
sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005, 2010. All Rights Reserved. Page 1 of 78

SCA Policy Framework Version 1.1
Committee Draft 04

22 September 2010
Specification URIs:
This Version:

http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd04.html
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd04.doc
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd04.pdf (Authoritative)

Previous Version:
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd03.html
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd03.doc
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd03.pdf (Authoritative)

Latest Version:
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.html
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.doc
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.pdf (Authoritative)

Technical Committee:
OASIS Service Component Architecture / Policy (SCA-Policy) TC

Chair(s):
David Booz, IBM <booz@us.ibm.com>
Ashok Malhotra, Oracle <ashok.malhotra@oracle.com>

Editor(s):
David Booz, IBM <booz@us.ibm.com>
Michael J. Edwards, IBM <mike_edwards@uk.ibm.com>
Ashok Malhotra, Oracle <ashok.malhotra@oracle.com>

Related work:
This specification replaces or supercedes:

• SCA Policy Framework Specification Version 1.00 March 07, 2007

This specification is related to:
OASIS Committee Draft 05, “SCA Assembly Model Specification Version 1.1”, January 2010.

 http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd05.pdf

http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd04.html
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd04.doc
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd04.pdf
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd03.html
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd03.doc
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd03.pdf
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.html
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.doc
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.pdf
http://www.oasis-open.org/committees/sca-policy/
mailto:booz@us.ibm.com
mailto:ashok.malhotra@oracle.com
mailto:booz@us.ibm.com
mailto:mike_edwards@uk.ibm.com
mailto:ashok.malhotra@oracle.com
http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf?version=1
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd05.pdf

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005, 2010. All Rights Reserved. Page 2 of 78

Declared XML Namespace(s):
In this document, the namespace designated by the prefix “sca” is associated with the namespace URL
docs.oasis-open.org/ns/opencsa/sca/200912. This is also the default namespace for this document.

Abstract:

TBD
Status:

This document was last revised or approved by the SCA Policy TC on the above date. The level
of approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location
noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-policy/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-policy/ipr.php.
.

http://docs.oasis-open.org/ns/opencsa/sca/200912
http://www.oasis-open.org/committees/sca-policy/
http://www.oasis-open.org/committees/sca-policy/
http://www.oasis-open.org/committees/sca-policy/ipr.php
http://www.oasis-open.org/committees/sca-policy/ipr.php

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005, 2010. All Rights Reserved. Page 3 of 78

Notices
Copyright © OASIS® 2005, 2010. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS"and “SCA-Policy” are trademarks of OASIS, the owner and developer of this
specification, and should be used only to refer to the organization and its official outputs. OASIS
welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce
its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above
guidance.

http://www.oasis-open.org/who/trademark.php

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005, 2010. All Rights Reserved. Page 4 of 78

Table of Contents

1 Introduction...7

1.1 Terminology ...7
1.2 XML Namespaces ...7
1.3 Normative References ...7
1.4 Naming Conventions ...8

2 Overview...9
2.1 Policies and PolicySets..9
2.2 Intents describe the requirements of Components, Services and References9
2.3 Determining which policies apply to a particular wire..10

3 Framework Model...11
3.1 Intents ..11
3.2 Interaction Intents and Implementation Intents..13
3.3 Profile Intents...14
3.4 PolicySets ..14

3.4.1 IntentMaps...16
3.4.2 Direct Inclusion of Policies within PolicySets ..18
3.4.3 Policy Set References ...18

4 Attaching Intents and PolicySets to SCA Constructs ...21
4.1 Attachment Rules – Intents..21
4.2 Direct Attachment of Intents ..21
4.3 External Attachment of Intents and PolicySets..22
4.4 Attachment Rules - PolicySets ..22
4.5 Direct Attachment of PolicySets ..22
4.6 External Attachment of PolicySets ..24

4.6.1 Cases Where Multiple PolicySets are attached to a Single Artifact......................................24
4.7 Attaching intents to SCA elements ..24

4.7.1 Implementation Hierarchy of an Element ..24
4.7.2 Structural Hierarchy of an Element ...25
4.7.3 Combining Implementation and Structural Policy Data...25
4.7.4 Examples...26

4.8 Usage of Intent and Policy Set Attachment together...27
4.9 Intents and PolicySets on Implementations and Component Types...27
4.10 Intents on Interfaces ..28
4.11 BindingTypes and Related Intents...28
4.12 Treatment of Components with Internal Wiring ...29

4.12.1 Determining Wire Validity and Configuration ..30
4.13 Preparing Services and References for External Connection ...30
4.14 Deployment..30

4.14.1 Redeployment of Intents and PolicySets ..31
4.15 Matching Intents and PolicySets ...32

5 Implementation Policies ...34

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005, 2010. All Rights Reserved. Page 5 of 78

5.1 Natively Supported Intents...35
5.2 Writing PolicySets for Implementation Policies ...35

5.2.1 Non WS-Policy Examples ...36
6 Roles and Responsibilities ...37

6.1 Policy Administrator ...37
6.2 Developer...37
6.3 Assembler ..37
6.4 Deployer...38

7 Security Policy ..39
7.1 Security Policy Intents ...39
7.2 Interaction Security Policy ...39

7.2.1 Qualifiers ...40
7.3 Implementation Security Policy Intent ...40

8 Reliability Policy..41
8.1 Reliability Policy Intents ...41
8.2 End-to-end Reliable Messaging ..43

9 Transactions ...44
9.1 Out of Scope..44
9.2 Common Transaction Patterns..44
9.3 Summary of SCA Transaction Policies..45
9.4 Global and local transactions...45

9.4.1 Global transactions..45
9.4.2 Local transactions ...45

9.5 Transaction implementation policy ..46
9.5.1 Managed and non-managed transactions...46
9.5.2 OneWay Invocations ...47
9.5.3 Asynchronous Implementations ..48

9.6 Transaction interaction policies ...48
9.6.1 Handling Inbound Transaction Context...48
9.6.2 Handling Outbound Transaction Context ..50
9.6.3 Combining implementation and interaction intents ...52
9.6.4 Interaction intents with asynchronous implementations..52
9.6.5 Web Services Binding for propagatesTransaction policy..52

10 Miscellaneous Intents...53
11 Conformance ..54
A Defining the Deployed Composites Infoset ..55

A.1 XPath Functions for the @attachTo Attribute..57
A.1.1 Interface Related Functions ..57
A.1.2 Intent Based Functions..58
A.1.3 URI Based Function ..59

B Schemas...60
B.1 sca-policy.xsd ..60

C XML Files..63
C.1 Intent Definitions ..63

D Conformance ..68

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005, 2010. All Rights Reserved. Page 6 of 78

D.1 Conformance Targets ..68
D.2 Conformance Items ...68

E Acknowledgements ..75
F Revision History..77

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 7 of 78

1 Introduction 1

The capture and expression of non-functional requirements is an important aspect of service definition 2
and has an impact on SCA throughout the lifecycle of components and compositions. SCA provides a 3
framework to support specification of constraints, capabilities and QoS expectations from component 4
design through to concrete deployment. This specification describes the framework and its usage. 5
Specifically, this section describes the SCA policy association framework that allows policies and policy 6
subjects specified using WS-Policy [WS-Policy] and WS-PolicyAttachment [WS-PolicyAttach], as well 7
as with other policy languages, to be associated with SCA components. 8
This document should be read in conjunction with the SCA Assembly Specification [SCA-Assembly]. 9
Details of policies for specific policy domains can be found in sections 7, 8 and 9. 10

1.1 Terminology 11

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 12
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 13
in [RFC2119]. 14

1.2 XML Namespaces 15

Prefixes and Namespaces used in this Specification

Prefix XML Namespace Specification

sca

docs.oasis-open.org/ns/opencsa/sca/200912

This is assumed to be the default namespace in this specification.
xs:QNames that appear without a prefix are from the SCA namespace.

[SCA-Assembly]

acme Some namespace; a generic prefix

wsp http://www.w3.org/2006/07/ws-policy [WS-Policy]

xs http://www.w3.org/2001/XMLSchema [XML Schema
Datatypes]

Table 1-1: XML Namespaces and Prefixes 16

1.3 Normative References 17

 18
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 19

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 20
[SCA-Assembly] OASIS Committee Draft 05, “Service Component Architecture Assembly Model 21

Specification Version 1.1”, January 2010. 22
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-23

cd05.pdf 24
[SCA-Java-Annotations] 25

OASIS Committee Draft 04, “SCA Java Common Annotations and APIs 26
 Specification Version 1.1”, February 2010. 27

http://www.ietf.org/rfc/rfc2119.txt
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd05.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd05.pdf

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 8 of 78

http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-cd04.pdf 28
[SCA-WebServicesBinding] 29
 OASIS Committee Draft 03, “SCA Web Services Binding Specification Version 30

1.1”, July 2009. 31
 http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-32

cd03.pdf 33
[WSDL] Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language 34

– Appendix http://www.w3.org/TR/2006/CR-wsdl20-20060327/ 35
[WS-AtomicTransaction] 36

OASIS Standard, “Web Services Atomic Transaction Version 1.2”, February 37
2009. 38
http://docs.oasis-open.org/ws-tx/wsat/2006/06. 39

[WSDL-Ids] SCA WSDL 1.1 Element Identifiers – forthcoming W3C Note 40
http://dev.w3.org/cvsweb/~checkout~/2006/ws/policy/wsdl11elementidentifiers.ht41
ml 42

[WS-Policy] Web Services Policy (WS-Policy) 43
http://www.w3.org/TR/ws-policy 44

[WS-PolicyAttach] Web Services Policy Attachment (WS-PolicyAttachment) 45
http://www.w3.org/TR/ws-policy-attach 46

[XPATH] XML Path Language (XPath) Version 1.0. 47
http://www.w3.org/TR/xpath 48

[XML-Schema2] XML Schema Part 2: Datatypes Second Edition XML Schema Part 2: Datatypes 49
Second Edition, Oct. 28 2004. 50
http://www.w3.org/TR/xmlschema-2/ 51

1.4 Naming Conventions 52

This specification follows some naming conventions for artifacts defined by the specification, as follows: 53
• For the names of elements and the names of attributes within XSD files, the names follow the 54

CamelCase convention, with all names starting with a lower case letter, e.g. <element 55
name="policySet" type="…"/>. 56

• For the names of types within XSD files, the names follow the CamelCase convention with all names 57
starting with an upper case letter, e.g. <complexType name="PolicySet">. 58

• For the names of intents, the names follow the CamelCase convention, with all names starting with a 59
lower case letter, EXCEPT for cases where the intent represents an established acronym, in which 60
case the entire name is in upper case. An example of an intent which is an acronym is the "SOAP" 61
intent. 62

http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-cd04.pdf
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-cd03.pdf
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-cd03.pdf
http://www.w3.org/TR/2006/CR-wsdl20-20060327/
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://dev.w3.org/cvsweb/~checkout~/2006/ws/policy/wsdl11elementidentifiers.html
http://www.w3.org/TR/ws-policy
http://www.w3.org/TR/ws-policy-attach
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xmlschema-2/

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 9 of 78

2 Overview 63

2.1 Policies and PolicySets 64

The term Policy is used to describe some capability or constraint that can be applied to service 65
components or to the interactions between service components represented by services and references. 66
An example of a policy is that messages exchanged between a service client and a service provider have 67
to be encrypted, so that the exchange is confidential and cannot be read by someone who intercepts the 68
messages. 69
In SCA, services and references can have policies applied to them that affect the form of the interaction 70
that takes place at runtime. These are called interaction policies. 71
Service components can also have other policies applied to them, which affect how the components 72
themselves behave within their runtime container. These are called implementation policies. 73
How particular policies are provided varies depending on the type of runtime container for implementation 74
policies and on the binding type for interaction policies. Some policies can be provided as an inherent part 75
of the container or of the binding – for example a binding using the https protocol will always provide 76
encryption of the messages flowing between a reference and a service. Other policies can optionally be 77
provided by a container or by a binding. It is also possible that some kinds of container or kinds of binding 78
are incapable of providing a particular policy at all. 79
In SCA, policies are held in policySets, which can contain one or many policies, expressed in some 80
concrete form, such as WS-Policy assertions. Each policySet targets a specific binding type or a specific 81
implementation type. PolicySets are used to apply particular policies to a component or to the binding of a 82
service or reference, through configuration information attached to a component or attached to a 83
composite. 84
For example, a service can have a policy applied that requires all interactions (messages) with the service 85
to be encrypted. A reference which is wired to that service needs to support sending and receiving 86
messages using the specified encryption technology if it is going to use the service successfully. 87
In summary, a service presents a set of interaction policies, which it requires the references to use. In 88
turn, each reference has a set of policies, which define how it is capable of interacting with any service to 89
which it is wired. An implementation or component can describe its requirements through a set of 90
attached implementation policies. 91

2.2 Intents describe the requirements of Components, Services and 92
References 93

SCA intents are used to describe the abstract policy requirements of a component or the requirements of 94
interactions between components represented by services and references. Intents provide a means for 95
the developer and the assembler to state these requirements in a high-level abstract form, independent of 96
the detailed configuration of the runtime and bindings, which involve the role of application deployer. 97
Intents support late binding of services and references to particular SCA bindings, since they assist the 98
deployer in choosing appropriate bindings and concrete policies which satisfy the abstract requirements 99
expressed by the intents. 100
It is possible in SCA to attach policies to a service, to a reference or to a component at any time during 101
the creation of an assembly, through the configuration of bindings and the attachment of policy sets. 102
Attachment can be done by the developer of a component at the time when the component is written or it 103
can be done later by the deployer at deployment time. SCA recommends a late binding model where the 104
bindings and the concrete policies for a particular assembly are decided at deployment time. 105
SCA favors the late binding approach since it promotes re-use of components. It allows the use of 106
components in new application contexts, which might require the use of different bindings and different 107

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 10 of 78

concrete policies. Forcing early decisions on which bindings and policies to use is likely to limit re-use and 108
limit the ability to use a component in a new context. 109
For example, in the case of authentication, a service which requires the client to be authenticated can be 110
marked with an intent called "clientAuthentication". This intent marks the service as requiring the client 111
to be authenticated without being prescriptive about how it is achieved. At deployment time, when a 112
binding is chosen for the service (say SOAP over HTTP), the deployer can apply suitable policies to the 113
service which provide aspects of WS-Security and which supply a group of one or more authentication 114
technologies. 115
In many ways, intents can be seen as restricting choices at deployment time. If a service is marked with 116
the confidentiality intent, then the deployer has to use a binding and a policySet that provides for the 117
encryption of the messages. 118
The set of intents available to developers and assemblers can be extended by policy administrators. The 119
SCA Policy Framework specification does define a set of intents which address the infrastructure 120
capabilities relating to security, transactions and reliable messaging. 121

2.3 Determining which policies apply to a particular wire 122

Multiple policies can be attached to both services and to references. Where there are multiple policies, 123
they can be organized into policy domains, where each domain deals with some particular aspect of the 124
interaction. An example of a policy domain is confidentiality, which covers the encryption of messages 125
sent between a reference and a service. Each policy domain can have one or more policy. Where 126
multiple policies are present for a particular domain, they represent alternative ways of meeting the 127
requirements for that domain. For example, in the case of message integrity, there could be a set of 128
policies, where each one deals with a particular security token to be used: e.g. X509, SAML, Kerberos. 129
Any one of the tokens can be used - they will all ensure that the overall goal of message integrity is 130
achieved. 131
In order for a service to be accessed by a wide range of clients, it is good practice for the service to 132
support multiple alternative policies within a particular domain. So, if a service requires message 133
confidentiality, instead of insisting on one specific encryption technology, the service can have a policySet 134
which has a number of alternative encryption technologies, any of which are acceptable to the service. 135
Equally, a reference can have a policySet attached which defines the range of encryption technologies 136
which it is capable of using. Typically, the set of policies used for a given domain will reflect the 137
capabilities of the binding and of the runtime being used for the service and for the reference. 138
When a service and a reference are wired together, the policies declared by the policySets at each end of 139
the wire are matched to each other. SCA does not define how policy matching is done, but instead 140
delegates this to the policy language (e.g. WS-Policy) used for the binding. For example, where WS-141
Policy is used as the policy language, the matching procedure looks at each domain in turn within the 142
policy sets and looks for 1 or more policies which are in common between the service and the reference. 143
When only one match is found, the matching policy is used. Where multiple matches are found, then the 144
SCA runtime can choose to use any one of the matching policies. No match implies that the configuration 145
is not valid and the deployer needs to take an action. 146

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 11 of 78

3 Framework Model 147

The SCA Policy Framework model is comprised of intents and policySets. Intents represent abstract 148
assertions and Policy Sets contain concrete policies that can be applied to SCA bindings and 149
implementations. The framework describes how intents are related to policySets. It also describes how 150
intents and policySets are utilized to express the constraints that govern the behavior of SCA bindings 151
and implementations. Both intents and policySets can be used to specify QoS requirements on services 152
and references. 153
The following section describes the Framework Model and illustrates it using Interaction Policies. 154
Implementation Policies follow the same basic model and are discussed later in section 1.5. 155

3.1 Intents 156

As discussed earlier, an intent is an abstract assertion about a specific Quality of Service (QoS) 157
characteristic that is expressed independently of any particular implementation technology. An intent is 158
thus used to describe the desired runtime characteristics of an SCA construct. Typically, intents are 159
defined by a policy administrator. See section [Policy Administrator] for a more detailed description of 160
SCA roles with respect to Policy concepts, their definition and their use. The semantics of an intent can 161
not always be available normatively, but could be expressed with documentation that is available and 162
accessible. 163
For example, an intent named integrity can be specified to signify that communications need to be 164
protected from possible tampering. This specific intent can be declared as a requirement by some SCA 165
artifacts, e.g. a reference. Note that this intent can be satisfied by a variety of bindings and with many 166
different ways of configuring those bindings. Thus, the reference where the intent is expressed as a 167
requirement could eventually be wired using either a web service binding (SOAP over HTTP) or with an 168
EJB binding that communicates with an EJB via RMI/IIOP. 169
Intents can be used to express requirements for interaction policies or implementation policies. The 170
integrity intent in the above example is used to express a requirement for an interaction policy. 171
Interaction policies are, typically, applied to a service or reference. They are meant to govern the 172
communication between a client and a service provider. Intents can also be applied to SCA component 173
implementations as requirements for implementation policies. These intents specify the qualities of 174
service that need to be provided by a container as it runs the component. An example of such an intent 175
could be a requirement that the component needs to run in a transaction. 176
If the configured instance of a binding is in conflict with the intents and policy sets selected for that 177
instance, the SCA runtime MUST raise an error. [POL30001]. For example, a web service binding which 178
requires the SOAP intent but which points to a WSDL binding that does not specify SOAP. 179
For convenience and conciseness, it is often desirable to declare a single, higher-level intent to denote a 180
requirement that could be satisfied by one of a number of lower-level intents. For example, the 181
confidentiality intent requires either message-level encryption or transport-level encryption. 182
Both of these are abstract intents because the representation of the configuration necessary to realize 183
these two kinds of encryption could vary from binding to binding, and each would also require additional 184
parameters for configuration. 185
An intent that can be completely satisfied by one of a choice of lower-level intents is 186
referred to as a qualifiable intent. In order to express such intents, the intent name can 187
contain a qualifier: a “.” followed by a xs:string name. An intent name that includes a 188
qualifier in its name is referred to as a qualified intent, because it is “qualifying” how the 189
qualifiable intent is satisfied. A qualified intent can only qualify one qualifiable intent, so the 190
name of the qualified intent includes the name of the qualifiable intent as a prefix, for 191
example, clientAuthentication.message. 192
In general, SCA allows the developer or assembler to attach multiple qualifiers for a single 193

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 12 of 78

qualifiable intent to the same SCA construct. However, domain-specific constraints can prevent the use of 194
some combinations of qualifiers (from the same qualifiable intent). 195

Intents, their qualifiers and their defaults are defined using the pseudo schema in Snippet 3-1: 196

 197

<intent name="xs:NCName" 198
 constrains="sca:listOfQNames"? 199
 requires="sca:listOfQNames"? 200
 excludes="sca:listOfQNames"? 201
 mutuallyExclusive="xs:boolean"? 202
 intentType="xs:string"? > 203
 <description> xs:string.</description>? 204
 <qualifier name="xs:string" default="xs:boolean" ?>* 205
 <description> xs:string.</description>? 206
 </qualifier> 207
</intent> 208

Snippet 3-1: intent Pseudo-Schema 209

 210
Where the intent element has the following attributes: 211
• @name (1..1) - an NCName that defines the name of the intent. The QName for an intent MUST be 212

unique amongst the set of intents in the SCA Domain. [POL30002] 213
• @constrains (0..1) - a list of QNames that specifies the SCA constructs that this intent is meant to 214

configure. If a value is not specified for this attribute then the intent can apply to any SCA element. 215
Note that the “constrains” attribute can name an abstract element type, such as sca:binding in our 216
running example. This means that it will match against any binding used within an SCA composite 217
file. An SCA element can match @constrains if its type is in a substitution group. 218

• @requires (0..1) - contains a list of QNames of intents which defines the set of all intents that the 219
referring intent requires. In essence, the referring intent requires all the intents named to be satisfied. 220
This attribute is used to compose an intent from a set of other intents. Each QName in the @requires 221
attribute MUST be the QName of an intent in the SCA Domain. [POL30015] This use is further 222
described in Profile Intents. 223

• @excludes (0..1) - a list of QNames of intents that cannot be used with this intent. Intents might 224
describe a policy that is incompatible or otherwise unrealizable when specified with other intents, and 225
therefore are considered to be mutually exclusive. Each QName in the @excludes attribute MUST be 226
the QName of an intent in the SCA Domain. [POL30016] 227
Two intents are mutually exclusive when any of the following are true: 228

– One of the two intents lists the other intent in its @excludes list. 229
– Both intents list the other intent in their respective @excludes list. 230

