
sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 1 of 39

Service Component Architecture POJO
Component Implementation
Specification Version 1.1

Committee Specification Draft 04

15 August 2011

Specification URIs
This version:

http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csd04.pdf (Authoritative)
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csd04.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csd04.doc

Previous version:
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csprd03.pdf (Authoritative)
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csprd03.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csprd03.doc

Latest version:
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec.pdf (Authoritative)
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec.doc

Technical Committee:

OASIS Service Component Architecture / J (SCA-J) TC

Chairs:
David Booz (booz@us.ibm.com), IBM
Anish Karmarkar (Anish.Karmarkar@oracle.com), Oracle

Editors:
David Booz (booz@us.ibm.com), IBM
Mike Edwards (mike_edwards@uk.ibm.com), IBM
Anish Karmarkar (Anish.Karmarkar@oracle.com), Oracle

Related work:

This specification replaces or supersedes:

 Service Component Architecture Java Component Implementation Specification Version
1.00, 15 February 2007.
http://www.osoa.org/download/attachments/35/SCA_JavaComponentImplementation_V100.p
df?version=1

This specification is related to:

 Service Component Architecture Assembly Model Specification Version 1.1. Latest version.
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.html

 SCA Policy Framework Version 1.1. Latest version.
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.html

http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csd04.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csd04.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csd04.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csd04.doc
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csd04.doc
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csprd03.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csprd03.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csprd03.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csprd03.doc
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csprd03.doc
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec.doc
http://www.oasis-open.org/committees/sca-j/
mailto:booz@us.ibm.com
http://www.ibm.com/
mailto:Anish.Karmarkar@oracle.com
http://www.oracle.com/
mailto:booz@us.ibm.com
http://www.ibm.com/
mailto:mike_edwards@uk.ibm.com
http://www.ibm.com/
mailto:Anish.Karmarkar@oracle.com
http://www.oracle.com/
http://www.osoa.org/download/attachments/35/SCA_JavaComponentImplementation_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_JavaComponentImplementation_V100.pdf?version=1
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.html

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 2 of 39

 Service Component Architecture SCA-J Common Annotations and APIs Specification
Version 1.1. Latest version.

http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec.html

Declared XML namespaces:

 http://docs.oasis-open.org/ns/opencsa/sca/200912

Abstract:
This specification extends the SCA Assembly Model by defining how a Java class provides an
implementation of an SCA component, including its various attributes such as services,
references, and properties, and how that class is used in SCA as a component implementation
type. It requires all the annotations and APIs as defined by the SCA-J Common Annotations and
APIs specification.

This specification also details the use of metadata and the Java API defined in the context of a
Java class used as a component implementation type.

Status:
This document was last revised or approved by the OASIS Service Component Architecture / J
(SCA-J) TC on the above date. The level of approval is also listed above. Check the “Latest
version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-j/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-j/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[SCA-JavaCI-v1.1]

Service Component Architecture SCA-J POJO Component Implementation Specification Version
1.1. 15 August 2011. OASIS Committee Specification Draft 04.
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csd04.html.

http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec.html
http://docs.oasis-open.org/ns/opencsa/sca/200912
http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=sca-j
http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/ipr.php
http://www.oasis-open.org/committees/sca-j/ipr.php
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csd04.html

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 3 of 39

Notices

Copyright © OASIS Open 2011. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/intellectualproperty.php
http://www.oasis-open.org/
http://www.oasis-open.org/who/trademark.php

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 4 of 39

Table of Contents

1 Introduction ... 6

1.1 Terminology .. 6

1.2 Normative References .. 6

1.3 Non-Normative References .. 6

1.4 Testcases.. 7

2 Service .. 8

2.1 Use of @Service ... 8

2.2 Local and Remotable Services ... 10

2.3 Introspecting Services Offered by a Java Implementation ... 12

2.4 Non-Blocking Service Operations ... 12

2.5 Callback Services ... 12

3 References ... 13

3.1 Reference Injection ... 13

3.2 Dynamic Reference Access .. 13

4 Properties ... 14

4.1 Property Injection .. 14

4.2 Dynamic Property Access ... 14

5 Implementation Instance Creation .. 15

6 Implementation Scopes and Lifecycle Callbacks ... 17

7 Accessing a Callback Service .. 18

8 Component Type of a Java Implementation .. 19

8.1 Component Type of an Implementation with no @Service, @Reference or @Property Annotations
 .. 20

8.2 Impact of JAX-WS Annotations on ComponentType ... 22

8.2.1 @WebService ... 22

8.2.2 @WebMethod ... 22

8.2.3 @WebParam ... 22

8.2.4 @WebResult ... 23

8.2.5 @SOAPBinding ... 23

8.2.6 @WebServiceProvider .. 23

8.2.7 Web Service Binding ... 23

8.3 Component Type Introspection Examples .. 24

8.4 Java Implementation with Conflicting Setter Methods .. 25

9 Specifying the Java Implementation Type in an Assembly .. 27

10 Java Packaging and Deployment Model .. 28

10.1 Contribution Metadata Extensions .. 28

10.2 Java Artifact Resolution .. 30

10.3 Class Loader Model .. 30

11 Conformance .. 31

11.1 SCA Java Component Implementation Composite Document ... 31

11.2 SCA Java Component Implementation Contribution Document .. 31

11.3 SCA Runtime .. 31

Appendix A. XML Schemas ... 32

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 5 of 39

A.1 sca-contribution-java.xsd .. 32

A.2 sca-implementation-java.xsd .. 32

Appendix B. Conformance Items ... 34

Appendix C. Acknowledgements ... 36

Appendix D. Revision History .. 38

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 6 of 39

1 Introduction 1

This specification extends the SCA Assembly Model [ASSEMBLY] by defining how a Java class provides 2
an implementation of an SCA component (including its various attributes such as services, references, 3
and properties) and how that class is used in SCA as a component implementation type. 4

This specification requires all the annotations and APIs as defined by the SCA-J Common Annotations 5
and APIs specification [JAVACAA]. All annotations and APIs referenced in this document are defined in 6
the former unless otherwise specified. Moreover, the semantics defined in the SCA-J Common 7
Annotations and APIs specification are normative. 8

In addition, it details the use of metadata and the Java API defined in the SCA-J Common Annotations 9
and APIs Specification [JAVACAA] in the context of a Java class used as a component implementation 10
type 11

1.1 Terminology 12

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 13
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 14
in [RFC2119]. 15

1.2 Normative References 16

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 17
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 18

[ASSEMBLY] OASIS Committee Specification Draft 08, SCA Assembly Model Specification 19
Version 1.1, May 2011. 20

 http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-21
cd08.pdf 22

[POLICY] OASIS Committee Specification Draft 05, SCA Policy Framework Specification 23
Version 1.1, July 2011. 24

 http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-spec-v1.1-cd05.pdf 25

[JAVACAA] OASIS Committee Specification Draft 06, Service Component Architecture SCA-26
J Common Annotations and APIs Specification Version 1.1, August 2011. 27

 http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-spec-v1.1-cd06.pdf 28

[WSDL] WSDL Specification, WSDL 1.1: http://www.w3.org/TR/wsdl 29

[OSGi Core] OSGI Service Platform Core Specification, Version 4.0.1 30

 http://www.osgi.org/download/r4v41/r4.core.pdf 31

[JAVABEANS] JavaBeans 1.01 Specification, 32
http://java.sun.com/javase/technologies/desktop/javabeans/api/ 33

[JAX-WS] JAX-WS 2.1 Specification (JSR-224), 34
http://www.jcp.org/en/jsr/detail?id=224 35

[WSBINDING] OASIS Committee Specification Draft 05, SCA Web Service Binding 36
Specification Version 1.1, July 2011. 37

 http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-spec-v1.1-38
csd05.pdf 39

1.3 Non-Normative References 40

[POJOTESTS] OASIS Committee Specification Draft 02, SCA-J POJO Component 41
Implementation v1.1 TestCases, August 2011 42
http://docs.oasis-open.org/opencsa/sca-j/sca-j-pojo-ci-testcases-v1.1-csd02.pdf 43

 44

http://www.ietf.org/rfc/rfc2119.txt
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-cd08.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-cd08.pdf
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-spec-v1.1-cd05.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-spec-v1.1-cd06.pdf
http://www.w3.org/TR/wsdl
http://www.osgi.org/download/r4v41/r4.core.pdf
http://java.sun.com/javase/technologies/desktop/javabeans/api/
http://www.jcp.org/en/jsr/detail?id=224
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-spec-v1.1-csd05.pdf
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-spec-v1.1-csd05.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-j-pojo-ci-testcases-v1.1-csd02.pdf

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 7 of 39

1.4 Testcases 45

The SCA-J POJO Component Implementation v1.1 TestCases [POJOTESTS] defines the TestCases for 46
the SCA-J POJO Component Implementation specification. The TestCases represent a series of tests 47
that SCA runtimes are expected to pass in order to claim conformance to the requirements of the SCA-J 48
Component Implementation specification. 49

