to CK_FALSE, Cryptoki (or the token) is unable to wrap the key as
requested (possibly the token can only wrap a given key with certain types of keys, and the wrapping
key specified is not one of these types). Compare with CKR_KEY_UNEXTRACTABLE.

 CKR_KEY_SIZE_RANGE: Although the requested keyed cryptographic operation could in principle
be carried out, this Cryptoki library (or the token) is unable to actually do it because the supplied key‘s
size is outside the range of key sizes that it can handle.

 CKR_KEY_TYPE_INCONSISTENT: The specified key is not the correct type of key to use with the
specified mechanism. This return value has a higher priority than
CKR_KEY_FUNCTION_NOT_PERMITTED.

 CKR_KEY_UNEXTRACTABLE: The specified private or secret key can’t be wrapped because its
CKA_EXTRACTABLE attribute is set to CK_FALSE. Compare with CKR_KEY_NOT_WRAPPABLE.

 CKR_LIBRARY_LOAD_FAILED: The Cryptoki library could not load a dependent shared library.

 CKR_MECHANISM_INVALID: An invalid mechanism was specified to the cryptographic operation.
This error code is an appropriate return value if an unknown mechanism was specified or if the
mechanism specified cannot be used in the selected token with the selected function.

 CKR_MECHANISM_PARAM_INVALID: Invalid parameters were supplied to the mechanism specified
to the cryptographic operation. Which parameter values are supported by a given mechanism can
vary from token to token.

 CKR_NEED_TO_CREATE_THREADS: This value can only be returned by C_Initialize. It is
returned when two conditions hold:

1. The application called C_Initialize in a way which tells the Cryptoki library that application
threads executing calls to the library cannot use native operating system methods to spawn new
threads.

2. The library cannot function properly without being able to spawn new threads in the above
fashion.

 CKR_NO_EVENT: This value can only be returned by C_GetSlotEvent. It is returned when
C_GetSlotEvent is called in non-blocking mode and there are no new slot events to return.

 CKR_OBJECT_HANDLE_INVALID: The specified object handle is not valid. We reiterate here that 0
is never a valid object handle.

 CKR_OPERATION_ACTIVE: There is already an active operation (or combination of active
operations) which prevents Cryptoki from activating the specified operation. For example, an active
object-searching operation would prevent Cryptoki from activating an encryption operation with
C_EncryptInit. Or, an active digesting operation and an active encryption operation would prevent
Cryptoki from activating a signature operation. Or, on a token which doesn’t support simultaneous
dual cryptographic operations in a session (see the description of the
CKF_DUAL_CRYPTO_OPERATIONS flag in the CK_TOKEN_INFO structure), an active signature

operation would prevent Cryptoki from activating an encryption operation.

 CKR_OPERATION_NOT_INITIALIZED: There is no active operation of an appropriate type in the
specified session. For example, an application cannot call C_Encrypt in a session without having
called C_EncryptInit first to activate an encryption operation.

 CKR_PIN_EXPIRED: The specified PIN has expired, and the requested operation cannot be carried
out unless C_SetPIN is called to change the PIN value. Whether or not the normal user’s PIN on a
token ever expires varies from token to token.

 CKR_PIN_INCORRECT: The specified PIN is incorrect, i.e., does not match the PIN stored on the
token. More generally-- when authentication to the token involves something other than a PIN-- the
attempt to authenticate the user has failed.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 66 of 149

 CKR_PIN_INVALID: The specified PIN has invalid characters in it. This return code only applies to
functions which attempt to set a PIN.

 CKR_PIN_LEN_RANGE: The specified PIN is too long or too short. This return code only applies to
functions which attempt to set a PIN.

 CKR_PIN_LOCKED: The specified PIN is “locked”, and cannot be used. That is, because some
particular number of failed authentication attempts has been reached, the token is unwilling to permit
further attempts at authentication. Depending on the token, the specified PIN may or may not remain
locked indefinitely.

 CKR_PIN_TOO_WEAK: The specified PIN is too weak so that it could be easy to guess. If the PIN is
too short, CKR_PIN_LEN_RANGE should be returned instead. This return code only applies to
functions which attempt to set a PIN.

 CKR_PUBLIC_KEY_INVALID: The public key fails a public key validation. For example, an EC
public key fails the public key validation specified in Section 5.2.2 of ANSI X9.62. This error code may
be returned by C_CreateObject, when the public key is created, or by C_VerifyInit or
C_VerifyRecoverInit, when the public key is used. It may also be returned by C_DeriveKey, in
preference to CKR_MECHANISM_PARAM_INVALID, if the other party's public key specified in the
mechanism's parameters is invalid.

 CKR_RANDOM_NO_RNG: This value can be returned by C_SeedRandom and
C_GenerateRandom. It indicates that the specified token doesn’t have a random number generator.

This return value has higher priority than CKR_RANDOM_SEED_NOT_SUPPORTED.

 CKR_RANDOM_SEED_NOT_SUPPORTED: This value can only be returned by C_SeedRandom.
It indicates that the token’s random number generator does not accept seeding from an application.
This return value has lower priority than CKR_RANDOM_NO_RNG.

 CKR_SAVED_STATE_INVALID: This value can only be returned by C_SetOperationState. It
indicates that the supplied saved cryptographic operations state is invalid, and so it cannot be
restored to the specified session.

 CKR_SESSION_COUNT: This value can only be returned by C_OpenSession. It indicates that the
attempt to open a session failed, either because the token has too many sessions already open, or
because the token has too many read/write sessions already open.

 CKR_SESSION_EXISTS: This value can only be returned by C_InitToken. It indicates that a

session with the token is already open, and so the token cannot be initialized.

 CKR_SESSION_PARALLEL_NOT_SUPPORTED: The specified token does not support parallel
sessions. This is a legacy error code—in Cryptoki Version 2.01 and up, no token supports parallel
sessions. CKR_SESSION_PARALLEL_NOT_SUPPORTED can only be returned by
C_OpenSession, and it is only returned when C_OpenSession is called in a particular [deprecated]

way.

 CKR_SESSION_READ_ONLY: The specified session was unable to accomplish the desired action
because it is a read-only session. This return value has lower priority than
CKR_TOKEN_WRITE_PROTECTED.

 CKR_SESSION_READ_ONLY_EXISTS: A read-only session already exists, and so the SO cannot
be logged in.

 CKR_SESSION_READ_WRITE_SO_EXISTS: A read/write SO session already exists, and so a
read-only session cannot be opened.

 CKR_SIGNATURE_LEN_RANGE: The provided signature/MAC can be seen to be invalid solely on
the basis of its length. This return value has higher priority than CKR_SIGNATURE_INVALID.

 CKR_SIGNATURE_INVALID: The provided signature/MAC is invalid. This return value has lower
priority than CKR_SIGNATURE_LEN_RANGE.

 CKR_SLOT_ID_INVALID: The specified slot ID is not valid.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 67 of 149

 CKR_STATE_UNSAVEABLE: The cryptographic operations state of the specified session cannot be
saved for some reason (possibly the token is simply unable to save the current state). This return
value has lower priority than CKR_OPERATION_NOT_INITIALIZED.

 CKR_TEMPLATE_INCOMPLETE: The template specified for creating an object is incomplete, and
lacks some necessary attributes. See Section 4.1 for more information.

 CKR_TEMPLATE_INCONSISTENT: The template specified for creating an object has conflicting
attributes. See Section 4.1 for more information.

 CKR_TOKEN_NOT_RECOGNIZED: The Cryptoki library and/or slot does not recognize the token in
the slot.

 CKR_TOKEN_WRITE_PROTECTED: The requested action could not be performed because the
token is write-protected. This return value has higher priority than CKR_SESSION_READ_ONLY.

 CKR_UNWRAPPING_KEY_HANDLE_INVALID: This value can only be returned by C_UnwrapKey.
It indicates that the key handle specified to be used to unwrap another key is not valid.

 CKR_UNWRAPPING_KEY_SIZE_RANGE: This value can only be returned by C_UnwrapKey. It
indicates that although the requested unwrapping operation could in principle be carried out, this
Cryptoki library (or the token) is unable to actually do it because the supplied key’s size is outside the
range of key sizes that it can handle.

 CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned by
C_UnwrapKey. It indicates that the type of the key specified to unwrap another key is not consistent

with the mechanism specified for unwrapping.

 CKR_USER_ALREADY_LOGGED_IN: This value can only be returned by C_Login. It indicates that
the specified user cannot be logged into the session, because it is already logged into the session.
For example, if an application has an open SO session, and it attempts to log the SO into it, it will
receive this error code.

 CKR_USER_ANOTHER_ALREADY_LOGGED_IN: This value can only be returned by C_Login. It
indicates that the specified user cannot be logged into the session, because another user is already
logged into the session. For example, if an application has an open SO session, and it attempts to
log the normal user into it, it will receive this error code.

 CKR_USER_NOT_LOGGED_IN: The desired action cannot be performed because the appropriate
user (or an appropriate user) is not logged in. One example is that a session cannot be logged out
unless it is logged in. Another example is that a private object cannot be created on a token unless
the session attempting to create it is logged in as the normal user. A final example is that
cryptographic operations on certain tokens cannot be performed unless the normal user is logged in.

 CKR_USER_PIN_NOT_INITIALIZED: This value can only be returned by C_Login. It indicates that
the normal user’s PIN has not yet been initialized with C_InitPIN.

 CKR_USER_TOO_MANY_TYPES: An attempt was made to have more distinct users simultaneously
logged into the token than the token and/or library permits. For example, if some application has an
open SO session, and another application attempts to log the normal user into a session, the attempt
may return this error. It is not required to, however. Only if the simultaneous distinct users cannot be
supported does C_Login have to return this value. Note that this error code generalizes to true multi-

user tokens.

 CKR_USER_TYPE_INVALID: An invalid value was specified as a CK_USER_TYPE. Valid types are
CKU_SO, CKU_USER, and CKU_CONTEXT_SPECIFIC.

 CKR_WRAPPED_KEY_INVALID: This value can only be returned by C_UnwrapKey. It indicates
that the provided wrapped key is not valid. If a call is made to C_UnwrapKey to unwrap a particular
type of key (i.e., some particular key type is specified in the template provided to C_UnwrapKey),
and the wrapped key provided to C_UnwrapKey is recognizably not a wrapped key of the proper
type, then C_UnwrapKey should return CKR_WRAPPED_KEY_INVALID. This return value has

lower priority than CKR_WRAPPED_KEY_LEN_RANGE.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 68 of 149

 CKR_WRAPPED_KEY_LEN_RANGE: This value can only be returned by C_UnwrapKey. It
indicates that the provided wrapped key can be seen to be invalid solely on the basis of its length.
This return value has higher priority than CKR_WRAPPED_KEY_INVALID.

 CKR_WRAPPING_KEY_HANDLE_INVALID: This value can only be returned by C_WrapKey. It

indicates that the key handle specified to be used to wrap another key is not valid.

 CKR_WRAPPING_KEY_SIZE_RANGE: This value can only be returned by C_WrapKey. It indicates
that although the requested wrapping operation could in principle be carried out, this Cryptoki library
(or the token) is unable to actually do it because the supplied wrapping key’s size is outside the range
of key sizes that it can handle.

 CKR_WRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned by C_WrapKey. It
indicates that the type of the key specified to wrap another key is not consistent with the mechanism
specified for wrapping.

5.1.7 More on relative priorities of Cryptoki errors

In general, when a Cryptoki call is made, error codes from Section 5.1.1 (other than CKR_OK) take
precedence over error codes from Section 5.1.2, which take precedence over error codes from Section
5.1.3, which take precedence over error codes from Section 5.1.6. One minor implication of this is that
functions that use a session handle (i.e., most functions!) never return the error code
CKR_TOKEN_NOT_PRESENT (they return CKR_SESSION_HANDLE_INVALID instead). Other than
these precedences, if more than one error code applies to the result of a Cryptoki call, any of the
applicable error codes may be returned. Exceptions to this rule will be explicitly mentioned in the
descriptions of functions.

5.1.8 Error code “gotchas”

Here is a short list of a few particular things about return values that Cryptoki developers might want to be
aware of:

1. As mentioned in Sections 5.1.2 and 5.1.3, a Cryptoki library may not be able to make a distinction
between a token being removed before a function invocation and a token being removed during a

function invocation.

2. As mentioned in Section 5.1.2, an application should never count on getting a
CKR_SESSION_CLOSED error.

3. The difference between CKR_DATA_INVALID and CKR_DATA_LEN_RANGE can be somewhat
subtle. Unless an application needs to be able to distinguish between these return values, it is best to

always treat them equivalently.

4. Similarly, the difference between CKR_ENCRYPTED_DATA_INVALID and
CKR_ENCRYPTED_DATA_LEN_RANGE, and between CKR_WRAPPED_KEY_INVALID and
CKR_WRAPPED_KEY_LEN_RANGE, can be subtle, and it may be best to treat these return values
equivalently.

5. Even with the guidance of Section 4.1, it can be difficult for a Cryptoki library developer to know which
of CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE, or
CKR_TEMPLATE_INCONSISTENT to return. When possible, it is recommended that application
developers be generous in their interpretations of these error codes.

5.2 Conventions for functions returning output in a variable-length
buffer

A number of the functions defined in Cryptoki return output produced by some cryptographic mechanism.
The amount of output returned by these functions is returned in a variable-length application-supplied
buffer. An example of a function of this sort is C_Encrypt, which takes some plaintext as an argument,
and outputs a buffer full of ciphertext.

These functions have some common calling conventions, which we describe here. Two of the arguments
to the function are a pointer to the output buffer (say pBuf) and a pointer to a location which will hold the

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 69 of 149

length of the output produced (say pulBufLen). There are two ways for an application to call such a

function:

1. If pBuf is NULL_PTR, then all that the function does is return (in *pulBufLen) a number of bytes which
would suffice to hold the cryptographic output produced from the input to the function. This number
may somewhat exceed the precise number of bytes needed, but should not exceed it by a large
amount. CKR_OK is returned by the function.

2. If pBuf is not NULL_PTR, then *pulBufLen MUST contain the size in bytes of the buffer pointed to by
pBuf. If that buffer is large enough to hold the cryptographic output produced from the input to the
function, then that cryptographic output is placed there, and CKR_OK is returned by the function. If
the buffer is not large enough, then CKR_BUFFER_TOO_SMALL is returned. In either case,
*pulBufLen is set to hold the exact number of bytes needed to hold the cryptographic output produced

from the input to the function.

All functions which use the above convention will explicitly say so.

Cryptographic functions which return output in a variable-length buffer should always return as much
output as can be computed from what has been passed in to them thus far. As an example, consider a
session which is performing a multiple-part decryption operation with DES in cipher-block chaining mode
with PKCS padding. Suppose that, initially, 8 bytes of ciphertext are passed to the C_DecryptUpdate
function. The block size of DES is 8 bytes, but the PKCS padding makes it unclear at this stage whether
the ciphertext was produced from encrypting a 0-byte string, or from encrypting some string of length at
least 8 bytes. Hence the call to C_DecryptUpdate should return 0 bytes of plaintext. If a single
additional byte of ciphertext is supplied by a subsequent call to C_DecryptUpdate, then that call should

return 8 bytes of plaintext (one full DES block).

5.3 Disclaimer concerning sample code

For the remainder of this section, we enumerate the various functions defined in Cryptoki. Most functions
will be shown in use in at least one sample code snippet. For the sake of brevity, sample code will
frequently be somewhat incomplete. In particular, sample code will generally ignore possible error
returns from C library functions, and also will not deal with Cryptoki error returns in a realistic fashion.

5.4 General-purpose functions

Cryptoki provides the following general-purpose functions:

 C_Initialize

CK_DEFINE_FUNCTION(CK_RV, C_Initialize) {

 CK_VOID_PTR pInitArgs

);

C_Initialize initializes the Cryptoki library. pInitArgs either has the value NULL_PTR or points to a
CK_C_INITIALIZE_ARGS structure containing information on how the library should deal with multi-
threaded access. If an application will not be accessing Cryptoki through multiple threads simultaneously,
it can generally supply the value NULL_PTR to C_Initialize (the consequences of supplying this value will

be explained below).

If pInitArgs is non-NULL_PTR, C_Initialize should cast it to a CK_C_INITIALIZE_ARGS_PTR and then
dereference the resulting pointer to obtain the CK_C_INITIALIZE_ARGS fields CreateMutex,
DestroyMutex, LockMutex, UnlockMutex, flags, and pReserved. For this version of Cryptoki, the value of
pReserved thereby obtained MUST be NULL_PTR; if it’s not, then C_Initialize should return with the

value CKR_ARGUMENTS_BAD.

If the CKF_LIBRARY_CANT_CREATE_OS_THREADS flag in the flags field is set, that indicates that
application threads which are executing calls to the Cryptoki library are not permitted to use the native
operation system calls to spawn off new threads. In other words, the library’s code may not create its
own threads. If the library is unable to function properly under this restriction, C_Initialize should return

with the value CKR_NEED_TO_CREATE_THREADS.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 70 of 149

A call to C_Initialize specifies one of four different ways to support multi-threaded access via the value of
the CKF_OS_LOCKING_OK flag in the flags field and the values of the CreateMutex, DestroyMutex,
LockMutex, and UnlockMutex function pointer fields:

1. If the flag isn’t set, and the function pointer fields aren’t supplied (i.e., they all have the value
NULL_PTR), that means that the application won’t be accessing the Cryptoki library from multiple
threads simultaneously.

2. If the flag is set, and the function pointer fields aren’t supplied (i.e., they all have the value
NULL_PTR), that means that the application will be performing multi-threaded Cryptoki access, and
the library needs to use the native operating system primitives to ensure safe multi-threaded access.
If the library is unable to do this, C_Initialize should return with the value CKR_CANT_LOCK.

3. If the flag isn’t set, and the function pointer fields are supplied (i.e., they all have non-NULL_PTR
values), that means that the application will be performing multi-threaded Cryptoki access, and the
library needs to use the supplied function pointers for mutex-handling to ensure safe multi-threaded
access. If the library is unable to do this, C_Initialize should return with the value

CKR_CANT_LOCK.

4. If the flag is set, and the function pointer fields are supplied (i.e., they all have non-NULL_PTR
values), that means that the application will be performing multi-threaded Cryptoki access, and the
library needs to use either the native operating system primitives or the supplied function pointers for
mutex-handling to ensure safe multi-threaded access. If the library is unable to do this, C_Initialize

should return with the value CKR_CANT_LOCK.

If some, but not all, of the supplied function pointers to C_Initialize are non-NULL_PTR, then C_Initialize

should return with the value CKR_ARGUMENTS_BAD.

A call to C_Initialize with pInitArgs set to NULL_PTR is treated like a call to C_Initialize with pInitArgs
pointing to a CK_C_INITIALIZE_ARGS which has the CreateMutex, DestroyMutex, LockMutex,
UnlockMutex, and pReserved fields set to NULL_PTR, and has the flags field set to 0.

C_Initialize should be the first Cryptoki call made by an application, except for calls to
C_GetFunctionList. What this function actually does is implementation-dependent; typically, it might

cause Cryptoki to initialize its internal memory buffers, or any other resources it requires.

If several applications are using Cryptoki, each one should call C_Initialize. Every call to C_Initialize
should (eventually) be succeeded by a single call to C_Finalize. See [PKCS11-UG] for further details.

Return values: CKR_ARGUMENTS_BAD, CKR_CANT_LOCK,
CKR_CRYPTOKI_ALREADY_INITIALIZED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_NEED_TO_CREATE_THREADS, CKR_OK.

Example: see C_GetInfo.