Where one intent is attached to an element of an SCA composite and another intent is attached to 231
one of the element’s parents, the intent(s) that are effectively attached to the element differs 232
depending on whether the two intents are mutually exclusive (see @excludes above and “Attaching 233
intents to SCA elements”. 234

• @mutuallyExclusive (0..1) - a boolean with a default of “false”. If this attribute is present and has a 235
value of “true” it indicates that the qualified intents defined for this intent are mutually exclusive. 236

• @intentType attribute (0..1) defines whether the intent is an interaction intent or an implementation 237
intent. A value of "interaction", which is the default value, indicates that the intent is an interaction 238
intent. A value of "implementation" indicates that the intent is an implementation intent. 239

One or more <qualifier> child elements can be used to define qualifiers for the intent. The attributes of 240
the qualifier element are: 241

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 13 of 78

• @name (1..1) - declares the name of the qualifier. The name of each qualifier MUST be unique within 242
the intent definition. [POL30005]. 243

• @default (0..1) - a boolean value with a default value of "false". If @default="true" the particular 244
qualifier is the default qualifier for the intent. If an intent has more than one qualifier, one and only 245
one MUST be declared as the default qualifier. [POL30004]. If only one qualifier for an intent is given 246
it MUST be used as the default qualifier for the intent. [POL30025] 247

• qualifier/description (0..1) - an xs:string that holds a textual description of the qualifier. 248
For example, the confidentiality intent which has qualified intents called 249
confidentiality.transport and confidentiality.message can be defined as: 250
 251

<intent name="confidentiality" constrains="sca:binding"> 252
 <description> 253
 Communication through this binding must prevent 254
 unauthorized users from reading the messages. 255
 </description> 256
 <qualifier name=”transport”> 257
 <description>Automatic encryption by transport 258
 </description> 259
 </qualifier> 260
 <qualifier name=”message” default=’true’> 261
 <description>Encryption applied to each message 262
 </description> 263
 </qualifier> 264
</intent> 265

Snippet 3-2: Example intent Definition 266

 267
An Intent can be contributed to the SCA Domain by including its definition in a definitions.xml file within a 268
Contribution in the Domain. Details of the definitions.xml files are described in the SCA Assembly Model 269
[SCA-Assembly]. 270
SCA normatively defines a set of core intents that all SCA implementations are expected to support, to 271
ensure a minimum level of portability. Users of SCA can define new intents, or extend the qualifier set of 272
existing intents. An SCA Runtime MUST include in the Domain the set of intent definitions contained in 273
the Policy_Intents_Definitions.xml described in the appendix "Intent Definitions" of the SCA Policy 274
specification. [POL30024] It is also good practice for the Domain to include concrete policies which satisfy 275
these intents (this may be achieved through the provision of appropriate binding types and 276
implementation types, augmented by policy sets that apply to those binding types and implementation 277
types). 278
The normatively defined intents in the SCA specification might evolve in future versions of this 279
specification. New intents could be added, additional qualifiers could be added to existing intents and the 280
default qualifier for existing intents could change. Such changes would cause the namespace for the SCA 281
specification to change. 282

3.2 Interaction Intents and Implementation Intents 283

An interaction intent is an intent designed to influence policy which applies to a service, a reference and 284
the wires that connect them. Interaction intents affect wire matching between the two ends of a wire 285
and/or the set of bytes that flow between the reference and the service when a service invocation takes 286
place. 287
Interaction intents typically apply to <binding/> elements. 288
An implementation intent is an intent designed to influence policy which applies to an implementation 289
artifact or to the relationship of that artifact to the runtime code which is used to execute the artifact. 290
Implementation intents do not affect wire matching between references and services, nor do they affect 291
the bytes that flow between a reference and a service. 292

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 14 of 78

Implementation intents often apply to <implementation/> elements, but they can also apply to <binding/> 293
elements, where the desire is to influence the activity of the binding implementation code and how it 294
interacts with the remainder of the runtime code for the implementation. 295
Interaction intents and implementation intents are distinguished by the value of the @intentType attribute 296
in the intent definition. 297

3.3 Profile Intents 298

An intent that is satisfied only by satisfying all of a set of other intents is called a profile intent. It can be 299
used in the same way as any other intent. 300
The presence of @requires attribute in the intent definition signifies that this is a profile intent. The 301
@requires attribute can include all kinds of intents, including qualified intents and other profile intents. 302
However, while a profile intent can include qualified intents, it cannot be a qualified intent. Thus, the 303
name of a profile intent MUST NOT have a “.” in it. [POL30006] 304
Requiring a profile intent is semantically identical to requiring the list of intents that are listed in its 305
@requires attribute. If a profile intent is attached to an artifact, all the intents listed in its @requires 306
attribute MUST be satisfied as described in section 4.15. [POL30007] 307
An example of a profile intent is an intent called messageProtection which is a shortcut for specifying 308
both confidentiality and integrity, where integrity means to protect against modification, usually by 309
signing. The intent definition is shown in Snippet 3-3: 310

 311
<intent name="messageProtection" 312
 constrains="sca:binding" 313
 requires="sca:confidentiality sca:integrity"> 314
 <description> 315
 Protect messages from unauthorized reading or modification. 316
 </description> 317
</intent> 318

Snippet 3-3: Example Profile Intent 319

3.4 PolicySets 320

A policySet element is used to define a set of concrete policies that apply to some binding type or 321
implementation type, and which correspond to a set of intents provided by the policySet. 322

The pseudo schema for policySet is shown in Snippet 3-4: 323

 324
<policySet name="xs:NCName" 325
 provides="sca:listOfQNames"? 326
 appliesTo="xs:string"? 327
 attachTo="xs:string"? 328
 xmlns=http://docs.oasis-open.org/ns/opencsa/sca/200912 329
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"> 330
 <policySetReference name="xs:QName"/>* 331
 <intentMap/>* 332
 <xs:any>* 333
</policySet> 334

Snippet 3-4: policySet Pseudo-Schema 335

 336
PolicySet has the attributes: 337
• @name (1..1) - the name for the policySet. The value of the @name attribute is the local part of a 338

QName. The QName for a policySet MUST be unique amongst the set of policySets in the SCA 339
Domain. [POL30017] 340

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 15 of 78

• @appliesTo (0..1) - a string which is an XPath 1.0 expression identifying one or more SCA constructs 341
this policySet can configure. The contents of @appliesTo MUST match the XPath 1.0 [XPATH] 342
production Expr. [POL30018] The @appliesTo attribute uses the "Deployed Composites Infoset" as 343
described in Appendix A: The Deployed Composites Infoset section. 344

• @attachTo (0..1) - a string which is an XPath 1.0 expression identifying one or more elements in the 345
Domain. It is used to declare which set of elements the policySet is actually attached to. The 346
contents of @attachTo MUST match the XPath 1.0 production Expr. [POL30019] The XPath value of 347
the @attachTo attribute is evaluated against the “Deployed Composite Infoset” as described in 348
Appendix A: Defining the Deployed Composites Infoset. See the section on "Attaching Intents and 349
PolicySets to SCA Constructs" for more details on how this attribute is used. 350

• @provides (0..1) - a list of intent QNames (that can be qualified), which declares the intents the 351
PolicySet provides. 352

PolicySet contains one or more of the element children 353
• intentMap element 354
• policySetReference element 355
• xs:any extensibility element 356
Any mix of the above types of elements, in any number, can be included as children of the policySet 357
element including extensibility elements. There are likely to be many different policy languages for 358
specific binding technologies and domains. In order to allow the inclusion of any policy language within a 359
policySet, the extensibility elements can be from any namespace and can be intermixed. 360
The SCA policy framework expects that WS-Policy will be a common policy language for expressing 361
interaction policies, especially for Web Service bindings. Thus a common usecase is to attach WS-362
Policies directly as children of <policySet> elements; either directly as <wsp:Policy> elements, or as 363
<wsp:PolicyReference> elements or using <wsp:PolicyAttachment>. These three elements, and others, 364
can be attached using the extensibility point provided by the <xs:any> in the pseudo schema above. See 365
example below. 366
For example, the policySet element below declares that it provides 367
serverAuthentication.message and reliability for the “binding.ws” SCA binding. 368
 369

<policySet name="SecureReliablePolicy" 370
 provides="serverAuthentication.message exactlyOne" 371
 appliesTo="//sca:binding.ws" 372
 xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 373
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"> 374
 <wsp:PolicyAttachment> 375
 <!-- policy expression and policy subject for 376
 "basic server authentication" --> 377
 … 378
 </wsp:PolicyAttachment> 379
 <wsp:PolicyAttachment> 380
 <!-- policy expression and policy subject for 381
 "reliability" --> 382
 … 383
 </wsp:PolicyAttachment> 384
</policySet> 385

Snippet 3-5: Example policySet Defineition 386

 387
PolicySet authors need to be aware of the evaluation of the @appliesTo attribute in order to designate 388
meaningful values for this attribute. Although policySets can be attached to any element in an SCA 389
composite, the applicability of a policySet is not scoped by where it is attached in the SCA framework. 390
Rather, policySets always apply to either binding instances or implementation elements regardless of 391

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 16 of 78

where they are attached. In this regard, the SCA policy framework does not scope the applicability of the 392
policySet to a specific attachment point in contrast to other frameworks, such as WS-Policy. 393
When computing the policySets that apply to a particular element, the @appliesTo attribute of each 394
relevant policySet is checked against the element. If a policySet that is attached to an ancestor element 395
does not apply to the element in question, it is simply discarded. 396
With this design principle in mind, an XPath expression that is the value of an @appliesTo attribute 397
designates what a policySet applies to. Note that the XPath expression will always be evaluated against 398
the Domain Composite Infoset as described in Section 4.4.1 “The Form of the @attachTo Attribute”. The 399
policySet will apply to any child binding or implementation elements returned from the expression. So, for 400
example, appliesTo=”//binding.ws” will match any web service binding. If 401
appliesTo=”//binding.ws[@impl=’axis’]” then the policySet would apply only to web service bindings that 402
have an @impl attribute with a value of ‘axis’. 403
When writing policySets, the author needs to ensure that the policies contained in the policySet always 404
satisfy the intents in the @provides attribute. Specifically, when using WS-Policy the optional attribute 405
and the exactlyOne operator can result in alternative policies and uncertainty as to whether a particular 406
alternative satisfies the advertised intents. 407
If the WS-Policy attribute optional = ‘true’ is attached to a policy assertion, it results in two policy 408
alternatives, one that includes and one that does not include the assertion. During wire validation it is 409
impossible to predict which of the two alternatives will be selected -if the absence of the policy assertion 410
does not satisfy the intent, then it is possible that the intent is not actually satisfied when the policySet is 411
used. 412
Similarly, if the WS-Policy operator exactlyOne is used, only one of the set of policy assertions within the 413
operator is actually used at runtime. If the set of assertions is intended to satisfy one or more intents, it is 414
vital to ensure that each policy assertion in the set actually satisfies the intent(s). 415
Note that section 4.12.1 on Wire Validity specifies that the strict version of the WS-Policy intersection 416
algorithm is used to establish wire validity and determine the policies to be used. The strict version of 417
policy intersection algorithm ignores the ignorable attribute on assertions. This means that the ignorable 418
facility of WS-Policy cannot be used in policySets. 419
For further discussion on attachment of policySets and the computation of applicable policySets, please 420
refer to Section 4. 421
A policySet can be contributed to the SCA Domain by including its definition in a definitions.xml file within 422
a Contribution in the Domain. Details of the definitions.xml files are described in the SCA Assembly Model 423
[SCA-Assembly]. 424

3.4.1 IntentMaps 425

Intent maps contain the concrete policies and policy subjects that are used to realize a specific intent that 426
is provided by the policySet. 427

The pseudo-schema for intentMaps is given in Snippet 3-6: 428

 429
<intentMap provides="xs:QName"> 430
 <qualifier name="xs:string">? 431
 <xs:any>* 432
 </qualifier> 433
</intentMap> 434

Snippet 3-6: intentMap Pseudo-Schema 435

 436
When a policySet element contains a set of intentMap children, the value of the @provides attribute of 437
each intentMap MUST correspond to an unqualified intent that is listed within the @provides attribute 438
value of the parent policySet element. [POL30008] 439

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 17 of 78

If a policySet specifies a qualifiable intent in the @provides attribute, and it provides an intentMap for the 440
qualifiable intent then that intentMap MUST specify all possible qualifiers for that intent. [POL30020] 441
For each qualifiable intent listed as a member of the @provides attribute list of a policySet element, there 442
MUST be no more than one corresponding intentMap element that declares the unqualified form of that 443
intent in its @provides attribute. In other words, each intentMap within a given policySet uniquely provides 444
for a specific intent. [POL30010] 445
The @provides attribute value of each intentMap that is an immediate child of a policySet MUST be 446
included in the @provides attribute of the parent policySet. [POL30021] 447
An intentMap element contains qualifier element children. Each qualifier element corresponds to a 448
qualified intent where the unqualified form of that intent is the value of the @provides attribute value of 449
the parent intentMap. The qualified intent is either included explicitly in the value of the enclosing 450
policySet’s @provides attribute or implicitly by that @provides attribute including the unqualified form of 451
the intent. 452
A qualifier element designates a set of concrete policy attachments that correspond to a qualified intent. 453
The concrete policy attachments can be specified using wsp:PolicyAttachment element children or using 454
extensibility elements specific to an environment. 455

As an example, the policySet element in Snippet 3-7 declares that it provides confidentiality using the 456
@provides attribute. The alternatives (transport and message) it contains each specify the policy and 457
policy subject they provide. The default is “transport”. 458
 459

<policySet name="SecureMessagingPolicies" 460
 provides="confidentiality" 461
 appliesTo="//binding.ws" 462
 xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 463
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"> 464
 <intentMap provides="confidentiality" > 465
 <qualifier name="transport"> 466
 <wsp:PolicyAttachment> 467
 <!-- policy expression and policy subject for 468
 "transport" alternative --> 469
 ... 470
 </wsp:PolicyAttachment> 471
 <wsp:PolicyAttachment> 472
 ... 473
 </wsp:PolicyAttachment> 474
 </qualifier> 475
 <qualifier name="message"> 476
 <wsp:PolicyAttachment> 477
 <!-- policy expression and policy subject for 478
 "message" alternative” --> 479
 ... 480
 </wsp:PolicyAttachment> 481
 </qualifier> 482
 </intentMap> 483
</policySet> 484

Snippet 3-7: Example policySet with an intentMap 485

 486
PolicySets can embed policies that are defined in any policy language. Although WS-Policy is the most 487
common language for expressing interaction policies, it is possible to use other policy languagesSnippet 488
 3-8 is an example of a policySet that embeds a policy defined in a proprietary language. This policy 489
provides “serverAuthentication” for binding.ws. 490
 491

<policySet name="AuthenticationPolicy" 492
 provides="serverAuthentication" 493
 appliesTo="//binding.ws" 494

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 18 of 78

 xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 495
 <e:policyConfiguration xmlns:e=”http://example.com”> 496
 <e:authentication type = “X509”/> 497
 <e:trustedCAStore type=”JKS”/> 498
 <e:keyStoreFile>Foo.jks</e:keyStoreFile> 499
 <e:keyStorePassword>123</e:keyStorePassword> 500
 </e:authentication> 501
 </e:policyConfiguration> 502
</policySet> 503

Snippet 3-8: Example policySet Using a Proprietary Language 504

3.4.2 Direct Inclusion of Policies within PolicySets 505

In cases where there is no need for defaults or overriding for an intent included in the @provides of a 506
policySet, the policySet element can contain policies or policy attachment elements directly without the 507
use of intentMaps or policy set references. There are two ways of including policies directly within a 508
policySet. Either the policySet contains one or more wsp:policyAttachment elements directly as children 509
or it contains extension elements (using xs:any) that contain concrete policies. 510
Following the inclusion of all policySet references, when a policySet element directly contains 511
wsp:policyAttachment children or policies using extension elements, the set of policies specified as 512
children MUST satisfy all the intents expressed using the @provides attribute value of the policySet 513
element. [POL30011] The intent names in the @provides attribute of the policySet can include names of 514
profile intents. 515

3.4.3 Policy Set References 516

A policySet can refer to other policySets by using sca:PolicySetReference element. This provides a 517
recursive inclusion capability for intentMaps, policy attachments or other specific mappings from different 518
domains. 519
When a policySet element contains policySetReference element children, the @name attribute of a 520
policySetReference element designates a policySet defined with the same value for its @name attribute. 521
Therefore, the @name attribute is a QName. 522
The set of intents in the @provides attribute of a referenced policySet MUST be a subset of the set of 523
intents in the @provides attribute of the referencing policySet. [POL30013] Qualified intents are a subset 524
of their parent qualifiable intent. 525
The usage of a policySetReference element indicates a copy of the element content children of the 526
policySet that is being referred is included within the referring policySet. If the result of inclusion results in 527
a reference to another policySet, the inclusion step is repeated until the contents of a policySet does not 528
contain any references to other policySets. 529
When a policySet is applied to a particular element, the policies in the policy set 530
include any standalone polices plus the policies from each intent map contained in the 531
PolicySet, as described below. 532
Note that, since the attributes of a referenced policySet are effectively removed/ignored by this process, it 533
is the responsibility of the author of the referring policySet to include any necessary intents in the 534
@provides attribute of the policySet making the reference so that the policySet correctly advertises its 535
aggregate policy. 536
The default values when using this aggregate policySet come from the defaults in the included policySets. 537
A single intent (or all qualified intents that comprise an intent) in a referencing policySet ought to be 538
included once by using references to other policySets. 539

Snippet 3-9 is an example to illustrate the inclusion of two other policySets in a policySet element: 540
 541

<policySet name="BasicAuthMsgProtSecurity" 542
 provides="serverAuthentication confidentiality" 543

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 19 of 78

 appliesTo="//binding.ws" 544
 xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 545
 <policySetReference name="acme:ServerAuthenticationPolicies"/> 546
 <policySetReference name="acme:ConfidentialityPolicies"/> 547
</policySet> 548

Snippet 3-9: Example policySet Including Other policySets 549

 550

The policySet in Snippet 3-9 refers to policySets for serverAuthentication and 551
confidentiality and, by reference, provides policies and policy subject alternatives in these 552
domains. 553

If the policySets referred to in Snippet 3-9 have the following content: 554

 555
<policySet name="ServerAuthenticationPolicies" 556
 provides="serverAuthentication" 557
 appliesTo="//binding.ws" 558
 xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 559
 <wsp:PolicyAttachment> 560
 <!-- policy expression and policy subject for 561
 "basic server authentication" --> 562
 … 563
 </wsp:PolicyAttachment> 564
</policySet> 565
 566
<policySet name="acme:ConfidentialityPolicies" 567
 provides="confidentiality" 568
 bindings="binding.ws" 569
 xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 570
 <intentMap provides="confidentiality" > 571
 <qualifier name="transport"> 572
 <wsp:PolicyAttachment> 573
 <!-- policy expression and policy subject for 574
 "transport" alternative --> 575
 ... 576
 </wsp:PolicyAttachment> 577
 <wsp:PolicyAttachment> 578
 ... 579
 </wsp:PolicyAttachment> 580
 </qualifier> 581
 <qualifier name="message"> 582
 <wsp:PolicyAttachment> 583
 <!-- policy expression and policy subject for 584
 "message" alternative” --> 585
 ... 586
 </wsp:PolicyAttachment> 587
 </qualifier> 588
 </intentMap> 589
</policySet> 590

Snippet 3-10: Example Included policySets for Snippet 3-9 591

 592
The result of the inclusion of policySets via policySetReferences would be semantically 593
equivalent to Snippet 3-11. 594

 595
<policySet name="BasicAuthMsgProtSecurity" 596
 provides="serverAuthentication confidentiality" appliesTo="//binding.ws" 597
 xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 598
 <wsp:PolicyAttachment> 599

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 20 of 78

 <!-- policy expression and policy subject for 600
 "basic server authentication" --> 601
 ... 602
 </wsp:PolicyAttachment> 603
 <intentMap provides="confidentiality" > 604
 <qualifier name="transport"> 605
 <wsp:PolicyAttachment> 606
 <!-- policy expression and policy subject for 607
 "transport" alternative --> 608
 ... 609
 </wsp:PolicyAttachment> 610
 <wsp:PolicyAttachment> 611
 ... 612
 </wsp:PolicyAttachment> 613
 </qualifier> 614
 <qualifier name="message"> 615
 <wsp:PolicyAttachment> 616
 <!-- policy expression and policy subject for 617
 "message" alternative --> 618
 ... 619
 </wsp:PolicyAttachment> 620
 </qualifier> 621
 </intentMap> 622
</policySet> 623

Snippet 3-11: Equivalent policySet 624

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 21 of 78

4 Attaching Intents and PolicySets to SCA Constructs 625

This section describes how intents and policySets are associated with SCA constructs. It describes the 626
various attachment points and semantics for intents and policySets and their relationship to other SCA 627
elements and how intents relate to policySets in these contexts. 628

4.1 Attachment Rules – Intents 629

One or more intents can be attached to any SCA element used in the definition of components and 630
composites. The attachment can be specified by using the following two mechanisms: 631

• Direct Attachment mechanism which is described in the section "Direct Attachment of Intents". 632
• External Attachment mechanism which is described in the section "External Attachment of 633

Intents". 634

4.2 Direct Attachment of Intents 635

Intents can be attached to any SCA element used in the definition of components and composites. 636
Intents are attached by using the @requires attribute or the <requires> child element. The @requires 637
attribute takes as its value a list of intent names. Similarly, the <requires> element takes as its value a list 638
of intent names. Intents can also be attached to interface definitions. For WSDL portType elements 639
(WSDL 1.1) the @requires attribute can be used to attach the list of intents that are needed by the 640
interface. Other interface languages can define their own mechanism for attaching a list of intents. Any 641
intents attached to an interface definition artifact, such as a WSDL portType, MUST be added to the 642
intents attached to the service or reference to which the interface definition applies. If no intents are 643
attached to the service or reference then the intents attached to the interface definition artifact become 644
the only intents attached to the service or reference. [POL40027] 645
Because intents specified on interfaces can be seen by both the provider and the client of a service, it is 646
appropriate to use them to specify characteristics of the service that both the developers of provider and 647
the client need to know. 648
For example: 649
 650

