

Service Component Architecture Spring
Component Implementation
Specification Version 1.1

Committee Specification Draft 01 /
Public Review Draft 01

23 May 2011

Specification URIs:
This version:

http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/csprd01/sca-springci-spec-v1.1-
csprd01.doc
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/csprd01/sca-springci-spec-v1.1-
csprd01.pdf (Authoritative)
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/csprd01/sca-springci-spec-v1.1-
csprd01.html

Previous version:
N/A

Latest version:
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/sca-springci-spec-v1.1.doc
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/sca-springci-spec-v1.1.pdf
(Authoritative)
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/sca-springci-spec-v1.1.html

Technical Committee:
OASIS Service Component Architecture / J (SCA-J) TC

Chairs:
David Booz, IBM
Anish Karmarkar, Oracle

Editors:
David Booz, IBM
Mike Edwards, IBM
Anish Karmarkar, Oracle

Related work:
This specification replaces or supersedes:

 Service Component Architecture Spring Component Implementation Specification
Version 1.00, March 21 2007

This specification is related to:

 Service Component Architecture Assembly Model Specification Version 1.1
 SCA Policy Framework Version 1.1
 XML schemas: sca-springci-spec/v1.1/csprd01/xsd/

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 1 of 31

http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/csprd01/sca-springci-spec-v1.1-csprd01.doc
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/csprd01/sca-springci-spec-v1.1-csprd01.doc
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/csprd01/sca-springci-spec-v1.1-csprd01.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/csprd01/sca-springci-spec-v1.1-csprd01.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/csprd01/sca-springci-spec-v1.1-csprd01.html
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/csprd01/sca-springci-spec-v1.1-csprd01.html
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/sca-springci-spec-v1.1.doc
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/sca-springci-spec-v1.1.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/sca-springci-spec-v1.1.html
http://www.oasis-open.org/committees/sca-j/
mailto:booz@us.ibm.com
http://www.ibm.com/
mailto:Anish.Karmarkar@oracle.com
http://www.oracle.com/
mailto:booz@us.ibm.com
http://www.ibm.com/
mailto:mike_edwards@uk.ibm.com
http://www.ibm.com/
mailto:Anish.Karmarkar@oracle.com
http://www.oracle.com/
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf?version=1
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.html
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/csprd01/xsd/

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 2 of 31

Declared XML namespaces:
http://docs.oasis-open.org/ns/opencsa/sca-j/spring/200810
http://docs.oasis-open.org/ns/opencsa/sca/200912

Abstract:
The SCA Spring component implementation specification specifies how the Spring Framework
[SPRING] can be used with SCA. This specification extends the SCA Assembly Model by
defining how a Spring Framework application context provides an implementation of an SCA
component, including its various attributes such as services, references, and properties and how
that application context is used in SCA as a component implementation type. The goals of this
specification are:

Coarse-grained integration: The integration with Spring is at the SCA Component level, where
a Spring application context provides a component implementation, exposing services and using
references via SCA. This means that a Spring application context defines the internal structure of
an implementation.

Start from SCA Component Type: Use of Spring Framework to implement any SCA
Component that uses WSDL or Java interfaces to define services, possibly with some SCA
specific extensions.

Start from Spring context: Generation of an SCA Component from any Spring application
context and use that component within an SCA assembly.

Status:
This document was last revised or approved by the OASIS Service Component Architecture / J
(SCA-J) TC on the above date. The level of approval is also listed above. Check the “Latest
Version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-j/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-j/ipr.php).

Citation format:
When referencing this specification the following citation format should be used:

[SCA-Spring-CI-v1.1]

Service Component Architecture Spring Component Implementation Specification Version 1.1. 23
May 2011. OASIS Committee Specification Draft 01 / Public Review Draft 01. http://docs.oasis-
open.org/opencsa/sca-j/sca-springci-spec/v1.1/csprd01/sca-springci-spec-v1.1-csprd01.pdf.

http://docs.oasis-open.org/ns/opencsa/sca-j/spring/200810
http://docs.oasis-open.org/ns/opencsa/sca/200912
http://docs.oasis-open.org/ns/opencsa/sca/200912
http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/ipr.php
http://www.oasis-open.org/committees/sca-j/ipr.php
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/csprd01/sca-springci-spec-v1.1-csprd01.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-springci-spec/v1.1/csprd01/sca-springci-spec-v1.1-csprd01.pdf

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 3 of 31

Notices

Copyright © OASIS Open 2011. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/intellectualproperty.php
http://www.oasis-open.org/
http://www.oasis-open.org/who/trademark.php

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 4 of 31

Table of Contents

1 Introduction...5

1.1 Terminology ..5

1.2 Normative References ..5

1.3 Non-Normative References ..5

1.4 Testcases..6

2 Spring application context as component implementation...7

2.1 Structure of a Spring Application Context...8

2.1.1 Spring Beans...9

2.1.2 Property and Constructor Argument References..10

2.2 Direct use of SCA references within a Spring configuration...10

2.3 Explicit declaration of SCA related beans inside a Spring Application Context11

2.3.1 SCA Service element ..11

2.3.2 SCA Reference element..12

2.3.3 SCA Property element...13

2.3.4 Example of a Spring Application Context with SCA Spring Extension Elements14

2.3.5 Example of a Spring Application Context without Extension Elements14

2.4 Handling multiple application contexts in SCA runtime ..15

3 Component Type of a Spring Application Context ...17

3.1 Introspecting the Type Implied by a Spring Bean Reference...20

4 Specifying the Spring Implementation Type in an Assembly ...21

5 Conformance ..23

5.1 SCA Spring Component Implementation Composite Document..23

5.2 SCA Spring Application Context Document ...23

5.3 SCA Runtime ..23

A. XML Schemas ..24

A.1 sca-implementation-spring.xsd ..24

A.2 SCA Spring Extension schema - sca-spring-extensions.xsd ..24

B. Conformance Items ..26

C. Acknowledgements ..28

D. Revision History..30

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 5 of 31

1 Introduction 1

The SCA Spring component implementation specification specifies how the Spring Framework [SPRING]
can be used with SCA. This specification extends the SCA Assembly Model by defining how a Spring
Framework application context provides an implementation of an SCA component, including its various
attributes such as services, references, and properties and how that application context is used in SCA as
a component implementation type. The goals of this specification are:

2
3
4
5
6

7
8
9

10

11
12

13
14

16
17
18

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

40
41
42
43

Coarse-grained integration: The integration with Spring is at the SCA Component level, where a Spring
application context provides a component implementation, exposing services and using references via
SCA. This means that a Spring application context defines the internal structure of a component
implementation.

Start from SCA Component Type: Use of Spring Framework to implement any SCA Component that
uses WSDL or Java interfaces to define services, possibly with some SCA specific extensions.

Start from Spring context: Generation of an SCA Component from any Spring context and use that
component within an SCA assembly.