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 8 of 39

2 Service 50

A component implementation based on a Java class can provide one or more services. 51

The services provided by a Java-based implementation MUST have an interface defined in one of the 52
following ways: 53

 A Java interface 54

 A Java class 55

 A Java interface generated from a Web Services Description Language [WSDL] (WSDL) portType. 56

[JCI20001] 57

Java implementation classes MUST implement all the operations defined by the service interface. 58
[JCI20002] If the service interface is defined by a Java interface, the Java-based component can either 59
implement that Java interface, or implement all the operations of the interface. 60

Java interfaces generated from WSDL portTypes are remotable, see the WSDL to Java and Java to 61
WSDL section of the SCA-J Common Annotations and APIs Specification [JAVACAA] for details. 62

A Java implementation type can specify the services it provides explicitly through the use of the @Service 63
annotation. In certain cases as defined below, the use of the @Service annotation is not necessary and 64
the services a Java implementation type offers can be inferred from the implementation class itself. 65

2.1 Use of @Service 66

Service interfaces can be specified as a Java interface. A Java class, which is a component 67
implementation, can offer a service by implementing a Java interface specifying the service contract. As a 68
Java class can implement multiple interfaces, some of which might not define SCA services, the 69
@Service annotation can be used to indicate the services provided by the implementation and their 70
corresponding Java interface definitions. 71

Snippet 2-1 and Error! Reference source not found. are an example of a Java service interface and a 72

Java implementation which provides a service using that interface: 73

Interface: 74

package services.hello; 75
 76
public interface HelloService { 77
 78
 String hello(String message); 79
} 80

Snippet 2-1: Example Java Service Interface 81

 82

Implementation class: 83

@Service(HelloService.class) 84
public class HelloServiceImpl implements HelloService { 85
 86
 public String hello(String message) { 87
... 88
 } 89
} 90

Snippet 2-2: Example Java Component Implementation 91

 92

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 9 of 39

The XML representation of the component type for this implementation is shown in Snippet 2-3 for 93
illustrative purposes. There is no need to author the component type as it is introspected from the Java 94
class. 95

 96

<?xml version="1.0" encoding="UTF-8"?> 97
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 98
 99
 <service name="HelloService"> 100
 <interface.java interface="services.hello.HelloService"/> 101
 </service> 102
 103
</componentType> 104

Snippet 2-3: Effective Component Type for Implementation in Snippet 2-2 105

 106

Another possibility is to use the Java implementation class itself to define a service offered by a 107
component and the interface of the service. In this case, the @Service annotation can be used to 108
explicitly declare the implementation class defines the service offered by the implementation. In this case, 109
a component will only offer services declared by @Service. Snippet 2-4 illustrates this: 110

 111

package services.hello; 112
 113
@Service(HelloServiceImpl.class) 114
public class HelloServiceImpl implements AnotherInterface { 115
 116
 public String hello(String message) { 117
... 118
 } 119
 … 120
} 121

Snippet 2-4: Example of Java Class Defining a Service 122

 123

In Snippet 2-4, HelloServiceImpl offers one service as defined by the public methods of the 124
implementation class. The interface AnotherInterface in this case does not specify a service offered by 125
the component. Snippet 2-5 is an XML representation of the introspected component type: 126

<?xml version="1.0" encoding="UTF-8"?> 127
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 128
 129
 <service name="HelloServiceImpl"> 130
 <interface.java interface="services.hello.HelloServiceImpl"/> 131
 </service> 132
 133
</componentType> 134

Snippet 2-5: Effective Component Type for Implementation in Snippet 2-4 135

 136

The @Service annotation can be used to specify multiple services offered by an implementation as in 137
Snippet 2-6: 138

 139

@Service(interfaces={HelloService.class, AnotherInterface.class}) 140
public class HelloServiceImpl implements HelloService, AnotherInterface 141
{ 142
 143
 public String hello(String message) { 144
... 145
} 146

http://docs.oasis-open.org/ns/opencsa/sca/200712
http://docs.oasis-open.org/ns/opencsa/sca/200712

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 10 of 39

 … 147
} 148

Snippet 2-6: Example of @Service Specifying Multiple Services 149

 150

Snippet 2-7 shows the introspected component type for this implementation. 151

<?xml version="1.0" encoding="UTF-8"?> 152
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 153
 154
 <service name="HelloService"> 155
 <interface.java interface="services.hello.HelloService"/> 156
 </service> 157
 <service name="AnotherService"> 158
 <interface.java interface="services.hello.AnotherService"/> 159
 </service> 160
 161
</componentType> 162

Snippet 2-7: Effective Component Type for Implementation in Snippet 2-6 163

2.2 Local and Remotable Services 164

A Java interface or implementation class that defines an SCA service can use the @Remotable 165
annotation to declare that the service follows the semantics of remotable services as defined by the SCA 166
Assembly Model Specification [ASSEMBLY]. Snippet 2-8 and Snippet 2-9 demonstrate the use of the 167
@Remotable annotation on a Java interface: 168

Interface: 169

package services.hello; 170
 171
@Remotable 172
public interface HelloService { 173
 174
 String hello(String message); 175
} 176

Snippet 2-8: Example Remotable Interface 177

 178

Implementation class: 179

package services.hello; 180
 181
@Service(HelloService.class) 182
public class HelloServiceImpl implements HelloService { 183
 184
 public String hello(String message) { 185
... 186
 } 187
} 188

Snippet 2-9: Implementation for Remotable Interface 189

 190

Snippet 2-10 shows the introspected component type for this implementation. 191

<?xml version="1.0" encoding="UTF-8"?> 192
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 193
 <service name="HelloService"> 194
 <interface.java interface="services.hello.HelloService"/> 195
 </service> 196
</componentType> 197

Snippet 2-10: Effective Component Type for Implementation in Snippet 2-9 198

http://docs.oasis-open.org/ns/opencsa/sca/200712
http://docs.oasis-open.org/ns/opencsa/sca/200712

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 11 of 39

The interface specified in the @interface attribute of the <interface.java/> element is implicitly remotable 199
because the Java interface contains @Remotable. 200

If a service is defined by a Java implementation class instead of a Java interface, the @Remotable 201
annotation can be used on the implementation class to indicate that the service is remotable. Snippet 202
2-11 demonstrates this: 203

package services.hello; 204
 205
@Remotable 206
@Service(HelloServiceImpl.class) 207
public class HelloServiceImpl { 208
 209
 public String hello(String message) { 210
... 211
 } 212
} 213

Snippet 2-11: Remotable Inteface Defined by a Class 214

 215

Snippet 2-12 shows the introspected component type for this implementation. 216

<?xml version="1.0" encoding="UTF-8"?> 217
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 218
 <service name="HelloServiceImpl"> 219
 <interface.java interface="services.hello.HelloServiceImpl"/> 220
 </service> 221
</componentType> 222

Snippet 2-12: Effective Component Type for Implementation in Snippet 2-11 223

 224

The interface specified in the @interface attribute of the <interface.java/> element is implicitly remotable 225
because the Java implementation class contains @Remotable. 226

It is also possible to use a Java interface with no @Remotable annotation to define an SCA service with 227
remotable semantics. In this case, the @Remotable annotation is placed on the service implementation 228
class, as shown in Snippet 2-13 and Snippet 2-14: 229

Interface: 230

package services.hello; 231
 232
public interface HelloService { 233
 234
 String hello(String message); 235
} 236

Snippet 2-13: Interface without @Remotable 237

 238

Implementation class: 239

package services.hello; 240
 241
@Remotable 242
@Service(HelloService.class) 243
public class HelloServiceImpl implements HelloService { 244
 245
 public String hello(String message) { 246
... 247
 } 248
} 249

Snippet 2-14: Interface Made Remotable with @Remotable on Implementation Class 250

 251

http://docs.oasis-open.org/ns/opencsa/sca/200712

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 12 of 39

In this case the introspected component type for the implementation uses the @remotable attribute of the 252
<interface.java/> element, as shown in Snippet 2-15: 253

<?xml version="1.0" encoding="UTF-8"?> 254
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 255
 <service name="HelloService"> 256
<interface.java interface="services.hello.HelloService" 257
 remotable="true"/> 258
 </service> 259
</componentType> 260

Snippet 2-15: Effective Component Type for Implementation in Snippet 2-14 261

 262

An SCA service defined by a @Service annotation specifying a Java interface, with no @Remotable 263
annotation on either the interface or the service implementation class, is inferred to be a local service as 264
defined by the SCA Assembly Model Specification [ASSEMBLY]. Similarly, an SCA service defined by a 265
@Service annotation specifying a Java implementation class with no @Remotable annotation is inferred 266
to be a local service. 267

An implementation class can provide hints to the SCA runtime about whether it can achieve pass-by-268
value semantics without making a copy by using the @AllowsPassByReference annotation. 269