 C_Finalize

CK_DEFINE_FUNCTION(CK_RV, C_Finalize)(

 CK_VOID_PTR pReserved

);

C_Finalize is called to indicate that an application is finished with the Cryptoki library. It should be the
last Cryptoki call made by an application. The pReserved parameter is reserved for future versions; for
this version, it should be set to NULL_PTR (if C_Finalize is called with a non-NULL_PTR value for
pReserved, it should return the value CKR_ARGUMENTS_BAD.

If several applications are using Cryptoki, each one should call C_Finalize. Each application’s call to
C_Finalize should be preceded by a single call to C_Initialize; in between the two calls, an application
can make calls to other Cryptoki functions. See [PKCS11-UG] for further details.

Despite the fact that the parameters supplied to C_Initialize can in general allow for safe multi-threaded
access to a Cryptoki library, the behavior of C_Finalize is nevertheless undefined if it is called by an
application while other threads of the application are making Cryptoki calls. The exception to this
exceptional behavior of C_Finalize occurs when a thread calls C_Finalize while another of the

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 71 of 149

application’s threads is blocking on Cryptoki’s C_WaitForSlotEvent function. When this happens, the
blocked thread becomes unblocked and returns the value CKR_CRYPTOKI_NOT_INITIALIZED. See
C_WaitForSlotEvent for more information.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example: see C_GetInfo.

 C_GetInfo

CK_DEFINE_FUNCTION(CK_RV, C_GetInfo)(

 CK_INFO_PTR pInfo

);

C_GetInfo returns general information about Cryptoki. pInfo points to the location that receives the
information.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:

CK_INFO info;

CK_RV rv;

CK_C_INITIALIZE_ARGS InitArgs;

InitArgs.CreateMutex = &MyCreateMutex;

InitArgs.DestroyMutex = &MyDestroyMutex;

InitArgs.LockMutex = &MyLockMutex;

InitArgs.UnlockMutex = &MyUnlockMutex;

InitArgs.flags = CKF_OS_LOCKING_OK;

InitArgs.pReserved = NULL_PTR;

rv = C_Initialize((CK_VOID_PTR)&InitArgs);

assert(rv == CKR_OK);

rv = C_GetInfo(&info);

assert(rv == CKR_OK);

if(info.version.major == 2) {

 /* Do lots of interesting cryptographic things with the token */

 .

 .

}

rv = C_Finalize(NULL_PTR);

assert(rv == CKR_OK);

 C_GetFunctionList

CK_DEFINE_FUNCTION(CK_RV, C_GetFunctionList)(

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 72 of 149

 CK_FUNCTION_LIST_PTR_PTR ppFunctionList

);

C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function pointers. ppFunctionList
points to a value which will receive a pointer to the library’s CK_FUNCTION_LIST structure, which in turn
contains function pointers for all the Cryptoki API routines in the library. The pointer thus obtained may
point into memory which is owned by the Cryptoki library, and which may or may not be writable.

Whether or not this is the case, no attempt should be made to write to this memory.

C_GetFunctionList is the only Cryptoki function which an application may call before calling C_Initialize.
It is provided to make it easier and faster for applications to use shared Cryptoki libraries and to use more
than one Cryptoki library simultaneously.

Return values: CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK.

Example:

CK_FUNCTION_LIST_PTR pFunctionList;

CK_C_Initialize pC_Initialize;

CK_RV rv;

/* It’s OK to call C_GetFunctionList before calling C_Initialize */

rv = C_GetFunctionList(&pFunctionList);

assert(rv == CKR_OK);

pC_Initialize = pFunctionList -> C_Initialize;

/* Call the C_Initialize function in the library */

rv = (*pC_Initialize)(NULL_PTR);

5.5 Slot and token management functions

Cryptoki provides the following functions for slot and token management:

 C_GetSlotList

CK_DEFINE_FUNCTION(CK_RV, C_GetSlotList)(

 CK_BBOOL tokenPresent,

 CK_SLOT_ID_PTR pSlotList,

 CK_ULONG_PTR pulCount

);

C_GetSlotList is used to obtain a list of slots in the system. tokenPresent indicates whether the list
obtained includes only those slots with a token present (CK_TRUE), or all slots (CK_FALSE); pulCount

points to the location that receives the number of slots.

There are two ways for an application to call C_GetSlotList:

1. If pSlotList is NULL_PTR, then all that C_GetSlotList does is return (in *pulCount) the number of
slots, without actually returning a list of slots. The contents of the buffer pointed to by pulCount on
entry to C_GetSlotList has no meaning in this case, and the call returns the value CKR_OK.

2. If pSlotList is not NULL_PTR, then *pulCount MUST contain the size (in terms of CK_SLOT_ID
elements) of the buffer pointed to by pSlotList. If that buffer is large enough to hold the list of slots,
then the list is returned in it, and CKR_OK is returned. If not, then the call to C_GetSlotList returns
the value CKR_BUFFER_TOO_SMALL. In either case, the value *pulCount is set to hold the number

of slots.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 73 of 149

Because C_GetSlotList does not allocate any space of its own, an application will often call
C_GetSlotList twice (or sometimes even more times—if an application is trying to get a list of all slots
with a token present, then the number of such slots can (unfortunately) change between when the
application asks for how many such slots there are and when the application asks for the slots
themselves). However, multiple calls to C_GetSlotList are by no means required.

All slots which C_GetSlotList reports MUST be able to be queried as valid slots by C_GetSlotInfo.
Furthermore, the set of slots accessible through a Cryptoki library is checked at the time that
C_GetSlotList, for list length prediction (NULL pSlotList argument) is called. If an application calls
C_GetSlotList with a non-NULL pSlotList, and then the user adds or removes a hardware device, the
changed slot list will only be visible and effective if C_GetSlotList is called again with NULL. Even if C_
GetSlotList is successfully called this way, it may or may not be the case that the changed slot list will be
successfully recognized depending on the library implementation. On some platforms, or earlier PKCS11
compliant libraries, it may be necessary to successfully call C_Initialize or to restart the entire system.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK.

Example:

CK_ULONG ulSlotCount, ulSlotWithTokenCount;

CK_SLOT_ID_PTR pSlotList, pSlotWithTokenList;

CK_RV rv;

/* Get list of all slots */

rv = C_GetSlotList(CK_FALSE, NULL_PTR, &ulSlotCount);

if (rv == CKR_OK) {

 pSlotList =

 (CK_SLOT_ID_PTR) malloc(ulSlotCount*sizeof(CK_SLOT_ID));

 rv = C_GetSlotList(CK_FALSE, pSlotList, &ulSlotCount);

 if (rv == CKR_OK) {

 /* Now use that list of all slots */

 .

 .

 }

 free(pSlotList);

}

/* Get list of all slots with a token present */

pSlotWithTokenList = (CK_SLOT_ID_PTR) malloc(0);

ulSlotWithTokenCount = 0;

while (1) {

 rv = C_GetSlotList(

 CK_TRUE, pSlotWithTokenList, ulSlotWithTokenCount);

 if (rv != CKR_BUFFER_TOO_SMALL)

 break;

 pSlotWithTokenList = realloc(

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 74 of 149

 pSlotWithTokenList,

 ulSlotWithTokenList*sizeof(CK_SLOT_ID));

}

if (rv == CKR_OK) {

 /* Now use that list of all slots with a token present */

 .

 .

}

free(pSlotWithTokenList);

 C_GetSlotInfo

CK_DEFINE_FUNCTION(CK_RV, C_GetSlotInfo)(

 CK_SLOT_ID slotID,

 CK_SLOT_INFO_PTR pInfo

);

C_GetSlotInfo obtains information about a particular slot in the system. slotID is the ID of the slot; pInfo

points to the location that receives the slot information.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_SLOT_ID_INVALID.

Example: see C_GetTokenInfo.

 C_GetTokenInfo

CK_DEFINE_FUNCTION(CK_RV, C_GetTokenInfo)(

 CK_SLOT_ID slotID,

 CK_TOKEN_INFO_PTR pInfo

);

C_GetTokenInfo obtains information about a particular token in the system. slotID is the ID of the
token’s slot; pInfo points to the location that receives the token information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.

Example:

CK_ULONG ulCount;

CK_SLOT_ID_PTR pSlotList;

CK_SLOT_INFO slotInfo;

CK_TOKEN_INFO tokenInfo;

CK_RV rv;

rv = C_GetSlotList(CK_FALSE, NULL_PTR, &ulCount);

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 75 of 149

if ((rv == CKR_OK) && (ulCount > 0)) {

 pSlotList = (CK_SLOT_ID_PTR) malloc(ulCount*sizeof(CK_SLOT_ID));

 rv = C_GetSlotList(CK_FALSE, pSlotList, &ulCount);

 assert(rv == CKR_OK);

 /* Get slot information for first slot */

 rv = C_GetSlotInfo(pSlotList[0], &slotInfo);

 assert(rv == CKR_OK);

 /* Get token information for first slot */

 rv = C_GetTokenInfo(pSlotList[0], &tokenInfo);

 if (rv == CKR_TOKEN_NOT_PRESENT) {

 .

 .

 }

 .

 .

 free(pSlotList);

}

 C_WaitForSlotEvent

CK_DEFINE_FUNCTION(CK_RV, C_WaitForSlotEvent)(

 CK_FLAGS flags,

 CK_SLOT_ID_PTR pSlot,

 CK_VOID_PTR pReserved

);

C_WaitForSlotEvent waits for a slot event, such as token insertion or token removal, to occur. flags
determines whether or not the C_WaitForSlotEvent call blocks (i.e., waits for a slot event to occur); pSlot
points to a location which will receive the ID of the slot that the event occurred in. pReserved is reserved
for future versions; for this version of Cryptoki, it should be NULL_PTR.

At present, the only flag defined for use in the flags argument is CKF_DONT_BLOCK:

Internally, each Cryptoki application has a flag for each slot which is used to track whether or not any
unrecognized events involving that slot have occurred. When an application initially calls C_Initialize,
every slot’s event flag is cleared. Whenever a slot event occurs, the flag corresponding to the slot in
which the event occurred is set.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags argument, and some
slot’s event flag is set, then that event flag is cleared, and the call returns with the ID of that slot in the
location pointed to by pSlot. If more than one slot’s event flag is set at the time of the call, one such slot

is chosen by the library to have its event flag cleared and to have its slot ID returned.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags argument, and no
slot’s event flag is set, then the call returns with the value CKR_NO_EVENT. In this case, the contents of
the location pointed to by pSlot when C_WaitForSlotEvent are undefined.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag clear in the flags argument, then the
call behaves as above, except that it will block. That is, if no slot’s event flag is set at the time of the call,
C_WaitForSlotEvent will wait until some slot’s event flag becomes set. If a thread of an application has

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 76 of 149

a C_WaitForSlotEvent call blocking when another thread of that application calls C_Finalize, the
C_WaitForSlotEvent call returns with the value CKR_CRYPTOKI_NOT_INITIALIZED.

Although the parameters supplied to C_Initialize can in general allow for safe multi-threaded access to a
Cryptoki library, C_WaitForSlotEvent is exceptional in that the behavior of Cryptoki is undefined if
multiple threads of a single application make simultaneous calls to C_WaitForSlotEvent.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_NO_EVENT,
CKR_OK.

Example:

CK_FLAGS flags = 0;

CK_SLOT_ID slotID;

CK_SLOT_INFO slotInfo;

.

.

/* Block and wait for a slot event */

rv = C_WaitForSlotEvent(flags, &slotID, NULL_PTR);

assert(rv == CKR_OK);

/* See what’s up with that slot */

rv = C_GetSlotInfo(slotID, &slotInfo);

assert(rv == CKR_OK);

 C_GetMechanismList

CK_DEFINE_FUNCTION(CK_RV, C_GetMechanismList)(

 CK_SLOT_ID slotID,

 CK_MECHANISM_TYPE_PTR pMechanismList,

 CK_ULONG_PTR pulCount

);

C_GetMechanismList is used to obtain a list of mechanism types supported by a token. SlotID is the ID
of the token’s slot; pulCount points to the location that receives the number of mechanisms.

There are two ways for an application to call C_GetMechanismList:

1. If pMechanismList is NULL_PTR, then all that C_GetMechanismList does is return (in *pulCount)
the number of mechanisms, without actually returning a list of mechanisms. The contents of
*pulCount on entry to C_GetMechanismList has no meaning in this case, and the call returns the

value CKR_OK.

2. If pMechanismList is not NULL_PTR, then *pulCount MUST contain the size (in terms of
CK_MECHANISM_TYPE elements) of the buffer pointed to by pMechanismList. If that buffer is large
enough to hold the list of mechanisms, then the list is returned in it, and CKR_OK is returned. If not,
then the call to C_GetMechanismList returns the value CKR_BUFFER_TOO_SMALL. In either
case, the value *pulCount is set to hold the number of mechanisms.

Because C_GetMechanismList does not allocate any space of its own, an application will often call
C_GetMechanismList twice. However, this behavior is by no means required.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 77 of 149

CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_ARGUMENTS_BAD.

Example:

CK_SLOT_ID slotID;

CK_ULONG ulCount;

CK_MECHANISM_TYPE_PTR pMechanismList;

CK_RV rv;

.

.

rv = C_GetMechanismList(slotID, NULL_PTR, &ulCount);

if ((rv == CKR_OK) && (ulCount > 0)) {

 pMechanismList =

 (CK_MECHANISM_TYPE_PTR)

 malloc(ulCount*sizeof(CK_MECHANISM_TYPE));

 rv = C_GetMechanismList(slotID, pMechanismList, &ulCount);

 if (rv == CKR_OK) {

 .

 .

 }

 free(pMechanismList);

 C_GetMechanismInfo

CK_DEFINE_FUNCTION(CK_RV, C_GetMechanismInfo)(

 CK_SLOT_ID slotID,

 CK_MECHANISM_TYPE type,

 CK_MECHANISM_INFO_PTR pInfo

);

C_GetMechanismInfo obtains information about a particular mechanism possibly supported by a token.
slotID is the ID of the token’s slot; type is the type of mechanism; pInfo points to the location that receives

the mechanism information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_OK, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.

Example:

CK_SLOT_ID slotID;

CK_MECHANISM_INFO info;

CK_RV rv;

.

.

/* Get information about the CKM_MD2 mechanism for this token */

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 78 of 149

rv = C_GetMechanismInfo(slotID, CKM_MD2, &info);

if (rv == CKR_OK) {

 if (info.flags & CKF_DIGEST) {

 .

 .

 }

}

 C_InitToken

CK_DEFINE_FUNCTION(CK_RV, C_InitToken)(

 CK_SLOT_ID slotID,

 CK_UTF8CHAR_PTR pPin,

 CK_ULONG ulPinLen,

 CK_UTF8CHAR_PTR pLabel

);

C_InitToken initializes a token. slotID is the ID of the token’s slot; pPin points to the SO’s initial PIN
(which need not be null-terminated); ulPinLen is the length in bytes of the PIN; pLabel points to the 32-
byte label of the token (which MUST be padded with blank characters, and which MUST not be null-
terminated). This standard allows PIN values to contain any valid UTF8 character, but the token may
impose subset restrictions.

If the token has not been initialized (i.e. new from the factory), then the pPin parameter becomes the
initial value of the SO PIN. If the token is being reinitialized, the pPin parameter is checked against the
existing SO PIN to authorize the initialization operation. In both cases, the SO PIN is the value pPin after
the function completes successfully. If the SO PIN is lost, then the card MUST be reinitialized using a
mechanism outside the scope of this standard. The CKF_TOKEN_INITIALIZED flag in the
CK_TOKEN_INFO structure indicates the action that will result from calling C_InitToken. If set, the token
will be reinitialized, and the client MUST supply the existing SO password in pPin.

When a token is initialized, all objects that can be destroyed are destroyed (i.e., all except for
“indestructible” objects such as keys built into the token). Also, access by the normal user is disabled
until the SO sets the normal user’s PIN. Depending on the token, some “default” objects may be created,
and attributes of some objects may be set to default values.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having the application send a
PIN through the Cryptoki library. One such possibility is that the user enters a PIN on a PINpad on the
token itself, or on the slot device. To initialize a token with such a protected authentication path, the pPin
parameter to C_InitToken should be NULL_PTR. During the execution of C_InitToken, the SO’s PIN will

be entered through the protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-dependent whether
or not C_InitToken can be used to initialize the token.

A token cannot be initialized if Cryptoki detects that any application has an open session with it; when a
call to C_InitToken is made under such circumstances, the call fails with error CKR_SESSION_EXISTS.
Unfortunately, it may happen when C_InitToken is called that some other application does have an open
session with the token, but Cryptoki cannot detect this, because it cannot detect anything about other
applications using the token. If this is the case, then the consequences of the C_InitToken call are
undefined.

The C_InitToken function may not be sufficient to properly initialize complex tokens. In these situations,
an initialization mechanism outside the scope of Cryptoki MUST be employed. The definition of “complex
token” is product specific.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 79 of 149

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INCORRECT,
CKR_PIN_LOCKED, CKR_SESSION_EXISTS, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example:

CK_SLOT_ID slotID;

CK_UTF8CHAR_PTR pin = “MyPIN”;

CK_UTF8CHAR label[32];

CK_RV rv;

.

.

memset(label, ‘ ’, sizeof(label));

memcpy(label, “My first token”, strlen(“My first token”));

rv = C_InitToken(slotID, pin, strlen(pin), label);

if (rv == CKR_OK) {

 .

 .

}

 C_InitPIN

CK_DEFINE_FUNCTION(CK_RV, C_InitPIN)(

 CK_SESSION_HANDLE hSession,

 CK_UTF8CHAR_PTR pPin,

 CK_ULONG ulPinLen

);

C_InitPIN initializes the normal user’s PIN. hSession is the session’s handle; pPin points to the normal
user’s PIN; ulPinLen is the length in bytes of the PIN. This standard allows PIN values to contain any

valid UTF8 character, but the token may impose subset restrictions.

C_InitPIN can only be called in the “R/W SO Functions” state. An attempt to call it from a session in any

other state fails with error CKR_USER_NOT_LOGGED_IN.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having to send a PIN through
the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or
on the slot device. To initialize the normal user’s PIN on a token with such a protected authentication
path, the pPin parameter to C_InitPIN should be NULL_PTR. During the execution of C_InitPIN, the SO

will enter the new PIN through the protected authentication path.

If the token has a protected authentication path other than a PIN pad, then it is token-dependent whether
or not C_InitPIN can be used to initialize the normal user’s token access.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INVALID,
CKR_PIN_LEN_RANGE, CKR_SESSION_CLOSED, CKR_SESSION_READ_ONLY,
CKR_SESSION_HANDLE_INVALID, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN, CKR_ARGUMENTS_BAD.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 80 of 149

Example:

CK_SESSION_HANDLE hSession;

CK_UTF8CHAR newPin[]= {“NewPIN”};

CK_RV rv;

rv = C_InitPIN(hSession, newPin, sizeof(newPin)-1);

if (rv == CKR_OK) {

 .

 .

}

 C_SetPIN

CK_DEFINE_FUNCTION(CK_RV, C_SetPIN)(

 CK_SESSION_HANDLE hSession,

 CK_UTF8CHAR_PTR pOldPin,

 CK_ULONG ulOldLen,

 CK_UTF8CHAR_PTR pNewPin,

 CK_ULONG ulNewLen

);

C_SetPIN modifies the PIN of the user that is currently logged in, or the CKU_USER PIN if the session is
not logged in. hSession is the session’s handle; pOldPin points to the old PIN; ulOldLen is the length in
bytes of the old PIN; pNewPin points to the new PIN; ulNewLen is the length in bytes of the new PIN. This
standard allows PIN values to contain any valid UTF8 character, but the token may impose subset
restrictions.