1.1 Terminology 15

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References 19

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
IETF RFC 2119, March 1997.
http://www.ietf.org/rfc/rfc2119.txt

[SCA-ASSEMBLY] OASIS Committee Draft 06, "SCA Assembly Model Specification V1.1", August

2010
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-
cd06.pdf

[SCA-POLICY] OASIS Committee Draft 04, "SCA Policy Framework Specification Version 1.1",

September 2010
 http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd04.pdf

[JAVA-CAA] OASIS Committee Draft 05, "SCA Java Common Annotations and APIs

Specification Version 1.1", November 2010
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csd05.pdf

[SPRING] Spring Framework Specification
 http://static.springsource.org/spring/docs/2.5.x/reference/index.html

1.3 Non-Normative References 39

[SCA-SPRING-TC] OASIS Working Draft 01, "TestCases for the Spring Component Implementation
Specification V1.1", April 2011
http://www.oasis-open.org/committees/download.php/41746/sca-springci-1.1-
testcases-wd01.odt

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd06.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd06.pdf
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd04.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csd05.pdf
http://static.springsource.org/spring/docs/2.5.x/reference/index.html
http://www.oasis-open.org/committees/download.php/41746/sca-springci-1.1-testcases-wd01.odt
http://www.oasis-open.org/committees/download.php/41746/sca-springci-1.1-testcases-wd01.odt

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 6 of 31

45
46
47
48

1.4 Testcases 44

The TestCases for the SCA Spring Component Implementation Specification Version 1.1 [SCA-SPRING-
TC] defines the TestCases for the SCA-J Spring Component Implementation specification.The TestCases
represent a series of tests that SCA runtimes are expected to pass in order to claim conformance to the
requirements of the SCA-J Spring Component Implementation specification.

2 Spring application context as component 49

implementation 50

51

52

53
54

A Spring Application Context can be used as an implementation of an SCA component.

Conceptually, this can be represented as follows:

Figure 1 below illustrates an SCA composite containing two components, both of which are implemented
by Spring application contexts.

Spring Application Context A

Bean XDeclared
Service

Bean Y

Spring Application Context B

Bean ZDeclared
Service

Bean W

SCA Composite

Component A
Composite

Service

Component B

Reference
as a Bean

component implementation

component implementation

55
56
57

58
59
60
61
62

63
64
65
66

67

Figure 1 SCA Domain with two Spring application contexts as component implementations

Each component has one declared service. Component A is implemented by an application context,
Context A, composed of two Spring beans. Here, bean X is exposed as an SCA service. Bean Y has a
reference to an external SCA service. This service reference is wired to the service offered by the second
component, Component B which is also implemented by another Spring context, Context B, which has a
single declared service, which is provided by Bean Z.

A component that uses Spring for an implementation can wire SCA services and references without
introducing SCA metadata into the Spring configuration. The Spring context does not need to know
anything about the SCA environment. All binding and policy declarations occur in the SCA runtime
implementation and does not enter into the Spring space.

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 7 of 31

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 8 of 31

68

Spring Application Context

Bean XDeclared
Service

Bean Y Reference
as a Bean

Implemented by SCA Runtime
 69

70

71
72
73
74
75
76
77

78
79
80
81
82

84
85
86

87
88
89
90
91
92
93
94
95
96
97
98
99

100

Figure 2 Relationship of Spring Application Context artifacts to SCA Services & References

Figure 2 shows two of the points where the SCA runtime interacts with the Spring context: services and
references. Each service is offered by one of the Spring beans within the application context, while each
reference is a property dependency of one or more of the Spring beans in the application context which is
not satisfied by another bean. Services and references can be introspected from a Spring application
context which has no SCA specific features. However, for greater control, it is possible to annotate the
application context file with SCA-specific extensions, for example this can be done to limit the number of
services offered by a particular application context.

Any policy specification is done in the SCA composite - and this extends to the running application where
service calls into the Spring application context have policy related processing performed by the SCA
runtime (e.g. decryption of encrypted messages) before the final message is delivered to the target
Spring bean. In the same way, on outbound service invocations from the application context, references
supplied by the SCA runtime can provide policy implementation.

2.1 Structure of a Spring Application Context 83

Spring [SPRING] applications are described by a declarative XML file called a Spring Application
Context. The structure of the parts of a Spring Application context relevant to SCA is outlined in the
following pseudo-schema

<beans>
 <bean id="xs:string" name="xs:string" class="xs:string"
 scope="xs:string">*
 <property name="xs:string" value="xs:string"? ref="xs:string"?>*
 <value type="xs:string"?/>?
 <bean/>?
 <ref bean="xs:string"? local="xs:IDREF"? parent="xs:string"?/>?
 <idref bean="xs:string" local="xs:IDREF"?/>?
 <list/>?
 <map/>?
 <set/>?
 <lookup-method/>?
 <replaced-method/>?
 </property>

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 9 of 31

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118

119

121
122
123

124

126
127
128

129
130
131

133
134
135

137
138
139

140
141
142

144
145
146

 <constructor-arg ref="xs:string"? index="xs:string"
 type="xs:string"? value="xs:string"?>*
 <value/>?
 <bean/>?
 <ref bean="xs:string"/>?
 <idref bean="xs:string"/>?
 <list/>?
 <map/>?
 <set/>?
 <props/>?
 </constructor-arg>
 <meta/>*
 <qualifier/>*
 <lookup-method/>*
 <replaced-method/>*
 <any/>*
 </bean>

</beans>

Example 1: Pseudo-schema for the Spring Application Context

2.1.1 Spring Beans 120

The application context consists of a set of <bean/> definitions, where each bean is a Java class that can
offer service(s) which are available for use by other beans - and in the context of SCA, a bean can
become an SCA service of the component that uses the Spring application context as its implementation.

The Java class of a <bean/> is defined by its @class attribute.

2.1.1.1 Bean ID & Name 125

A <bean/> can be given either zero or one ID, and can be given zero or more names, using its @id and
@name attributes. These names have to be unique within the application context. The id and names can
be used to refer to the bean, for example, when one bean has a dependency on another bean.

However, it is possible for a bean to have no ID and no names. From an SCA perspective, such
anonymous beans are purely for use within the application context - anonymous beans cannot be used
for an SCA service, for example.

2.1.1.2 Inner Beans 132

As can be seen from the pseudo-schema in Example 1, it is possible to nest a <bean/> within another
<bean/> declaration. Nested beans of this kind are termed inner beans. Inner beans are purely for use
within the application context and have no direct relationship with SCA.

2.1.1.3 Bean Properties 136

A <bean/> can have zero or more <property/> subelements. Each <property/> represents a dependency
of the bean class, which have to be injected into the class when it is instantiated. Injection is typically be
means of a setter method on the bean class.

From a Spring perspective, the property value is simply a Java primitive or Java class that is needed by
the bean class. From an SCA perspective, a property could be an SCA property or a property could be an
SCA reference to a target service, depending on the type of the <property/>.

2.1.1.4 Bean Constructor Arguments 143

A <bean/> can have zero or more <constructor-arg/> subelements. These elements are very similar to
<property/> elements in that they represent a dependency of the bean class, which have to be injected
into the class when it is instantiated. The difference between <constructor-arg/> elements and

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 10 of 31

147
148

150
151
152

153

154
155
156
157
158

159
160
161

162
163

164
165
166
167
168

170
171
172

173
174
175
176
177

178

179

180

181

182

183

184

185
186
187

188
189
190

191

192

<property/> elements is that <constructor-arg/> values are injected into the class through parameters on
the bean class constructor method, rather than through setter methods.