2.3 Introspecting Services Offered by a Java Implementation 270

The services offered by a Java implementation class are determined through introspection, as defined in 271
the section "Component Type of a Java Implementation". 272

If the interfaces of the SCA services are not specified with the @Service annotation on the 273
implementation class and the implementation class does not contain any @Reference or @Property 274
annotations, it is assumed that all implemented interfaces that have been annotated as @Remotable are 275
the service interfaces provided by the component. If an implementation class has only implemented 276
interfaces that are not annotated with a @Remotable annotation, the class is considered to implement a 277
single local service whose type is defined by the class (note that local services can be typed using either 278
Java interfaces or classes). 279

2.4 Non-Blocking Service Operations 280

Service operations defined by a Java interface can use the @OneWay annotation to declare that the SCA 281
runtime needs to honor non-blocking semantics as defined by the SCA Assembly Model Specification 282
[ASSEMBLY] when a client invokes the service operation. 283

2.5 Callback Services 284

A callback interface can be declared by using the @Callback annotation on the service interface or Java 285
implementation class as described in the SCA-J Common Annotations and APIs Specification 286
[JAVACAA]. Alternatively, the @callbackInterface attribute of the <interface.java/> element can be used 287
to declare a callback interface. 288

http://docs.oasis-open.org/ns/opencsa/sca/200712

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 13 of 39

3 References 289

A Java implementation class can obtain service references either through injection or through the 290
ComponentContext API as defined in the SCA-J Common Annotations and APIs Specification 291
[JAVACAA]. When possible, the preferred mechanism for accessing references is through injection. 292

3.1 Reference Injection 293

A Java implementation type can explicitly specify its references through the use of the @Reference 294
annotation as in Snippet 3-1: 295

 296
public class ClientComponentImpl implements Client { 297
 private HelloService service; 298
 299
 @Reference 300
 public void setHelloService(HelloService service) { 301
 this.service = service; 302
 } 303
} 304

Snippet 3-1: Specifying a Reference 305

 306

If @Reference marks a setter method, the SCA runtime provides the appropriate implementation of the 307
service reference contract as specified by the parameter type of the method. This is done by invoking the 308
setter method of an implementation instance of the Java class. When injection occurs is defined by the 309
scope of the implementation. However, injection always occurs before the first service method is called. 310

If @Reference marks a field, the SCA runtime provides the appropriate implementation of the service 311
reference contract as specified by the field type. This is done by setting the field on an implementation 312
instance of the Java class. When injection occurs is defined by the scope of the implementation. 313
However, injection always occurs before the first service method is called. 314

If @Reference marks a parameter on a constructor, the SCA runtime provides the appropriate 315
implementation of the service reference contract as specified by the constructor parameter during 316
creation of an implementation instance of the Java class. 317

Except for constructor parameters, references marked with the @Reference annotation can be declared 318
with required=false, as defined by the SCA-J Common Annotations and APIs Specification [JAVACAA] - 319
i.e., the reference multiplicity is 0..1 or 0..n, where the implementation is designed to cope with the 320
reference not being wired to a target service. 321

The @Remotable annotation can be used either on the service reference contract or on the reference 322
itself to specify that the service reference contract follows the semantics of remotable services as defined 323
by the SCA Assembly Model Specification [ASSEMBLY]; otherwise, the service reference contract has 324
local semantics. 325

In the case where a Java class contains no @Reference or @Property annotations, references are 326
determined by introspecting the implementation class as described in the section "ComponentType of an 327
Implementation with no @Reference or @Property annotations ". 328

3.2 Dynamic Reference Access 329

As an alternative to reference injection, service references can be accessed dynamically through the API 330
methods ComponentContext.getService() and ComponentContext.getServiceReference() methods as 331
described in the SCA-J Common Annotations and APIs Specification [JAVACAA]. 332

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 14 of 39

4 Properties 333

4.1 Property Injection 334

Properties can be obtained either through injection or through the ComponentContext API as defined in 335
the SCA-J Common Annotations and APIs Specification [JAVACAA]. When possible, the preferred 336
mechanism for accessing properties is through injection. 337

A Java implementation type can explicitly specify its properties through the use of the @Property 338
annotation as in Snippet 4-1: 339

 340
public class ClientComponentImpl implements Client { 341
 private int maxRetries; 342
 343
 @Property 344
 public void setMaxRetries(int maxRetries) { 345
 this.maxRetries = maxRetries; 346
 } 347
} 348

Snippet 4-1: Specifying a Property 349

 350

If the @Property annotation marks a setter method, the SCA runtime provides the appropriate property 351
value by invoking the setter method of an implementation instance of the Java class. When injection 352
occurs is defined by the scope of the implementation. However, injection always occurs before the first 353
service method is called. 354

If the @Property annotation marks a field, the SCA runtime provides the appropriate property value by 355
setting the value of the field of an implementation instance of the Java class. When injection occurs is 356
defined by the scope of the implementation. However, injection always occurs before the first service 357
method is called. 358

If the @Property annotation marks a parameter on a constructor, the SCA runtime provides the 359
appropriate property value during creation of an implementation instance of the Java class. 360

Except for constructor parameters, properties marked with the @Property annotation can be declared 361
with required=false as defined by the SCA-J Common Annotations and APIs Specification [JAVACAA], 362
i.e., the property mustSupply attribute is false and where the implementation is designed to cope with the 363
component configuration not supplying a value for the property. 364

In the case where a Java class contains no @Reference or @Property annotations, properties are 365
determined by introspecting the implementation class as described in the section "ComponentType of an 366
Implementation with no @Reference or @Property annotations ". 367

For an unannotated field or setter method that is introspected as a property and where the Java type of 368
the field or setter method is a JAXB [JAXB] annotated class, the SCA runtime MUST convert a property 369
value specified by an SCA component definition into an instance of the property’s Java type as defined by 370
the XML to Java mapping in the JAXB specification [JAXB] with XML schema validation enabled. 371
[JCI40001] 372

For an unannotated field or setter method that is introspected as a property and where the Java type of 373
the field or setter method in not a JAXB [JAXB] annotated class, the SCA runtime can use any XML to 374
Java mapping when converting property values into instances of the Java type. 375

4.2 Dynamic Property Access 376

As an alternative to property injection, properties can also be accessed dynamically through the 377
ComponentContext.getProperty() method as described in the SCA-J Common Annotations and APIs 378
Specification [JAVACAA]. 379

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 15 of 39

5 Implementation Instance Creation 380

A Java implementation class MUST provide a public or protected constructor that can be used by the 381
SCA runtime to create the implementation instance. [JCI50001] The constructor can contain parameters; 382
in the presence of such parameters, the SCA container passes the applicable property or reference 383
values when invoking the constructor. Any property or reference values not supplied in this manner are 384
set into the field or are passed to the setter method associated with the property or reference before any 385
service method is invoked. 386

The constructor to use for the creation of an implementation instance MUST be selected by the SCA 387
runtime using the sequence: 388

1. A declared constructor annotated with a @Constructor annotation. 389

2. A declared constructor, all of whose parameters are annotated with either @Property or 390
@Reference. 391

3. A no-argument constructor. 392

[JCI50004] 393

The @Constructor annotation MUST NOT appear on more than one constructor. [JCI50002] 394

In the absence of an @Constructor annotation, there MUST NOT be more than one constructor that has 395
a non-empty parameter list with all parameters annotated with either @Property or @Reference. 396
[JCI50005] 397

The property or reference associated with each parameter of a constructor is identified through the 398
presence of a @Property or @Reference annotation on the parameter declaration. 399

The construction and initialization of component implementation instances is described as part of the SCA 400
component implementation lifecycle in the SCA-J Common Annotations and APIs specification 401
[JAVACAA]. 402

Snippet 5-1 shows examples of legal Java component constructor declarations: 403

/** Constructor declared using @Constructor annotation */ 404
public class Impl1 { 405
 private String someProperty; 406
 @Constructor 407
 public Impl1(@Property("someProperty") String propval) {...} 408
} 409
 410
/** Declared constructor unambiguously identifying all Property 411
 * and Reference values */ 412
public class Impl2 { 413
 private String someProperty; 414
 private SomeService someReference; 415
 public Impl2(@Property("someProperty") String a, 416
 @Reference("someReference") SomeService b) 417
 {...} 418
} 419
 420
/** Declared constructor unambiguously identifying all Property 421
 * and Reference values plus an additional Property injected 422
 * via a setter method */ 423
public class Impl3 { 424
 private String someProperty; 425
 private String anotherProperty; 426
 private SomeService someReference; 427
 public Impl3(@Property("someProperty") String a, 428
 @Reference("someReference") SomeService b) 429
 {...} 430
 @Property 431
 public void setAnotherProperty(String anotherProperty) {...} 432

