
sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 1 of 125

Service Component Architecture SCA-J
Common Annotations and APIs
Specification Version 1.1

Committee Specification Draft 0506 /
Public Review Draft 0304

8 November 2010

15 August 2011

Specification URIs:
This Vversion:

http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04.pdf (Authoritative)
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04.doc

Previous Vversion:
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd03.pdf (Authoritative)
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd03.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd03.doc

Latest Vversion:
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec.pdf (Authoritative)
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec.doc
 (Authoritative)

Technical Committee:

OASIS Service Component Architecture / J (SCA-J) TC

Chair(s):
Chairs:

David Booz (booz@us.ibm.com, IBM), IBM
Anish Karmarkar (Anish.Karmarkar@oracle.com, Oracle Corporation), Oracle

Editor(s):
Editors:

David Booz (booz@us.ibm.com, IBM), IBM
Mike Edwards (mike_edwards@uk.ibm.com, IBM), IBM
Anish Karmarkar (Anish.Karmarkar@oracle.com, Oracle Corporation), Oracle

Additional artifacts:
This prose specification is one component of a Work Product which also includes:

 Compiled Java API:
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04/sca-j-caa-apis-1.1-csprd04.jar

 Java artifacts:
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04/sca-j-caa-sources-
1.1-csprd04.zip

http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04.doc
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd03.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd03.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd03.doc
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec.doc
http://www.oasis-open.org/committees/sca-j/
mailto:booz@us.ibm.com
http://www.ibm.com/
mailto:Anish.Karmarkar@oracle.com
http://www.oracle.com/
mailto:booz@us.ibm.com
http://www.ibm.com/
mailto:mike_edwards@uk.ibm.com
http://www.ibm.com/
mailto:Anish.Karmarkar@oracle.com
http://www.oracle.com/
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04/sca-j-caa-apis-1.1-csprd04.jar
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04/sca-j-caa-sources-1.1-csprd04.zip
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04/sca-j-caa-sources-1.1-csprd04.zip

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 2 of 125

 Downloadable Javadoc:
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04/sca-j-caa-javadoc-
1.1-csprd04.zip

 Hosted Javadoc:
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04/javadoc/index.html

Related work:

This specification replaces or supersedes:

 Service Component Architecture Java Common Annotations and APIs Specification Version
1.00,. March 21 2007.
http://www.osoa.org/download/attachments/35/SCA_JavaAnnotationsAndAPIs_V100.pdf?version=1

This specification is related to:

 Service Component Architecture Assembly Model Specification Version 1.1. Latest
version.
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.html

Compiled Java API:

Downloadable Javadoc:

Hosted Javadoc:



 SCA Policy Framework Version 1.1. Latest version.

http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.html

Declared XML Namespace(s):namespaces:

 http://docs.oasis-open.org/ns/opencsa/sca/200912

Java Artifacts:
Abstract:

The SCA-J Common Annotations and APIs sSpecification defines a Java syntax for programming
concepts defined in the SCA Assembly Model Specification. It specifies a set of APIs and
annotations that can be used by Java-based artifacts described by other SCA specifications such
as. the POJO Component Implementation Specification [JAVA_CI].

Specifically, this specification covers:

1. Implementation metadata for specifying component services, references, and properties

2. A client and component API

3. Metadata for asynchronous services

4. Metadata for callbacks

5. Definitions of standard component implementation scopes

6. Java to WSDL and WSDL to Java mappings

7. Security policy annotations

Note that other Java-based SCA specifications can choose to implement their own mappings of
assembly model concepts using native APIs and idioms when appropriate.

Status:
This document was last revised or approved by the OASIS Service Component Architecture / J
(SCA-J) TC on the above date. The level of approval is also listed above. Check the “Latest
Version” or “Latest Approved Versionversion” location noted above for possible later revisions of
this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the

http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04/sca-j-caa-javadoc-1.1-csprd04.zip
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04/sca-j-caa-javadoc-1.1-csprd04.zip
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04/javadoc/index.html
http://www.osoa.org/download/attachments/35/SCA_JavaAnnotationsAndAPIs_V100.pdf?version=1
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.html
http://docs.oasis-open.org/ns/opencsa/sca/200912

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 3 of 125

“Send A Comment“Send A Comment”” button on the Technical Committee’s web page at
http://www.oasis-open.org/committees/sca-j/.

For information on whether any patents have been disclosed that mightmay be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-j/ipr.php.).

Citation Fformat:
When referencing this specification the following citation format should be used:

sca-javacaa[SCA-JavaCAA-v1.1 OASIS Committee Specification Draft 05,]

Service Component Architecture SCA-J Common Annotations and APIs Specification Version
1.1, November 2010. . 15 August 2011. OASIS Committee Specification Draft 06 / Public Review
Draft 04.
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04.html

http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=sca-j
http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/ipr.php
http://www.oasis-open.org/committees/sca-j/ipr.php
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csprd04.html

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 4 of 125

Notices

Copyright © OASIS® 2005, 2010 Open 2011. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full PolicyPolicy may be found at the OASIS
website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The names "OASIS", “SCA” and “Service Component Architecture” are trademarks" is a trademark of
OASISOASIS,, the owner and developer of this specification, and should be used only to refer to the
organization and its official outputs. OASIS welcomes reference to, and implementation and use of,
specifications, while reserving the right to enforce its marks against misleading uses. Please see
http://www.oasis-open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/intellectualproperty.php
http://www.oasis-open.org/
http://www.oasis-open.org/who/trademark.php

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 5 of 125

Table of Contents

1 Introduction ... 8

1.1 Terminology .. 8

1.2 Normative References .. 8

1.3 Non-Normative References .. 9

1.4 Testcases.. 9

2 Implementation Metadata ... 10

2.1 Service Metadata .. 10

2.1.1 @Service ... 10

2.1.2 Java Semantics of a Remotable Service .. 10

2.1.3 Java Semantics of a Local Service ... 10

2.1.4 @Reference .. 11

2.1.5 @Property ... 11

2.2 Implementation Scopes: @Scope, @Init, @Destroy ... 11

2.2.1 Stateless Scope .. 11

2.2.2 Composite Scope .. 12

2.3 @AllowsPassByReference ... 12

2.3.1 Marking Services as “allows pass by reference” ... 13

2.3.2 Marking References as “allows pass by reference” .. 13

2.3.3 Applying “allows pass by reference” to Service Proxies ... 13

2.3.4 Using “allows pass by reference” to Optimize Remotable Calls ... 14

3 Interface .. 15

3.1 Java Interface Element – <interface.java> ... 15

3.2 @Remotable ... 16

3.3 @Callback .. 16

3.4 @AsyncInvocation .. 16

3.5 SCA Java Annotations for Interface Classes .. 17

3.6 Compatibility of Java Interfaces .. 17

4 SCA Component Implementation Lifecycle .. 18

4.1 Overview of SCA Component Implementation Lifecycle .. 18

4.2 SCA Component Implementation Lifecycle State Diagram .. 18

4.2.1 Constructing State ... 19

4.2.2 Injecting State .. 19

4.2.3 Initializing State ... 20

4.2.4 Running State .. 20

4.2.5 Destroying State .. 20

4.2.6 Terminated State ... 21

5 Client API .. 22

5.1 Accessing Services from an SCA Component ... 22

5.1.1 Using the Component Context API ... 22

5.2 Accessing Services from non-SCA Component Implementations ... 22

5.2.1 SCAClientFactory Interface and Related Classes .. 22

6 Error Handling .. 24

7 Asynchronous Programming .. 25

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 6 of 125

7.1 @OneWay .. 25

7.2 Callbacks .. 25

7.2.1 Using Callbacks ... 25

7.2.2 Callback Instance Management .. 27

7.2.3 Callback Injection .. 27

7.2.4 Implementing Multiple Bidirectional Interfaces .. 27

7.2.5 Accessing Callbacks ... 28

7.3 Asynchronous handling of Long Running Service Operations ... 29

7.4 SCA Asynchronous Service Interface .. 29

8 Policy Annotations for Java .. 32

8.1 General Intent Annotations ... 32

8.2 Specific Intent Annotations ... 34

8.2.1 How to Create Specific Intent Annotations .. 35

8.3 Application of Intent Annotations .. 35

8.3.1 Intent Annotation Examples .. 36

8.3.2 Inheritance and Annotation ... 38

8.4 Relationship of Declarative and Annotated Intents .. 39

8.5 Policy Set Annotations .. 39

8.6 Security Policy Annotations .. 40

8.7 Transaction Policy Annotations .. 41

9 Java API ... 43

9.1 Component Context .. 43

9.2 Request Context ... 48

9.3 ServiceReference Interface .. 50

9.4 ResponseDispatch interface ... 51

9.5 ServiceRuntimeException... 52

9.6 ServiceUnavailableException ... 53

9.7 InvalidServiceException .. 53

9.8 Constants .. 53

9.9 SCAClientFactory Class ... 54

9.10 SCAClientFactoryFinder Interface .. 57

9.11 SCAClientFactoryFinderImpl Class .. 58

9.12 NoSuchDomainException ... 59

9.13 NoSuchServiceException ... 59

10 Java Annotations .. 61

10.1 @AllowsPassByReference ... 61

10.2 @AsyncFault .. 62

10.3 @AsyncInvocation .. 63

10.4 @Authentication ... 63

10.5 @Authorization ... 64

10.6 @Callback .. 64

10.7 @ComponentName .. 66

10.8 @Confidentiality .. 67

10.9 @Constructor .. 67

10.10 @Context .. 68

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 7 of 125

10.11 @Destroy .. 69

10.12 @EagerInit .. 69

10.13 @Init.. 70

10.14 @Integrity ... 70

10.15 @Intent ... 71

10.16 @ManagedSharedTransaction ... 72

10.17 @ManagedTransaction .. 72

10.18 @MutualAuthentication .. 73

10.19 @NoManagedTransaction .. 74

10.20 @OneWay .. 74

10.21 @PolicySets ... 75

10.22 @Property ... 76

10.23 @Qualifier ... 77

10.24 @Reference .. 78

10.24.1 Reinjection ... 80

10.25 @Remotable ... 82

10.26 @Requires .. 84

10.27 @Scope .. 84

10.28 @Service .. 85

11 WSDL to Java and Java to WSDL ... 87

11.1 JAX-WS Annotations and SCA Interfaces .. 87

11.2 JAX-WS Client Asynchronous API for a Synchronous Service .. 93

11.3 Treatment of SCA Asynchronous Service API ... 94

12 Conformance .. 95

12.1 SCA Java XML Document .. 95

12.2 SCA Java Class .. 95

12.3 SCA Runtime .. 95

Appendix A. XML Schema: sca-interface-java-1.1.xsd ... 96

Appendix B. Java Classes and Interfaces ... 97

B.1 SCAClient Classes and Interfaces ... 97

B.1.1 SCAClientFactory Class ... 97

B.1.2 SCAClientFactoryFinder interface .. 99

B.1.3 SCAClientFactoryFinderImpl class ... 100

B.1.4 SCAClient Classes and Interfaces - what does a vendor need to do? 105

Appendix C. Conformance Items ... 106

Appendix D. Acknowledgements ... 122

Appendix E. Revision History .. 124

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 8 of 125

1 Introduction 1

The SCA-J Common Annotations and APIs specification defines a Java syntax for programming concepts 2
defined in the SCA Assembly Model Specification [ASSEMBLY]. It specifies a set of APIs and annotations 3
that can be used by SCA Java-based specifications. 4

Specifically, this specification covers: 5

1. Implementation metadata for specifying component services, references, and properties 6

2. A client and component API 7

3. Metadata for asynchronous services 8

4. Metadata for callbacks 9

5. Definitions of standard component implementation scopes 10

6. Java to WSDL and WSDL to Java mappings 11

7. Security policy annotations 12

The goal of defining the annotations and APIs in this specification is to promote consistency and reduce 13
duplication across the various SCA Java-based specifications. The annotations and APIs defined in this 14
specification are designed to be used by other SCA Java-based specifications in either a partial or 15
complete fashion. 16

1.1 Terminology 17

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 18
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 19
in [RFC2119]. 20

1.2 Normative References 21

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 22
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 23

[ASSEMBLY] OASIS Committee Specification Draft 0608, SCA Assembly Model Specification 24
Version 1.1, August 2010. 25
May 2011. 26
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-27
csd08.pdf 28

[SDO] OASIS Committee Draft 02, Service Data Objects Specification Version 3.0, 29
November 2009. 30
http://www.oasis-open.org/committees/download.php/35313/sdo-3.0-cd02.zip 31

[JAX-B] JAXB 2.1 Specification, http://www.jcp.org/en/jsr/detail?id=222 32

[WSDL] WSDL Specification, WSDL 1.1: http://www.w3.org/TR/wsdl, 33

[POLICY] OASIS Committee Specification Draft 0405, SCA Policy Framework Version 1.1, 34
September 2010. 35
July 2011. 36
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-spec-v1.1-csd05.pdf 37

[JSR-250] Common Annotations for the Java Platform specification (JSR-250), 38
http://www.jcp.org/en/jsr/detail?id=250 39

[JAX-WS] JAX-WS 2.1 Specification (JSR-224), http://www.jcp.org/en/jsr/detail?id=224 40

[JAVABEANS] JavaBeans 1.01 Specification, 41
http://java.sun.com/javase/technologies/desktop/javabeans/api/ 42

[JAAS] Java Authentication and Authorization Service Reference Guide 43

 http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.44
html 45

http://www.ietf.org/rfc/rfc2119.txt
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csd08.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csd08.pdf
http://www.oasis-open.org/committees/download.php/35313/sdo-3.0-cd02.zip
http://www.jcp.org/en/jsr/detail?id=222
http://www.w3.org/TR/wsdl
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-spec-v1.1-csd05.pdf
http://www.jcp.org/en/jsr/detail?id=250
http://www.jcp.org/en/jsr/detail?id=224
http://java.sun.com/javase/technologies/desktop/javabeans/api/
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 9 of 125

1.3 Non-Normative References 46

[EBNF-Syntax] Extended BNF syntax format used for formal grammar of constructs 47
http://www.w3.org/TR/2004/REC-xml-20040204/#sec-notation 48

[JAVA_CI] OASIS Committee Specification Draft 0304, SCA POJO Component 49
Implementation Specification Version 1.1, November 2010August 2011. 50

 http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csd04.pdf 51

[CAA_Testcases] OASIS Committee Specification Draft 02, TestCases for the SCA-J Common 52
Annotations and APIs Version 1.1 Specification, August 2011. 53
http://docs.oasis-open.org/opencsa/sca-j/sca-j-caa-testcases-v1.1-csd02.pdf 54

1.4 Testcases 55

The TestCases for the SCA-J Common Annotations and APIs Version 1.1 Specification [CAA_Testcases] 56
defines the TestCases for the SCA-J Common Annotations and API specification. The TestCases 57
represent a series of tests that SCA runtimes are expected to pass in order to claim conformance to the 58
requirements of the SCA-J Common Annotations and API specification. 59

http://www.w3.org/TR/2004/REC-xml-20040204/#sec-notation
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csd04.pdf

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 10 of 125

2 Implementation Metadata 60

This section describes SCA Java-based metadata, which applies to Java-based implementation types. 61

2.1 Service Metadata 62

2.1.1 @Service 63

The @Service annotation is used on a Java class to specify the interfaces of the services provided by 64
the implementation. Service interfaces are defined in one of the following ways: 65

 As a Java interface 66

 As a Java class 67

 As a Java interface generated from a Web Services Description Language [WSDL] (WSDL) portType 68
(Java interfaces generated from WSDL portTypes are always remotable) 69

2.1.2 Java Semantics of a Remotable Service 70

A remotable service is defined using the @Remotable annotation on the Java interface or Java class 71
that defines the service, or on a service reference. Remotable services are intended to be used for 72
coarse grained services, and the parameters are passed by-value. Remotable Services MUST NOT 73
make use of method overloading. [JCA20001] 74

Snippet 2-1 shows an example of a Java interface for a remotable service: 75

 76

package services.hello; 77
@Remotable 78
public interface HelloService { 79
 String hello(String message); 80
} 81

Snippet 2-1: Remotable Java Interface 82

2.1.3 Java Semantics of a Local Service 83

A local service can only be called by clients that are deployed within the same address space as the 84
component implementing the local service. 85

A local interface is defined by a Java interface or a Java class with no @Remotable annotation. 86

Snippet 2-2 shows an example of a Java interface for a local service: 87

 88

package services.hello; 89
public interface HelloService { 90
 String hello(String message); 91
} 92

Snippet 2-2: Local Java Interface 93

 94

The style of local interfaces is typically fine grained and is intended for tightly coupled interactions. 95

The data exchange semantic for calls to local services is by-reference. This means that implementation 96
code which uses a local interface needs to be written with the knowledge that changes made to 97
parameters (other than simple types) by either the client or the provider of the service are visible to the 98
other. 99

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 11 of 125

2.1.4 @Reference 100

Accessing a service using reference injection is done by defining a field, a setter method, or a constructor 101
parameter typed by the service interface and annotated with a @Reference annotation. 102

2.1.5 @Property 103

Implementations can be configured with data values through the use of properties, as defined in the SCA 104
Assembly Model specification [ASSEMBLY]. The @Property annotation is used to define an SCA 105
property. 106

2.2 Implementation Scopes: @Scope, @Init, @Destroy 107

Component implementations can either manage their own state or allow the SCA runtime to do so. In the 108
latter case, SCA defines the concept of implementation scope, which specifies a visibility and lifecycle 109
contract an implementation has with the SCA runtime. Invocations on a service offered by a component 110
will be dispatched by the SCA runtime to an implementation instance according to the semantics of its 111
implementation scope. 112

Scopes are specified using the @Scope annotation on the implementation class. 113

This specification defines two scopes: 114

 STATELESS 115

 COMPOSITE 116

Java-based implementation types can choose to support any of these scopes, and they can define new 117
scopes specific to their type. 118

An implementation type can allow component implementations to declare lifecycle methods that are 119
called when an implementation is instantiated or the scope is expired. 120

@Init denotes a method called upon first use of an instance during the lifetime of the scope (except for 121
composite scoped implementation marked to eagerly initialize, see section Composite Scope). 122

@Destroy specifies a method called when the scope ends. 123

Note that only no-argument methods with a void return type can be annotated as lifecycle methods. 124

Snippet 2-3 is an example showing a fragment of a service implementation annotated with lifecycle 125
methods: 126

 127

 @Init 128
 public void start() { 129
 ... 130
 } 131
 132
 @Destroy 133
 public void stop() { 134
 ... 135
 } 136

Snippet 2-3: Java Component Implementation with Lifecycle Methods 137

 138

The following sections specify the two standard scopes which a Java-based implementation type can 139
support. 140

2.2.1 Stateless Scope 141

For stateless scope components, there is no implied correlation between implementation instances used 142
to dispatch service requests. 143

The concurrency model for the stateless scope is single threaded. This means that the SCA runtime 144
MUST ensure that a stateless scoped implementation instance object is only ever dispatched on one 145

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 12 of 125

thread at any one time. [JCA20002] In addition, within the SCA lifecycle of a stateless scoped 146
implementation instance, the SCA runtime MUST only make a single invocation of one business method. 147
[JCA20003] Note that the SCA lifecycle might not correspond to the Java object lifecycle due to runtime 148
techniques such as pooling. 149

2.2.2 Composite Scope 150

The meaning of "composite scope" is defined in relation to the composite containing the component. 151

It is important to distinguish between different uses of a composite, where these uses affect the numbers 152
of instances of components within the composite. There are 2 cases: 153

a) Where the composite containing the component using the Java implementation is the SCA Domain 154
(i.e. a deployment composite declares the component using the implementation) 155

b) Where the composite containing the component using the Java implementation is itself used as the 156
implementation of a higher level component (any level of nesting is possible, but the component is 157
NOT at the Domain level) 158

Where an implementation is used by a "domain level component", and the implementation is marked 159
"Composite" scope, the SCA runtime MUST ensure that all consumers of the component appear to be 160
interacting with a single runtime instance of the implementation. [JCA20004] 161

Where an implementation is marked "Composite" scope and it is used by a component that is nested 162
inside a composite that is used as the implementation of a higher level component, the SCA runtime 163
MUST ensure that all consumers of the component appear to be interacting with a single runtime instance 164
of the implementation. There can be multiple instances of the higher level component, each running on 165
different nodes in a distributed SCA runtime. [JCA20008] 166

The SCA runtime can exploit shared state technology in combination with other well known high 167
availability techniques to provide the appearance of a single runtime instance for consumers of composite 168
scoped components. 169

The lifetime of the containing composite is defined as the time it becomes active in the runtime to the time 170
it is deactivated, either normally or abnormally. 171

When the implementation class is marked for eager initialization, the SCA runtime MUST create a 172
composite scoped instance when its containing component is started. [JCA20005] If a method of an 173
implementation class is marked with the @Init annotation, the SCA runtime MUST call that method when 174
the implementation instance is created. [JCA20006] 175

The concurrency model for the composite scope is multi-threaded. This means that the SCA runtime MAY 176
run multiple threads in a single composite scoped implementation instance object and the SCA runtime 177
MUST NOT perform any synchronization. [JCA20007] 178

2.3 @AllowsPassByReference 179

Calls to remotable services (see section "Java Semantics of a Remotable Service") have by-value 180
semantics. This means that input parameters passed to the service can be modified by the service 181
without these modifications being visible to the client. Similarly, the return value or exception from the 182
service can be modified by the client without these modifications being visible to the service 183
implementation. For remote calls (either cross-machine or cross-process), these semantics are a 184
consequence of marshalling input parameters, return values and exceptions “on the wire” and 185
unmarshalling them “off the wire” which results in physical copies being made. For local method calls 186
within the same JVM, Java language calling semantics are by-reference and therefore do not provide the 187
correct by-value semantics for SCA remotable interfaces. To compensate for this, the SCA runtime can 188
intervene in these calls to provide by-value semantics by making copies of any mutable objects passed. 189

The cost of such copying can be very high relative to the cost of making a local call, especially if the data 190
being passed is large. Also, in many cases this copying is not needed if the implementation observes 191
certain conventions for how input parameters, return values and exceptions are used. The 192
@AllowsPassByReference annotation allows service method implementations and client references to be 193
marked as “allows pass by reference” to indicate that they use input parameters, return values and 194

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 13 of 125

exceptions in a manner that allows the SCA runtime to avoid the cost of copying mutable objects when a 195
remotable service is called locally within the same JVM. 196

2.3.1 Marking Services as “allows pass by reference” 197

Marking a service method implementation as “allows pass by reference” asserts that the method 198
implementation observes the following restrictions: 199

 Method execution will not modify any input parameter before the method returns. 200

 The service implementation will not retain a reference to any mutable input parameter, mutable return 201
value or mutable exception after the method returns. 202

 The method will observe “allows pass by reference” client semantics (see section 2.3.2) for any 203
callbacks that it makes. 204

See section "@AllowsPassByReference" for details of how the @AllowsPassByReference annotation is 205
used to mark a service method implementation as “allows pass by reference”. 206

2.3.2 Marking References as “allows pass by reference” 207

Marking a client reference as “allows pass by reference” asserts that method calls through the reference 208
observe the following restrictions: 209

 The client implementation will not modify any of the method’s input parameters before the method 210
returns. Such modifications might occur in callbacks or separate client threads. 211

 If the method is one-way, the client implementation will not modify any of the method’s input 212
parameters at any time after calling the method. This is because one-way method calls return 213
immediately without waiting for the service method to complete. 214

See section "Applying “allows pass by reference” to Service Proxies" for details of how the 215
@AllowsPassByReference annotation is used to mark a client reference as “allows pass by reference”. 216

2.3.3 Applying “allows pass by reference” to Service Proxies 217

Service method calls are made by clients using service proxies, which can be obtained by injection into 218
client references or by making API calls. A service proxy is marked as “allows pass by reference” if and 219
only if any of the following applies: 220

 It is injected into a reference or callback reference that is marked “allows pass by reference”. 221

 It is obtained by calling ComponentContext.getService() or ComponentContext.getServices() with the 222
name of a reference that is marked “allows pass by reference”. 223

 It is obtained by calling RequestContext.getCallback() from a service implementation that is marked 224
“allows pass by reference”. 225

 It is obtained by calling ServiceReference.getService() on a service reference that is marked “allows 226
pass by reference”. 227

A service reference for a remotable service call is marked “allows pass by reference” if and only if any of 228
the following applies: 229

 It is injected into a reference or callback reference that is marked “allows pass by reference”. 230

 It is obtained by calling ComponentContext.getServiceReference() or 231
ComponentContext.getServiceReferences() with the name of a reference that is marked “allows pass 232
by reference”. 233

 It is obtained by calling RequestContext.getCallbackReference() from a service implementation that is 234
marked “allows pass by reference”. 235

 It is obtained by calling ComponentContext.cast() on a proxy that is marked “allows pass by 236
reference”. 237

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 14 of 125

2.3.4 Using “allows pass by reference” to Optimize Remotable Calls 238

 [JCA20009] 239

The SCA runtime MUST use by-value semantics when passing input parameters, return values and 240
exceptions on calls to remotable services within the same JVM if the service method implementation is 241
not marked “allows pass by reference” or the service proxy used by the client is not marked “allows pass 242
by reference”. [JCA20010] 243

The SCA runtime can use by-reference semantics when passing input parameters, return values or 244
exceptions on calls to remotable services within the same JVM if both the service method implementation 245
and the service proxy used by the client are marked “allows pass by reference". 246

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 15 of 125

3 Interface 247

This section describes the SCA Java interface element and the SCA metadata for Java interfaces. 248

3.1 Java Interface Element – <interface.java> 249

The Java interface element is used in SCA Documents in places where an interface is declared in terms 250
of a Java interface class. The Java interface element identifies the Java interface class and can also 251
identify a callback interface, where the first Java interface represents the forward (service) call interface 252
and the second interface represents the interface used to call back from the service to the client. 253

It is possible that the Java interface class referenced by the <interface.java/> element contains one or 254
more annotations defined by the JAX-WS specification [JAX-WS]. These annotations can affect the 255
interpretation of the <interface.java/> element. In the most extreme case, the annotations cause the 256
replacement of the <interface.java/> element with an <interface.wsdl/> element. The relevant JAX-WS 257
annotations and their effects on the <interface.java/> element are described in the section "JAX-WS 258
Annotations and SCA Interfaces". 259

The interface.java element MUST conform to the schema defined in the sca-interface-java.xsd schema. 260
[JCA30004] 261

Snippet 3-1 is the pseudo-schema for the interface.java element 262

 263

<interface.java interface="NCName" callbackInterface="NCName"? 264
 requires="list of xs:QName"? 265
 policySets="list of xs:QName"? 266
 remotable="boolean"?/> 267

Snippet 3-1: interface.java Pseudo-Schema 268

 269

The interface.java element has the attributes: 270

 interface : NCName (1..1) – the Java interface class to use for the service interface. The value of the 271
@interface attribute MUST be the fully qualified name of a Java class [JCA30001] 272

If the identified class is annotated with either the JAX-WS @WebService or @WebServiceProvider 273
annotations and the annotation has a non-empty wsdlLocation property, then the SCA Runtime 274
MUST act as if an <interface.wsdl/> element is present instead of the <interface.java/> element, with 275
an @interface attribute identifying the portType mapped from the Java interface class and containing 276
@requires and @policySets attribute values equal to the @requires and @policySets attribute values 277
of the <interface.java/> element. [JCA30010] 278

 callbackInterface : NCName (0..1) – the Java interface class to use for the callback interface. The 279
value of the @callbackInterface attribute MUST be the fully qualified name of a Java interface used 280
for callbacks [JCA30002] 281

 requires : QName (0..1) – a list of policy intents. See the Policy Framework specification [POLICY] 282
for a description of this attribute 283

 policySets : QName (0..1) – a list of policy sets. See the Policy Framework specification [POLICY] 284
for a description of this attribute. 285

 remotable : boolean (0..1) – indicates whether or not the interface is remotable. A value of “true” 286
means the interface is remotable and a value of “false” means it is not. This attribute does not have a 287
default value. If it is not specified then the remotability is determined by the presence or absence of 288
the @Remotable annotation on the interface class. The @remotable attribute applies to both the 289
interface and any optional callbackInterface. The @remotable attribute is intended as an alternative 290
to using the @Remotable annotation on the interface class. The value of the @remotable attribute 291

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 16 of 125

on the <interface.java/> element does not override the presence of a @Remotable annotation on the 292
interface class and so if the interface class contains a @Remotable annotation and the @remotable 293
attribute has a value of "false", then the SCA Runtime MUST raise an error and MUST NOT run the 294
component concerned. [JCA30005] 295

 296

Snippet 3-2 shows an example of the Java interface element: 297

 298

<interface.java interface="services.stockquote.StockQuoteService" 299
 callbackInterface="services.stockquote.StockQuoteServiceCallback"/> 300

Snippet 3-2 Example interface.java Element 301

 302

Here, the Java interface is defined in the Java class file 303
./services/stockquote/StockQuoteService.class, where the root directory is defined by the contribution 304
in which the interface exists. Similarly, the callback interface is defined in the Java class file 305
./services/stockquote/StockQuoteServiceCallback.class. 306