2.1.2 Property and Constructor Argument References 149

<property/> and <constructor-arg/> elements can supply their dependencies "by value", through data held
directly within the element, by means of the @value attribute, the <value/> subelement or the <bean/>
subelement.

Collections can be supplied to a bean class by means of the <list/>, <set/> and <map/> subelements.

Of relevance to SCA are <property/> and <constructor-arg/> elements that supply their dependencies "by
reference", where they contain references to data supplied elsewhere. Typically, these references are to
other <bean/> elements in the same application context. However, when using a Spring application
context within an SCA environment, the references can be to SCA references and SCA properties,
configured by the SCA component using the application context as its implementation.

References are made using the @ref attribute and the <ref/> and <idref/> subelements of <property/>
and <constructor-arg/> elements. It is also possible to have references within collections, since <list/>,
<set/> and <map/> subelements can contain <ref/> and <idref/> entries.

Each @ref attribute, <ref/> element or <idref/> identifies another bean within the application context, via
its ID or its one of its names.

For SCA, it is possible to have references of this type mapped to SCA references or SCA properties,
simply by means of having those references left "dangling" - ie not pointing to any bean within the
application context. Alternatively, SCA references and SCA properties can be explicity modelled within
the Spring application context using extension elements, as described in the section "Explicit declaration
of SCA related beans inside a Spring Application Context".

2.2 Direct use of SCA references within a Spring configuration 169

The SCA runtime hosting the Spring application context implementing a component creates a parent
application context in which all SCA references are defined as beans using the SCA reference name as
the bean name. These beans are automatically visible in the child (user application) context.

The following Spring configuration provides a model for Spring application context A, expressed in figure
1 above. In this example, there are two Spring beans, X and Y. The Spring bean named “X” provides a
service which is configured and invoked via SCA and Spring bean Y contains a reference to a service
which is supplied by SCA.

<beans>

<bean id="X" class="org.xyz.someapp.SomeClass">

 <property name="foo" ref="Y"/>

 </bean>

<bean id="Y" class"org.xyz.someapp.SomeOtherClass">

 <property name="bar" ref="SCAReference"/>

</bean>

</beans>

Two beans are defined. The bean named “X” contains one property (i.e. reference) named “foo” which
refers to the second bean in the context, named “Y”. The bean “Y” also has a single property named
“bar”, which refers to the SCA service reference, with the name “SCAReference”

The SCA composite contains service and reference definitions for a component that uses the Spring
application context as its implementation, with appropriate binding information:

<composite name="BazComposite">

 <component name="SpringComponent">

 <implementation.spring location="…"/>

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 11 of 31

193

194

195

196

 <service name="X"/>

 <reference name="SCAReference" .../> <!-- binding info specified -->

 </component>

</composite>

The only part of this that is specific to Spring is the <implementation.spring> element. The
location attribute of that element specifies the Spring application context file(s) to use, either as a
direct pointer to a single file, or via a reference to an archive file or a directory that contains one or more
Spring application context files (see the section

197
198
199
200
201

"Specifying the Spring Implementation Type in an
Assembly" for more details).

Each <service> element used with <implementation.spring> by default includes the name of the
Spring bean that is to be exposed as an SCA service in its name attribute. So, for Spring, the name
attribute of a service plays two roles: it identifies a Spring bean, and it names the service for the
component. The service element above has a name of “X”, so there is a Spring bean with that name.
The SCA component also contains a <reference> element named “SCAReference”. The reference name
becomes an addressable name within the Spring application context – so, in this case, “SCAReference”
can be referred to by bean “Y” in the Spring configuration above.

202
203
204
205
206
207
208

209
210
211
212
213

215

216
217
218

219
220

The SCA runtime is responsible for setting up the references and exposing them as beans with their
indicated names in the spring context. This is usually accomplished by creating a parent context which
has the appropriate beans defined and the context supplied by the implementation becomes the child of
this context. Thus, the references – e.g. the “SCAReference” that bean “Y” uses for its “bar” property –
are available to the context.

2.3 Explicit declaration of SCA related beans inside a Spring 214

Application Context
It is possible to explicitly declare SCA-related beans inside a Spring application context. A bean within the
application context can be declared to be an SCA service. References to beans made within the
application context can be declared to be either SCA properties or SCA references.

These capabilities are provided by means of a set of SCA extension elements, which can be placed
within a Spring application context. The SCA extension elements are declared in the SCA Spring
Extension schema - sca-spring-extensions.xsd - which is shown in Appendix A. SCA extension elements 221
within a Spring application context MUST conform to the SCA Spring Extension schema declared in sca-222
spring-extensions.xsd. [SPR20006] 223

224
225
226

227

228
229

230
231

232
233

235
236
237
238
239
240

For example, to declare a bean that represents the service referred to by an SCA reference named
"SCAReference" the following is declared in the application context:

<sca:reference name="SCAReference" type="com.xyz.SomeType/>

The SCA Spring extension elements are:

 <sca:reference> This element defines a Spring bean representing an SCA service which is
external to the Spring application context.

 <sca:property> This element defines a Spring bean which represents a property of the SCA
component which configures the Spring composite.

 <sca:service> This element defines a bean that the Spring composite exposes as an SCA
service.

2.3.1 SCA Service element 234

The SCA service element declares a service that is offered by the Spring application context as an SCA
service. When an application context contains one or more SCA service elements, these elements
declare all the services that are made available by the application context when it is used as a component
implementation. In this way, the service elements provide the developer with a means to control which
Spring beans are exposed as SCA services - if no SCA service elements are present in the application
context, the default behaviour is to expose all the Spring beans as SCA services.

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 12 of 31

241
242

243

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

259

The SCA service element can also declare other attributes of the SCA service. In particular, policy can
be associated with the service using the @requires and @policySets attributes.

The pseudo-schema for the service element is:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sca=
 "http://docs.oasis-open.org/ns/opencsa/sca-j/spring/200810"

...
 <sca:service name="xs:NCName"
 type="xs:NCName"?
 target="xs:NCName"
 requires="list of xs:QName"?
 policySets="list of xs:QName"?/>
...

</beans>

The service element has the following attributes:

 name : NCName (1..1) - the name of the service. The value of the @name attribute of an 260
<sca:service/> subelement of a <beans/> element MUST be unique amongst the <service/> 261
subelements of the <beans/> element. [SPR20001] 262

263
264
265

266

 type : NCName (0..1) - the type of the service, declared as the fully qualified name of a Java
class. If omitted, the type of the service is introspected from the Spring bean class identified by
the @target attribute.

 target : NCName (1..1) - the name of a <bean/> element within the application context which
provides the service declared by the sca:service element.The @target attribute of a <service/> 267
subelement of a <beans/> element MUST have the value of the @name attribute of one of the 268
<bean/> subelements of the <beans/> element. [SPR20002] 269

270
271

272
273

275
276
277
278
279
280
281

282
283

284

285
286
287
288
289
290
291

 requires : QName (0..1) - a list of policy intents. See the Policy Framework specification
[POLICY] for a description of this attribute.

 policySets : QName (0..1) - a list of policy sets. See the Policy Framework specification
[POLICY] for a description of this attribute.