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 16 of 39

} 433
 434
/** No-arg constructor */ 435
public class Impl4 { 436
 @Property 437
 public String someProperty; 438
 @Reference 439
 public SomeService someReference; 440
 public Impl4() {...} 441
} 442
 443
/** Unannotated implementation with no-arg constructor */ 444
public class Impl5 { 445
 public String someProperty; 446
 public SomeService someReference; 447
 public Impl5() {...} 448
} 449

Snippet 5-1: Examples of Valid Constructors 450

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 17 of 39

6 Implementation Scopes and Lifecycle Callbacks 451

The Java implementation type supports all of the scopes defined in the SCA-J Common Annotations and 452
APIs Specification: STATELESS and COMPOSITE. The SCA runtime MUST support the STATELESS 453
and COMPOSITE implementation scopes. [JCI60001] 454

Implementations specify their scope through the use of the @Scope annotation as shown in Snippet 6-1: 455

 456

@Scope("COMPOSITE") 457
public class ClientComponentImpl implements Client { 458
 // … 459
} 460

Snippet 6-1: Specifying the Scope of an Implementation 461

 462

When the @Scope annotation is not specified on an implementation class, its scope is defaulted to 463
STATELESS. 464

A Java component implementation specifies init and destroy methods by using the @Init and @Destroy 465
annotations respectively, as described in the SCA-J Common Annotations and APIs specification 466
[JAVACAA]. 467

For example: 468

public class ClientComponentImpl implements Client { 469
 470
@Init 471
public void init() { 472
//… 473
 } 474
 475
 @Destroy 476
public void destroy() { 477
//… 478
 } 479
} 480

Snippet 6-2: Example Init and Destroy Methods 481

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 18 of 39

7 Accessing a Callback Service 482

Java implementation classes that implement a service which has an associated callback interface can 483
use the @Callback annotation to have a reference to the callback service associated with the current 484
invocation injected on a field or injected via a setter method. 485

As an alternative to callback injection, references to the callback service can be accessed dynamically 486
through the API methods RequestContext.getCallback() and RequestContext.getCallbackReference() as 487
described in the SCA-J Common Annotations and APIs Specification [JAVACAA]. 488

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 19 of 39

8 Component Type of a Java Implementation 489

An SCA runtime MUST introspect the componentType of a Java implementation class following the rules 490
defined in the section "Component Type of a Java Implementation". [JCI80001] 491

The component type of a Java Implementation is introspected from the implementation class using the 492
rules: 493

A <service/> element exists for each interface or implementation class identified by a @Service 494
annotation: 495

 name attribute is the simple name of the interface or implementation class (i.e., without the package 496
name) 497

 requires attribute is omitted unless the service implementation class is annotated with general or 498
specific intent annotations - in this case, the requires attribute is present with a value equivalent to the 499
intents declared by the service implementation class. 500

 policySets attribute is omitted unless the service implementation class is annotated with @PolicySets 501
- in this case, the policySets attribute is present with a value equivalent to the policy sets declared by 502
the @PolicySets annotation. 503

 <interface.java> child element is present with the interface attribute set to the fully qualified name of 504
the interface or implementation class identified by the @Service annotation. See the SCA-J Common 505
Annotations and APIs specification [JAVACAA] for a definition of how policy annotations on Java 506
interfaces, Java classes, and methods of Java interfaces are handled. 507

 remotable attribute of <interface.java> child element is omitted unless the service is defined by a Java 508
interface with no @Remotable annotation and the service implementation class is annotated with 509
@Remotable, in which case the <interface.java> element has remotable="true". 510

 binding child element is omitted 511

 callback child element is omitted 512

A <reference/> element exists for each @Reference annotation: 513

 name attribute has the value of the name parameter of the @Reference annotation, if present, 514
otherwise it is the name of the field or the JavaBeans property name [JAVABEANS] corresponding to 515
the setter method name, depending on what element of the class is annotated by the @Reference 516
(note: for a constructor parameter, the @Reference annotation needs to have a name parameter) 517

 autowire attribute is omitted 518

 wiredByImpl attribute is omitted 519

 target attribute is omitted 520

 the multiplicity attribute is set according to the rules in section “@Reference” of the SCA Common 521
Annotations and APIs Specification [JAVACAA] 522

 requires attribute is omitted unless the field, setter method or parameter is also annotated with 523
general or specific intent annotations - in this case, the requires attribute is present with a value 524
equivalent to the intents declared by the Java reference. 525

 policySets attribute is omitted unless the field, setter method or parameter is also annotated with 526
@PolicySets - in this case, the policySets attribute is present with a value equivalent to the policy sets 527
declared by the @PolicySets annotation. 528

 <interface.java> child element with the interface attribute set to the fully qualified name of the 529
interface class which types the field or setter method or constructor parameter. See the SCA-J 530
Common Annotations and APIs specification [JAVACAA] for a definition of how policy annotations on 531
Java interfaces and methods of Java interfaces are handled. 532

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 20 of 39

 remotable attribute of <interface.java> child element is omitted unless the interface class has no 533
@Remotable annotation and there is a @Remotable annotation on the field, setter method or 534
constructor parameter, in which case the <interface.java> element has remotable="true". 535

 binding child element is omitted 536

 callback child element is omitted 537

A <property/> element exists for each @Property annotation: 538

 name attribute has the value of the name parameter of the @Property annotation, if present, 539
otherwise it is the name of the field or the JavaBeans property name [JAVABEANS] corresponding to 540
the setter method name, depending on what element of the class is annotated by the @Property 541
(note: for a constructor parameter, the @Property annotation needs to have a name parameter) 542

 value attribute is omitted 543

 type attribute which is set to the XML type implied by the JAXB mapping of the Java type of the field 544
or the Java type defined by the parameter of the setter method. Where the type of the field or of the 545
setter method is an array, the element type of the array is used. Where the type of the field or of the 546
setter method is a java.util.Collection, the parameterized type of the Collection or its member type is 547
used. If the JAXB mapping is to a global element rather than a type (JAXB @XMLRootElement 548
annotation), the type attribute is omitted. Note that JAXB mapping is the default mapping, but that 549
other mappings are possible, where supported by the SCA runtime 550
(for example, SDO). How such alternative mappings are indicated is not described in this 551
specification. 552

 element attribute is omitted unless the JAXB mapping of the Java type of the field or the Java type 553
defined by the parameter of the setter method is to a global element (JAXB @XMLRootElement 554
annotation). In this case, the element attribute has the value of the name of the XSD global element 555
implied by the JAXB mapping. 556

 many attribute is set according to the rules in section “@Property” of the SCA Common Annotations 557
and APIs Specification [JAVACAA]. 558

 mustSupply attribute is set to "true" unless the @Property annotation has required=false, in which 559
case it is set to "false" 560

An <implementation.java/> element exists if the service implementation class is annotated with general or 561
specific intent annotations or with @PolicySets: 562

 requires attribute is omitted unless the service implementation class is annotated with general or 563
specific intent annotations - in this case, the requires attribute is present with a value equivalent to the 564
intents declared by the service implementation class. 565

 policySets attribute is omitted unless the service implementation class is annotated with @PolicySets 566
- in this case, the policySets attribute is present with a value equivalent to the policy sets declared by 567
the @PolicySets annotation. 568

8.1 Component Type of an Implementation with no @Service, 569

@Reference or @Property Annotations 570

The section defines the rules for determining the services of a Java component implementation that 571
contains no @Service annotations, no @Reference annotations, and no @Property annotations. If the 572
implementation class contains any @Service, @Reference or @Property annotations, the rules in this 573
section do not apply. 574

The SCA services offered by the implementation class are defined using the rules: 575

 either: one service for each of the interfaces implemented by the class where the interface is 576
annotated with @Remotable. 577

 or: if the class implements zero interfaces where the interface is annotated with @Remotable, then 578
by default the implementation offers a single local service whose type is the implementation class 579
itself 580

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 21 of 39

A <service/> element exists for each service identified in this way: 581

 name attribute is the simple name of the interface or the simple name of the class 582

 requires attribute is omitted unless the service implementation class is annotated with general or 583
specific intent annotations - in this case, the requires attribute is present with a value equivalent to the 584
intents declared by the service implementation class. 585

 policySets attribute is omitted unless the service implementation class is annotated with @PolicySets 586
- in this case, the policySets attribute is present with a value equivalent to the policy sets declared by 587
the @PolicySets annotation. 588

 <interface.java> child element is present with the interface attribute set to the fully qualified name of 589
the interface class or to the fully qualified name of the class itself. See the SCA-J Common 590
Annotations and APIs specification [JAVACAA] for a definition of how policy annotations on Java 591
interfaces, Java classes, and methods of Java interfaces are handled. 592

 remotable attribute of <interface.java> child element is omitted 593

 binding child element is omitted 594

 callback child element is omitted 595

The SCA properties and references of the implementation class are defined using the rules: 596

The following setter methods and fields are taken into consideration: 597

1. Public setter methods that are not part of the implementation of an SCA service (either explicitly 598
marked with @Service or implicitly defined as described above) 599