Note that the Java interface class identified by the @interface attribute can contain a Java @Callback 307
annotation which identifies a callback interface. If this is the case, then it is not necessary to provide the 308
@callbackInterface attribute. However, if the Java interface class identified by the @interface attribute 309
does contain a Java @Callback annotation, then the Java interface class identified by the 310
@callbackInterface attribute MUST be the same interface class. [JCA30003] 311

For the Java interface type system, parameters and return types of the service methods are described 312
using Java classes or simple Java types. It is recommended that the Java Classes used conform to the 313
requirements of either JAXB [JAX-B] or of Service Data Objects [SDO] because of their integration with 314
XML technologies. 315

3.2 @Remotable 316

The @Remotable annotation on a Java interface, a service implementation class, or a service reference 317
denotes an interface or class that is designed to be used for remote communication. Remotable 318
interfaces are intended to be used for coarse grained services. Operations' parameters, return values 319
and exceptions are passed by-value. Remotable Services are not allowed to make use of method 320
overloading. 321

3.3 @Callback 322

A callback interface is declared by using a @Callback annotation on a Java service interface, with the 323
Java Class object of the callback interface as a parameter. There is another form of the @Callback 324
annotation, without any parameters, that specifies callback injection for a setter method or a field of an 325
implementation. 326

3.4 @AsyncInvocation 327

An interface can be annotated with @AsyncInvocation or with the equivalent 328
@Requires("sca:asyncInvocation") annotation to indicate that request/response operations of that 329
interface are long running and that response messages are likely to be sent an arbitrary length of time 330
after the initial request message is sent to the target service. This is described in the SCA Assembly 331
Specification [ASSEMBLY]. 332

For a service client, it is strongly recommended that the client uses the asynchronous form of the client 333
interface when using a reference to a service with an interface annotated with @AsyncInvocation, using 334
either polling or callbacks to receive the response message. See the sections "Asynchronous 335
Programming" and the section "JAX-WS Client Asynchronous API for a Synchronous Service" for more 336
details about the asynchronous client API. 337

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 17 of 125

For a service implementation, SCA provides an asynchronous service mapping of the WSDL 338
request/response interface which enables the service implementation to send the response message at 339
an arbitrary time after the original service operation is invoked. This is described in the section 340
"Asynchronous handling of Long Running Service Operations". 341

3.5 SCA Java Annotations for Interface Classes 342

A Java interface referenced by the @interface attribute of an <interface.java/> element MUST NOT 343
contain any of the following SCA Java annotations: 344

@AllowsPassByReference, @ComponentName, @Constructor, @Context, @Destroy, @EagerInit, 345
@Init, @Intent, @Property, @Qualifier, @Reference, @Scope, @Service. [JCA30006] 346

A Java interface referenced by the @callbackInterface attribute of an <interface.java/> element MUST 347
NOT contain any of the following SCA Java annotations: 348

@AllowsPassByReference, @Callback, @ComponentName, @Constructor, @Context, @Destroy, 349
@EagerInit, @Init, @Intent, @Property, @Qualifier, @Reference, @Scope, @Service. [JCA30007] 350

3.6 Compatibility of Java Interfaces 351

The SCA Assembly Model specification [ASSEMBLY] defines a number of criteria that need to be 352
satisfied in order for two interfaces to be compatible or have a compatible superset or subset relationship. 353
If these interfaces are both Java interfaces, compatibility also means that every method that is present in 354
both interfaces is defined consistently in both interfaces with respect to the @OneWay annotation, that is, 355
the annotation is either present in both interfaces or absent in both interfaces. [JCA30009] 356

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 18 of 125

4 SCA Component Implementation Lifecycle 357

This section describes the lifecycle of an SCA component implementation. 358

4.1 Overview of SCA Component Implementation Lifecycle 359

At a high level, there are 3 main phases through which an SCA component implementation will transition 360
when it is used by an SCA Runtime: 361

 The Initialization phase. This involves constructing an instance of the component implementation 362
class and injecting any properties and references. Once injection is complete, the method annotated 363
with @Init is called, if present, which provides the component implementation an opportunity to 364
perform any internal initialization it requires. 365

 The Running phase. This is where the component implementation has been initialized and the SCA 366
Runtime can dispatch service requests to it over its Service interfaces. 367

 The Destroying phase. This is where the component implementation’s scope has ended and the 368
SCA Runtime destroys the component implementation instance. The SCA Runtime calls the method 369
annotated with @Destroy, if present, which provides the component implementation an opportunity to 370
perform any internal clean up that is required. 371

4.2 SCA Component Implementation Lifecycle State Diagram 372

The state diagram in Figure 4-1 shows the lifecycle of an SCA component implementation. The sections 373
that follow it describe each of the states that it contains. 374

It should be noted that some component implementation specifications might not implement all states of 375
the lifecycle. In this case, that state of the lifecycle is skipped over. 376

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 19 of 125

Exception

Exception

Constructing

Injecting

Initializing

Running

Destroying

Terminated

Scope begins Exception

 377

Figure 4-1: SCA - Component Implementation Lifecycle 378

4.2.1 Constructing State 379

The SCA Runtime MUST call a constructor of the component implementation at the start of the 380
Constructing state. [JCA40001] The SCA Runtime MUST perform any constructor reference or property 381
injection when it calls the constructor of a component implementation. [JCA40002] 382

The result of invoking operations on any injected references when the component implementation is in 383
the Constructing state is undefined. 384

When the constructor completes successfully, the SCA Runtime MUST transition the component 385
implementation to the Injecting state. [JCA40003] If an exception is thrown whilst in the Constructing 386
state, the SCA Runtime MUST transition the component implementation to the Terminated state. 387
[JCA40004] 388

4.2.2 Injecting State 389

When a component implementation instance is in the Injecting state, the SCA Runtime MUST first inject 390
all field and setter properties that are present into the component implementation. [JCA40005] The order 391
in which the properties are injected is unspecified. 392

When a component implementation instance is in the Injecting state, the SCA Runtime MUST inject all 393
field and setter references that are present into the component implementation, after all the properties 394
have been injected. [JCA40006] The order in which the references are injected is unspecified. 395

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 20 of 125

The SCA Runtime MUST ensure that the correct synchronization model is used so that all injected 396
properties and references are made visible to the component implementation without requiring the 397
component implementation developer to do any specific synchronization. [JCA40007] 398

The SCA Runtime MUST NOT invoke Service methods on the component implementation when the 399
component implementation is in the Injecting state. [JCA40008] 400

The result of invoking operations on any injected references when the component implementation is in 401
the Injecting state is undefined. 402

When the injection of properties and references completes successfully, the SCA Runtime MUST 403
transition the component implementation to the Initializing state. [JCA40009] If an exception is thrown 404
whilst injecting properties or references, the SCA Runtime MUST transition the component 405
implementation to the Destroying state. [JCA40010] If a property or reference is unable to be injected, the 406
SCA Runtime MUST transition the component implementation to the Destroying state. [JCA40024] 407

4.2.3 Initializing State 408

When the component implementation enters the Initializing State, the SCA Runtime MUST call the 409
method annotated with @Init on the component implementation, if present. [JCA40011] 410

The component implementation can invoke operations on any injected references when it is in the 411
Initializing state. However, depending on the order in which the component implementations are 412
initialized, the target of the injected reference might not be available since it has not yet been initialized. If 413
a component implementation invokes an operation on an injected reference that refers to a target that has 414
not yet been initialized, the SCA Runtime MUST throw a ServiceUnavailableException. [JCA40012] 415

The SCA Runtime MUST NOT invoke Service methods on the component implementation when the 416
component implementation instance is in the Initializing state. [JCA40013] 417

Once the method annotated with @Init completes successfully, the SCA Runtime MUST transition the 418
component implementation to the Running state. [JCA40014] If an exception is thrown whilst initializing, 419
the SCA Runtime MUST transition the component implementation to the Destroying state. [JCA40015] 420

4.2.4 Running State 421

The SCA Runtime MUST invoke Service methods on a component implementation instance when the 422
component implementation is in the Running state and a client invokes operations on a service offered by 423
the component. [JCA40016] 424

The component implementation can invoke operations on any injected references when the component 425
implementation instance is in the Running state. 426

When the component implementation scope ends, the SCA Runtime MUST transition the component 427
implementation to the Destroying state. [JCA40017] 428

4.2.5 Destroying State 429

When a component implementation enters the Destroying state, the SCA Runtime MUST call the method 430
annotated with @Destroy on the component implementation, if present. [JCA40018] 431

The component implementation can invoke operations on any injected references when it is in the 432
Destroying state. However, depending on the order in which the component implementations are 433
destroyed, the target of the injected reference might no longer be available since it has been destroyed. If 434
a component implementation invokes an operation on an injected reference that refers to a target that has 435
been destroyed, the SCA Runtime MUST throw an InvalidServiceException. [JCA40019] 436

The SCA Runtime MUST NOT invoke Service methods on the component implementation when the 437
component implementation instance is in the Destroying state. [JCA40020] 438

Once the method annotated with @Destroy completes successfully, the SCA Runtime MUST transition 439
the component implementation to the Terminated state. [JCA40021] If an exception is thrown whilst 440
destroying, the SCA Runtime MUST transition the component implementation to the Terminated state. 441
[JCA40022] 442

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 21 of 125

4.2.6 Terminated State 443

The lifecycle of the SCA Component has ended. 444

The SCA Runtime MUST NOT invoke Service methods on the component implementation when the 445
component implementation instance is in the Terminated state. [JCA40023] 446

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 22 of 125

5 Client API 447

This section describes how SCA services can be programmatically accessed from components and also 448
from non-managed code, that is, code not running as an SCA component. 449

5.1 Accessing Services from an SCA Component 450

An SCA component can obtain a service reference either through injection or programmatically through 451
the ComponentContext API. Using reference injection is the recommended way to access a service, 452
since it results in code with minimal use of middleware APIs. The ComponentContext API is provided for 453
use in cases where reference injection is not possible. 454

5.1.1 Using the Component Context API 455

When a component implementation needs access to a service where the reference to the service is not 456
known at compile time, the reference can be located using the component’s ComponentContext. 457

5.2 Accessing Services from non-SCA Component Implementations 458

This section describes how Java code not running as an SCA component that is part of an SCA 459
composite accesses SCA services via references. 460

5.2.1 SCAClientFactory Interface and Related Classes 461

Client code can use the SCAClientFactory class to obtain proxy reference objects for a service which is 462
in an SCA Domain. The URI of the domain, the relative URI of the service and the business interface of 463
the service must all be known in order to use the SCAClientFactory class. 464
 465
Objects which implement the SCAClientFactory are obtained using the newInstance() methods of the 466
SCAClientFactory class. 467

Snippet 5-1 is a sample of the code that a client would use: 468

 469

package org.oasisopen.sca.client.example; 470
 471
import java.net.URI; 472
 473
import org.oasisopen.sca.client.SCAClientFactory; 474
import org.oasisopen.sca.client.example.HelloService; 475
 476
/** 477
 * Example of use of Client API for a client application to obtain 478
 * an SCA reference proxy for a service in an SCA Domain. 479
 */ 480
public class Client1 { 481
 482
 public void someMethod() { 483
 484
 try { 485
 486
 String serviceURI = "SomeHelloServiceURI"; 487
 URI domainURI = new URI("SomeDomainURI"); 488
 489
 SCAClientFactory scaClient = 490
 SCAClientFactory.newInstance(domainURI); 491
 HelloService helloService = 492
 scaClient.getService(HelloService.class, 493
 serviceURI); 494

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 23 of 125

 String reply = helloService.sayHello("Mark"); 495
 496
 } catch (Exception e) { 497
 System.out.println("Received exception"); 498
 } 499
 } 500
} 501

Snippet 5-1: Using the SCAClientFactory Interface 502

 503

For details about the SCAClientFactory interface and its related classes see the section 504
"SCAClientFactory Class". 505

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 24 of 125

6 Error Handling 506

Clients calling service methods can experience business exceptions and SCA runtime exceptions. 507

Business exceptions are thrown by the implementation of the called service method, and are defined as 508
checked exceptions on the interface that types the service. 509

SCA runtime exceptions are raised by the SCA runtime and signal problems in management of 510
component execution or problems interacting with remote services. The SCA runtime exceptions are 511
defined in the Java API section. 512

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 25 of 125

7 Asynchronous Programming 513

Asynchronous programming of a service is where a client invokes a service and carries on executing 514
without waiting for the service to execute. Typically, the invoked service executes at some later time. 515
Output from the invoked service, if any, is fed back to the client through a separate mechanism, since no 516
output is available at the point where the service is invoked. This is in contrast to the call-and-return style 517
of synchronous programming, where the invoked service executes and returns any output to the client 518
before the client continues. The SCA asynchronous programming model consists of: 519

 support for non-blocking method calls 520

 callbacks 521

Each of these topics is discussed in the following sections. 522

7.1 @OneWay 523

Non-blocking calls represent the simplest form of asynchronous programming, where the client of the 524
service invokes the service and continues processing immediately, without waiting for the service to 525
execute. 526

A method with a void return type and which has no declared exceptions can be marked with a @OneWay 527
annotation. This means that the method is non-blocking and communication with the service provider can 528
use a binding that buffers the request and sends it at some later time. 529

For a Java client to make a non-blocking call to methods that either return values or throw exceptions, a 530
Java client can use the JAX-WS asynchronous client API model that is described in the section "JAX-WS 531
Client Asynchronous API for a Synchronous Service". It is considered to be a best practice that service 532
designers define one-way methods as often as possible, in order to give the greatest degree of binding 533
flexibility to deployers. 534

7.2 Callbacks 535

A callback service is a service that is used for asynchronous communication from a service provider 536
back to its client, in contrast to the communication through return values from synchronous operations. 537
Callbacks are used by bidirectional services, which are services that have two interfaces: 538

 an interface for the provided service 539

 a callback interface that is provided by the client 540

Callbacks can be used for both remotable and local services. Either both interfaces of a bidirectional 541
service are remotable, or both are local. It is illegal to mix the two, as defined in the SCA Assembly 542
Model specification [ASSEMBLY]. 543

A callback interface is declared by using a @Callback annotation on a service interface, with the Java 544
Class object of the interface as a parameter. The annotation can also be applied to a method or to a field 545
of an implementation, which is used in order to have a callback injected, as explained in the next section. 546

7.2.1 Using Callbacks 547

Bidirectional interfaces and callbacks are used when a simple request/response pattern isn’t sufficient to 548
capture the business semantics of a service interaction. Callbacks are well suited for cases when a 549
service request can result in multiple responses or new requests from the service back to the client, or 550
where the service might respond to the client some time after the original request has completed. 551

Snippet 7-1 shows a scenario in which bidirectional interfaces and callbacks could be used. A client 552
requests a quotation from a supplier. To process the enquiry and return the quotation, some suppliers 553
might need additional information from the client. The client does not know which additional items of 554
information will be needed by different suppliers. This interaction can be modeled as a bidirectional 555
interface with callback requests to obtain the additional information. 556

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 26 of 125

 557

package somepackage; 558
import org.oasisopen.sca.annotation.Callback; 559
import org.oasisopen.sca.annotation.Remotable; 560
 561
@Remotable 562
@Callback(QuotationCallback.class) 563
public interface Quotation {h 564
 double requestQuotation(String productCode, int quantity); 565
} 566
 567
@Remotable 568
public interface QuotationCallback { 569
 String getState(); 570
 String getZipCode(); 571
 String getCreditRating(); 572
} 573

Snippet 7-1: Using a Bidirectional Interface 574

 575

In Snippet 7-1, the requestQuotation operation requests a quotation to supply a given quantity of a 576

specified product. The QuotationCallBack interface provides a number of operations that the supplier can 577
use to obtain additional information about the client making the request. For example, some suppliers 578
might quote different prices based on the state or the ZIP code to which the order will be shipped, and 579
some suppliers might quote a lower price if the ordering company has a good credit rating. Other 580
suppliers might quote a standard price without requesting any additional information from the client. 581

Snippet 7-2 illustrates a possible implementation of the example service, using the @Callback annotation 582
to request that a callback proxy be injected. 583

 584

@Callback 585
protected QuotationCallback callback; 586
 587
public double requestQuotation(String productCode, int quantity) { 588
 double price = getPrice(productQuote, quantity); 589
 double discount = 0; 590
 if (quantity > 1000 && callback.getState().equals("FL")) { 591
 discount = 0.05; 592
 } 593
 if (quantity > 10000 && callback.getCreditRating().charAt(0) == 'A') { 594
 discount += 0.05; 595
 } 596
 return price * (1-discount); 597
} 598

Snippet 7-2: Example Implementation of a Service with a Bidirectional Interface 599

 600

Snippet 7-3 is taken from the client of this example service. The client’s service implementation class 601
implements the methods of the QuotationCallback interface as well as those of its own service interface 602
ClientService. 603

 604

public class ClientImpl implements ClientService, QuotationCallback { 605
 606
 private QuotationService myService; 607
 608
 @Reference 609
 public void setMyService(QuotationService service) { 610
 myService = service; 611
 } 612
 613

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 27 of 125

 public void aClientMethod() { 614
 ... 615
 double quote = myService.requestQuotation("AB123", 2000); 616
 ... 617
 } 618
 619
 public String getState() { 620
 return "TX"; 621
 } 622
 public String getZipCode() { 623
 return "78746"; 624
 } 625
 public String getCreditRating() { 626
 return "AA"; 627
 } 628
} 629

Snippet 7-3: Example Client Using a Biderictional Interface 630

 631

Snippet 7-3 the callback is stateless, i.e., the callback requests do not need any information relating to 632
the original service request. For a callback that needs information relating to the original service request 633
(a stateful callback), this information can be passed to the client by the service provider as parameters 634
on the callback request. 635

7.2.2 Callback Instance Management 636

Instance management for callback requests received by the client of the bidirectional service is handled in 637
the same way as instance management for regular service requests. If the client implementation has 638
STATELESS scope, the callback is dispatched using a newly initialized instance. If the client 639
implementation has COMPOSITE scope, the callback is dispatched using the same shared instance that 640
is used to dispatch regular service requests. 641

As described in the section "Using Callbacks", a stateful callback can obtain information relating to the 642
original service request from parameters on the callback request. Alternatively, a composite-scoped 643
client could store information relating to the original request as instance data and retrieve it when the 644
callback request is received. These approaches could be combined by using a key passed on the 645
callback request (e.g., an order ID) to retrieve information that was stored in a composite-scoped instance 646
by the client code that made the original request. 647

7.2.3 Callback Injection 648

When a bidirectional service is invoked, the SCA runtime MUST inject a callback reference for the 649
invoking service into all fields and setter methods of the service implementation class that are marked 650
with a @Callback annotation and typed by the callback interface of the bidirectional service, and the SCA 651
runtime MUST inject null into all other fields and setter methods of the service implementation class that 652
are marked with a @Callback annotation. [JCA60001] When a non-bidirectional service is invoked, the 653
SCA runtime MUST inject null into all fields and setter methods of the service implementation class that 654
are marked with a @Callback annotation. [JCA60002] 655

7.2.4 Implementing Multiple Bidirectional Interfaces 656

Since it is possible for a single implementation class to implement multiple services, it is also possible for 657
callbacks to be defined for each of the services that it implements. The service implementation can 658
include an injected field for each of its callbacks. The runtime injects the callback onto the appropriate 659
field based on the type of the callback. Snippet 7-4 shows the declaration of two fields, each of which 660
corresponds to a particular service offered by the implementation. 661

 662

@Callback 663
protected MyService1Callback callback1; 664

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 28 of 125

 665
@Callback 666
protected MyService2Callback callback2; 667

Snippet 7-4: Multiple Bidirectional Interfaces in an Implementation 668

 669

If a single callback has a type that is compatible with multiple declared callback fields, then all of them will 670
be set. 671

7.2.5 Accessing Callbacks 672

In addition to injecting a reference to a callback service, it is also possible to obtain a reference to a 673
Callback instance by annotating a field or method of type ServiceReference with the @Callback 674
annotation. 675

 676

A reference implementing the callback service interface can be obtained using 677

ServiceReference.getService(). 678

Snippet 7-5 comes from a service implementation that uses the callback API: 679

 680

@Callback 681
protected ServiceReference<MyCallback> callback; 682
 683
public void someMethod() { 684
 685
 MyCallback myCallback = callback.getService(); … 686
 687
 myCallback.receiveResult(theResult); 688
} 689

Snippet 7-5: Using the Callback API 690

 691

Because ServiceReference objects are serializable, they can be stored persistently and retrieved at a 692
later time to make a callback invocation after the associated service request has completed. 693
ServiceReference objects can also be passed as parameters on service invocations, enabling the 694
responsibility for making the callback to be delegated to another service. 695

Alternatively, a callback can be retrieved programmatically using the RequestContext API. Snippet 7-6 696
shows how to retrieve a callback in a method programmatically: 697

@Context 698
ComponentContext context; 699
 700
public void someMethod() { 701
 702
 MyCallback myCallback = context.getRequestContext().getCallback(); 703
 704
 … 705
 706
 myCallback.receiveResult(theResult); 707
} 708

Snippet 7-6: Using RequestContext to get a Callback 709

 710

This is necessary if the service implementation has COMPOSITE scope, because callback injection is not 711
performed for composite-scoped implementations. 712

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 29 of 125

7.3 Asynchronous handling of Long Running Service Operations 713

Long-running request-response operations are described in the SCA Assembly Specification 714
[ASSEMBLY]. These operations are characterized by following the WSDL request-response message 715
exchange pattern, but where the timing of the sending of the response message is arbitrarily later than 716
the receipt of the request message, with an impact on the client component, on the service component 717
and also on the transport binding used to communicate between them. 718

In SCA, such operations are marked with an intent "asyncInvocation" and is expected that the client 719
component, the service component and the binding are all affected by the presence of this intent. This 720
specification does not describe the effects of the intent on the binding, other than to note that in general, 721
there is an implication that the sending of the response message is typically separate from the sending of 722
the request message, typically requiring a separate response endpoint on the client to which the 723
response can be sent. 724

For components that are clients of a long-running request-response operation, it is strongly 725
recommended that the client makes use of the JAX-WS Client Asynchronous API, either using the polling 726
interface or the callback mechanism described in the section "JAX-WS Client Asynchronous API for a 727
Synchronous Service". The principle is that the client should not synchronously wait for a response from 728
the long running operation since this could take a long time and it is preferable not to tie up resources 729
while waiting. 730

For the service implementation component, the JAX-WS client asynchronous API is not suitable, so the 731
SCA Java Common Annotations and APIs specification defines the SCA Asynchronous Service interface, 732
which, like the JAX-WS client asynchronous API, is an alternative mapping of a WSDL request-response 733
operation into a Java interface. 734

7.4 SCA Asynchronous Service Interface 735

The SCA Asynchronous Service interface follows some of the patterns defined by the JAX-WS client 736
asynchronous API, but it is a simpler interface aligned with the needs of a service implementation class. 737

As an example, for a WSDL portType with a single operation "getPrice" with a String request parameter 738
and a float response, the synchronous Java interface mapping appears in Snippet 7-7. 739

 740

// synchronous mapping 741
public interface StockQuote { 742
 float getPrice(String ticker); 743
} 744

Snippet 7-7: Example Synchronous Java Interface Mapping 745

 746

The JAX-WS client asynchronous API for the same portType adds two asynchronous forms for each 747
synchronous method, as shown in Snippet 7-8. 748

 749

// asynchronous mapping 750
public interface StockQuote { 751
 float getPrice(String ticker); 752
 Response<Float> getPriceAsync(String ticker); 753
 Future<?> getPriceAsync(String ticker, AsyncHandler<Float> handler); 754
} 755

Snippet 7-8: Example JAX-WS Client Asynchronous Java interface Mapping 756

 757

The SCA Asynchronous Service interface has a single method similar to the final one in the 758
asynchronous client interface, as shown in Snippet 7-8. 759

 760

// asynchronous mapping 761

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 30 of 125

@Requires("sca:asyncInvocation") 762
public interface StockQuote { 763
 void getPriceAsync(String ticker, ResponseDispatch<Float> dispatch); 764
} 765

Snippet 7-9: Example SCA Asynchronous Service Java interface Mapping 766

 767

The main characteristics of the SCA asynchronous mapping are: 768

 there is a single method, with a name with the string "Async" appended to the operation name 769

 it has a void return type 770

 it has two input parameters, the first is the request message of the operation and the second is a 771
ResponseDispatch object typed by the response message of the operation (following the rules 772
expressed in the JAX-WS specification for the typing of the AsyncHandler object in the client 773
asynchronous API) 774

 it is annotated with the asyncInvocation intent 775

 if the synchronous method has any business faults/exceptions, it is annotated with @AsyncFault, 776
containing a list of the exception classes 777

Unlike the JAX-WS asynchronous client interface, there is only a single operation for the service 778
implementation to provide (it would be inconvenient for the service implementation to be required to 779
implement multiple methods for each operation in the WSDL interface). 780

The ResponseDispatch parameter is the mechanism by which the service implementation sends back the 781
response message resulting from the invocation of the service method. The ResponseDispatch is 782
serializable and it can be invoked once at any time after the invocation of the service method, either 783
before or after the service method returns. This enables the service implementation to store the 784
ResponseDispatch in serialized form and release resources while waiting for the completion of whatever 785
activities result from the processing of the initial invocation. 786

The ResponseDispatch object is allocated by the SCA runtime/binding implementation and it is expected 787
to contain whatever metadata is required to deliver the response message back to the client that invoked 788
the service operation. 789

The SCA asynchronous service Java interface mapping of a WSDL request-response operation 790
MUST appear as follows: 791

The interface is annotated with the "asyncInvocation" intent. 792

– For each service operation in the WSDL, the Java interface contains an operation with 793

– a name which is the JAX-WS mapping of the WSDL operation name, with the suffix "Async" 794
added 795

– a void return type 796

– a set of input parameter(s) which match the JAX-WS mapping of the input parameter(s) of the 797
WSDL operation plus an additional last parameter which is a ResponseDispatch object typed by 798
the JAX-WS Response Bean mapping of the output parameter(s) of the WSDL operation, where 799
ResponseDispatch is the type defined in the SCA Java Common Annotations and APIs 800
specification. [JCA60003] 801

An SCA Runtime MUST support the use of the SCA asynchronous service interface for the interface of an 802
SCA service. [JCA60004] 803

The ResponseDispatch object passed in as a parameter to a method of a service implementation using 804
the SCA asynchronous service Java interface can be invoked once only through either its sendResponse 805
method or through its sendFault method to return the response resulting from the service method 806
invocation. If the SCA asynchronous service interface ResponseDispatch handleResponse method is 807
invoked more than once through either its sendResponse or its sendFault method, the SCA runtime 808
MUST throw an IllegalStateException. [JCA60005] 809

 810

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 31 of 125

For the purposes of matching interfaces (when wiring between a reference and a service, or when using 811
an implementation class by a component), an interface which has one or more methods which follow the 812
SCA asynchronous service pattern MUST be treated as if those methods are mapped as the equivalent 813
synchronous methods, as follows: 814

Asynchronous service methods are characterized by: 815

– void return type 816

– a method name with the suffix "Async" 817

– a last input parameter with a type of ResponseDispatch<X> 818

– annotation with the asyncInvocation intent 819

– possible annotation with the @AsyncFault annotation 820

The mapping of each such method is as if the method had the return type "X", the method name without 821
the suffix "Async" and all the input parameters except the last parameter of the type 822
ResponseDispatch<X>, plus the list of exceptions contained in the @AsyncFault annotation. [JCA60006] 823

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 32 of 125

8 Policy Annotations for Java 824

SCA provides facilities for the attachment of policy-related metadata to SCA assemblies, which influence 825
how implementations, services and references behave at runtime. The policy facilities are described in 826
the SCA Policy Framework specification [POLICY]. In particular, the facilities include Intents and Policy 827
Sets, where intents express abstract, high-level policy requirements and policy sets express low-level 828
detailed concrete policies. 829

Policy metadata can be added to SCA assemblies through the means of declarative statements placed 830
into Composite documents and into Component Type documents. These annotations are completely 831
independent of implementation code, allowing policy to be applied during the assembly and deployment 832
phases of application development. 833

However, it can be useful and more natural to attach policy metadata directly to the code of 834
implementations. This is particularly important where the policies concerned are relied on by the code 835
itself. An example of this from the Security domain is where the implementation code expects to run 836
under a specific security Role and where any service operations invoked on the implementation have to 837
be authorized to ensure that the client has the correct rights to use the operations concerned. By 838
annotating the code with appropriate policy metadata, the developer can rest assured that this metadata 839
is not lost or forgotten during the assembly and deployment phases. 840

This specification has a series of annotations which provide the capability for the developer to attach 841
policy information to Java implementation code. The annotations concerned first provide general facilities 842
for attaching SCA Intents and Policy Sets to Java code. Secondly, there are further specific annotations 843
that deal with particular policy intents for certain policy domains such as Security and Transactions. 844

This specification supports using the Common Annotations for the Java Platform specification (JSR-250) 845
[JSR-250]. An implication of adopting the common annotation for Java platform specification is that the 846
SCA Java specification supports consistent annotation and Java class inheritance relationships. SCA 847
policy annotation semantics follow the General Guidelines for Inheritance of Annotations in the Common 848
Annotations for the Java Platform specification [JSR-250], except that member-level annotations in a 849
class or interface do not have any effect on how class-level annotations are applied to other members of 850
the class or interface. 851

 852

8.1 General Intent Annotations 853

SCA provides the annotation @Requires for the attachment of any intent to a Java class, to a Java 854
interface or to elements within classes and interfaces such as methods and fields. 855