2.3.2 SCA Reference element 274

The SCA reference element declares an SCA reference that is made by the Spring application context.
When an application context contains one or more SCA reference elements, each of these elements acts
as if it were a Spring <bean/> element, offering a target which can satisfy a reference from a <bean/>
element within the application context. Each SCA reference element appears as an reference element in
the componentType of the Spring implementation and the reference can be configured by the SCA
component using that implementation - in particular, the reference can be wired to an appropriate target
service.

The SCA reference element can also declare other attributes of the SCA reference. In particular, policy
can be associated with the reference using the @requires and @policySets attributes.

The pseudo-schema for the reference element is:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sca=
 "http://docs.oasis-open.org/ns/opencsa/sca-j/spring/200810"

...

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 13 of 31

292
293
294
295
296
297
298
299

300

 <sca:reference name="xs:NCName"
 type="xs:NCName"
 default="xs:NCName"?
 requires="list of xs:QName"?
 policySets="list of xs:QName"?/>
...
</beans>

The reference element has the following attributes:

 name : NCName (1..1) - the name of the reference. The value of the @name attribute of an 301
<sca:reference/> subelement of a <beans/> element MUST be unique amongst the @name 302
attributes of the <reference/> subelements, <property/> subelements and the <bean/> 303
subelements of the <beans/> element. [SPR20003] 304

305
306

307
308

 type : NCName (1..1) - the type of the reference, declared as the fully qualified name of a Java
class.

 default : NCName (0..1) - the name of a <bean/> element within the application context which
provides the reference declared by the sca:reference element if the component using the
application context as an implementation does not wire the reference to a target service.The 309
@default attribute of a <reference/> subelement of a <beans/> element MUST have the value of 310
the @name attribute of one of the <bean/> subelements of the <beans/> element. [SPR20004] 311

312
313

314
315

317
318
319
320
321
322

323

324
325
326
327
328
329
330
331
332
333
334
335

336

 requires : QName (0..1) - a list of policy intents. See the Policy Framework specification
[POLICY] for a description of this attribute.

 policySets : QName (0..1) - a list of policy sets. See the Policy Framework specification
[POLICY] for a description of this attribute.

2.3.3 SCA Property element 316

The SCA property element declares an SCA property which can be used by the Spring application
context. When an application context contains one or more SCA property elements, each of these
elements acts as if it were a Spring <bean/> element, offering a target which can satisfy a referece from a
<bean/> element within the application context. Each SCA property element appears as a property
element in the componentType of the Spring implementation and the property can be configured by the
SCA component using that implementation - the component can provide a value for the property.

The pseudo-schema for the property element is:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca-
j/spring/200810"

...
 <sca:property name="xs:NCName"
 type="xs:NCName"/>
...
</beans>

The property element has the following attributes:

 name : NCName (1..1) - the name of the property. The value of the @name attribute of an 337
<sca:property/> subelement of a <beans/> element MUST be unique amongst the @name 338
attributes of the <property/> subelements, <reference/> subelements and the <bean/> 339
subelements of the <beans/> element. [SPR20005] 340

341
342

 type : NCName (1..1) - the type of the property, declared as the fully qualified name of a Java
class.

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 14 of 31

343

345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

389
390
391
392
393
394
395

396

397

2.3.4 Example of a Spring Application Context with SCA Spring Extension 344

Elements
The following example shows a Spring application context that exposes one service, SCAService, and
explicitly defines an SCA reference, SCAReference. The "bar2" property of bean Y is configured with an
SCA property with name "sca-property-name".

<beans>

 <!-- An explicit reference, which is used by bean "Y" -->
 <sca:reference name=”SCAReference” type="com.xyz.SomeType"/>

 <bean name="X">
 <property name="foo" ref="Y"/>
 </bean>

 <bean name="Y">
 <property name="bar" ref="SCAReference"/>
 <property name="bar2" ref="sca-property-name"/>
 </bean>

 <!-- expose an SCA property named “sca-property-name” -->
 <sca:property name="sca-property-name" type="java.lang.String"/>

 <!-- Expose the bean "X" as an SCA service named "SCAService" -->
 <sca:service name="SCAService" type="org.xyz.someapp.SomeInterface"
 target="X"/>

</beans>

The componentType of the application context is:

<componentType>

 <service name="SCAService>
 <interface.java interface="org.xyz.someapp.SomeInterface"/>
 </service>

 <reference name="SCAReference">
 <interface.java interface="com.xyz.SomeType"/>
 </reference>

 <property name="sca-property-name" type="xsd:string"/>

</componentType>

2.3.5 Example of a Spring Application Context without Extension Elements 388

The following example shows a Spring application context that has no SCA extension elements. The
application context has one bean, named "X" that is exposed as an SCA service, while a second bean,
"Y" has a property that is not satisfied within the application context and has an (introspected) type which
is an interface - in SCA terms this unsatisfied property is a reference.

<beans>

 <bean id="X" class="org.xyz.someapp.SomeClass">

 <property name="foo" ref="Y"/>

 </bean>

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 15 of 31

398

399

400

401
402
403

404
405
406
407
408
409
410
411
412
413
414
415
416
417

418
419

421
422
423
424
425

426

427

428

429

430
431
432

433
434
435

436
437
438

439

440

441

442

443

444

445

446

 <bean id="Y" class"org.xyz.someapp.SomeOtherClass">

 <property name="bar" ref="SCAReference"/>

 </bean>

</beans>

The componentType of the application context is:

<componentType>

 <service name="X">
 <interface.java interface="org.xyz.someapp.SomeClass"/>
 </service>

 <reference name="SCAReference">
 <interface.java interface="com.xyz.SomeInterface"/>
 </reference>

</componentType>

Here it is assumed that the class "org.xyz.someapp.SomeClass" defines it own interface and that the
introspected type of the "bar" property of bean "Y" is "com.xyz.SomeInterface".

2.4 Handling multiple application contexts in SCA runtime 420

When the <implementation.spring> element's @location attribute specifies the Spring application context
file(s) to use via a reference to an archive file or a directory (see the section "Specifying the Spring
Implementation Type in an Assembly" for more details) and that location contains more than one Spring
application context file, then the SCA runtime has to create a combined application context for the
collection of paths identified by the "Spring-Context" header in the MANIFEST.MF file.

As an example, take the “Spring-Context” header in the MANIFEST.MF file defined as shown below:

Spring-Context: application-context1.xml; application-context2.xml;

 application-context3.xml

In this case, the SCA runtime has to construct an application context for the set of files identified from the
“Spring-Context” header in the MANIFEST.MF file, by configuring the individual application contexts in a
hierarchy such that a child application context can see beans defined in a parent, but not vice-versa.

In multiple application context scenario, each individual application context definition file identified from
the “Spring-Context” header in the MANIFEST.MF file, can have its own SCA services, references and
properties defined either implicitly or explicitly.