2. Public or protected fields unless there is a public setter method for the same name 600

An unannotated field or setter method is a reference if: 601

 its type is an interface annotated with @Remotable 602

 its type is an array where the element type of the array is an interface annotated with @Remotable 603

 its type is a java.util.Collection where the parameterized type of the Collection or its member type is 604
an interface annotated with @Remotable 605

The reference in the component type has: 606

 name attribute with the value of the name of the field or the JavaBeans property name [JAVABEANS] 607
corresponding to the setter method name 608

 multiplicity attribute is (1..1) for the case where the type is an interface 609
multiplicity attribute is (1..n) for the cases where the type is an array or is a java.util.Collection 610

 <interface.java> child element with the interface attribute set to the fully qualified name of the 611
interface class which types the field or setter method. See the SCA-J Common Annotations and APIs 612
specification [JAVACAA] for a definition of how policy annotations on Java interfaces and methods of 613
Java interfaces are handled. 614

 remotable attribute of <interface.java> child element is omitted 615

 requires attribute is omitted unless the field or setter method is also annotated with general or 616
specific intent annotations - in this case, the requires attribute is present with a value equivalent 617
to the intents declared by the Java reference. 618

 policySets attribute is omitted unless the field or setter method is also annotated with 619
@PolicySets - in this case, the policySets attribute is present with a value equivalent to the policy 620
sets declared by the @PolicySets annotation. 621

 all other attributes and child elements of the reference are omitted 622

An unannotated field or setter method is a property if it is not a reference using the immediately 623
preceeding rules. 624

For each property of this type, the component type has a property element with: 625

 name attribute with the value of the name of the field or the JavaBeans property name [JAVABEANS] 626
corresponding to the setter method name 627

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 22 of 39

 type attribute and element attribute are set as described for a property declared via a @Property 628
annotation, following the JAXB mapping of the Java type of the field or setter method by default. Note 629
that other mappings are possible, where supported by the SCA runtime (for example, SDO). How 630
such alternative mappings are indicated is not described in this specification. 631

 value attribute omitted 632

 many attribute set to “false” unless the type of the field or of the setter method is an array or a 633
java.util.Collection, in which case it is set to "true". 634

 mustSupply attribute set to true 635

8.2 Impact of JAX-WS Annotations on ComponentType 636

As described in the Java Common Annotations and APIs specification [JAVACAA], there are a number of 637
JAX-WS [JAX-WS] annotations that can affect the introspection and interpretation of Java classes and 638
Java interfaces. This section describes the effect of the JAX-WS annotations on the introspected 639
componentType of a Java implementation class. 640

8.2.1 @WebService 641

An interface or implementation class annotated with @WebService is treated as if it had an @Service 642
annotation: 643

 The value of the name property of the @WebService annotation is used as the name of the 644
<service/> element 645

 If the endpointInterface property of the @WebService annotation has a non-default value, then the 646
interface attribute of the <interface.java/> child element of the <service/> element is set to the 647
interface identified by the endpointInterface property. 648

 The <interface.java/> child element of the <service/> has the remotable attribute set to "true". 649

 If the wsdlLocation property of the @WebService annotation has a non-default value, then the 650
<service/> element has an <interface.wsdl/> child element instead of an <interface.java/> child 651
element. The value of the @interface attribute of the <interface.wsdl/> element is constructed by 652
pointing to the portType, in the WSDL definition pointed to by @wsdlLocation, which resulted from the 653
JAX-WS mapping for the annotated class or interface. 654

 If both the endpointInterface and wsdlLocation properties of the @WebService annotation have 655
default values and there is no @Service annotation, then the interface attribute of the 656
<interface.java/> child element of the <service/> element is set to the fully qualified name of the 657
interface or implementation class. 658

As noted in the the SCA-J Common Annotations and APIs Specification [JAVACAA], a service name 659
explicitly provided in a @Service annotation overrides any name defined by a @WebService annotation. 660

8.2.2 @WebMethod 661

 The value of the name property of the @WebMethod annotation is used when testing interface 662
compatibility. 663

 If the value of the exclude property of the @WebMethod annotation is "true", then the method is 664
excluded from the SCA interface. 665

8.2.3 @WebParam 666

 The value of the mode property of the @WebParam is considered when testing interface 667
compatibility. 668

 If the value of the header property of the @WebParam is "true", then the “SOAP” intent is added to 669
the requires attribute of the <service/> element. 670

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 23 of 39

8.2.4 @WebResult 671

 If the value of the header property of the @WebResult is "true", then the “SOAP” intent is added to 672
the requires attribute of the <service/> element. 673

8.2.5 @SOAPBinding 674

 If an interface or class is annotated with @SOAPBinding, then the “SOAP” intent is added to the 675
requires attribute of the <service/> element. The same is true if any method of the interface or class 676
is annotated with @SOAPBinding 677

8.2.6 @WebServiceProvider 678

An implementation class annotated with @WebServiceProvider is treated as if it had an @Service 679
annotation: 680

 Where the Java implementation class implements a Java interface that is annotated with 681
@Remotable: 682

o The @name attribute of the <service/> element in the component type is the simple name of 683
the Java interface class where the Java implementation class implements the Java interface 684
marked with @Remotable. 685

o The <service/> element has a <interface.java/> subelement with an @interface set to the fully 686
qualified name of the Java interface class. 687

 Where the Java implementation class does not implement a Java interface that is annotated with 688
@Remotable: 689

o The @name attribute of the <service/> element in the component type is the simple name of 690
the Java implementation class. 691

o The <service/> element has a <interface.java/> subelement with an @interface set to the fully 692
qualified name of the Java implementation class and the @remotable attribute is set to "true". 693

 If the wsdlLocation property of the @WebServiceProvider annotation has a non-default value, then 694
the <service/> element has an <interface.wsdl/> child element instead of an <interface.java/> child 695
element. The value of the @interface attribute of the <interface.wsdl/> element is constructed by 696
pointing to the portType, in the WSDL definition pointed to by @wsdlLocation, which resulted from the 697
JAX-WS mapping for the annotated class or interface. 698

8.2.7 Web Service Binding 699

By default, the JAX-WS specification requires that JAX-WS service implementation classes have 700
endpoints that are made available using the SOAP 1.1 HTTP WSDL binding which is denoted by the URL 701
http://schemas.xmlsoap.org/wsdl/soap/http [JAX-WS]. 702

Therefore, the presence of any JAX-WS annotations in an SCA implementation or in an interface class 703
requires that any SCA services exposed by an implementation class are made available using the SOAP 704
1.1 HTTP WSDL binding by default. As a result, the respective <service/> elements in the component 705
type of the implementation class each have a <binding.ws/> subelement [WSBINDING] with the 706
SOAP.v1_1 intent added to the requires attribute of the <binding.ws/> subelement. 707

Note that JAX-WS annotations do not cause <reference/> elements in the component type of an 708
implementation class to have a <binding.ws/> subelement. 709

8.2.7.1 @BindingType 710

If the default WSDL binding is not acceptable for a <service/>, the JAX-WS @BindingType annotation 711
can be used to specify a different WSDL binding URL. If the JAX-WS @BindingType annotation is used, 712
then the set of intents added to the requires attribute of the <binding.ws/> subelement is based on the 713
value of the @BindingType annotation. Table 8-1 shows the mapping of the common binding types to 714
intents. For any other URI not listed in the table, the mapped intents are undefined. 715

http://schemas.xmlsoap.org/wsdl/soap/http

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 24 of 39

 716

WSDL Binding Type Intent(s)

http://schemas.xmlsoap.org/wsdl/soap/http SOAP.v1_1

http://schemas.xmlsoap.org/wsdl/soap/http?mtom=true SOAP.v1_1

http://www.w3.org/2003/05/soap/bindings/HTTP/ SOAP.v1_2

http://www.w3.org/2003/05/soap/bindings/HTTP/?mtom=true SOAP.v1_2

http://www.w3.org/2010/soapjms/ SOAP, JMS

Table 8-1: Intents for WSDL Bindings 717

8.3 Component Type Introspection Examples 718

Snippet 8-1 shows how intent annotations can be applied to service and reference interfaces and 719
methods as well as to a service implementation class. 720

// Service interface 721
package test; 722
import org.oasisopen.sca.annotation.Authentication; 723
import org.oasisopen.sca.annotation.Confidentiality; 724
 725
@Authentication 726
public interface MyService { 727
 @Confidentiality 728
 void mymethod(); 729
} 730
 731
// Reference interface 732
package test; 733
import org.oasisopen.sca.annotation.Integrity; 734
 735
public interface MyRefInt { 736
 @Integrity 737
 void mymethod1(); 738
} 739
 740
// Service implementation class 741
package test; 742
import static org.oasisopen.sca.Constants.SCA_PREFIX; 743
import org.oasisopen.sca.annotation.Confidentiality; 744
import org.oasisopen.sca.annotation.Reference; 745
import org.oasisopen.sca.annotation.Service; 746
@Service(MyService.class) 747
@Requires(SCA_PREFIX+"managedTransaction") 748
public class MyServiceImpl { 749
 @Confidentiality 750
 @Reference 751
 protected MyRefInt myRef; 752
 753
 public void mymethod() {...} 754
} 755