C_SetPIN can only be called in the “R/W Public Session” state, “R/W SO Functions” state, or “R/W User
Functions” state. An attempt to call it from a session in any other state fails with error
CKR_SESSION_READ_ONLY.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having to send a PIN through
the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or
on the slot device. To modify the current user’s PIN on a token with such a protected authentication path,
the pOldPin and pNewPin parameters to C_SetPIN should be NULL_PTR. During the execution of
C_SetPIN, the current user will enter the old PIN and the new PIN through the protected authentication
path. It is not specified how the PIN pad should be used to enter two PINs; this varies.

If the token has a protected authentication path other than a PIN pad, then it is token-dependent whether
or not C_SetPIN can be used to modify the current user’s PIN.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INCORRECT,
CKR_PIN_INVALID, CKR_PIN_LEN_RANGE, CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example:

CK_SESSION_HANDLE hSession;

CK_UTF8CHAR oldPin[] = {“OldPIN”};

CK_UTF8CHAR newPin[] = {“NewPIN”};

CK_RV rv;

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 81 of 149

rv = C_SetPIN(

 hSession, oldPin, sizeof(oldPin)-1, newPin, sizeof(newPin)-1);

if (rv == CKR_OK) {

 .

 .

}

5.6 Session management functions

A typical application might perform the following series of steps to make use of a token (note that there
are other reasonable sequences of events that an application might perform):

1. Select a token.

2. Make one or more calls to C_OpenSession to obtain one or more sessions with the token.

3. Call C_Login to log the user into the token. Since all sessions an application has with a token have a
shared login state, C_Login only needs to be called for one of the sessions.

4. Perform cryptographic operations using the sessions with the token.

5. Call C_CloseSession once for each session that the application has with the token, or call
C_CloseAllSessions to close all the application’s sessions simultaneously.

As has been observed, an application may have concurrent sessions with more than one token. It is also
possible for a token to have concurrent sessions with more than one application.

Cryptoki provides the following functions for session management:

 C_OpenSession

CK_DEFINE_FUNCTION(CK_RV, C_OpenSession)(

 CK_SLOT_ID slotID,

 CK_FLAGS flags,

 CK_VOID_PTR pApplication,

 CK_NOTIFY Notify,

 CK_SESSION_HANDLE_PTR phSession

);

C_OpenSession opens a session between an application and a token in a particular slot. slotID is the
slot’s ID; flags indicates the type of session; pApplication is an application-defined pointer to be passed to
the notification callback; Notify is the address of the notification callback function (see Section 5.16);
phSession points to the location that receives the handle for the new session.

When opening a session with C_OpenSession, the flags parameter consists of the logical OR of zero or
more bit flags defined in the CK_SESSION_INFO data type. For legacy reasons, the
CKF_SERIAL_SESSION bit MUST always be set; if a call to C_OpenSession does not have this bit set,
the call should return unsuccessfully with the error code
CKR_SESSION_PARALLEL_NOT_SUPPORTED.

There may be a limit on the number of concurrent sessions an application may have with the token, which
may depend on whether the session is “read-only” or “read/write”. An attempt to open a session which
does not succeed because there are too many existing sessions of some type should return
CKR_SESSION_COUNT.

If the token is write-protected (as indicated in the CK_TOKEN_INFO structure), then only read-only

sessions may be opened with it.

If the application calling C_OpenSession already has a R/W SO session open with the token, then any
attempt to open a R/O session with the token fails with error code
CKR_SESSION_READ_WRITE_SO_EXISTS (see [PKCS11-UG] for further details).

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 82 of 149

The Notify callback function is used by Cryptoki to notify the application of certain events. If the
application does not wish to support callbacks, it should pass a value of NULL_PTR as the Notify

parameter. See Section 5.16 for more information about application callbacks.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_COUNT,
CKR_SESSION_PARALLEL_NOT_SUPPORTED, CKR_SESSION_READ_WRITE_SO_EXISTS,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example: see C_CloseSession.

 C_CloseSession

CK_DEFINE_FUNCTION(CK_RV, C_CloseSession)(

 CK_SESSION_HANDLE hSession

);

C_CloseSession closes a session between an application and a token. hSession is the session’s

handle.

When a session is closed, all session objects created by the session are destroyed automatically, even if
the application has other sessions “using” the objects (see [PKCS11-UG] for further details).

If this function is successful and it closes the last session between the application and the token, the login
state of the token for the application returns to public sessions. Any new sessions to the token opened by
the application will be either R/O Public or R/W Public sessions.

Depending on the token, when the last open session any application has with the token is closed, the
token may be “ejected” from its reader (if this capability exists).

Despite the fact this C_CloseSession is supposed to close a session, the return value
CKR_SESSION_CLOSED is an error return. It actually indicates the (probably somewhat unlikely) event
that while this function call was executing, another call was made to C_CloseSession to close this
particular session, and that call finished executing first. Such uses of sessions are a bad idea, and
Cryptoki makes little promise of what will occur in general if an application indulges in this sort of
behavior.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SLOT_ID slotID;

CK_BYTE application;

CK_NOTIFY MyNotify;

CK_SESSION_HANDLE hSession;

CK_RV rv;

.

.

application = 17;

MyNotify = &EncryptionSessionCallback;

rv = C_OpenSession(

 slotID, CKF_SERIAL_SESSION | CKF_RW_SESSION,

 (CK_VOID_PTR) &application, MyNotify,

 &hSession);

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 83 of 149

if (rv == CKR_OK) {

 .

 .

 C_CloseSession(hSession);

}

 C_CloseAllSessions

CK_DEFINE_FUNCTION(CK_RV, C_CloseAllSessions)(

 CK_SLOT_ID slotID

);

C_CloseAllSessions closes all sessions an application has with a token. slotID specifies the token’s slot.

When a session is closed, all session objects created by the session are destroyed automatically.

After successful execution of this function, the login state of the token for the application returns to public
sessions. Any new sessions to the token opened by the application will be either R/O Public or R/W
Public sessions.

Depending on the token, when the last open session any application has with the token is closed, the
token may be “ejected” from its reader (if this capability exists).

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT.

Example:

CK_SLOT_ID slotID;

CK_RV rv;

.

.

rv = C_CloseAllSessions(slotID);

 C_GetSessionInfo

CK_DEFINE_FUNCTION(CK_RV, C_GetSessionInfo)(

 CK_SESSION_HANDLE hSession,

 CK_SESSION_INFO_PTR pInfo

);

C_GetSessionInfo obtains information about a session. hSession is the session’s handle; pInfo points to

the location that receives the session information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_ARGUMENTS_BAD.

Example:

CK_SESSION_HANDLE hSession;

CK_SESSION_INFO info;

CK_RV rv;

.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 84 of 149

.

rv = C_GetSessionInfo(hSession, &info);

if (rv == CKR_OK) {

 if (info.state == CKS_RW_USER_FUNCTIONS) {

 .

 .

 }

 .

 .

}

 C_GetOperationState

CK_DEFINE_FUNCTION(CK_RV, C_GetOperationState)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pOperationState,

 CK_ULONG_PTR pulOperationStateLen

);

C_GetOperationState obtains a copy of the cryptographic operations state of a session, encoded as a
string of bytes. hSession is the session’s handle; pOperationState points to the location that receives the
state; pulOperationStateLen points to the location that receives the length in bytes of the state.

Although the saved state output by C_GetOperationState is not really produced by a “cryptographic
mechanism”, C_GetOperationState nonetheless uses the convention described in Section 5.2 on

producing output.

Precisely what the “cryptographic operations state” this function saves is varies from token to token;
however, this state is what is provided as input to C_SetOperationState to restore the cryptographic
activities of a session.

Consider a session which is performing a message digest operation using SHA-1 (i.e., the session is
using the CKM_SHA_1 mechanism). Suppose that the message digest operation was initialized
properly, and that precisely 80 bytes of data have been supplied so far as input to SHA-1. The
application now wants to “save the state” of this digest operation, so that it can continue it later. In this
particular case, since SHA-1 processes 512 bits (64 bytes) of input at a time, the cryptographic
operations state of the session most likely consists of three distinct parts: the state of SHA-1’s 160-bit
internal chaining variable; the 16 bytes of unprocessed input data; and some administrative data
indicating that this saved state comes from a session which was performing SHA-1 hashing. Taken
together, these three pieces of information suffice to continue the current hashing operation at a later
time.

Consider next a session which is performing an encryption operation with DES (a block cipher with a
block size of 64 bits) in CBC (cipher-block chaining) mode (i.e., the session is using the CKM_DES_CBC
mechanism). Suppose that precisely 22 bytes of data (in addition to an IV for the CBC mode) have been
supplied so far as input to DES, which means that the first two 8-byte blocks of ciphertext have already
been produced and output. In this case, the cryptographic operations state of the session most likely
consists of three or four distinct parts: the second 8-byte block of ciphertext (this will be used for cipher-
block chaining to produce the next block of ciphertext); the 6 bytes of data still awaiting encryption; some
administrative data indicating that this saved state comes from a session which was performing DES
encryption in CBC mode; and possibly the DES key being used for encryption (see C_SetOperationState

for more information on whether or not the key is present in the saved state).

If a session is performing two cryptographic operations simultaneously (see Section 5.12), then the
cryptographic operations state of the session will contain all the necessary information to restore both
operations.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 85 of 149

An attempt to save the cryptographic operations state of a session which does not currently have some
active savable cryptographic operation(s) (encryption, decryption, digesting, signing without message
recovery, verification without message recovery, or some legal combination of two of these) should fail
with the error CKR_OPERATION_NOT_INITIALIZED.

An attempt to save the cryptographic operations state of a session which is performing an appropriate
cryptographic operation (or two), but which cannot be satisfied for any of various reasons (certain
necessary state information and/or key information can’t leave the token, for example) should fail with the
error CKR_STATE_UNSAVEABLE.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_STATE_UNSAVEABLE, CKR_ARGUMENTS_BAD.

Example: see C_SetOperationState.

 C_SetOperationState

CK_DEFINE_FUNCTION(CK_RV, C_SetOperationState)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pOperationState,

 CK_ULONG ulOperationStateLen,

 CK_OBJECT_HANDLE hEncryptionKey,

 CK_OBJECT_HANDLE hAuthenticationKey

);

C_SetOperationState restores the cryptographic operations state of a session from a string of bytes
obtained with C_GetOperationState. hSession is the session’s handle; pOperationState points to the
location holding the saved state; ulOperationStateLen holds the length of the saved state;
hEncryptionKey holds a handle to the key which will be used for an ongoing encryption or decryption
operation in the restored session (or 0 if no encryption or decryption key is needed, either because no
such operation is ongoing in the stored session or because all the necessary key information is present in
the saved state); hAuthenticationKey holds a handle to the key which will be used for an ongoing
signature, MACing, or verification operation in the restored session (or 0 if no such key is needed, either
because no such operation is ongoing in the stored session or because all the necessary key information
is present in the saved state).

The state need not have been obtained from the same session (the “source session”) as it is being
restored to (the “destination session”). However, the source session and destination session should have
a common session state (e.g., CKS_RW_USER_FUNCTIONS), and should be with a common token.
There is also no guarantee that cryptographic operations state may be carried across logins, or across
different Cryptoki implementations.

If C_SetOperationState is supplied with alleged saved cryptographic operations state which it can
determine is not valid saved state (or is cryptographic operations state from a session with a different
session state, or is cryptographic operations state from a different token), it fails with the error
CKR_SAVED_STATE_INVALID.

Saved state obtained from calls to C_GetOperationState may or may not contain information about keys
in use for ongoing cryptographic operations. If a saved cryptographic operations state has an ongoing
encryption or decryption operation, and the key in use for the operation is not saved in the state, then it
MUST be supplied to C_SetOperationState in the hEncryptionKey argument. If it is not, then
C_SetOperationState will fail and return the error CKR_KEY_NEEDED. If the key in use for the
operation is saved in the state, then it can be supplied in the hEncryptionKey argument, but this is not

required.

Similarly, if a saved cryptographic operations state has an ongoing signature, MACing, or verification
operation, and the key in use for the operation is not saved in the state, then it MUST be supplied to
C_SetOperationState in the hAuthenticationKey argument. If it is not, then C_SetOperationState will

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 86 of 149

fail with the error CKR_KEY_NEEDED. If the key in use for the operation is saved in the state, then it can
be supplied in the hAuthenticationKey argument, but this is not required.

If an irrelevant key is supplied to C_SetOperationState call (e.g., a nonzero key handle is submitted in
the hEncryptionKey argument, but the saved cryptographic operations state supplied does not have an
ongoing encryption or decryption operation, then C_SetOperationState fails with the error
CKR_KEY_NOT_NEEDED.

If a key is supplied as an argument to C_SetOperationState, and C_SetOperationState can somehow
detect that this key was not the key being used in the source session for the supplied cryptographic
operations state (it may be able to detect this if the key or a hash of the key is present in the saved state,
for example), then C_SetOperationState fails with the error CKR_KEY_CHANGED.

An application can look at the CKF_RESTORE_KEY_NOT_NEEDED flag in the flags field of the
CK_TOKEN_INFO field for a token to determine whether or not it needs to supply key handles to
C_SetOperationState calls. If this flag is true, then a call to C_SetOperationState never needs a key
handle to be supplied to it. If this flag is false, then at least some of the time, C_SetOperationState
requires a key handle, and so the application should probably always pass in any relevant key handles
when restoring cryptographic operations state to a session.

C_SetOperationState can successfully restore cryptographic operations state to a session even if that
session has active cryptographic or object search operations when C_SetOperationState is called (the

ongoing operations are abruptly cancelled).

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_CHANGED, CKR_KEY_NEEDED, CKR_KEY_NOT_NEEDED,
CKR_OK, CKR_SAVED_STATE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example:

CK_SESSION_HANDLE hSession;

CK_MECHANISM digestMechanism;

CK_ULONG ulStateLen;

CK_BYTE data1[] = {0x01, 0x03, 0x05, 0x07};

CK_BYTE data2[] = {0x02, 0x04, 0x08};

CK_BYTE data3[] = {0x10, 0x0F, 0x0E, 0x0D, 0x0C};

CK_BYTE pDigest[20];

CK_ULONG ulDigestLen;

CK_RV rv;

.

.

/* Initialize hash operation */

rv = C_DigestInit(hSession, &digestMechanism);

assert(rv == CKR_OK);

/* Start hashing */

rv = C_DigestUpdate(hSession, data1, sizeof(data1));

assert(rv == CKR_OK);

/* Find out how big the state might be */

rv = C_GetOperationState(hSession, NULL_PTR, &ulStateLen);

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 87 of 149

assert(rv == CKR_OK);

/* Allocate some memory and then get the state */

pState = (CK_BYTE_PTR) malloc(ulStateLen);

rv = C_GetOperationState(hSession, pState, &ulStateLen);

/* Continue hashing */

rv = C_DigestUpdate(hSession, data2, sizeof(data2));

assert(rv == CKR_OK);

/* Restore state. No key handles needed */

rv = C_SetOperationState(hSession, pState, ulStateLen, 0, 0);

assert(rv == CKR_OK);

/* Continue hashing from where we saved state */

rv = C_DigestUpdate(hSession, data3, sizeof(data3));

assert(rv == CKR_OK);

/* Conclude hashing operation */

ulDigestLen = sizeof(pDigest);

rv = C_DigestFinal(hSession, pDigest, &ulDigestLen);

if (rv == CKR_OK) {

 /* pDigest[] now contains the hash of 0x01030507100F0E0D0C */

 .

 .

}

 C_Login

CK_DEFINE_FUNCTION(CK_RV, C_Login)(

 CK_SESSION_HANDLE hSession,

 CK_USER_TYPE userType,

 CK_UTF8CHAR_PTR pPin,

 CK_ULONG ulPinLen

);

C_Login logs a user into a token. hSession is a session handle; userType is the user type; pPin points to
the user’s PIN; ulPinLen is the length of the PIN. This standard allows PIN values to contain any valid

UTF8 character, but the token may impose subset restrictions.

When the user type is either CKU_SO or CKU_USER, if the call succeeds, each of the application's
sessions will enter either the "R/W SO Functions" state, the "R/W User Functions" state, or the "R/O User
Functions" state. If the user type is CKU_CONTEXT_SPECIFIC , the behavior of C_Login depends on
the context in which it is called. Improper use of this user type will result in a return value
CKR_OPERATION_NOT_INITIALIZED..

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having to send a PIN through
the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 88 of 149

on the slot device. Or the user might not even use a PIN—authentication could be achieved by some
fingerprint-reading device, for example. To log into a token with a protected authentication path, the pPin
parameter to C_Login should be NULL_PTR. When C_Login returns, whatever authentication method
supported by the token will have been performed; a return value of CKR_OK means that the user was
successfully authenticated, and a return value of CKR_PIN_INCORRECT means that the user was
denied access.

If there are any active cryptographic or object finding operations in an application’s session, and then
C_Login is successfully executed by that application, it may or may not be the case that those operations

are still active. Therefore, before logging in, any active operations should be finished.

If the application calling C_Login has a R/O session open with the token, then it will be unable to log the
SO into a session (see [PKCS11-UG] for further details). An attempt to do this will result in the error code

CKR_SESSION_READ_ONLY_EXISTS.

C_Login may be called repeatedly, without intervening C_Logout calls, if (and only if) a key with the
CKA_ALWAYS_AUTHENTICATE attribute set to CK_TRUE exists, and the user needs to do
cryptographic operation on this key. See further Section 4.9.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_PIN_INCORRECT,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY_EXISTS, CKR_USER_ALREADY_LOGGED_IN,
CKR_USER_ANOTHER_ALREADY_LOGGED_IN, CKR_USER_PIN_NOT_INITIALIZED,
CKR_USER_TOO_MANY_TYPES, CKR_USER_TYPE_INVALID.

Example: see C_Logout.

 C_Logout

CK_DEFINE_FUNCTION(CK_RV, C_Logout)(

 CK_SESSION_HANDLE hSession

);

C_Logout logs a user out from a token. hSession is the session’s handle.

Depending on the current user type, if the call succeeds, each of the application’s sessions will enter
either the “R/W Public Session” state or the “R/O Public Session” state.

When C_Logout successfully executes, any of the application’s handles to private objects become invalid
(even if a user is later logged back into the token, those handles remain invalid). In addition, all private
session objects from sessions belonging to the application are destroyed.

If there are any active cryptographic or object-finding operations in an application’s session, and then
C_Logout is successfully executed by that application, it may or may not be the case that those
operations are still active. Therefore, before logging out, any active operations should be finished.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;

CK_UTF8CHAR userPIN[] = {“MyPIN”};

CK_RV rv;

rv = C_Login(hSession, CKU_USER, userPIN, sizeof(userPIN)-1);

if (rv == CKR_OK) {

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 89 of 149

 .

 .

 rv == C_Logout(hSession);

 if (rv == CKR_OK) {

 .

 .

 }

}

5.7 Object management functions

Cryptoki provides the following functions for managing objects. Additional functions provided specifically
for managing key objects are described in Section 5.13.

 C_CreateObject

CK_DEFINE_FUNCTION(CK_RV, C_CreateObject)(

 CK_SESSION_HANDLE hSession,

 CK_ATTRIBUTE_PTR pTemplate,

 CK_ULONG ulCount,

 CK_OBJECT_HANDLE_PTR phObject

);

C_CreateObject creates a new object. hSession is the session’s handle; pTemplate points to the object’s
template; ulCount is the number of attributes in the template; phObject points to the location that receives
the new object’s handle.

If a call to C_CreateObject cannot support the precise template supplied to it, it will fail and return without
creating any object.

If C_CreateObject is used to create a key object, the key object will have its CKA_LOCAL attribute set to
CK_FALSE. If that key object is a secret or private key then the new key will have the
CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, and the CKA_NEVER_EXTRACTABLE

attribute set to CK_FALSE.