The @Requires annotation can attach one or multiple intents in a single statement. 856

Each intent is expressed as a string. Intents are XML QNames, which consist of a Namespace URI 857
followed by the name of the Intent. The precise form used follows the string representation used by the 858
javax.xml.namespace.QName class, which is shown in Snippet 8-1. 859

 860

 "{" + Namespace URI + "}" + intentname 861

Snippet 8-1: Intent Format 862

 863

Intents can be qualified, in which case the string consists of the base intent name, followed by a ".", 864
followed by the name of the qualifier. There can also be multiple levels of qualification. 865

This representation is quite verbose, so we expect that reusable String constants will be defined for the 866
namespace part of this string, as well as for each intent that is used by Java code. SCA defines 867
constants for intents such as those in Snippet 8-2. 868

 869

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 33 of 125

 public static final String SCA_PREFIX = 870
 "{http://docs.oasis-open.org/ns/opencsa/sca/200912}"; 871
 public static final String CONFIDENTIALITY = 872
 SCA_PREFIX + "confidentiality"; 873
 public static final String CONFIDENTIALITY_MESSAGE = 874
 CONFIDENTIALITY + ".message"; 875

Snippet 8-2: Example Intent Constants 876

 877

Notice that, by convention, qualified intents include the qualifier as part of the name of the constant, 878
separated by an underscore. These intent constants are defined in the file that defines an annotation for 879
the intent (annotations for intents, and the formal definition of these constants, are covered in a following 880
section). 881

Multiple intents (qualified or not) are expressed as separate strings within an array declaration. 882

An example of the @Requires annotation with 2 qualified intents (from the Security domain) is shown in 883
Snippet 8-3: 884

 885

@Requires({CONFIDENTIALITY_MESSAGE, INTEGRITY_MESSAGE}) 886

Snippet 8-3: Multiple Intnets in One Annotation 887

 888

The annotation in Snippet 8-3 attaches the intents "confidentiality.message" and "integrity.message". 889

Snippet 8-4 is an example of a reference requiring support for confidentiality: 890

 891

package com.foo; 892
 893
import static org.oasisopen.sca.annotation.Confidentiality.*; 894
import static org.oasisopen.sca.annotation.Reference; 895
import static org.oasisopen.sca.annotation.Requires; 896
 897
public class Foo { 898
 @Requires(CONFIDENTIALITY) 899
 @Reference 900
 public void setBar(Bar bar) { 901
 … 902
 } 903
} 904

Snippet 8-4: Annotation a Reference 905

 906

Users can also choose to only use constants for the namespace part of the QName, so that they can add 907
new intents without having to define new constants. In that case, the definition of Snippet 8-4 would 908
instead look like Snippet 8-5. 909

 910

package com.foo; 911
 912
import static org.oasisopen.sca.Constants.*; 913
import static org.oasisopen.sca.annotation.Reference; 914
import static org.oasisopen.sca.annotation.Requires; 915
 916
public class Foo { 917
 @Requires(SCA_PREFIX+"confidentiality") 918
 @Reference 919
 public void setBar(Bar bar) { 920
 … 921
 } 922
} 923

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 34 of 125

Snippet 8-5: Using Intent Constants and strings 924

 925

The formal syntax [EBNF-Syntax] for the @Requires annotation follows: 926

'@Requires("' QualifiedIntent '"' (',"' QualifiedIntent '"')* ')' 927

where 928

QualifiedIntent ::= QName('.' Qualifier)* 929
Qualifier ::= NCName 930

 931

See section @Requires for the formal definition of the @Requires annotation. 932

8.2 Specific Intent Annotations 933

In addition to the general intent annotation supplied by the @Requires annotation described in section 934
8.2, it is also possible to have Java annotations that correspond to specific policy intents. SCA provides a 935
number of these specific intent annotations and it is also possible to create new specific intent 936
annotations for any intent. 937

The general form of these specific intent annotations is an annotation with a name derived from the name 938
of the intent itself. If the intent is a qualified intent, qualifiers are supplied as an attribute to the annotation 939
in the form of a string or an array of strings. 940

For example, the SCA confidentiality intent described in the section on General Intent Annotations using 941
the @Requires(CONFIDENTIALITY) annotation can also be specified with the @Confidentiality specific 942
intent annotation. The specific intent annotation for the "integrity" security intent is shown in Snippet 8-6. 943

 944

@Integrity 945

Snippet 8-6: Example Specific Intent Annotation 946

 947

An example of a qualified specific intent for the "authentication" intent is shown in Snippet 8-7. 948

 949

@Authentication({"message", "transport"}) 950

Snippet 8-7: Example Qualified Specific Intent Annotation 951

 952

This annotation attaches the pair of qualified intents: "authentication.message" and 953
"authentication.transport" (the sca: namespace is assumed in this both of these cases – 954
"http://docs.oasis-open.org/ns/opencsa/sca/200912"). 955

The general form of specific intent annotations is shown in Snippet 8-8 956

 957

'@' Intent ('(' qualifiers ')')? 958

where Intent is an NCName that denotes a particular type of intent. 959

Intent ::= NCName 960
qualifiers ::= '"' qualifier '"' (',"' qualifier '"')* 961
qualifier ::= NCName ('.' qualifier)? 962

Snippet 8-8: Specific Intent Annotation Format 963

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 35 of 125

8.2.1 How to Create Specific Intent Annotations 964

SCA identifies annotations that correspond to intents by providing an @Intent annotation which MUST be 965
used in the definition of a specific intent annotation. [JCA70001] 966

The @Intent annotation takes a single parameter, which (like the @Requires annotation) is the String 967
form of the QName of the intent. As part of the intent definition, it is good practice (although not required) 968
to also create String constants for the Namespace, for the Intent and for Qualified versions of the Intent (if 969
defined). These String constants are then available for use with the @Requires annotation and it is also 970
possible to use one or more of them as parameters to the specific intent annotation. 971

Alternatively, the QName of the intent can be specified using separate parameters for the 972
targetNamespace and the localPart, as shown in Snippet 8-9: 973

 974

 @Intent(targetNamespace=SCA_NS, localPart="confidentiality") 975

Snippet 8-9: Defining a Specific Intent Annotation 976

 977

See section @Intent for the formal definition of the @Intent annotation. 978

When an intent can be qualified, it is good practice for the first attribute of the annotation to be a string (or 979
an array of strings) which holds one or more qualifiers. 980

In this case, the attribute’s definition needs to be marked with the @Qualifier annotation. The @Qualifier 981
tells SCA that the value of the attribute is treated as a qualifier for the intent represented by the whole 982
annotation. If more than one qualifier value is specified in an annotation, it means that multiple qualified 983
forms exist. For example the annotation in Snippet 8-10 984

 985

@Confidentiality({"message","transport"}) 986

Snippet 8-10: Multiple Qualifiers in an Annotation' 987

 988

implies that both of the qualified intents "confidentiality.message" and "confidentiality.transport" are set for 989
the element to which the @Confidentiality annotation is attached. 990

See section @Qualifier for the formal definition of the @Qualifier annotation. 991

Examples of the use of the @Intent and the @Qualifier annotations in the definition of specific intent 992
annotations are shown in the section dealing with Security Interaction Policy. 993

8.3 Application of Intent Annotations 994

The SCA Intent annotations can be applied to the following Java elements: 995

 Java class 996

 Java interface 997

 Method 998

 Field 999

 Constructor parameter 1000

Intent annotations MUST NOT be applied to the following: 1001

 A method of a service implementation class, except for a setter method that is either annotated with 1002
@Reference or introspected as an SCA reference according to the rules in the appropriate 1003
Component Implementation specification 1004

 A service implementation class field that is not either annotated with @Reference or introspected as 1005
an SCA reference according to the rules in the appropriate Component Implementation specification 1006

 A service implementation class constructor parameter that is not annotated with @Reference 1007

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 36 of 125

[JCA70002] 1008

Intent annotations can be applied to classes, interfaces, and interface methods. Applying an intent 1009
annotation to a field, setter method, or constructor parameter allows intents to be defined at references. 1010
Intent annotations can also be applied to reference interfaces and their methods. 1011

Where multiple intent annotations (general or specific) are applied to the same Java element, the SCA 1012
runtime MUST compute the combined intents for the Java element by merging the intents from all intent 1013
annotations on the Java element according to the SCA Policy Framework [POLICY] rules for merging 1014
intents at the same hierarchy level. [JCA70003] 1015

An example of multiple policy annotations being used together is shown in Snippet 8-11: 1016

 1017

@Authentication 1018
@Requires({CONFIDENTIALITY_MESSAGE, INTEGRITY_MESSAGE}) 1019

Snippet 8-11: Multiple Policy Annotations 1020

 1021

In this case, the effective intents are "authentication", "confidentiality.message" and "integrity.message". 1022

If intent annotations are specified on both an interface method and the method's declaring interface, the 1023
SCA runtime MUST compute the effective intents for the method by merging the combined intents from 1024
the method with the combined intents for the interface according to the SCA Policy Framework [POLICY] 1025
rules for merging intents within a structural hierarchy, with the method at the lower level and the interface 1026
at the higher level. [JCA70004] This merging process does not remove or change any intents that are 1027
applied to the interface. 1028

8.3.1 Intent Annotation Examples 1029

The following examples show how the rules defined in section 8.3 are applied. 1030

Snippet 8-12 shows how intents on references are merged. In this example, the intents for myRef are 1031

"authentication" and "confidentiality.message". 1032

 1033

@Authentication 1034
@Requires(CONFIDENTIALITY) 1035
@Confidentiality("message") 1036
@Reference 1037
protected MyService myRef; 1038

Snippet 8-12: Merging Intents on References 1039

 1040

Snippet 8-13 shows that mutually exclusive intents cannot be applied to the same Java element. In this 1041
example, the Java code is in error because of contradictory mutually exclusive intents 1042
"managedTransaction" and "noManagedTransaction". 1043

 1044

@Requires({SCA_PREFIX+"managedTransaction", 1045
 SCA_PREFIX+"noManagedTransaction"}) 1046
@Reference 1047
protected MyService myRef; 1048

Snippet 8-13: Mutually Exclusive Intents 1049

 1050

Snippet 8-14 shows that intents can be applied to Java service interfaces and their methods. In this 1051

example, the effective intents for MyService.mymethod() are "authentication" and "confidentiality". 1052

 1053

@Authentication 1054
public interface MyService { 1055

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 37 of 125

 @Confidentiality 1056
 public void mymethod(); 1057
} 1058
@Service(MyService.class) 1059
public class MyServiceImpl { 1060
 public void mymethod() {...} 1061
} 1062

Snippet 8-14: Intents on Java Interfaces, Interface Methods, and Java Classes 1063

 1064

Snippet 8-15 shows that intents can be applied to Java service implementation classes. In this example, 1065

the effective intents for MyService.mymethod() are "authentication", "confidentiality", and 1066

"managedTransaction". 1067

 1068

@Authentication 1069
public interface MyService { 1070
 @Confidentiality 1071
 public void mymethod(); 1072
} 1073
@Service(MyService.class) 1074
@Requires(SCA_PREFIX+"managedTransaction") 1075
public class MyServiceImpl { 1076
 public void mymethod() {...} 1077
} 1078

Snippet 8-15: Intents on Java Service Implementation Classes 1079

 1080

Snippet 8-16 shows that intents can be applied to Java reference interfaces and their methods, and also 1081

to Java references. In this example, the effective intents for the method mymethod() of the reference 1082

myRef are "authentication", "integrity", and "confidentiality". 1083

 1084

@Authentication 1085
public interface MyRefInt { 1086
 @Integrity 1087
 public void mymethod(); 1088
} 1089
@Service(MyService.class) 1090
public class MyServiceImpl { 1091
 @Confidentiality 1092
 @Reference 1093
 protected MyRefInt myRef; 1094
} 1095

Snippet 8-16: Intents on Java References and their Interfaces and Methods 1096

 1097

Snippet 8-17 shows that intents cannot be applied to methods of Java implementation classes. In this 1098
example, the Java code is in error because of the @Authentication intent annotation on the 1099

implementation method MyServiceImpl.mymethod(). 1100

 1101

public interface MyService { 1102
 public void mymethod(); 1103
} 1104
@Service(MyService.class) 1105
public class MyServiceImpl { 1106
 @Authentication 1107
 public void mymethod() {...} 1108
} 1109

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 38 of 125

Snippet 8-17: Intent on Implementation Method 1110

Snippet 8-18 shows one effect of applying the SCA Policy Framework rules for merging intents within a 1111
structural hierarchy to Java service interfaces and their methods. In this example a qualified intent 1112

overrides an unqualified intent, so the effective intent for MyService.mymethod() is 1113

"confidentiality.message". 1114

 1115

@Confidentiality("message") 1116
public interface MyService { 1117
 @Confidentiality 1118
 public void mymethod(); 1119
} 1120

Snippet 8-18: Merging Qualified and Unqualified Intents on Java Interfaces and Methods 1121

 1122

Snippet 8-19 shows another effect of applying the SCA Policy Framework rules for merging intents within 1123
a structural hierarchy to Java service interfaces and their methods. In this example a lower-level intent 1124

causes a mutually exclusive higher-level intent to be ignored, so the effective intent for mymethod1() is 1125

"managedTransaction" and the effective intent for mymethod2() is "noManagedTransaction". 1126

 1127

@Requires(SCA_PREFIX+"managedTransaction") 1128
public interface MyService { 1129
 public void mymethod1(); 1130
 @Requires(SCA_PREFIX+"noManagedTransaction") 1131
 public void mymethod2(); 1132
} 1133

Snippet 8-19: Merging Mutually Exclusive Intents on Java Interfaces and Methods 1134

8.3.2 Inheritance and Annotation 1135

Snippet 8-20 shows the inheritance relations of intents on classes, operations, and super classes. 1136

 1137

package services.hello; 1138
import org.oasisopen.sca.annotation.Authentication; 1139
import org.oasisopen.sca.annotation.Integrity; 1140
 1141
@Integrity("transport") 1142
@Authentication 1143
public class HelloService { 1144
 @Integrity 1145
 @Authentication("message") 1146
 public String hello(String message) {...} 1147
 1148
 @Integrity 1149
 @Authentication("transport") 1150
 public String helloThere() {...} 1151
} 1152
 1153
package services.hello; 1154
import org.oasisopen.sca.annotation.Authentication; 1155
import org.oasisopen.sca.annotation.Confidentiality; 1156
 1157
@Confidentiality("message") 1158
public class HelloChildService extends HelloService { 1159
 @Confidentiality("transport") 1160
 public String hello(String message) {...} 1161
 @Authentication 1162
 String helloWorld() {...} 1163
} 1164

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 39 of 125

Snippet 8-20: Usage example of Annotated Policy and Inheritance 1165

 1166

The effective intent annotation on the helloWorld method of HelloChildService is @Authentication and 1167
@Confidentiality("message"). 1168

The effective intent annotation on the hello method of HelloChildService is @Confidentiality("transport"), 1169

The effective intent annotation on the helloThere method of HelloChildService is @Integrity and 1170
@Authentication("transport"), the same as for this method in the HelloService class. 1171

The effective intent annotation on the hello method of HelloService is @Integrity and 1172
@Authentication("message") 1173

 1174

Table 8-1 shows the equivalent declarative security interaction policy of the methods of the HelloService 1175
and HelloChildService implementations corresponding to the Java classes shown in Snippet 8-20. 1176

 1177

 Method

Class hello() helloThere() helloWorld()

HelloService integrity

authentication.message

integrity

authentication.transport

N/A

HelloChildService confidentiality.transport integrity

authentication.transport

authentication

confidentiality.message

Table 8-1: Declarative Intents Equivalent to Annotated Intents in Snippet 8-20 1178

8.4 Relationship of Declarative and Annotated Intents 1179

Annotated intents on a Java class cannot be overridden by declarative intents in a composite document 1180
which uses the class as an implementation. This rule follows the general rule for intents that they 1181
represent requirements of an implementation in the form of a restriction that cannot be relaxed. 1182

However, a restriction can be made more restrictive so that an unqualified version of an intent expressed 1183
through an annotation in the Java class can be qualified by a declarative intent in a using composite 1184
document. 1185

8.5 Policy Set Annotations 1186

The SCA Policy Framework uses Policy Sets to capture detailed low-level concrete policies. For example, 1187
a concrete policy is the specific encryption algorithm to use when encrypting messages when using a 1188
specific communication protocol to link a reference to a service. 1189
Policy Sets can be applied directly to Java implementations using the @PolicySets annotation. The 1190
@PolicySets annotation either takes the QName of a single policy set as a string or the name of two or 1191
more policy sets as an array of strings: 1192

 1193

'@PolicySets({' policySetQName (',' policySetQName)* '})' 1194

Snippet 8-21: PolicySet Annotation Format 1195

 1196

As for intents, PolicySet names are QNames – in the form of "{Namespace-URI}localPart". 1197

An example of the @PolicySets annotation is shown in Snippet 8-22: 1198

 1199

@Reference(name="helloService", required=true) 1200

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 40 of 125

@PolicySets({ MY_NS + "WS_Encryption_Policy", 1201
 MY_NS + "WS_Authentication_Policy" }) 1202
public setHelloService(HelloService service) { 1203
 . . . 1204
} 1205

Snippet 8-22: Use of @PolicySets 1206

 1207

In this case, the Policy Sets WS_Encryption_Policy and WS_Authentication_Policy are applied, both 1208
using the namespace defined for the constant MY_NS. 1209

PolicySets need to satisfy intents expressed for the implementation when both are present, according to 1210
the rules defined in the Policy Framework specification [POLICY]. 1211

The SCA Policy Set annotation can be applied to the following Java elements: 1212

 Java class 1213

 Java interface 1214

 Method 1215

 Field 1216

 Constructor parameter 1217

The @PolicySets annotation MUST NOT be applied to the following: 1218

 A method of a service implementation class, except for a setter method that is either annotated with 1219
@Reference or introspected as an SCA reference according to the rules in the appropriate 1220
Component Implementation specification 1221

 A service implementation class field that is not either annotated with @Reference or introspected as 1222
an SCA reference according to the rules in the appropriate Component Implementation specification 1223

 A service implementation class constructor parameter that is not annotated with @Reference 1224

[JCA70005] 1225

The @PolicySets annotation can be applied to classes, interfaces, and interface methods. Applying a 1226
@PolicySets annotation to a field, setter method, or constructor parameter allows policy sets to be 1227
defined at references. The @PolicySets annotation can also be applied to reference interfaces and their 1228
methods. 1229

If the @PolicySets annotation is specified on both an interface method and the method's declaring 1230
interface, the SCA runtime MUST compute the effective policy sets for the method by merging the policy 1231
sets from the method with the policy sets from the interface. [JCA70006] This merging process does not 1232
remove or change any policy sets that are applied to the interface. 1233

8.6 Security Policy Annotations 1234

This section introduces annotations for commonly used SCA security intents, as defined in the SCA 1235
Policy Framework Specification [POLICY]. Also see the SCA Policy Framework Specification for 1236
additional security policy intents that can be used with the @Requires annotation. The following 1237
annotations for security policy intents and qualifiers are defined: 1238

 @Authentication 1239

 @Authorization 1240

 @Confidentiality 1241

 @Integrity 1242

 @MutualAuthentication 1243

The @Authentication, @Confidentiality, and @Integrity intents have the same pair of Qualifiers: 1244

 message 1245

 transport 1246

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 41 of 125

The formal definitions of the security intent annotations are found in the section “Java Annotations”. 1247

Snippet 8-23 shows an example of applying security intents to the setter method used to inject a 1248
reference. Accessing the hello operation of the referenced HelloService requires both "integrity.message" 1249
and "authentication.message" intents to be honored. 1250

 1251

package services.hello; 1252
// Interface for HelloService 1253
public interface HelloService { 1254
 String hello(String helloMsg); 1255
} 1256
 1257
package services.client; 1258
// Interface for ClientService 1259
public interface ClientService { 1260
 public void clientMethod(); 1261
} 1262
 1263
// Implementation class for ClientService 1264
package services.client; 1265
 1266
import services.hello.HelloService; 1267
import org.oasisopen.sca.annotation.*; 1268
 1269
@Service(ClientService.class) 1270
public class ClientServiceImpl implements ClientService { 1271
 1272
 private HelloService helloService; 1273
 1274
 @Reference(name="helloService", required=true) 1275
 @Integrity("message") 1276
 @Authentication("message") 1277
 public void setHelloService(HelloService service) { 1278
 helloService = service; 1279
 } 1280
 1281
 public void clientMethod() { 1282
 String result = helloService.hello("Hello World!"); 1283
 … 1284
 } 1285
} 1286

Snippet 8-23: Usage of Security Intents on a Reference 1287

8.7 Transaction Policy Annotations 1288

This section introduces annotations for commonly used SCA transaction intents, as defined in the SCA 1289
Policy Framework specification [POLICY]. Also see the SCA Policy Framework Specification for 1290
additional transaction policy intents that can be used with the @Requires annotation. The following 1291
annotations for transaction policy intents and qualifiers are defined: 1292

 @ManagedTransaction 1293

 @NoManagedTransaction 1294

 @SharedManagedTransaction 1295

The @ManagedTransaction intent has the following Qualifiers: 1296

 global 1297

 local 1298

The formal definitions of the transaction intent annotations are found in the section “Java Annotations”. 1299

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 42 of 125

Snippet 8-24 shows an example of applying a transaction intent to a component implementation, where 1300
the component implementation requires a global transaction. 1301

 1302

package services.hello; 1303
// Interface for HelloService 1304
public interface HelloService { 1305
 String hello(String helloMsg); 1306
} 1307
 1308
// Implementation class for HelloService 1309
package services.hello.impl; 1310
 1311
import services.hello.HelloService; 1312
import org.oasisopen.sca.annotation.*; 1313
 1314
@Service(HelloService.class) 1315
@ManagedTransaction("global") 1316
public class HelloServiceImpl implements HelloService { 1317
 1318
 public void someMethod() { 1319
 … 1320
 } 1321
} 1322

Snippet 8-24: Usage of Transaction Intents in an Implementation 1323

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 43 of 125

9 Java API 1324

This section provides a reference for the Java API offered by SCA. 1325

9.1 Component Context 1326

Figure 9-1 defines the ComponentContext interface: 1327

 1328

package org.oasisopen.sca; 1329
import java.util.Collection; 1330
public interface ComponentContext { 1331
 1332
 String getURI(); 1333
 1334
 B getService(Class businessInterface, String referenceName); 1335
 1336
 ServiceReference getServiceReference(Class businessInterface, 1337
 String referenceName); 1338
 Collection getServices(Class businessInterface, 1339
 String referenceName); 1340
 1341
 Collection<ServiceReference> getServiceReferences(1342
 Class businessInterface, 1343
 String referenceName); 1344
 1345
 ServiceReference createSelfReference(Class businessInterface); 1346
 1347
 ServiceReference createSelfReference(Class businessInterface, 1348
 String serviceName); 1349
 1350
 B getProperty(Class type, String propertyName); 1351
 1352
 RequestContext getRequestContext(); 1353
 1354
 ServiceReference cast(B target) throws IllegalArgumentException; 1355
 1356
} 1357

Figure 9-1: ComponentContext Interface 1358

 1359

getURI () method: 1360

Returns the structural URI [ASSEMBLY] of the component within the SCA Domain. 1361

Returns: 1362

 String which contains the absolute URI of the component in the SCA Domain 1363
The ComponentContext.getURI method MUST return the structural URI of the component in the SCA 1364
Domain. [JCA80008] 1365

Parameters: 1366

 none 1367

Exceptions: 1368

 none 1369

 1370

getService (Class businessInterface, String referenceName) method: 1371

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 44 of 125

Returns a typed service proxy object for a reference defined by the current component, where the 1372
reference has multiplicity 0..1 or 1..1. 1373

Returns: 1374

 B which is a proxy object for the reference, which implements the interface B contained in the 1375
businessInterface parameter. 1376

The ComponentContext.getService method MUST return the proxy object implementing the interface 1377
provided by the businessInterface parameter, for the reference named by the referenceName 1378
parameter with the interface defined by the businessInterface parameter when that reference has a 1379
target service configured. [JCA80009] 1380

The ComponentContext.getService method MUST return null if the multiplicity of the reference 1381
named by the referenceName parameter is 0..1 and the reference has no target service configured. 1382
[JCA80010] 1383

Parameters: 1384

 Class businessInterface - the Java interface for the service reference 1385

 String referenceName - the name of the service reference 1386

Exceptions: 1387

 The ComponentContext.getService method MUST throw an IllegalArgumentException if the 1388
reference identified by the referenceName parameter has multiplicity of 0..n or 1..n. [JCA80001] 1389

 The ComponentContext.getService method MUST throw an IllegalArgumentException if the 1390
component does not have a reference with the name supplied in the referenceName parameter. 1391
[JCA80011] 1392

 The ComponentContext.getService method MUST throw an IllegalArgumentException if the service 1393
reference with the name supplied in the referenceName does not have an interface compatible with 1394
the interface supplied in the businessInterface parameter. [JCA80012] 1395

 1396

getServiceReference (Class businessInterface, String referenceName) method: 1397

Returns a ServiceReference object for a reference defined by the current component, where the 1398
reference has multiplicity 0..1 or 1..1. 1399

Returns: 1400

 ServiceReference which is a ServiceReference proxy object for the reference, which implements 1401
the interface contained in the businessInterface parameter. 1402
The ComponentContext.getServiceReference method MUST return a ServiceReference object typed 1403
by the interface provided by the businessInterface parameter, for the reference named by the 1404
referenceName parameter with the interface defined by the businessInterface parameter when that 1405
reference has a target service configured. [JCA80013] 1406
The ComponentContext.getServiceReference method MUST return null if the multiplicity of the 1407
reference named by the referenceName parameter is 0..1 and the reference has no target service 1408
configured. [JCA80007] 1409

Parameters: 1410

 Class businessInterface - the Java interface for the service reference 1411

 String referenceName - the name of the service reference 1412

Exceptions: 1413

 The ComponentContext.getServiceReference method MUST throw an IllegalArgumentException if 1414
the reference named by the referenceName parameter has multiplicity greater than one. [JCA80004] 1415

 The ComponentContext.getServiceReference method MUST throw an IllegalArgumentException if 1416
the reference named by the referenceName parameter does not have an interface of the type defined 1417
by the businessInterface parameter. [JCA80005] 1418

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 45 of 125

 The ComponentContext.getServiceReference method MUST throw an IllegalArgumentException if 1419
the component does not have a reference with the name provided in the referenceName parameter. 1420
[JCA80006] 1421

 1422

getServices(Class businessInterface, String referenceName) method: 1423

Returns a list of typed service proxies for a reference defined by the current component, where the 1424
reference has multiplicity 0..n or 1..n. 1425

Returns: 1426

 Collection which is a collection of proxy objects for the reference, one for each target service to 1427
which the reference is wired, where each proxy object implements the interface B contained in the 1428
businessInterface parameter. 1429

The ComponentContext.getServices method MUST return a collection containing one proxy object 1430
implementing the interface provided by the businessInterface parameter for each of the target 1431
services configured on the reference identified by the referenceName parameter. [JCA80014] 1432

The ComponentContext.getServices method MUST return an empty collection if the service reference 1433
with the name supplied in the referenceName parameter is not wired to any target services. 1434
[JCA80015] 1435

Parameters: 1436

 Class businessInterface - the Java interface for the service reference 1437

 String referenceName - the name of the service reference 1438

Exceptions: 1439

 The ComponentContext.getServices method MUST throw an IllegalArgumentException if the 1440
reference identified by the referenceName parameter has multiplicity of 0..1 or 1..1. [JCA80016] 1441

 The ComponentContext.getServices method MUST throw an IllegalArgumentException if the 1442
component does not have a reference with the name supplied in the referenceName parameter. 1443
[JCA80017] 1444

 The ComponentContext.getServices method MUST throw an IllegalArgumentException if the service 1445
reference with the name supplied in the referenceName does not have an interface compatible with 1446
the interface supplied in the businessInterface parameter.[[JCA80018] 1447

 1448

getServiceReferences(Class businessInterface, String referenceName) method: 1449

Returns a list of typed ServiceReference objects for a reference defined by the current component, where 1450
the reference has multiplicity 0..n or 1..n. 1451

Returns: 1452

 Collection<ServiceReference> which is a collection of ServiceReference objects for the 1453
reference, one for each target service to which the reference is wired, where each proxy object 1454
implements the interface B contained in the businessInterface parameter. The collection is empty if 1455
the reference is not wired to any target services. 1456

The ComponentContext.getServiceReferences method MUST return a collection containing one 1457
ServiceReference object typed by the interface provided by the businessInterface parameter for each 1458
of the target services configured on the reference identified by the referenceName parameter. 1459
[JCA80019] 1460

The ComponentContext.getServiceReferences method MUST return an empty collection if the 1461
service reference with the name supplied in the referenceName parameter is not wired to any target 1462
services. [JCA80020] 1463

Parameters: 1464

 Class businessInterface - the Java interface for the service reference 1465

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 46 of 125

 String referenceName - the name of the service reference 1466

Exceptions: 1467

 The ComponentContext.getServiceReferences method MUST throw an IllegalArgumentException if 1468
the reference identified by the referenceName parameter has multiplicity of 0..1 or 1..1. [JCA80021] 1469