Snippet 8-1: Intent Annotations on Java Interfaces, Methods, and Implementations. 756

 757

Snippet 8-2 shows the introspected component type that is produced by applying the component type 758
introspection rules to the interfaces and implementation from Snippet 8-1. 759

<componentType xmlns:sca= 760
 "http://docs.oasis-open.org/ns/opencsa/sca/200912"> 761

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 25 of 39

 <implementation.java class="test.MyServiceImpl" 762
 requires="sca:managedTransaction"/> 763
 <service name="MyService" requires="sca:managedTransaction"> 764
 <interface.java interface="test.MyService"/> 765
 </service> 766
 <reference name="myRef" requires="sca:confidentiality"> 767
 <interface.java interface="test.MyRefInt"/> 768
 </reference> 769
</componentType> 770

Snippet 8-2: Introspected Component Type with Intents 771

8.4 Java Implementation with Conflicting Setter Methods 772

If a Java implementation class, with or without @Property and @Reference annotations, has more than 773
one setter method with the same JavaBeans property name [JAVABEANS] corresponding to the setter 774
method name, then if more than one method is inferred to set the same SCA property or to set the same 775
SCA reference, the SCA runtime MUST raise an error and MUST NOT instantiate the implementation 776
class. [JCI80002] 777

Snippet 8-3shows examples of illegal Java implementation due to the presence of more than one setter 778
method resulting in either an SCA property or an SCA reference with the same name: 779

 780

/** Illegal since two setter methods with same JavaBeans property name 781
 * are annotated with @Property annotation. */ 782
public class IllegalImpl1 { 783
 // Setter method with upper case initial letter 'S' 784
 @Property 785
 public void setSomeProperty(String someProperty) {...} 786
 787
 // Setter method with lower case initial letter 's' 788
 @Property 789
 public void setsomeProperty(String someProperty) {...} 790
} 791
 792
/** Illegal since setter methods with same JavaBeans property name 793
 * are annotated with @Reference annotation. */ 794
public class IllegalImpl2 { 795
 // Setter method with upper case initial letter 'S' 796
 @Reference 797
 public void setSomeReference(SomeService service) {...} 798
 799
 // Setter method with lower case initial letter 's' 800
 @Reference 801
 public void setsomeReference(SomeService service) {...} 802
} 803
 804
/** Illegal since two setter methods with same JavaBeans property name 805
 * are resulting in an SCA property. Implementation has no @Property 806
 * or @Reference annotations. */ 807
public class IllegalImpl3 { 808
 // Setter method with upper case initial letter 'S' 809
 public void setSomeOtherProperty(String someProperty) {...} 810
 811
 // Setter method with lower case initial letter 's' 812
 public void setsomeOtherProperty(String someProperty) {...} 813
} 814
 815
/** Illegal since two setter methods with same JavaBeans property name 816
 * are resulting in an SCA reference. Implementation has no @Property 817
 * or @Reference annotations. */ 818
public class IllegalImpl4 { 819
 // Setter method with upper case initial letter 'S' 820

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 26 of 39

 public void setSomeOtherReference(SomeService service) {...} 821
 822
 // Setter method with lower case initial letter 's' 823
 public void setsomeOtherReference(SomeService service) {...} 824
} 825

Snippet 8-3: Example Conflicting Setter Methods 826

 827

Snippet 8-4 is an example of a legal Java implementation in spite of the implementation class having two 828
setter methods with same JavaBeans property name [JAVABEANS] corresponding to the setter method 829
name: 830

 831

/** Two setter methods with same JavaBeans property name, but one is 832
 * annotated with @Property and the other is annotated with @Reference 833
 * annotation. */ 834
public class WeirdButLegalImpl { 835
 // Setter method with upper case initial letter 'F' 836
 @Property 837
 public void setFoo(String foo) {...} 838
 839
 // Setter method with lower case initial letter 'f' 840
 @Reference 841
 public void setfoo(SomeService service) {...} 842
} 843

Snippet 8-4: Example of Valid Combination of Settter Methods 844

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 27 of 39

9 Specifying the Java Implementation Type in an 845

Assembly 846

Snippet 9-1 shows the pseudo-schema that defines the implementation element schema used for the 847
Java implementation type: 848

 849

<implementation.java class="xs:NCName" 850
 requires="list of xs:QName"? 851

policySets="list of xs:QName"?/> 852

Snippet 9-1: Pseudo-Schema for implementation.java 853

 854

The implementation.java element has the attributes: 855

 class : NCName (1..1) – the fully qualified name of the Java class of the implementation 856

 requires : QName (0..n) – a list of policy intents. See the Policy Framework specification [POLICY] 857
for a description of this attribute. 858

 policySets : QName (0..n) – a list of policy sets. See the Policy Framework specification [POLICY] 859
for a description of this attribute. 860

The <implementation.java> element MUST conform to the schema defined in sca-implementation-861
java.xsd. [JCI90001] 862
 863
The fully qualified name of the Java class referenced by the @class attribute of <implementation.java/> 864
MUST resolve to a Java class, using the artifact resolution rules defined in Section 10.2, that can be used 865
as a Java component implementation. [JCI90002] 866

The Java class referenced by the @class attribute of <implementation.java/> MUST conform to Java SE 867
version 5.0. [JCI90003] 868

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 28 of 39

10 Java Packaging and Deployment Model 869

The SCA Assembly Model Specification [ASSEMBLY] describes the basic packaging model for SCA 870
contributions in the chapter on Packaging and Deployment. This specification defines extensions to the 871
basic model for SCA contributions that contain Java component implementations. 872

The model for the import and export of Java classes follows the model for import-package and export-873
package defined by the OSGi Service Platform Core Specification [OSGi Core]. Similar to an OSGI 874
bundle, an SCA contribution that contains Java classes represents a class loader boundary at runtime. 875
That is, classes are loaded by a contribution specific class loader such that all contributions with visibility 876
to those classes are using the same Class Objects in the JVM. 877

10.1 Contribution Metadata Extensions 878

SCA contributions can be self contained such that all the code and metadata needed to execute the 879
components defined by the contribution is contained within the contribution. However, in larger projects, 880
there is often a need to share artifacts across contributions. This is accomplished through the use of the 881
import and export extension points as defined in the sca-contribution.xml document. An SCA contribution 882
that needs to use a Java class from another contribution can declare the dependency via an 883
<import.java/> extension element, contained within a <contribution/> element, as shown in Snippet 10-1: 884

<import.java package="xs:string" location="xs:anyURI"?/> 885

Snippet 10-1: Pseudo-Schema for import.java 886

 887

The import.java element has the attributes: 888

 package : string (1..1) – The name of one or more Java package(s) to use from another 889
contribution. Where there is more than one package, the package names are separated by a comma 890
",". 891

The package can have a version number range appended to it, separated from the package name 892
by a semicolon ";" followed by the text "version=" and the version number range, for example: 893

package="com.acme.package1;version=1.4.1" 894

package="com.acme.package2;version=[1.2,1.3]" 895

Version number range follows the format defined in the OSGi Core specification [OSGi Core]: 896

[1.2,1.3] - enclosing square brackets - inclusive range meaning any version in the range from the 897
lowest to the highest, including the lowest and the highest 898

(1.3.1,2.4.1) - enclosing round brackets - exclusive range meaning any version in the range from the 899
lowest to the highest but not including the lowest or the highest. 900

1.4.1 - no enclosing brackets - implies any version at or later than the specified version number is 901
acceptable - equivalent to [1.4.1, infinity) 902

If no version is specified for an imported package, then it is assumed to have a version range of 903
[0.0.0, infinity) - ie any version is acceptable. 904

 location : anyURI (0..1) – The URI of the SCA contribution which is used to resolve the java 905
packages for this import. 906

Each Java package that is imported into the contribution MUST be included in one and only one 907
import.java element. [JCI100001] Multiple packages can be imported, either through specifying multiple 908
packages in the @package attribute or through the presence of multiple import.java elements. 909

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 29 of 39

The SCA runtime MUST ensure that the package used to satisfy an import matches the package name, 910
the version number or version number range and (if present) the location specified on the import.java 911
element [JCI100002] 912

An SCA contribution that wants to allow a Java package to be used by another contribution can declare 913
the exposure via an <export.java/> extension element as shown in Snippet 10-2: 914

<export.java package="xs:string"/> 915

Snippet 10-2:Pseudo-Schema for export.java 916

 917

The export.java element has the attributes: 918

 package : string (1..1) – The name of one or more Java package(s) to expose for sharing by another 919
contribution. Where there is more than one package, the package names are separated by a comma 920
",". 921