Only session objects can be created during a read-only session. Only public objects can be created
unless the normal user is logged in.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE

 hData,

 hCertificate,

 hKey;

CK_OBJECT_CLASS

 dataClass = CKO_DATA,

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 90 of 149

 certificateClass = CKO_CERTIFICATE,

 keyClass = CKO_PUBLIC_KEY;

CK_KEY_TYPE keyType = CKK_RSA;

CK_UTF8CHAR application[] = {“My Application”};

CK_BYTE dataValue[] = {...};

CK_BYTE subject[] = {...};

CK_BYTE id[] = {...};

CK_BYTE certificateValue[] = {...};

CK_BYTE modulus[] = {...};

CK_BYTE exponent[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE dataTemplate[] = {

 {CKA_CLASS, &dataClass, sizeof(dataClass)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_APPLICATION, application, sizeof(application)-1},

 {CKA_VALUE, dataValue, sizeof(dataValue)}

};

CK_ATTRIBUTE certificateTemplate[] = {

 {CKA_CLASS, &certificateClass, sizeof(certificateClass)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_SUBJECT, subject, sizeof(subject)},

 {CKA_ID, id, sizeof(id)},

 {CKA_VALUE, certificateValue, sizeof(certificateValue)}

};

CK_ATTRIBUTE keyTemplate[] = {

 {CKA_CLASS, &keyClass, sizeof(keyClass)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_WRAP, &true, sizeof(true)},

 {CKA_MODULUS, modulus, sizeof(modulus)},

 {CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)}

};

CK_RV rv;

.

.

/* Create a data object */

rv = C_CreateObject(hSession, &dataTemplate, 4, &hData);

if (rv == CKR_OK) {

 .

 .

}

/* Create a certificate object */

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 91 of 149

rv = C_CreateObject(

 hSession, &certificateTemplate, 5, &hCertificate);

if (rv == CKR_OK) {

 .

 .

}

/* Create an RSA public key object */

rv = C_CreateObject(hSession, &keyTemplate, 5, &hKey);

if (rv == CKR_OK) {

 .

 .

}

 C_CopyObject

CK_DEFINE_FUNCTION(CK_RV, C_CopyObject)(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_HANDLE hObject,

 CK_ATTRIBUTE_PTR pTemplate,

 CK_ULONG ulCount,

 CK_OBJECT_HANDLE_PTR phNewObject

);

C_CopyObject copies an object, creating a new object for the copy. hSession is the session’s handle;
hObject is the object’s handle; pTemplate points to the template for the new object; ulCount is the number
of attributes in the template; phNewObject points to the location that receives the handle for the copy of

the object.

The template may specify new values for any attributes of the object that can ordinarily be modified (e.g.,
in the course of copying a secret key, a key’s CKA_EXTRACTABLE attribute may be changed from
CK_TRUE to CK_FALSE, but not the other way around. If this change is made, the new key’s
CKA_NEVER_EXTRACTABLE attribute will have the value CK_FALSE. Similarly, the template may
specify that the new key’s CKA_SENSITIVE attribute be CK_TRUE; the new key will have the same
value for its CKA_ALWAYS_SENSITIVE attribute as the original key). It may also specify new values of
the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a session object to a token object). If the
template specifies a value of an attribute which is incompatible with other existing attributes of the object,
the call fails with the return code CKR_TEMPLATE_INCONSISTENT.

If a call to C_CopyObject cannot support the precise template supplied to it, it will fail and return without
creating any object. If the object indicated by hObject has its CKA_COPYABLE attribute set to
CK_FALSE, C_CopyObject will return CKR_ACTION_PROHIBITED.

Only session objects can be created during a read-only session. Only public objects can be created
unless the normal user is logged in.

Return values: , CKR_ACTION_PROHIBITED, CKR_ARGUMENTS_BAD,
CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

 Example:

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 92 of 149

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hKey, hNewKey;

CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_DES;

CK_BYTE id[] = {...};

CK_BYTE keyValue[] = {...};

CK_BBOOL false = CK_FALSE;

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE keyTemplate[] = {

 {CKA_CLASS, &keyClass, sizeof(keyClass)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &false, sizeof(false)},

 {CKA_ID, id, sizeof(id)},

 {CKA_VALUE, keyValue, sizeof(keyValue)}

};

CK_ATTRIBUTE copyTemplate[] = {

 {CKA_TOKEN, &true, sizeof(true)}

};

CK_RV rv;

.

.

/* Create a DES secret key session object */

rv = C_CreateObject(hSession, &keyTemplate, 5, &hKey);

if (rv == CKR_OK) {

 /* Create a copy which is a token object */

 rv = C_CopyObject(hSession, hKey, ©Template, 1, &hNewKey);

 .

 .

}

 C_DestroyObject

CK_DEFINE_FUNCTION(CK_RV, C_DestroyObject)(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_HANDLE hObject

);

C_DestroyObject destroys an object. hSession is the session’s handle; and hObject is the object’s

handle.

Only session objects can be destroyed during a read-only session. Only public objects can be destroyed
unless the normal user is logged in.

Certain objects may not be destroyed. Calling C_DestroyObject on such objects will result in the
CKR_ACTION_PROHIBITED error code. An application can consult the object's CKA_DESTROYABLE
attribute to determine if an object may be destroyed or not.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 93 of 149

Return values: , CKR_ACTION_PROHIBITED, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TOKEN_WRITE_PROTECTED.

 Example: see C_GetObjectSize.

 C_GetObjectSize

CK_DEFINE_FUNCTION(CK_RV, C_GetObjectSize)(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_HANDLE hObject,

 CK_ULONG_PTR pulSize

);

C_GetObjectSize gets the size of an object in bytes. hSession is the session’s handle; hObject is the
object’s handle; pulSize points to the location that receives the size in bytes of the object.

Cryptoki does not specify what the precise meaning of an object’s size is. Intuitively, it is some measure
of how much token memory the object takes up. If an application deletes (say) a private object of size S,
it might be reasonable to assume that the ulFreePrivateMemory field of the token’s CK_TOKEN_INFO

structure increases by approximately S.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_INFORMATION_SENSITIVE, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hObject;

CK_OBJECT_CLASS dataClass = CKO_DATA;

CK_UTF8CHAR application[] = {“My Application”};

CK_BYTE dataValue[] = {...};

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &dataClass, sizeof(dataClass)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_APPLICATION, application, sizeof(application)-1},

 {CKA_VALUE, value, sizeof(value)}

};

CK_ULONG ulSize;

CK_RV rv;

.

.

rv = C_CreateObject(hSession, &template, 4, &hObject);

if (rv == CKR_OK) {

 rv = C_GetObjectSize(hSession, hObject, &ulSize);

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 94 of 149

 if (rv != CKR_INFORMATION_SENSITIVE) {

 .

 .

 }

 rv = C_DestroyObject(hSession, hObject);

 .

 .

}

 C_GetAttributeValue

CK_DEFINE_FUNCTION(CK_RV, C_GetAttributeValue)(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_HANDLE hObject,

 CK_ATTRIBUTE_PTR pTemplate,

 CK_ULONG ulCount

);

C_GetAttributeValue obtains the value of one or more attributes of an object. hSession is the session’s
handle; hObject is the object’s handle; pTemplate points to a template that specifies which attribute
values are to be obtained, and receives the attribute values; ulCount is the number of attributes in the

template.

For each (type, pValue, ulValueLen) triple in the template, C_GetAttributeValue performs the following

algorithm:

1. If the specified attribute (i.e., the attribute specified by the type field) for the object cannot be revealed
because the object is sensitive or unextractable, then the ulValueLen field in that triple is modified to
hold the value CK_UNAVAILABLE_INFORMATION.

2. Otherwise, if the specified value for the object is invalid (the object does not possess such an
attribute), then the ulValueLen field in that triple is modified to hold the value
CK_UNAVAILABLE_INFORMATION.

3. Otherwise, if the pValue field has the value NULL_PTR, then the ulValueLen field is modified to hold

the exact length of the specified attribute for the object.

4. Otherwise, if the length specified in ulValueLen is large enough to hold the value of the specified
attribute for the object, then that attribute is copied into the buffer located at pValue, and the
ulValueLen field is modified to hold the exact length of the attribute.

5. Otherwise, the ulValueLen field is modified to hold the value CK_UNAVAILABLE_INFORMATION.

If case 1 applies to any of the requested attributes, then the call should return the value
CKR_ATTRIBUTE_SENSITIVE. If case 2 applies to any of the requested attributes, then the call should
return the value CKR_ATTRIBUTE_TYPE_INVALID. If case 5 applies to any of the requested attributes,
then the call should return the value CKR_BUFFER_TOO_SMALL. As usual, if more than one of these
error codes is applicable, Cryptoki may return any of them. Only if none of them applies to any of the
requested attributes will CKR_OK be returned.

In the special case of an attribute whose value is an array of attributes, for example
CKA_WRAP_TEMPLATE, where it is passed in with pValue not NULL, then if the pValue of elements
within the array is NULL_PTR then the ulValueLen of elements within the array will be set to the required
length. If the pValue of elements within the array is not NULL_PTR, then the ulValueLen element of
attributes within the array MUST reflect the space that the corresponding pValue points to, and pValue is
filled in if there is sufficient room. Therefore it is important to initialize the contents of a buffer before
calling C_GetAttributeValue to get such an array value. If any ulValueLen within the array isn't large
enough, it will be set to CK_UNAVAILABLE_INFORMATION and the function will return

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 95 of 149

CKR_BUFFER_TOO_SMALL, as it does if an attribute in the pTemplate argument has ulValueLen too
small. Note that any attribute whose value is an array of attributes is identifiable by virtue of the attribute
type having the CKF_ARRAY_ATTRIBUTE bit set.

Note that the error codes CKR_ATTRIBUTE_SENSITIVE, CKR_ATTRIBUTE_TYPE_INVALID, and
CKR_BUFFER_TOO_SMALL do not denote true errors for C_GetAttributeValue. If a call to
C_GetAttributeValue returns any of these three values, then the call MUST nonetheless have processed
every attribute in the template supplied to C_GetAttributeValue. Each attribute in the template whose
value can be returned by the call to C_GetAttributeValue will be returned by the call to
C_GetAttributeValue.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hObject;

CK_BYTE_PTR pModulus, pExponent;

CK_ATTRIBUTE template[] = {

 {CKA_MODULUS, NULL_PTR, 0},

 {CKA_PUBLIC_EXPONENT, NULL_PTR, 0}

};

CK_RV rv;

.

.

rv = C_GetAttributeValue(hSession, hObject, &template, 2);

if (rv == CKR_OK) {

 pModulus = (CK_BYTE_PTR) malloc(template[0].ulValueLen);

 template[0].pValue = pModulus;

 /* template[0].ulValueLen was set by C_GetAttributeValue */

 pExponent = (CK_BYTE_PTR) malloc(template[1].ulValueLen);

 template[1].pValue = pExponent;

 /* template[1].ulValueLen was set by C_GetAttributeValue */

 rv = C_GetAttributeValue(hSession, hObject, &template, 2);

 if (rv == CKR_OK) {

 .

 .

 }

 free(pModulus);

 free(pExponent);

}

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 96 of 149

 C_SetAttributeValue

CK_DEFINE_FUNCTION(CK_RV, C_SetAttributeValue)(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_HANDLE hObject,

 CK_ATTRIBUTE_PTR pTemplate,

 CK_ULONG ulCount

);

C_SetAttributeValue modifies the value of one or more attributes of an object. hSession is the session’s
handle; hObject is the object’s handle; pTemplate points to a template that specifies which attribute
values are to be modified and their new values; ulCount is the number of attributes in the template.

Certain objects may not be modified. Calling C_SetAttributeValue on such objects will result in the
CKR_ACTION_PROHIBITED error code. An application can consult the object's CKA_MODIFIABLE
attribute to determine if an object may be modified or not.

Only session objects can be modified during a read-only session.

The template may specify new values for any attributes of the object that can be modified. If the template
specifies a value of an attribute which is incompatible with other existing attributes of the object, the call
fails with the return code CKR_TEMPLATE_INCONSISTENT.

Not all attributes can be modified; see Section 4.1.2 for more details.

Return values: CKR_ACTION_PROHIBITED, CKR_ARGUMENTS_BAD,
CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hObject;

CK_UTF8CHAR label[] = {“New label”};

CK_ATTRIBUTE template[] = {

 CKA_LABEL, label, sizeof(label)-1

};

CK_RV rv;

.

.

rv = C_SetAttributeValue(hSession, hObject, &template, 1);

if (rv == CKR_OK) {

 .

 .

}

 C_FindObjectsInit

CK_DEFINE_FUNCTION(CK_RV, C_FindObjectsInit)(

 CK_SESSION_HANDLE hSession,

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 97 of 149

 CK_ATTRIBUTE_PTR pTemplate,

 CK_ULONG ulCount

);

C_FindObjectsInit initializes a search for token and session objects that match a template. hSession is
the session’s handle; pTemplate points to a search template that specifies the attribute values to match;
ulCount is the number of attributes in the search template. The matching criterion is an exact byte-for-
byte match with all attributes in the template. To find all objects, set ulCount to 0.

After calling C_FindObjectsInit, the application may call C_FindObjects one or more times to obtain
handles for objects matching the template, and then eventually call C_FindObjectsFinal to finish the

active search operation. At most one search operation may be active at a given time in a given session.

The object search operation will only find objects that the session can view. For example, an object
search in an “R/W Public Session” will not find any private objects (even if one of the attributes in the
search template specifies that the search is for private objects).

If a search operation is active, and objects are created or destroyed which fit the search template for the
active search operation, then those objects may or may not be found by the search operation. Note that
this means that, under these circumstances, the search operation may return invalid object handles.

Even though C_FindObjectsInit can return the values CKR_ATTRIBUTE_TYPE_INVALID and
CKR_ATTRIBUTE_VALUE_INVALID, it is not required to. For example, if it is given a search template
with nonexistent attributes in it, it can return CKR_ATTRIBUTE_TYPE_INVALID, or it can initialize a
search operation which will match no objects and return CKR_OK.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

 C_FindObjects

CK_DEFINE_FUNCTION(CK_RV, C_FindObjects)(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_HANDLE_PTR phObject,

 CK_ULONG ulMaxObjectCount,

 CK_ULONG_PTR pulObjectCount

);

C_FindObjects continues a search for token and session objects that match a template, obtaining
additional object handles. hSession is the session’s handle; phObject points to the location that receives
the list (array) of additional object handles; ulMaxObjectCount is the maximum number of object handles
to be returned; pulObjectCount points to the location that receives the actual number of object handles

returned.

If there are no more objects matching the template, then the location that pulObjectCount points to

receives the value 0.

The search MUST have been initialized with C_FindObjectsInit.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 98 of 149

 C_FindObjectsFinal

CK_DEFINE_FUNCTION(CK_RV, C_FindObjectsFinal)(

 CK_SESSION_HANDLE hSession

);

C_FindObjectsFinal terminates a search for token and session objects. hSession is the session’s

handle.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hObject;

CK_ULONG ulObjectCount;

CK_RV rv;

.

.

rv = C_FindObjectsInit(hSession, NULL_PTR, 0);

assert(rv == CKR_OK);

while (1) {

 rv = C_FindObjects(hSession, &hObject, 1, &ulObjectCount);

 if (rv != CKR_OK || ulObjectCount == 0)

 break;

 .

 .

}

rv = C_FindObjectsFinal(hSession);

assert(rv == CKR_OK);

5.8 Encryption functions

Cryptoki provides the following functions for encrypting data:

 C_EncryptInit

CK_DEFINE_FUNCTION(CK_RV, C_EncryptInit)(

 CK_SESSION_HANDLE hSession,

 CK_MECHANISM_PTR pMechanism,

 CK_OBJECT_HANDLE hKey

);

C_EncryptInit initializes an encryption operation. hSession is the session’s handle; pMechanism points
to the encryption mechanism; hKey is the handle of the encryption key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports

encryption, MUST be CK_TRUE.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 99 of 149

After calling C_EncryptInit, the application can either call C_Encrypt to encrypt data in a single part; or
call C_EncryptUpdate zero or more times, followed by C_EncryptFinal, to encrypt data in multiple parts.
The encryption operation is active until the application uses a call to C_Encrypt or C_EncryptFinal to
actually obtain the final piece of ciphertext. To process additional data (in single or multiple parts), the
application MUST call C_EncryptInit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_EncryptFinal.

 C_Encrypt

CK_DEFINE_FUNCTION(CK_RV, C_Encrypt)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pData,

 CK_ULONG ulDataLen,

 CK_BYTE_PTR pEncryptedData,

 CK_ULONG_PTR pulEncryptedDataLen

);

C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points to the data;
ulDataLen is the length in bytes of the data; pEncryptedData points to the location that receives the
encrypted data; pulEncryptedDataLen points to the location that holds the length in bytes of the encrypted

data.

C_Encrypt uses the convention described in Section 5.2 on producing output.

The encryption operation MUST have been initialized with C_EncryptInit. A call to C_Encrypt always
terminates the active encryption operation unless it returns CKR_BUFFER_TOO_SMALL or is a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the

ciphertext.

C_Encrypt cannot be used to terminate a multi-part operation, and MUST be called after C_EncryptInit
without intervening C_EncryptUpdate calls.

For some encryption mechanisms, the input plaintext data has certain length constraints (either because
the mechanism can only encrypt relatively short pieces of plaintext, or because the mechanism’s input
data MUST consist of an integral number of blocks). If these constraints are not satisfied, then
C_Encrypt will fail with return code CKR_DATA_LEN_RANGE.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pData and pEncryptedData point to

the same location.

For most mechanisms, C_Encrypt is equivalent to a sequence of C_EncryptUpdate operations followed
by C_EncryptFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal for an example of similar functions.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 100 of 149

 C_EncryptUpdate

CK_DEFINE_FUNCTION(CK_RV, C_EncryptUpdate)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pPart,

 CK_ULONG ulPartLen,

 CK_BYTE_PTR pEncryptedPart,

 CK_ULONG_PTR pulEncryptedPartLen

);

C_EncryptUpdate continues a multiple-part encryption operation, processing another data part.
hSession is the session’s handle; pPart points to the data part; ulPartLen is the length of the data part;
pEncryptedPart points to the location that receives the encrypted data part; pulEncryptedPartLen points
to the location that holds the length in bytes of the encrypted data part.

C_EncryptUpdate uses the convention described in Section 5.2 on producing output.

The encryption operation MUST have been initialized with C_EncryptInit. This function may be called
any number of times in succession. A call to C_EncryptUpdate which results in an error other than

CKR_BUFFER_TOO_SMALL terminates the current encryption operation.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pPart and pEncryptedPart point to

the same location.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal.

 C_EncryptFinal

CK_DEFINE_FUNCTION(CK_RV, C_EncryptFinal)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pLastEncryptedPart,

 CK_ULONG_PTR pulLastEncryptedPartLen

);

C_EncryptFinal finishes a multiple-part encryption operation. hSession is the session’s handle;
pLastEncryptedPart points to the location that receives the last encrypted data part, if any;
pulLastEncryptedPartLen points to the location that holds the length of the last encrypted data part.

C_EncryptFinal uses the convention described in Section 5.2 on producing output.

The encryption operation MUST have been initialized with C_EncryptInit. A call to C_EncryptFinal
always terminates the active encryption operation unless it returns CKR_BUFFER_TOO_SMALL or is a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the

ciphertext.

For some multi-part encryption mechanisms, the input plaintext data has certain length constraints,
because the mechanism’s input data MUST consist of an integral number of blocks. If these constraints
are not satisfied, then C_EncryptFinal will fail with return code CKR_DATA_LEN_RANGE.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

#define PLAINTEXT_BUF_SZ 200

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 101 of 149

#define CIPHERTEXT_BUF_SZ 256

CK_ULONG firstPieceLen, secondPieceLen;

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hKey;

CK_BYTE iv[8];

CK_MECHANISM mechanism = {

 CKM_DES_CBC_PAD, iv, sizeof(iv)

};

CK_BYTE data[PLAINTEXT_BUF_SZ];

CK_BYTE encryptedData[CIPHERTEXT_BUF_SZ];

CK_ULONG ulEncryptedData1Len;

CK_ULONG ulEncryptedData2Len;

CK_ULONG ulEncryptedData3Len;

CK_RV rv;

.