<service requires="acme:IntentName1 acme:IntentName2"> 651
 <binding.xxx/> 652
 … 653
</service> 654
 655
<reference requires="acme:IntentName1 acme:IntentName2"> 656
 <binding.xxx/> 657
 … 658
</reference> 659

Snippet 4-1: Example of @requires on a service or a reference 660
<service> 661
 <requires intents="acme:IntentName1 acme:IntentName2"/> 662
 <binding.xxx/> 663
 … 664
</service> 665
 666
<reference> 667
 <requires intents="acme:IntentName1 acme:IntentName2"/> 668
 <binding.xxx/> 669
 … 670
</reference> 671

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 22 of 78

Snippet 4-2: Example of a <requires> subelement to attach intents to a service or a reference 672

4.3 External Attachment of Intents and PolicySets 673

External Attachment of intents and policySets is used for deployment-time application of intents and 674
policySets to SCA elements. It is called "external attachment" because the principle of the mechanism is 675
that the attachment is declared in a place that is separate from the composite files that contain the 676
elements. This separation provides the deployer with a way to attach intents and/or policySets without 677
having to modify the artifacts where the intents and policySets are attached. 678
Intents and policySets can be attached to one or more SCA elements by using the externalAttachment 679
element, which is declared within a definitions file. 680

The pseudo-schema for the externalAttachment element is shown in Snippet 4-3. 681
 682

<externalAttachment intents="sca:listOfQNames" 683
 policySets="sca:listofQNames" 684
 attachTo="xs:string" /> 685

Snippet 4-3: Pseudo-schema for externalAttachment element 686

 687
The externalAttachment element has the attributes: 688
• @intents : listOfQNames (0..1) A list of QNames identifying intents which are attached to the 689

elements declared in the @attachTo attribute. 690
• @policySets : listOfQNames (0..1). A list of QNames identifying policySets which are attached to 691

the elements declared in the @attachTo attribute 692
• @attachTo : string (1..1). A string containing an XPath 1.0 expression identifying one or more 693

elements in the Domain. It is used to declare which set of elements the intents are attached to. 694
The contents of the @attachTo attribute of an externalAttachment element MUST match the XPath 695
1.0 production Expr. [POL40035] The XPath value of the @attachTo attribute is evaluated against the 696
“Deployed Composite Infoset” as described in the appendix section “The Deployed Composites 697
Infoset”. 698

 699

4.4 Attachment Rules - PolicySets 700

One or more policySets can be attached to any SCA element used in the definition of components and 701
composites. The attachment can be specified by using the following two mechanisms: 702
• Direct Attachment mechanism which is described in Direct Attachment of PolicySets. 703
• External Attachment mechanism which is described in External Attachment of PolicySets. 704
SCA runtimes MUST support at least one of the Direct Attachment and External Attachment mechanisms 705
for policySet attachment. [POL40010] SCA implementations supporting only the External Attachment 706
mechanism MUST ignore the policy sets that are applicable via the Direct Attachment mechanism. 707
[POL40011] SCA implementations supporting only the Direct Attachment mechanism MUST ignore the 708
policy sets that are applicable via the External Attachment mechanism. [POL40012] SCA 709
implementations supporting both Direct Attachment and External Attachment mechanisms MUST ignore 710
policy sets applicable to any given SCA element via the Direct Attachment mechanism when there exist 711
policy sets applicable to the same SCA element via the External Attachment mechanism [POL40001] 712

4.5 Direct Attachment of PolicySets 713

Direct Attachment of PolicySets can be achieved by 714
• Using the optional @policySets attribute of the SCA element 715

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 23 of 78

• Adding an optional child <policySetAttachment/> element to the SCA element 716
The policySets attribute takes as its value a list of policySet names. 717
For example: 718
 719

<service> or <reference>… 720
 <binding.binding-type policySets="listOfQNames"> 721
 </binding.binding-type> 722
 … 723
</service> or </reference> 724

Snippet 4-4: Example of @policySets on a service 725

 726
The <policySetAttachment/> element is an alternative way to attach a policySet to an SCA composite. 727
 728

<policySetAttachment name="xs:QName"/> 729

Snippet 4-5: policySetAttachment Pseudo-Schema 730

 731
• @name (1..1) – the QName of a policySet. 732
 733
For example: 734
 735

<service> or <reference>… 736
 <binding.binding-type> 737
 <policySetAttachment name="sns:EnterprisePolicySet"> 738
 </binding.binding-type> 739
 … 740
</service> or </reference> 741

Snippet 4-6:Example of policySetAttachment in a service or reference 742

 743
Where an element has both a @policySets attribute and a <policySetAttachment/> child element, the 744
policySets declared by both are attached to the element. 745
The SCA Policy framework enables two distinct cases for utilizing intents and PolicySets: 746
• It is possible to specify QoS requirements by attaching abstract intents to an element at the time of 747

development. In this case, it is implied that the concrete bindings and policies that satisfy the abstract 748
intents are not assigned at development time but the intents are used to select the concrete 749
Bindings and Policies at deployment time. Concrete policies are encapsulated within policySets 750
that are applied during deployment using the external attachment mechanism. The intents associated 751
with a SCA element is the union of intents specified for it and its parent elements subject to the 752
detailed rules below. 753

• It is also possible to specify QoS requirements for an element by using both intents and concrete 754
policies contained in directly attached policySets at development time. In this case, it is possible to 755
configure the policySets, by overriding the default settings in the specified policySets using 756
intents. The policySets associated with a SCA element is the union of policySets specified for it and 757
its parent elements subject to the detailed rules below. 758

See also “Matching Intents and PolicySets” for a discussion of how intents are used to guide the selection 759
and application of specific policySets. 760

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 24 of 78

4.6 External Attachment of PolicySets 761

The External Attachment for policySets is used for deployment-time application of policySets and policies 762
to SCA elements. It is called "external attachment" because the principle of the mechanism is that the 763
place that declares the attachment is separate from the composite files that contain the elements. This 764
separation provides the deployer with a way to attach policies and policySets without having to modify the 765
artifacts where they apply. 766
A PolicySet is attached to one or more elements in one of two ways: 767
a) through the @attachTo attribute of the policySet 768
b) through the @attachTo attribute of an <externalAttachment/> element which references the policySet 769
in its @policySets attribute 770
c) through a reference (via policySetReference) from a policySet that uses the @attachTo attribute. 771
 772

4.6.1 Cases Where Multiple PolicySets are attached to a Single Artifact 773

Multiple PolicySets can be attached to a single artifact. This can happen either as the result of one or 774
more direct attachments or as the result of one or more external attachments which target the particular 775
artifact. 776

4.7 Attaching intents to SCA elements 777

A list of intents can be attached to any SCA element by using the @requires attribute or the <requires> 778
subelement. 779
The intents which apply to a given element depend on 780
• the intents expressed in its @requires attribute and/or its <requires> subelement 781
• intents derived from the structural hierarchy of the element 782
• intents derived from the implementation hierarchy of the element 783
When computing the intents that apply to a particular element, the @constrains attribute of each relevant 784
intent is checked against the element. If the intent in question does not apply to that element it is simply 785
discarded. 786
Any two intents applied to a given element MUST NOT be mutually exclusive [POL40009]. Specific 787
examples are discussed later in this document. 788

4.7.1 Implementation Hierarchy of an Element 789

The implementation hierarchy occurs where a component configures an implementation and also 790
where a composite promotes a service or reference of one of its components. The implementation 791
hierarchy involves: 792
• a composite service or composite reference element is in the implementation hierarchy of the 793

component service/component reference element which they promote 794
• the component element and its descendent elements (for example, service, reference, 795

implementation) configure aspects of the implementation. Each of these elements is in the 796
implementation hierarchy of the corresponding element in the componentType of the 797
implementation. 798

Rule 1: The intents declared on elements lower in the implementation hierarchy of a given element MUST 799
be applied to the element. [POL40014] A qualifiable intent expressed lower in the hierarchy can be 800
qualified further up the hierarchy, in which case the qualified version of the intent MUST apply to the 801
higher level element. [POL40004] 802

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 25 of 78

4.7.2 Structural Hierarchy of an Element 803

The structural hierarchy of an element consists of its parent element, grandparent element and so on up 804
to the <composite/> element in the composite file containing the element. 805

As an example, for the composite in Snippet 4-7:: 806
 807

<composite name="C1" requires="i1"> 808
 <service name="CS" promotes="X/S"> 809
 <binding.ws requires="i2"> 810
 </service> 811
 <component name="X"> 812
 <implementation.java class="foo"/> 813
 <service name="S" requires="i3"> 814
 </component> 815
</composite> 816

Snippet 4-7: Example Composite to Illustrate Structural Hierarchy 817

 818
- the structural hierarchy of the component service element with the name "S" is the component element 819
named "X" and the composite element named "C1". Service "S" has intent "i3" and also has the intent "i1" 820
if i1 is not mutually exclusive with i3. 821
Rule2: The intents declared on elements higher in the structural hierarchy of a given element MUST be 822
applied to the element EXCEPT 823
• if any of the inherited intents is mutually exclusive with an intent applied on the element, then the 824

inherited intent MUST be ignored 825
• if the overall set of intents from the element itself and from its structural hierarchy contains both an 826

unqualified version and a qualified version of the same intent, the qualified version of the intent MUST 827
be used.. 828

[POL40005] 829

4.7.3 Combining Implementation and Structural Policy Data 830

When there are intents present in both hierarchies implementation intents are calculated before the 831
structural intents. In other words, When combining implementation hierarchy and structural hierarchy 832
policy data, Rule 1 MUST be applied BEFORE Rule 2. [POL40015] 833
Note that each of the elements in the hierarchy below a <component> element, such as <service/>, 834
<reference/> or <binding/>, inherits intents from the equivalent elements in the componentType of the 835
implementation used by the component. So the <service/> element of the <component> inherits any 836
intents on the <service/> element with the same name in the <componentType> - and a <binding/> 837
element under the service in the component inherits any intents on the <binding/> element of the service 838
(with the same name) in the componentType. Errors caused by mutually exclusive intents appearing on 839
corresponding elements in the component and on the componentType only occur when those elements 840
match one-to-one. Mutually exclusive intents can validly occur on elements that are at different levels in 841
the structural hierarchy (as defined in Rule 2). 842
Note that it might often be the case that <binding/> elements will be specified in the structure under the 843
<component/> element in the composite file (especially at the Domain level, where final deployment 844
configuration is applied) - these elements might have no corresponding elements defined in the 845
componentType structure. In this situation, the <binding/> elements don't acquire any intents from the 846
componentType directly (ie there are no elements in the implementation hierarchy of the <binding/> 847
elements), but those <binding/> elements will acquire intents "flowing down" their structural hierarchy as 848
defined in Rule 2 - so, for example if the <service/> element is marked with @requires="confidentiality", 849
the bindings of that service will all inherit that intent, assuming that they don't have their own exclusive 850
intents specified. 851

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 26 of 78

Also, for example, where say a component <service.../> element has an intent that is mutually exclusive 852
with an intent in the componentType<service.../> element with the same name, it is an error, but this 853
differs when compared with the case of the <component.../> element having an intent that is mutually 854
exclusive with an intent on the componentType <service/> element - because they are at different 855
structural levels: the intent on the <component/> is ignored for that <service/> element and there is no 856
error. 857

4.7.4 Examples 858

As an example, consider the composite in Snippet 4-8: 859
 860

<composite name="C1" requires="i1"> 861
 <service name="CS" promotes="X/S"> 862
 <binding.ws requires="i2"> 863
 </service> 864
 <component name="X"> 865
 <implementation.java class="foo"/> 866
 <service name="S" requires="i3"> 867
 </component> 868
</composite> 869

Snippet 4-8:Example composite with intents 870

 871
…the component service with name "S" has the service named "S" in the componentType of the 872
implementation in its implementation hierarchy, and the composite service named "CS" has the 873
component service named "S" in its implementation hierarchy. Service "CS" acquires the intent "i3" from 874
service "S" – and also gets the intent "i1" from its containing composite "C1" IF i1 is not mutually 875
exclusive with i3. 876
When intents apply to an element following the rules described and where no policySets are attached to 877
the element, the intents for the element can be used to select appropriate policySets during deployment, 878
using the external attachment mechanism. 879

Consider the composite in Snippet 4-9: 880
 881

<composite requires="confidentiality"> 882
 <service name="foo" …/> 883
 <reference name="bar" requires="confidentiality.message"/> 884
</composite> 885

Snippet 4-9: Example reference with intents 886

 887
…in this case, the composite declares that all of its services and references guarantee confidentiality in 888
their communication, but the “bar” reference further qualifies that requirement to specifically require 889
message-level security. The “foo” service element has the default qualifier specified for the confidentiality 890
intent (which might be transport level security) while the “bar” reference has the confidentiality.message 891
intent. 892

Consider the variation in Snippet 4-10 where a qualified intent is specified at the composite level: 893
 894

<composite requires="confidentiality.transport"> 895
 <service name="foo" …/> 896
 <reference name="bar" requires="confidentiality.message"/> 897
</composite> 898

Snippet 4-10: Example Qualified intents 899

 900

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 27 of 78

In this case, both the confidentiality.transport and the confidentiality.message intent are applied for 901
the reference ‘bar’. If there are no bindings that support this combination, an error will be generated. 902
However, since in some cases multiple qualifiers for the same intent can be valid or there might be 903
bindings that support such combinations, the SCA specification allows this. 904
 905

4.8 Usage of Intent and Policy Set Attachment together 906

As indicated above, it is possible to attach both intents and policySets to an SCA element during 907
development. The most common use cases for attaching both intents and concrete policySets to an 908
element are with binding and reference elements. 909
When the @requires attribute or the <requires> subelement and one or both of the direct policySet 910
attachment mechanisms are used together during development, it indicates the intention of the developer 911
to configure the element, such as a binding, by the application of specific policySet(s) to this element. 912
The same behavior can be enabled by external attachment of intents and policySets. 913
Developers who attach intents and policySets in conjunction with each other need to be aware of the 914
implications of how the policySets are selected and how the intents are utilized to select specific 915
intentMaps, override defaults, etc. The details are provided in the Section Guided Selection of 916
PolicySets using Intents. 917

4.9 Intents and PolicySets on Implementations and Component Types 918

It is possible to specify intents and policySets within a component’s implementation, which get exposed to 919
SCA through the corresponding component type. How the intents or policies are specified within an 920
implementation depends on the implementation technology. For example, Java can use an @requires 921
annotation to specify intents. 922
The intents and policySets specified within an implementation can be found on the 923
<sca:implementation.*> and the <sca:service> and <sca:reference> elements of the component type. 924
Snippet 4-11 shows direct attachment of intents and policySets using the @requires and @policySets 925
attributes: 926

<omponentType> 927
 <implementation.* requires="listOfQNames" policySets="="listOfQNames"> 928
 ... 929
 </implementation> 930
 <service name="myService" requires="listOfQNames" 931
 policySets="listOfQNames"> 932
 ... 933
 </service> 934
 <reference name="myReference" requires="listOfQNames" 935
 policySets="="listOfQNames"> 936
 ... 937
 </reference> 938
 … 939
</componentType> 940

Snippet 4-11: Example of intents on an implementation 941

 942
Intents expressed in the component type are handled according to the rule defined for the implementation 943
hierarchy. See Intent rule 2 944
For explicitly listed policySets, the list in the component using the implementation can override policySets 945
from the component type. If a component has any policySets attached to it (by any means), then any 946
policySets attached to the componentType MUST be ignored. [POL40006] 947

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 28 of 78

4.10 Intents on Interfaces 948

Interfaces are used in association with SCA services and references. These interfaces can be declared 949
in SCA composite files and also in SCA componentType files. The interfaces can be defined using a 950
number of different interface definition languages which include WSDL, Java interfaces and C++ header 951
files. 952
It is possible for some interfaces to be referenced from an implementation rather than directly from any 953
SCA files. An example of this usage is a Java implementation class file that has a reference declared 954
that in turn uses a Java interface defined separately. When this occurs, the interface definition is treated 955
from an SCA perspective as part of the componentType of the implementation, logically being part of the 956
declaration of the related service or reference element. 957
Both the declaration of interfaces in SCA and also the definitions of interfaces can carry policy-related 958
information. In particular, both the declarations and the definitions can have either intents attached to 959
them, or policySets attached to them - or both. For SCA declarations, the intents and policySets always 960
apply to the whole of the interface (ie all operations and all messages within each operation). For 961
interface definitions, intents and policySets can apply to the whole interface or they can apply only to 962
specific operations within the interface or they can even apply only to specific messages within particular 963
operations. (To see how this is done, refer to the places in the SCA specifications that deal with the 964
relevant interface definition language) 965
This means, in effect, that there are 4 places which can hold policy related information for interfaces: 966
1. The interface definition file that is referenced from the component type. 967
2. The interface declaration for a service or reference in the component type 968
3. The interface definition file that is referenced from the component declaration in a composite 969
4. The interface declaration within a component 970
When calculating the set of intents and set of policySets which apply to either a service element or to a 971
reference element of a component, intents and policySets from the interface definition and from the 972
interface declaration(s) MUST be applied to the service or reference element and to the binding 973
element(s) belonging to that element. [POL40016] 974
The locations where interfaces are defined and where interfaces are declared in the componentType and 975
in a component MUST be treated as part of the implementation hierarchy as defined in section “Attaching 976
intents to SCA elements”. [POL40019] 977

4.11 BindingTypes and Related Intents 978

SCA Binding types implement particular communication mechanisms for connecting components 979
together. See detailed discussion in the SCA Assembly Specification [SCA-Assembly]. Some binding 980
types can realize intents inherently by virtue of the kind of protocol technology they implement (e.g. an 981
SSL binding would natively support confidentiality). For these kinds of binding types, it might be the case 982
that using that binding type, without any additional configuration, provides a concrete realization of an 983
intent. In addition, binding instances which are created by configuring a binding type might be able to 984
provide some intents by virtue of their configuration. It is important to know, when selecting a binding to 985
satisfy a set of intents, just what the binding types themselves can provide and what they can be 986
configured to provide. 987
The bindingType element is used to declare a class of binding available in a SCA Domain. The pseudo-988
schema for the bindingType element is shown in Snippet 4-12: 989
 990

<bindingType type="xs:NCName" 991
 alwaysProvides="sca:listOfQNames"? 992
 mayProvide="sca:listOfQNames"?/> 993

Snippet 4-12: bindingTypePseudo-Schema 994

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 29 of 78

 995
• @type (1..1) – declares the NCName of the bindingType, which is used to form the QName of the 996

bindingType. The QName of the bindingType MUST be unique amongst the set of bindingTypes in 997
the SCA Domain. [POL40020] 998

• @alwaysProvides (0..1) – a list of intent QNames that are natively provided. A natively provided intent 999
is hard-coded into the binding implementation. The function represented by the intent cannot be 1000
turned off. 1001

• @mayProvides (0..1) – a list of intent QNames that are natively provided by the binding 1002
implementation, but which are activated only when present in the intent set that is applied to a binding 1003
instance. 1004

A binding implementation MUST implement all the intents listed in the @alwaysProvides and 1005
@mayProvides attributes. [POL40021] 1006
The kind of intents a given binding might be capable of providing, beyond these inherent intents, are 1007
implied by the presence of policySets that declare the given binding in their @appliesTo attribute. 1008

For example, if the policySet in Snippet 4-13 is available in a SCA Domain it says that the (example) 1009
foo:binding.ssl can provide “reliability” in addition to any other intents it might provide inherently. 1010
 1011

<policySet name="ReliableSSL" provides="exactlyOnce" 1012
 appliesTo="//foo:binding.ssl"> 1013
 ... 1014
</policySet> 1015

Snippet 4-13:Example policySet Applied to a binding 1016

4.12 Treatment of Components with Internal Wiring 1017

This section discusses the steps involved in the development and deployment of a component and its 1018
relationship to selection of bindings and policies for wiring services and references. 1019
The SCA developer starts by defining a component. Typically, this contains services and references. It 1020
can also have intents attached at various locations within composite and component types as well as 1021
policySets attached at various locations. 1022
Both for ease of development as well as for deployment, the wiring constraints to relate services and 1023
references need to be determined. This is accomplished by matching constraints of the services and 1024
references to those of corresponding references and services in other components. 1025
In this process, the intents, and the policySets that apply to both sides of a wire play an important role. In 1026
addition, concrete policies need to be selected that satisfy the intents for the service and the reference 1027
and are also compatible with each other. For services and references that make use of bidirectional 1028
interfaces, the same determination of matching policySets also has to take place for callbacks. 1029
Determining wire compatibility plays an important role prior to deployment as well as during the 1030
deployment phases of a component. For example, during development, it helps a developer to determine 1031
whether it is possible to wire services and references using the policySets available in the development 1032
environment. During deployment, the wiring constraints determine whether wiring can be achievable. It 1033
also aids in adding additional concrete policies or making adjustments to concrete policies in order to 1034
deliver the constraints. Here are the concepts that are needed in making wiring decisions: 1035
• The set of intents that individually apply to each service or reference. 1036
• When possible the intents that are applied to the service, the reference and callback (if any) at the 1037

other end of the wire. This set is called the required intent set and only applies when dealing with a 1038
wire connecting two components within the same SCA Domain. When external connections are 1039
involved, from clients or to services that are outside the SCA domain, intents are only available for the 1040
end of the connection that is inside the domain. See Section "Preparing Services and References 1041
for External Connection" for more details. 1042

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 30 of 78

• The policySets that apply to each service or reference. 1043
The set of provided intents for a binding instance is the union of the set of intents listed in the 1044
“alwaysProvides” attribute and the set of intents listed in the “mayProvides” attribute of of its binding type. 1045
The capabilities represented by the "alwaysProvides" intent set are always present, irrespective of the 1046
configuration of the binding instance. Each capability represented by the "mayProvides" intent set is only 1047
present when the list of intents applied to the binding instance (either applied directly, or inherited) 1048
contains the particular intent (or a qualified version of that intent, if the intent set contains an unqualified 1049
form of a qualifiable intent). When an intent is directly provided by the binding type, there is no need to 1050
apply a policy set that provides that intent. 1051
When bidirectional interfaces are in use, the same process of selecting policySets to provide the intents is 1052
also performed for the callback bindings. 1053