Spring supports the loading of multiple application contexts through other mechanisms. For example,
application contexts can be loaded in a parent/child hierarchy using the Spring
ClassPathXmlApplicationContext:

<beans>

 <bean name=”bean1” class=”…….”/>

 <bean name=”bean2” class=”…….”/>

 <bean

 class=”org.springframework.context.support.ClassPathXmlApplicationContext”>

 <constructor-arg>

 <list>

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 16 of 31

447

448

449

450

451

452

453

454

455
456
457
458
459

 <value>context1.xml</value>

 <value>context2.xml</value>

 <value>context3.xml</value>

 </list>

 </constructor-arg>

 </bean>

</beans>

In this case, the 3 contexts context1.xml, context2.xml, context3.xml are loaded by the
ClassPathXmlApplicationContext bean as child application contexts. Such application contexts can be
loaded and used when the parent context is used as an SCA component implementation, but these
application contexts do not contribute to the componentType of the Spring implementation (and they are
not introspected by the SCA Spring runtime).

In multiple application context scenario, the SCA runtime MUST raise an error when multiple 460
<sca:service> elements are identified with the same name amongst the set of application context files 461
identified from the “Spring-Context” header in the MANIFEST.MF file. [SPR20007] 462

463
464

Spring supports duplicate bean definitions for multiple application context scenarios. For example, a bean
with the same id or name can be defined in multiple application contexts and in such cases Spring
overrides the older bean definition with the later bean definition. When no <sca:service/> element is 465
present in any of the application context file identified from the collection of application context paths 466
identified by the "Spring-Context" header in the MANIFEST.MF file, then the SCA runtime MUST use 467
implicit service determination only for the later bean definition. [SPR20008] 468

In multiple application context scenario, the SCA runtime MUST determine the componentType by 469
applying the rules defined in the section “Component Type of a Spring Application Context” to the 470
combined application context and not to the individual application context files. [SPR20009] 471

472
473
474
475
476

For example, when at least one <sca:service/> element is present in any one of the application context
file identified from the collection of paths identified by the "Spring-Context" header in the MANIFEST.MF
file, then no implicit service determination is used for any of the application contexts and only services
explicitly declared with <sca:service/> elements appear in the componentType of the Spring
implementation.

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 17 of 31

3 Component Type of a Spring Application Context 477

An SCA runtime MUST introspect the componentType of an implementation.spring application context 478
following the rules defined in the section "Component Type of a Spring Application Context". [SPR30001] 479

The introspected component type MUST be a compliant SCA Java XML Document as defined in section 480
12.1 of [JAVA-CAA]. [SPR30003] The introspected component type uses <interface.java> as the
interface type for the introspected services and references. Section 12.1 of [JAVA-CAA] requires
compliance with the all requirements of <interface.java>.

481
482
483

484
485

486

487

488

489
490
491

492
493
494

495
496
497
498
499

500

501

502

503
504
505

506

507

508

509

510
511

512
513

514

515
516

517

518

519
520

The component type of a Spring Application Context is introspected from the application context as
follows:

A <service/> element exists for each <sca:service/> element in the application context, where:

 @name attribute is the value of the @name attribute of the sca:service element

 @requires attribute is omitted unless the <sca:service/> element has a @requires attribute, in
which case the @requires attribute is present with its value equal to the value of the @requires
attribute of the <sca:service/> element

 @policySets attribute is omitted unless the <sca:service/> element has a @policySets attribute,
in which case the @policySets attribute is present with its value equal to the value of the
@policySets attribute of the <sca:service/> element

 interface.java child element is present with the @interface attribute set to the fully qualified name
of the interface class identified by the @type attribute of the sca:service element. If the @type
attribute is not present on the <sca:service/> element, then the interface.java element has its
@interface attribute set to the fully qualified name of the Java class of the spring <bean/>
element identified by the @target attribute of the <sca:service/> element.

 binding child element is omitted

 callback child element is omitted

If there are no <sca:service/> elements in the application context, one <service/> element exists for each
service implemented by each top-level <bean/> element in the application context except for bean
elements where any of the following apply:

 <bean/> elements @class attribute is absent

 <bean/> elements @abstract attribute value is set to “true”

 <bean/> elements @factory-bean attribute value is set

 <bean/> elements @factory-method attribute value is set

 <bean/> elements @parent attribute value is set to reference another bean in the application
context

 <bean/> elements @class attribute value is set to reference the native spring binary classes
starting with "org.springframework"

where each <service/> element has the following characteristics:

 @name attribute value is the value of the @id attribute of the <bean/> element if present,
otherwise it is the first name from the value of @name attribute of the <bean/> element

 @requires attribute is omitted

 @policySets attribute is omitted

 interface.java child element is present with the @interface attribute set to the fully qualified name
of the interface class introspected from the bean class declared in the @class attribute of the

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 18 of 31

521
522
523
524
525

<bean/> element, as follows:
- if the bean class implements zero Java interfaces annotated with @Remotable, the interface
class is the bean class itself
- if the bean class implements exactly one Java interface that is annotated with @Remotable, the
interface class is the Java interface class which is annotated with @Remotable
- where there are no explicit <sca:service/> elements in the application context, if a bean class 526
implements two or more Java interfaces which are annotated with @Remotable, this is not 527
allowed and the SCA runtime MUST raise an error. [SPR30005] 528

529

530

531

532

533
534

535
536
537
538

539
540
541
542
543

544
545

546

547

548

549

550

551

552
553

554
555
556

557
558
559

560
561

562

563

564

565

566

567

 binding child element is omitted

 callback child element is omitted

Note that as described in the SCA Assembly Model specification

[SCA-ASSEMBLY] the @name attribute has to be unique amongst all <service/> elements in the
componentType.

Where a Spring Bean implementation class implements more than one interface, the Bean can be
exposed as either a single service or as multiple services, through the use of explicit <sca:service/>
elements, where each <sca:service/> element references the same <bean/> element but where the
@type attribute uses only one of the interfaces provided by the bean.

Where there are no <sca:service/> elements, the bean is exposed as a single service with an interface
that is the defined either by the bean class itself, or is defined by a single @Remotable interface
implemented by the bean class. It is not premitted for the bean class to implement two or more
@Remotable interfaces in this case - this can only be done with the use of explicit <sca:service/>
elements.

Note that a <bean/> element nested within another <bean/> element (an inner bean) is never exposed
directly as an SCA service.