.

firstPieceLen = 90;

secondPieceLen = PLAINTEXT_BUF_SZ-firstPieceLen;

rv = C_EncryptInit(hSession, &mechanism, hKey);

if (rv == CKR_OK) {

 /* Encrypt first piece */

 ulEncryptedData1Len = sizeof(encryptedData);

 rv = C_EncryptUpdate(

 hSession,

 &data[0], firstPieceLen,

 &encryptedData[0], &ulEncryptedData1Len);

 if (rv != CKR_OK) {

 .

 .

 }

 /* Encrypt second piece */

 ulEncryptedData2Len = sizeof(encryptedData)-ulEncryptedData1Len;

 rv = C_EncryptUpdate(

 hSession,

 &data[firstPieceLen], secondPieceLen,

 &encryptedData[ulEncryptedData1Len], &ulEncryptedData2Len);

 if (rv != CKR_OK) {

 .

 .

 }

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 102 of 149

 /* Get last little encrypted bit */

 ulEncryptedData3Len =

 sizeof(encryptedData)-ulEncryptedData1Len-ulEncryptedData2Len;

 rv = C_EncryptFinal(

 hSession,

 &encryptedData[ulEncryptedData1Len+ulEncryptedData2Len],

 &ulEncryptedData3Len);

 if (rv != CKR_OK) {

 .

 .

 }

}

5.9 Decryption functions

Cryptoki provides the following functions for decrypting data:

 C_DecryptInit

CK_DEFINE_FUNCTION(CK_RV, C_DecryptInit)(

 CK_SESSION_HANDLE hSession,

 CK_MECHANISM_PTR pMechanism,

 CK_OBJECT_HANDLE hKey

);

C_DecryptInit initializes a decryption operation. hSession is the session’s handle; pMechanism points to
the decryption mechanism; hKey is the handle of the decryption key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports

decryption, MUST be CK_TRUE.

After calling C_DecryptInit, the application can either call C_Decrypt to decrypt data in a single part; or
call C_DecryptUpdate zero or more times, followed by C_DecryptFinal, to decrypt data in multiple parts.
The decryption operation is active until the application uses a call to C_Decrypt or C_DecryptFinal to
actually obtain the final piece of plaintext. To process additional data (in single or multiple parts), the
application MUST call C_DecryptInit again

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_DecryptFinal.

 C_Decrypt

CK_DEFINE_FUNCTION(CK_RV, C_Decrypt)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pEncryptedData,

 CK_ULONG ulEncryptedDataLen,

 CK_BYTE_PTR pData,

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 103 of 149

 CK_ULONG_PTR pulDataLen

);

C_Decrypt decrypts encrypted data in a single part. hSession is the session’s handle; pEncryptedData
points to the encrypted data; ulEncryptedDataLen is the length of the encrypted data; pData points to the
location that receives the recovered data; pulDataLen points to the location that holds the length of the

recovered data.

C_Decrypt uses the convention described in Section 5.2 on producing output.

The decryption operation MUST have been initialized with C_DecryptInit. A call to C_Decrypt always
terminates the active decryption operation unless it returns CKR_BUFFER_TOO_SMALL or is a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the

plaintext.

C_Decrypt cannot be used to terminate a multi-part operation, and MUST be called after C_DecryptInit
without intervening C_DecryptUpdate calls.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedData and pData point to

the same location.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either
CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

For most mechanisms, C_Decrypt is equivalent to a sequence of C_DecryptUpdate operations followed
by C_DecryptFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_DecryptFinal for an example of similar functions.

 C_DecryptUpdate

CK_DEFINE_FUNCTION(CK_RV, C_DecryptUpdate)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pEncryptedPart,

 CK_ULONG ulEncryptedPartLen,

 CK_BYTE_PTR pPart,

 CK_ULONG_PTR pulPartLen

);

C_DecryptUpdate continues a multiple-part decryption operation, processing another encrypted data
part. hSession is the session’s handle; pEncryptedPart points to the encrypted data part;
ulEncryptedPartLen is the length of the encrypted data part; pPart points to the location that receives the
recovered data part; pulPartLen points to the location that holds the length of the recovered data part.

C_DecryptUpdate uses the convention described in Section 5.2 on producing output.

The decryption operation MUST have been initialized with C_DecryptInit. This function may be called
any number of times in succession. A call to C_DecryptUpdate which results in an error other than
CKR_BUFFER_TOO_SMALL terminates the current decryption operation.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedPart and pPart point to
the same location.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 104 of 149

Example: See C_DecryptFinal.

 C_DecryptFinal

CK_DEFINE_FUNCTION(CK_RV, C_DecryptFinal)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pLastPart,

 CK_ULONG_PTR pulLastPartLen

);

C_DecryptFinal finishes a multiple-part decryption operation. hSession is the session’s handle;
pLastPart points to the location that receives the last recovered data part, if any; pulLastPartLen points to

the location that holds the length of the last recovered data part.

C_DecryptFinal uses the convention described in Section 5.2 on producing output.

The decryption operation MUST have been initialized with C_DecryptInit. A call to C_DecryptFinal
always terminates the active decryption operation unless it returns CKR_BUFFER_TOO_SMALL or is a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
plaintext.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either
CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example:

#define CIPHERTEXT_BUF_SZ 256

#define PLAINTEXT_BUF_SZ 256

CK_ULONG firstEncryptedPieceLen, secondEncryptedPieceLen;

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hKey;

CK_BYTE iv[8];

CK_MECHANISM mechanism = {

 CKM_DES_CBC_PAD, iv, sizeof(iv)

};

CK_BYTE data[PLAINTEXT_BUF_SZ];

CK_BYTE encryptedData[CIPHERTEXT_BUF_SZ];

CK_ULONG ulData1Len, ulData2Len, ulData3Len;

CK_RV rv;

.

.

firstEncryptedPieceLen = 90;

secondEncryptedPieceLen = CIPHERTEXT_BUF_SZ-firstEncryptedPieceLen;

rv = C_DecryptInit(hSession, &mechanism, hKey);

if (rv == CKR_OK) {

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 105 of 149

 /* Decrypt first piece */

 ulData1Len = sizeof(data);

 rv = C_DecryptUpdate(

 hSession,

 &encryptedData[0], firstEncryptedPieceLen,

 &data[0], &ulData1Len);

 if (rv != CKR_OK) {

 .

 .

 }

 /* Decrypt second piece */

 ulData2Len = sizeof(data)-ulData1Len;

 rv = C_DecryptUpdate(

 hSession,

 &encryptedData[firstEncryptedPieceLen],

 secondEncryptedPieceLen,

 &data[ulData1Len], &ulData2Len);

 if (rv != CKR_OK) {

 .

 .

 }

 /* Get last little decrypted bit */

 ulData3Len = sizeof(data)-ulData1Len-ulData2Len;

 rv = C_DecryptFinal(

 hSession,

 &data[ulData1Len+ulData2Len], &ulData3Len);

 if (rv != CKR_OK) {

 .

 .

 }

}

5.10 Message digesting functions

Cryptoki provides the following functions for digesting data:

 C_DigestInit

CK_DEFINE_FUNCTION(CK_RV, C_DigestInit)(

 CK_SESSION_HANDLE hSession,

 CK_MECHANISM_PTR pMechanism

);

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 106 of 149

C_DigestInit initializes a message-digesting operation. hSession is the session’s handle; pMechanism

points to the digesting mechanism.

After calling C_DigestInit, the application can either call C_Digest to digest data in a single part; or call
C_DigestUpdate zero or more times, followed by C_DigestFinal, to digest data in multiple parts. The
message-digesting operation is active until the application uses a call to C_Digest or C_DigestFinal to
actually obtain the message digest. To process additional data (in single or multiple parts), the
application MUST call C_DigestInit again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_DigestFinal.

 C_Digest

CK_DEFINE_FUNCTION(CK_RV, C_Digest)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pData,

 CK_ULONG ulDataLen,

 CK_BYTE_PTR pDigest,

 CK_ULONG_PTR pulDigestLen

);

C_Digest digests data in a single part. hSession is the session’s handle, pData points to the data;
ulDataLen is the length of the data; pDigest points to the location that receives the message digest;
pulDigestLen points to the location that holds the length of the message digest.

C_Digest uses the convention described in Section 5.2 on producing output.

The digest operation MUST have been initialized with C_DigestInit. A call to C_Digest always
terminates the active digest operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful
call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the message

digest.

C_Digest cannot be used to terminate a multi-part operation, and MUST be called after C_DigestInit
without intervening C_DigestUpdate calls.

The input data and digest output can be in the same place, i.e., it is OK if pData and pDigest point to the

same location.

C_Digest is equivalent to a sequence of C_DigestUpdate operations followed by C_DigestFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal for an example of similar functions.

 C_DigestUpdate

CK_DEFINE_FUNCTION(CK_RV, C_DigestUpdate)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pPart,

 CK_ULONG ulPartLen

);

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 107 of 149

C_DigestUpdate continues a multiple-part message-digesting operation, processing another data part.
hSession is the session’s handle, pPart points to the data part; ulPartLen is the length of the data part.

The message-digesting operation MUST have been initialized with C_DigestInit. Calls to this function
and C_DigestKey may be interspersed any number of times in any order. A call to C_DigestUpdate

which results in an error terminates the current digest operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

 C_DigestKey

CK_DEFINE_FUNCTION(CK_RV, C_DigestKey)(

 CK_SESSION_HANDLE hSession,

 CK_OBJECT_HANDLE hKey

);

C_DigestKey continues a multiple-part message-digesting operation by digesting the value of a secret
key. hSession is the session’s handle; hKey is the handle of the secret key to be digested.

The message-digesting operation MUST have been initialized with C_DigestInit. Calls to this function
and C_DigestUpdate may be interspersed any number of times in any order.

If the value of the supplied key cannot be digested purely for some reason related to its length,
C_DigestKey should return the error code CKR_KEY_SIZE_RANGE.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID,
CKR_KEY_INDIGESTIBLE, CKR_KEY_SIZE_RANGE, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

 C_DigestFinal

CK_DEFINE_FUNCTION(CK_RV, C_DigestFinal)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pDigest,

 CK_ULONG_PTR pulDigestLen

);

C_DigestFinal finishes a multiple-part message-digesting operation, returning the message digest.
hSession is the session’s handle; pDigest points to the location that receives the message digest;
pulDigestLen points to the location that holds the length of the message digest.

C_DigestFinal uses the convention described in Section 5.2 on producing output.

The digest operation MUST have been initialized with C_DigestInit. A call to C_DigestFinal always
terminates the active digest operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful
call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the message
digest.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 108 of 149

Example:

CK_SESSION_HANDLE hSession;

CK_MECHANISM mechanism = {

 CKM_MD5, NULL_PTR, 0

};

CK_BYTE data[] = {...};

CK_BYTE digest[16];

CK_ULONG ulDigestLen;

CK_RV rv;

.

.

rv = C_DigestInit(hSession, &mechanism);

if (rv != CKR_OK) {

 .

 .

}

rv = C_DigestUpdate(hSession, data, sizeof(data));

if (rv != CKR_OK) {

 .

 .

}

rv = C_DigestKey(hSession, hKey);

if (rv != CKR_OK) {

 .

 .

}

ulDigestLen = sizeof(digest);

rv = C_DigestFinal(hSession, digest, &ulDigestLen);

.

.

5.11 Signing and MACing functions

Cryptoki provides the following functions for signing data (for the purposes of Cryptoki, these operations
also encompass message authentication codes):

 C_SignInit

CK_DEFINE_FUNCTION(CK_RV, C_SignInit)(

 CK_SESSION_HANDLE hSession,

 CK_MECHANISM_PTR pMechanism,

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 109 of 149

 CK_OBJECT_HANDLE hKey

);

C_SignInit initializes a signature operation, where the signature is an appendix to the data. hSession is
the session’s handle; pMechanism points to the signature mechanism; hKey is the handle of the signature

key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports signatures with

appendix, MUST be CK_TRUE.

After calling C_SignInit, the application can either call C_Sign to sign in a single part; or call
C_SignUpdate one or more times, followed by C_SignFinal, to sign data in multiple parts. The signature
operation is active until the application uses a call to C_Sign or C_SignFinal to actually obtain the
signature. To process additional data (in single or multiple parts), the application MUST call C_SignInit

again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED,CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_SignFinal.

 C_Sign

CK_DEFINE_FUNCTION(CK_RV, C_Sign)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pData,

 CK_ULONG ulDataLen,

 CK_BYTE_PTR pSignature,

 CK_ULONG_PTR pulSignatureLen

);

C_Sign signs data in a single part, where the signature is an appendix to the data. hSession is the
session’s handle; pData points to the data; ulDataLen is the length of the data; pSignature points to the
location that receives the signature; pulSignatureLen points to the location that holds the length of the

signature.

C_Sign uses the convention described in Section 5.2 on producing output.

The signing operation MUST have been initialized with C_SignInit. A call to C_Sign always terminates
the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e.,

one which returns CKR_OK) to determine the length of the buffer needed to hold the signature.

C_Sign cannot be used to terminate a multi-part operation, and MUST be called after C_SignInit without
intervening C_SignUpdate calls.

For most mechanisms, C_Sign is equivalent to a sequence of C_SignUpdate operations followed by
C_SignFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED.

Example: see C_SignFinal for an example of similar functions.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 110 of 149

 C_SignUpdate

CK_DEFINE_FUNCTION(CK_RV, C_SignUpdate)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pPart,

 CK_ULONG ulPartLen

);

C_SignUpdate continues a multiple-part signature operation, processing another data part. hSession is
the session’s handle, pPart points to the data part; ulPartLen is the length of the data part.

The signature operation MUST have been initialized with C_SignInit. This function may be called any
number of times in succession. A call to C_SignUpdate which results in an error terminates the current

signature operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_SignFinal.

 C_SignFinal

CK_DEFINE_FUNCTION(CK_RV, C_SignFinal)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pSignature,

 CK_ULONG_PTR pulSignatureLen

);

C_SignFinal finishes a multiple-part signature operation, returning the signature. hSession is the
session’s handle; pSignature points to the location that receives the signature; pulSignatureLen points to

the location that holds the length of the signature.

C_SignFinal uses the convention described in Section 5.2 on producing output.

The signing operation MUST have been initialized with C_SignInit. A call to C_SignFinal always
terminates the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful
call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the signature.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hKey;

CK_MECHANISM mechanism = {

 CKM_DES_MAC, NULL_PTR, 0

};

CK_BYTE data[] = {...};

CK_BYTE mac[4];

CK_ULONG ulMacLen;

CK_RV rv;

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 111 of 149

.

.

rv = C_SignInit(hSession, &mechanism, hKey);

if (rv == CKR_OK) {

 rv = C_SignUpdate(hSession, data, sizeof(data));

 .

 .

 ulMacLen = sizeof(mac);

 rv = C_SignFinal(hSession, mac, &ulMacLen);

 .

 .

}

 C_SignRecoverInit

CK_DEFINE_FUNCTION(CK_RV, C_SignRecoverInit)(

 CK_SESSION_HANDLE hSession,

 CK_MECHANISM_PTR pMechanism,

 CK_OBJECT_HANDLE hKey

);

C_SignRecoverInit initializes a signature operation, where the data can be recovered from the signature.
hSession is the session’s handle; pMechanism points to the structure that specifies the signature
mechanism; hKey is the handle of the signature key.

The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the key supports

signatures where the data can be recovered from the signature, MUST be CK_TRUE.

After calling C_SignRecoverInit, the application may call C_SignRecover to sign in a single part. The
signature operation is active until the application uses a call to C_SignRecover to actually obtain the
signature. To process additional data in a single part, the application MUST call C_SignRecoverInit

again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_SignRecover.

 C_SignRecover

CK_DEFINE_FUNCTION(CK_RV, C_SignRecover)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pData,

 CK_ULONG ulDataLen,

 CK_BYTE_PTR pSignature,

 CK_ULONG_PTR pulSignatureLen

);

C_SignRecover signs data in a single operation, where the data can be recovered from the signature.
hSession is the session’s handle; pData points to the data; uLDataLen is the length of the data;

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 112 of 149

pSignature points to the location that receives the signature; pulSignatureLen points to the location that

holds the length of the signature.

C_SignRecover uses the convention described in Section 5.2 on producing output.

The signing operation MUST have been initialized with C_SignRecoverInit. A call to C_SignRecover
always terminates the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the

signature.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hKey;

CK_MECHANISM mechanism = {

 CKM_RSA_9796, NULL_PTR, 0

};

CK_BYTE data[] = {...};

CK_BYTE signature[128];

CK_ULONG ulSignatureLen;

CK_RV rv;

.

.

rv = C_SignRecoverInit(hSession, &mechanism, hKey);

if (rv == CKR_OK) {

 ulSignatureLen = sizeof(signature);

 rv = C_SignRecover(

 hSession, data, sizeof(data), signature, &ulSignatureLen);

 if (rv == CKR_OK) {

 .

 .

 }

}

Functions for verifying signatures and MACs

Cryptoki provides the following functions for verifying signatures on data (for the purposes of Cryptoki,
these operations also encompass message authentication codes):

 C_VerifyInit

CK_DEFINE_FUNCTION(CK_RV, C_VerifyInit)(

 CK_SESSION_HANDLE hSession,

 CK_MECHANISM_PTR pMechanism,

 CK_OBJECT_HANDLE hKey

);

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 113 of 149

C_VerifyInit initializes a verification operation, where the signature is an appendix to the data. hSession
is the session’s handle; pMechanism points to the structure that specifies the verification mechanism;
hKey is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key supports verification

where the signature is an appendix to the data, MUST be CK_TRUE.

After calling C_VerifyInit, the application can either call C_Verify to verify a signature on data in a single
part; or call C_VerifyUpdate one or more times, followed by C_VerifyFinal, to verify a signature on data
in multiple parts. The verification operation is active until the application calls C_Verify or C_VerifyFinal.
To process additional data (in single or multiple parts), the application MUST call C_VerifyInit again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_VerifyFinal.

 C_Verify

CK_DEFINE_FUNCTION(CK_RV, C_Verify)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pData,

 CK_ULONG ulDataLen,

 CK_BYTE_PTR pSignature,

 CK_ULONG ulSignatureLen

);

C_Verify verifies a signature in a single-part operation, where the signature is an appendix to the data.
hSession is the session’s handle; pData points to the data; ulDataLen is the length of the data;
pSignature points to the signature; ulSignatureLen is the length of the signature.

The verification operation MUST have been initialized with C_VerifyInit. A call to C_Verify always

terminates the active verification operation.

A successful call to C_Verify should return either the value CKR_OK (indicating that the supplied
signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is invalid). If the
signature can be seen to be invalid purely on the basis of its length, then
CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active signing operation
is terminated.

C_Verify cannot be used to terminate a multi-part operation, and MUST be called after C_VerifyInit
without intervening C_VerifyUpdate calls.

For most mechanisms, C_Verify is equivalent to a sequence of C_VerifyUpdate operations followed by
C_VerifyFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE.

Example: see C_VerifyFinal for an example of similar functions.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 114 of 149

 C_VerifyUpdate

CK_DEFINE_FUNCTION(CK_RV, C_VerifyUpdate)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pPart,

 CK_ULONG ulPartLen

);

C_VerifyUpdate continues a multiple-part verification operation, processing another data part. hSession
is the session’s handle, pPart points to the data part; ulPartLen is the length of the data part.