 The ComponentContext.getServiceReferences method MUST throw an IllegalArgumentException if 1470
the component does not have a reference with the name supplied in the referenceName parameter. 1471
[JCA80022] 1472

 The ComponentContext.getServiceReferences method MUST throw an IllegalArgumentException if 1473
the service reference with the name supplied in the referenceName does not have an interface 1474
compatible with the interface supplied in the businessInterface parameter. [JCA80023] 1475

 1476

createSelfReference(Class businessInterface) method: 1477

Returns a ServiceReference object that can be used to invoke this component over the designated 1478
service. 1479

Returns: 1480

 ServiceReference which is a ServiceReference object for the service of this component which 1481
has the supplied business interface. If the component has multiple services with the same business 1482
interface the SCA runtime can return a ServiceReference for any one of them. 1483

The ComponentContext.createSelfReference method MUST return a ServiceReference object typed 1484
by the interface defined by the businessInterface parameter for one of the services of the invoking 1485
component which has the interface defined by the businessInterface parameter. [JCA80024] 1486

Parameters: 1487

 Class businessInterface - the Java interface for the service 1488

Exceptions: 1489

 The ComponentContext.getServiceReferences method MUST throw an IllegalArgumentException if 1490
the component does not have a service which implements the interface identified by the 1491
businessInterface parameter. [JCA80025] 1492

 1493

createSelfReference(Class businessInterface, String serviceName) method: 1494

Returns a ServiceReference that can be used to invoke this component over the designated service. The 1495
serviceName parameter explicitly declares the service name to invoke 1496

Returns: 1497

 ServiceReference which is a ServiceReference proxy object for the reference, which implements 1498
the interface contained in the businessInterface parameter. 1499

The ComponentContext.createSelfReference method MUST return a ServiceReference object typed 1500
by the interface defined by the businessInterface parameter for the service identified by the 1501
serviceName of the invoking component and which has the interface defined by the businessInterface 1502
parameter. [JCA80026] 1503

Parameters: 1504

 Class businessInterface - the Java interface for the service reference 1505

 String serviceName - the name of the service reference 1506

Exceptions: 1507

 The ComponentContext.createSelfReference method MUST throw an IllegalArgumentException if the 1508
component does not have a service with the name identified by the serviceName parameter. 1509
[JCA80027] 1510

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 47 of 125

 The ComponentContext.createSelfReference method MUST throw an IllegalArgumentException if the 1511
component service with the name identified by the serviceName parameter does not implement a 1512
business interface which is compatible with the supplied businessInterface parameter. [JCA80028] 1513

 1514

getProperty (Class type, String propertyName) method: 1515

Returns the value of an SCA property defined by this component. 1516

Returns: 1517

 which is an object of the type identified by the type parameter containing the value specified for 1518
the property in the SCA configuration of the component. null if the SCA configuration of the 1519
component does not specify any value for the property. 1520

The ComponentContext.getProperty method MUST return an object of the type identified by the type 1521
parameter containing the value specified in the component configuration for the property named by 1522
the propertyName parameter or null if no value is specified in the configuration. [JCA80029] 1523

Parameters: 1524

 Class type - the Java class of the property (Object mapped type for primitive Java types - e.g. 1525
Integer if the type is int) 1526

 String propertyName - the name of the property 1527

Exceptions: 1528

 The ComponentContext.getProperty method MUST throw an IllegalArgumentException if the 1529
component does not have a property with the name identified by the propertyName parameter. 1530
[JCA80030] 1531

 The ComponentContext.getProperty method MUST throw an IllegalArgumentException if the 1532
component property with the name identified by the propertyName parameter does not have a type 1533
which is compatible with the supplied type parameter. [JCA80031] 1534

 1535

getRequestContext() method: 1536

Returns the RequestContext for the current SCA service request. 1537

Returns: 1538

 RequestContext which is the RequestContext object for the current SCA service invocation. null if 1539
there is no current request or if the context is unavailable. 1540

The ComponentContext.getRequestContext method MUST return non-null when invoked during the 1541
execution of a Java business method for a service operation or a callback operation, on the same 1542
thread that the SCA runtime provided, and MUST return null in all other cases. [JCA80002] 1543

Parameters: 1544

 none 1545

Exceptions: 1546

 none 1547

 1548

cast(B target) method: 1549

Casts a type-safe reference to a ServiceReference 1550

Returns: 1551

 ServiceReference which is a ServiceReference object which implements the same business 1552
interface B as a reference proxy object 1553

The ComponentContext.cast method MUST return a ServiceReference object which is typed by the 1554
same business interface as specified by the reference proxy object supplied in the target parameter. 1555
[JCA80032] 1556

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 48 of 125

Parameters: 1557

 B target - a type safe reference proxy object which implements the business interface B 1558

Exceptions: 1559

 The ComponentContext.cast method MUST throw an IllegalArgumentException if the supplied target 1560
parameter is not an SCA reference proxy object. [JCA80033] 1561

A component can access its component context by defining a field or setter method typed by 1562
org.oasisopen.sca.ComponentContext and annotated with @Context. To access a target service, the 1563
component uses ComponentContext.getService(..). 1564

Snippet 9-1 shows an example of component context usage in a Java class using the @Context 1565
annotation. 1566

private ComponentContext componentContext; 1567
 1568
@Context 1569
public void setContext(ComponentContext context) { 1570
 componentContext = context; 1571
} 1572
 1573
public void doSomething() { 1574
 HelloWorld service = 1575
 componentContext.getService(HelloWorld.class,"HelloWorldComponent"); 1576
 service.hello("hello"); 1577
} 1578

Snippet 9-1: ComponentContext Injection Example 1579

Similarly, non-SCA client code can use the ComponentContext API to perform operations against a 1580
component in an SCA domain. How the non-SCA client code obtains a reference to a ComponentContext 1581
is runtime specific. 1582

9.2 Request Context 1583

Figure 9-2 shows the RequestContext interface: 1584
 1585

package org.oasisopen.sca; 1586
 1587
import javax.security.auth.Subject; 1588
 1589
public interface RequestContext { 1590
 1591
 Subject getSecuritySubject(); 1592
 1593
 String getServiceName(); 1594
 <CB> ServiceReference<CB> getCallbackReference(); 1595
 <CB> CB getCallback(); 1596
 ServiceReference getServiceReference(); 1597
 } 1598

Figure 9-2: RequestContext Interface 1599

 1600

getSecuritySubject () method: 1601

Returns the JAAS Subject of the current request (see the JAAS Reference Guide [JAAS] for details of 1602
JAAS). 1603

Returns: 1604

 javax.security.auth.Subject object which is the JAAS subject for the request. 1605

null if there is no subject for the request. 1606

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 49 of 125

The RequestContext.getSecuritySubject method MUST return the JAAS subject of the current 1607
request, or null if there is no subject or null if the method is invoked from code not processing a 1608
service request or callback request. [JCA80034] 1609

Parameters: 1610

 none 1611

Exceptions: 1612

 none 1613

 1614

getServiceName () method: 1615

Returns the name of the service on the Java implementation the request came in on. 1616

Returns: 1617

 String containing the name of the service. null if the method is invoked from a thread that is not 1618
processing a service operation or a callback operation. 1619

The RequestContext.getServiceName method MUST return the name of the service for which an 1620
operation is being processed, or null if invoked from a thread that is not processing a service 1621
operation or a callback operation. [JCA80035] 1622

Parameters: 1623

 none 1624

Exceptions: 1625

 none 1626

 1627

getCallbackReference () method: 1628

Returns a service reference proxy for the callback for the invoked service operation, as specified by the 1629
service client. 1630

Returns: 1631

 ServiceReference<CB> which is a service reference for the callback for the invoked service, as 1632
supplied by the service client. It is typed with the callback interface. 1633

null if the invoked service has an interface which is not bidirectional or if the getCallbackReference() 1634
method is called during the processing of a callback operation. 1635

null if the method is invoked from a thread that is not processing a service operation. 1636

The RequestContext.getCallbackReference method MUST return a ServiceReference object typed by 1637
the interface of the callback supplied by the client of the invoked service, or null if either the invoked 1638
service is not bidirectional or if the method is invoked from a thread that is not processing a service 1639
operation. [JCA80036] 1640

Parameters: 1641

 none 1642

Exceptions: 1643

 none 1644

 1645

getCallback () method: 1646

Returns a proxy for the callback for the invoked service as specified by the service client. 1647

Returns: 1648

 CB proxy object for the callback for the invoked service as supplied by the service client. It is typed 1649
with the callback interface. 1650

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 50 of 125

null if the invoked service has an interface which is not bidirectional or if the getCallback() method is 1651
called during the processing of a callback operation. 1652

null if the method is invoked from a thread that is not processing a service operation. 1653

The RequestContext.getCallback method MUST return a reference proxy object typed by the 1654
interface of the callback supplied by the client of the invoked service, or null if either the invoked 1655
service is not bidirectional or if the method is invoked from a thread that is not processing a service 1656
operation. [JCA80037] 1657

Parameters: 1658

 none 1659

Exceptions: 1660

 none 1661

 1662

getServiceReference () method: 1663

Returns a ServiceReference object for the service that was invoked. 1664

Returns: 1665

 ServiceReference which is a service reference for the invoked service. It is typed with the 1666
interface of the service. 1667

null if the method is invoked from a thread that is not processing a service operation or a callback 1668
operation. 1669

When invoked during the execution of a service operation, the RequestContext.getServiceReference 1670
method MUST return a ServiceReference that represents the service that was invoked. [JCA80003] 1671

When invoked during the execution of a callback operation, the RequestContext.getServiceReference 1672
method MUST return a ServiceReference that represents the callback that was invoked. [JCA80038] 1673

When invoked from a thread not involved in the execution of either a service operation or of a 1674
callback operation, the RequestContext.getServiceReference method MUST return null. [JCA80039] 1675

Parameters: 1676

 none 1677

Exceptions: 1678

 none 1679

ServiceReferences can be injected using the @Reference annotation on a field, a setter method, or 1680
constructor parameter taking the type ServiceReference. The detailed description of the usage of these 1681
methods is described in the section on Asynchronous Programming in this document. 1682

9.3 ServiceReference Interface 1683

ServiceReferences can be injected using the @Reference annotation on a field, a setter method, or 1684
constructor parameter taking the type ServiceReference. The detailed description of the usage of these 1685
methods is described in the section on Asynchronous Programming in this document. 1686

Figure 9-3 defines the ServiceReference interface: 1687

 1688

package org.oasisopen.sca; 1689
 1690
public interface ServiceReference extends java.io.Serializable { 1691
 1692
 1693
 B getService(); 1694
 Class getBusinessInterface(); 1695
 } 1696

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 51 of 125

Figure 9-3: ServiceReference Interface 1697

 1698

getService () method: 1699

Returns a type-safe reference to the target of this reference. The instance returned is guaranteed to 1700
implement the business interface for this reference. The value returned is a proxy to the target that 1701
implements the business interface associated with this reference. 1702

Returns: 1703

 which is type-safe reference proxy object to the target of this reference. It is typed with the 1704
interface of the target service. 1705

The ServiceReference.getService method MUST return a reference proxy object which can be used 1706
to invoke operations on the target service of the reference and which is typed with the business 1707
interface of the reference. [JCA80040] 1708

Parameters: 1709

 none 1710

Exceptions: 1711

 none 1712

 1713

getBusinessInterface () method: 1714

Returns the Java class for the business interface associated with this ServiceReference. 1715

Returns: 1716

 Class which is a Class object of the business interface associated with the reference. 1717

The ServiceReference.getBusinessInterface method MUST return a Class object representing the 1718
business interface of the reference. [JCA80041] 1719

Parameters: 1720

 none 1721

Exceptions: 1722

 none 1723

9.4 ResponseDispatch interface 1724

The ResponseDispatch interface is shown in Figure 9-4: 1725

 1726

package org.oasisopen.sca; 1727
 1728
public interface ResponseDispatch<T> { 1729
 void sendResponse(T res); 1730
 void sendFault(Throwable e); 1731
 Map<String, Object> getContext(); 1732
} 1733

Figure 9-4: ResponseDispatch Interface 1734

 1735

sendResponse (T response) method: 1736

Sends the response message from an asynchronous service method. This method can only be invoked 1737
once for a given ResponseDispatch object and cannot be invoked if sendFault has previously been 1738
invoked for the same ResponseDispatch object. 1739

Returns: 1740

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 52 of 125

 void 1741

The ResponseDispatch.sendResponse() method MUST send the response message to the client of 1742
an asynchronous service. [JCA50057] 1743

Parameters: 1744

 T - an instance of the response message returned by the service operation 1745

Exceptions: 1746

 The ResponseDispatch.sendResponse() method MUST throw an InvalidStateException if either the 1747
sendResponse method or the sendFault method has already been called once. [JCA80058] 1748

 1749

sendFault (Throwable e) method: 1750

Sends an exception as a fault from an asynchronous service method. This method can only be invoked 1751
once for a given ResponseDispatch object and cannot be invoked if sendResponse has previously been 1752
invoked for the same ResponseDispatch object. 1753

Returns: 1754

 void 1755

The ResponseDispatch.sendFault() method MUST send the supplied fault to the client of an 1756
asynchronous service. [JCA80059] 1757

Parameters: 1758

 e - an instance of an exception returned by the service operation 1759

Exceptions: 1760

 The ResponseDispatch.sendFault() method MUST throw an InvalidStateException if either the 1761
sendResponse method or the sendFault method has already been called once. [JCA80060] 1762

 1763

getContext () method: 1764

Obtains the context object for the ResponseDispatch method 1765

Returns: 1766

 Map<String, object> which is the context object for the ResponseDispatch object. 1767
The invoker can update the context object with appropriate context information, prior to invoking 1768
either the sendResponse method or the sendFault method 1769

Parameters: 1770

 none 1771

Exceptions: 1772

 none 1773

9.5 ServiceRuntimeException 1774

Figure 9-5 shows the ServiceRuntimeException. 1775

 1776

package org.oasisopen.sca; 1777
 1778
public class ServiceRuntimeException extends RuntimeException { 1779
 … 1780
} 1781

Figure 9-5: ServiceRuntimeException 1782

 1783

This exception signals problems in the management of SCA component execution. 1784

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 53 of 125

9.6 ServiceUnavailableException 1785

Figure 9-6 shows the ServiceUnavailableException. 1786

 1787

package org.oasisopen.sca; 1788
 1789
public class ServiceUnavailableException extends ServiceRuntimeException { 1790
 … 1791
} 1792

Figure 9-6: ServiceUnavailableException 1793

 1794

This exception signals problems in the interaction with remote services. These are exceptions that can 1795
be transient, so retrying is appropriate. Any exception that is a ServiceRuntimeException that is not a 1796
ServiceUnavailableException is unlikely to be resolved by retrying the operation, since it most likely 1797
requires human intervention 1798

9.7 InvalidServiceException 1799

Figure 9-7 shows the InvalidServiceException. 1800

 1801

package org.oasisopen.sca; 1802
 1803
public class InvalidServiceException extends ServiceRuntimeException { 1804
 … 1805
} 1806

Figure 9-7: InvalidServiceException 1807

 1808

This exception signals that the ServiceReference is no longer valid. This can happen when the target of 1809
the reference is undeployed. This exception is not transient and therefore is unlikely to be resolved by 1810
retrying the operation and will most likely require human intervention. 1811

9.8 Constants 1812

The SCA Constants interface defines a number of constant values that are used in the SCA Java APIs 1813
and Annotations. Figure 9-8 shows the Constants interface: 1814

package org.oasisopen.sca; 1815
 1816
public interface Constants { 1817
 1818
 String SCA_NS = "http://docs.oasis-open.org/ns/opencsa/sca/200912"; 1819
 1820
 String SCA_PREFIX = "{"+SCA_NS+"}"; 1821
 1822
 String SERVERAUTHENTICATION = SCA_PREFIX + "serverAuthentication"; 1823
 String CLIENTAUTHENTICATION = SCA_PREFIX + "clientAuthentication"; 1824
 String ATLEASTONCE = SCA_PREFIX + "atLeastOnce"; 1825
 String ATMOSTONCE = SCA_PREFIX + "atMostOnce"; 1826
 String EXACTLYONCE = SCA_PREFIX + "exactlyOnce"; 1827
 String ORDERED = SCA_PREFIX + "ordered"; 1828
 String TRANSACTEDONEWAY = SCA_PREFIX + "transactedOneWay"; 1829
 String IMMEDIATEONEWAY = SCA_PREFIX + "immediateOneWay"; 1830
 String PROPAGATESTRANSACTION = SCA_PREFIX + "propagatesTransaction"; 1831
 String SUSPENDSTRANSACTION = SCA_PREFIX + "suspendsTransaction"; 1832
 String ASYNCINVOCATION = SCA_PREFIX + "asyncInvocation"; 1833
 String SOAP = SCA_PREFIX + "SOAP"; 1834

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 54 of 125

 String JMS = SCA_PREFIX + "JMS"; 1835
 String NOLISTENER = SCA_PREFIX + "noListener"; 1836
 String EJB = SCA_PREFIX + "EJB"; 1837
 1838

} 1839

Figure 9-8: Constants Interface 1840

9.9 SCAClientFactory Class 1841

The SCAClientFactory class provides the means for client code to obtain a proxy reference object for a 1842
service within an SCA Domain, through which the client code can invoke operations of that service. This 1843
is particularly useful for client code that is running outside the SCA Domain containing the target service, 1844
for example where the code is "unmanaged" and is not running under an SCA runtime. 1845

The SCAClientFactory is an abstract class which provides a set of static newInstance(...) methods which 1846
the client can invoke in order to obtain a concrete object implementing the SCAClientFactory interface for 1847
a particular SCA Domain. The returned SCAClientFactory object provides a getService() method which 1848
provides the client with the means to obtain a reference proxy object for a service running in the SCA 1849
Domain. 1850

The SCAClientFactory class is shown in Figure 9-9: 1851

 1852

package org.oasisopen.sca.client; 1853
 1854
import java.net.URI; 1855
import java.util.Properties; 1856
 1857
import org.oasisopen.sca.NoSuchDomainException; 1858
import org.oasisopen.sca.NoSuchServiceException; 1859
import org.oasisopen.sca.client.SCAClientFactoryFinder; 1860
import org.oasisopen.sca.client.impl.SCAClientFactoryFinderImpl; 1861
 1862
public abstract class SCAClientFactory { 1863
 1864
 protected static SCAClientFactoryFinder factoryFinder; 1865
 1866
 private URI domainURI; 1867
 1868
 private SCAClientFactory() { 1869
 } 1870
 1871
 protected SCAClientFactory(URI domainURI) 1872
 throws NoSuchDomainException { 1873
 this.domainURI = domainURI; 1874
 } 1875
 1876
 protected URI getDomainURI() { 1877
 return domainURI; 1878
 } 1879
 1880
 public static SCAClientFactory newInstance(URI domainURI) 1881
 throws NoSuchDomainException { 1882
 return newInstance(null, null, domainURI); 1883
 } 1884
 1885
 public static SCAClientFactory newInstance(Properties properties, 1886
 URI domainURI) 1887
 throws NoSuchDomainException { 1888
 return newInstance(properties, null, domainURI); 1889
 } 1890
 1891
 public static SCAClientFactory newInstance(ClassLoader classLoader, 1892

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 55 of 125

 URI domainURI) 1893
 throws NoSuchDomainException { 1894
 return newInstance(null, classLoader, domainURI); 1895
 } 1896
 1897
 public static SCAClientFactory newInstance(Properties properties, 1898
 ClassLoader classLoader, 1899
 URI domainURI) 1900
 throws NoSuchDomainException { 1901
 final SCAClientFactoryFinder finder = 1902
 factoryFinder != null ? factoryFinder : 1903
 new SCAClientFactoryFinderImpl(); 1904
 final SCAClientFactory factory 1905
 = finder.find(properties, classLoader, domainURI); 1906
 return factory; 1907
 } 1908
 1909
 public abstract <T> T getService(Class<T> interfaze, String serviceURI) 1910
 throws NoSuchServiceException, NoSuchDomainException; 1911

} 1912

Figure 9-9: SCAClientFactory Class 1913

 1914

newInstance (URI domainURI) method: 1915

Obtains a object implementing the SCAClientFactory class. 1916

Returns: 1917

 object which implements the SCAClientFactory class 1918

The SCAClientFactory.newInstance(URI) method MUST return an object which implements the 1919
SCAClientFactory class for the SCA Domain identified by the domainURI parameter. [JCA80042] 1920

Parameters: 1921

 domainURI - a URI for the SCA Domain which is targeted by the returned SCAClient object 1922

Exceptions: 1923

 The SCAClientFactory.newInstance(URI) method MUST throw a NoSuchDomainException if the 1924
domainURI parameter does not identify a valid SCA Domain. [JCA80043] 1925

 1926

newInstance(Properties properties, URI domainURI) method: 1927

Obtains a object implementing the SCAClientFactory class, using a specified set of properties. 1928

Returns: 1929

 object which implements the SCAClientFactory class 1930

The SCAClientFactory.newInstance(Properties, URI) method MUST return an object which 1931
implements the SCAClientFactory class for the SCA Domain identified by the domainURI parameter. 1932
[JCA80044] 1933

Parameters: 1934

 properties - a set of Properties that can be used when creating the object which implements the 1935
SCAClientFactory class. 1936

 domainURI - a URI for the SCA Domain which is targeted by the returned SCAClient object 1937

Exceptions: 1938

 The SCAClientFactory.newInstance(Properties, URI) method MUST throw a 1939
NoSuchDomainException if the domainURI parameter does not identify a valid SCA Domain. 1940
[JCA80045] 1941

 1942

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 56 of 125

newInstance(Classloader classLoader, URI domainURI) method: 1943

Obtains a object implementing the SCAClientFactory class using a specified classloader. 1944

Returns: 1945

 object which implements the SCAClientFactory class 1946

The SCAClientFactory.newInstance(Classloader, URI) method MUST return an object which 1947
implements the SCAClientFactory class for the SCA Domain identified by the domainURI parameter. 1948
[JCA80046] 1949

Parameters: 1950

 classLoader - a ClassLoader to use when creating the object which implements the 1951
SCAClientFactory class. 1952

 domainURI - a URI for the SCA Domain which is targeted by the returned SCAClient object 1953

Exceptions: 1954

 The SCAClientFactory.newInstance(Classloader, URI) method MUST throw a 1955
NoSuchDomainException if the domainURI parameter does not identify a valid SCA Domain. 1956
[JCA80047] 1957

 1958

newInstance(Properties properties, Classloader classLoader, URI domainURI) method: 1959

Obtains a object implementing the SCAClientFactory class using a specified set of properties and a 1960
specified classloader. 1961

Returns: 1962

 object which implements the SCAClientFactory class 1963

The SCAClientFactory.newInstance(Properties, Classloader, URI) method MUST return an object 1964
which implements the SCAClientFactory class for the SCA Domain identified by the domainURI 1965
parameter. [JCA80048] 1966

Parameters: 1967

 properties - a set of Properties that can be used when creating the object which implements the 1968
SCAClientFactory class. 1969

 classLoader - a ClassLoader to use when creating the object which implements the 1970
SCAClientFactory class. 1971

 domainURI - a URI for the SCA Domain which is targeted by the returned SCAClient object 1972

Exceptions: 1973

 The SCAClientFactory.newInstance(Properties, Classloader, URI) MUST throw a 1974
NoSuchDomainException if the domainURI parameter does not identify a valid SCA Domain. 1975
[JCA80049] 1976

 1977

getService(Class<T> interfaze, String serviceURI) method: 1978

Obtains a proxy reference object for a specified target service in a specified SCA Domain. 1979

Returns: 1980

 <T> a proxy object which implements the business interface T 1981
Invocations of a business method of the proxy causes the invocation of the corresponding operation 1982
of the target service. 1983

The SCAClientFactory.getService method MUST return a proxy object which implements the 1984
business interface defined by the interfaze parameter and which can be used to invoke operations on 1985
the service identified by the serviceURI parameter. [JCA80050] 1986

Parameters: 1987

 interfaze - a Java interface class which is the business interface of the target service 1988

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 57 of 125

 serviceURI - a String containing the relative URI of the target service within its SCA Domain. 1989

Takes the form componentName/serviceName or can also take the extended form 1990
componentName/serviceName/bindingName to use a specific binding of the target service 1991

Exceptions: 1992

 The SCAClientFactory.getService method MUST throw a NoSuchServiceException if a service with 1993
the relative URI serviceURI and a business interface which matches interfaze cannot be found in the 1994
SCA Domain targeted by the SCAClient object. [JCA80051] 1995

 [JCA80052] 1996

 1997

SCAClientFactory (URI) method: a single argument constructor that must be available on all concrete 1998
subclasses of SCAClientFactory. The URI required is the URI of the Domain targeted by the 1999
SCAClientFactory 2000

 2001

getDomainURI() method: 2002

Obtains the Domain URI value for this SCAClientFactory 2003

Returns: 2004

 URI of the target SCA Domain for this SCAClientFactory 2005

The SCAClientFactory.getDomainURI method MUST return the SCA Domain URI of the Domain 2006
associated with the SCAClientFactory object. [JCA80053] 2007

Parameters: 2008

 none 2009

Exceptions: 2010

 [JCA80054] 2011

 none 2012

 2013

private SCAClientFactory() method: 2014

This private no-argument constructor prevents instantiation of an SCAClientFactory instance without the 2015
use of the constructor with an argument, even by subclasses of the abstract SCAClientFactory class. 2016

 2017

factoryFinder protected field: 2018

Provides a means by which a provider of an SCAClientFactory implementation can inject a factory finder 2019
implementation into the abstract SCAClientFactory class - once this is done, future invocations of the 2020
SCAClientFactory use the injected factory finder to locate and return an instance of a subclass of 2021
SCAClientFactory. 2022

9.10 SCAClientFactoryFinder Interface 2023

The SCAClientFactoryFinder interface is a Service Provider Interface representing a SCAClientFactory 2024
finder. SCA provides a default reference implementation of this interface. SCA runtime vendors can 2025
create alternative implementations of this interface that use different class loading or lookup mechanisms: 2026

 2027

package org.oasisopen.sca.client; 2028
 2029
public interface SCAClientFactoryFinder { 2030
 2031
 SCAClientFactory find(Properties properties, 2032
 ClassLoader classLoader, 2033
 URI domainURI) 2034

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 58 of 125

 throws NoSuchDomainException ; 2035
} 2036

Figure 9-10: SCAClientFactoryFinder Interface 2037

 2038

find (Properties properties, ClassLoader classloader, URI domainURI) method: 2039

Obtains an implementation of the SCAClientFactory interface. 2040

Returns: 2041

 SCAClientFactory implementation object 2042

The implementation of the SCAClientFactoryFinder.find method MUST return an object which is an 2043
implementation of the SCAClientFactory interface, for the SCA Domain represented by the 2044
doaminURI parameter, using the supplied properties and classloader. [JCA80055] 2045

Parameters: 2046

 properties - a set of Properties that can be used when creating the object which implements the 2047
SCAClientFactory interface. 2048

 classLoader - a ClassLoader to use when creating the object which implements the 2049
SCAClientFactory interface. 2050

 domainURI - a URI for the SCA Domain targeted by the SCAClientFactory 2051

Exceptions: 2052

 The implementation of the SCAClientFactoryFinder.find method MUST throw a 2053
ServiceRuntimeException if the SCAClientFactory implementation could not be found. [JCA80056] 2054

9.11 SCAClientFactoryFinderImpl Class 2055

This class is a default implementation of an SCAClientFactoryFinder, which is used to find an 2056
implementation of an SCAClientFactory subclass, as used to obtain an SCAClient object for use by a 2057
client. SCA runtime providers can replace this implementation with their own version. 2058

 2059

package org.oasisopen.sca.client.impl; 2060
 2061
public class SCAClientFactoryFinderImpl implements SCAClientFactoryFinder { 2062
 ... 2063
 public SCAClientFactoryFinderImpl() {...} 2064
 2065
 public SCAClientFactory find(Properties properties, 2066
 ClassLoader classLoader 2067
 URI domainURI) 2068
 throws NoSuchDomainException, ServiceRuntimeException {...} 2069
 ... 2070
} 2071

Snippet 9-2: SCAClientFactoryFinderImpl Class 2072

 2073

SCAClientFactoryFinderImpl () method: 2074

Public constructor for the SCAClientFactoryFinderImpl. 2075

Returns: 2076

 SCAClientFactoryFinderImpl which implements the SCAClientFactoryFinder interface 2077

Parameters: 2078

 none 2079

Exceptions: 2080

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 59 of 125

 none 2081

 2082

find (Properties, ClassLoader, URI) method: 2083

Obtains an implementation of the SCAClientFactory interface. It discovers a provider's SCAClientFactory 2084
implementation by referring to the following information in this order: 2085

1. The org.oasisopen.sca.client.SCAClientFactory property from the Properties specified on the 2086
newInstance() method call if specified 2087

2. The org.oasisopen.sca.client.SCAClientFactory property from the System Properties 2088

3. The META-INF/services/org.oasisopen.sca.client.SCAClientFactory file 2089

Returns: 2090

 SCAClientFactory implementation object 2091

Parameters: 2092

 properties - a set of Properties that can be used when creating the object which implements the 2093
SCAClientFactory interface. 2094

 classLoader - a ClassLoader to use when creating the object which implements the 2095
SCAClientFactory interface. 2096

 domainURI - a URI for the SCA Domain targeted by the SCAClientFactory 2097

Exceptions: 2098

 ServiceRuntimeException - if the SCAClientFactory implementation could not be found 2099