A <reference/> element exists for each <sca:reference/> element in the application context, where:

 @name attribute is the value of the @name attribute of the sca:reference element

 @autowire attribute is omitted

 @wiredByImpl attribute is omitted

 @target attribute is omitted

 @multiplicity attribute is set to (1..1) unless the <sca:reference/> element has the @default
attribute present in which case it is set to (0..1)

 @requires attribute is omitted unless the <sca:reference/> element has a @requires attribute, in
which case the @requires attribute is present with its value equal to the value of the @requires
attribute of the <sca:reference/> element

 @policySets attribute is omitted unless the <sca:reference/> element has a @policySets
attribute, in which case the @policySets attribute is present with its value equal to the value of the
@policySets attribute of the <sca:reference/> element

 interface.java child element is present, with the interface attribute set to the fully qualified name of
the interface class identified by the @type attribute of the <sca:reference/> element

 binding child element is omitted

 callback child element is omitted

A <property/> element exists for each <sca:property/> element in the application context, where:

 @name attribute is the value of the @name attribute of the <sca:property/> element

 @value attribute is omitted

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 19 of 31

568
569

570

571

572

573

574
575
576

577

578
579

580
581
582

583

584

585

586

587

588

589

590
591

592
593
594

 @type attribute is set to the XML type implied by the JAXB mapping of the Java class identified
by the @type attribute of the <sca:property/> element

 @element attribute is omitted

 @many attribute is set to "false"

 @mustSupply attribute is set to "true"

IF there are no <sca:reference/> elements AND no <sca:property> elements in the application context,
then references and properties are defined by the bean references in the application context which are
not found in the application context as follows:

A <reference/> element exists for each unique bean reference in the application context to a bean which
is not found in the application context and where the bean reference refers to a Java interface class:

 @name attribute is the value of the @ref attribute of the <property/> or <constructor-arg/>
element that makes the reference, or the reference name derived from the subelements of the
<property/> or <constructor-arg/> element (eg. @bean attribute of a <ref/> subelement)

 @autowire attribute is omitted

 @wiredByImple attribute is omitted

 @target attribute is omitted

 @multiplicity attribute is set to (1..1)

 @requires attribute is omitted

 @policySets attribute is omitted

 interface.java child element is present, with the interface attribute set as follows:

1. if only one bean refers to the bean reference, then the interface attribute is set to the fully
qualified name of the interface class identified by the bean reference

2. if two or more beans refer to the bean reference, each bean reference identifies an
interface class. Each interface class in the collection of interface classes has to be either
the same as, or an ancestor of, or a descendent of, every other interface class in that
collection. If this condition does not hold true then the SCA runtime MUST raise an error.
[SPR30002] . The interface attribute is set to the fully qualified name of the interface
class which has the highest depth in the inheritance tree in the set of interface classes -
i.e. it is set to the most specific subclass amongst all the interface classes identified by
the bean references.

595
596
597
598
599

600
601
602

603

604

605

606
607
608

609
610
611

612

613
614

For example, if two bean A and B refer to a bean reference C, and the interface class
identified by bean A for reference C is I1, and that of bean B is I2, and if I2 is a subclass
of I1, then the interface attribute value for the introspected implicit reference is set to I2.

 binding child element is omitted

 callback child element is omitted

A <property/> element exists for each unique bean reference in the application context to a bean which is
not found in the application context and where the bean reference does not refer to a Java interface
class:

 @name attribute is the value of the @ref attribute of the <property/> or <constructor-arg/>
element that makes the reference, or the reference name derived from the subelements of the
<property/> or <constructor-arg/> element (eg. @bean attribute of a <ref/> subelement)

 @value attribute is omitted

 @type attribute is set to the XML type implied by the JAXB mapping of the Java class identified
by the bean reference

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 20 of 31

615

616

617

618

619
620

621
622

623
624

625

 @element attribute is omitted

 @many attribute is set to "false"

 @mustSupply attribute is set to "true"

The Spring Component Implementation type does not support the use of Component Type side files,
as defined in the SCA Assembly Model specification

[SCA-ASSEMBLY], so that the effective componentType of a Spring Application Context is determined
completely by introspection of the Spring Application Context.

It is beyond the scope of this specification to define the interpretation of the annotations specified in
the SCA Common Annotations and API Specification

[JAVA-CAA]. , except for those annotations that are required to be supported by the SCA Java interface.

The SCA runtime MUST support the SCA annotations which are applicable to an interface class which is 626
referenced by an <interface.java/> element in the introspected component type of a Spring application 627
context. [SPR30004] 628

629
630
631

633
634
635

636
637
638

Other than the annotations which apply to a Java interface referenced from an <interface.java/> element
in the component type, an implementation can ignore SCA annotations that are present in classes used
by the application context.

3.1 Introspecting the Type Implied by a Spring Bean Reference 632

In the case where a reference or a property in the component type is derived by introspection of bean
references, the type of the reference or property is determined by introspection of the related property
setter method or constructor method of the Bean which is the source of the reference.

In some cases, the type introspected by this process could be a generic type - for example a List<?>. In
such cases, the formal type of the reference becomes Object. This will be interpreted as an SCA
property with a Java type of Object, which maps to an XML type of <any/>.

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 21 of 31

4 Specifying the Spring Implementation Type in an 639

Assembly 640

641
642

643

The following pseudo-schema defines the implementation element schema used for the Spring
implementation type:.

<implementation.spring location="xs:anyURI" 644
 requires="list of xs:QName"? 645

policySets="list of xs:QName"?/> 646
647

648

649
650

The implementation.spring element has the following attributes:

location : anyURI (1..1) – a URI pointing to the location of the Spring application context to use as the
implementation.

The location URI can either be an absolute URI or it can be a relative URI. In the case where the location 651
URI is a relative URI, the URI MUST be taken as being relative to the base of the contribution which 652
contains the composite containing the <implementation.spring/> element. [SPR40009] 653

654
The implementation.spring @location attribute URI value MUST point to one of the following: 655
a) a Spring application context file 656
b) a Java archive file (JAR) 657
c) a directory
[SPR40001]

658
659
660

If the implementation.spring @location URI identifies a Spring application context file, it MUST be used as 661
the Spring application context. [SPR40002] 662
If the implementation.spring @location URI identifies a JAR archive file, then the file META-663
INF/MANIFEST.MF MUST be read from the archive. [SPR40003] 664
If the implementation.spring @location URI identifies a directory, then the file META-INF/MANIFEST.MF 665
underneath that directory MUST be read from the directory. [SPR40004]

666
667

If the MANIFEST.MF file contains a header "Spring-Context" of the format: 668
 Spring-Context ::= path (';' path)* 669
where path is a relative path with respect to the @location URI, then each path specified in the header 670
MUST identify a Spring application context configuration file. [SPR40008]

671
672

If present, all the Spring application context configuration files identified by the "Spring-Context" header in 673
the MANIFEST.MF file MUST be collectively used to build the Spring application context for 674
implementation.spring element. [SPR40005]

675
676

If there is no MANIFEST.MF file or if there is no Spring-Context header within the MANIFEST.MF file, the 677
Spring application context MUST be built using all the *.xml files in the META-INF/spring subdirectory 678
within the JAR identified by the @location URI or underneath the directory specified by the @location 679
URI. [SPR40006] 680

681
682

683
684

685

 requires : QName (0..n) – a list of policy intents. See the Policy Framework specification
[POLICY] for a description of this attribute.

 policySets : QName (0..n) – a list of policy sets. See the Policy Framework specification
[POLICY] for a description of this attribute.

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 22 of 31

The <implementation.spring> element MUST conform to the schema defined in sca-implementation-686
spring.xsd. [SPR40007]

687
688

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 23 of 31

5 Conformance 689

The XML schema pointed to by the RDDL document at the namespace URI, defined by this specification,
are considered to be authoritative and take precedence over the XML schema defined in the appendix of
this document.