The verification operation MUST have been initialized with C_VerifyInit. This function may be called any
number of times in succession. A call to C_VerifyUpdate which results in an error terminates the current

verification operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_VerifyFinal.

 C_VerifyFinal

CK_DEFINE_FUNCTION(CK_RV, C_VerifyFinal)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pSignature,

 CK_ULONG ulSignatureLen

);

C_VerifyFinal finishes a multiple-part verification operation, checking the signature. hSession is the
session’s handle; pSignature points to the signature; ulSignatureLen is the length of the signature.

The verification operation MUST have been initialized with C_VerifyInit. A call to C_VerifyFinal always

terminates the active verification operation.

A successful call to C_VerifyFinal should return either the value CKR_OK (indicating that the supplied
signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is invalid). If the
signature can be seen to be invalid purely on the basis of its length, then
CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active verifying
operation is terminated.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hKey;

CK_MECHANISM mechanism = {

 CKM_DES_MAC, NULL_PTR, 0

};

CK_BYTE data[] = {...};

CK_BYTE mac[4];

CK_RV rv;

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 115 of 149

.

.

rv = C_VerifyInit(hSession, &mechanism, hKey);

if (rv == CKR_OK) {

 rv = C_VerifyUpdate(hSession, data, sizeof(data));

 .

 .

 rv = C_VerifyFinal(hSession, mac, sizeof(mac));

 .

 .

}

 C_VerifyRecoverInit

CK_DEFINE_FUNCTION(CK_RV, C_VerifyRecoverInit)(

 CK_SESSION_HANDLE hSession,

 CK_MECHANISM_PTR pMechanism,

 CK_OBJECT_HANDLE hKey

);

C_VerifyRecoverInit initializes a signature verification operation, where the data is recovered from the
signature. hSession is the session’s handle; pMechanism points to the structure that specifies the
verification mechanism; hKey is the handle of the verification key.

The CKA_VERIFY_RECOVER attribute of the verification key, which indicates whether the key supports

verification where the data is recovered from the signature, MUST be CK_TRUE.

After calling C_VerifyRecoverInit, the application may call C_VerifyRecover to verify a signature on
data in a single part. The verification operation is active until the application uses a call to
C_VerifyRecover to actually obtain the recovered message.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_VerifyRecover.

 C_VerifyRecover

CK_DEFINE_FUNCTION(CK_RV, C_VerifyRecover)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pSignature,

 CK_ULONG ulSignatureLen,

 CK_BYTE_PTR pData,

 CK_ULONG_PTR pulDataLen

);

C_VerifyRecover verifies a signature in a single-part operation, where the data is recovered from the
signature. hSession is the session’s handle; pSignature points to the signature; ulSignatureLen is the
length of the signature; pData points to the location that receives the recovered data; and pulDataLen
points to the location that holds the length of the recovered data.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 116 of 149

C_VerifyRecover uses the convention described in Section 5.2 on producing output.

The verification operation MUST have been initialized with C_VerifyRecoverInit. A call to
C_VerifyRecover always terminates the active verification operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the

length of the buffer needed to hold the recovered data.

A successful call to C_VerifyRecover should return either the value CKR_OK (indicating that the
supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is
invalid). If the signature can be seen to be invalid purely on the basis of its length, then
CKR_SIGNATURE_LEN_RANGE should be returned. The return codes CKR_SIGNATURE_INVALID
and CKR_SIGNATURE_LEN_RANGE have a higher priority than the return code
CKR_BUFFER_TOO_SMALL, i.e., if C_VerifyRecover is supplied with an invalid signature, it will never

return CKR_BUFFER_TOO_SMALL.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_LEN_RANGE, CKR_SIGNATURE_INVALID.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hKey;

CK_MECHANISM mechanism = {

 CKM_RSA_9796, NULL_PTR, 0

};

CK_BYTE data[] = {...};

CK_ULONG ulDataLen;

CK_BYTE signature[128];

CK_RV rv;

.

.

rv = C_VerifyRecoverInit(hSession, &mechanism, hKey);

if (rv == CKR_OK) {

 ulDataLen = sizeof(data);

 rv = C_VerifyRecover(

 hSession, signature, sizeof(signature), data, &ulDataLen);

 .

 .

}

5.12 Dual-function cryptographic functions

Cryptoki provides the following functions to perform two cryptographic operations “simultaneously” within
a session. These functions are provided so as to avoid unnecessarily passing data back and forth to and
from a token.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 117 of 149

 C_DigestEncryptUpdate

CK_DEFINE_FUNCTION(CK_RV, C_DigestEncryptUpdate)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pPart,

 CK_ULONG ulPartLen,

 CK_BYTE_PTR pEncryptedPart,

 CK_ULONG_PTR pulEncryptedPartLen

);

C_DigestEncryptUpdate continues multiple-part digest and encryption operations, processing another
data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is the length of the
data part; pEncryptedPart points to the location that receives the digested and encrypted data part;
pulEncryptedPartLen points to the location that holds the length of the encrypted data part.

C_DigestEncryptUpdate uses the convention described in Section 5.2 on producing output. If a
C_DigestEncryptUpdate call does not produce encrypted output (because an error occurs, or because
pEncryptedPart has the value NULL_PTR, or because pulEncryptedPartLen is too small to hold the entire

encrypted part output), then no plaintext is passed to the active digest operation.

Digest and encryption operations MUST both be active (they MUST have been initialized with
C_DigestInit and C_EncryptInit, respectively). This function may be called any number of times in
succession, and may be interspersed with C_DigestUpdate, C_DigestKey, and C_EncryptUpdate calls
(it would be somewhat unusual to intersperse calls to C_DigestEncryptUpdate with calls to
C_DigestKey, however).

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

#define BUF_SZ 512

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hKey;

CK_BYTE iv[8];

CK_MECHANISM digestMechanism = {

 CKM_MD5, NULL_PTR, 0

};

CK_MECHANISM encryptionMechanism = {

 CKM_DES_ECB, iv, sizeof(iv)

};

CK_BYTE encryptedData[BUF_SZ];

CK_ULONG ulEncryptedDataLen;

CK_BYTE digest[16];

CK_ULONG ulDigestLen;

CK_BYTE data[(2*BUF_SZ)+8];

CK_RV rv;

int i;

.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 118 of 149

.

memset(iv, 0, sizeof(iv));

memset(data, ‘A’, ((2*BUF_SZ)+5));

rv = C_EncryptInit(hSession, &encryptionMechanism, hKey);

if (rv != CKR_OK) {

 .

 .

}

rv = C_DigestInit(hSession, &digestMechanism);

if (rv != CKR_OK) {

 .

 .

}

ulEncryptedDataLen = sizeof(encryptedData);

rv = C_DigestEncryptUpdate(

 hSession,

 &data[0], BUF_SZ,

 encryptedData, &ulEncryptedDataLen);

.

.

ulEncryptedDataLen = sizeof(encryptedData);

rv = C_DigestEncryptUpdate(

 hSession,

 &data[BUF_SZ], BUF_SZ,

 encryptedData, &ulEncryptedDataLen);

.

.

/*

 * The last portion of the buffer needs to be

 * handled with separate calls to deal with

 * padding issues in ECB mode

 */

/* First, complete the digest on the buffer */

rv = C_DigestUpdate(hSession, &data[BUF_SZ*2], 5);

.

.

ulDigestLen = sizeof(digest);

rv = C_DigestFinal(hSession, digest, &ulDigestLen);

.

.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 119 of 149

/* Then, pad last part with 3 0x00 bytes, and complete encryption */

for(i=0;i<3;i++)

 data[((BUF_SZ*2)+5)+i] = 0x00;

/* Now, get second-to-last piece of ciphertext */

ulEncryptedDataLen = sizeof(encryptedData);

rv = C_EncryptUpdate(

 hSession,

 &data[BUF_SZ*2], 8,

 encryptedData, &ulEncryptedDataLen);

.

.

/* Get last piece of ciphertext (should have length 0, here) */

ulEncryptedDataLen = sizeof(encryptedData);

rv = C_EncryptFinal(hSession, encryptedData, &ulEncryptedDataLen);

.

.

 C_DecryptDigestUpdate

CK_DEFINE_FUNCTION(CK_RV, C_DecryptDigestUpdate)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pEncryptedPart,

 CK_ULONG ulEncryptedPartLen,

 CK_BYTE_PTR pPart,

 CK_ULONG_PTR pulPartLen

);

C_DecryptDigestUpdate continues a multiple-part combined decryption and digest operation,
processing another data part. hSession is the session’s handle; pEncryptedPart points to the encrypted
data part; ulEncryptedPartLen is the length of the encrypted data part; pPart points to the location that
receives the recovered data part; pulPartLen points to the location that holds the length of the recovered

data part.

C_DecryptDigestUpdate uses the convention described in Section 5.2 on producing output. If a
C_DecryptDigestUpdate call does not produce decrypted output (because an error occurs, or because
pPart has the value NULL_PTR, or because pulPartLen is too small to hold the entire decrypted part
output), then no plaintext is passed to the active digest operation.

Decryption and digesting operations MUST both be active (they MUST have been initialized with
C_DecryptInit and C_DigestInit, respectively). This function may be called any number of times in
succession, and may be interspersed with C_DecryptUpdate, C_DigestUpdate, and C_DigestKey calls
(it would be somewhat unusual to intersperse calls to C_DigestEncryptUpdate with calls to
C_DigestKey, however).

Use of C_DecryptDigestUpdate involves a pipelining issue that does not arise when using
C_DigestEncryptUpdate, the “inverse function” of C_DecryptDigestUpdate. This is because when
C_DigestEncryptUpdate is called, precisely the same input is passed to both the active digesting
operation and the active encryption operation; however, when C_DecryptDigestUpdate is called, the
input passed to the active digesting operation is the output of the active decryption operation. This issue

comes up only when the mechanism used for decryption performs padding.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 120 of 149

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte plaintext with
DES in CBC mode with PKCS padding. Consider an application which will simultaneously decrypt this
ciphertext and digest the original plaintext thereby obtained.

After initializing decryption and digesting operations, the application passes the 24-byte ciphertext (3 DES
blocks) into C_DecryptDigestUpdate. C_DecryptDigestUpdate returns exactly 16 bytes of plaintext,
since at this point, Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of
ciphertext held any padding. These 16 bytes of plaintext are passed into the active digesting operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells Cryptoki that there’s
no more ciphertext coming, and the call returns the last 2 bytes of plaintext. However, since the active
decryption and digesting operations are linked only through the C_DecryptDigestUpdate call, these 2
bytes of plaintext are not passed on to be digested.

A call to C_DigestFinal, therefore, would compute the message digest of the first 16 bytes of the
plaintext, not the message digest of the entire plaintext. It is crucial that, before C_DigestFinal is called,
the last 2 bytes of plaintext get passed into the active digesting operation via a C_DigestUpdate call.

Because of this, it is critical that when an application uses a padded decryption mechanism with
C_DecryptDigestUpdate, it knows exactly how much plaintext has been passed into the active digesting
operation. Extreme caution is warranted when using a padded decryption mechanism with
C_DecryptDigestUpdate.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

#define BUF_SZ 512

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hKey;

CK_BYTE iv[8];

CK_MECHANISM decryptionMechanism = {

 CKM_DES_ECB, iv, sizeof(iv)

};

CK_MECHANISM digestMechanism = {

 CKM_MD5, NULL_PTR, 0

};

CK_BYTE encryptedData[(2*BUF_SZ)+8];

CK_BYTE digest[16];

CK_ULONG ulDigestLen;

CK_BYTE data[BUF_SZ];

CK_ULONG ulDataLen, ulLastUpdateSize;

CK_RV rv;

.

.

memset(iv, 0, sizeof(iv));

memset(encryptedData, ‘A’, ((2*BUF_SZ)+8));

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 121 of 149

rv = C_DecryptInit(hSession, &decryptionMechanism, hKey);

if (rv != CKR_OK) {

 .

 .

}

rv = C_DigestInit(hSession, &digestMechanism);

if (rv != CKR_OK){

 .

 .

}

ulDataLen = sizeof(data);

rv = C_DecryptDigestUpdate(

 hSession,

 &encryptedData[0], BUF_SZ,

 data, &ulDataLen);

.

.

ulDataLen = sizeof(data);

rv = C_DecryptDigestUpdate(

 hSession,

 &encryptedData[BUF_SZ], BUF_SZ,

 data, &ulDataLen);

.

.

/*

 * The last portion of the buffer needs to be handled with

 * separate calls to deal with padding issues in ECB mode

 */

/* First, complete the decryption of the buffer */

ulLastUpdateSize = sizeof(data);

rv = C_DecryptUpdate(

 hSession,

 &encryptedData[BUF_SZ*2], 8,

 data, &ulLastUpdateSize);

.

.

/* Get last piece of plaintext (should have length 0, here) */

ulDataLen = sizeof(data)-ulLastUpdateSize;

rv = C_DecryptFinal(hSession, &data[ulLastUpdateSize], &ulDataLen);

if (rv != CKR_OK) {

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 122 of 149

 .

 .

}

/* Digest last bit of plaintext */

rv = C_DigestUpdate(hSession, &data[BUF_SZ*2], 5);

if (rv != CKR_OK) {

 .

 .

}

ulDigestLen = sizeof(digest);

rv = C_DigestFinal(hSession, digest, &ulDigestLen);

if (rv != CKR_OK) {

 .

 .

}

 C_SignEncryptUpdate

CK_DEFINE_FUNCTION(CK_RV, C_SignEncryptUpdate)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pPart,

 CK_ULONG ulPartLen,

 CK_BYTE_PTR pEncryptedPart,

 CK_ULONG_PTR pulEncryptedPartLen

);

C_SignEncryptUpdate continues a multiple-part combined signature and encryption operation,
processing another data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is
the length of the data part; pEncryptedPart points to the location that receives the digested and encrypted
data part; and pulEncryptedPartLen points to the location that holds the length of the encrypted data part.

C_SignEncryptUpdate uses the convention described in Section 5.2 on producing output. If a
C_SignEncryptUpdate call does not produce encrypted output (because an error occurs, or because
pEncryptedPart has the value NULL_PTR, or because pulEncryptedPartLen is too small to hold the entire
encrypted part output), then no plaintext is passed to the active signing operation.

Signature and encryption operations MUST both be active (they MUST have been initialized with
C_SignInit and C_EncryptInit, respectively). This function may be called any number of times in
succession, and may be interspersed with C_SignUpdate and C_EncryptUpdate calls.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example:

#define BUF_SZ 512

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hEncryptionKey, hMacKey;

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 123 of 149

CK_BYTE iv[8];

CK_MECHANISM signMechanism = {

 CKM_DES_MAC, NULL_PTR, 0

};

CK_MECHANISM encryptionMechanism = {

 CKM_DES_ECB, iv, sizeof(iv)

};

CK_BYTE encryptedData[BUF_SZ];

CK_ULONG ulEncryptedDataLen;

CK_BYTE MAC[4];

CK_ULONG ulMacLen;

CK_BYTE data[(2*BUF_SZ)+8];

CK_RV rv;

int i;

.

.

memset(iv, 0, sizeof(iv));

memset(data, ‘A’, ((2*BUF_SZ)+5));

rv = C_EncryptInit(hSession, &encryptionMechanism, hEncryptionKey);

if (rv != CKR_OK) {

 .

 .

}

rv = C_SignInit(hSession, &signMechanism, hMacKey);

if (rv != CKR_OK) {

 .

 .

}

ulEncryptedDataLen = sizeof(encryptedData);

rv = C_SignEncryptUpdate(

 hSession,

 &data[0], BUF_SZ,

 encryptedData, &ulEncryptedDataLen);

.

.

ulEncryptedDataLen = sizeof(encryptedData);

rv = C_SignEncryptUpdate(

 hSession,

 &data[BUF_SZ], BUF_SZ,

 encryptedData, &ulEncryptedDataLen);

.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 124 of 149

.

/*

 * The last portion of the buffer needs to be handled with

 * separate calls to deal with padding issues in ECB mode

 */

/* First, complete the signature on the buffer */

rv = C_SignUpdate(hSession, &data[BUF_SZ*2], 5);

.

.

ulMacLen = sizeof(MAC);

rv = C_SignFinal(hSession, MAC, &ulMacLen);

.

.

/* Then pad last part with 3 0x00 bytes, and complete encryption */

for(i=0;i<3;i++)

 data[((BUF_SZ*2)+5)+i] = 0x00;

/* Now, get second-to-last piece of ciphertext */

ulEncryptedDataLen = sizeof(encryptedData);

rv = C_EncryptUpdate(

 hSession,

 &data[BUF_SZ*2], 8,

 encryptedData, &ulEncryptedDataLen);

.

.

/* Get last piece of ciphertext (should have length 0, here) */

ulEncryptedDataLen = sizeof(encryptedData);

rv = C_EncryptFinal(hSession, encryptedData, &ulEncryptedDataLen);

.

.

 C_DecryptVerifyUpdate

CK_DEFINE_FUNCTION(CK_RV, C_DecryptVerifyUpdate)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pEncryptedPart,

 CK_ULONG ulEncryptedPartLen,

 CK_BYTE_PTR pPart,

 CK_ULONG_PTR pulPartLen

);

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 125 of 149

C_DecryptVerifyUpdate continues a multiple-part combined decryption and verification operation,
processing another data part. hSession is the session’s handle; pEncryptedPart points to the encrypted
data; ulEncryptedPartLen is the length of the encrypted data; pPart points to the location that receives the
recovered data; and pulPartLen points to the location that holds the length of the recovered data.

C_DecryptVerifyUpdate uses the convention described in Section 5.2 on producing output. If a
C_DecryptVerifyUpdate call does not produce decrypted output (because an error occurs, or because
pPart has the value NULL_PTR, or because pulPartLen is too small to hold the entire encrypted part

output), then no plaintext is passed to the active verification operation.

Decryption and signature operations MUST both be active (they MUST have been initialized with
C_DecryptInit and C_VerifyInit, respectively). This function may be called any number of times in
succession, and may be interspersed with C_DecryptUpdate and C_VerifyUpdate calls.

Use of C_DecryptVerifyUpdate involves a pipelining issue that does not arise when using
C_SignEncryptUpdate, the “inverse function” of C_DecryptVerifyUpdate. This is because when
C_SignEncryptUpdate is called, precisely the same input is passed to both the active signing operation
and the active encryption operation; however, when C_DecryptVerifyUpdate is called, the input passed
to the active verifying operation is the output of the active decryption operation. This issue comes up only

when the mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte plaintext with
DES in CBC mode with PKCS padding. Consider an application which will simultaneously decrypt this
ciphertext and verify a signature on the original plaintext thereby obtained.

After initializing decryption and verification operations, the application passes the 24-byte ciphertext (3
DES blocks) into C_DecryptVerifyUpdate. C_DecryptVerifyUpdate returns exactly 16 bytes of
plaintext, since at this point, Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of
ciphertext held any padding. These 16 bytes of plaintext are passed into the active verification operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells Cryptoki that there’s
no more ciphertext coming, and the call returns the last 2 bytes of plaintext. However, since the active
decryption and verification operations are linked only through the C_DecryptVerifyUpdate call, these 2
bytes of plaintext are not passed on to the verification mechanism.

A call to C_VerifyFinal, therefore, would verify whether or not the signature supplied is a valid signature
on the first 16 bytes of the plaintext, not on the entire plaintext. It is crucial that, before C_VerifyFinal is
called, the last 2 bytes of plaintext get passed into the active verification operation via a C_VerifyUpdate

call.