4.12.1 Determining Wire Validity and Configuration 1054

The above approach determines the policySets that are used in conjunction with the binding instances 1055
listed for services and references. For services and references that are resolved using SCA wires, the 1056
policySets chosen on each side of the wire might or might not be compatible. The following approach is 1057
used to determine whether they are compatible and whether the wire is valid. If the wire 1058
uses a bidirectional interface, then the following technique ensures that valid configured 1059
policySets can be found for both directions of the bidirectional interface. 1060
The SCA runtime MUST determine the compatibility of the policySets at each end of a wire using the 1061
compatibility rules of the policy language used for those policySets. [POL40022] The policySets at each 1062
end of a wire MUST be incompatible if they use different policy languages. [POL40023] However, there is 1063
a special case worth mentioning: 1064
• If both sides of the wire use identical policySets (by referring to the same policySet by its QName in 1065

both sides of the wire), then they are compatible. 1066
Where the policy language in use for a wire is WS-Policy, strict WS-Policy intersection MUST be used to 1067
determine policy compatibility. [POL40024] 1068
In order for a reference to connect to a particular service, the policies of the reference MUST intersect 1069
with the policies of the service. [POL40025] 1070

4.13 Preparing Services and References for External Connection 1071

Services and references are sometimes not intended for SCA wiring, but for communication with software 1072
that is outside of the SCA domain. References can contain bindings that specify the endpoint address of 1073
a service that exists outside of the current SCA domain. Services can specify bindings that can be 1074
exposed to clients that are outside of the SCA domain. 1075
Matching service/reference policies across the SCA Domain boundary MUST use WS-Policy compatibility 1076
(strict WS-Policy intersection) if the policies are expressed in WS-Policy syntax. [POL40007] For other 1077
policy languages, the policy language defines the comparison semantics. 1078
For external services and references that make use of bidirectional interfaces, the same determination 1079
of matching policies has to also take place for the callback. 1080
The policies that apply to the service/reference are computed as discussed in Guided Selection of 1081
PolicySets using Intents. 1082

4.14 Deployment 1083

The SCA Assembly Specification [SCA-Assembly] describes how to contribute SCA artifacts to the SCA 1084
Domain, and how to deploy them to create running components. This section discusses the Policy 1085
aspects of deployment: how intents, externalAttachments and policySets are contributed, how intents are 1086
satisfied by concrete policies in policySets and the process of redeployment when intents, 1087
externalAttachments or policySets change. 1088

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 31 of 78

Intents, externalAttachments and policySets can be contributed to the Domain contained within 1089
contributions. These contributions might only contain policy artifacts or they might also contain 1090
composites and related artifacts. Intents and policySets can be attached to elements within a composite 1091
either by direct attachment (where an attribute or child element performs the attachment) or they can be 1092
attached through the external attachment mechanism. 1093
When a composite is deployed, the intents which are attached to each element must be evaluated, both 1094
the directly attached intents and intents attached through external attachment. For external attachment, 1095
this means evaluating the @attachTo attribute of each externalAttachment element with a non-empty 1096
@intents attribute in the SCA Domain - the intents are attached to those elements which are selected by 1097
the XPath expression in the externalAttachment/@attachTo attribute. 1098
During the deployment of SCA composites, first all <externalAttachment/> elements within the Domain 1099
MUST be evaluated to determine which intents are attached to elements in the newly deployed composite 1100
and then all policySets within the Domain with an @attachTo attribute or <externalAttachment> elements 1101
that attach policySets MUST be evaluated to determine which policySets are attached to elements in the 1102
newly deployed composite. [POL40034] 1103
Once the intents attached to the elements of a composite are known, the policySets attached to each 1104
element are evaluated. If external attachment of policySets is supported, then each policySet in the 1105
Domain is examined and the XPath expression of the @attachTo attribute is evaluated and the policySet 1106
is attached to SCA elements selected by the expression. 1107
The SCA runtime MUST raise an error if the @attachTo XPath expression resolves to an SCA <property> 1108
element, or any of its children.[POL40002] 1109
The algorithm for matching intents with policySets is described in the section "Matching Intents and 1110
PolicySets". 1111

4.14.1 Redeployment of Intents and PolicySets 1112

Intents and policySets can be managed separately from other SCA artifacts. It is possible for an SCA 1113
runtime to allow deployment of new intents, new externalAttachments and policySets, modification of 1114
existing intents, externalAttachments and policySets or the undeployment of existing intents, 1115
externalAttachments and policySets, while composites and components are deployed or are running in 1116
the Domain. Collectively, this is referred to as the redeployment of intents and policySets. 1117
Redeployment can be caused by: 1118

• Adding an externalAttachment element to the Domain 1119
• Adding a policySet with a non-empty attachTo attribute to the Domain 1120
• Changing the structure of an intent or policySet in the Domain that is directly or externally 1121

attached. 1122
• Changing the attachTo, policySets or intents attribute of a externalAttachment in the Domain. 1123
• Removing directly attached intents or policySets from the Domain. 1124
• Removing one or more externalAttachment elements from the Domain. 1125

 1126
Note that an SCA runtime can choose to disallow redeployment of intents and policySets. 1127
If an SCA runtime supports the redeployment of intents and policySets, there is an implication that the 1128
changed intent and policySet artifacts can change the configuration of composites and components in the 1129
Domain. How the changes are implemented is determined by the design of the SCA runtime concerned, 1130
but there are three general approaches, as outlined in the SCA Assembly specification [SCA-Assembly]: 1131

• the SCA runtime can require that all existing running component instances affected by the 1132
configuration changes are stopped and then restarted using the new configuration 1133

• the SCA runtime can leave existing running component instances unchanged, but any new 1134
component instances are created using the new configuration 1135

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 32 of 78

• the SCA runtime can deploy the new or changed intents, externalAttachments and policySets to 1136
the SCA Domain but not activate the changes until some time in the future. Running component 1137
instances and new component instances are not affected (i.e., the component configuration is not 1138
changed) by the newly deployed intents, externalAttachments and policySets until the SCA 1139
runtime activates those changes. The means and mechanism for performing this activation is 1140
outside the scope of this specification. 1141

Redeployment of intents and policySets, when it occurs, first performs external attachment of intents 1142
followed by external attachment of policySets. After this, the algorithm for matching intents with 1143
policySets is executed. The redeployment process may succeed or it may fail, in that the set of intents 1144
attached to artifacts in the domain may or may not be satisfied. If the process of redeployment of intents, 1145
externalAttachments and/or policySets fails because one or more intents are left unsatisfied, an error 1146
MUST be raised. [POL40029] If the process of redeployment of intents, externalAttachments and/or 1147
policySets fails, the changed intents, externalAttachments and/or policySets MUST NOT be deployed and 1148
no change is made to deployed and running artifacts. [POL40030] 1149
If the redeployment of intents, externalAttachments and policySets succeeds in that all intents are 1150
satisfied, then the policies attached to one or more deployed SCA elements may change. When 1151
redeployment of intents, externalAttachments and policySets succeeds, the components whose policies 1152
are affected by the redeployment MAY have their policies updated by the SCA runtime dynamically 1153
without the need to stop and restart those components. [POL40031] 1154
Where components are updated by redeployment of intents, externalAttachments and policySets (their 1155
configuration is changed in some way, which includes changing the policies associated with a 1156
component), the new configuration MUST apply to all new instances of those components once the 1157
redeployment is complete. [POL40032] Where a component configuration is changed by the 1158
redeployment of intents, externalAttachments and policySets, the SCA runtime either MAY choose to 1159
maintain existing instances with the old configuration of the component, or the SCA runtime MAY choose 1160
to stop and discard existing instances of the component. [POL40033] 1161

4.15 Matching Intents and PolicySets 1162

This section describes the selection of concrete policies that provide the requirements expressed by the 1163
set of intents associated with an SCA element. The purpose is to construct the set of concrete policies 1164
that are attached to an element taking into account the explicitly declared policySets that are attached to 1165
an element as well as policySets that are externally attached. The aim is to satisfy all of the intents that 1166
apply to each element. 1167
If the unqualified form of a qualifiable intent is attached to an element, it can be satisfied by a policySet 1168
that specifies any one of qualified forms of the intent in the value of its @provides attribute, or it can be 1169
satisfied by a policySet which @provides the unqualified form of the intent. If the qualified form of the 1170
intent is attached to an element then it can be satisfied only by a policy that @provides that qualified form 1171
of the intent. 1172
 1173
Note: In the following, the following rule is observed when an intent set is computed. 1174
When a profile intent is encountered in either a global @requires attribute, an intent/@requires attribute, a 1175
<requires> subelement or a policySet/@provides attribute, the profile intent is immediately replaced by 1176
the intents that it composes (i.e. all the intents that appear in the profile intent’s @requires attribute). This 1177
rule is applied recursively until profile intents do not appear in an intent set. [This is stated generally here, 1178
in order to not have to restate this at multiple places]. 1179
The required intent set that is attached to an element is: 1180
1. The set of intents attached to the element either by direct attachment or external attachment via the 1181

mechanisms described in the sections "Direct Attachment of Intents" and "External Attachment of 1182
Intents". 1183

2. add any intents found in any related interface definition or declaration, as described in the section 1184
“Intents on Interfaces”. 1185

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 33 of 78

3. add any intents found on elements below the target element in its implementation hierarchy as 1186
defined in Rule 1 in the section "Implementation Hierarchy of an Element". 1187

4. add any intents attached to each ancestor element in the element's structural hierarchy as defined in 1188
Rule 2 in in the section "Structural Hierarchy of an Element" 1189

5. remove any intents that do not include the target element's type in their @constrains attribute. 1190
6. remove the unqualified version of an intent if the set also contains a qualified version of that intent 1191
If the required intent set contains a mutually exclusive pair of intents the SCA runtime MUST reject the 1192
document containing the element and raise an error. [POL40017] 1193
The directly provided intent set for an element is the set of intents listed in the @alwaysProvides 1194
attribute combined with the set of intents listed in the @mayProvides attribute of the bindingType or 1195
implementationType declaration for a binding or implementation element respectively. 1196
The set of PolicySets attached to an element include those explicitly specified using the @policySets 1197
attribute or the <policySetAttachment/> element and those which are externally attached. 1198
A policySet applies to a target element if the result of the XPath expression contained in the policySet’s 1199
@appliesTo attribute, when evaluated against the document containing the target element, includes the 1200
target element. For example, @appliesTo=”//binding.ws[@impl=’axis’]” matches any binding.ws element 1201
that has an @impl attribute value of ‘axis’. 1202
The set of explicitly specified policySets for an element is: 1203
1. The union of the policySets specified in the element's @policySets attribute and those specified in 1204

any <policySetAttachment/> child element(s). 1205
2. add the policySets declared in the @policySets attributes and <policySetAttachment/> elements from 1206

elements in the structural hierarchy of the element. 1207
3. remove any policySet where the policySet does not apply to the target element. 1208

It is not an error for a policySet to be attached to an element to which it doesn’t apply. 1209
The set of externally attached policySets for an element is: 1210
1. Each <PolicySet/> in the Domain where the element is targeted by the @attachTo attribute of the 1211

policySet 1212
2. Each PolicySet that is attached to the target element through use of the <externalAttachment/> 1213

element 1214
3. remove any policySet where the policySet does not apply to the target element. 1215

It is not an error for a policySet to be attached to an element to which it doesn’t apply. 1216
A policySet provides an intent if any of the statements are true: 1217
1. The intent is contained in the @provides list of the policySet. 1218
2. The intent is a qualified intent and the unqualified form of the intent is contained in the @provides list 1219

of the policySet. 1220
3. The policySet @provides list contains a qualified form of the intent (where the intent is qualifiable). 1221
All intents in the required intent set for an element MUST be provided by the directly provided intents set 1222
and the set of policySets that apply to the element, or else an error is raised. [POL40018] 1223
 1224

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 34 of 78

5 Implementation Policies 1225

The basic model for Implementation Policies is very similar to the model for interaction policies described 1226
above. Abstract QoS requirements, in the form of intents, can be associated with SCA component 1227
implementations to indicate implementation policy requirements. These abstract capabilities are mapped 1228
to concrete policies via policySets at deployment time. Alternatively, policies can be associated directly 1229
with component implementations using policySets. Intents and policySets can be attached to an 1230
implementation using any of the mechanisms described in “Attaching Intents and PolicySets to SCA 1231
Constructs”. 1232

Snippet 5-1 shows one way of associating intents with an implementation: 1233
 1234

<component name="xs:NCName" … > 1235
 <implementation.* … requires="listOfQNames"> 1236
 … 1237
 </implementation> 1238
 … 1239
</component> 1240

Snippet 5-1: Example of intents Associated with an implementation 1241

 1242
If, for example, one of the intent names in the value of the @requires attribute is ‘logging’, this indicates 1243
that all messages to and from the component have to be logged. The technology used to implement the 1244
logging is unspecified. Specific technology is selected when the intent is mapped to a policySet (unless 1245
the implementation type has native support for the intent, as described in the next section). A list of 1246
implementation intents can also be specified by any ancestor element of the <sca:implementation> 1247
element. The effective list of implementation intents is the union of intents specified on the 1248
implementation element and all its ancestors. 1249
In addition, one or more policySets can be specified directly by associating them with the implementation 1250
of a component. 1251
 1252

<component name="xs:NCName" … > 1253
<implementation.* … policySets="="listOfQNames"> 1254
 … 1255
 </implementation> 1256
 … 1257
</component> 1258

Snippet 5-2: Example of policySets Associated with an implemenation 1259

 1260

Snippet 5-2 shows how intents and policySets can be specified on a component. It is also possible to 1261
specify intents and policySets within the implementation. How this is done is defined by the 1262
implementation type. 1263
The intents and policy sets are specified on the <sca:implementation.*> element within the component 1264
type. This is important because intent and policy set definitions need to be able to specify that they 1265
constrain an appropriate implementation type. 1266
 1267

<componentType> 1268
 <implementation.* requires="listOfQNames" policySets="listOfQNames"> 1269
 … 1270
 </implementation> 1271
 … 1272

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 35 of 78

</componentType> 1273

Snippet 5-3: intents and policySets Constraining an implementation 1274

 1275
When applying policies, the intents attached to the implementation are added to the intents attached to 1276
the using component. For the explicitly listed policySets, the list in the component can override policySets 1277
from the componentType. 1278
Some implementation intents are targeted at <binding/> elements rather than at <implementation/> 1279
elements. This occurs in cases where there is a need to influence the operation of the binding 1280
implementation code rather than the code directly related to the implementation itself. Implementation 1281
elements of this kind will have a @constrains attribute pointing to a binding element, with a @intentType 1282
of "implementation". 1283

5.1 Natively Supported Intents 1284

Each implementation type (e.g. <sca:implementation.java> or <sca:implementation.bpel>) has an 1285
implementation type definition within the SCA Domain. An implementation type definition is declared 1286
using an implementationType element within a <definitions/> declaration. The pseudo-schema for the 1287
implementationType element is shown in Snippet 5-4: 1288
 1289

<implementationType type="xs:QName" 1290
alwaysProvides="sca:listOfQNames"? mayProvide="sca:listOfQNames"? /> 1291

Snippet 5-4: implementationType Pseudo-Schema 1292

 1293
The implementation Type element has the following attributes: 1294
• name : QName (1..1) - the name of the implementationType. The implementationType name attribute 1295

MUST be the QName of an XSD global element definition used for implementation elements of that 1296
type. [POL50001] For example: "sca:implementation.java". 1297

• alwaysProvides : list of QNames (0..1) - a set of intents. The intents in the alwaysProvides set are 1298
always provided by this implementation type, whether the intents are attached to the using 1299
component or not. 1300

• mayProvide : list of QNames (0..1) - a set of intents. The intents in the mayProvide set are provided 1301
by this implementation type if the intent in question is attached to the using component. 1302

5.2 Writing PolicySets for Implementation Policies 1303

The @appliesTo and @attachTo attributes for a policySet take an XPath expression that is applied to a 1304
service, reference, binding or an implementation element. For implementation policies, in most cases, all 1305
that is needed is the QName of the implementation type. Implementation policies can be expressed using 1306
any policy language (which is to say, any configuration language). For example, XACML or EJB-style 1307
annotations can be used to declare authorization policies. Other capabilities could be configured using 1308
completely proprietary configuration formats. 1309
For example, a policySet declared to turn on trace-level logging for a BPEL component could be declared 1310
as is Snippet 5-5: 1311
 1312

<policySet name=”loggingPolicy” provides="acme:logging.trace" 1313
 appliesTo="//sca:implementation.bpel" …> 1314
 <acme:processLogging level="3"/> 1315
</policySet> 1316

Snippet 5-5: Example policySet Applied to implemenation.bpel 1317

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 36 of 78

5.2.1 Non WS-Policy Examples 1318

Authorization policies expressed in XACML could be used in the framework in two ways: 1319
1. Embed XACML expressions directly in the PolicyAttachment element using the extensibility elements 1320

discussed above, or 1321
2. Define WS-Policy assertions to wrap XACML expressions. 1322
For EJB-style authorization policy, the same approach could be used: 1323
1. Embed EJB-annotations in the PolicyAttachment element using the extensibility elements discussed 1324

above, or 1325
2. Use the WS-Policy assertions defined as wrappers for EJB annotations. 1326

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 37 of 78

6 Roles and Responsibilities 1327

There are 4 roles that are significant for the SCA Policy Framework. The following is a list of the roles and 1328
the artifacts that the role creates: 1329
• Policy Administrator – policySet definitions and intent definitions 1330
• Developer – Implementations and component types 1331
• Assembler - Composites 1332
• Deployer – Composites and the SCA Domain (including the logical Domain-level composite) 1333

6.1 Policy Administrator 1334

An intent represents a requirement that a developer or assembler can make, which ultimately have to be 1335
satisfied at runtime. The full definition of the requirement is the informal text description in the intent 1336
definition. 1337
The policy administrator’s job is to both define the intents that are available and to define the policySets 1338
that represent the concrete realization of those informal descriptions for some set of binding type or 1339
implementation types. See the sections on intent and policySet definitions for the details of those 1340
definitions. 1341

6.2 Developer 1342

When it is possible for a component to be written without assuming a specific binding type for its services 1343
and references, then the developer uses intents to specify requirements in a binding neutral way. 1344
If the developer requires a specific binding type for a component, then the developer can specify bindings 1345
and policySets with the implementation of the component. Those bindings and policySets will be 1346
represented in the component type for the implementation (although that component type might be 1347
generated from the implementation). 1348
If any of the policySets used for the implementation include intentMaps, then the default choice for the 1349
intentMap can be overridden by an assembler or deployer by requiring a qualified intent that is present in 1350
the intentMap. 1351

6.3 Assembler 1352

An assembler creates composites. Because composites are implementations, an assembler is like a 1353
developer, except that the implementations created by an assembler are composites made up of other 1354
components wired together. So, like other developers, the assembler can specify intents or bindings or 1355
policySets on any service or reference of the composite. 1356
However, in addition the definition of composite-level services and references, it is also possible for the 1357
assembler to use the policy framework to further configure components within the composite. The 1358
assembler can add additional requirements to any component’s services or references or to the 1359
component itself (for implementation policies). The assembler can also override the bindings or 1360
policySets used for the component. See the assembly specification’s description of overriding rules for 1361
details on overriding. 1362
As a shortcut, an assembler can also specify intents and policySets on any element in the composite 1363
definition, which has the same effect as specifying those intents and policySets on every applicable 1364
binding or implementation below that element (where applicability is determined by the @appliesTo 1365
attribute of the policySet definition or the @constrains attribute of the intent definition). 1366

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 38 of 78

6.4 Deployer 1367

A deployer deploys implementations (typically composites) into the SCA Domain. It is the 1368
deployers job to make the final decisions about all configurable aspects of an implementation that is to be 1369
deployed and to make sure that all intents are satisfied. 1370
If the deployer determines that an implementation is correctly configured as it is, then the implementation 1371
can be deployed directly. However, more typically, the deployer will create a new composite, which 1372
contains a component for each implementation to be deployed along with any changes to the bindings or 1373
policySets that the deployer desires. 1374
When the deployer is determining whether the existing list of policySets is correct for a component, the 1375
deployer needs to consider both the explicitly listed policySets as well as the policySets that will be 1376
chosen according to the algorithm specified in Guided Selection of PolicySets using Intents. 1377

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 39 of 78

7 Security Policy 1378

The SCA Security Model provides SCA developers the flexibility to specify the necessary level of security 1379
protection for their components to satisfy business requirements without the burden of understanding 1380
detailed security mechanisms. 1381
The SCA Policy framework distinguishes between two types of policies: interaction policy and 1382
implementation policy. Interaction policy governs the communications between clients and service 1383
providers and typically applies to Services and References. In the security space, interaction policy is 1384
concerned with client and service provider authentication and message protection requirements. 1385
Implementation policy governs security constraints on service implementations and typically applies to 1386
Components. In the security space, implementation policy concerns include access control, identity 1387
delegation, and other security quality of service characteristics that are pertinent to the service 1388
implementations. 1389
The SCA security interaction policy can be specified via intents or policySets. Intents represent security 1390
quality of service requirements at a high abstraction level, independent from security protocols, while 1391
policySets specify concrete policies at a detailed level, which are typically security protocol specific. 1392
The SCA security policy can be specified either in an SCA composite or by using the External Policy 1393
Attachment Mechanism or by annotations in the implementation code. Language-specific annotations are 1394
described in the respective language Client and Implementation specifications. 1395