690
691
692

693
694
695

697
698
699
700
701

703
704
705
706
707

709

710
711

712
713

714
715

716
717
718

719

There are three categories of artifacts that this specification defines conformance for: SCA Spring
Component Implementation Composite Document, SCA Spring Application Context Document and SCA
Runtime.

5.1 SCA Spring Component Implementation Composite Document 696

An SCA Spring Component Implementation Composite Document is an SCA Composite Document, as
defined by the SCA Assembly Model Specification Section 13.1 [ASSEMBLY], that uses the
<implementation.spring> element. Such an SCA Spring Component Implementation Composite
Document MUST be a conformant SCA Composite Document, as defined by [ASSEMBLY], and MUST
comply with additional constraints on the document content as defined in Appendix B.

5.2 SCA Spring Application Context Document 702

An SCA Spring Application Context Document is a Spring Framework Application Context Document, as
defined by the Spring Framwork Specification [SPRING], that uses the SCA Spring extensions defined in
Section 2. Such an SCA Spring Application Context Document MUST be a conformant Spring Framework
Application Context Document, as defined by [SPRING], and MUST comply with the requirements
specified in Section 2 of this specification.

5.3 SCA Runtime 708

An implementation that claims to conform to this specification MUST meet the following conditions:

1. The implementation MUST meet all the conformance requirements defined by the SCA Assembly
Model Specification [ASSEMBLY].

2. The implementation MUST reject an SCA Spring Component Implementation Composite
Document that does not conform to the sca-implementation-spring.xsd schema.

3. The implementation MUST reject an SCA Spring Application Context Document that does not
conform to the sca-spring-extensions.xsd schema.

4. The implementation MUST comply with all statements related to an SCA Runtime, specified in
'Appendix B: Conformance Items' of this specification, notably all mandatory statements have to
be implemented.

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 24 of 31

A. XML Schemas 720

A.1 sca-implementation-spring.xsd 721

<?xml version="1.0" encoding="UTF-8"?> 722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

745

747

748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

<!-- Copyright(C) OASIS(R) 2005,2011. All Rights Reserved.
 OASIS trademark, IPR and other policies apply. -->
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 elementFormDefault="qualified"
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912">

 <include schemaLocation="sca-core-1.1-cd06.xsd"/>
 <element name="implementation.spring" type="sca:SpringImplementation"
 substitutionGroup="sca:implementation"/>
 <complexType name="SpringImplementation">
 <complexContent>
 <extension base="sca:Implementation">
 <sequence>
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="location" type="anyURI" use="required"/>
 </extension>
 </complexContent>
 </complexType>
</schema>

A.2 SCA Spring Extension schema 746

- sca-spring-extensions.xsd
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright(C) OASIS(R) 2005,2011. All Rights Reserved.
 OASIS trademark, IPR and other policies apply. -->
<xsd:schema
 xmlns="http://docs.oasis-open.org/ns/opencsa/sca-j/spring/200810"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xsi:schemaLocation="
 http://docs.oasis-open.org/ns/opencsa/sca/200912
 http://docs.oasis-open.org/opencsa/sca-assembly/sca-core-1.1-cd06.xsd"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace=
 "http://docs.oasis-open.org/ns/opencsa/sca-j/spring/200810">

 <xsd:element name="reference">
 <xsd:complexType>

<any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:attribute name="name" type="xsd:NCName"
 use="required"/>
 <xsd:attribute name="type" type="xsd:NCName"

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 25 of 31

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

 use="required"/>
 <xsd:attribute name="default" type="xsd:NCName"
 use="optional"/>
 <xsd:attribute name="requires" type="sca:listOfQNames"
 use="optional"/>
 <xsd:attribute name="policySets" type="sca:listOfQNames"
 use="optional"/>

<xsd:anyAttribute namespace="##other" processContents="lax"
use="optional"/>

 </xsd:complexType>
 </xsd:element>

 <xsd:element name="property">
 <xsd:complexType>

<any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:attribute name="name" type="xsd:NCName"
 use="required"/>
 <xsd:attribute name="type" type="xsd:NCName"
 use="required"/>

<xsd:anyAttribute namespace="##other" processContents="lax"
use="optional"/>

 </xsd:complexType>
 </xsd:element>

 <xsd:element name="service">
 <xsd:complexType>

<any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:attribute name="name" type="xsd:NCName"
 use="required"/>
 <xsd:attribute name="type" type="xsd:NCName"
 use="optional"/>
 <xsd:attribute name="target" type="xsd:NCName"
 use="required"/>
 <xsd:attribute name="requires" type="sca:listOfQNames"
 use="optional"/>
 <xsd:attribute name="policySets" type="sca:listOfQNames"
 use="optional"/>

<xsd:anyAttribute namespace="##other" processContents="lax"
use="optional"/>

 </xsd:complexType>
 </xsd:element>

</xsd:schema>

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 26 of 31

B. Conformance Items 816

Conformance ID Description

[SPR20001] The value of the @name attribute of an <sca:service/> subelement of a <beans/>
element MUST be unique amongst the <service/> subelements of the <beans/>
element.

[SPR20002] The @target attribute of a <service/> subelement of a <beans/> element MUST
have the value of the @name attribute of one of the <bean/> subelements of the
<beans/> element.

[SPR20003] The value of the @name attribute of an <sca:reference/> subelement of a
<beans/> element MUST be unique amongst the @name attributes of the
<reference/> subelements, <property/> subelements and the <bean/>
subelements of the <beans/> element.

[SPR20004] The @default attribute of a <reference/> subelement of a <beans/> element
MUST have the value of the @name attribute of one of the <bean/> subelements
of the <beans/> element.

[SPR20005] The value of the @name attribute of an <sca:property/> subelement of a
<beans/> element MUST be unique amongst the @name attributes of the
<property/> subelements, <reference/> subelements and the <bean/>
subelements of the <beans/> element.

[SPR20006] SCA extension elements within a Spring application context MUST conform to the
SCA Spring Extension schema declared in sca-spring-extensions.xsd.

[SPR20007] In multiple application context scenario, the SCA runtime MUST raise an error
when multiple <sca:service> elements are identified with the same name amongst
the set of application context files identified from the “Spring-Context” header in
the MANIFEST.MF file.

[SPR20008] When no <sca:service/> element is present in any of the application context file
identified from the collection of application context paths identified by the "Spring-
Context" header in the MANIFEST.MF file, then the SCA runtime MUST use
implicit service determination only for the later bean definition.

[SPR20009] In multiple application context scenario, the SCA runtime MUST determine the
componentType by applying the rules defined in the section “Component Type of
a Spring Application Context” to the combined application context and not to the
individual application context files.

[SPR30001] An SCA runtime MUST introspect the componentType of an
implementation.spring application context following the rules defined in the section
"Component Type of a Spring Application Context".

[SPR30002] If this condition does not hold true then the SCA runtime MUST raise an error.