The package can have a version number appended to it, separated from the package name by a 922
semicolon ";" followed by the text "version=" and the version number: 923

package="com.acme.package1;version=1.4.1" 924

The package can have a uses directive appended to it, separated from the package name by a 925
semicolon ";" followed by the text "uses=" which is then followed by a list of package names 926
contained within single quotes "'" (needed as the list contains commas). 927

The uses directive indicates that the SCA runtime MUST ensure that any SCA contribution that 928
imports this package from this exporting contribution also imports the same version as is used by this 929
exporting contribution of any of the packages contained in the uses directive. [JCI100003] Typically, 930
the packages in the uses directive are packages used in the interface to the package being exported 931
(eg as parameters or as classes/interfaces that are extended by the exported package). Example: 932

package="com.acme.package1;uses='com.acme.package2,com.acme.package3'" 933

If no version information is specified for an exported package, the version defaults to 0.0.0. 934

If no uses directive is specified for an exported package, there is no requirement placed on a contribution 935
which imports the package to use any particular version of any other packages. 936

Each Java package that is exported from the contribution MUST be included in one and only one 937
export.java element. [JCI100004] Multiple packages can be exported, either through specifying multiple 938
packages in the @package attribute or through the presence of multiple export.java elements. 939

For example, a contribution that wants to: 940

use classes from the some.package package from another contribution (any version) 941

use classes of the some.other.package package from another contribution, at exactly version 2.0.0 942

expose the my.package package from its own contribution, with version set to 1.0.0 943

would specify an sca-contribution.xml file shown in Snippet 10-3 : 944

 945

<?xml version="1.0" encoding="UTF-8"?> 946
<contribution xmlns=http://docs.oasis-open.org/ns/opencsa/sca/200912> 947
 … 948
 <import.java package="some.package"/> 949
 <import.java package="some.other.package;version=[2.0.0]"/> 950
 <export.java package="my.package;version=1.0.0"/> 951
</contribution> 952

Snippet 10-3: Example Imports and Exports 953

 954

A Java package that is specified on an export element MUST be contained within the contribution 955
containing the export element. [JCI100007] 956

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 30 of 39

 957

10.2 Java Artifact Resolution 958

The SCA runtime MUST ensure that within a contribution, Java classes are resolved according to the 959
following steps in the order specified: 960

1. If the contribution contains a Java Language specific resolution mechanism such as a classpath 961
declaration in the archive’s manifest, then that mechanism is used first to resolve classes. If the 962
class is not found, then continue searching at step 2. 963

2. If the package of the Java class is specified in an import declaration then: 964

a) if @location is specified, the location searched for the class is the contribution declared by 965
the @location attribute. 966

b) if @location is not specified, the locations which are searched for the class are the 967
contribution(s) in the Domain which have export declarations for that package. If there is 968
more than one contribution exporting the package, then the contribution chosen is SCA 969
Runtime dependent, but is always the same contribution for all imports of the package. 970

If the Java package is not found, continue to step 3. 971

3. The contribution itself is searched using the archive resolution rules defined by the Java 972
Language. 973

[JCI100008] 974

10.3 Class Loader Model 975

The SCA runtime MUST ensure that the Java classes used by a contribution are all loaded by a class 976
loader that is unique for each contribution in the Domain. [JCI100010] The SCA runtime MUST ensure 977
that Java classes that are imported into a contribution are loaded by the exporting contribution’s class 978
loader [JCI100011], as described in the section "Contribution Metadata Extensions" 979

For example, suppose contribution A using class loader ACL, imports package some.package from 980
contribution B that is using class loader BCL then the expression: 981

ACL.loadClass(importedClassName) == BCL.loadClass(importedClassName) 982

Snippet 10-4: Example Class Loader Use 983

evaluates to true. 984

The SCA runtime MUST set the thread context class loader of a component implementation class to the 985
class loader of its containing contribution. [JCI100009] 986

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 31 of 39

11 Conformance 987

The XML schema pointed to by the RDDL document at the namespace URI, defined by this specification, 988
are considered to be authoritative and take precedence over the XML schema defined in the appendix of 989
this document. 990

There are three categories of artifacts that this specification defines conformance for: SCA Java 991
Component Implementation Composite Document, SCA Java Component Implementation Contribution 992
Document and SCA Runtime. 993

11.1 SCA Java Component Implementation Composite Document 994

An SCA Java Component Implementation Composite Document is an SCA Composite Document, as 995
defined by the SCA Assembly Model Specification Section 13.1 [ASSEMBLY], that uses the 996
<implementation.java> element. Such an SCA Java Component Implementation Composite Document 997
MUST be a conformant SCA Composite Document, as defined by [ASSEMBLY], and MUST comply with 998
the requirements specified in Section 9 of this specification. 999

11.2 SCA Java Component Implementation Contribution Document 1000

An SCA Java Component Implementation Contribution Document is an SCA Contribution Document, as 1001
defined by the SCA Assembly Model specification Section 13.1 [ASSEMBLY], that uses the contribution 1002
metadata extensions defined in Section 10. Such an SCA Java Component Implementation 1003

Contribution document MUST be a conformant SCA Contribution Document, as defined by [ASSEMBLY], 1004
and MUST comply with the requirements specified in Section 10 of this specification. 1005

11.3 SCA Runtime 1006

An implementation that claims to conform to this specification MUST meet the conditions: 1007

1. The implementation MUST meet all the conformance requirements defined by the SCA Assembly 1008
Model Specification [ASSEMBLY]. 1009

2. The implementation MUST reject an SCA Java Composite Document that does not conform to the 1010
sca-implementation-java.xsd schema. 1011

3. The implementation MUST reject an SCA Java Contribution Document that does not conform to the 1012
sca-contribution-java.xsd schema. 1013

4. The implementation MUST meet all the conformance requirements, specified in 'Section 11 1014
Conformance', from the SCA-J Common Annotations and APIs Specification [JAVACAA]. 1015

5. This specification permits an implementation class to use any and all the APIs and annotations 1016
defined in the SCA-J Common Annotations and APIs Specification [JAVACAA], therefore the 1017
implementation MUST comply with all the statements in Appendix B: Conformance Items of 1018
[JAVACAA], notably all mandatory statements have to be implemented. 1019

6. The implementation MUST comply with all statements related to an SCA Runtime, specified in 1020
'Appendix B: Conformance Items' of this specification, notably all mandatory statements have to 1021
be implemented. 1022

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 32 of 39

Appendix A. XML Schemas 1023

A.1 sca-contribution-java.xsd 1024

<?xml version="1.0" encoding="UTF-8"?> 1025
<!-- Copyright(C) OASIS(R) 2005,2010. All Rights Reserved. 1026
 OASIS trademark, IPR and other policies apply. --> 1027
<schema xmlns="http://www.w3.org/2001/XMLSchema" 1028
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 1029
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 1030
 elementFormDefault="qualified"> 1031
 1032
 <include schemaLocation="sca-contribution-1.1-cd06.xsd"/> 1033
 1034
 <!-- Import.java --> 1035

<element name="import.java" type="sca:JavaImportType" 1036
 substitutionGroup="sca:importBase" /> 1037

 <complexType name="JavaImportType"> 1038
 <complexContent> 1039
 <extension base="sca:Import"> 1040
 <attribute name="package" type="string" use="required"/> 1041
 <attribute name="location" type="anyURI" use="optional"/> 1042
 </extension> 1043
 </complexContent> 1044
 </complexType> 1045
 1046
 <!-- Export.java --> 1047
 <element name="export.java" type="sca:JavaExportType" 1048
 substitutionGroup="sca:exportBase" /> 1049
 <complexType name="JavaExportType"> 1050
 <complexContent> 1051
 <extension base="sca:Export"> 1052
 <attribute name="package" type="string" use="required"/> 1053
 </extension> 1054
 </complexContent> 1055
 </complexType> 1056
 1057

</schema> 1058

A.2 sca-implementation-java.xsd 1059

<?xml version="1.0" encoding="UTF-8"?> 1060
<!-- Copyright(C) OASIS(R) 2005,2010. All Rights Reserved. 1061
 OASIS trademark, IPR and other policies apply. --> 1062
<schema xmlns="http://www.w3.org/2001/XMLSchema" 1063
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 1064
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 1065
 elementFormDefault="qualified"> 1066
 1067
 <include schemaLocation="sca-core-1.1-cd06.xsd"/> 1068
 1069
 <!-- Java Implementation --> 1070
 <element name="implementation.java" type="sca:JavaImplementation" 1071
 substitutionGroup="sca:implementation"/> 1072
 <complexType name="JavaImplementation"> 1073

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 33 of 39

 <complexContent> 1074
 <extension base="sca:Implementation"> 1075
 <sequence> 1076
 <any namespace="##other" processContents="lax" 1077
 minOccurs="0" maxOccurs="unbounded"/> 1078
 </sequence> 1079
 <attribute name="class" type="NCName" use="required"/> 1080
 </extension> 1081
 </complexContent> 1082
 </complexType> 1083
 1084

</schema> 1085

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 34 of 39

Appendix B. Conformance Items 1086

This section contains a list of conformance items for the SCA Java Component Implementation 1087
specification. 1088

 1089

Conformance ID Description

[JCI20001] The services provided by a Java-based implementation MUST have an interface
defined in one of the following ways:

 A Java interface

 A Java class

 A Java interface generated from a Web Services Description Language
[WSDL] (WSDL) portType.