7.1 Security Policy Intents 1396

The SCA security specification defines the following intents to specify interaction policy: 1397
serverAuthentication, clientAuthentication, confidentiality, and integrity. 1398
• serverAuthentication – When serverAuthentication is present, an SCA runtime MUST ensure that 1399

the server is authenticated by the client. [POL70013] 1400
• clientAuthentication – When clientAuthentication is present, an SCA runtime MUST ensure that the 1401

client is authenticated by the server. [POL70014] 1402
• authentication – this is a profile intent that requires only clientAuthentication. It is included for 1403

backwards compatibility. 1404
• mutualAuthentication – this is a profile intent that includes the serverAuthentication and the 1405

clientAuthentication intents just described. 1406
• confidentiality – the confidentiality intent is used to indicate that the contents of a message are 1407

accessible only to those authorized to have access (typically the service client and the service 1408
provider). A common approach is to encrypt the message, although other methods are possible. 1409
When confidentiality is present, an SCA Runtime MUST ensure that only authorized entities can view 1410
the contents of a message. [POL70009] 1411

• integrity – the integrity intent is used to indicate that assurance is that the contents of a message 1412
have not been tampered with and altered between sender and receiver. A common approach is to 1413
digitally sign the message, although other methods are possible.When integrity is present, an SCA 1414
Runtime MUST ensure that the contents of a message are not altered. [POL70010] 1415

The formal definitions of these intents are in the Intent Definitions appendix. 1416

7.2 Interaction Security Policy 1417

Any one of the three security intents can be further qualified to specify more specific business 1418
requirements. Two qualifiers are defined by the SCA security specification: transport and message, which 1419
can be applied to any of the above three intent’s. 1420

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 40 of 78

7.2.1 Qualifiers 1421

transport – the transport qualifier specifies that the qualified intent is realized at the transport or transfer 1422
layer of the communication protocol, such as HTTPS. When a serverAuthentication, clientAuthentication, 1423
confidentiality or integrity intent is qualified by message, an SCA Runtime MUST delegate 1424
serverAuthentication, clientAuthentication, confidentiality and integrity, respectively, to the message layer 1425
of the communication protocol. [POL70011] 1426
message – the message qualifier specifies that the qualified intent is realized at the message level of the 1427
communication protocol. When a serverAuthentication, clientAuthentication, confidentiality or integrity 1428
intent is qualified by message, an SCA Runtime MUST delegate serverAuthentication, 1429
clientAuthentication, confidentiality and integrity, respectively, to the message layer of the communication 1430
protocol.[POL70012] 1431
 1432

Snippet 7-1 shows the usage of intents and qualified intents. 1433
 1434

<composite name="example" requires="confidentiality"> 1435
 <service name="foo"/> 1436
 … 1437
 <reference name="bar" requires="confidentiality.message"/> 1438
</composite> 1439

Snippet 7-1: Example using Qualified Intents 1440

 1441
In this case, the composite declares that all of its services and references have to guarantee 1442
confidentiality in their communication by setting requires="confidentiality". This applies to the "foo" 1443
service. However, the “bar” reference further qualifies that requirement to specifically require message-1444
level security by setting requires="confidentiality.message". 1445

7.3 Implementation Security Policy Intent 1446

The SCA Security specification defines the authorization intent to specify implementation policy. 1447
authorization – the authorization intent is used to indicate that a client needs to be authorized before 1448
being allowed to use the service. Being authorized means that a check is made as to whether any 1449
policies apply to the client attempting to use the service, and if so, those policies govern whether or not 1450
the client is allowed access. When authorization is present, an SCA Runtime MUST ensure that the client 1451
is authorized to use the service. [POL70001] 1452
This unqualified authorization intent implies that basic “Subject-Action-Resource” authorization support is 1453
required, where Subject may be as simple as a single identifier representing the identity of the client, 1454
Action may be a single identifier representing the operation the client intends to apply to the Resource, 1455
and the Resource may be a single identifier representing the identity of the Resource to which the Action 1456
is intended to be applied. 1457

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 41 of 78

8 Reliability Policy 1458

Failures can affect the communication between a service consumer and a service provider. 1459
Depending on the characteristics of the binding, these failures could cause messages to be redelivered, 1460
delivered in a different order than they were originally sent out or even worse, could cause messages to 1461
be lost. Some transports like JMS provide built-in reliability features such as “at least once” and “exactly 1462
once” message delivery. Other transports like HTTP need to have additional layers built on top of them to 1463
provide some of these features. 1464
The events that occur due to failures in communication can affect the outcome of the service invocation. 1465
For an implementation of a stock trade service, a message redelivery could result in a new trade. A client 1466
(i.e. consumer) of the same service could receive a fault message if trade orders are not delivered to the 1467
service implementation in the order they were sent out. In some cases, these failures could have dramatic 1468
consequences. 1469
An SCA developer can anticipate some types of failures and work around them in service 1470
implementations. For example, the implementation of a stock trade service could be designed to support 1471
duplicate message detection. An implementation of a purchase order service could have built in logic that 1472
orders the incoming messages. In these cases, service implementations don’t need the binding layers to 1473
provide these reliability features (e.g. duplicate message detection, message ordering). However, this 1474
comes at a cost: extra complexity is built in the service implementation. Along with business logic, the 1475
service implementation has additional logic that handles these failures. 1476
Although service implementations can work around some of these types of failures, it is worth noting that 1477
workarounds are not always possible. A message can be lost or expire even before it is delivered to the 1478
service implementation. 1479
Instead of handling some of these issues in the service implementation, a better way is to use a binding 1480
or a protocol that supports reliable messaging. This is better, not just because it simplifies application 1481
development, it can also lead to better throughput. For example, there is less need for application-level 1482
acknowledgement messages. A binding supports reliable messaging if it provides features such as 1483
message delivery guarantees, duplicate message detection and message ordering. 1484
It is very important for the SCA developer to be able to require, at design-time, a binding or protocol that 1485
supports reliable messaging. SCA defines a set of policy intents that can be used for specifying reliable 1486
messaging Quality of Service requirements. These reliable messaging intents establish a contract 1487
between the binding layer and the application layer (i.e. service implementation or the service consumer 1488
implementation) (see below). 1489

8.1 Reliability Policy Intents 1490

Based on the use-cases described above, the following policy intents are defined: 1491
1. atLeastOnce - The binding implementation guarantees that a message that is successfully sent by a 1492

service consumer is delivered to the destination (i.e. service implementation). The message could be 1493
delivered more than once to the service implementation. When atLeastOnce is present, an SCA 1494
Runtime MUST deliver a message to the destination service implementation, and MAY deliver 1495
duplicates of a message to the service implementation. [POL80001] 1496
The binding implementation guarantees that a message that is successfully sent by a service 1497
implementation is delivered to the destination (i.e. service consumer). The message could be 1498
delivered more than once to the service consumer. 1499

2. atMostOnce - The binding implementation guarantees that a message that is successfully sent by a 1500
service consumer is not delivered more than once to the service implementation. The binding 1501
implementation does not guarantee that the message is delivered to the service implementation. 1502
When atMostOnce is present, an SCA Runtime MAY deliver a message to the destination service 1503

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 42 of 78

implementation, and MUST NOT deliver duplicates of a message to the service implementation. 1504
[POL80002] 1505
The binding implementation guarantees that a message that is successfully sent by a service 1506
implementation is not delivered more than once to the service consumer. The binding implementation 1507
does not guarantee that the message is delivered to the service consumer. 1508

3. ordered – The binding implementation guarantees that the messages sent by a service client via a 1509
single service reference are delivered to the target service implementation in the order in which they 1510
were sent by the service client. This intent does not guarantee that messages that are sent by a 1511
service client are delivered to the service implementation. Note that this intent has nothing to say 1512
about the ordering of messages sent via different service references by a single service client, even if 1513
the same service implementation is targeted by each of the service references. When ordered is 1514
present, an SCA Runtime MUST deliver messages sent by a single source to a single destination 1515
service implementation in the order that the messages were sent by that source. [POL80003] 1516
For service interfaces that involve messages being sent back from the service implementation to the 1517
service client (eg. a service with a callback interface), for this intent, the binding implementation 1518
guarantees that the messages sent by the service implementation over a given wire are delivered to 1519
the service client in the order in which they were sent by the service implementation. This intent does 1520
not guarantee that messages that are sent by the service implementation are delivered to the service 1521
consumer. 1522

4. exactlyOnce - The binding implementation guarantees that a message sent by a service consumer is 1523
delivered to the service implementation. Also, the binding implementation guarantees that the 1524
message is not delivered more than once to the service implementation. When exactlyOnce is 1525
present, an SCA Runtime MUST deliver a message to the destination service implementation and 1526
MUST NOT deliver duplicates of a message to the service implementation. [POL80004] 1527
The binding implementation guarantees that a message sent by a service implementation is delivered 1528
to the service consumer. Also, the binding implementation guarantees that the message is not 1529
delivered more than once to the service consumer. 1530

NOTE: This is a profile intent, which is composed of atLeastOnce and atMostOnce. 1531

This is the most reliable intent since it guarantees the following: 1532

– message delivery – all the messages sent by a sender are delivered to the service 1533
implementation (i.e. Java class, BPEL process, etc.). 1534

– duplicate message detection and elimination – a message sent by a sender is not processed 1535
more than once by the service implementation. 1536

The formal definitions of these intents are in the Intent Definitions appendix. 1537
How can a binding implementation guarantee that a message that it receives is delivered to the service 1538
implementation? One way to do it is by persisting the message and keeping redelivering it until it is 1539
processed by the service implementation. That way, if the system crashes after delivery but while 1540
processing it, the message will be redelivered on restart and processed again. Since a message could be 1541
delivered multiple times to the service implementation, this technique usually requires the service 1542
implementation to perform duplicate message detection. However, that is not always possible. Often 1543
times service implementations that perform critical operations are designed without having support for 1544
duplicate message detection. Therefore, they cannot process an incoming message more than once. 1545
Also, consider the scenario where a message is delivered to a service implementation that does not 1546
handle duplicates - the system crashes after a message is delivered to the service implementation but 1547
before it is completely processed. Does the underlying layer redeliver the message on restart? If it did 1548
that, there is a risk that some critical operations (e.g. sending out a JMS message or updating a DB table) 1549
will be executed again when the message is processed. On the other hand, if the underlying layer does 1550
not redeliver the message, there is a risk that the message is never completely processed. 1551
This issue cannot be safely solved unless all the critical operations performed by the service 1552

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 43 of 78

implementation are running in a transaction. Therefore, exactlyOnce cannot be assured without involving 1553
the service implementation. In other words, an exactlyOnce message delivery does not guarantee 1554
exactlyOnce message processing unless the service implementation is transactional. It’s worth noting that 1555
this is a necessary condition but not sufficient. The underlying layer (e.g. binding implementation, 1556
container) would have to ensure that a message is not redelivered to the service implementation after the 1557
transaction is committed. As an example, a way to ensure it when the binding uses JMS is by making 1558
sure the operation that acknowledges the message is executed in the same transaction the service 1559
implementation is running in. 1560

8.2 End-to-end Reliable Messaging 1561

Failures can occur at different points in the message path: in the binding layer on the sender side, in the 1562
transport layer or in the binding layer on the receiver side. The SCA service developer doesn’t really care 1563
where the failure occurs. Whether a message was lost due to a network failure or due to a crash of the 1564
machine where the service is deployed, is not that important. What is important is that the contract 1565
between the application layer (i.e. service implementation or service consumer) and the binding layer is 1566
not violated (e.g. a message that was successfully transmitted by a sender is always delivered to the 1567
destination; a message that was successfully transmitted by a sender is not delivered more than once to 1568
the service implementation, etc). It is worth noting that the binding layer could throw an exception when a 1569
sender (e.g. service consumer, service implementation) sends a message out. This is not considered a 1570
successful message transmission. 1571
In order to ensure the semantics of the reliable messaging intents, the entire message path, which is 1572
composed of the binding layer on the client side, the transport layer and the binding layer on the service 1573
side, has to be reliable. 1574

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 44 of 78

9 Transactions 1575

SCA recognizes that the presence or absence of infrastructure for ACID transaction coordination has a 1576
direct effect on how business logic is coded. In the absence of ACID transactions, developers have to 1577
provide logic that coordinates the outcome, compensates for failures, etc. In the presence of ACID 1578
transactions, the underlying infrastructure is responsible for ensuring the ACID nature of all interactions. 1579
SCA provides declarative mechanisms for describing the transactional environment needed by the 1580
business logic. 1581
Components that use a synchronous interaction style can be part of a single, distributed ACID transaction 1582
within which all transaction resources are coordinated to either atomically commit or rollback. The 1583
transmission or receipt of oneway messages can, depending on the transport binding, be coordinated as 1584
part of an ACID transaction as illustrated in the “OneWay Invocations” section below. Well-known, higher-1585
level patterns such as store-and-forward queuing can be accomplished by composing transacted one-1586
way messages with reliable-messaging policies. 1587
This document describes the set of abstract policy intents – both implementation intents and interaction 1588
intents – that can be used to describe the requirements on a concrete service component and binding 1589
respectively. 1590

9.1 Out of Scope 1591

The following topics are outside the scope of this document: 1592
• The means by which transactions are created, propagated and established as part of an execution 1593

context. These are details of the SCA runtime provider and binding provider. 1594
• The means by which a transactional resource manager (RM) is accessed. These include, but are not 1595

restricted to: 1596
– abstracting an RM as an sca:component 1597
– accessing an RM directly in a language-specific and RM-specific fashion 1598
– abstracting an RM as an sca:binding 1599

9.2 Common Transaction Patterns 1600

In the absence of any transaction policies there is no explicit transactional behavior defined for the SCA 1601
service component or the interactions in which it is involved and the transactional behavior is 1602
environment-specific. An SCA runtime provider can choose to define an out of band default transactional 1603
behavior that applies in the absence of any transaction policies. 1604
Environment-specific default transactional behavior can be overridden by specifying transactional intents 1605
described in this document. The most common transaction patterns can be summarized: 1606
Managed, shared global transaction pattern – the service always runs in a global transaction context 1607
regardless of whether the requester runs under a global transaction. If the requester does run under a 1608
transaction, the service runs under the same transaction. Any outbound, synchronous request-response 1609
messages will – unless explicitly directed otherwise – propagate the service’s transaction context. This 1610
pattern offers the highest degree of data integrity by ensuring that any transactional updates are 1611
committed atomically 1612
Managed, local transaction pattern – the service always runs in a managed local transaction context 1613
regardless of whether the requester runs under a transaction. Any outbound messages will not propagate 1614
any transaction context. This pattern is advisable for services that wish the SCA runtime to demarcate 1615
any resource manager local transactions and do not require the overhead of atomicity. 1616

The use of transaction policies to specify these patterns is illustrated later in Table 9-2. 1617

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 45 of 78

9.3 Summary of SCA Transaction Policies 1618

This specification defines implementation and interaction policies that relate to transactional QoS in 1619
components and their interactions. The SCA transaction policies are specified as intents which represent 1620
the transaction quality of service behavior offered by specific component implementations or bindings. 1621
SCA transaction policy can be specified either in an SCA composite or annotatively in the implementation 1622
code. Language-specific annotations are described in the respective language binding specifications, for 1623
example the SCA Java Common Annotations and APIs specification [SCA-Java-Annotations]. 1624
This specification defines the following implementation transaction policies: 1625
• managedTransaction – Describes the service component’s transactional environment. 1626
• transactedOneWay and immediateOneWay – two mutually exclusive intents that describe whether 1627

the SCA runtime will process OneWay messages immediately or will enqueue (from a client 1628
perspective) and dequeue (from a service perspective) a OneWay message as part of a global 1629
transaction. 1630

This specification also defines the following interaction transaction policies: 1631
• propagatesTransaction and suspendsTransaction – two mutually exclusive intents that describe 1632

whether the SCA runtime propagates any transaction context to a service or reference on a 1633
synchronous invocation. 1634

Finally, this specification defines a profile intent called managedSharedTransaction that combines the 1635
managedTransaction intent and the propogatesTransaction intent so that the managed, shared global 1636
transaction pattern is easier to configure. 1637

9.4 Global and local transactions 1638

This specification describes “managed transactions” in terms of either “global” or “local” transactions. The 1639
“managed” aspect of managed transactions refers to the transaction environment provided by the SCA 1640
runtime for the business component. Business components can interact with other business components 1641
and with resource managers. The managed transaction environment defines the transactional context 1642
under which such interactions occur. 1643

9.4.1 Global transactions 1644

From an SCA perspective, a global transaction is a unit of work scope within which transactional work is 1645
atomic. If multiple transactional resource managers are accessed under a global transaction then the 1646
transactional work is coordinated to either atomically commit or rollback regardless using a 2PC protocol. 1647
A global transaction can be propagated on synchronous invocations between components – depending 1648
on the interaction intents described in this specification - such that multiple, remote service providers can 1649
execute distributed requests under the same global transaction. 1650

9.4.2 Local transactions 1651

From a resource manager perspective a resource manager local transaction (RMLT) is simply the 1652
absence of a global transaction. But from an SCA perspective it is not enough to simply declare that a 1653
piece of business logic runs without a global transaction context. Business logic might need to access 1654
transactional resource managers without the presence of a global transaction. The business logic 1655
developer still needs to know the expected semantic of making one or more calls to one or more resource 1656
managers, and needs to know when and/or how the resource managers local transactions will be 1657
committed. The term local transaction containment (LTC) is used to describe the SCA environment where 1658
there is no global transaction. The boundaries of an LTC are scoped to a remotable service provider 1659
method and are not propagated on invocations between components. Unlike the resources in a global 1660
transaction, RMLTs coordinated within a LTC can fail independently. 1661
 1662

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 46 of 78

The two most common patterns for components using resource managers outside a global transaction 1663
are: 1664
• The application desires each interaction with a resource manager to commit after every interaction. 1665

This is the default behavior provided by the noManagedTransaction policy (defined below in 1666
“Transaction implementation policy”) in the absence of explicit use of RMLT verbs by the application. 1667

• The application desires each interaction with a resource manager to be part of an extended local 1668
transaction that is committed at the end of the method. This behavior is specified by the 1669
managedTransaction.local policy (defined below in “Transaction implementation policy”). 1670

While an application can use interfaces provided by the resource adapter to explicitly demarcate resource 1671
manager local transactions (RMLT), this is a generally undesirable burden on applications, which typically 1672
prefer all transaction considerations to be managed by the SCA runtime. In addition, once an application 1673
codes to a resource manager local transaction interface, it might never be redeployed with a different 1674
transaction environment since local transaction interfaces might not be used in the presence of a global 1675
transaction. This specification defines intents to support both these common patterns in order to provide 1676
portability for applications regardless of whether they run under a global transaction or not. 1677

9.5 Transaction implementation policy 1678

9.5.1 Managed and non-managed transactions 1679

The mutually exclusive managedTransaction and noManagedTransaction intents describe the 1680
transactional environment needed by a service component or composite. SCA provides transaction 1681
environments that are managed by the SCA runtime in order to remove the burden of coding transaction 1682
APIs directly into the business logic. The managedTransaction and noManagedTransaction intents 1683
can be attached to the sca:composite or sca:componentType elements. 1684
The mutually exclusive managedTransaction and noManagedTransaction intents are defined as 1685
follows: 1686
• managedTransaction – a managed transaction environment is necessary in order to run this 1687

component. The specific type of managedTransaction needed is not constrained. The valid qualifiers 1688
for this intent are mutually exclusive. 1689

– managedTransaction.global – There has to be an atomic transaction in order to run this 1690
component. For a component marked with managedTransaction.global, the SCA runtime 1691
MUST ensure that a global transaction is present before dispatching any method on the 1692
component. [POL90003] The SCA runtime uses any transaction propagated from the client 1693
or else begins and completes a new transaction. See the propagatesTransaction intent 1694
below for more details. 1695

– managedTransaction.local – indicates that the component cannot tolerate running as part 1696
of a global transaction. A component marked with managedTransaction.local MUST run 1697
within a local transaction containment (LTC) that is started and ended by the SCA runtime. 1698
[POL90004] Any global transaction context that is propagated to the hosting SCA runtime is 1699
not visible to the target component. Any interaction under this policy with a resource manager 1700
is performed in an extended resource manager local transaction (RMLT). Upon successful 1701
completion of the invoked service method, any RMLTs are implicitly requested to commit by 1702
the SCA runtime. Note that, unlike the resources in a global transaction, RMLTs so 1703
coordinated in a LTC can fail independently. If the invoked service method completes with a 1704
non-business exception then any RMLTs are implicitly rolled back by the SCA runtime. In this 1705
context a business exception is any exception that is declared on the component interface 1706
and is therefore anticipated by the component implementation. The manner in which 1707
exceptions are declared on component interfaces is specific to the interface type – for 1708
example, Java interface types declare Java exceptions, WSDL interface types define 1709
wsdl:faults. Local transactions MUST NOT be propagated outbound across remotable 1710
interfaces. [POL90006] 1711

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 47 of 78

• noManagedTransaction – indicates that the component runs without a managed transaction, under 1712
neither a global transaction nor an LTC. A transaction that is propagated to the hosting SCA runtime 1713
MUST NOT be joined by the hosting runtime on behalf of a component marked with 1714
noManagedtransaction. [POL90007] When interacting with a resource manager under this policy, the 1715
application (and not the SCA runtime) is responsible for controlling any resource manager local 1716
transaction boundaries, using resource-provider specific interfaces (for example a Java 1717
implementation accessing a JDBC provider has to choose whether a Connection is set to 1718
autoCommit(true) or else it has to call the Connection commit or rollback method). SCA defines no 1719
APIs for interacting with resource managers. 1720

• (absent) – The absence of a transaction implementation intent leads to runtime-specific behavior. A 1721
runtime that supports global transaction coordination can choose to provide a default behavior that is 1722
the managed, shared global transaction pattern but it is not mandated to do so. 1723

The formal definitions of these intents are in the Intent Definitions appendix. 1724