9.12 NoSuchDomainException 2100

Figure 9-11 shows the NoSuchDomainException: 2101

 2102

package org.oasisopen.sca; 2103
 2104
public class NoSuchDomainException extends Exception { 2105
 ... 2106
} 2107

Figure 9-11: NoSuchDomainException Class 2108

 2109

This exception indicates that the Domain specified could not be found. 2110

9.13 NoSuchServiceException 2111

Figure 9-12 shows the NoSuchServiceException: 2112

 2113

package org.oasisopen.sca; 2114
 2115
public class NoSuchServiceException extends Exception { 2116
 ... 2117
} 2118

Figure 9-12: NoSuchServiceException Class 2119

 2120

This exception indicates that the service specified could not be found. 2121

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 60 of 125

10 Java Annotations 2122

This section provides definitions of all the Java annotations which apply to SCA. 2123

This specification places constraints on some annotations that are not detectable by a Java compiler. For 2124
example, the definition of the @Property and @Reference annotations indicate that they are allowed on 2125
parameters, but the sections "@Property" and "@Reference" constrain those definitions to constructor 2126
parameters. An SCA runtime MUST verify the proper use of all SCA annotations and if an annotation is 2127
improperly used, the SCA runtime MUST NOT run the component which uses the invalid implementation 2128
code. [JCA90001] 2129

SCA annotations MUST NOT be used on static methods or on static fields. It is an error to use an SCA 2130
annotation on a static method or a static field of an implementation class and the SCA runtime MUST 2131
NOT instantiate such an implementation class. [JCA90002] 2132

10.1 @AllowsPassByReference 2133

Figure 10-1 defines the @AllowsPassByReference annotation: 2134

 2135

package org.oasisopen.sca.annotation; 2136
 2137
import static java.lang.annotation.ElementType.FIELD; 2138
import static java.lang.annotation.ElementType.METHOD; 2139
import static java.lang.annotation.ElementType.PARAMETER; 2140
import static java.lang.annotation.ElementType.TYPE; 2141
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2142
import java.lang.annotation.Retention; 2143
import java.lang.annotation.Target; 2144
 2145
@Target({TYPE, METHOD, FIELD, PARAMETER}) 2146
@Retention(RUNTIME) 2147
public @interface AllowsPassByReference { 2148
 2149
 boolean value() default true; 2150
} 2151

Figure 10-1: AllowsPassByReference Annotation 2152

 2153

The @AllowsPassByReference annotation allows service method implementations and client references 2154
to be marked as “allows pass by reference” to indicate that they use input parameters, return values and 2155
exceptions in a manner that allows the SCA runtime to avoid the cost of copying mutable objects when a 2156
remotable service is called locally within the same JVM. 2157

The @AllowsPassByReference annotation has the attribute: 2158

 value – specifies whether the “allows pass by reference” marker applies to the service 2159
implementation class, service implementation method, or client reference to which this annotation 2160
applies; if not specified, defaults to true. 2161

The @AllowsPassByReference annotation MUST only annotate the following locations: 2162

 a service implementation class 2163

 an individual method of a remotable service implementation 2164

 an individual reference which uses a remotable interface, where the reference is a field, a setter 2165
method, or a constructor parameter [JCA90052] 2166

The “allows pass by reference” marking of a method implementation of a remotable service is determined 2167
as follows: 2168

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 61 of 125

1. If the method has an @AllowsPassByReference annotation, the method is marked “allows pass by 2169
reference” if and only if the value of the method’s annotation is true. 2170

2. Otheriwse, if the class has an @AllowsPassByReference annotation, the method is marked “allows 2171
pass by reference” if and only if the value of the class’s annotation is true. 2172

3. Otherwise, the method is not marked “allows pass by reference”. 2173

The “allows pass by reference” marking of a reference for a remotable service is determined as follows: 2174

1. If the reference has an @AllowsPassByReference annotation, the reference is marked “allows pass 2175
by reference” if and only if the value of the reference’s annotation is true. 2176

2. Otherwise, if the service implementation class containing the reference has an 2177
@AllowsPassByReference annotation, the reference is marked “allows pass by reference” if and only 2178
if the value of the class’s annotation is true. 2179

3. Otherwise, the reference is not marked “allows pass by reference”. 2180

Snippet 10-1 shows a sample where @AllowsPassByReference is defined for the implementation of a 2181
service method on the Java component implementation class. 2182

 2183

@AllowsPassByReference 2184
public String hello(String message) { 2185
 … 2186
} 2187

Snippet 10-1: Use of @AllowsPassByReference on a Method 2188

 2189

Snippet 10-2 shows a sample where @AllowsPassByReference is defined for a client reference of a Java 2190
component implementation class. 2191

 2192

@AllowsPassByReference 2193
@Reference 2194
private StockQuoteService stockQuote; 2195

Snippet 10-2: Use of @AllowsPassByReference on a Reference 2196

10.2 @AsyncFault 2197

Figure 10-2 defines the @AsyncFault annotation: 2198

 2199

package org.oasisopen.sca.annotation; 2200
 2201
import static java.lang.annotation.ElementType.METHOD; 2202
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2203
 2204
import java.lang.annotation.Inherited; 2205
import java.lang.annotation.Retention; 2206
import java.lang.annotation.Target; 2207
 2208
@Inherited 2209
@Target({METHOD}) 2210
@Retention(RUNTIME) 2211
public @interface AsyncFault { 2212
 2213
 Class<?>[] value() default {}; 2214
 2215
} 2216

Figure 10-2: AsyncFault Annotation 2217

 2218

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 62 of 125

The @AsyncFault annotation is used to indicate the faults/exceptions which are returned by the 2219
asynchronous service method which it annotates. 2220

10.3 @AsyncInvocation 2221

Figure 10-3 defines the @AsyncInvocation annotation, which is used to attach the "asyncInvocation" 2222
policy intent to an interface or to a method: 2223

 2224

package org.oasisopen.sca.annotation; 2225
 2226
import static java.lang.annotation.ElementType.METHOD; 2227
import static java.lang.annotation.ElementType.TYPE; 2228
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2229
import static org.oasisopen.sca.Constants.SCA_PREFIX; 2230
 2231
import java.lang.annotation.Inherited; 2232
import java.lang.annotation.Retention; 2233
import java.lang.annotation.Target; 2234
 2235
@Inherited 2236
@Target({TYPE, METHOD}) 2237
@Retention(RUNTIME) 2238
@Intent(AsyncInvocation.ASYNCINVOCATION) 2239
public @interface AsyncInvocation { 2240
 String ASYNCINVOCATION = SCA_PREFIX + "asyncInvocation"; 2241
 2242
 boolean value() default true; 2243
} 2244

Figure 10-3: AsyncInvocation Annotation 2245

 2246

The @AsyncInvocation annotation is used to indicate that the operations of a Java interface uses the 2247
long-running request-response pattern as described in the SCA Assembly specification. 2248

10.4 @Authentication 2249

The following Java code defines the @Authentication annotation: 2250

 2251

package org.oasisopen.sca.annotation; 2252
 2253
import static java.lang.annotation.ElementType.FIELD; 2254
import static java.lang.annotation.ElementType.METHOD; 2255
import static java.lang.annotation.ElementType.PARAMETER; 2256
import static java.lang.annotation.ElementType.TYPE; 2257
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2258
import static org.oasisopen.sca.Constants.SCA_PREFIX; 2259
 2260
import java.lang.annotation.Inherited; 2261
import java.lang.annotation.Retention; 2262
import java.lang.annotation.Target; 2263
 2264
@Inherited 2265
@Target({TYPE, FIELD, METHOD, PARAMETER}) 2266
@Retention(RUNTIME) 2267
@Intent(Authentication.AUTHENTICATION) 2268
public @interface Authentication { 2269
 String AUTHENTICATION = SCA_PREFIX + "authentication"; 2270
 String AUTHENTICATION_MESSAGE = AUTHENTICATION + ".message"; 2271
 String AUTHENTICATION_TRANSPORT = AUTHENTICATION + ".transport"; 2272

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 63 of 125

 2273
 /** 2274
 * List of authentication qualifiers (such as "message" 2275
 * or "transport"). 2276
 * 2277
 * @return authentication qualifiers 2278
 */ 2279
 @Qualifier 2280
 String[] value() default ""; 2281
} 2282

Figure 10-4: Authentication Annotation 2283

 2284

The @Authentication annotation is used to indicate the need for authentication. See the SCA Policy 2285
Framework Specification [POLICY] for details on the meaning of the intent. See the section on 2286
Application of Intent Annotations for samples of how intent annotations are used in Java. 2287

10.5 @Authorization 2288

Figure 10-5 defines the @Authorization annotation: 2289

 2290

package org.oasisopen.sca.annotation; 2291
 2292
import static java.lang.annotation.ElementType.FIELD; 2293
import static java.lang.annotation.ElementType.METHOD; 2294
import static java.lang.annotation.ElementType.PARAMETER; 2295
import static java.lang.annotation.ElementType.TYPE; 2296
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2297
import static org.oasisopen.sca.Constants.SCA_PREFIX; 2298
 2299
import java.lang.annotation.Inherited; 2300
import java.lang.annotation.Retention; 2301
import java.lang.annotation.Target; 2302
 2303
/** 2304
 * The @Authorization annotation is used to indicate that 2305
 * an authorization policy is required. 2306
 */ 2307
@Inherited 2308
@Target({TYPE, FIELD, METHOD, PARAMETER}) 2309
@Retention(RUNTIME) 2310
@Intent(Authorization.AUTHORIZATION) 2311
public @interface Authorization { 2312
 String AUTHORIZATION = SCA_PREFIX + "authorization"; 2313
} 2314

Figure 10-5: Authorization Annotation 2315

 2316

The @Authorization annotation is used to indicate the need for an authorization policy. See the SCA 2317
Policy Framework Specification [POLICY] for details on the meaning of the intent. See the section on 2318
Application of Intent Annotations for samples of how intent annotations are used in Java. 2319

10.6 @Callback 2320

Figure 10-6 defines the @Callback annotation: 2321

 2322

package org.oasisopen.sca.annotation; 2323
 2324

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 64 of 125

import static java.lang.annotation.ElementType.FIELD; 2325
import static java.lang.annotation.ElementType.METHOD; 2326
import static java.lang.annotation.ElementType.TYPE; 2327
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2328
import java.lang.annotation.Retention; 2329
import java.lang.annotation.Target; 2330
 2331
@Target({TYPE, METHOD, FIELD}) 2332
@Retention(RUNTIME) 2333
public @interface Callback { 2334
 2335
 Class<?> value() default Void.class; 2336
} 2337

Figure 10-6: Callback Annotation 2338

 2339

The @Callback annotation is used to annotate a service interface or to annotate a Java class (used to 2340
define an interface) with a callback interface by specifying the Java class object of the callback interface 2341
as an attribute. 2342

The @Callback annotation has the attribute: 2343

 value – the name of a Java class file containing the callback interface 2344

The @Callback annotation can also be used to annotate a method or a field of an SCA implementation 2345
class, in order to have a callback object injected. When used to annotate a method or a field of an 2346
implementation class for injection of a callback object, the@Callback annotation MUST NOT specify any 2347
attributes. [JCA90046] When used to annotate a method or a field of an implementation class for injection 2348
of a callback object, the type of the method or field MUST be the callback interface of at least one 2349

bidirectional service offered by the implementation class. [JCA90054] When used to annotate a setter 2350

method or a field of an implementation class for injection of a callback object, the SCA runtime MUST 2351

inject a callback reference proxy into that method or field when the Java class is initialized, if the 2352

component is invoked via a service which has a callback interface and where the type of the setter 2353

method or field corresponds to the type of the callback interface. [JCA90058] 2354

The @Callback annotation MUST NOT appear on a setter method or a field of a Java implementation 2355
class that has COMPOSITE scope. [JCA90057] 2356

Snippet 10-3 shows an example use of the @Callback annotation to declare a callback interface. 2357

 2358

package somepackage; 2359
import org.oasisopen.sca.annotation.Callback; 2360
import org.oasisopen.sca.annotation.Remotable; 2361
@Remotable 2362
@Callback(MyServiceCallback.class) 2363
public interface MyService { 2364
 2365
 void someMethod(String arg); 2366
} 2367
 2368
@Remotable 2369
public interface MyServiceCallback { 2370
 2371
 void receiveResult(String result); 2372
} 2373

Snippet 10-3: Use of @Callback 2374

 2375

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 65 of 125

The implied component type is for Snippet 10-3 is shown in Snippet 10-4. 2376

 2377

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" > 2378
 2379
 <service name="MyService"> 2380

 <interface.java interface="somepackage.MyService" 2381
 callbackInterface="somepackage.MyServiceCallback"/> 2382
 </service> 2383
</componentType> 2384

Snippet 10-4: Implied componentType for Snippet 10-3 2385

10.7 @ComponentName 2386

Figure 10-7 defines the @ComponentName annotation: 2387

 2388

package org.oasisopen.sca.annotation; 2389
 2390
import static java.lang.annotation.ElementType.FIELD; 2391
import static java.lang.annotation.ElementType.METHOD; 2392
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2393
import java.lang.annotation.Retention; 2394
import java.lang.annotation.Target; 2395
 2396
@Target({METHOD, FIELD}) 2397
@Retention(RUNTIME) 2398
public @interface ComponentName { 2399
 2400
} 2401

Figure 10-7: ComponentName Annotation 2402

 2403

The @ComponentName annotation is used to denote a Java class field or setter method that is used to 2404
inject the component name. 2405

Snippet 10-5 shows a component name field definition sample. 2406

 2407

@ComponentName 2408
private String componentName; 2409

Snippet 10-5: Use of @ComponentName on a Field 2410

 2411

Snippet 10-6 shows a component name setter method sample. 2412

 2413

@ComponentName 2414
public void setComponentName(String name) { 2415
 //… 2416
} 2417

Snippet 10-6: Use of @ComponentName on a Setter 2418

10.8 @Confidentiality 2419

Figure 10-8 defines the @Confidentiality annotation: 2420

 2421

package org.oasisopen.sca.annotation; 2422

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 66 of 125

 2423
import static java.lang.annotation.ElementType.FIELD; 2424
import static java.lang.annotation.ElementType.METHOD; 2425
import static java.lang.annotation.ElementType.PARAMETER; 2426
import static java.lang.annotation.ElementType.TYPE; 2427
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2428
import static org.oasisopen.sca.Constants.SCA_PREFIX; 2429
 2430
import java.lang.annotation.Inherited; 2431
import java.lang.annotation.Retention; 2432
import java.lang.annotation.Target; 2433
 2434
@Inherited 2435
@Target({TYPE, FIELD, METHOD, PARAMETER}) 2436
@Retention(RUNTIME) 2437
@Intent(Confidentiality.CONFIDENTIALITY) 2438
public @interface Confidentiality { 2439
 String CONFIDENTIALITY = SCA_PREFIX + "confidentiality"; 2440
 String CONFIDENTIALITY_MESSAGE = CONFIDENTIALITY + ".message"; 2441
 String CONFIDENTIALITY_TRANSPORT = CONFIDENTIALITY + ".transport"; 2442
 2443
 /** 2444
 * List of confidentiality qualifiers such as "message" or 2445
 * "transport". 2446
 * 2447
 * @return confidentiality qualifiers 2448
 */ 2449
 @Qualifier 2450
 String[] value() default ""; 2451
} 2452

Figure 10-8: Confidentiality Annotation 2453

 2454

The @Confidentiality annotation is used to indicate the need for confidentiality. See the SCA Policy 2455
Framework Specification [POLICY] for details on the meaning of the intent. See the section on Application 2456
of Intent Annotations for samples of how intent annotations are used in Java. 2457

10.9 @Constructor 2458

Figure 10-9 defines the @Constructor annotation: 2459

 2460

package org.oasisopen.sca.annotation; 2461
 2462
import static java.lang.annotation.ElementType.CONSTRUCTOR; 2463
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2464
import java.lang.annotation.Retention; 2465
import java.lang.annotation.Target; 2466
 2467
@Target(CONSTRUCTOR) 2468
@Retention(RUNTIME) 2469
public @interface Constructor { } 2470

Figure 10-9: Constructor Annotation 2471

 2472

The @Constructor annotation is used to mark a particular constructor to use when instantiating a Java 2473
component implementation. If a constructor of an implementation class is annotated with @Constructor 2474
and the constructor has parameters, each of these parameters MUST have either a @Property 2475
annotation or a @Reference annotation. [JCA90003] 2476

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 67 of 125

Snippet 10-7 shows a sample for the @Constructor annotation. 2477

 2478

public class HelloServiceImpl implements HelloService { 2479
 2480
 public HelloServiceImpl(){ 2481
 ... 2482
 } 2483
 2484
 @Constructor 2485
 public HelloServiceImpl(@Property(name="someProperty") 2486
 String someProperty){ 2487
 ... 2488
 } 2489
 2490
 public String hello(String message) { 2491
 ... 2492
 } 2493
} 2494

Snippet 10-7: Use of @Constructor 2495

10.10 @Context 2496

Figure 10-10 defines the @Context annotation: 2497

 2498

package org.oasisopen.sca.annotation; 2499
 2500
import static java.lang.annotation.ElementType.FIELD; 2501
import static java.lang.annotation.ElementType.METHOD; 2502
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2503
import java.lang.annotation.Retention; 2504
import java.lang.annotation.Target; 2505
 2506
@Target({METHOD, FIELD}) 2507
@Retention(RUNTIME) 2508
public @interface Context { 2509
 2510
} 2511

Figure 10-10: Context Annotation 2512

 2513

The @Context annotation is used to denote a Java class field or a setter method that is used to inject a 2514
composite context for the component. The type of context to be injected is defined by the type of the Java 2515
class field or type of the setter method input argument; the type is either ComponentContext or 2516
RequestContext. 2517

The @Context annotation has no attributes. 2518

Snippet 10-8 shows a ComponentContext field definition sample. 2519

 2520

@Context 2521
protected ComponentContext context; 2522

Snippet 10-8: Use of @Context for a ComponentContext 2523

 2524

Snippet 10-9 shows a RequestContext field definition sample. 2525

 2526

@Context 2527

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 68 of 125

protected RequestContext context; 2528

Snippet 10-9: Use of @Context for a RequestContext 2529

10.11 @Destroy 2530

Figure 10-11 defines the @Destroy annotation: 2531

 2532

package org.oasisopen.sca.annotation; 2533
 2534
import static java.lang.annotation.ElementType.METHOD; 2535
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2536
import java.lang.annotation.Retention; 2537
import java.lang.annotation.Target; 2538
 2539
@Target(METHOD) 2540
@Retention(RUNTIME) 2541
public @interface Destroy { 2542
 2543
} 2544

Figure 10-11: Destroy Annotation 2545

 2546

The @Destroy annotation is used to denote a single Java class method that will be called when the scope 2547
defined for the implementation class ends. A method annotated with @Destroy can have any access 2548
modifier and MUST have a void return type and no arguments. [JCA90004] 2549

If there is a method annotated with @Destroy that matches the criteria for the annotation, the SCA 2550
runtime MUST call the annotated method when the scope defined for the implementation class ends. 2551
[JCA90005] 2552

Snippet 10-10 shows a sample for a destroy method definition. 2553

 2554

@Destroy 2555
public void myDestroyMethod() { 2556
 … 2557
} 2558

Snippet 10-10: Use of @Destroy 2559

10.12 @EagerInit 2560

Figure 10-12: EagerInit Annotation defines the @EagerInit annotation: 2561

 2562

package org.oasisopen.sca.annotation; 2563
 2564
import static java.lang.annotation.ElementType.TYPE; 2565
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2566
import java.lang.annotation.Retention; 2567
import java.lang.annotation.Target; 2568
 2569
@Target(TYPE) 2570
@Retention(RUNTIME) 2571
public @interface EagerInit { 2572
 2573
} 2574

Figure 10-12: EagerInit Annotation 2575

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 69 of 125

 2576

The @EagerInit annotation is used to mark the Java class of a COMPOSITE scoped implementation for 2577
eager initialization. When marked for eager initialization with an @EagerInit annotation, the composite 2578
scoped instance MUST be created when its containing component is started. [JCA90007] 2579

10.13 @Init 2580

Figure 10-13: Init Annotation defines the @Init annotation: 2581

 2582

package org.oasisopen.sca.annotation; 2583
 2584
import static java.lang.annotation.ElementType.METHOD; 2585
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2586
import java.lang.annotation.Retention; 2587
import java.lang.annotation.Target; 2588
 2589
@Target(METHOD) 2590
@Retention(RUNTIME) 2591
public @interface Init { 2592
 2593
 2594
} 2595

Figure 10-13: Init Annotation 2596

 2597

The @Init annotation is used to denote a single Java class method that is called when the scope defined 2598
for the implementation class starts. A method marked with the @Init annotation can have any access 2599
modifier and MUST have a void return type and no arguments. [JCA90008] 2600

If there is a method annotated with @Init that matches the criteria for the annotation, the SCA runtime 2601
MUST call the annotated method after all property and reference injection is complete. [JCA90009] 2602

Snippet 10-11 shows an example of an init method definition. 2603

 2604

@Init 2605
public void myInitMethod() { 2606
 … 2607
} 2608

Snippet 10-11: Use of @Init 2609

10.14 @Integrity 2610

Figure 10-14 defines the @Integrity annotation: 2611

 2612

package org.oasisopen.sca.annotation; 2613
 2614
import static java.lang.annotation.ElementType.FIELD; 2615
import static java.lang.annotation.ElementType.METHOD; 2616
import static java.lang.annotation.ElementType.PARAMETER; 2617
import static java.lang.annotation.ElementType.TYPE; 2618
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2619
import static org.oasisopen.sca.Constants.SCA_PREFIX; 2620
 2621
import java.lang.annotation.Inherited; 2622
import java.lang.annotation.Retention; 2623
import java.lang.annotation.Target; 2624
 2625

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 70 of 125

@Inherited 2626
@Target({TYPE, FIELD, METHOD, PARAMETER}) 2627
@Retention(RUNTIME) 2628
@Intent(Integrity.INTEGRITY) 2629
public @interface Integrity { 2630
 String INTEGRITY = SCA_PREFIX + "integrity"; 2631
 String INTEGRITY_MESSAGE = INTEGRITY + ".message"; 2632
 String INTEGRITY_TRANSPORT = INTEGRITY + ".transport"; 2633
 2634
 /** 2635
 * List of integrity qualifiers (such as "message" or "transport"). 2636
 * 2637
 * @return integrity qualifiers 2638
 */ 2639
 @Qualifier 2640
 String[] value() default ""; 2641
} 2642

Figure 10-14: Integrity Annotation 2643

 2644

The @Integrity annotation is used to indicate that the invocation requires integrity (i.e. no tampering of 2645
the messages between client and service). See the SCA Policy Framework Specification [POLICY] for 2646
details on the meaning of the intent. See the section on Application of Intent Annotations for samples of 2647
how intent annotations are used in Java. 2648

10.15 @Intent 2649

Figure 10-15 defines the @Intent annotation: 2650

 2651

package org.oasisopen.sca.annotation; 2652
 2653
import static java.lang.annotation.ElementType.ANNOTATION_TYPE; 2654
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2655
import java.lang.annotation.Retention; 2656
import java.lang.annotation.Target; 2657
 2658
@Target({ANNOTATION_TYPE}) 2659
@Retention(RUNTIME) 2660
public @interface Intent { 2661
 /** 2662
 * The qualified name of the intent, in the form defined by 2663
 * {@link javax.xml.namespace.QName#toString}. 2664
 * @return the qualified name of the intent 2665
 */ 2666
 String value() default ""; 2667
 2668
 /** 2669
 * The XML namespace for the intent. 2670
 * @return the XML namespace for the intent 2671
 */ 2672
 String targetNamespace() default ""; 2673
 2674
 /** 2675
 * The name of the intent within its namespace. 2676
 * @return name of the intent within its namespace 2677
 */ 2678
 String localPart() default ""; 2679
} 2680

Figure 10-15: Intent Annotation 2681

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 71 of 125

 2682

The @Intent annotation is used for the creation of new annotations for specific intents. It is not expected 2683
that the @Intent annotation will be used in application code. 2684

See the section "How to Create Specific Intent Annotations" for details and samples of how to define new 2685
intent annotations. 2686

10.16 @ManagedSharedTransaction 2687

Figure 10-16 defines the @ManagedSharedTransaction annotation: 2688

 2689

package org.oasisopen.sca.annotation; 2690
 2691
import static java.lang.annotation.ElementType.FIELD; 2692
import static java.lang.annotation.ElementType.METHOD; 2693
import static java.lang.annotation.ElementType.PARAMETER; 2694
import static java.lang.annotation.ElementType.TYPE; 2695
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2696
import static org.oasisopen.sca.Constants.SCA_PREFIX; 2697
 2698
import java.lang.annotation.Inherited; 2699
import java.lang.annotation.Retention; 2700
import java.lang.annotation.Target; 2701
 2702
/** 2703
 * The @ManagedSharedTransaction annotation is used to indicate that 2704
 * a distributed ACID transaction is required. 2705
 */ 2706
@Inherited 2707
@Target({TYPE, FIELD, METHOD, PARAMETER}) 2708
@Retention(RUNTIME) 2709
@Intent(ManagedSharedTransaction.MANAGEDSHAREDTRANSACTION) 2710
public @interface ManagedSharedTransaction { 2711
 String MANAGEDSHAREDTRANSACTION = SCA_PREFIX + "managedSharedTransaction"; 2712
} 2713

Figure 10-16: ManagedSharedTransaction Annotation 2714

 2715

The @ManagedSharedTransaction annotation is used to indicate the need for a distributed and globally 2716
coordinated ACID transaction. See the SCA Policy Framework Specification [POLICY] for details on the 2717
meaning of the intent. See the section on Application of Intent Annotations for samples of how intent 2718
annotations are used in Java. 2719

10.17 @ManagedTransaction 2720

Figure 10-17 defines the @ManagedTransaction annotation: 2721

 2722

import static java.lang.annotation.ElementType.FIELD; 2723
import static java.lang.annotation.ElementType.METHOD; 2724
import static java.lang.annotation.ElementType.PARAMETER; 2725
import static java.lang.annotation.ElementType.TYPE; 2726
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2727
import static org.oasisopen.sca.Constants.SCA_PREFIX; 2728
 2729
import java.lang.annotation.Inherited; 2730
import java.lang.annotation.Retention; 2731
import java.lang.annotation.Target; 2732
 2733
/** 2734

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 72 of 125

 * The @ManagedTransaction annotation is used to indicate the 2735
 * need for an ACID transaction environment. 2736
 */ 2737
@Inherited 2738
@Target({TYPE, FIELD, METHOD, PARAMETER}) 2739
@Retention(RUNTIME) 2740
@Intent(ManagedTransaction.MANAGEDTRANSACTION) 2741
public @interface ManagedTransaction { 2742
 String MANAGEDTRANSACTION = SCA_PREFIX + "managedTransaction"; 2743
 String MANAGEDTRANSACTION_LOCAL = MANAGEDTRANSACTION + ".local"; 2744
 String MANAGEDTRANSACTION_GLOBAL = MANAGEDTRANSACTION + ".global"; 2745
 2746
 /** 2747
 * List of managedTransaction qualifiers (such as "global" or "local"). 2748
 * 2749
 * @return managedTransaction qualifiers 2750
 */ 2751
 @Qualifier 2752
 String[] value() default ""; 2753
} 2754

Figure 10-17: ManagedTransaction Annotation 2755

 2756

The @ManagedTransaction annotation is used to indicate the need for an ACID transaction. See the 2757
SCA Policy Framework Specification [POLICY] for details on the meaning of the intent. See the section 2758
on Application of Intent Annotations for samples of how intent annotations are used in Java. 2759

10.18 @MutualAuthentication 2760

Figure 10-18 defines the @MutualAuthentication annotation: 2761

 2762

package org.oasisopen.sca.annotation; 2763
 2764
import static java.lang.annotation.ElementType.FIELD; 2765
import static java.lang.annotation.ElementType.METHOD; 2766
import static java.lang.annotation.ElementType.PARAMETER; 2767
import static java.lang.annotation.ElementType.TYPE; 2768
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2769
import static org.oasisopen.sca.Constants.SCA_PREFIX; 2770
 2771
import java.lang.annotation.Inherited; 2772
import java.lang.annotation.Retention; 2773
import java.lang.annotation.Target; 2774
 2775
/** 2776
 * The @MutualAuthentication annotation is used to indicate that 2777
 * a mutual authentication policy is needed. 2778
 */ 2779
@Inherited 2780
@Target({TYPE, FIELD, METHOD, PARAMETER}) 2781
@Retention(RUNTIME) 2782
@Intent(MutualAuthentication.MUTUALAUTHENTICATION) 2783
public @interface MutualAuthentication { 2784
 String MUTUALAUTHENTICATION = SCA_PREFIX + "mutualAuthentication"; 2785
} 2786

Figure 10-18: MutualAuthentication Annotation 2787

 2788

The @MutualAuthentication annotation is used to indicate the need for mutual authentication between a 2789
service consumer and a service provider. See the SCA Policy Framework Specification [POLICY] for 2790

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 73 of 125

details on the meaning of the intent. See the section on Application of Intent Annotations for samples of 2791
how intent annotations are used in Java. 2792