[SPR30003] The introspected component type MUST be a compliant SCA Java XML
Document as defined in section 12.1 of [JAVA-CAA].

[SPR30004] The SCA runtime MUST support the SCA annotations which are applicable to an
interface class which is referenced by an <interface.java/> element in the
introspected component type of a Spring application context.

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 27 of 31

[SPR30005] where there are no explicit <sca:service/> elements in the application context, if a
bean class implements two or more Java interfaces which are annotated with
@Remotable, this is not allowed and the SCA runtime MUST raise an error.

[SPR40001] The implementation.spring @location attribute URI value MUST point to one of
the following:
a) a Spring application context file
b) a Java archive file (JAR)
c) a directory

[SPR40002] If the implementation.spring @location URI identifies a Spring application context
file, it MUST be used as the Spring application context.

[SPR40003] If the implementation.spring @location URI identifies a JAR archive file, then the
file META-INF/MANIFEST.MF MUST be read from the archive.

[SPR40004] If the implementation.spring @location URI identifies a directory, then the file
META-INF/MANIFEST.MF underneath that directory MUST be read from the
directory.

[SPR40005] If present, all the Spring application context configuration files identified by the
"Spring-Context" header in the MANIFEST.MF file MUST be collectively used to
build the Spring application context for implementation.spring element.

[SPR40006] If there is no MANIFEST.MF file or if there is no Spring-Context header within the
MANIFEST.MF file, the Spring application context MUST be built using all the
*.xml files in the META-INF/spring subdirectory within the JAR identified by the
@location URI or underneath the directory specified by the @location URI.

[SPR40007] The <implementation.spring> element MUST conform to the schema defined in
sca-implementation-spring.xsd.

[SPR40008] If the MANIFEST.MF file contains a header "Spring-Context" of the format:
 Spring-Context ::= path (';' path)*
where path is a relative path with respect to the @location URI, then each path
specified in the header MUST identify a Spring application context configuration
file.

[SPR40009]

The location URI can either be an absolute URI or it can be a relative URI. In the
case where the location URI is a relative URI, the URI MUST be taken as being
relative to the base of the contribution which contains the composite containing
the <implementation.spring/> element.

 817

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 28 of 31

C. Acknowledgements 818

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:

819
820

821
822

Participants:

Participant Name Affiliation
Bryan Aupperle IBM
Ron Barack SAP AG*
Mirza Begg Individual
Michael Beisiegel IBM
Henning Blohm SAP AG*
David Booz IBM
Martin Chapman Oracle Corporation
Graham Charters IBM
Shih-Chang Chen Oracle Corporation
Chris Cheng Primeton Technologies, Inc.
Vamsavardhana Reddy Chillakuru IBM
Roberto Chinnici Sun Microsystems
Pyounguk Cho Oracle Corporation
Eric Clairambault IBM
Mark Combellack Avaya, Inc.
Jean-Sebastien Delfino IBM
Derek Dougans Individual
Mike Edwards IBM
Ant Elder IBM
Raymond Feng IBM
James Hao Primeton Technologies, Inc.
Bo Ji Primeton Technologies, Inc.
Uday Joshi Oracle Corporation
Anish Karmarkar Oracle Corporation
Khanderao Kand Oracle Corporation
Michael Keith Oracle Corporation
Rainer Kerth SAP AG*
Meeraj Kunnumpurath Individual
Simon Laws IBM
Yang Lei IBM
Mark Little Red Hat
Ashok Malhotra Oracle Corporation
Jim Marino Individual
Jeff Mischkinsky Oracle Corporation
Sriram Narasimhan TIBCO Software Inc.
Simon Nash Individual
Sanjay Patil SAP AG*
Plamen Pavlov SAP AG*
Peter Peshev SAP AG*

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 29 of 31

823

Ramkumar Ramalingam IBM
Luciano Resende IBM
Michael Rowley Active Endpoints, Inc.
Vladimir Savchenko SAP AG*
Pradeep Simha TIBCO Software Inc.
Raghav Srinivasan Oracle Corporation
Scott Vorthmann TIBCO Software Inc.
Feng Wang Primeton Technologies, Inc.

Paul Yang
Changfeng Open Standards
Platform Software

Yuan Yi Primeton Technologies, Inc.

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 30 of 31

D. Revision History 824

[optional; should not be included in OASIS Standards] 825

826

Revision Date Editor Changes Made

1 2007-09-26 Anish Karmarkar Applied the OASIS template + related changes
to the Submission

WD01 2008-11-24 Mike Edwards Editorial cleanup

Issue 64 resolution applied

Issue 57 resolution applied

WD02 2009-07-20 Mike Edwards Issue 164 resolution applied

Added Appendix B - Conformance Items

Issue 58 resolution applied (new Section 3)

Issue 92 resolution applied - Section 3

Issue 59 resolution applied - Section 3

WD02 +
Issue106

2009-08-06 Mike Edwards Issue 106 (RFC2119)

- added Section 4

- added Appendix A1

- added Appendix B

WD03 2009-08-07 Mike Edwards All changes accepted.

WD04 2009-08-14 Mike Edwards Issue 63 applied - Section 2

All changes accepted

WD05 2010-08-06 Anish Karmarkar Issue 63 fully applied (few changes from the
resolution were missing)

Issue 149 resolution applied.

Issue 166 resolution applied.

Issue 167 resolution applied.

Issue 173 & 175 resolution applied.

Issue 150 resolution applied.

WD06 2011-02-23 Anish Karmarkar Issue 182 resolution applied

Issue 225 resolution applied

Issue 229 resolution applied

Ed fixes

WD07 2011-03-29 Mike Edwards Issue 230 resolution applied

Issue 237 resolution applied

Formatting updates & editorial fixes.

Added Acknowledgements entries

sca-springci-spec-v1.1-csprd01 23 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 31 of 31

WD08 2011-05-02 Anish Karmarkar Issue 228 resolution applied

Added a ref to testcases doc and a new section
that talks about it

 827

828

829

	1 Introduction
	1.1 Terminology
	1.2 Normative References
	1.3 Non-Normative References

	2 Spring application context as component implementation
	2.1 Structure of a Spring Application Context
	2.1.1 Spring Beans
	2.1.1.1 Bean ID & Name
	2.1.1.2 Inner Beans
	2.1.1.3 Bean Properties
	2.1.1.4 Bean Constructor Arguments

	2.1.2 Property and Constructor Argument References

	2.2 Direct use of SCA references within a Spring configuration
	2.3 Explicit declaration of SCA related beans inside a Spring Application Context
	2.3.1 SCA Service element
	2.3.2 SCA Reference element
	2.3.3 SCA Property element
	2.3.4 Example of a Spring Application Context with SCA Spring Extension Elements
	2.3.5 Example of a Spring Application Context without Extension Elements

	2.4 Handling multiple application contexts in SCA runtime

	3 Component Type of a Spring Application Context
	3.1 Introspecting the Type Implied by a Spring Bean Reference

	4 Specifying the Spring Implementation Type in an Assembly
	5 Conformance
	5.1 SCA Spring Component Implementation Composite Document
	5.2 SCA Spring Application Context Document
	5.3 SCA Runtime