9.5.2 OneWay Invocations 1725

When a client uses a reference and sends a OneWay message then any client transaction context is not 1726
propagated. However, the OneWay invocation on the reference can itself be transacted. Similarly, from a 1727
service perspective, any received OneWay message cannot propagate a transaction context but the 1728
delivery of the OneWay message can be transacted. A transacted OneWay message is a one-way 1729
message that - because of the capability of the service or reference binding - can be enqueued (from a 1730
client perspective) or dequeued (from a service perspective) as part of a global transaction. 1731
SCA defines two mutually exclusive implementation intents, transactedOneWay and 1732
immediateOneWay, that determine whether OneWay messages are transacted or delivered immediately. 1733
Either of these intents can be attached to the sca:service or sca:reference elements or they can be 1734
attached to the sca:component element, indicating that the intent applies to any service or reference 1735
element children. 1736
The intents are defined as follows: 1737
• transactedOneWay – When a reference is marked as transactedOneWay, any OneWay invocation 1738

messages MUST be transacted as part of a client global transaction. [POL90008] 1739
If the client component is not configured to run under a global transaction or if the binding does not 1740
support transactional message sending, then a reference MUST NOT be marked as 1741
transactedOneWay. [POL90009] If a service is marked as transactedOneWay, any OneWay 1742
invocation message MUST be received from the transport binding in a transacted fashion, under the 1743
target service’s global transaction. [POL90010] The transactedOneWay intent MUST NOT be 1744
attached to a request/response operation. [POL90028] The receipt of the message from the binding is 1745
not committed until the service transaction commits; if the service transaction is rolled back the the 1746
message remains available for receipt under a different service transaction. If the component is not 1747
configured to run under a global transaction or if the binding does not support transactional message 1748
receipt, then a service MUST NOT be marked as transactedOneWay. [POL90011] 1749

• immediateOneWay – When applied to a reference indicates that any OneWay invocation messages 1750
MUST be sent immediately regardless of any client transaction. [POL90012] When applied to a 1751
service indicates that any OneWay invocation MUST be received immediately regardless of any 1752
target service transaction. [POL90013] The immediateOneWay intent MUST NOT be attached to a 1753
request/response operation. [POL90029] The outcome of any transaction under which an 1754
immediateOneWay message is processed has no effect on the processing (sending or receipt) of that 1755
message. 1756

The absence of either intent leads to runtime-specific behavior. The SCA runtime can send or receive a 1757
OneWay message immediately or as part of any sender/receiver transaction. The results of combining 1758
this intent and the managedTransaction implementation policy of the component sending or receiving 1759
the transacted OneWay invocation are summarized low.below in Table 9-1. 1760

 1761

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 48 of 78

Table 9-1 Transacted OneWay interaction intent 1762

 1763
The formal definitions of these intents are in the Intent Definitions appendix. 1764

9.5.3 Asynchronous Implementations 1765

SCA defines an intent called asyncInvocation that enables an SCA service to indicate that its 1766
request/response operations are long running and therefore interactions with those operations really need 1767
to be done asynchronously. The use of asyncInvocation with oneway operations is meaningless 1768
because the one way operation is already asynchronous. Operations which implement this long running 1769
behavior can make use of any transaction implementation intents on a component implementation or on 1770
SCA references. However, implementations of operations which have long-running behaviour need to be 1771
careful in how they use ACID transactions, which in general are not suited to operating over extended 1772
time periods. Also see section 9.6.4 Interaction intents with asynchronous implementations for additional 1773
considerations on the use of the asyncInvocation intent with transactions. 1774
 1775

9.6 Transaction interaction policies 1776

The mutually exclusive propagatesTransaction and suspendsTransaction intents can be attached 1777
either to an interface (e.g. Java annotation or WSDL attribute) or explicitly to an sca:service and 1778
sca:reference XML element to describe how any client transaction context will be made available and 1779
used by the target service component. Section 9.6.1 considers how these intents apply to service 1780
elements and Section 9.6.2 considers how these intents apply to reference elements. 1781
The formal definitions of these intents are in the Intent Definitions appendix. 1782

9.6.1 Handling Inbound Transaction Context 1783

The mutually exclusive propagatesTransaction and suspendsTransaction intents can be attached to 1784
an sca:service XML element to describe how a propagated transaction context is handled by the SCA 1785
runtime, prior to dispatching a service component. If the service requester is running within a transaction 1786

transacted/immediate intent managedTransaction (client or
service implementation intent)

Results

transactedOneWay managedTransaction.global OneWay interaction (either client
message enqueue or target service
dequeue) is committed as part of the
global transaction.

transactedOneWay managedTransaction.local
or
noManagedTransaction

If a transactedOneWay intent is
combined with the
managedTransaction.local or
noManagedTransaction implementation
intents for either a reference or a
service then an error MUST be raised
during deployment. [POL90027]

immediateOneWay Any value of managedTransaction

The OneWay interaction occurs
immediately and is not transacted.

<absent> Any value of managedTransaction Runtime-specific behavior. The SCA
runtime can send or receive a OneWay
message immediately or as part of any
sender/receiver transaction.

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 49 of 78

and the service interaction policy is to propagate that transaction, then the primary business effects of the 1787
provider’s operation are coordinated as part of the client's transaction – if the client rolls back its 1788
transaction, then work associated with the provider's operation will also be rolled back. This allows clients 1789
to know that no compensation business logic is necessary since transaction rollback can be used. 1790
These intents specify a contract that has to be be implemented by the SCA runtime. This aspect of a 1791
service component is most likely captured during application design. The propagatesTransaction or 1792
suspendsTransaction intent can be attached to sca:service elements and their children. The intents are 1793
defined as follows: 1794
• propagatesTransaction – A service marked with propagatesTransaction MUST be dispatched under 1795

any propagated (client) transaction. [POL90015] Use of the propagatesTransaction intent on a 1796
service implies that the service binding MUST be capable of receiving a transaction context. 1797
[POL90016] However, it is important to understand that some binding/policySet combinations that 1798
provide this intent for a service will need the client to propagate a transaction context. 1799
In SCA terms, for a reference wired to such a service, this implies that the reference has to use either 1800
the propagatesTransaction intent or a binding/policySet combination that does propagate a 1801
transaction. If, on the other hand, the service does not need the client to provide a transaction (even 1802
though it has the capability of joining the client's transaction), then some care is needed in the 1803
configuration of the service. One approach to consider in this case is to use two distinct bindings on 1804
the service, one that uses the propagatesTransaction intent and one that does not - clients that do 1805
not propagate a transaction would then wire to the service using the binding without the 1806
propagatesTransaction intent specified. 1807

• suspendsTransaction – A service marked with suspendsTransaction MUST NOT be dispatched 1808
under any propagated (client) transaction. [POL90017] 1809

The absence of either interaction intent leads to runtime-specific behavior; the client is unable to 1810
determine from transaction intents whether its transaction will be joined. 1811
The SCA runtime MUST ignore the propagatesTransaction intent for OneWay methods. [POL90025] 1812
These intents are independent from the implementation’s managedTransaction intent and provides no 1813
information about the implementation’s transaction environment. 1814
The combination of these service interaction policies and the managedTransaction implementation 1815
policy of the containing component completely describes the transactional behavior of an invoked service, 1816
as summarized in Table 9-2: 1817
 1818

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 50 of 78

Table 9-2 Combining service transaction intents 1819

 1820
Note - the absence of either interaction or implementation intents leads to runtime-specific behavior. A 1821
runtime that supports global transaction coordination can choose to provide a default behavior that is the 1822
managed, shared global transaction pattern. 1823

9.6.2 Handling Outbound Transaction Context 1824

The mutually exclusive propagatesTransaction and suspendsTransaction intents can also be attached 1825
to an sca:reference XML element to describe whether any client transaction context is propagated to a 1826
target service when a synchronous interaction occurs through the reference. These intents specify a 1827
contract that has to be implemented by the SCA runtime. This aspect of a service component is most 1828
likely captured during application design. 1829
Either the propagatesTransaction or suspendsTransaction intent can be attached to sca:service 1830
elements and their children. The intents are defined as defined in Section 9.6.1. 1831
When used as a reference interaction intent, the meaning of the qualifiers is as follows: 1832
• propagatesTransaction – When a reference is marked with propagatesTransaction, any transaction 1833

context under which the client runs MUST be propagated when the reference is used for a request-1834
response interaction [POL90020] The binding of a reference marked with propagatesTransaction has 1835

service interaction intent managedTransaction
(component implementation
intent)

Results

propagatesTransaction managedTransaction.global Component runs in propagated
transaction if present, otherwise a new
global transaction. This combination is
used for the managed, shared global
transaction pattern described in
Common Transaction Patterns. This is
equivalent to the
managedSharedTransaction intent
defined in section 9.6.3.

propagatesTransaction managedTransaction.local
or
noManagedTransaction

A service MUST NOT be marked with
"propagatesTransaction" if the
component is marked with
"managedTransaction.local" or with
"noManagedTransaction"
[POL90019]

suspendsTransaction

managedTransaction.global Component runs in a new global
transaction

suspendsTransaction

managedTransaction.local

Component runs in a managed local
transaction containment. This
combination is used for the managed,
local transaction pattern described in
Common Transaction Patterns. This is
the default behavior for a runtime that
does not support global transactions.

suspendsTransaction

noManagedTransaction Component is responsible for managing
its own local transactional resources.

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 51 of 78

to be capable of propagating a transaction context. The reference needs to be wired to a service that 1836
can join the client’s transaction. For example, any service with an intent that @requires 1837
propagatesTransaction can always join a client’s transaction. The reference consumer can then be 1838
designed to rely on the work of the target service being included in the caller’s transaction. 1839

• suspendsTransaction – When a reference is marked with suspendsTransaction, any transaction 1840
context under which the client runs MUST NOT be propagated when the reference is used. 1841
[POL90022] The reference consumer can use this intent to ensure that the work of the target service 1842
is not included in the caller’s transaction. . 1843

• The absence of either interaction intent leads to runtime-specific behavior. The SCA runtime can 1844
choose whether or not to propagate any client transaction context to the referenced service, 1845
depending on the SCA runtime capability. 1846

These intents are independent from the client’s managedTransaction implementation intent. The 1847
combination of the interaction intent of a reference and the managedTransaction implementation policy 1848
of the containing component completely describes the transactional behavior of a client’s invocation of a 1849
service. Table 9-3 summarizes the results of the combination of either of these interaction intents with the 1850
managedTransaction implementation policy of the containing component. 1851
 1852
reference interaction intent managedTransaction (client

implementation intent)
Results

propagatesTransaction managedTransaction.global Target service runs in the client’s
transaction. This combination is used
for the managed, shared global
transaction pattern described in
Common Transaction Patterns.

propagatesTransaction managedTransaction.local
or
noManagedTransaction

A reference MUST NOT be marked with
propagatesTransaction if component is
marked with
"ManagedTransaction.local" or with
"noManagedTransaction"
[POL90023]

suspendsTransaction

Any value of managedTransaction

The target service will not run under the
same transaction as any client
transaction. This combination is used
for the managed, local transaction
pattern described in Common
Transaction Patterns.

Table 9-3 Transaction propagation reference intents 1853

 1854
Note - the absence of either interaction or implementation intents leads to runtime-specific behavior. A 1855
runtime that supports global transaction coordination can choose to provide a default behavior that is the 1856
managed, shared global transaction pattern. 1857

Table 9-4 shows the valid combination of interaction and implementation intents on the client and service 1858
that result in a single global transaction being used when a client invokes a service through a reference. 1859
 1860
managedTransaction
(client implementation
intent)

reference interaction
intent

service interaction
intent

managedTransaction
(service implementation
intent)

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 52 of 78

managedTransaction.global propagatesTransaction propagatesTransaction managedTransaction.global

Table 9-4 Intents for end-to-end transaction propagation 1861

 1862
Transaction context MUST NOT be propagated on OneWay messages. [POL90024] The SCA runtime 1863
ignores propagatesTransaction for OneWay operations. 1864

9.6.3 Combining implementation and interaction intents 1865

The managed, local transaction pattern can be configured quite easily by combining the 1866
managedTransaction.global intent with the propagatesTransaction intent. This is illustrated in Section 9.2 1867
Common Transaction Patterns. In order to enable easier configuration of this pattern, a profile intent 1868
called managedSharedTransaction is defined as in section C.1 Intent Definitions. 1869

9.6.4 Interaction intents with asynchronous implementations 1870

SCA defines an intent called asyncInvocation that enables an SCA service to indicate that its 1871
request/response operations are long running and therefore interactions with the service really need to be 1872
done asynchronously. Any of the transaction interaction intents can be used with an asynchronous 1873
implementation except for the propagatesTransaction intent. Due to the long running nature of this kind 1874
of implementation, inbound global transaction context cannot be propagated to the component 1875
implementation. As a result, the propagatesTransaction intent is mutually exclusive with the 1876
asyncInvocation intent. The asyncInvocation intent and the propagatesTransaction intent MUST 1877
NOT be applied to the same service or reference operation. [POL90030] When the asyncInvocation 1878
intent is applied to an SCA service, the SCA runtime MUST behave as if the suspendsTransaction 1879
intent is also applied to the service. [POL90031] 1880
 1881

9.6.5 Web Services Binding for propagatesTransaction policy 1882

Snippet 9-1 shows a policySet that provides the propagatesTransaction intent and applies to a Web 1883
service binding (binding.ws). When used on a service, this policySet would require the client to send a 1884
transaction context using the mechanisms described in the Web Services Atomic Transaction [WS-1885
AtomicTransaction] specification. 1886
 1887

<policySet name="JoinsTransactionWS" provides="sca:propagatesTransaction" 1888
 appliesTo="//sca:binding.ws"> 1889
 <wsp:Policy> 1890
 <wsat:ATAssertion 1891
 xmlns:wsat="http://docs.oasis-open.org/ws-tx/wsat/2006/06"/> 1892
 </wsp:Policy> 1893
</policySet> 1894

Snippet 9-1: Example policySet Providing propagatesTransaction 1895

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 53 of 78

10 Miscellaneous Intents 1896

The following are standard intents that apply to bindings and are not related to either security,reliable 1897
messaging or transactionality: 1898
• SOAP – The SOAP intent specifies that the SOAP messaging model is used for delivering messages. 1899

It does not require the use of any specific transport technology for delivering the messages, so for 1900
example, this intent can be supported by a binding that sends SOAP messages over HTTP, bare 1901
TCP or even JMS. If the intent is attached in an unqualified form then any version of SOAP is 1902
acceptable. Standard mutually exclusive qualified intents also exist for SOAP.1_1 and SOAP.1_2, 1903
which specify the use of versions 1.1 or 1.2 of SOAP respectively. When SOAP is present, an SCA 1904
Runtime MUST use the SOAP messaging model to deliver messages. [POL100001] When a SOAP 1905
intent is qualified with 1_1 or 1_2, then SOAP version 1.1 or SOAP version 1.2 respectively MUST be 1906
used to deliver messages. [POL100002] 1907

• JMS – The JMS intent does not specify a wire-level transport protocol, but instead requires that 1908
whatever binding technology is used, the messages are able to be delivered and received via the 1909
JMS API. When JMS is present, an SCA Runtime MUST ensure that the binding used to send and 1910
receive messages supports the JMS API. [POL100003] 1911

• noListener – This intent can only be used within the @requires attribute of a reference. The 1912
noListener intent MUST only be declared on a @requires attribute of a reference. [POL100004] It 1913
states that the client is not able to handle new inbound connections. It requires that the binding and 1914
callback binding be configured so that any response (or callback) comes either through a back 1915
channel of the connection from the client to the server or by having the client poll the server for 1916
messages. When noListener is present, an SCA Runtime MUST not establish any connection from a 1917
service to a client. [POL100005] An example policy assertion that would guarantee this is a WS-1918
Policy assertion that applies to the <binding.ws> binding, which requires the use of WS-Addressing 1919
with anonymous responses (e.g. <wsaw:Anonymous>required</wsaw:Anonymous>” – see 1920
http://www.w3.org/TR/ws-addr-wsdl/#anonelement). 1921

• asyncInvocation – This intent can be attached to a request/response operation or a complete 1922
interface, indicating that the request/response operation(s) are long-running [SCA-Assembly]. The 1923
SCA Runtime MUST ignore the asyncInvocation intent for one way operations. [POL100007] It is also 1924
possible for a service to set the asyncInvocation intent when using an interface which is not marked 1925
with the asyncInvocation intent. This can be useful when reusing an existing interface definition that 1926
does not contain SCA information. 1927

• EJB - The EJB intent specifies that whatever wire-level transport technology is specified the 1928
messages are able to be delivered and received via the EJB API. When EJB is present, an SCA 1929
Runtime MUST ensure that the binding used to send and receive messages supports the EJB API. 1930
[POL100006] 1931

The formal definitions of these intents are in the Intent Definitions appendix. 1932

http://www.w3.org/TR/ws-addr-wsdl/#anonelement

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 54 of 78

11 Conformance 1933

The XML schema available at the namespace URI, defined by this specification, is considered to be 1934
authoritative and takes precedence over the XML Schema defined in the appendix of this document. 1935
An SCA runtime MUST reject a composite file that does not conform to the sca-policy-1.1.xsd schema. 1936
[POL110001] 1937
An implementation that claims to conform to this specification MUST meet the following conditions: 1938
1. The implementation MUST conform to the SCA Assembly Model Specification [Assembly]. 1939
2. SCA implementations MUST recognize the intents listed in Appendix B.1 of this specification. An 1940

implementationType / bindingType / collection of policySets that claims to implement a specific intent 1941
MUST process that intent in accord with any relevant Conformance Items in Appendix C related to 1942
the intent and the SCA Runtime options selected. 1943

3. With the exception of 2, the implementation MUST comply with all statements in Appendix C: 1944
Conformance Items related to an SCA Runtime, notably all MUST statements have to be 1945
implemented. 1946

 1947

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 55 of 78

A Defining the Deployed Composites Infoset 1948

The @attachTo attribute of a policySet or the @attachTo attribute of a <externalAttachment/> element is 1949
an XPath1.0 expression identifying SCA elements to which intents and/or policySets are attached. The 1950
XPath applies to the Deployed Composites Infoset for the SCA domain. 1951
The Deployed Composites Infoset is constructed from all the deployed SCA composite files [SCA-1952
Assembly] in the Domain, with the special characteristics: 1953
1. The Domain is treated as a special composite, with a blank name - "" 1954
2. The @attachTo/@ppliesTo XPath expression is evaluated against the Deployed Composite Infoset 1955

following the deployment of a deployment composite. Where one composite includes one or more 1956
other composites, it is the including composite which is addressed by the XPath and its contents are 1957
the result of preprocessing all of the include elements 1958

3. Where the intent or policySet is intended to be specific to a particular component, the structuralURI 1959
[SCA-Asssembly] of the component is used along with the URIRef() XPath function to attach a 1960
intent/policySet to a specific use of a nested component. The XPath expression can make use of the 1961
unique structuralURI to indicate specific use instances, where different intents/policySets need to be 1962
used for those different instances. 1963

The XPath expression for the @attachTo attribute can make use of a series of XPath functions which 1964
enable the expression to easily identify elements with specific characteristics that are not easily 1965
expressed with pure XPath. These functions enable: 1966
• the identification of elements to which specific intents apply. 1967

This permits the attachment of a policySet to be linked to specific intents on the target element - for 1968
example, a policySet relating to encryption of messages can be targeted to services and references 1969
which have the confidentiality intent applied. 1970

• the targeting of subelements of an interface, including operations and messages. 1971
This permits the attachment of a intent/policySet to an individual operation or to an individual 1972
message within an interface, separately from the policies that apply to other operations or messages 1973
in the interface. 1974

• the targeting of a specific use of a component, through its unique structuralURI [SCA-Assembly]. 1975
This permits the attachment of a intent/policySet to a specific use of a component in one context, that 1976
can be different from the policySet(s) that are applied to other uses of the same component. 1977

Details of the available XPath functions is given in the section "XPath Functions for the @attachTo 1978
Attribute". 1979
 1980
EXAMPLE: 1981
 1982

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 56 of 78

 1983
Figure A-1 Example Domain Composite Infoset 1984

 1985
The SCA Domain in Figure A-1 has been constructed from the composites and components shown in the 1986
figure. Composite1 and Composite2 were deployed into the Domain as described in [SCA-Asembly]. 1987
Composite3 is included in Composite1 using the SCA include mechanism described in [SCA-Assembly]. 1988
Composite4 is used as an implementation of Components 1B and 2B. Following the deployment of all the 1989
composites, the Domain contains: 1990

• 3 Composites that can be addressed as part of the Deployed Composites InfoSet; Composite1, 1991
Composite2 and Composite4. 1992

• all the components shown in the diagram. Components 1A, 2A, 3A, 4A (twice) are leaf 1993
components. 1994

 1995
The following snippets show example usage of the @attachTo attribute and provide the outcome based 1996
on the Domain in Figure A-1. 1997
 1998

1. //component[@name="Component4A"] 1999

Snippet A-1:Example attachTo all Instances of a Name 2000

 2001
attach to both instances of Component4A 2002
 2003

2. //component[URIRef("Component2B/Component4A")] 2004

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 57 of 78

Snippet A-2: Example attachTo a Specific Instance via a Path 2005

 2006
attach to the unique instance of Component4A when used by Component2B (Component2B is a 2007
component at the Domain level) 2008
 2009

3. //component[@name="Component3A"]/service[IntentRefs("intent1")] 2010

Snippet A-3:Example attachTo Instances with an intent 2011

 2012
attach to the services of Component3A which have the intent "intent1" applied 2013
 2014

4. //component/binding.ws 2015

Snippet A-4: Example attachTo Instances with a binding 2016

 2017
attach to the web services binding of all components with a service or reference with a Web services 2018
binding 2019
 2020

5. /composite[@name=""]/component[@name="Component1A"] 2021

Snippet A-5:Example attachTo a Specific Instance via Path and Name 2022

 2023
attach to Component1A at the Domain level 2024
 2025
 2026

A.1 XPath Functions for the @attachTo Attribute 2027

This section defines utility functions that can be used in XPath expressions where otherwise it would be 2028
difficult to write the XPath expression to identify the elements concerned. 2029
This particularly applies in SCA to Interfaces and the child parts of interfaces (operations and messages). 2030
XPath Functions are defined below for the following: 2031
• Picking out a specific interface 2032
• Picking out a specific operation in an interface 2033
• Picking out a specific message in an operation in an interface 2034
• Picking out artifacts with specific intents 2035