10.19 @NoManagedTransaction 2793

Figure 10-19 defines the @NoManagedTransaction annotation: 2794

 2795

package org.oasisopen.sca.annotation; 2796
 2797
import static java.lang.annotation.ElementType.FIELD; 2798
import static java.lang.annotation.ElementType.METHOD; 2799
import static java.lang.annotation.ElementType.PARAMETER; 2800
import static java.lang.annotation.ElementType.TYPE; 2801
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2802
import static org.oasisopen.sca.Constants.SCA_PREFIX; 2803
 2804
import java.lang.annotation.Inherited; 2805
import java.lang.annotation.Retention; 2806
import java.lang.annotation.Target; 2807
 2808
/** 2809
 * The @NoManagedTransaction annotation is used to indicate that 2810
 * a non-transactional environment is needed. 2811
 */ 2812
@Inherited 2813
@Target({TYPE, FIELD, METHOD, PARAMETER}) 2814
@Retention(RUNTIME) 2815
@Intent(NoManagedTransaction.NOMANAGEDTRANSACTION) 2816
public @interface NoManagedTransaction { 2817
 String NOMANAGEDTRANSACTION = SCA_PREFIX + "noManagedTransaction"; 2818
} 2819

Figure 10-19: NoManagedTransaction Annotation 2820

 2821

The @NoManagedTransaction annotation is used to indicate that the component does not want to run in 2822
an ACID transaction. See the SCA Policy Framework Specification [POLICY] for details on the meaning 2823
of the intent. See the section on Application of Intent Annotations for samples of how intent annotations 2824
are used in Java. 2825

10.20 @OneWay 2826

Figure 10-20 defines the @OneWay annotation: 2827

 2828

package org.oasisopen.sca.annotation; 2829
 2830
import static java.lang.annotation.ElementType.METHOD; 2831
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2832
import java.lang.annotation.Retention; 2833
import java.lang.annotation.Target; 2834
 2835
@Target(METHOD) 2836
@Retention(RUNTIME) 2837
public @interface OneWay { 2838
 2839
 2840
} 2841

Figure 10-20: OneWay Annotation 2842

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 74 of 125

 2843

A method annotated with @OneWay MUST have a void return type and MUST NOT have declared 2844
checked exceptions. [JCA90055] 2845

When a method of a Java interface is annotated with @OneWay, the SCA runtime MUST ensure that all 2846
invocations of that method are executed in a non-blocking fashion, as described in the section on 2847
Asynchronous Programming. [JCA90056] 2848

The @OneWay annotation has no attributes. 2849

Snippet 10-12 shows the use of the @OneWay annotation on an interface. 2850

 2851

package services.hello; 2852
 2853
import org.oasisopen.sca.annotation.OneWay; 2854
 2855
public interface HelloService { 2856
 @OneWay 2857
 void hello(String name); 2858
} 2859

Snippet 10-12: Use of @OneWay 2860

10.21 @PolicySets 2861

Figure 10-21 defines the @PolicySets annotation: 2862

 2863

package org.oasisopen.sca.annotation; 2864
 2865
import static java.lang.annotation.ElementType.FIELD; 2866
import static java.lang.annotation.ElementType.METHOD; 2867
import static java.lang.annotation.ElementType.PARAMETER; 2868
import static java.lang.annotation.ElementType.TYPE; 2869
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2870
 2871
import java.lang.annotation.Retention; 2872
import java.lang.annotation.Target; 2873
 2874
@Target({TYPE, FIELD, METHOD, PARAMETER}) 2875
@Retention(RUNTIME) 2876
public @interface PolicySets { 2877
 /** 2878
 * Returns the policy sets to be applied. 2879
 * 2880
 * @return the policy sets to be applied 2881
 */ 2882
 String[] value() default ""; 2883
} 2884

Figure 10-21: PolicySets Annotation 2885

 2886

The @PolicySets annotation is used to attach one or more SCA Policy Sets to a Java implementation 2887
class or to one of its subelements. 2888

See the section "Policy Set Annotations" for details and samples. 2889

10.22 @Property 2890

Figure 10-22 defines the @Property annotation: 2891

 2892

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 75 of 125

package org.oasisopen.sca.annotation; 2893
 2894
import static java.lang.annotation.ElementType.FIELD; 2895
import static java.lang.annotation.ElementType.METHOD; 2896
import static java.lang.annotation.ElementType.PARAMETER; 2897
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2898
import java.lang.annotation.Retention; 2899
import java.lang.annotation.Target; 2900
 2901
@Target({METHOD, FIELD, PARAMETER}) 2902
@Retention(RUNTIME) 2903
public @interface Property { 2904
 2905
 String name() default ""; 2906
 boolean required() default true; 2907
} 2908

Figure 10-22: Property Annotation 2909

 2910

The @Property annotation is used to denote a Java class field, a setter method, or a constructor 2911
parameter that is used to inject an SCA property value. The type of the property injected, which can be a 2912
simple Java type or a complex Java type, is defined by the type of the Java class field or the type of the 2913
input parameter of the setter method or constructor. 2914

When the Java type of a field, setter method or constructor parameter with the @Property annotation is a 2915
primitive type or a JAXB annotated class, the SCA runtime MUST convert a property value specified by 2916
an SCA component definition into an instance of the Java type as defined by the XML to Java mapping in 2917
the JAXB specification [JAXB] with XML schema validation enabled. [JCA90061] 2918

When the Java type of a field, setter method or constructor parameter with the @Property annotation is 2919
not a JAXB annotated class, the SCA runtime can use any XML to Java mapping when converting 2920
property values into instances of the Java type. 2921

The @Property annotation MUST NOT be used on a class field that is declared as final. [JCA90011] 2922

Where there is both a setter method and a field for a property, the setter method is used. 2923

The @Property annotation has the attributes: 2924

 name (0..1) – the name of the property. For a field annotation, the default is the name of the field of 2925
the Java class. For a setter method annotation, the default is the JavaBeans property name 2926
[JAVABEANS] corresponding to the setter method name. For a @Property annotation applied to a 2927
constructor parameter, there is no default value for the name attribute and the name attribute MUST 2928
be present. [JCA90013] 2929

 required (0..1) – a boolean value which specifies whether injection of the property value is required 2930
or not, where true means injection is required and false means injection is not required. Defaults to 2931
true. For a @Property annotation applied to a constructor parameter, the required attribute MUST 2932
NOT have the value false. [JCA90014] 2933

} 2934

Snippet 10-13 shows a property field definition sample. 2935

 2936

@Property(name="currency", required=true) 2937
protected String currency; 2938
 2939
The following snippet shows a property setter sample 2940
 2941
@Property(name="currency", required=true) 2942
public void setCurrency(String theCurrency) { 2943
 2944
} 2945

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 76 of 125

Snippet 10-13: Use of @Property on a Field 2946

 2947

For a @Property annotation, if the type of the Java class field or the type of the input parameter of the 2948
setter method or constructor is defined as an array or as any type that extends or implements 2949
java.util.Collection, then the SCA runtime MUST introspect the component type of the implementation 2950
with a <property/> element with a @many attribute set to true, otherwise @many MUST be set to false. 2951
[JCA90047] 2952

Snippet 10-14 shows the definition of a configuration property using the @Property annotation for a 2953
collection. 2954

... 2955
private List<String> helloConfigurationProperty; 2956
 2957
@Property(required=true) 2958
public void setHelloConfigurationProperty(List<String> property) { 2959
 helloConfigurationProperty = property; 2960
} 2961
... 2962

Snippet 10-14: Use of @Property with a Collection 2963

10.23 @Qualifier 2964

Figure 10-23 defines the @Qualifier annotation: 2965

 2966

package org.oasisopen.sca.annotation; 2967
 2968
import static java.lang.annotation.ElementType.METHOD; 2969
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2970
 2971
import java.lang.annotation.Retention; 2972
import java.lang.annotation.Target; 2973
 2974
@Target(METHOD) 2975
@Retention(RUNTIME) 2976
public @interface Qualifier { 2977
} 2978

Figure 10-23: Qualifier Annotation 2979

 2980

The @Qualifier annotation is applied to an attribute of a specific intent annotation definition, defined using 2981
the @Intent annotation, to indicate that the attribute provides qualifiers for the intent. The @Qualifier 2982
annotation MUST be used in a specific intent annotation definition where the intent has qualifiers. 2983
[JCA90015] 2984

See the section "How to Create Specific Intent Annotations" for details and samples of how to define new 2985
intent annotations. 2986

10.24 @Reference 2987

Figure 10-24 defines the @Reference annotation: 2988

 2989

package org.oasisopen.sca.annotation; 2990
 2991
import static java.lang.annotation.ElementType.FIELD; 2992
import static java.lang.annotation.ElementType.METHOD; 2993
import static java.lang.annotation.ElementType.PARAMETER; 2994
import static java.lang.annotation.RetentionPolicy.RUNTIME; 2995

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 77 of 125

import java.lang.annotation.Retention; 2996
import java.lang.annotation.Target; 2997
@Target({METHOD, FIELD, PARAMETER}) 2998
@Retention(RUNTIME) 2999
public @interface Reference { 3000
 3001
 String name() default ""; 3002
 boolean required() default true; 3003
} 3004

Figure 10-24: Reference Annotation 3005

 3006

The @Reference annotation type is used to annotate a Java class field, a setter method, or a constructor 3007
parameter that is used to inject a service that resolves the reference. The interface of the service injected 3008
is defined by the type of the Java class field or the type of the input parameter of the setter method or 3009
constructor. 3010

The @Reference annotation MUST NOT be used on a class field that is declared as final. [JCA90016] 3011

Where there is both a setter method and a field for a reference, the setter method is used. 3012

The @Reference annotation has the attributes: 3013

 name : String (0..1) – the name of the reference. For a field annotation, the default is the name of the 3014
field of the Java class. For a setter method annotation, the default is the JavaBeans property name 3015
corresponding to the setter method name. For a @Reference annotation applied to a constructor 3016
parameter, there is no default for the name attribute and the name attribute MUST be present. 3017
[JCA90018] 3018

 required (0..1) – a boolean value which specifies whether injection of the service reference is 3019
required or not, where true means injection is required and false means injection is not required. 3020
Defaults to true. For a @Reference annotation applied to a constructor parameter, the required 3021
attribute MUST have the value true. [JCA90019] 3022

Snippet 10-15 shows a reference field definition sample. 3023

 3024

@Reference(name="stockQuote", required=true) 3025
protected StockQuoteService stockQuote; 3026

Snippet 10-15: Use of @Reference on a Field 3027

 3028

Snippet 10-16 shows a reference setter sample 3029

 3030

@Reference(name="stockQuote", required=true) 3031
public void setStockQuote(StockQuoteService theSQService) { 3032
 ... 3033
} 3034

Snippet 10-16: Use of @Reference on a Setter 3035

 3036

Snippet 10-17 shows a sample of a service reference using the @Reference annotation. The name of the 3037
reference is “helloService” and its type is HelloService. The clientMethod() calls the “hello” operation of 3038
the service referenced by the helloService reference. 3039

 3040

package services.hello; 3041
 3042
private HelloService helloService; 3043
 3044
@Reference(name="helloService", required=true) 3045

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 78 of 125

public setHelloService(HelloService service) { 3046
 helloService = service; 3047
} 3048
 3049
public void clientMethod() { 3050
 String result = helloService.hello("Hello World!"); 3051
 … 3052
} 3053

Snippet 10-17: Use of @Reference and a ServiceReference 3054

 3055

The presence of a @Reference annotation is reflected in the componentType information that the runtime 3056
generates through reflection on the implementation class. Snippet 10-18 shows the component type for 3057
the component implementation fragment in Snippet 10-17. 3058

 3059

<?xml version="1.0" encoding="ASCII"?> 3060
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 3061
 3062
 <!-- Any services offered by the component would be listed here --> 3063
 <reference name="helloService" multiplicity="1..1"> 3064
 <interface.java interface="services.hello.HelloService"/> 3065
 </reference> 3066
 3067
</componentType> 3068

Snippet 10-18: Implied componentType for Implementation in Snippet 10-17 3069

 3070

If the type of a reference is not an array or any type that extends or implements java.util.Collection, then 3071
the SCA runtime MUST introspect the component type of the implementation with a <reference/> element 3072
with @multiplicity= 0..1 if the @Reference annotation required attribute is false and with 3073
@multiplicity=1..1 if the @Reference annotation required attribute is true. [JCA90020] 3074

If the type of a reference is defined as an array or as any type that extends or implements 3075
java.util.Collection, then the SCA runtime MUST introspect the component type of the implementation 3076
with a <reference/> element with @multiplicity=0..n if the @Reference annotation required attribute is 3077
false and with @multiplicity=1..n if the @Reference annotation required attribute is true. [JCA90021] 3078

Snippet 10-19 shows a sample of a service reference definition using the @Reference annotation on a 3079
java.util.List. The name of the reference is “helloServices” and its type is HelloService. The clientMethod() 3080
calls the “hello” operation of all the services referenced by the helloServices reference. In this case, at 3081
least one HelloService needs to be present, so required is true. 3082

 3083

 @Reference(name="helloServices", required=true) 3084
 protected List<HelloService> helloServices; 3085
 3086
 public void clientMethod() { 3087
 3088
 … 3089
 for (int index = 0; index < helloServices.size(); index++) { 3090
 HelloService helloService = 3091
 (HelloService)helloServices.get(index); 3092
 String result = helloService.hello("Hello World!"); 3093
 } 3094
 … 3095
 } 3096

Snippet 10-19: Use of @Reference with a List of ServiceReferences 3097

 3098

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 79 of 125

Snippet 10-20 shows the XML representation of the component type reflected from for the former 3099
component implementation fragment. There is no need to author this component type in this case since it 3100
can be reflected from the Java class. 3101

 3102

<?xml version="1.0" encoding="ASCII"?> 3103
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 3104
 3105
 <!-- Any services offered by the component would be listed here --> 3106
 <reference name="helloServices" multiplicity="1..n"> 3107
 <interface.java interface="services.hello.HelloService"/> 3108
 </reference> 3109
 3110
</componentType> 3111

Snippet 10-20: Implied componentType for Implementation in Snippet 10-19 3112

 3113

An unwired reference with a multiplicity of 0..1 MUST be presented to the implementation code by the 3114
SCA runtime as null [JCA90022] An unwired reference with a multiplicity of 0..n MUST be presented to 3115
the implementation code by the SCA runtime as an empty array or empty collection [JCA90023] 3116

10.24.1 Reinjection 3117

 [JCA90024] 3118

 3119

[JCA90025] 3120

References can be reinjected by an SCA runtime after the initial creation of a component if the reference 3121
target changes due to a change in wiring that has occurred since the component was initialized. 3122

In order for reinjection to occur, the following need to be true: 3123

1. The component is not STATELESS scoped. 3124

2. The reference needs to use either field-based injection or setter injection. References that are 3125
injected through constructor injection cannot be changed. 3126

Setter injection allows for code in the setter method to perform processing in reaction to a change. 3127

 [JCA90026] 3128

 [JCA90027] [JCA90028] [JCA90029] If it doesn't work, the exception thrown will depend on the runtime 3129
and the cause of the failure. 3130

 [JCA90030] [JCA90031] [JCA90032] [JCA90033] If it doesn't work, the exception thrown will depend on 3131
the runtime and the cause of the failure. 3132

 [JCA90034] [JCA90035] [JCA90036] 3133

The rules for reference reinjection also apply to references with a multiplicity of 0..n or 1..n. This means 3134
that [JCA90037] [JCA90038] [JCA90039]If a reference target changes and the reference is not 3135
reinjected, the reference needs to continue to work as if the reference target was not changed. 3136

If an operation is called on a reference where the target of that reference has been undeployed, the SCA 3137
runtime is advised throw an InvalidServiceException. Likewise, if an operation is called on a reference 3138
where the target of the reference has become unavailable for some reason, the SCA runtime is advised 3139
throw a ServiceUnavailableException. In general, if the target service of the reference is changed, the 3140
reference either continues to work or throws an InvalidServiceException when it is invoked. 3141

A ServiceReference that has been obtained from a reference by ComponentContext.cast() corresponds 3142
to the reference that is passed as a parameter to cast(). If the reference is subsequently reinjected, it is 3143
expecged that the ServiceReference obtained from the original reference continues to work as if the 3144
reference target was not changed. If the target of a ServiceReference has been undeployed, the SCA 3145
runtime is advised to throw a InvalidServiceException when an operation is invoked on the 3146
ServiceReference. If the target of a ServiceReference has become unavailable, the SCA runtime is 3147

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 80 of 125

advised to throw a ServiceUnavailableException when an operation is invoked on the ServiceReference. 3148
If the target service of a ServiceReference is changed, the reference either continues to work or throws 3149
an InvalidServiceException when it is invoked. 3150

A reference or ServiceReference accessed through the component context by calling getService() or 3151
getServiceReference() is expected to correspond to the current configuration of the domain. This applies 3152
whether or not reinjection has taken place. If the target of a reference or ServiceReference accessed 3153
through the component context by calling getService() or getServiceReference() has been undeployed or 3154
has become unavailable, the result is expected to be a reference to the undeployed or unavailable 3155
service, and attempts to call business methods throw an InvalidServiceException or a 3156
ServiceUnavailableException. If the target service of a reference or ServiceReference accessed through 3157
the component context by calling getService() or getServiceReference() has changed, the returned value 3158
is expected be a reference to the changed service. 3159

The expected behaviour for reference reinjection also applies to references with a multiplicity of 0..n or 3160
1..n. This means that in the cases where reference reinjection is not allowed, the array or Collection for a 3161
reference of multiplicity 0..n or multiplicity 1..n does change its contents when changes occur to the 3162
reference wiring or to the targets of the wiring. In cases where the contents of a reference array or 3163
collection change when the wiring changes or the targets change, then for references that use setter 3164
injection, the SCA runtime is expected to call the setter method for any change to the contents. A 3165
reinjected array or Collection for a reference is expected to be a different array or Collection object from 3166
that previously injected to the component. 3167

 3168

 3169

 Effect on

Change
event

Injected Reference or
ServiceReference

Existing
ServiceReference
Object**

Subsequent invocations of
ComponentContext.getService
Reference() or getService()

Change to
the target
of the
reference

can be reinjected (if
other conditions* apply).
If not reinjected, then it
continues to work as if
the reference target was
not changed.

continue to work as if the
reference target was not
changed.

Result corresponds to the
current configuration of the
domain.

Target
service
undeployed

Business methods throw
InvalidServiceException.

Business methods throw
InvalidServiceException.

Result is a reference to the
undeployed service. Business
methods throw
InvalidServiceException.

Target
service
becomes
unavailable

Business methods throw
ServiceUnavailableExce
ption

Business methods throw
ServiceUnavailableExce
ption

Result is be a reference to the
unavailable service. Business
methods throw
ServiceUnavailableException.

Target
service
changed

might continue to work,
depending on the
runtime and the type of
change that was made.
If it doesn't work, the
exception thrown will
depend on the runtime
and the cause of the
failure.

might continue to work,
depending on the
runtime and the type of
change that was made.
If it doesn't work, the
exception thrown will
depend on the runtime
and the cause of the
failure.

Result is a reference to the
changed service.

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 81 of 125

* Other conditions:

The component cannot be STATELESS scoped.

The reference has to use either field-based injection or setter injection. References that are injected
through constructor injection cannot be changed.

** Result of invoking ComponentContext.cast() corresponds to the reference that is passed as a
parameter to cast().

Table 10-1Reinjection Effects 3170

10.25 @Remotable 3171

Figure 10-25 defines the @Remotable annotation: 3172

 3173

package org.oasisopen.sca.annotation; 3174
 3175
import static java.lang.annotation.ElementType.TYPE; 3176
import static java.lang.annotation.RetentionPolicy.RUNTIME; 3177
import java.lang.annotation.Retention; 3178
import java.lang.annotation.Target; 3179
 3180
 3181
@Target(TYPE,METHOD,FIELD,PARAMETER) 3182
@Retention(RUNTIME) 3183
public @interface Remotable { 3184
 3185
} 3186

Figure 10-25: Remotable Annotation 3187

 3188

The @Remotable annotation is used to indicate that an SCA service interface is remotable. The 3189
@Remotable annotation is valid only on a Java interface, a Java class, a field, a setter method, or a 3190
constructor parameter. It MUST NOT appear anywhere else. [JCA90053] A remotable service can be 3191
published externally as a service and MUST be translatable into a WSDL portType. [JCA90040] 3192

The @Remotable annotation has no attributes. When placed on a Java service interface, it indicates that 3193
the interface is remotable. When placed on a Java service implementation class, it indicates that all SCA 3194
service interfaces provided by the class (including the class itself, if the class defines an SCA service 3195
interface) are remotable. When placed on a service reference, it indicates that the interface for the 3196
reference is remotable. 3197

Snippet 10-21 shows the Java interface for a remotable service with its @Remotable annotation. 3198

 3199

package services.hello; 3200
 3201
import org.oasisopen.sca.annotation.*; 3202
 3203
@Remotable 3204
public interface HelloService { 3205
 3206
 String hello(String message); 3207
} 3208

Snippet 10-21: Use of @Remotable on an Interface 3209

 3210

The style of remotable interfaces is typically coarse grained and intended for loosely coupled 3211
interactions. Remotable service interfaces are not allowed to make use of method overloading. 3212

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 82 of 125

Complex data types exchanged via remotable service interfaces need to be compatible with the 3213
marshalling technology used by the service binding. For example, if the service is going to be exposed 3214
using the standard Web Service binding, then the parameters can be JAXB [JAX-B] types or they can be 3215
Service Data Objects (SDOs) [SDO]. 3216

Independent of whether the remotable service is called from outside of the composite that contains it or 3217
from another component in the same composite, the data exchange semantics are by-value. 3218

Implementations of remotable services can modify input data during or after an invocation and can modify 3219
return data after the invocation. If a remotable service is called locally or remotely, the SCA container is 3220
responsible for making sure that no modification of input data or post-invocation modifications to return 3221
data are seen by the caller. 3222

Snippet 10-22 shows how a Java service implementation class can use the @Remotable annotation to 3223
define a remotable SCA service interface using a Java service interface that is not marked as remotable. 3224

 3225

package services.hello; 3226
 3227
import org.oasisopen.sca.annotation.*; 3228
 3229
public interface HelloService { 3230
 3231
 String hello(String message); 3232
} 3233
 3234
package services.hello; 3235
 3236
import org.oasisopen.sca.annotation.*; 3237
 3238
@Remotable 3239
@Service(HelloService.class) 3240
public class HelloServiceImpl implements HelloService { 3241
 3242
 public String hello(String message) { 3243
 ... 3244
 } 3245
} 3246

Snippet 10-22: Use of @Remotable on a Class 3247

 3248

Snippet 10-23 shows how a reference can use the @Remotable annotation to define a remotable SCA 3249
service interface using a Java service interface that is not marked as remotable. 3250

 3251

package services.hello; 3252
 3253
import org.oasisopen.sca.annotation.*; 3254
 3255
public interface HelloService { 3256
 3257
 String hello(String message); 3258
} 3259
 3260
package services.hello; 3261
 3262
import org.oasisopen.sca.annotation.*; 3263
 3264
public class HelloClient { 3265
 3266
 @Remotable 3267
 @Reference 3268
 protected HelloService myHello; 3269

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 83 of 125

 3270
 public String greeting(String message) { 3271
 return myHello.hello(message); 3272
 } 3273
} 3274

Snippet 10-23: Use of @Remotable on a Reference 3275

10.26 @Requires 3276

Figure 10-26 defines the @Requires annotation: 3277

 3278

package org.oasisopen.sca.annotation; 3279
 3280
import static java.lang.annotation.ElementType.FIELD; 3281
import static java.lang.annotation.ElementType.METHOD; 3282
import static java.lang.annotation.ElementType.PARAMETER; 3283
import static java.lang.annotation.ElementType.TYPE; 3284
import static java.lang.annotation.RetentionPolicy.RUNTIME; 3285
 3286
import java.lang.annotation.Inherited; 3287
import java.lang.annotation.Retention; 3288
import java.lang.annotation.Target; 3289
 3290
@Inherited 3291
@Retention(RUNTIME) 3292
@Target({TYPE, METHOD, FIELD, PARAMETER}) 3293
public @interface Requires { 3294
 /** 3295
 * Returns the attached intents. 3296
 * 3297
 * @return the attached intents 3298
 */ 3299
 String[] value() default ""; 3300
} 3301

Figure 10-26: Requires Annotation 3302

 3303

The @Requires annotation supports general purpose intents specified as strings. Users can also define 3304
specific intent annotations using the @Intent annotation. 3305

See the section "General Intent Annotations" for details and samples. 3306

10.27 @Scope 3307

Figure 10-27 defines the @Scope annotation: 3308

 3309

package org.oasisopen.sca.annotation; 3310
 3311
import static java.lang.annotation.ElementType.TYPE; 3312
import static java.lang.annotation.RetentionPolicy.RUNTIME; 3313
import java.lang.annotation.Retention; 3314
import java.lang.annotation.Target; 3315
 3316
@Target(TYPE) 3317
@Retention(RUNTIME) 3318
public @interface Scope { 3319
 3320
 String value() default "STATELESS"; 3321
} 3322

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 84 of 125

Figure 10-27: Scope Annotation 3323

 3324

The @Scope annotation MUST only be used on a service's implementation class. It is an error to use this 3325
annotation on an interface. [JCA90041] 3326

The @Scope annotation has the attribute: 3327

 value – the name of the scope. 3328

SCA defines the following scope names, but others can be defined by particular Java-based 3329
implementation types 3330

STATELESS 3331

COMPOSITE 3332

The default value is STATELESS. 3333

Snippet 10-24 shows a sample for a COMPOSITE scoped service implementation: 3334

 3335

package services.hello; 3336
 3337
import org.oasisopen.sca.annotation.*; 3338
 3339
@Service(HelloService.class) 3340
@Scope("COMPOSITE") 3341
public class HelloServiceImpl implements HelloService { 3342
 3343
 public String hello(String message) { 3344
 ... 3345
 } 3346
} 3347

Snippet 10-24: Use of @Scope 3348

10.28 @Service 3349

Figure 10-28 defines the @Service annotation: 3350

 3351

package org.oasisopen.sca.annotation; 3352
 3353
import static java.lang.annotation.ElementType.TYPE; 3354
import static java.lang.annotation.RetentionPolicy.RUNTIME; 3355
import java.lang.annotation.Retention; 3356
import java.lang.annotation.Target; 3357
 3358
@Target(TYPE) 3359
@Retention(RUNTIME) 3360
public @interface Service { 3361
 3362
 Class<?>[] value(); 3363
 String[] names() default {}; 3364
} 3365

Figure 10-28: Service Annotation 3366

 3367

The @Service annotation is used on a component implementation class to specify the SCA services 3368
offered by the implementation. An implementation class need not be declared as implementing all of the 3369
interfaces implied by the services declared in its @Service annotation, but all methods of all the declared 3370
service interfaces MUST be present. [JCA90042] A class used as the implementation of a service is not 3371
required to have a @Service annotation. If a class has no @Service annotation, then the rules 3372

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 85 of 125

determining which services are offered and what interfaces those services have are determined by the 3373
specific implementation type. 3374

The @Service annotation has the attributes: 3375

 value (1..1) – An array of interface or class objects that are exposed as services by this 3376
implementation. If the array is empty, no services are exposed. 3377

 names (0..1) - An array of Strings which are used as the service names for each of the interfaces 3378
declared in the value array. The number of Strings in the names attribute array of the @Service 3379
annotation MUST match the number of elements in the value attribute array. [JCA90050] The value of 3380
each element in the @Service names array MUST be unique amongst all the other element values in 3381
the array. [JCA90060] 3382

The service name of an exposed service defaults to the name of its interface or class, without the 3383
package name. If the names attribute is specified, the service name for each interface or class in the 3384
value attribute array is the String declared in the corresponding position in the names attribute array. 3385

If a component implementation has two services with the same Java simple name, the names attribute of 3386
the @Service annotation MUST be specified. [JCA90045] If a Java implementation needs to realize two 3387
services with the same Java simple name then this can be achieved through subclassing of the interface. 3388

Snippet 10-25 shows an implementation of the HelloService marked with the @Service annotation. 3389

 3390

package services.hello; 3391
 3392
import org.oasisopen.sca.annotation.Service; 3393
 3394
@Service(HelloService.class) 3395
public class HelloServiceImpl implements HelloService { 3396
 3397
 public void hello(String name) { 3398
 System.out.println("Hello " + name); 3399
 } 3400
} 3401

Snippet 10-25: Use of @Service 3402

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 86 of 125

11 WSDL to Java and Java to WSDL 3403

This specification applies the WSDL to Java and Java to WSDL mapping rules as defined by the JAX-WS 3404
2.1 specification [JAX-WS] for generating remotable Java interfaces from WSDL portTypes and vice 3405
versa. 3406

SCA runtimes MUST support the JAX-WS 2.1 mappings from WSDL to Java and from Java to WSDL. 3407
[JCA100022] For the purposes of the Java-to-WSDL mapping algorithm, the SCA runtime MUST treat a 3408
Java interface as if it had a @WebService annotation on the class, even if it doesn't. [JCA100001] The 3409
SCA runtime MUST treat an @org.oasisopen.sca.annotation.OneWay annotation as a synonym for the 3410
@javax.jws.OneWay annotation. [JCA100002] For the WSDL-to-Java mapping, the SCA runtime MUST 3411
take the generated @WebService annotation to imply that the Java interface is @Remotable. 3412
[JCA100003] 3413

For the mapping from Java types to XML schema types, SCA permits both the JAXB 2.1 [JAX-B] mapping 3414
and the SDO 2.1 [SDO] mapping. SCA runtimes MUST support the JAXB 2.1 mapping from XML Schema 3415
to Java and from Java to XML Schema. [JCA100004] SCA runtimes MAY support the SDO 2.1 mapping 3416
from XML schema types to Java and from Java to XML Schema. [JCA100005] Having a choice of binding 3417
technologies is allowed, as noted in the first paragraph of section 5 of the JSR 181 (version 2) 3418
specification, which is referenced by the JAX-WS specification. 3419

11.1 JAX-WS Annotations and SCA Interfaces 3420

A Java class or interface used to define an SCA interface can contain JAX-WS annotations. In addition to 3421
affecting the Java to WSDL mapping defined by the JAX-WS specification [JAX-WS] these annotations 3422
can impact the SCA interface. An SCA runtime MUST apply the JAX-WS annotations as described in 3423
Table 11-1 and Table 11-2 when introspecting a Java class or interface class. [JCA100011] This could 3424
mean that the interface of a Java implementation is defined by a WSDL interface declaration. If the 3425
services provided by an implementation class are explicitly identified by an @Service annotation, only the 3426
identified classes define services of the implementation even if implemented interfaces that are not listed 3427
in the @Service annotation contain @JAX-WS annotations. 3428

Annotation Property Impact to SCA Interface

@WebService A Java interface or class annotated with @WebService

MUST be treated as if annotated with the SCA

@Remotable annotation [JCA100012]

name The value of the name attribute of the @WebService

annotation, if present, MUST be used to define the

name of an SCA service when there is no @Service

annotation present in the SCA component

implementation. [JCA100023]

The value of the name attribute of the @WebService

annotation, if present, MUST be used to define the

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 87 of 125

name of an SCA service when the @Service annotation

is present without the names attribute and indicates that

the Java interface or class annotated with the

@WebService annotation defines an SCA service

interface. [JCA100028]

targetNamespace None

serviceName None

wsdlLocation A Java class annotated with the @WebService

annotation with its wsdlLocation attribute set MUST

have its interface defined by the referenced WSDL

definition instead of the annotated Java class.