Because of this, it is critical that when an application uses a padded decryption mechanism with
C_DecryptVerifyUpdate, it knows exactly how much plaintext has been passed into the active
verification operation. Extreme caution is warranted when using a padded decryption mechanism with
C_DecryptVerifyUpdate.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

#define BUF_SZ 512

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hDecryptionKey, hMacKey;

CK_BYTE iv[8];

CK_MECHANISM decryptionMechanism = {

 CKM_DES_ECB, iv, sizeof(iv)

};

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 126 of 149

CK_MECHANISM verifyMechanism = {

 CKM_DES_MAC, NULL_PTR, 0

};

CK_BYTE encryptedData[(2*BUF_SZ)+8];

CK_BYTE MAC[4];

CK_ULONG ulMacLen;

CK_BYTE data[BUF_SZ];

CK_ULONG ulDataLen, ulLastUpdateSize;

CK_RV rv;

.

.

memset(iv, 0, sizeof(iv));

memset(encryptedData, ‘A’, ((2*BUF_SZ)+8));

rv = C_DecryptInit(hSession, &decryptionMechanism, hDecryptionKey);

if (rv != CKR_OK) {

 .

 .

}

rv = C_VerifyInit(hSession, &verifyMechanism, hMacKey);

if (rv != CKR_OK){

 .

 .

}

ulDataLen = sizeof(data);

rv = C_DecryptVerifyUpdate(

 hSession,

 &encryptedData[0], BUF_SZ,

 data, &ulDataLen);

.

.

ulDataLen = sizeof(data);

rv = C_DecryptVerifyUpdate(

 hSession,

 &encryptedData[BUF_SZ], BUF_SZ,

 data, &uldataLen);

.

.

/*

 * The last portion of the buffer needs to be handled with

 * separate calls to deal with padding issues in ECB mode

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 127 of 149

 */

/* First, complete the decryption of the buffer */

ulLastUpdateSize = sizeof(data);

rv = C_DecryptUpdate(

 hSession,

 &encryptedData[BUF_SZ*2], 8,

 data, &ulLastUpdateSize);

.

.

/* Get last little piece of plaintext. Should have length 0 */

ulDataLen = sizeof(data)-ulLastUpdateSize;

rv = C_DecryptFinal(hSession, &data[ulLastUpdateSize], &ulDataLen);

if (rv != CKR_OK) {

 .

 .

}

/* Send last bit of plaintext to verification operation */

rv = C_VerifyUpdate(hSession, &data[BUF_SZ*2], 5);

if (rv != CKR_OK) {

 .

 .

}

rv = C_VerifyFinal(hSession, MAC, ulMacLen);

if (rv == CKR_SIGNATURE_INVALID) {

 .

 .

}

5.13 Key management functions

Cryptoki provides the following functions for key management:

 C_GenerateKey

CK_DEFINE_FUNCTION(CK_RV, C_GenerateKey)(

 CK_SESSION_HANDLE hSession

 CK_MECHANISM_PTR pMechanism,

 CK_ATTRIBUTE_PTR pTemplate,

 CK_ULONG ulCount,

 CK_OBJECT_HANDLE_PTR phKey

);

C_GenerateKey generates a secret key or set of domain parameters, creating a new object. hSession is
the session’s handle; pMechanism points to the generation mechanism; pTemplate points to the template
for the new key or set of domain parameters; ulCount is the number of attributes in the template; phKey

points to the location that receives the handle of the new key or set of domain parameters.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 128 of 149

If the generation mechanism is for domain parameter generation, the CKA_CLASS attribute will have the

value CKO_DOMAIN_PARAMETERS; otherwise, it will have the value CKO_SECRET_KEY.

Since the type of key or domain parameters to be generated is implicit in the generation mechanism, the
template does not need to supply a key type. If it does supply a key type which is inconsistent with the
generation mechanism, C_GenerateKey fails and returns the error code
CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is treated similarly.

If a call to C_GenerateKey cannot support the precise template supplied to it, it will fail and return without
creating an object.

The object created by a successful call to C_GenerateKey will have its CKA_LOCAL attribute set to
CK_TRUE.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hKey;

CK_MECHANISM mechanism = {

 CKM_DES_KEY_GEN, NULL_PTR, 0

};

CK_RV rv;

.

.

rv = C_GenerateKey(hSession, &mechanism, NULL_PTR, 0, &hKey);

if (rv == CKR_OK) {

 .

 .

}

 C_GenerateKeyPair

CK_DEFINE_FUNCTION(CK_RV, C_GenerateKeyPair)(

 CK_SESSION_HANDLE hSession,

 CK_MECHANISM_PTR pMechanism,

 CK_ATTRIBUTE_PTR pPublicKeyTemplate,

 CK_ULONG ulPublicKeyAttributeCount,

 CK_ATTRIBUTE_PTR pPrivateKeyTemplate,

 CK_ULONG ulPrivateKeyAttributeCount,

 CK_OBJECT_HANDLE_PTR phPublicKey,

 CK_OBJECT_HANDLE_PTR phPrivateKey

);

C_GenerateKeyPair generates a public/private key pair, creating new key objects. hSession is the
session’s handle; pMechanism points to the key generation mechanism; pPublicKeyTemplate points to

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 129 of 149

the template for the public key; ulPublicKeyAttributeCount is the number of attributes in the public-key
template; pPrivateKeyTemplate points to the template for the private key; ulPrivateKeyAttributeCount is
the number of attributes in the private-key template; phPublicKey points to the location that receives the
handle of the new public key; phPrivateKey points to the location that receives the handle of the new

private key.

Since the types of keys to be generated are implicit in the key pair generation mechanism, the templates
do not need to supply key types. If one of the templates does supply a key type which is inconsistent with
the key generation mechanism, C_GenerateKeyPair fails and returns the error code

CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is treated similarly.

If a call to C_GenerateKeyPair cannot support the precise templates supplied to it, it will fail and return

without creating any key objects.

A call to C_GenerateKeyPair will never create just one key and return. A call can fail, and create no

keys; or it can succeed, and create a matching public/private key pair.

The key objects created by a successful call to C_GenerateKeyPair will have their CKA_LOCAL

attributes set to CK_TRUE.

Note carefully the order of the arguments to C_GenerateKeyPair. The last two arguments do not have
the same order as they did in the original Cryptoki Version 1.0 document. The order of these two
arguments has caused some unfortunate confusion.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hPublicKey, hPrivateKey;

CK_MECHANISM mechanism = {

 CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0

};

CK_ULONG modulusBits = 768;

CK_BYTE publicExponent[] = { 3 };

CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE publicKeyTemplate[] = {

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_VERIFY, &true, sizeof(true)},

 {CKA_WRAP, &true, sizeof(true)},

 {CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},

 {CKA_PUBLIC_EXPONENT, publicExponent, sizeof (publicExponent)}

};

CK_ATTRIBUTE privateKeyTemplate[] = {

 {CKA_TOKEN, &true, sizeof(true)},

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 130 of 149

 {CKA_PRIVATE, &true, sizeof(true)},

 {CKA_SUBJECT, subject, sizeof(subject)},

 {CKA_ID, id, sizeof(id)},

 {CKA_SENSITIVE, &true, sizeof(true)},

 {CKA_DECRYPT, &true, sizeof(true)},

 {CKA_SIGN, &true, sizeof(true)},

 {CKA_UNWRAP, &true, sizeof(true)}

};

CK_RV rv;

rv = C_GenerateKeyPair(

 hSession, &mechanism,

 publicKeyTemplate, 5,

 privateKeyTemplate, 8,

 &hPublicKey, &hPrivateKey);

if (rv == CKR_OK) {

 .

 .

}

 C_WrapKey

CK_DEFINE_FUNCTION(CK_RV, C_WrapKey)(

 CK_SESSION_HANDLE hSession,

 CK_MECHANISM_PTR pMechanism,

 CK_OBJECT_HANDLE hWrappingKey,

 CK_OBJECT_HANDLE hKey,

 CK_BYTE_PTR pWrappedKey,

 CK_ULONG_PTR pulWrappedKeyLen

);

C_WrapKey wraps (i.e., encrypts) a private or secret key. hSession is the session’s handle; pMechanism
points to the wrapping mechanism; hWrappingKey is the handle of the wrapping key; hKey is the handle
of the key to be wrapped; pWrappedKey points to the location that receives the wrapped key; and
pulWrappedKeyLen points to the location that receives the length of the wrapped key.

C_WrapKey uses the convention described in Section 5.2 on producing output.

The CKA_WRAP attribute of the wrapping key, which indicates whether the key supports wrapping,
MUST be CK_TRUE. The CKA_EXTRACTABLE attribute of the key to be wrapped MUST also be
CK_TRUE.

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its having its
CKA_EXTRACTABLE attribute set to CK_TRUE, then C_WrapKey fails with error code
CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the specified wrapping key and mechanism
solely because of its length, then C_WrapKey fails with error code CKR_KEY_SIZE_RANGE.

C_WrapKey can be used in the following situations:

 To wrap any secret key with a public key that supports encryption and decryption.

 To wrap any secret key with any other secret key. Consideration MUST be given to key size and
mechanism strength or the token may not allow the operation.

 To wrap a private key with any secret key.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 131 of 149

Of course, tokens vary in which types of keys can actually be wrapped with which mechanisms.

To partition the wrapping keys so they can only wrap a subset of extractable keys the attribute
CKA_WRAP_TEMPLATE can be used on the wrapping key to specify an attribute set that will be
compared against the attributes of the key to be wrapped. If all attributes match according to the
C_FindObject rules of attribute matching then the wrap will proceed. The value of this attribute is an
attribute template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If
this attribute is not supplied then any template is acceptable. If an attribute is not present, it will not be
checked. If any attribute mismatch occurs on an attempt to wrap a key then the function SHALL return
CKR_KEY_HANDLE_INVALID.

Return Values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID,
CKR_KEY_NOT_WRAPPABLE, CKR_KEY_SIZE_RANGE, CKR_KEY_UNEXTRACTABLE,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_WRAPPING_KEY_HANDLE_INVALID, CKR_WRAPPING_KEY_SIZE_RANGE,
CKR_WRAPPING_KEY_TYPE_INCONSISTENT.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hWrappingKey, hKey;

CK_MECHANISM mechanism = {

 CKM_DES3_ECB, NULL_PTR, 0

};

CK_BYTE wrappedKey[8];

CK_ULONG ulWrappedKeyLen;

CK_RV rv;

.

.

ulWrappedKeyLen = sizeof(wrappedKey);

rv = C_WrapKey(

 hSession, &mechanism,

 hWrappingKey, hKey,

 wrappedKey, &ulWrappedKeyLen);

if (rv == CKR_OK) {

 .

 .

}

 C_UnwrapKey

CK_DEFINE_FUNCTION(CK_RV, C_UnwrapKey)(

 CK_SESSION_HANDLE hSession,

 CK_MECHANISM_PTR pMechanism,

 CK_OBJECT_HANDLE hUnwrappingKey,

 CK_BYTE_PTR pWrappedKey,

 CK_ULONG ulWrappedKeyLen,

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 132 of 149

 CK_ATTRIBUTE_PTR pTemplate,

 CK_ULONG ulAttributeCount,

 CK_OBJECT_HANDLE_PTR phKey

);

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key or secret key object.
hSession is the session’s handle; pMechanism points to the unwrapping mechanism; hUnwrappingKey is
the handle of the unwrapping key; pWrappedKey points to the wrapped key; ulWrappedKeyLen is the
length of the wrapped key; pTemplate points to the template for the new key; ulAttributeCount is the
number of attributes in the template; phKey points to the location that receives the handle of the

recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key supports

unwrapping, MUST be CK_TRUE.

The new key will have the CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, and the
CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE. The CKA_EXTRACTABLE attribute is by
default set to CK_TRUE.

Some mechanisms may modify, or attempt to modify. the contents of the pMechanism structure at the
same time that the key is unwrapped.

If a call to C_UnwrapKey cannot support the precise template supplied to it, it will fail and return without

creating any key object.

The key object created by a successful call to C_UnwrapKey will have its CKA_LOCAL attribute set to

CK_FALSE.

To partition the unwrapping keys so they can only unwrap a subset of keys the attribute
CKA_UNWRAP_TEMPLATE can be used on the unwrapping key to specify an attribute set that will be
added to attributes of the key to be unwrapped. If the attributes do not conflict with the user supplied
attribute template, in ‘pTemplate’, then the unwrap will proceed. The value of this attribute is an attribute
template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If this
attribute is not present on the unwrapping key then no additional attributes will be added. If any attribute
conflict occurs on an attempt to unwrap a key then the function SHALL return
CKR_TEMPLATE_INCONSISTENT.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_UNWRAPPING_KEY_HANDLE_INVALID, CKR_UNWRAPPING_KEY_SIZE_RANGE,
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN,
CKR_WRAPPED_KEY_INVALID, CKR_WRAPPED_KEY_LEN_RANGE.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hUnwrappingKey, hKey;

CK_MECHANISM mechanism = {

 CKM_DES3_ECB, NULL_PTR, 0

};

CK_BYTE wrappedKey[8] = {...};

CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_DES;

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 133 of 149

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &keyClass, sizeof(keyClass)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_DECRYPT, &true, sizeof(true)}

};

CK_RV rv;

.

.

rv = C_UnwrapKey(

 hSession, &mechanism, hUnwrappingKey,

 wrappedKey, sizeof(wrappedKey), template, 4, &hKey);

if (rv == CKR_OK) {

 .

 .

}

 C_DeriveKey

CK_DEFINE_FUNCTION(CK_RV, C_DeriveKey)(

 CK_SESSION_HANDLE hSession,

 CK_MECHANISM_PTR pMechanism,

 CK_OBJECT_HANDLE hBaseKey,

 CK_ATTRIBUTE_PTR pTemplate,

 CK_ULONG ulAttributeCount,

 CK_OBJECT_HANDLE_PTR phKey

);

C_DeriveKey derives a key from a base key, creating a new key object. hSession is the session’s
handle; pMechanism points to a structure that specifies the key derivation mechanism; hBaseKey is the
handle of the base key; pTemplate points to the template for the new key; ulAttributeCount is the number
of attributes in the template; and phKey points to the location that receives the handle of the derived key.

The values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes for the base key affect the values that these attributes can hold
for the newly-derived key. See the description of each particular key-derivation mechanism in Section
5.16.2 for any constraints of this type.

If a call to C_DeriveKey cannot support the precise template supplied to it, it will fail and return without

creating any key object.

The key object created by a successful call to C_DeriveKey will have its CKA_LOCAL attribute set to

CK_FALSE.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE,
CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 134 of 149

CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hPublicKey, hPrivateKey, hKey;

CK_MECHANISM keyPairMechanism = {

 CKM_DH_PKCS_KEY_PAIR_GEN, NULL_PTR, 0

};

CK_BYTE prime[] = {...};

CK_BYTE base[] = {...};

CK_BYTE publicValue[128];

CK_BYTE otherPublicValue[128];

CK_MECHANISM mechanism = {

 CKM_DH_PKCS_DERIVE, otherPublicValue, sizeof(otherPublicValue)

};

CK_ATTRIBUTE pTemplate[] = {

 CKA_VALUE, &publicValue, sizeof(publicValue)}

};

CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_DES;

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE publicKeyTemplate[] = {

 {CKA_PRIME, prime, sizeof(prime)},

 {CKA_BASE, base, sizeof(base)}

};

CK_ATTRIBUTE privateKeyTemplate[] = {

 {CKA_DERIVE, &true, sizeof(true)}

};

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &keyClass, sizeof(keyClass)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_DECRYPT, &true, sizeof(true)}

};

CK_RV rv;

.

.

rv = C_GenerateKeyPair(

 hSession, &keyPairMechanism,

 publicKeyTemplate, 2,

 privateKeyTemplate, 1,

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 135 of 149

 &hPublicKey, &hPrivateKey);

if (rv == CKR_OK) {

 rv = C_GetAttributeValue(hSession, hPublicKey, &pTemplate, 1);

 if (rv == CKR_OK) {

 /* Put other guy’s public value in otherPublicValue */

 .

 .

 rv = C_DeriveKey(

 hSession, &mechanism,

 hPrivateKey, template, 4, &hKey);

 if (rv == CKR_OK) {

 .

 .

 }

 }

}

5.14 Random number generation functions

Cryptoki provides the following functions for generating random numbers:

 C_SeedRandom

CK_DEFINE_FUNCTION(CK_RV, C_SeedRandom)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pSeed,

 CK_ULONG ulSeedLen

);

C_SeedRandom mixes additional seed material into the token’s random number generator. hSession is
the session’s handle; pSeed points to the seed material; and ulSeedLen is the length in bytes of the seed

material.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_RANDOM_SEED_NOT_SUPPORTED, CKR_RANDOM_NO_RNG, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_GenerateRandom.

 C_GenerateRandom

CK_DEFINE_FUNCTION(CK_RV, C_GenerateRandom)(

 CK_SESSION_HANDLE hSession,

 CK_BYTE_PTR pRandomData,

 CK_ULONG ulRandomLen

);

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 136 of 149

C_GenerateRandom generates random or pseudo-random data. hSession is the session’s handle;
pRandomData points to the location that receives the random data; and ulRandomLen is the length in

bytes of the random or pseudo-random data to be generated.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_RANDOM_NO_RNG,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;

CK_BYTE seed[] = {...};

CK_BYTE randomData[] = {...};

CK_RV rv;

.

.

rv = C_SeedRandom(hSession, seed, sizeof(seed));

if (rv != CKR_OK) {

 .

 .

}

rv = C_GenerateRandom(hSession, randomData, sizeof(randomData));

if (rv == CKR_OK) {

 .

 .

}

5.15 Parallel function management functions

Cryptoki provides the following functions for managing parallel execution of cryptographic functions.
These functions exist only for backwards compatibility.

 C_GetFunctionStatus

CK_DEFINE_FUNCTION(CK_RV, C_GetFunctionStatus)(

 CK_SESSION_HANDLE hSession

);

In previous versions of Cryptoki, C_GetFunctionStatus obtained the status of a function running in
parallel with an application. Now, however, C_GetFunctionStatus is a legacy function which should

simply return the value CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED.

 C_CancelFunction

CK_DEFINE_FUNCTION(CK_RV, C_CancelFunction)(

 CK_SESSION_HANDLE hSession

);

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 137 of 149

In previous versions of Cryptoki, C_CancelFunction cancelled a function running in parallel with an
application. Now, however, C_CancelFunction is a legacy function which should simply return the value

CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED.

5.16 Callback functions

Cryptoki sessions can use function pointers of type CK_NOTIFY to notify the application of certain

events.

5.16.1 Surrender callbacks

Cryptographic functions (i.e., any functions falling under one of these categories: encryption functions;
decryption functions; message digesting functions; signing and MACing functions; functions for verifying
signatures and MACs; dual-purpose cryptographic functions; key management functions; random number
generation functions) executing in Cryptoki sessions can periodically surrender control to the application
who called them if the session they are executing in had a notification callback function associated with it
when it was opened. They do this by calling the session’s callback with the arguments (hSession,
CKN_SURRENDER, pApplication), where hSession is the session’s handle and pApplication was
supplied to C_OpenSession when the session was opened. Surrender callbacks should return either the
value CKR_OK (to indicate that Cryptoki should continue executing the function) or the value
CKR_CANCEL (to indicate that Cryptoki should abort execution of the function). Of course, before
returning one of these values, the callback function can perform some computation, if desired.

A typical use of a surrender callback might be to give an application user feedback during a lengthy key
pair generation operation. Each time the application receives a callback, it could display an additional “.”
to the user. It might also examine the keyboard’s activity since the last surrender callback, and abort the
key pair generation operation (probably by returning the value CKR_CANCEL) if the user hit <ESCAPE>.

A Cryptoki library is not required to make any surrender callbacks.