[JCI20002] Java implementation classes MUST implement all the operations defined by the
service interface.

[JCI40001] For an unannotated field or setter method that is introspected as a property and
where the Java type of the field or setter method is a JAXB [JAXB] annotated
class, the SCA runtime MUST convert a property value specified by an SCA
component definition into an instance of the property’s Java type as defined by
the XML to Java mapping in the JAXB specification [JAXB] with XML schema
validation enabled.

[JCI50001] A Java implementation class MUST provide a public or protected constructor that
can be used by the SCA runtime to create the implementation instance.

[JCI50002] The @Constructor annotation MUST NOT appear on more than one constructor.

[JCI50004] The constructor to use for the creation of an implementation instance MUST be
selected by the SCA runtime using the sequence:

7. A declared constructor annotated with a @Constructor annotation.

8. A declared constructor, all of whose parameters are annotated with
either @Property or @Reference.

9. A no-argument constructor.

[JCI50005] In the absence of an @Constructor annotation, there MUST NOT be more than
one constructor that has a non-empty parameter list with all parameters annotated
with either @Property or @Reference.

[JCI60001] The SCA runtime MUST support the STATELESS and COMPOSITE
implementation scopes.

[JCI80001] An SCA runtime MUST introspect the componentType of a Java implementation
class following the rules defined in the section "Component Type of a Java
Implementation".

[JCI80002] If a Java implementation class, with or without @Property and @Reference
annotations, has more than one setter method with the same JavaBeans property
name [JAVABEANS] corresponding to the setter method name, then if more than
one method is inferred to set the same SCA property or to set the same SCA
reference, the SCA runtime MUST raise an error and MUST NOT instantiate the
implementation class.

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 35 of 39

[JCI90001] The <implementation.java> element MUST conform to the schema defined in sca-
implementation-java.xsd.

[JCI90002] The fully qualified name of the Java class referenced by the @class attribute of
<implementation.java/> MUST resolve to a Java class, using the artifact resolution
rules defined in Section 10.2, that can be used as a Java component
implementation.

[JCI90003] The Java class referenced by the @class attribute of <implementation.java/>
MUST conform to Java SE version 5.0.

[JCI100001] Each Java package that is imported into the contribution MUST be included in one
and only one import.java element.

[JCI100002] The SCA runtime MUST ensure that the package used to satisfy an import
matches the package name, the version number or version number range and (if
present) the location specified on the import.java element.

[JCI100003] The uses directive indicates that the SCA runtime MUST ensure that any SCA
contribution that imports this package from this exporting contribution also imports
the same version as is used by this exporting contribution of any of the packages
contained in the uses directive.

[JCI100004] Each Java package that is exported from the contribution MUST be included in
one and only one export.java element.

[JCI100007] A Java package that is specified on an export element MUST be contained within
the contribution containing the export element.

[JCI100008] The SCA runtime MUST ensure that within a contribution, Java classes are
resolved according to the following steps in the order specified:

1. If the contribution contains a Java Language specific resolution
mechanism such as a classpath declaration in the archive’s manifest,
then that mechanism is used first to resolve classes. If the class is not
found, then continue searching at step 2.

2. If the package of the Java class is specified in an import declaration then:

a) if @location is specified, the location searched for the class is the
contribution declared by the @location attribute.

b) if @location is not specified, the locations which are searched for the
class are the contribution(s) in the Domain which have export
declarations for that package. If there is more than one contribution
exporting the package, then the contribution chosen is SCA Runtime
dependent, but is always the same contribution for all imports of the
package.

If the Java package is not found, continue to step 3.

3. The contribution itself is searched using the archive resolution rules
defined by the Java Language.

[JCI100009] The SCA runtime MUST set the thread context class loader of a component
implementation class to the class loader of its containing contribution.

[JCI100010] The SCA runtime MUST ensure that the Java classes used by a contribution are
all loaded by a class loader that is unique for each contribution in the Domain.

[JCI100011] The SCA runtime MUST ensure that Java classes that are imported into a
contribution are loaded by the exporting contribution’s class loader

 1090

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 36 of 39

Appendix C. Acknowledgements 1091

The following individuals have participated in the creation of this specification and are gratefully 1092
acknowledged: 1093

Participants: 1094

Participant Name Affiliation

Bryan Aupperle IBM

Ron Barack SAP AG*

Mirza Begg Individual

Michael Beisiegel IBM

Henning Blohm SAP AG*

David Booz IBM

Martin Chapman Oracle Corporation

Graham Charters IBM

Shih-Chang Chen Oracle Corporation

Chris Cheng Primeton Technologies, Inc.

Vamsavardhana Reddy Chillakuru IBM

Roberto Chinnici Sun Microsystems

Pyounguk Cho Oracle Corporation

Eric Clairambault IBM

Mark Combellack Avaya, Inc.

Jean-Sebastien Delfino IBM

Derek Dougans Individual

Mike Edwards IBM

Ant Elder IBM

Raymond Feng IBM

Bo Ji Primeton Technologies, Inc.

Uday Joshi Oracle Corporation

Anish Karmarkar Oracle Corporation

Khanderao Kand Oracle Corporation

Michael Keith Oracle Corporation

Rainer Kerth SAP AG*

Meeraj Kunnumpurath Individual

Simon Laws IBM

Yang Lei IBM

Mark Little Red Hat

Ashok Malhotra Oracle Corporation

Jim Marino Individual

Jeff Mischkinsky Oracle Corporation

Sriram Narasimhan TIBCO Software Inc.

Simon Nash Individual

Sanjay Patil SAP AG*

Plamen Pavlov SAP AG*

Peter Peshev SAP AG*

Ramkumar Ramalingam IBM

Luciano Resende IBM

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 37 of 39

Michael Rowley Active Endpoints, Inc.

Vladimir Savchenko SAP AG*

Pradeep Simha TIBCO Software Inc.

Raghav Srinivasan Oracle Corporation

Scott Vorthmann TIBCO Software Inc.

Feng Wang Primeton Technologies, Inc.

Paul Yang

Changfeng Open Standards

Platform Software

 1095

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 38 of 39

Appendix D. Revision History 1096

 1097

Revision Date Editor Changes Made

1 2007-09-26 Anish Karmarkar Applied the OASIS template + related changes
to the Submission

wd02 2008-12-16 David Booz * Applied resolution for issue 55, 32

* Editorial cleanup to make a working draft

 - [1] style changed to [ASSEMBLY]

 - updated namespace references

wd03 2009-02-26 David Booz Accepted all changes from wd02

 Applied 60, 87, 117, 126, 123

wd04 2009-03-20 Mike Edwards Accepted all changes from wd03

Issue 105 - RFC 2119 Language added -
covers most of the specification.

Accepted all changes after RFC 2119 language
added.

Editorial fix to ensure the term "class loader" is
used consistently

wd05 2009-03-24 David Booz Applied resolution for issues: 119, 137

wd06 2009-03-27 David Booz Accepted all previous changes and applied
issues 145,146,147,151

wd07 2009-04-06 David Booz Editorial cleanup, namespace changes,
changed XML encoding to UTF-8 in examples,
applied 144

wd08 2009-04-27 David Booz Applied issue 98, 152

wd09 2009-04-29 David Booz Editorial fixes throughout (capitalization,
quotes, fonts, spec references, etc.)

wd10 2009-04-30 David Booz Editorial fixes, indention, etc.

cd01 2009-05-04 David Booz Final editorial fixes for CD and PRD

cd01-rev1 2009-08-12 David Booz Editorial fixes, applied issues: 143,153,176

cd01-rev2 2009-09-14 David Booz Applied issues: 157,162

cd01-rev3 2010-01-18 David Booz Upgraded namespace to latest 200912

Applied issues: 168, 171, 181, 184, 186,
192,193

cd01-rev4 2010-01-20 Bryan Aupperle Editorial updates to match OASIS document
standards

CD02 2010-02-02 David Booz Editorial updates to produce Committee Draft

sca-javaci-1.1-spec-csd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 39 of 39

All changes accepted

CD02-rev1 2010-07-13 David Booz Applied Issue 197

CSD02-rev2 2010-11-04 David Booz Applied Issue 203, 204, 212, 213 and prep for
CSD03

CSD03 2010-11-08 OASIS TC Admin Clean version

WD031 2011-06-20 Mike Edwards Issue 231 - Sections 1.3, 1.4

WD032 2011-08-14 Anish Karmarkar Clean up and reference updates

 1098