[JCA100013]

endpointInterface A Java class annotated with the @WebService

annotation with its endpointInterface attribute set MUST

have its interface defined by the referenced interface

instead of annotated Java class. [JCA100014]

portName None

@WebMethod

operationName For a Java method annotated with the @WebMethod

annotation with the operationName set, an SCA runtime

MUST use the value of the operationName attribute as

the SCA operation name. [JCA100024]

action None

exclude An SCA runtime MUST NOT include a Java method

annotated with the @WebMethod annotation with the

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 88 of 125

exclude attribute set to true in an SCA interface.

[JCA100025]

@OneWay The SCA runtime MUST treat an

@org.oasisopen.sca.annotation.OneWay annotation as

a synonym for the @javax.jws.OneWay annotation.

[JCA100002]

@WebParam

name Sets parameter name

targetNamespace None

mode For a Java parameter annotated with the @WebParam

annotation with the mode attribute set, an SCA runtime

MUST apply the value of the mode attribute when

comparing interfaces. [JCA100026]

header A Java class or interface containing an @WebParam

annotation with its header attribute set to “true” MUST

be treated as if the SOAP intent is applied to the Java

class or interface. [JCA100015]

partName Overrides name

@WebResult

name Sets parameter name

targetNamespace None

header A Java class or interface containing an @WebResult

annotation with its header attribute set to “true” MUST

be treated as if the SOAP intent is applied to the Java

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 89 of 125

class or interface. [JCA100016]

partName Overrides name

@SOAPBinding A Java class or interface containing an @SOAPBinding

annotation MUST be treated as if the SOAP intent is

applied to the Java class or interface. [JCA100021]

style

use

parameterStyle

@HandlerChain None

file

name

Table 11-1: JSR 181 Annotations and SCA Interfaces 3429

 3430

Annotation Property Impact to SCA Interface

@ServiceMode A Java class containing an @ServiceMode annotation

MUST be treated as if the SOAP intent is applied to the

Java class. [JCA100017]

value

@WebFault

name None

targetNamespace None

faultBean None

@RequestWrapper None

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 90 of 125

Annotation Property Impact to SCA Interface

localName

targetNamespace

className

@ResponseWrapper None

localName

targetNamespace

className

@WebServiceClient An interface or class annotated with

@WebServiceClient MUST NOT be used to define an

SCA interface. [JCA100018]

name

targetNamespace

wsdlLocation

@WebEndpoint None

name

@WebServiceProvider A class annotated with @WebServiceProvider MUST be

treated as if annotated with the SCA @Remotable

annotation. [JCA100019]

wsdlLocation A Java class annotated with the @WebServiceProvider

annotation with its wsdlLocation attribute set MUST

have its interface defined by the referenced WSDL

definition is used instead of the annotated Java class.

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 91 of 125

Annotation Property Impact to SCA Interface

[JCA100020]

serviceName None

portName None

targetNamespace None

@BindingType None

value

@WebServiceRef See JEE specification

name

wsdlLocation

type

value

mappedName

@WebServiceRefs See JEE specification

value

@Action None

fault

input

output

@FaultAction None

value

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 92 of 125

Annotation Property Impact to SCA Interface

output

Table 11-2: JSR 224 Annotations and SCA Interfaces 3431

11.2 JAX-WS Client Asynchronous API for a Synchronous Service 3432

The JAX-WS specification defines a mapping of a synchronous service invocation, which provides a client 3433
application with a means of invoking that service asynchronously, so that the client can invoke a service 3434
operation and proceed to do other work without waiting for the service operation to complete its 3435
processing. The client application can retrieve the results of the service either through a polling 3436
mechanism or via a callback method which is invoked when the operation completes. 3437

For SCA service interfaces defined using interface.java, the Java interface MUST NOT contain the 3438
additional client-side asynchronous polling and callback methods defined by JAX-WS. [JCA100006] For 3439
SCA reference interfaces defined using interface.java, the SCA runtime MUST support a Java interface 3440
which contains the additional client-side asynchronous polling and callback methods defined by JAX-WS. 3441
[JCA100007] If the additional client-side asynchronous polling and callback methods defined by JAX-WS 3442
are present in the interface which declares the type of a reference in the implementation, SCA Runtimes 3443
MUST NOT include these methods in the SCA reference interface in the component type of the 3444
implementation. [JCA100008] 3445
The additional client-side asynchronous polling and callback methods defined by JAX-WS are recognized 3446
in a Java interface according to the steps: 3447

For each method M in the interface, if another method P in the interface has 3448

a. a method name that is M's method name with the characters "Async" appended, and 3449

b. the same parameter signature as M, and 3450

c. a return type of Response<R> where R is the return type of M 3451

then P is a JAX-WS polling method that isn't part of the SCA interface contract. 3452

For each method M in the interface, if another method C in the interface has 3453

a. a method name that is M's method name with the characters "Async" appended, and 3454

b. a parameter signature that is M's parameter signature with an additional final parameter of 3455
type AsyncHandler<R> where R is the return type of M, and 3456

c. a return type of Future<?> 3457

then C is a JAX-WS callback method that isn't part of the SCA interface contract. 3458

As an example, an interface can be defined in WSDL as shown in Snippet 11-1: 3459

 3460

<!-- WSDL extract --> 3461
<message name="getPrice"> 3462
 <part name="ticker" type="xsd:string"/> 3463
</message> 3464
 3465
<message name="getPriceResponse"> 3466
 <part name="price" type="xsd:float"/> 3467
</message> 3468
 3469
<portType name="StockQuote"> 3470
 <operation name="getPrice"> 3471
 <input message="tns:getPrice"/> 3472
 <output message="tns:getPriceResponse"/> 3473
 </operation> 3474
</portType> 3475

Snippet 11-1: Example WSDL Interface 3476

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 93 of 125

 3477

The JAX-WS asynchronous mapping will produce the Java interface in Snippet 11-2: 3478

 3479

// asynchronous mapping 3480
@WebService 3481
public interface StockQuote { 3482
 float getPrice(String ticker); 3483
 Response<Float> getPriceAsync(String ticker); 3484
 Future<?> getPriceAsync(String ticker, AsyncHandler<Float>); 3485
} 3486

Snippet 11-2: JAX-WS Asynchronous Interface for WSDL Interface in Snippet 11-1 3487

 3488

For SCA interface definition purposes, this is treated as equivalent to the interface in Snippet 11-3: 3489

 3490

// synchronous mapping 3491
@WebService 3492
public interface StockQuote { 3493
 float getPrice(String ticker); 3494
} 3495

Snippet 11-3: Equivalent SCA Interface Correspoining to Java Interface in Snippet 11-2 3496

 3497

SCA runtimes MUST support the use of the JAX-WS client asynchronous model. [JCA100009] If the 3498
client implementation uses the asynchronous form of the interface, the two additional getPriceAsync() 3499
methods can be used for polling and callbacks as defined by the JAX-WS specification. 3500

11.3 Treatment of SCA Asynchronous Service API 3501

For SCA service interfaces defined using interface.java, the SCA runtime MUST support a Java interface 3502
which contains the server-side asynchronous methods defined by SCA. [JCA100010] 3503

Asynchronous service methods are identified as described in the section "Asynchronous handling of Long 3504
Running Service Operations" and are mapped to WSDL in the same way as the equivalent synchronous 3505
method described in that section. 3506

Generating an asynchronous service method from a WSDL request/response operation follows the 3507
algorithm described in the same section. 3508

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 94 of 125

12 Conformance 3509

The XML schema pointed to by the RDDL document at the namespace URI, defined by this specification, 3510
are considered to be authoritative and take precedence over the XML schema defined in the appendix of 3511
this document. 3512

Normative code artifacts related to this specification are considered to be authoritative and take 3513
precedence over specification text. 3514

There are three categories of artifacts for which this specification defines conformance: 3515

a) SCA Java XML Document, 3516

b) SCA Java Class 3517

c) SCA Runtime. 3518

12.1 SCA Java XML Document 3519

An SCA Java XML document is an SCA Composite Document, or an SCA ComponentType Document, 3520
as defined by the SCA Assembly Model specification [ASSEMBLY], that uses the <interface.java> 3521
element. Such an SCA Java XML document MUST be a conformant SCA Composite Document or SCA 3522
ComponentType Document, as defined by the SCA Assembly Model specification [ASSEMBLY], and 3523
MUST comply with the requirements specified in the Interface section of this specification. 3524

12.2 SCA Java Class 3525

An SCA Java Class is a Java class or interface that complies with Java Standard Edition version 5.0 and 3526
MAY include annotations and APIs defined in this specification. An SCA Java Class that uses annotations 3527
and APIs defined in this specification MUST comply with the requirements specified in this specification 3528
for those annotations and APIs. 3529

12.3 SCA Runtime 3530

The APIs and annotations defined in this specification are meant to be used by Java-based component 3531
implementation models in either partial or complete fashion. A Java-based component implementation 3532
specification that uses this specification specifies which of the APIs and annotations defined here are 3533
used. The APIs and annotations an SCA Runtime has to support depends on which Java-based 3534
component implementation specification the runtime supports. For example, see the SCA POJO 3535
Component Implementation Specification [JAVA_CI]. 3536

An implementation that claims to conform to this specification MUST meet the following conditions: 3537

1. The implementation MUST meet all the conformance requirements defined by the SCA Assembly 3538
Model Specification [ASSEMBLY]. 3539

2. The implementation MUST support <interface.java> and MUST comply with all the normative 3540
statements in Section 3. 3541

3. The implementation MUST reject an SCA Java XML Document that does not conform to the sca-3542
interface-java.xsd schema. 3543

4. The implementation MUST support and comply with all the normative statements in Section 10. 3544

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 95 of 125

Appendix A. XML Schema: sca-interface-java-1.1.xsd 3545

<?xml version="1.0" encoding="UTF-8"?> 3546
<!-- Copyright(C) OASIS(R) 2005,2010. All Rights Reserved. 3547
 OASIS trademark, IPR and other policies apply. --> 3548
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3549
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3550
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3551
 elementFormDefault="qualified"> 3552
 3553
 <include schemaLocation="sca-core-1.1-cd06.xsd"/> 3554
 3555
 <!-- Java Interface --> 3556
 <element name="interface.java" type="sca:JavaInterface" 3557
 substitutionGroup="sca:interface"/> 3558
 <complexType name="JavaInterface"> 3559
 <complexContent> 3560
 <extension base="sca:Interface"> 3561
 <sequence> 3562
 <any namespace="##other" processContents="lax" minOccurs="0" 3563
 maxOccurs="unbounded"/> 3564
 </sequence> 3565
 <attribute name="interface" type="NCName" use="required"/> 3566
 <attribute name="callbackInterface" type="NCName" 3567
 use="optional"/> 3568
 </extension> 3569
 </complexContent> 3570
 </complexType> 3571
 3572
</schema> 3573

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 96 of 125

Appendix B. Java Classes and Interfaces 3574

B.1 SCAClient Classes and Interfaces 3575

B.1.1 SCAClientFactory Class 3576

SCA provides an abstract base class SCAClientFactory. Vendors can provide subclasses of this class 3577
which create objects that implement the SCAClientFactory class suitable for linking to services in their 3578
SCA runtime. 3579

 3580

/* 3581
 * Copyright(C) OASIS(R) 2005,2010. All Rights Reserved. 3582
 * OASIS trademark, IPR and other policies apply. 3583
 */ 3584
package org.oasisopen.sca.client; 3585
 3586
import java.net.URI; 3587
import java.util.Properties; 3588
 3589
import org.oasisopen.sca.NoSuchDomainException; 3590
import org.oasisopen.sca.NoSuchServiceException; 3591
import org.oasisopen.sca.client.SCAClientFactoryFinder; 3592
import org.oasisopen.sca.client.impl.SCAClientFactoryFinderImpl; 3593
 3594
/** 3595
 * The SCAClientFactory can be used by non-SCA managed code to 3596
 * lookup services that exist in a SCADomain. 3597
 * 3598
 * @see SCAClientFactoryFinderImpl 3599
 * 3600
 * @author OASIS Open 3601
 */ 3602
 3603
public abstract class SCAClientFactory { 3604
 3605
 /** 3606
 * The SCAClientFactoryFinder. 3607
 * Provides a means by which a provider of an SCAClientFactory 3608
 * implementation can inject a factory finder implementation into 3609
 * the abstract SCAClientFactory class - once this is done, future 3610
 * invocations of the SCAClientFactory use the injected factory 3611
 * finder to locate and return an instance of a subclass of 3612
 * SCAClientFactory. 3613
 */ 3614
 protected static SCAClientFactoryFinder factoryFinder; 3615
 /** 3616
 * The Domain URI of the SCA Domain which is accessed by this 3617
 * SCAClientFactory 3618
 */ 3619
 private URI domainURI; 3620
 3621
 /** 3622
 * Prevent concrete subclasses from using the no-arg constructor 3623
 */ 3624
 private SCAClientFactory() { 3625
 } 3626
 3627
 /** 3628
 * Constructor used by concrete subclasses 3629

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 97 of 125

 * @param domainURI - The Domain URI of the Domain accessed via this 3630
 * SCAClientFactory 3631
 */ 3632
 protected SCAClientFactory(URI domainURI) throws NoSuchDomainException { 3633
 this.domainURI = domainURI; 3634
 } 3635
 3636
 /** 3637
 * Gets the Domain URI of the Domain accessed via this SCAClientFactory 3638
 * @return - the URI for the Domain 3639
 */ 3640
 protected URI getDomainURI() { 3641
 return domainURI; 3642
 } 3643
 3644
 3645
 /** 3646
 * Creates a new instance of the SCAClientFactory that can be 3647
 * used to lookup SCA Services. 3648
 * 3649
 * @param domainURI URI of the target domain for the SCAClientFactory 3650
 * @return A new SCAClientFactory 3651
 */ 3652
 public static SCAClientFactory newInstance(URI domainURI) 3653
 throws NoSuchDomainException { 3654
 return newInstance(null, null, domainURI); 3655
 } 3656
 3657
 /** 3658
 * Creates a new instance of the SCAClientFactory that can be 3659
 * used to lookup SCA Services. 3660
 * 3661
 * @param properties Properties that may be used when 3662
 * creating a new instance of the SCAClientFactory 3663
 * @param domainURI URI of the target domain for the SCAClientFactory 3664
 * @return A new SCAClientFactory instance 3665
 */ 3666
 public static SCAClientFactory newInstance(Properties properties, 3667
 URI domainURI) 3668
 throws NoSuchDomainException { 3669
 return newInstance(properties, null, domainURI); 3670
 } 3671
 3672
 /** 3673
 * Creates a new instance of the SCAClientFactory that can be 3674
 * used to lookup SCA Services. 3675
 * 3676
 * @param classLoader ClassLoader that may be used when 3677
 * creating a new instance of the SCAClientFactory 3678
 * @param domainURI URI of the target domain for the SCAClientFactory 3679
 * @return A new SCAClientFactory instance 3680
 */ 3681
 public static SCAClientFactory newInstance(ClassLoader classLoader, 3682
 URI domainURI) 3683
 throws NoSuchDomainException { 3684
 return newInstance(null, classLoader, domainURI); 3685
 } 3686
 3687
 /** 3688
 * Creates a new instance of the SCAClientFactory that can be 3689
 * used to lookup SCA Services. 3690
 * 3691
 * @param properties Properties that may be used when 3692
 * creating a new instance of the SCAClientFactory 3693

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 98 of 125

 * @param classLoader ClassLoader that may be used when 3694
 * creating a new instance of the SCAClientFactory 3695
 * @param domainURI URI of the target domain for the SCAClientFactory 3696
 * @return A new SCAClientFactory instance 3697
 */ 3698
 public static SCAClientFactory newInstance(Properties properties, 3699
 ClassLoader classLoader, 3700
 URI domainURI) 3701
 throws NoSuchDomainException { 3702
 final SCAClientFactoryFinder finder = 3703
 factoryFinder != null ? factoryFinder : 3704
 new SCAClientFactoryFinderImpl(); 3705
 final SCAClientFactory factory 3706
 = finder.find(properties, classLoader, domainURI); 3707
 return factory; 3708
 } 3709
 3710
 /** 3711
 * Returns a reference proxy that implements the business interface <T> 3712
 * of a service in the SCA Domain handled by this SCAClientFactory 3713
 * 3714
 * @param serviceURI the relative URI of the target service. Takes the 3715
 * form componentName/serviceName. 3716
 * Can also take the extended form componentName/serviceName/bindingName 3717
 * to use a specific binding of the target service 3718
 * 3719
 * @param interfaze The business interface class of the service in the 3720
 * domain 3721
 * @param <T> The business interface class of the service in the domain 3722
 * 3723
 * @return a proxy to the target service, in the specified SCA Domain 3724
 * that implements the business interface . 3725
 * @throws NoSuchServiceException Service requested was not found 3726
 * @throws NoSuchDomainException Domain requested was not found 3727
 */ 3728
 public abstract <T> T getService(Class<T> interfaze, String serviceURI) 3729
 throws NoSuchServiceException, NoSuchDomainException; 3730
} 3731

B.1.2 SCAClientFactoryFinder interface 3732

The SCAClientFactoryFinder interface is a Service Provider Interface representing a SCAClientFactory 3733
finder. SCA provides a default reference implementation of this interface. SCA runtime vendors can 3734
create alternative implementations of this interface that use different class loading or lookup mechanisms. 3735

 3736
/* 3737
 * Copyright(C) OASIS(R) 2005,2010. All Rights Reserved. 3738
 * OASIS trademark, IPR and other policies apply. 3739
 */ 3740
 3741
package org.oasisopen.sca.client; 3742
 3743
import java.net.URI; 3744
import java.util.Properties; 3745
 3746
import org.oasisopen.sca.NoSuchDomainException; 3747
 3748
/* A Service Provider Interface representing a SCAClientFactory finder. 3749
 * SCA provides a default reference implementation of this interface. 3750
 * SCA runtime vendors can create alternative implementations of this 3751
 * interface that use different class loading or lookup mechanisms. 3752
 */ 3753
public interface SCAClientFactoryFinder { 3754

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 99 of 125

 3755
 /** 3756
 * Method for finding the SCAClientFactory for a given Domain URI using 3757
 * a specified set of properties and a a specified ClassLoader 3758
 * @param properties - properties to use - may be null 3759
 * @param classLoader - ClassLoader to use - may be null 3760
 * @param domainURI - the Domain URI - must be a valid SCA Domain URI 3761
 * @return - the SCAClientFactory or null if the factory could not be 3762
 * @throws - NoSuchDomainException if the domainURI does not reference 3763
 * a valid SCA Domain 3764
 * found 3765
 */ 3766
 SCAClientFactory find(Properties properties, 3767
 ClassLoader classLoader, 3768
 URI domainURI) 3769
 throws NoSuchDomainException ; 3770
} 3771

B.1.3 SCAClientFactoryFinderImpl class 3772

This class provides a default implementation for finding a provider's SCAClientFactory implementation 3773
class. It is used if the provider does not inject its SCAClientFactoryFinder implementation class into the 3774
base SCAClientFactory class. 3775

It discovers a provider's SCAClientFactory implementation by referring to the following information in this 3776
order: 3777

1. The org.oasisopen.sca.client.SCAClientFactory property from the Properties specified on the 3778
newInstance() method call if specified 3779

2. The org.oasisopen.sca.client.SCAClientFactory property from the System Properties 3780

3. The META-INF/services/org.oasisopen.sca.client.SCAClientFactory file 3781

 3782

/* 3783
 * Copyright(C) OASIS(R) 2005,2010. All Rights Reserved. 3784
 * OASIS trademark, IPR and other policies apply. 3785
 */ 3786
package org.oasisopen.sca.client.impl; 3787
 3788
import org.oasisopen.sca.client.SCAClientFactoryFinder; 3789
 3790
import java.io.BufferedReader; 3791
import java.io.Closeable; 3792
import java.io.IOException; 3793
import java.io.InputStream; 3794
import java.io.InputStreamReader; 3795
import java.lang.reflect.Constructor; 3796
import java.net.URI; 3797
import java.net.URL; 3798
import java.util.Properties; 3799
 3800
import org.oasisopen.sca.NoSuchDomainException; 3801
import org.oasisopen.sca.ServiceRuntimeException; 3802
import org.oasisopen.sca.client.SCAClientFactory; 3803
 3804
/** 3805
 * This is a default implementation of an SCAClientFactoryFinder which is 3806
 * used to find an implementation of the SCAClientFactory interface. 3807
 * 3808
 * @see SCAClientFactoryFinder 3809
 * @see SCAClientFactory 3810
 * 3811
 * @author OASIS Open 3812
 */ 3813

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 100 of 125

public class SCAClientFactoryFinderImpl implements SCAClientFactoryFinder { 3814
 3815
 /** 3816
 * The name of the System Property used to determine the SPI 3817
 * implementation to use for the SCAClientFactory. 3818
 */ 3819
 private static final String SCA_CLIENT_FACTORY_PROVIDER_KEY = 3820
 SCAClientFactory.class.getName(); 3821
 3822
 /** 3823
 * The name of the file loaded from the ClassPath to determine 3824
 * the SPI implementation to use for the SCAClientFactory. 3825
 */ 3826
 private static final String SCA_CLIENT_FACTORY_PROVIDER_META_INF_SERVICE 3827
 = "META-INF/services/" + SCA_CLIENT_FACTORY_PROVIDER_KEY; 3828
 3829
 /** 3830
 * Public Constructor 3831
 */ 3832
 public SCAClientFactoryFinderImpl() { 3833
 } 3834
 3835
 /** 3836
 * Creates an instance of the SCAClientFactorySPI implementation. 3837
 * This discovers the SCAClientFactorySPI Implementation and instantiates 3838
 * the provider's implementation. 3839
 * 3840
 * @param properties Properties that may be used when creating a new 3841
 * instance of the SCAClient 3842
 * @param classLoader ClassLoader that may be used when creating a new 3843
 * instance of the SCAClient 3844
 * @return new instance of the SCAClientFactory 3845
 * @throws ServiceRuntimeException Failed to create SCAClientFactory 3846
 * Implementation. 3847
 */ 3848
 public SCAClientFactory find(Properties properties, 3849
 ClassLoader classLoader, 3850
 URI domainURI) 3851
 throws NoSuchDomainException, ServiceRuntimeException { 3852
 if (classLoader == null) { 3853
 classLoader = getThreadContextClassLoader (); 3854
 } 3855
 final String factoryImplClassName = 3856
 discoverProviderFactoryImplClass(properties, classLoader); 3857
 final Class<? extends SCAClientFactory> factoryImplClass 3858
 = loadProviderFactoryClass(factoryImplClassName, 3859
 classLoader); 3860
 final SCAClientFactory factory = 3861
 instantiateSCAClientFactoryClass(factoryImplClass, 3862
 domainURI, properties); 3863
 return factory; 3864
 } 3865
 3866
 /** 3867
 * Gets the Context ClassLoader for the current Thread. 3868
 * 3869
 * @return The Context ClassLoader for the current Thread. 3870
 */ 3871
 private static ClassLoader getThreadContextClassLoader () { 3872
 final return AccessController.doPrivileged(3873
 new PrivilegedAction<ClassLoader threadClassLoader = >() { 3874
 public ClassLoader run() { 3875
 return Thread.currentThread().getContextClassLoader(); 3876
 return threadClassLoader; } 3877

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 101 of 125

 }); 3878
 } 3879
 3880
 /** 3881
 * Attempts to discover the class name for the SCAClientFactorySPI 3882
 * implementation from the specified Properties, the System Properties 3883
 * or the specified ClassLoader. 3884
 * 3885
 * @return The class name of the SCAClientFactorySPI implementation 3886
 * @throw ServiceRuntimeException Failed to find implementation for 3887
 * SCAClientFactorySPI. 3888
 */ 3889
 private static String 3890
 discoverProviderFactoryImplClass(Properties properties, 3891
 ClassLoader classLoader) 3892
 throws ServiceRuntimeException { 3893
 String providerClassName = 3894
 checkPropertiesForSPIClassName(properties); 3895
 if (providerClassName != null) { 3896
 return providerClassName; 3897
 } 3898
 3899
 providerClassName = 3900
 checkPropertiesForSPIClassName(System.getProperties()); 3901
 if (providerClassName != null) { 3902
 return providerClassName; 3903
 } 3904
 3905
 providerClassName = checkMETAINFServicesForSPIClassName(classLoader); 3906
 if (providerClassName == null) { 3907
 throw new ServiceRuntimeException(3908
 "Failed to find implementation for SCAClientFactory"); 3909
 } 3910
 3911
 return providerClassName; 3912
 } 3913
 3914
 /** 3915
 * Attempts to find the class name for the SCAClientFactorySPI 3916
 * implementation from the specified Properties. 3917
 * 3918
 * @return The class name for the SCAClientFactorySPI implementation 3919
 * or <code>null</code> if not found. 3920
 */ 3921
 private static String 3922
 checkPropertiesForSPIClassName(Properties properties) { 3923
 if (properties == null) { 3924
 return null; 3925
 } 3926
 3927
 final String providerClassName = 3928
 properties.getProperty(SCA_CLIENT_FACTORY_PROVIDER_KEY); 3929
 if (providerClassName != null && providerClassName.length() > 0) { 3930
 return providerClassName; 3931
 } 3932
 3933
 return null; 3934
 } 3935
 3936
 /** 3937
 * Attempts to find the class name for the SCAClientFactorySPI 3938
 * implementation from the META-INF/services directory 3939
 * 3940
 * @return The class name for the SCAClientFactorySPI implementation or 3941

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 102 of 125

 * <code>null</code> if not found. 3942
 */ 3943
 private static String checkMETAINFServicesForSPIClassName(ClassLoader cl) 3944
 { 3945
 final URL url = 3946
 cl.getResource(SCA_CLIENT_FACTORY_PROVIDER_META_INF_SERVICE); 3947
 if (url == null) { 3948
 return null; 3949
 } 3950
 3951
 InputStream in = null; 3952
 try { 3953
 in = url.openStream(); 3954
 BufferedReader reader = null; 3955
 try { 3956
 reader = 3957
 new BufferedReader(new InputStreamReader(in, "UTF-8")); 3958
 3959
 String line; 3960
 while ((line = readNextLine(reader)) != null) { 3961
 if (!line.startsWith("#") && line.length() > 0) { 3962
 return line; 3963
 } 3964
 } 3965
 3966
 return null; 3967
 } finally { 3968
 closeStream(reader); 3969
 } 3970
 } catch (IOException ex) { 3971
 throw new ServiceRuntimeException(3972
 "Failed to discover SCAClientFactory provider", ex); 3973
 } finally { 3974
 closeStream(in); 3975
 } 3976
 } 3977
 3978
 /** 3979
 * Reads the next line from the reader and returns the trimmed version 3980
 * of that line 3981
 * 3982
 * @param reader The reader from which to read the next line 3983
 * @return The trimmed next line or <code>null</code> if the end of the 3984
 * stream has been reached 3985
 * @throws IOException I/O error occurred while reading from Reader 3986
 */ 3987
 private static String readNextLine(BufferedReader reader) 3988
 throws IOException { 3989
 3990
 String line = reader.readLine(); 3991
 if (line != null) { 3992
 line = line.trim(); 3993
 } 3994
 return line; 3995
 } 3996
 3997
 /** 3998
 * Loads the specified SCAClientFactory Implementation class. 3999
 * 4000
 * @param factoryImplClassName The name of the SCAClientFactory 4001
 * Implementation class to load 4002
 * @return The specified SCAClientFactory Implementation class 4003
 * @throws ServiceRuntimeException Failed to load the SCAClientFactory 4004
 * Implementation class 4005