A.1.1 Interface Related Functions 2036

InterfaceRef(InterfaceName) 2037
picks out an interface identified by InterfaceName 2038

OperationRef(InterfaceName/OperationName) 2039
picks out the operation OperationName in the interface InterfaceName 2040

MessageRef(InterfaceName/OperationName/MessageName) 2041
picks out the message MessageName in the operation OperationName in the interface 2042
InterfaceName. 2043

• "*" can be used for wildcarding of any of the names. 2044

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 58 of 78

The interface is treated as if it is a WSDL interface (for other interface types, they are treated as if 2045
mapped to WSDL using their regular mapping rules). 2046
Examples of the Interface functions: 2047
 2048

InterfaceRef("MyInterface") 2049

Snippet A-6: Example use of InterfaceRef 2050

 2051
picks out an interface with the name "MyInterface" 2052
 2053

OperationRef("MyInterface/MyOperation") 2054

Snippet A-7: Example use of OperationRef with a Path 2055

 2056
picks out the operation named "MyOperation" within the interface named "MyInterface" 2057
 2058

OperationRef("*/MyOperation") 2059

Snippet A-8: Example use of OperationRef without a Path 2060

 2061
picks out the operation named "MyOperation" from any interface 2062
 2063

MessageRef("MyInterface/MyOperation/MyMessage") 2064

Snippet A-9: Example use of MessageRef with a Path 2065

 2066
picks out the message named "MyMessage" from the operation named "MyOperation" within the interface 2067
named "MyInterface" 2068
 2069

MessageRef("*/*/MyMessage") 2070

Snippet A-10: Example ue of MessageRef with a Path with Wildcards 2071

 2072
picks out the message named "MyMessage" from any operation in any interface 2073

A.1.2 Intent Based Functions 2074

For the following intent-based functions, it is the total set of intents which apply to the artifact which are 2075
examined by the function, including directly or externally attached intents plus intents acquired from the 2076
structural hierarchy and from the implementation hierarchy. 2077
 2078
IntentRefs(IntentList) 2079

picks out an element where the intents applied match the intents specified in the IntentList: 2080

 2081
IntentRefs("intent1") 2082

Snippet A-11: Example use of IntentRef 2083

 2084
picks out an artifact to which intent named "intent1" is attached 2085

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 59 of 78

 2086
IntentRefs("intent1 intent2") 2087

Snippet A-12: Example use of IntentRef with Multiple intents 2088

 2089
picks out an artifact to which intents named "intent1" AND "intent2" are attached 2090
 2091

IntentRefs("intent1 !intent2") 2092

Snippet A-13: Example use of IntentRef with Not Operatior 2093

 2094
picks out an artifact to which intent named "intent1" is attached but NOT the intent named "intent2" 2095

A.1.3 URI Based Function 2096

The URIRef function is used to pick out a particular use of a nested component – i.e. where some 2097
Domain level component is implemented using a composite implementation, which in turn has one or 2098
more components implemented with the composite (and so on to an arbitrary level of nesting): 2099
URIRef(URI) 2100

picks out the particular use of a component identified by the structuralURI string URI. 2101

For a full description of structuralURIs, see the SCA Assembly specification [SCA-Assembly]. 2102
Example: 2103
 2104

URIRef("top_comp_name/middle_comp_name/lowest_comp_name") 2105

Snippet A-15: Example use of URIRef 2106

 2107
picks out the particular use of a component – where component lowest_comp_name is used within the 2108
implementation of middle_comp_name within the implementation of the top-level (Domain level) 2109
component top_comp_name. 2110
 2111

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 60 of 78

B Schemas 2112

B.1 sca-policy.xsd 2113

<?xml version="1.0" encoding="UTF-8"?> 2114
<!-- Copyright(C) OASIS(R) 2005,2010. All Rights Reserved. 2115
 OASIS trademark, IPR and other policies apply. --> 2116
<schema xmlns="http://www.w3.org/2001/XMLSchema" 2117
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 2118
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 2119
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" 2120
 elementFormDefault="qualified"> 2121
 2122
 <include schemaLocation="sca-core-1.1-cd05.xsd"/> 2123
 <import namespace="http://www.w3.org/ns/ws-policy" 2124
 schemaLocation="http://www.w3.org/2007/02/ws-policy.xsd"/> 2125
 2126
 <element name="intent" type="sca:Intent"/> 2127
 <complexType name="Intent"> 2128
 <sequence> 2129
 <element name="description" type="string" minOccurs="0" 2130
 maxOccurs="1" /> 2131
 <element name="qualifier" type="sca:IntentQualifier" 2132
 minOccurs="0" maxOccurs="unbounded" /> 2133
 <any namespace="##other" processContents="lax" 2134
 minOccurs="0" maxOccurs="unbounded"/> 2135
 </sequence> 2136
 <attribute name="name" type="NCName" use="required"/> 2137
 <attribute name="constrains" type="sca:listOfQNames" 2138
 use="optional"/> 2139
 <attribute name="requires" type="sca:listOfQNames" 2140
 use="optional"/> 2141
 <attribute name="excludes" type="sca:listOfQNames" 2142
 use="optional"/> 2143
 <attribute name="mutuallyExclusive" type="boolean" 2144
 use="optional" default="false"/> 2145
 <attribute name="intentType" 2146
 type="sca:InteractionOrImplementation" 2147
 use="optional" default="interaction"/> 2148
 <anyAttribute namespace="##other" processContents="lax"/> 2149
 </complexType> 2150
 2151
 <complexType name="IntentQualifier"> 2152
 <sequence> 2153
 <element name="description" type="string" minOccurs="0" 2154
 maxOccurs="1" /> 2155
 <any namespace="##other" processContents="lax" minOccurs="0" 2156
 maxOccurs="unbounded"/> 2157
 </sequence> 2158
 <attribute name="name" type="NCName" use="required"/> 2159
 <attribute name="default" type="boolean" use="optional" 2160
 default="false"/> 2161
 </complexType> 2162
 2163
 <element name="requires"> 2164
 <complexType> 2165
 <sequence minOccurs="0" maxOccurs="unbounded"> 2166
 <any namespace="##other" processContents="lax"/> 2167
 </sequence> 2168

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 61 of 78

 <attribute name="intents" type="sca:listOfQNames" 2169
 use="required"/> 2170
 <anyAttribute namespace="##other" processContents="lax"/> 2171
 </complexType> 2172
 </element> 2173
 2174
 <element name="externalAttachment"> 2175
 <complexType> 2176
 <sequence minOccurs="0" maxOccurs="unbounded"> 2177
 <any namespace="##other" 2178
 processContents="lax"/> 2179
 </sequence> 2180
 <attribute name="intents" type="sca:listOfQNames" 2181
 use="optional"/> 2182
 <attribute name="policySets" type="sca:listOfQNames" 2183
 use="optional"/> 2184
 <attribute name="attachTo" type="string" 2185
 use="required"/> 2186
 <anyAttribute namespace="##other" 2187
 processContents="lax"/> 2188
 </complexType> 2189
 </element> 2190
 2191
 <element name="policySet" type="sca:PolicySet"/> 2192
 <complexType name="PolicySet"> 2193
 <choice minOccurs="0" maxOccurs="unbounded"> 2194
 <element name="policySetReference" 2195
 type="sca:PolicySetReference"/> 2196
 <element name="intentMap" type="sca:IntentMap"/> 2197
 <any namespace="##other" processContents="lax"/> 2198
 </choice> 2199
 <attribute name="name" type="NCName" use="required"/> 2200
 <attribute name="provides" type="sca:listOfQNames"/> 2201
 <attribute name="appliesTo" type="string" use="optional"/> 2202
 <attribute name="attachTo" type="string" use="optional"/> 2203
 <anyAttribute namespace="##other" processContents="lax"/> 2204
 </complexType> 2205
 2206
 <element name="policySetAttachment"> 2207
 <complexType> 2208
 <sequence minOccurs="0" maxOccurs="unbounded"> 2209
 <any namespace="##other" processContents="lax"/> 2210
 </sequence> 2211
 <attribute name="name" type="QName" use="required"/> 2212
 <anyAttribute namespace="##other" processContents="lax"/> 2213
 </complexType> 2214
 </element> 2215
 2216
 <complexType name="PolicySetReference"> 2217
 <attribute name="name" type="QName" use="required"/> 2218
 <anyAttribute namespace="##other" processContents="lax"/> 2219
 </complexType> 2220
 2221
 <complexType name="IntentMap"> 2222
 <choice minOccurs="1" maxOccurs="unbounded"> 2223
 <element name="qualifier" type="sca:Qualifier"/> 2224
 <any namespace="##other" processContents="lax"/> 2225
 </choice> 2226
 <attribute name="provides" type="QName" use="required"/> 2227
 <anyAttribute namespace="##other" processContents="lax"/> 2228
 </complexType> 2229
 2230
 <complexType name="Qualifier"> 2231

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 62 of 78

 <sequence minOccurs="0" maxOccurs="unbounded"> 2232
 <any namespace="##other" processContents="lax"/> 2233
 </sequence> 2234
 <attribute name="name" type="string" use="required"/> 2235
 <anyAttribute namespace="##other" processContents="lax"/> 2236
 </complexType> 2237
 2238
 <simpleType name="listOfNCNames"> 2239
 <list itemType="NCName"/> 2240
 </simpleType> 2241
 2242
 <simpleType name="InteractionOrImplementation"> 2243
 <restriction base="string"> 2244
 <enumeration value="interaction"/> 2245
 <enumeration value="implementation"/> 2246
 </restriction> 2247
 </simpleType> 2248
 2249
</schema> 2250

Snippet B-1SCA Policy Schema 2251

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 63 of 78

C XML Files 2252

This appendix contains normative XML files that are defined by this specification. 2253

C.1 Intent Definitions 2254

Intent definitions are contained within a Definitions file called sca-policy-1.1-intents-definitions.xml, which 2255
contains a <definitions/> element as follows: 2256

<?xml version="1.0" encoding="UTF-8"?> 2257
<!-- Copyright(C) OASIS(R) 2005,2010. All Rights Reserved. 2258
 OASIS trademark, IPR and other policies apply. --> 2259
<sca:definitions xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 2260
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 2261
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 2262
 2263
 <!-- Security related intents --> 2264
 <sca:intent name="serverAuthentication" constrains="sca:binding" 2265
 intentType="interaction"> 2266
 <sca:description> 2267
 Communication through the binding requires that the 2268
 server is authenticated by the client 2269
 </sca:description> 2270
 <sca:qualifier name="transport" default="true"/> 2271
 <sca:qualifier name="message"/> 2272
 </sca:intent> 2273
 2274
 <sca:intent name="clientAuthentication" constrains="sca:binding" 2275
 intentType="interaction"> 2276
 <sca:description> 2277
 Communication through the binding requires that the 2278
 client is authenticated by the server 2279
 </sca:description> 2280
 <sca:qualifier name="transport" default="true"/> 2281
 <sca:qualifier name="message"/> 2282
 </sca:intent> 2283
 2284
 <sca:intent name="authentication" 2285
 requires="sca:clientAuthentication"> 2286
 <sca:description> 2287
 A convenience intent to help migration 2288
 </sca:description> 2289
 </sca:intent> 2290
 2291
 <sca:intent name="mutualAuthentication" 2292
 requires="sca:clientAuthentication sca:serverAuthentication"> 2293
 <sca:description> 2294
 Communication through the binding requires that the 2295
 client and server to authenticate each other 2296
 </sca:description> 2297
 </sca:intent> 2298
 2299
 <sca:intent name="confidentiality" constrains="sca:binding" 2300
 intentType="interaction"> 2301
 <sca:description> 2302
 Communication through the binding prevents unauthorized 2303
 users from reading the messages 2304
 </sca:description> 2305
 <sca:qualifier name="transport" default="true"/> 2306
 <sca:qualifier name="message"/> 2307

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 64 of 78

 </sca:intent> 2308
 2309
 <sca:intent name="integrity" constrains="sca:binding" 2310
 intentType="interaction"> 2311
 <sca:description> 2312
 Communication through the binding prevents tampering 2313
 with the messages sent between the client and the service. 2314
 </sca:description> 2315
 <sca:qualifier name="transport" default="true"/> 2316
 <sca:qualifier name="message"/> 2317
 </sca:intent> 2318
 2319
 <sca:intent name="authorization" constrains="sca:implementation" 2320
 intentType="implementation"> 2321
 <sca:description> 2322
 Ensures clients are authorized to use services. 2323
 </sca:description> 2324
 </sca:intent> 2325
 2326
 2327
 <!-- Reliable messaging related intents --> 2328
 <sca:intent name="atLeastOnce" constrains="sca:binding" 2329
 intentType="interaction"> 2330
 <sca:description> 2331
 This intent is used to indicate that a message sent 2332
 by a client is always delivered to the component. 2333
 </sca:description> 2334
 </sca:intent> 2335
 2336
 <sca:intent name="atMostOnce" constrains="sca:binding" 2337
 intentType="interaction"> 2338
 <sca:description> 2339
 This intent is used to indicate that a message that was 2340
 successfully sent by a client is not delivered more than 2341
 once to the component. 2342
 </sca:description> 2343
 </sca:intent> 2344
 2345
 <sca:intent name="exactlyOnce" requires="sca:atLeastOnce 2346
sca:atMostOnce" 2347
 constrains="sca:binding" intentType="interaction"> 2348
 <sca:description> 2349
 This profile intent is used to indicate that a message sent 2350
 by a client is always delivered to the component. It also 2351
 indicates that duplicate messages are not delivered to the 2352
 component. 2353
 </sca:description> 2354
 </sca:intent> 2355
 2356
 <sca:intent name="ordered" constrains="sca:binding" 2357
 intentType="interaction"> 2358
 <sca:description> 2359
 This intent is used to indicate that all the messages are 2360
 delivered to the component in the order they were sent by 2361
 the client. 2362
 </sca:description> 2363
 </sca:intent> 2364
 2365
 <!-- Transaction related intents --> 2366
 <sca:intent name="managedTransaction" 2367
 excludes="sca:noManagedTransaction" 2368
 mutuallyExclusive="true" constrains="sca:implementation" 2369
 intentType="implementation"> 2370

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 65 of 78

 <sca:description> 2371
 A managed transaction environment is necessary in order to 2372
 run the component. The specific type of managed transaction 2373
 needed is not constrained. 2374
 </sca:description> 2375
 <sca:qualifier name="global" default="true"> 2376
 <sca:description> 2377
 For a component marked with managedTransaction.global 2378
 a global transaction needs to be present before dispatching 2379
 any method on the component - using any transaction 2380
 propagated from the client or else beginning and completing 2381
 a new transaction. 2382
 </sca:description> 2383
 </sca:qualifier> 2384
 <sca:qualifier name="local"> 2385
 <sca:description> 2386
 A component marked with managedTransaction.local needs to 2387
 run within a local transaction containment (LTC) that 2388
 is started and ended by the SCA runtime. 2389
 </sca:description> 2390
 </sca:qualifier> 2391
 </sca:intent> 2392
 2393
 <sca:intent name="noManagedTransaction" 2394
 excludes="sca:managedTransaction" 2395
 constrains="sca:implementation" intentType="implementation"> 2396
 <sca:description> 2397
 A component marked with noManagedTransaction needs to run without 2398
 a managed transaction, under neither a global transaction nor 2399
 an LTC. A transaction propagated to the hosting SCA runtime 2400
 is not joined by the hosting runtime on behalf of a 2401
 component marked with noManagedtransaction. 2402
 </sca:description> 2403
 </sca:intent> 2404
 2405
 <sca:intent name="transactedOneWay" excludes="sca:immediateOneWay" 2406
 constrains="sca:binding" intentType="implementation"> 2407
 <sca:description> 2408
 For a reference marked as transactedOneWay any OneWay invocation 2409
 messages are transacted as part of a client global 2410
 transaction. 2411
 For a service marked as transactedOneWay any OneWay invocation 2412
 message are received from the transport binding in a 2413
 transacted fashion, under the service’s global transaction. 2414
 </sca:description> 2415
 </sca:intent> 2416
 2417
 <sca:intent name="immediateOneWay" excludes="sca:transactedOneWay" 2418
 constrains="sca:binding" intentType="implementation"> 2419
 <sca:description> 2420
 For a reference indicates that any OneWay invocation messages 2421
 are sent immediately regardless of any client transaction. 2422
 For a service indicates that any OneWay invocation is 2423
 received immediately regardless of any target service 2424
 transaction. 2425
 </sca:description> 2426
 </sca:intent> 2427
 2428
 <sca:intent name="propagatesTransaction" 2429
 excludes="sca:suspendsTransaction" 2430
 constrains="sca:binding" intentType="interaction"> 2431
 <sca:description> 2432
 A service marked with propagatesTransaction is dispatched 2433

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 66 of 78

 under any propagated (client) transaction and the service binding 2434
 needs to be capable of receiving a transaction context. 2435
 A reference marked with propagatesTransaction propagates any 2436
 transaction context under which the client runs when the 2437
 reference is used for a request-response interaction and the 2438
 binding of a reference marked with propagatesTransaction needs to 2439
 be capable of propagating a transaction context. 2440
 </sca:description> 2441
 </sca:intent> 2442
 2443
 <sca:intent name="suspendsTransaction" 2444
 excludes="sca:propagatesTransaction" 2445
 constrains="sca:binding" intentType="interaction"> 2446
 <sca:description> 2447
 A service marked with suspendsTransaction is not dispatched 2448
 under any propagated (client) transaction. 2449
 A reference marked with suspendsTransaction does not propagate 2450
 any transaction context under which the client runs when the 2451
 reference is used. 2452
 </sca:description> 2453
 </sca:intent> 2454
 2455
 <sca:intent name="managedSharedTransaction" 2456
 requires="sca:managedTransaction.global 2457
sca:propagatesTransaction"> 2458
 <sca:description> 2459
 Used to indicate that the component requires both the 2460
 managedTransaction.global and the propagatesTransactions 2461
 intents 2462
 </sca:description> 2463
 </sca:intent> 2464
 2465
 <!-- Miscellaneous intents --> 2466
 <sca:intent name="asyncInvocation" excludes="sca:propagatesTransaction" 2467
 constrains="sca:binding" intentType="interaction"> 2468
 <sca:description> 2469
 Indicates that request/response operations for the 2470
 interface of this wire are "long running" and must be 2471
 treated as two separate message transmissions 2472
 </sca:description> 2473
 </sca:intent> 2474
 2475
 <sca:intent name="EJB" constrains="sca:binding" 2476
 intentType="interaction"> 2477
 <sca:description> 2478
 Specifies that the EJB API is needed to communicate with 2479
 the service or reference. 2480
 </sca:description> 2481
 </sca:intent> 2482
 2483
 <sca:intent name="SOAP" constrains="sca:binding" 2484
 intentType="interaction" mutuallyExclusive="true"> 2485
 <sca:description> 2486
 Specifies that the SOAP messaging model is used for delivering 2487
 messages. 2488
 </sca:description> 2489
 <sca:qualifier name="v1_1" default="true"/> 2490
 <sca:qualifier name="v1_2"/> 2491
 </sca:intent> 2492
 2493
 <sca:intent name="JMS" constrains="sca:binding" 2494
 intentType="interaction"> 2495
 <sca:description> 2496

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 67 of 78

 Requires that the messages are delivered and received via the 2497
 JMS API. 2498
 </sca:description> 2499
 </sca:intent> 2500
 2501
 <sca:intent name="noListener" constrains="sca:binding" 2502
 intentType="interaction"> 2503
 <sca:description> 2504
 This intent can only be used on a reference. Indicates that the 2505
 client is not able to handle new inbound connections. The binding 2506
 and callback binding are configured so that any 2507
 response or callback comes either through a back channel of the 2508
 connection from the client to the server or by having the client 2509
 poll the server for messages. 2510
 </sca:description> 2511
 </sca:intent> 2512
 2513
</sca:definitions> 2514

Snippet C-1: SCA intent Definitions 2515

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 68 of 78

D Conformance 2516

D.1 Conformance Targets 2517

The conformance items listed in the section below apply to the following conformance targets: 2518
• Document artifacts (or constructs within them) that can be checked statically. 2519
• SCA runtimes, which we may require to exhibit certain behaviors. 2520

D.2 Conformance Items 2521

This section contains a list of conformance items for the SCA Policy Framework specification. 2522
 2523

Conformance ID Description

[129HPOL30001] If the configured instance of a binding is in conflict with the intents
and policy sets selected for that instance, the SCA runtime MUST
raise an error.

[130HPOL30002] The QName for an intent MUST be unique amongst the set of
intents in the SCA Domain.

[135HPOL30004] If an intent has more than one qualifier, one and only one MUST
be declared as the default qualifier.

[134HPOL30005] The name of each qualifier MUST be unique within the intent
definition.

[138HPOL30006] the name of a profile intent MUST NOT have a “.” in it.

[139HPOL30007] If a profile intent is attached to an artifact, all the intents listed in
its @requires attribute MUST be satisfied as described in section
 4.15.

[149HPOL30008] When a policySet element contains a set of intentMap children,
the value of the @provides attribute of each intentMap MUST
correspond to an unqualified intent that is listed within the
@provides attribute value of the parent policySet element.

[151HPOL30010] For each qualifiable intent listed as a member of the @provides
attribute list of a policySet element, there MUST be no more than
one corresponding intentMap element that declares the
unqualified form of that intent in its @provides attribute. In other
words, each intentMap within a given policySet uniquely provides
for a specific intent.

[153HPOL30011] Following the inclusion of all policySet references, when a
policySet element directly contains wsp:policyAttachment children
or policies using extension elements, the set of policies specified
as children MUST satisfy all the intents expressed using the
@provides attribute value of the policySet element.