5.16.2 Vendor-defined callbacks

Library vendors can also define additional types of callbacks. Because of this extension capability,
application-supplied notification callback routines should examine each callback they receive, and if they
are unfamiliar with the type of that callback, they should immediately give control back to the library by
returning with the value CKR_OK.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 138 of 149

6 PKCS #11 Implementation Conformance
An implementation is a conforming implementation if it meets the conditions specified in one or more
server profiles specified in [PKCS #11-Prof].

If a PKCS #11 implementation claims support for a particular profile, then the implementation SHALL
conform to all normative statements within the clauses specified for that profile and for any subclauses to

each of those clauses.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 139 of 149

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:

Participants:

Gil Abel, Athena Smartcard Solutions, Inc.

Warren Armstrong, QuintessenceLabs

Jeff Bartell, Semper Foris Solutions LLC

Peter Bartok, Venafi, Inc.

Anthony Berglas, Cryptsoft

Joseph Brand, Semper Fortis Solutions LLC

Kelley Burgin, National Security Agency

Robert Burns, Thales e-Security

Wan-Teh Chang, Google Inc.

Hai-May Chao, Oracle

Janice Cheng, Vormetric, Inc.

Sangrae Cho, Electronics and Telecommunications Research Institute (ETRI)

Doron Cohen, SafeNet, Inc.

Fadi Cotran, Futurex

Tony Cox, Cryptsoft

Christopher Duane, EMC

Chris Dunn, SafeNet, Inc.

Valerie Fenwick, Oracle

Terry Fletcher, SafeNet, Inc.

Susan Gleeson, Oracle

Sven Gossel, Charismathics

John Green, QuintessenceLabs

Robert Griffin, EMC

Paul Grojean, Individual

Peter Gutmann, Individual

Dennis E. Hamilton, Individual

Thomas Hardjono, M.I.T.

Tim Hudson, Cryptsoft

Gershon Janssen, Individual

Seunghun Jin, Electronics and Telecommunications Research Institute (ETRI)

Wang Jingman, Feitan Technologies

Andrey Jivsov, Symantec Corp.

Mark Joseph, P6R

Stefan Kaesar, Infineon Technologies

Greg Kazmierczak, Wave Systems Corp.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 140 of 149

Mark Knight, Thales e-Security

Darren Krahn, Google Inc.

Alex Krasnov, Infineon Technologies AG

Dina Kurktchi-Nimeh, Oracle

Mark Lambiase, SecureAuth Corporation

Lawrence Lee, GoTrust Technology Inc.

John Leiseboer, QuintessenceLabs

Sean Leon, Infineon Technologies

Geoffrey Li, Infineon Technologies

Howie Liu, Infineon Technologies

Hal Lockhart, Oracle

Robert Lockhart, Thales e-Security

Dale Moberg, Axway Software

Darren Moffat, Oracle

Valery Osheter, SafeNet, Inc.

Sean Parkinson, EMC

Rob Philpott, EMC

Mark Powers, Oracle

Ajai Puri, SafeNet, Inc.

Robert Relyea, Red Hat

Saikat Saha, Oracle

Subhash Sankuratripati, NetApp

Anthony Scarpino, Oracle

Johann Schoetz, Infineon Technologies AG

Rayees Shamsuddin, Wave Systems Corp.

Radhika Siravara, Oracle

Brian Smith, Mozilla Corporation

David Smith, Venafi, Inc.

Ryan Smith, Futurex

Jerry Smith, US Department of Defense (DoD)

Oscar So, Oracle

Graham Steel, Cryptosense

Michael Stevens, QuintessenceLabs

Michael StJohns, Individual

Jim Susoy, P6R

Sander Temme, Thales e-Security

Kiran Thota, VMware, Inc.

Walter-John Turnes, Gemini Security Solutions, Inc.

Stef Walter, Red Hat

James Wang, Vormetric

Jeff Webb, Dell

Peng Yu, Feitian Technologies

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 141 of 149

Magda Zdunkiewicz, Cryptsoft

Chris Zimman, Individual

.

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 142 of 149

Appendix B. Manifest constants

The following definitions can be found in the appropriate header file. Also, refer [PKCS11_Curr] and
[PKCS11_HIST] for additional definitions.

/*

 * Copyright © Oasis Open 2013. All right reserved.

 * OASIS trademark, IPR and other policies apply.

 * http://www.oasis-open.org/policies-guidelines/ipr

 */

#define CK_INVALID_HANDLE 0UL

#define CKN_SURRENDER 0UL

#define CK_UNAVAILABLE_INFORMATION (~0UL)

#define CK_EFFECTIVELY_INFINITE 0UL

#define CKF_DONT_BLOCK 1

#define CKF_ARRAY_ATTRIBUTE 0x40000000UL

#define CKU_SO 0UL

#define CKU_USER 1UL

#define CKU_CONTEXT_SPECIFIC 2UL

#define CKS_RO_PUBLIC_SESSION 0UL

#define CKS_RO_USER_FUNCTIONS 1UL

#define CKS_RW_PUBLIC_SESSION 2UL

#define CKS_RW_USER_FUNCTIONS 3UL

#define CKS_RW_SO_FUNCTIONS 4UL

#define CKO_DATA 0x00000000UL

#define CKO_CERTIFICATE 0x00000001UL

#define CKO_PUBLIC_KEY 0x00000002UL

#define CKO_PRIVATE_KEY 0x00000003UL

#define CKO_SECRET_KEY 0x00000004UL

#define CKO_HW_FEATURE 0x00000005UL

#define CKO_DOMAIN_PARAMETERS 0x00000006UL

#define CKO_MECHANISM 0x00000007UL

#define CKO_VENDOR_DEFINED 0x80000000UL

http://www.oasis-open.org/policies-guidelines/ipr

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 143 of 149

#define CKH_MONOTONIC_COUNTER 0x00000001UL

#define CKH_CLOCK 0x00000002UL

#define CKH_USER_INTERFACE 0x00000003UL

#define CKH_VENDOR_DEFINED 0x80000000UL

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 144 of 149

#define CKA_CLASS 0x00000000UL

#define CKA_TOKEN 0x00000001UL

#define CKA_PRIVATE 0x00000002UL

#define CKA_LABEL 0x00000003UL

#define CKA_APPLICATION 0x00000010UL

#define CKA_VALUE 0x00000011UL

#define CKA_OBJECT_ID 0x00000012UL

#define CKA_CERTIFICATE_TYPE 0x00000080UL

#define CKA_ISSUER 0x00000081UL

#define CKA_SERIAL_NUMBER 0x00000082UL

#define CKA_AC_ISSUER 0x00000083UL

#define CKA_OWNER 0x00000084UL

#define CKA_ATTR_TYPES 0x00000085UL

#define CKA_TRUSTED 0x00000086UL

#define CKA_CERTIFICATE_CATEGORY 0x00000087UL

#define CKA_JAVA_MIDP_SECURITY_DOMAIN 0x00000088UL

#define CKA_URL 0x00000089UL

#define CKA_HASH_OF_SUBJECT_PUBLIC_KEY 0x0000008AUL

#define CKA_HASH_OF_ISSUER_PUBLIC_KEY 0x0000008BUL

#define CKA_NAME_HASH_ALGORITHM 0x0000008CUL

#define CKA_CHECK_VALUE 0x00000090UL

#define CKA_KEY_TYPE 0x00000100UL

#define CKA_SUBJECT 0x00000101UL

#define CKA_ID 0x00000102UL

#define CKA_SENSITIVE 0x00000103UL

#define CKA_ENCRYPT 0x00000104UL

#define CKA_DECRYPT 0x00000105UL

#define CKA_WRAP 0x00000106UL

#define CKA_UNWRAP 0x00000107UL

#define CKA_SIGN 0x00000108UL

#define CKA_SIGN_RECOVER 0x00000109UL

#define CKA_VERIFY 0x0000010AUL

#define CKA_VERIFY_RECOVER 0x0000010BUL

#define CKA_DERIVE 0x0000010CUL

#define CKA_START_DATE 0x00000110UL

#define CKA_END_DATE 0x00000111UL

#define CKA_MODULUS 0x00000120UL

#define CKA_MODULUS_BITS 0x00000121UL

#define CKA_PUBLIC_EXPONENT 0x00000122UL

#define CKA_PRIVATE_EXPONENT 0x00000123UL

#define CKA_PRIME_1 0x00000124UL

#define CKA_PRIME_2 0x00000125UL

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 145 of 149

#define CKA_EXPONENT_1 0x00000126UL

#define CKA_EXPONENT_2 0x00000127UL

#define CKA_COEFFICIENT 0x00000128UL

#define CKA_PRIME 0x00000130UL

#define CKA_SUBPRIME 0x00000131UL

#define CKA_BASE 0x00000132UL

#define CKA_PRIME_BITS 0x00000133UL

#define CKA_SUBPRIME_BITS 0x00000134UL

#define CKA_VALUE_BITS 0x00000160UL

#define CKA_VALUE_LEN 0x00000161UL

#define CKA_EXTRACTABLE 0x00000162UL

#define CKA_LOCAL 0x00000163UL

#define CKA_NEVER_EXTRACTABLE 0x00000164UL

#define CKA_ALWAYS_SENSITIVE 0x00000165UL

#define CKA_KEY_GEN_MECHANISM 0x00000166UL

#define CKA_MODIFIABLE 0x00000170UL

#define CKA_COPYABLE 0x00000171UL

#define CKA_DESTROYABLE 0x00000172UL

#define CKA_ECDSA_PARAMS 0x00000180UL

#define CKA_EC_PARAMS 0x00000180UL

#define CKA_EC_POINT 0x00000181UL

#define CKA_SECONDARY_AUTH 0x00000200UL /* Deprecated */

#define CKA_AUTH_PIN_FLAGS 0x00000201UL /* Deprecated */

#define CKA_ALWAYS_AUTHENTICATE 0x00000202UL

#define CKA_WRAP_WITH_TRUSTED 0x00000210UL

#define CKA_WRAP_TEMPLATE (CKF_ARRAY_ATTRIBUTE|0x00000211UL)

 #define CKA_UNWRAP_TEMPLATE (CKF_ARRAY_ATTRIBUTE|0x00000212UL)

#define CKA_HW_FEATURE_TYPE 0x00000300UL

#define CKA_RESET_ON_INIT 0x00000301UL

#define CKA_HAS_RESET 0x00000302UL

#define CKA_PIXEL_X 0x00000400UL

#define CKA_PIXEL_Y 0x00000401UL

#define CKA_RESOLUTION 0x00000402UL

#define CKA_CHAR_ROWS 0x00000403UL

#define CKA_CHAR_COLUMNS 0x00000404UL

#define CKA_COLOR 0x00000405UL

#define CKA_BITS_PER_PIXEL 0x00000406UL

#define CKA_CHAR_SETS 0x00000480UL

#define CKA_ENCODING_METHODS 0x00000481UL

#define CKA_MIME_TYPES 0x00000482UL

#define CKA_MECHANISM_TYPE 0x00000500UL

#define CKA_REQUIRED_CMS_ATTRIBUTES 0x00000501UL

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 146 of 149

#define CKA_DEFAULT_CMS_ATTRIBUTES 0x00000502UL

#define CKA_SUPPORTED_CMS_ATTRIBUTES 0x00000503UL

#define CKA_ALLOWED_MECHANISMS (CKF_ARRAY_ATTRIBUTE|0x00000600UL)

#define CKA_VENDOR_DEFINED 0x80000000UL

#define CKR_OK 0x00000000UL

#define CKR_CANCEL 0x00000001UL

#define CKR_HOST_MEMORY 0x00000002UL

#define CKR_SLOT_ID_INVALID 0x00000003UL

#define CKR_GENERAL_ERROR 0x00000005UL

#define CKR_FUNCTION_FAILED 0x00000006UL

#define CKR_ARGUMENTS_BAD 0x00000007UL

#define CKR_NO_EVENT 0x00000008UL

#define CKR_NEED_TO_CREATE_THREADS 0x00000009UL

#define CKR_CANT_LOCK 0x0000000AUL

#define CKR_ATTRIBUTE_READ_ONLY 0x00000010UL

#define CKR_ATTRIBUTE_SENSITIVE 0x00000011UL

#define CKR_ATTRIBUTE_TYPE_INVALID 0x00000012UL

#define CKR_ATTRIBUTE_VALUE_INVALID 0x00000013UL

#define CKR_COPY_PROHIBITED 0x0000001AUL

#define CKR_ACTION_PROHIBITED 0x0000001BUL

#define CKR_DATA_INVALID 0x00000020UL

#define CKR_DATA_LEN_RANGE 0x00000021UL

#define CKR_DEVICE_ERROR 0x00000030UL

#define CKR_DEVICE_MEMORY 0x00000031UL

#define CKR_DEVICE_REMOVED 0x00000032UL

#define CKR_ENCRYPTED_DATA_INVALID 0x00000040UL

#define CKR_ENCRYPTED_DATA_LEN_RANGE 0x00000041UL

#define CKR_FUNCTION_CANCELED 0x00000050UL

#define CKR_FUNCTION_NOT_PARALLEL 0x00000051UL

#define CKR_FUNCTION_NOT_SUPPORTED 0x00000054UL

#define CKR_KEY_HANDLE_INVALID 0x00000060UL

#define CKR_KEY_SIZE_RANGE 0x00000062UL

#define CKR_KEY_TYPE_INCONSISTENT 0x00000063UL

#define CKR_KEY_NOT_NEEDED 0x00000064UL

#define CKR_KEY_CHANGED 0x00000065UL

#define CKR_KEY_NEEDED 0x00000066UL

#define CKR_KEY_INDIGESTIBLE 0x00000067UL

#define CKR_KEY_FUNCTION_NOT_PERMITTED 0x00000068UL

#define CKR_KEY_NOT_WRAPPABLE 0x00000069UL

#define CKR_KEY_UNEXTRACTABLE 0x0000006AUL

#define CKR_MECHANISM_INVALID 0x00000070UL

#define CKR_MECHANISM_PARAM_INVALID 0x00000071UL

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 147 of 149

#define CKR_OBJECT_HANDLE_INVALID 0x00000082UL

#define CKR_OPERATION_ACTIVE 0x00000090UL

#define CKR_OPERATION_NOT_INITIALIZED 0x00000091UL

#define CKR_PIN_INCORRECT 0x000000A0UL

#define CKR_PIN_INVALID 0x000000A1UL

#define CKR_PIN_LEN_RANGE 0x000000A2UL

#define CKR_PIN_EXPIRED 0x000000A3UL

#define CKR_PIN_LOCKED 0x000000A4UL

#define CKR_SESSION_CLOSED 0x000000B0UL

#define CKR_SESSION_COUNT 0x000000B1UL

#define CKR_SESSION_HANDLE_INVALID 0x000000B3UL

#define CKR_SESSION_PARALLEL_NOT_SUPPORTED 0x000000B4UL

#define CKR_SESSION_READ_ONLY 0x000000B5UL

#define CKR_SESSION_EXISTS 0x000000B6UL

#define CKR_SESSION_READ_ONLY_EXISTS 0x000000B7UL

#define CKR_SESSION_READ_WRITE_SO_EXISTS 0x000000B8UL

#define CKR_SIGNATURE_INVALID 0x000000C0UL

#define CKR_SIGNATURE_LEN_RANGE 0x000000C1UL

#define CKR_TEMPLATE_INCOMPLETE 0x000000D0UL

#define CKR_TEMPLATE_INCONSISTENT 0x000000D1UL

#define CKR_TOKEN_NOT_PRESENT 0x000000E0UL

#define CKR_TOKEN_NOT_RECOGNIZED 0x000000E1UL

#define CKR_TOKEN_WRITE_PROTECTED 0x000000E2UL

#define CKR_UNWRAPPING_KEY_HANDLE_INVALID 0x000000F0UL

#define CKR_UNWRAPPING_KEY_SIZE_RANGE 0x000000F1UL

#define CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT 0x000000F2UL

#define CKR_USER_ALREADY_LOGGED_IN 0x00000100UL

#define CKR_USER_NOT_LOGGED_IN 0x00000101UL

#define CKR_USER_PIN_NOT_INITIALIZED 0x00000102UL

#define CKR_USER_TYPE_INVALID 0x00000103UL

#define CKR_USER_ANOTHER_ALREADY_LOGGED_IN 0x00000104UL

#define CKR_USER_TOO_MANY_TYPES 0x00000105UL

#define CKR_WRAPPED_KEY_INVALID 0x00000110UL

#define CKR_WRAPPED_KEY_LEN_RANGE 0x00000112UL

#define CKR_WRAPPING_KEY_HANDLE_INVALID 0x00000113UL

#define CKR_WRAPPING_KEY_SIZE_RANGE 0x00000114UL

#define CKR_WRAPPING_KEY_TYPE_INCONSISTENT 0x00000115UL

#define CKR_RANDOM_SEED_NOT_SUPPORTED 0x00000120UL

#define CKR_RANDOM_NO_RNG 0x00000121UL

#define CKR_DOMAIN_PARAMS_INVALID 0x00000130UL

#define CKR_CURVE_NOT_SUPPORTED 0x00000140UL

#define CKR_BUFFER_TOO_SMALL 0x00000150UL

#define CKR_SAVED_STATE_INVALID 0x00000160UL

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 148 of 149

#define CKR_INFORMATION_SENSITIVE 0x00000170UL

#define CKR_STATE_UNSAVEABLE 0x00000180UL

#define CKR_CRYPTOKI_NOT_INITIALIZED 0x00000190UL

#define CKR_CRYPTOKI_ALREADY_INITIALIZED 0x00000191UL

#define CKR_MUTEX_BAD 0x000001A0UL

#define CKR_MUTEX_NOT_LOCKED 0x000001A1UL

#define CKR_FUNCTION_REJECTED 0x00000200UL

#define CKR_VENDOR_DEFINED 0x80000000UL

#define CK_CERTIFICATE_CATEGORY_UNSPECIFIED 0UL

#define CK_CERTIFICATE_CATEGORY_TOKEN_USER 1UL

#define CK_CERTIFICATE_CATEGORY_AUTHORITY 2UL

#define CK_CERTIFICATE_CATEGORY_OTHER_ENTITY 3UL

#define CK_SECURITY_DOMAIN_UNSPECIFIED 0UL

#define CK_SECURITY_DOMAIN_MANUFACTURER 1UL

#define CK_SECURITY_DOMAIN_OPERATOR 2UL

#define CK_SECURITY_DOMAIN_THIRD_PARTY 3UL

pkcs11-base-v2.40-os 14 April 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 149 of 149

Appendix C. Revision History

Revision Date Editor Changes Made

wd01 Apr 30 2013 Chris Zimman Initial import into OASIS template

wd02 July 7 2013 Chris Zimman Move explanatory material to PKCS #11 Usage
Guide v2.40 wd02

wd03 Aug 16 2013 Chris Zimman Incorporation of recent ballot items

wd04 Oct 1 2013 Chris Zimman Incorporation of ballot items, prep for
Committee Specification Draft promotion

wd05 Oct 7 2013 Chris Zimman Typo correction and proof. This is the
candidate for promotion to Committee
Specification Draft.

wd06 Oct 27 2013 Robert Griffin Final participant list and other editorial changes
for Committee Specification Draft

csd01 Oct 30 2013 OASIS Committee Specification Draft

wd07 Feb 17 2014 Chris Zimman Incorporation of comments and changes from
public feedback and review

wd08 Feb 27 2014 Chris Zimman Incorporation of comments and changes from
public feedback and review

csd02 Apr 23 2014 OASIS Committee Specification Draft

wd09 May 2 2014 Chris Zimman Incorporated changes from PKCS 11 TC face-
to-face meeting

wd10 Jul 2 2014 Chris Zimman Corrected manifest constants

csd03 Jul 16 2014 OASIS Committee Specification Draft

csd03a Sep 3 2014 Robert Griffin Updated revision history and participant list in
preparation for Committee Specification ballot

wd11 Nov 3 2014 Robert Griffin Editorial corrections