[154HPOL30013] The set of intents in the @provides attribute of a referenced
policySet MUST be a subset of the set of intents in the @provides
attribute of the referencing policySet.

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 69 of 78

[131HPOL30015] Each QName in the @requires attribute MUST be the QName of
an intent in the SCA Domain.

[133HPOL30016] Each QName in the @excludes attribute MUST be the QName of
an intent in the SCA Domain.

[141HPOL30017] The QName for a policySet MUST be unique amongst the set of
policySets in the SCA Domain.

[142HPOL30018] The contents of @appliesTo MUST match the XPath 1.0 [XPATH]
production Expr.

[143HPOL30019] The contents of @attachTo MUST match the XPath 1.0
production Expr.

[150HPOL30020] If a policySet specifies a qualifiable intent in the @provides
attribute, and it provides an intentMap for the qualifiable intent
then that intentMap MUST specify all possible qualifiers for that
intent.

[152HPOL30021] The @provides attribute value of each intentMap that is an
immediate child of a policySet MUST be included in the
@provides attribute of the parent policySet.

[137HPOL30024] An SCA Runtime MUST include in the Domain the set of intent
definitions contained in the Policy_Intents_Definitions.xml
described in the appendix "Intent Definitions" of the SCA Policy
specification.

[POL30025] If only one qualifier for an intent is given it MUST be used as the
default qualifier for the intent.

[162HPOL40001] SCA implementations supporting both Direct Attachment and
External Attachment mechanisms MUST ignore policy sets
applicable to any given SCA element via the Direct Attachment
mechanism when there exist policy sets applicable to the same
SCA element via the External Attachment mechanism

[POL40002] The SCA runtime MUST raise an error if the @attachTo XPath
expression resolves to an SCA <property> element, or any of its
children.

[165HPOL40004] A qualifiable intent expressed lower in the hierarchy can be
qualified further up the hierarchy, in which case the qualified
version of the intent MUST apply to the higher level element.

[166HPOL40005] The intents declared on elements higher in the structural
hierarchy of a given element MUST be applied to the element
EXCEPT
• if any of the inherited intents is mutually exclusive with an

intent applied on the element, then the inherited intent MUST
be ignored

• if the overall set of intents from the element itself and from its
structural hierarchy contains both an unqualified version and
a qualified version of the same intent, the qualified version of
the intent MUST be used.

[170HPOL40006] If a component has any policySets attached to it (by any means),
then any policySets attached to the componentType MUST be

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 70 of 78

ignored.

[181HPOL40007] Matching service/reference policies across the SCA Domain
boundary MUST use WS-Policy compatibility (strict WS-Policy
intersection) if the policies are expressed in WS-Policy syntax.

[163HPOL40009] Any two intents applied to a given element MUST NOT be
mutually exclusive

[159HPOL40010] SCA runtimes MUST support at least one of the Direct
Attachment and External Attachment mechanisms for policySet
attachment.

[160HPOL40011] SCA implementations supporting only the External Attachment
mechanism MUST ignore the policy sets that are applicable via
the Direct Attachment mechanism.

[161HPOL40012] SCA implementations supporting only the Direct Attachment
mechanism MUST ignore the policy sets that are applicable via
the External Attachment mechanism.

[164HPOL40014] The intents declared on elements lower in the implementation
hierarchy of a given element MUST be applied to the element.

[167HPOL40015] When combining implementation hierarchy and structural
hierarchy policy data, Rule 1 MUST be applied BEFORE Rule 2.

[171HPOL40016] When calculating the set of intents and set of policySets which
apply to either a service element or to a reference element of a
component, intents and policySets from the interface definition
and from the interface declaration(s) MUST be applied to the
service or reference element and to the binding element(s)
belonging to that element.

[197HPOL40017] If the required intent set contains a mutually exclusive pair of
intents the SCA runtime MUST reject the document containing
the element and raise an error.

[198HPOL40018]

All intents in the required intent set for an element MUST be
provided by the directly provided intents set and the set of
policySets that apply to the element, or else an error is raised.

[172HPOL40019] The locations where interfaces are defined and where interfaces
are declared in the componentType and in a component MUST
be treated as part of the implementation hierarchy as defined in
section “Attaching intents to SCA elements”.

[174HPOL40020] The QName of the bindingType MUST be unique amongst the set
of bindingTypes in the SCA Domain.

[175HPOL40021] A binding implementation MUST implement all the intents listed in
the @alwaysProvides and @mayProvides attributes.

[177HPOL40022] The SCA runtime MUST determine the compatibility of the
policySets at each end of a wire using the compatibility rules of
the policy language used for those policySets.

[178HPOL40023] The policySets at each end of a wire MUST be incompatible if
they use different policy languages.

[179HPOL40024] Where the policy language in use for a wire is WS-Policy, strict

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 71 of 78

WS-Policy intersection MUST be used to determine policy
compatibility.

[180HPOL40025] In order for a reference to connect to a particular service, the
policies of the reference MUST intersect with the policies of the
service.

[POL40027] Any intents attached to an interface definition artifact, such as a
WSDL portType, MUST be added to the intents attached to the
service or reference to which the interface definition applies. If no
intents are attached to the service or reference then the intents
attached to the interface definition artifact become the only intents
attached to the service or reference.

[POL40029] If the process of redeployment of intents, externalAttachments
and/or policySets fails because one or more intents are left
unsatisfied, an error MUST be raised.

[POL40030] If the process of redeployment of intents, externalAttachments
and/or policySets fails, the changed intents, externalAttachments
and/or policySets MUST NOT be deployed and no change is
made to deployed and running artifacts.

[POL40031] When redeployment of intents, externalAttachments and
policySets succeeds, the components whose policies are affected
by the redeployment MAY have their policies updated by the SCA
runtime dynamically without the need to stop and restart those
components.

[POL40032] Where components are updated by redeployment of intents,
externalAttachments and policySets (their configuration is
changed in some way, which includes changing the policies
associated with a component), the new configuration MUST apply
to all new instances of those components once the redeployment
is complete.

[POL40033] Where a component configuration is changed by the
redeployment of intents, externalAttachments and policySets, the
SCA runtime either MAY choose to maintain existing instances
with the old configuration of the component, or the SCA runtime
MAY choose to stop and discard existing instances of the
component.

[POL40034] During the deployment of SCA composites, first all
<externalAttachment/> elements within the Domain MUST be
evaluated to determine which intents are attached to elements in
the newly deployed composite and then all policySets within the
Domain with an @attachTo attribute or <externalAttachment>
elements that attach policySets MUST be evaluated to determine
which policySets are attached to elements in the newly deployed
composite.

[155HPOL40035] The contents of the @attachTo attribute of an externalAttachment
element MUST match the XPath 1.0 production Expr.

[199HPOL50001] The implementationType name attribute MUST be the QName of
an XSD global element definition used for implementation
elements of that type.

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 72 of 78

[POL70001] When authorization is present, an SCA Runtime MUST ensure
that the client is authorized to use the service.

[POL70009] When confidentiality is present, an SCA Runtime MUST ensure
that only authorized entities can view the contents of a message.

[203HPOL70010] When integrity is present, an SCA Runtime MUST ensure that the
contents of a message are not altered.

[205HPOL70011] When a serverAuthentication, clientAuthentication, confidentiality
or integrity intent is qualified by transport, an SCA Runtime MUST
delegate serverAuthentication, clientAuthentication, confidentiality
and integrity, respectively, to the transport layer of the
communication protocol.

[206HPOL70012] When a serverAuthentication, clientAuthentication, confidentiality
or integrity intent is qualified by message, an SCA Runtime MUST
delegate serverAuthentication, clientAuthentication, confidentiality
and integrity, respectively, to the message layer of the
communication protocol.

[201HPOL70013] When serverAuthentication is present, an SCA runtime MUST
ensure that the server is authenticated by the client.

[202HPOL70014] When clientAuthentication is present, an SCA runtime MUST
ensure that the client is authenticated by the server.

[207HPOL80001] When atLeastOnce is present, an SCA Runtime MUST deliver a
message to the destination service implementation, and MAY
deliver duplicates of a message to the service implementation.

[208HPOL80002] When atMostOnce is present, an SCA Runtime MAY deliver a
message to the destination service implementation, and MUST
NOT deliver duplicates of a message to the service
implementation.

[209HPOL80003] When ordered is present, an SCA Runtime MUST deliver
messages sent by a single source to a single destination service
implementation in the order that the messages were sent by that
source.

[210HPOL80004] When exactlyOnce is present, an SCA Runtime MUST deliver a
message to the destination service implementation and MUST
NOT deliver duplicates of a message to the service
implementation.

[213HPOL90003] For a component marked with managedTransaction.global, the
SCA runtime MUST ensure that a global transaction is present
before dispatching any method on the component.

[214HPOL90004] A component marked with managedTransaction.local MUST run
within a local transaction containment (LTC) that is started and
ended by the SCA runtime.

[215HPOL90006] Local transactions MUST NOT be propagated outbound across
remotable interfaces.

[216HPOL90007] A transaction that is propagated to the hosting SCA runtime
MUST NOT be joined by the hosting runtime on behalf of a
component marked with noManagedtransaction.

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 73 of 78

[218HPOL90008] When a reference is marked as transactedOneWay, any OneWay
invocation messages MUST be transacted as part of a client
global transaction.

[219HPOL90009] If the client component is not configured to run under a global
transaction or if the binding does not support transactional
message sending, then a reference MUST NOT be marked as
transactedOneWay.

[220HPOL90010] If a service is marked as transactedOneWay, any OneWay
invocation message MUST be received from the transport binding
in a transacted fashion, under the target service’s global
transaction.

[221HPOL90011] If the component is not configured to run under a global
transaction or if the binding does not support transactional
message receipt, then a service MUST NOT be marked as
transactedOneWay.

[222HPOL90012] When applied to a reference indicates that any OneWay
invocation messages MUST be sent immediately regardless of
any client transaction.

[POL90013] When applied to a service indicates that any OneWay invocation
MUST be received immediately regardless of any target service
transaction.

[POL90015] A service marked with propagatesTransaction MUST be
dispatched under any propagated (client) transaction.

[POL90016] Use of the propagatesTransaction intent on a service implies
that the service binding MUST be capable of receiving a
transaction context.

[POL90017] A service marked with suspendsTransaction MUST NOT be
dispatched under any propagated (client) transaction.

[233HPOL90019] A service MUST NOT be marked with "propagatesTransaction" if

the component is marked with "managedTransaction.local" or
with "noManagedTransaction"

[234HPOL90020] When a reference is marked with propagatesTransaction, any
transaction context under which the client runs MUST be
propagated when the reference is used for a request-response
interaction

[235HPOL90022] When a reference is marked with suspendsTransaction, any
transaction context under which the client runs MUST NOT be
propagated when the reference is used.

[236HPOL90023] A reference MUST NOT be marked with propagatesTransaction if
component is marked with "ManagedTransaction.local" or with
"noManagedTransaction"

[237HPOL90024] Transaction context MUST NOT be propagated on OneWay
messages.

[231HPOL90025] The SCA runtime MUST ignore the propagatesTransaction intent
for OneWay methods.

[225HPOL90027] If a transactedOneWay intent is combined with the
managedTransaction.local or noManagedTransaction
implementation intents for either a reference or a service then an
error MUST be raised during deployment.

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 74 of 78

[POL90028] The transactedOneWay intent MUST NOT be attached to a
request/response operation.

[POL90029] The immediateOneWay intent MUST NOT be attached to a
request/response operation.

[POL90030] The asyncInvocation intent and the propagatesTransaction
intent MUST NOT be applied to the same service or reference
operation.

[POL90031] When the asyncInvocation intent is applied to an SCA service,
the SCA runtime MUST behave as if the suspendsTransaction
intent is also applied to the service.

[241HPOL100001] When SOAP is present, an SCA Runtime MUST use the SOAP
messaging model to deliver messages.

[242HPOL100002] When a SOAP intent is qualified with 1_1 or 1_2, then SOAP
version 1.1 or SOAP version 1.2 respectively MUST be used to
deliver messages.

[243HPOL100003] When JMS is present, an SCA Runtime MUST ensure that the
binding used to send and receive messages supports the JMS
API.

[244HPOL100004] The noListener intent MUST only be declared on a @requires
attribute of a reference.

[245HPOL100005] When noListener is present, an SCA Runtime MUST not establish
any connection from a service to a client.

[248HPOL100006] When EJB is present, an SCA Runtime MUST ensure that the
binding used to send and receive messages supports the EJB
API.

[POL100007] The SCA Runtime MUST ignore the asyncInvocation intent for
one way operations.

[250HPOL110001] An SCA runtime MUST reject a composite file that does not
conform to the sca-policy-1.1.xsd schema.

Table D-1: SCA Policy Normative Statements 2524

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 75 of 78

E Acknowledgements 2525

The following individuals have participated in the creation of this specification and are 2526
gratefully acknowledged: 2527

Participant Name Affiliation
Jeff Anderson Deloitte Consulting LLP
Bryan Aupperle IBM
Ron Barack SAP AG*
Mirza Begg Individual
Michael Beisiegel IBM
Vladislav Bezrukov SAP AG*
Henning Blohm SAP AG*
David Booz IBM
Fred Carter AmberPoint
Tai-Hsing Cha TIBCO Software Inc.
Martin Chapman Oracle Corporation
Vamsavardhana Chillakuru IBM
Mike Edwards IBM
Raymond Feng IBM
Billy Feng Primeton Technologies, Inc.
Robert Freund Hitachi, Ltd.
Murty Gurajada TIBCO Software Inc.
Simon Holdsworth IBM
Michael Kanaley TIBCO Software Inc.
Anish Karmarkar Oracle Corporation
Nickolas Kavantzas Oracle Corporation
Rainer Kerth SAP AG*
Pundalik Kudapkar TIBCO Software Inc.
Meeraj Kunnumpurath Individual
Rich Levinson Oracle Corporation
Mark Little Red Hat
Ashok Malhotra Oracle Corporation
Jim Marino Individual
Jeff Mischkinsky Oracle Corporation
Dale Moberg Axway Software*
Simon Nash Individual
Bob Natale Mitre Corporation*
Eisaku Nishiyama Hitachi, Ltd.
Sanjay Patil SAP AG*
Plamen Pavlov SAP AG*
Gilbert Pilz Oracle Corporation
Martin Raepple SAP AG*
Fabian Ritzmann Sun Microsystems
Ian Robinson IBM
Scott Vorthmann TIBCO Software Inc.

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 76 of 78

Feng Wang Primeton Technologies, Inc.
Eric Wells Hitachi, Ltd.
Prasad Yendluri Software AG, Inc.*
Alexander Zubev SAP AG*
 2528

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 77 of 78

F Revision History 2529

[optional; should not be included in OASIS Standards] 2530
 2531

Revision Date Editor Changes Made

2 Nov 2, 2007 David Booz Inclusion of OSOA errata and Issue 8

3 Nov 5, 2007 David Booz Applied resolution of Issue 7, to Section 4.1
and 4.10. Fixed misc. typos/grammatical items.

4 Mar 10, 2008 David Booz Inclusion of OSOA Transaction specification as
Chapter 11. There are no textual changes other
than formatting.

5 Apr 28 2008 Ashok Malhotra Added resolutions to issues 17, 18, 24, 29, 37,
39 and 40,

6 July 7 2008 Mike Edwards Added resolution for Issue 38

7 Aug 15 2008 David Booz Applied Issue 26, 27

8 Sept 8 2008 Mike Edwards Applied resolution for Issue 15

9 Oct 17 2008 David Booz Various formatting changes
Applied 22 – Deleted text in Ch 9
Applied 42 – In section 3.3
Applied 46 – Many sections
Applied 52,55 – Many sections
Applied 53 – In section 3.3
Applied 56 – In section 3.1
Applied 58 – Many sections

10 Nov 26 David Booz Applied camelCase words from Liason
Applied 54 – many sections
Applied 59 – section 4.2, 4.4.2
Applied 60 – section 8.1
Applied 61 – section 4.10, 4.12
Applied 63 – section 9

11 Dec 10 Mike Edwards Applied 44 - section 3.1, 3.2 (new), 5.0, A.1
Renamed file to sca-policy-1.1-spec-CD01-
Rev11

12 Dec 25 Ashok Malhotra Added RFC 2119 keywords
Renamed file to sca-policy-1.1-spec-CD01-
Rev12

13 Feb 06 2009 Mike Edwards, Eric All changes accepted

sca-policy-1.1-spec-cd04 22-September-2010
Copyright © OASIS® 2005-2010. All Rights Reserved. Page 78 of 78

Wells, Dave Booz Revision of the RFC 2119 keywords and the
set of normative statements
- done in drafts a through g

14 Feb 10 2009 Mike Edwards All changes accepted, comments removed.

15 Feb 10 2009 Mike Edwards Issue 64 - Sections A1, B, 10, 9, 8

16 Feb 12, 2009 Ashok Malhotra Issue 5 The single sca namespace is listed on
the title page.
Issue 32 clientAuthentication and
serverAuthentication
Issue 35 Conformance targets added to
Appendix C
Issue 48 Transaction defaults are not optional
Issue 66 Tighten schema for intent
Issue 67 Remove ‘conversational’

17 Feb 16, 2009 Dave Booz Issues 57, 69, 70, 71

CD02 Feb 21, 2009 Dave Booz Editorial changes to make a CD

CD02-rev1 April 7, 2009 Dave Booz Applied 72, 74,75,77

CD02-rev2 July 21, 2009 Dave Booz Applied 81,84,85,86,95,96,98,99

CD02-rev3 Aug 12, 2009 Dave Booz Applied 73,76,78,80,82,83,88,102

CD03-rev4 Sept 3, 2009 Dave Booz Editorial cleanup to match OASIS templates

CD02-rev5 Nov 9, 2009 Dave Booz Fixed latest URLs
Applied: 79, 87, 90, 97, 100, 101, 103, 106,
107, 108

CD02-rev6 Nov 17, 2009 Dave Booz Applied 94, 109

CD02-rev7 Jan 1, 2010 Dave Booz Updated namespace to latest assembly
Applied issues: 79,110,111,112,113,114,115

CD02-rev8 Mar 17, 2010 Dave Booz Applied issue 93
Editorial updates to prepare for next CD

CD02-rev9 April 8, 2010 Ashok Malhotra,
Dave Booz

More Editorial cleanup

CD03 May 5, 2010 Dave Booz Applied 117,
Front Matter and TOC updates

CD03-rev1 July 14, 2010 Dave Booz Applied 122

CD04 Sept 22, 2010 Dave Booz Prepare CD04, front matter, participants

 2532
 2533

	1 Introduction
	1.1 Terminology
	1.2 XML Namespaces
	1.3 Normative References
	1.4 Naming Conventions

	2 Overview
	2.1 Policies and PolicySets
	2.2 Intents describe the requirements of Components, Services and References
	2.3 Determining which policies apply to a particular wire

	3 Framework Model
	3.1 Intents
	3.2 Interaction Intents and Implementation Intents
	3.3 Profile Intents
	3.4 PolicySets
	3.4.1 IntentMaps
	3.4.2 Direct Inclusion of Policies within PolicySets
	3.4.3 Policy Set References

	4 Attaching Intents and PolicySets to SCA Constructs
	4.1 Attachment Rules – Intents
	4.2 Direct Attachment of Intents
	4.3 External Attachment of Intents and PolicySets
	4.4 Attachment Rules - PolicySets
	4.5 Direct Attachment of PolicySets
	4.6 External Attachment of PolicySets
	4.6.1 Cases Where Multiple PolicySets are attached to a Single Artifact

	4.7 Attaching intents to SCA elements
	4.7.1 Implementation Hierarchy of an Element
	4.7.2 Structural Hierarchy of an Element
	4.7.3 Combining Implementation and Structural Policy Data
	4.7.4 Examples

	4.8 Usage of Intent and Policy Set Attachment together
	4.9 Intents and PolicySets on Implementations and Component Types
	4.10 Intents on Interfaces
	4.11 BindingTypes and Related Intents
	4.12 Treatment of Components with Internal Wiring
	4.12.1 Determining Wire Validity and Configuration

	4.13 Preparing Services and References for External Connection
	4.14 Deployment
	4.14.1 Redeployment of Intents and PolicySets

	4.15 Matching Intents and PolicySets

	5 Implementation Policies
	5.1 Natively Supported Intents
	5.2 Writing PolicySets for Implementation Policies
	5.2.1 Non WS-Policy Examples

	6 Roles and Responsibilities
	6.1 Policy Administrator
	6.2 Developer
	6.3 Assembler
	6.4 Deployer

	7 Security Policy
	7.1 Security Policy Intents
	7.2 Interaction Security Policy
	7.2.1 Qualifiers

	7.3 Implementation Security Policy Intent

	8 Reliability Policy
	8.1 Reliability Policy Intents
	8.2 End-to-end Reliable Messaging

	9 Transactions
	9.1 Out of Scope
	9.2 Common Transaction Patterns
	9.3 Summary of SCA Transaction Policies
	9.4 Global and local transactions
	9.4.1 Global transactions
	9.4.2 Local transactions

	9.5 Transaction implementation policy
	9.5.1 Managed and non-managed transactions
	9.5.2 OneWay Invocations
	9.5.3 Asynchronous Implementations

	9.6 Transaction interaction policies
	9.6.1 Handling Inbound Transaction Context
	9.6.2 Handling Outbound Transaction Context
	9.6.3 Combining implementation and interaction intents
	9.6.4 Interaction intents with asynchronous implementations
	9.6.5 Web Services Binding for propagatesTransaction policy

	10 Miscellaneous Intents
	11 Conformance
	A Defining the Deployed Composites Infoset
	A.1 XPath Functions for the @attachTo Attribute
	A.1.1 Interface Related Functions
	A.1.2 Intent Based Functions
	A.1.3 URI Based Function

	B Schemas
	B.1 sca-policy.xsd

	C XML Files
	C.1 Intent Definitions

	D Conformance
	D.1 Conformance Targets
	D.2 Conformance Items

	E Acknowledgements
	F Revision History