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 103 of 125

 */ 4006
 private static Class<? extends SCAClientFactory> 4007
 loadProviderFactoryClass(String factoryImplClassName, 4008
 ClassLoader classLoader) 4009
 throws ServiceRuntimeException { 4010
 4011
 try { 4012
 final Class<?> providerClass = 4013
 classLoader.loadClass(factoryImplClassName); 4014
 final Class<? extends SCAClientFactory> providerFactoryClass = 4015
 providerClass.asSubclass(SCAClientFactory.class); 4016
 return providerFactoryClass; 4017
 } catch (ClassNotFoundException ex) { 4018
 throw new ServiceRuntimeException(4019
 "Failed to load SCAClientFactory implementation class " 4020
 + factoryImplClassName, ex); 4021
 } catch (ClassCastException ex) { 4022
 throw new ServiceRuntimeException(4023
 "Loaded SCAClientFactory implementation class " 4024
 + factoryImplClassName 4025
 + " is not a subclass of " 4026
 + SCAClientFactory.class.getName() , ex); 4027
 } 4028
 } 4029
 4030
 /** 4031
 * Instantiate an instance of the specified SCAClientFactorySPI 4032
 * Implementation class. 4033
 * 4034
 * @param factoryImplClass The SCAClientFactorySPI Implementation 4035
 * class to instantiate. 4036
 * @return An instance of the SCAClientFactorySPI Implementation class 4037
 * @throws ServiceRuntimeException Failed to instantiate the specified 4038
 * specified SCAClientFactorySPI Implementation class 4039
 */ 4040
 private static SCAClientFactory instantiateSCAClientFactoryClass(4041
 Class<? extends SCAClientFactory> factoryImplClass, 4042
 URI domainURI, Properties properties) 4043
 throws NoSuchDomainException, ServiceRuntimeException { 4044
 4045
 try { 4046
 Constructor<? extends SCAClientFactory> URIConstructor = 4047
 4048
 factoryImplClass.getConstructor(domainURI.getClass());URI.class, 4049
Properties.class); 4050
 SCAClientFactory provider = 4051
 URIConstructor.newInstance(domainURI, properties); 4052
 return provider; 4053
 } catch (Throwable ex) { 4054
 throw new ServiceRuntimeException(4055
 "Failed to instantiate SCAClientFactory implementation class " 4056
 + factoryImplClass, ex); 4057
 } 4058
 } 4059
 4060
 /** 4061
 * Utility method for closing Closeable Object. 4062
 * 4063
 * @param closeable The Object to close. 4064
 */ 4065
 private static void closeStream(Closeable closeable) { 4066
 if (closeable != null) { 4067
 try{ 4068
 closeable.close(); 4069

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 104 of 125

 } catch (IOException ex) { 4070
 throw new ServiceRuntimeException("Failed to close stream", 4071
 ex); 4072
 } 4073
 } 4074
 } 4075
} 4076

B.1.4 SCAClient Classes and Interfaces - what does a vendor need to do? 4077

The SCAClient classes and interfaces are designed so that vendors can provide their own 4078
implementation suited to the needs of their SCA runtime. This section describes the tasks that a vendor 4079
needs to consider in relation to the SCAClient classes and interfaces. 4080

 Implement their SCAClientFactory implementation class 4081

Vendors need to provide a subclass of SCAClientFactory that is capable of looking up Services in 4082
their SCA Runtime. Vendors need to subclass SCAClientFactory and implement the getService() 4083
method so that it creates reference proxies to services in SCA Domains handled by their SCA 4084
runtime(s). 4085

 Configure the Vendor SCAClientFactory implementation class so that it gets used 4086

Vendors have several options: 4087

Option 1: Set System Property to point to the Vendor’s implementation 4088

Vendors set the org.oasisopen.sca.client.SCAClientFactory System Property to point to their 4089
implementation class and use the reference implementation of SCAClientFactoryFinder 4090

Option 2: Provide a META-INF/services file 4091

Vendors provide a META-INF/services/org.oasisopen.sca.client.SCAClientFactory file that points 4092
to their implementation class and use the reference implementation of SCAClientFactoryFinder 4093

Option 3: Inject a vendor implementation of the SCAClientFactoryFinder interface into 4094
SCAClientFactory 4095

Vendors inject an instance of the vendor implementation of SCAClientFactoryFinder into the 4096
factoryFinder field of the SCAClientFactory abstract class. The reference implementation of 4097
SCAClientFactoryFinder is not used in this scenario. The vendor implementation of 4098
SCAClientFactoryFinder can find the vendor implementation(s) of SCAClientFactory by any 4099
means. 4100

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 105 of 125

Appendix C. Conformance Items 4101

This section contains a list of conformance items for the SCA-J Common Annotations and APIs 4102
specification. 4103

 4104

Conformance ID Description

[JCA20001] Remotable Services MUST NOT make use of method overloading.

[JCA20002] the SCA runtime MUST ensure that a stateless scoped implementation
instance object is only ever dispatched on one thread at any one time.

[JCA20003] within the SCA lifecycle of a stateless scoped implementation instance,
the SCA runtime MUST only make a single invocation of one business
method.

[JCA20004] Where an implementation is used by a "domain level component", and
the implementation is marked "Composite" scope, the SCA runtime
MUST ensure that all consumers of the component appear to be
interacting with a single runtime instance of the implementation.

[JCA20005] When the implementation class is marked for eager initialization, the
SCA runtime MUST create a composite scoped instance when its
containing component is started.

[JCA20006] If a method of an implementation class is marked with the @Init
annotation, the SCA runtime MUST call that method when the
implementation instance is created.

[JCA20007] the SCA runtime MAY run multiple threads in a single composite
scoped implementation instance object and the SCA runtime MUST
NOT perform any synchronization.

[JCA20008] Where an implementation is marked "Composite" scope and it is used
by a component that is nested inside a composite that is used as the
implementation of a higher level component, the SCA runtime MUST
ensure that all consumers of the component appear to be interacting
with a single runtime instance of the implementation. There can be
multiple instances of the higher level component, each running on
different nodes in a distributed SCA runtime.

 The SCA runtime MAY use by-reference semantics when passing input
parameters, return values or exceptions on calls to remotable services
within the same JVM if both the service method implementation and
the service proxy used by the client are marked “allows pass by
reference”.

[JCA20010] The SCA runtime MUST use by-value semantics when passing input
parameters, return values and exceptions on calls to remotable
services within the same JVM if the service method implementation is
not marked “allows pass by reference” or the service proxy used by the
client is not marked “allows pass by reference”.

[JCA30001] The value of the @interface attribute MUST be the fully qualified name
of thea Java interface class

[JCA30002] The value of the @callbackInterface attribute MUST be the fully

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 106 of 125

qualified name of a Java interface used for callbacks

[JCA30003] if the Java interface class identified by the @interface attribute does
contain a Java @Callback annotation, then the Java interface class
identified by the @callbackInterface attribute MUST be the same
interface class.

[JCA30004] The interface.java element MUST conform to the schema defined in
the sca-interface-java.xsd schema.

[JCA30005] The value of the @remotable attribute on the <interface.java/> element
does not override the presence of a @Remotable annotation on the
interface class and so if the interface class contains a @Remotable
annotation and the @remotable attribute has a value of "false", then
the SCA Runtime MUST raise an error and MUST NOT run the
component concerned.

[JCA30006] A Java interface referenced by the @interface attribute of an
<interface.java/> element MUST NOT contain any of the following SCA
Java annotations:

@AllowsPassByReference, @ComponentName, @Constructor,
@Context, @Destroy, @EagerInit, @Init, @Intent, @Property,
@Qualifier, @Reference, @Scope, @Service.

[JCA30007] A Java interface referenced by the @callbackInterface attribute of an
<interface.java/> element MUST NOT contain any of the following SCA
Java annotations:

@AllowsPassByReference, @Callback, @ComponentName,
@Constructor, @Context, @Destroy, @EagerInit, @Init, @Intent,
@Property, @Qualifier, @Reference, @Scope, @Service.

[JCA30009] The SCA Assembly Model specification [ASSEMBLY] defines a
number of criteria that need to be satisfied in order for two interfaces to
be compatible or have a compatible superset or subset relationship. If
these interfaces are both Java interfaces, compatibility also means that
every method that is present in both interfaces is defined consistently
in both interfaces with respect to the @OneWay annotation, that is, the
annotation is either present in both interfaces or absent in both
interfaces.

[JCA30010] If the identified class is annotated with either the JAX-WS
@WebService or @WebServiceProvider annotations and the
annotation has a non-empty wsdlLocation property, then the SCA
Runtime MUST act as if an <interface.wsdl/> element is present
instead of the <interface.java/> element, with an @interface attribute
identifying the portType mapped from the Java interface class and
containing @requires and @policySets attribute values equal to the
@requires and @policySets attribute values of the <interface.java/>
element.

[JCA40001] The SCA Runtime MUST call a constructor of the component
implementation at the start of the Constructing state.

[JCA40002] The SCA Runtime MUST perform any constructor reference or
property injection when it calls the constructor of a component
implementation.

[JCA40003] When the constructor completes successfully, the SCA Runtime MUST
transition the component implementation to the Injecting state.

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 107 of 125

[JCA40004] If an exception is thrown whilst in the Constructing state, the SCA
Runtime MUST transition the component implementation to the
Terminated state.

[JCA40005] When a component implementation instance is in the Injecting state,
the SCA Runtime MUST first inject all field and setter properties that
are present into the component implementation.

[JCA40006] When a component implementation instance is in the Injecting state,
the SCA Runtime MUST inject all field and setter references that are
present into the component implementation, after all the properties
have been injected.

[JCA40007] The SCA Runtime MUST ensure that the correct synchronization
model is used so that all injected properties and references are made
visible to the component implementation without requiring the
component implementation developer to do any specific
synchronization.

[JCA40008] The SCA Runtime MUST NOT invoke Service methods on the
component implementation when the component implementation is in
the Injecting state.

[JCA40009] When the injection of properties and references completes
successfully, the SCA Runtime MUST transition the component
implementation to the Initializing state.

[JCA40010] If an exception is thrown whilst injecting properties or references, the
SCA Runtime MUST transition the component implementation to the
Destroying state.

[JCA40011] When the component implementation enters the Initializing State, the
SCA Runtime MUST call the method annotated with @Init on the
component implementation, if present.

[JCA40012] If a component implementation invokes an operation on an injected
reference that refers to a target that has not yet been initialized, the
SCA Runtime MUST throw a ServiceUnavailableException.

[JCA40013]

The SCA Runtime MUST NOT invoke Service methods on the
component implementation when the component implementation
instance is in the Initializing state.

[JCA40014] Once the method annotated with @Init completes successfully, the
SCA Runtime MUST transition the component implementation to the
Running state.

[JCA40015] If an exception is thrown whilst initializing, the SCA Runtime MUST
transition the component implementation to the Destroying state.

[JCA40016] The SCA Runtime MUST invoke Service methods on a component
implementation instance when the component implementation is in the
Running state and a client invokes operations on a service offered by
the component.

[JCA40017] When the component implementation scope ends, the SCA Runtime
MUST transition the component implementation to the Destroying
state.

[JCA40018] When a component implementation enters the Destroying state, the
SCA Runtime MUST call the method annotated with @Destroy on the

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 108 of 125

component implementation, if present.

[JCA40019] If a component implementation invokes an operation on an injected
reference that refers to a target that has been destroyed, the SCA
Runtime MUST throw an InvalidServiceException.

[JCA40020] The SCA Runtime MUST NOT invoke Service methods on the
component implementation when the component implementation
instance is in the Destroying state.

[JCA40021] Once the method annotated with @Destroy completes successfully,
the SCA Runtime MUST transition the component implementation to
the Terminated state.

[JCA40022] If an exception is thrown whilst destroying, the SCA Runtime MUST
transition the component implementation to the Terminated state.

[JCA40023] The SCA Runtime MUST NOT invoke Service methods on the
component implementation when the component implementation
instance is in the Terminated state.

[JCA40024] If a property or reference is unable to be injected, the SCA Runtime
MUST transition the component implementation to the Destroying
state.

[JCA60001] When a bidirectional service is invoked, the SCA runtime MUST inject
a callback reference for the invoking service into all fields and setter
methods of the service implementation class that are marked with a
@Callback annotation and typed by the callback interface of the
bidirectional service, and the SCA runtime MUST inject null into all
other fields and setter methods of the service implementation class that
are marked with a @Callback annotation.

[JCA60002] When a non-bidirectional service is invoked, the SCA runtime MUST
inject null into all fields and setter methods of the service
implementation class that are marked with a @Callback annotation.

[JCA60003] The SCA asynchronous service Java interface mapping of a WSDL
request-response operation MUST appear as follows:

The interface is annotated with the "asyncInvocation" intent.

For each service operation in the WSDL, the Java interface
contains an operation with

– a name which is the JAX-WS mapping of the WSDL operation
name, with the suffix "Async" added

– a void return type

– a set of input parameter(s) which match the JAX-WS mapping
of the input parameter(s) of the WSDL operation plus an
additional last parameter which is a ResponseDispatch object
typed by the JAX-WS Response Bean mapping of the output
parameter(s) of the WSDL operation, where
ResponseDispatch is the type defined in the SCA Java
Common Annotations and APIs specification.

[JCA60004] An SCA Runtime MUST support the use of the SCA asynchronous
service interface for the interface of an SCA service.

[JCA60005] If the SCA asynchronous service interface ResponseDispatch
handleResponse method is invoked more than once through either its

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 109 of 125

sendResponse or its sendFault method, the SCA runtime MUST throw
an IllegalStateException.

[JCA60006] For the purposes of matching interfaces (when wiring between a
reference and a service, or when using an implementation class by a
component), an interface which has one or more methods which follow
the SCA asynchronous service pattern MUST be treated as if those
methods are mapped as the equivalent synchronous methods, as
follows:

Asynchronous service methods are characterized by:

– void return type

– a method name with the suffix "Async"

– a last input parameter with a type of ResponseDispatch<X>

– annotation with the asyncInvocation intent

– possible annotation with the @AsyncFault annotation

The mapping of each such method is as if the method had the return
type "X", the method name without the suffix "Async" and all the input
parameters except the last parameter of the type
ResponseDispatch<X>, plus the list of exceptions contained in the
@AsyncFault annotation.

[JCA70001] SCA identifies annotations that correspond to intents by providing an
@Intent annotation which MUST be used in the definition of a specific
intent annotation.

[JCA70002] Intent annotations MUST NOT be applied to the following:

 A method of a service implementation class, except for a setter
method that is either annotated with @Reference or introspected
as an SCA reference according to the rules in the appropriate
Component Implementation specification

 A service implementation class field that is not either annotated
with @Reference or introspected as an SCA reference according
to the rules in the appropriate Component Implementation
specification

 A service implementation class constructor parameter that is not
annotated with @Reference

[JCA70003] Where multiple intent annotations (general or specific) are applied to
the same Java element, the SCA runtime MUST compute the
combined intents for the Java element by merging the intents from all
intent annotations on the Java element according to the SCA Policy
Framework [POLICY] rules for merging intents at the same hierarchy
level.

[JCA70004] If intent annotations are specified on both an interface method and the
method's declaring interface, the SCA runtime MUST compute the
effective intents for the method by merging the combined intents from
the method with the combined intents for the interface according to the
SCA Policy Framework [POLICY] rules for merging intents within a
structural hierarchy, with the method at the lower level and the
interface at the higher level.

[JCA70005] The @PolicySets annotation MUST NOT be applied to the following:

 A method of a service implementation class, except for a setter
method that is either annotated with @Reference or introspected

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 110 of 125

as an SCA reference according to the rules in the appropriate
Component Implementation specification

 A service implementation class field that is not either annotated
with @Reference or introspected as an SCA reference according
to the rules in the appropriate Component Implementation
specification

 A service implementation class constructor parameter that is not
annotated with @Reference

[JCA70006] If the @PolicySets annotation is specified on both an interface method
and the method's declaring interface, the SCA runtime MUST compute
the effective policy sets for the method by merging the policy sets from
the method with the policy sets from the interface.

[JCA80001] The ComponentContext.getService method MUST throw an
IllegalArgumentException if the reference identified by the
referenceName parameter has multiplicity of 0..n or 1..n.

[JCA80002] The ComponentContext.getRequestContext method MUST return non-
null when invoked during the execution of a Java business method for
a service operation or a callback operation, on the same thread that the
SCA runtime provided, and MUST return null in all other cases.

[JCA80003] When invoked during the execution of a service operation, the
RequestContext.getServiceReference method MUST return a
ServiceReference that represents the service that was invoked.

[JCA80004] The ComponentContext.getServiceReference method MUST throw an
IllegalArgumentException if the reference named by the
referenceName parameter has multiplicity greater than one.

[JCA80005] The ComponentContext.getServiceReference method MUST throw an
IllegalArgumentException if the reference named by the
referenceName parameter does not have an interface of the type
defined by the businessInterface parameter.

[JCA80006] The ComponentContext.getServiceReference method MUST throw an
IllegalArgumentException if the component does not have a reference
with the name provided in the referenceName parameter.

[JCA80007][JCA80007] The ComponentContext.getServiceReference method MUST return
null if the multiplicity of the reference named by the referenceName
parameter is 0..1 and the reference has no target service configured.

[JCA80008] The ComponentContext.getURI method MUST return the structural
URI of the component in the SCA Domain.

[JCA80009] The ComponentContext.getService method MUST return the proxy
object implementing the interface provided by the businessInterface
parameter, for the reference named by the referenceName parameter
with the interface defined by the businessInterface parameter when
that reference has a target service configured.

[JCA80010] The ComponentContext.getService method MUST return null if the
multiplicity of the reference named by the referenceName parameter is
0..1 and the reference has no target service configured.

[JCA80011] The ComponentContext.getService method MUST throw an
IllegalArgumentException if the component does not have a reference
with the name supplied in the referenceName parameter.

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 111 of 125

[JCA80012] The ComponentContext.getService method MUST throw an
IllegalArgumentException if the service reference with the name
supplied in the referenceName does not have an interface compatible
with the interface supplied in the businessInterface parameter.

[JCA80013] The ComponentContext.getServiceReference method MUST return a
ServiceReference object typed by the interface provided by the
businessInterface parameter, for the reference named by the
referenceName parameter with the interface defined by the
businessInterface parameter when that reference has a target service
configured.

[JCA80014] The ComponentContext.getServices method MUST return a collection
containing one proxy object implementing the interface provided by the
businessInterface parameter for each of the target services configured
on the reference identified by the referenceName parameter.

[JCA80015] The ComponentContext.getServices method MUST return an empty
collection if the service reference with the name supplied in the
referenceName parameter is not wired to any target services.

[JCA80016] The ComponentContext.getServices method MUST throw an
IllegalArgumentException if the reference identified by the
referenceName parameter has multiplicity of 0..1 or 1..1.

[JCA80017] The ComponentContext.getServices method MUST throw an
IllegalArgumentException if the component does not have a reference
with the name supplied in the referenceName parameter.

[JCA80018] The ComponentContext.getServices method MUST throw an
IllegalArgumentException if the service reference with the name
supplied in the referenceName does not have an interface compatible
with the interface supplied in the businessInterface parameter.

[JCA80019] The ComponentContext.getServiceReferences method MUST return a
collection containing one ServiceReference object typed by the
interface provided by the businessInterface parameter for each of the
target services configured on the reference identified by the
referenceName parameter.

[JCA80020] The ComponentContext.getServiceReferences method MUST return
an empty collection if the service reference with the name supplied in
the referenceName parameter is not wired to any target services.

[JCA80021] The ComponentContext.getServiceReferences method MUST throw an
IllegalArgumentException if the reference identified by the
referenceName parameter has multiplicity of 0..1 or 1..1.

[JCA80022] The ComponentContext.getServiceReferences method MUST throw an
IllegalArgumentException if the component does not have a reference
with the name supplied in the referenceName parameter.

[JCA80023] The ComponentContext.getServiceReferences method MUST throw an
IllegalArgumentException if the service reference with the name
supplied in the referenceName does not have an interface compatible
with the interface supplied in the businessInterface parameter.

[JCA80024] The ComponentContext.createSelfReference method MUST return a
ServiceReference object typed by the interface defined by the
businessInterface parameter for one of the services of the invoking

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 112 of 125

component which has the interface defined by the businessInterface
parameter.

[JCA80025] The ComponentContext.getServiceReferences method MUST throw an
IllegalArgumentException if the component does not have a service
which implements the interface identified by the businessInterface
parameter.

[JCA80026] The ComponentContext.createSelfReference method MUST return a
ServiceReference object typed by the interface defined by the
businessInterface parameter for the service identified by the
serviceName of the invoking component and which has the interface
defined by the businessInterface parameter.

[JCA80027] The ComponentContext.createSelfReference method MUST throw an
IllegalArgumentException if the component does not have a service
with the name identified by the serviceName parameter.

[JCA80028] The ComponentContext.createSelfReference method MUST throw an
IllegalArgumentException if the component service with the name
identified by the serviceName parameter does not implement a
business interface which is compatible with the supplied
businessInterface parameter.

[JCA80029] The ComponentContext.getProperty method MUST return an object of
the type identified by the type parameter containing the value specified
in the component configuration for the property named by the
propertyName parameter or null if no value is specified in the
configuration.

[JCA80030] The ComponentContext.getProperty method MUST throw an
IllegalArgumentException if the component does not have a property
with the name identified by the propertyName parameter.

[JCA80031] The ComponentContext.getProperty method MUST throw an
IllegalArgumentException if the component property with the name
identified by the propertyName parameter does not have a type which
is compatible with the supplied type parameter.

[JCA80032] The ComponentContext.cast method MUST return a ServiceReference
object which is typed by the same business interface as specified by
the reference proxy object supplied in the target parameter.

[JCA80033] The ComponentContext.cast method MUST throw an
IllegalArgumentException if the supplied target parameter is not an
SCA reference proxy object.

[JCA80034] The RequestContext.getSecuritySubject method MUST return the
JAAS subject of the current request, or null if there is no subject or null
if the method is invoked from code not processing a service request or
callback request.

[JCA80035] The RequestContext.getServiceName method MUST return the name
of the service for which an operation is being processed, or null if
invoked from a thread that is not processing a service operation or a
callback operation.

[JCA80036] The RequestContext.getCallbackReference method MUST return a
ServiceReference object typed by the interface of the callback supplied
by the client of the invoked service, or null if either the invoked service
is not bidirectional or if the method is invoked from a thread that is not

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 113 of 125

processing a service operation.

[JCA80037] The RequestContext.getCallback method MUST return a reference
proxy object typed by the interface of the callback supplied by the client
of the invoked service, or null if either the invoked service is not
bidirectional or if the method is invoked from a thread that is not
processing a service operation.

[JCA80038] When invoked during the execution of a callback operation, the
RequestContext.getServiceReference method MUST return a
ServiceReference that represents the callback that was invoked.

[JCA80039] When invoked from a thread not involved in the execution of either a
service operation or of a callback operation, the
RequestContext.getServiceReference method MUST return null.

[JCA80040] The ServiceReference.getService method MUST return a reference
proxy object which can be used to invoke operations on the target
service of the reference and which is typed with the business interface
of the reference.

[JCA80041] The ServiceReference.getBusinessInterface method MUST return a
Class object representing the business interface of the reference.

[JCA80042] The SCAClientFactory.newInstance(URI) method MUST return an
object which implements the SCAClientFactory class for the SCA
Domain identified by the domainURI parameter.

[JCA80043] The SCAClientFactory.newInstance(URI) method MUST throw a
NoSuchDomainException if the domainURI parameter does not identify
a valid SCA Domain.

[JCA80044] The SCAClientFactory.newInstance(Properties, URI) method MUST
return an object which implements the SCAClientFactory class for the
SCA Domain identified by the domainURI parameter.

[JCA80045] The SCAClientFactory.newInstance(Properties, URI) method MUST
throw a NoSuchDomainException if the domainURI parameter does
not identify a valid SCA Domain.

[JCA80046] The SCAClientFactory.newInstance(Classloader, URI) method MUST
return an object which implements the SCAClientFactory class for the
SCA Domain identified by the domainURI parameter.

[JCA80047] The SCAClientFactory.newInstance(Classloader, URI) method MUST
throw a NoSuchDomainException if the domainURI parameter does
not identify a valid SCA Domain.

[JCA80048] The SCAClientFactory.newInstance(Properties, Classloader, URI)
method MUST return an object which implements the
SCAClientFactory class for the SCA Domain identified by the
domainURI parameter.

[JCA80049] The SCAClientFactory.newInstance(Properties, Classloader, URI)
MUST throw a NoSuchDomainException if the domainURI parameter
does not identify a valid SCA Domain.

[JCA80050] The SCAClientFactory.getService method MUST return a proxy object
which implements the business interface defined by the interfaze
parameter and which can be used to invoke operations on the service
identified by the serviceURI parameter.

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 114 of 125

[JCA80051] The SCAClientFactory.getService method MUST throw a
NoSuchServiceException if a service with the relative URI serviceURI
and a business interface which matches interfaze cannot be found in
the SCA Domain targeted by the SCAClient object.

 The SCAClientFactory.getService method MUST throw a
NoSuchServiceException if the domainURI of the SCAClientFactory
does not identify a valid SCA Domain.

[JCA80053] The SCAClientFactory.getDomainURI method MUST return the SCA
Domain URI of the Domain associated with the SCAClientFactory
object.

[JCA80054] The SCAClientFactory.getDomainURI method MUST throw a
NoSuchServiceException if the domainURI of the SCAClientFactory
does not identify a valid SCA Domain.

[JCA80055] The implementation of the SCAClientFactoryFinder.find method MUST
return an object which is an implementation of the SCAClientFactory
interface, for the SCA Domain represented by the doaminURI
parameter, using the supplied properties and classloader.

[JCA80056] The implementation of the SCAClientFactoryFinder.find method MUST
throw a ServiceRuntimeException if the SCAClientFactory
implementation could not be found.

[JCA50057] The ResponseDispatch.sendResponse() method MUST send the
response message to the client of an asynchronous service.

[JCA80058] The ResponseDispatch.sendResponse() method MUST throw an
InvalidStateException if either the sendResponse method or the
sendFault method has already been called once.

[JCA80059] The ResponseDispatch.sendFault() method MUST send the supplied
fault to the client of an asynchronous service.

[JCA80060] The ResponseDispatch.sendFault() method MUST throw an
InvalidStateException if either the sendResponse method or the
sendFault method has already been called once.

[JCA90001] An SCA runtime MUST verify the proper use of all SCA annotations
and if an annotation is improperly used, the SCA runtime MUST NOT
run the component which uses the invalid implementation code.

[JCA90001] SCA annotations MUST NOT be used on static methods or on static
fields. It is an error to use an SCA annotation on a static method or a
static field of an implementation class and the SCA runtime MUST
NOT instantiate such an implementation class.

[JCA90003] If a constructor of an implementation class is annotated with
@Constructor and the constructor has parameters, each of these
parameters MUST have either a @Property annotation or a
@Reference annotation.

[JCA90004] A method annotated with @Destroy can have any access modifier and
MUST have a void return type and no arguments.

[JCA90005] If there is a method annotated with @Destroy that matches the criteria
for the annotation, the SCA runtime MUST call the annotated method
when the scope defined for the implementation class ends.

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 115 of 125

[JCA90007] When marked for eager initialization with an @EagerInit annotation, the
composite scoped instance MUST be created when its containing
component is started.

[JCA90008] A method marked with the @Init annotation can have any access
modifier and MUST have a void return type and no arguments.

[JCA90009] If there is a method annotated with @Init that matches the criteria for
the annotation, the SCA runtime MUST call the annotated method after
all property and reference injection is complete.

[JCA90011] The @Property annotation MUST NOT be used on a class field that is
declared as final.

[JCA90013] For a @Property annotation applied to a constructor parameter, there
is no default value for the name attribute and the name attribute MUST
be present.

[JCA90014] For a @Property annotation applied to a constructor parameter, the
required attribute MUST NOT have the value false.

[JCA90015] The @Qualifier annotation MUST be used in a specific intent
annotation definition where the intent has qualifiers.

[JCA90016] The @Reference annotation MUST NOT be used on a class field that
is declared as final.

[JCA90018] For a @Reference annotation applied to a constructor parameter, there
is no default for the name attribute and the name attribute MUST be
present.

[JCA90019] For a @Reference annotation applied to a constructor parameter, the
required attribute MUST have the value true.

[JCA90020] If the type of a reference is not an array or any type that extends or
implements java.util.Collection, then the SCA runtime MUST introspect
the component type of the implementation with a <reference/> element
with @multiplicity= 0..1 if the @Reference annotation required attribute
is false and with @multiplicity=1..1 if the @Reference annotation
required attribute is true.

[JCA90021] If the type of a reference is defined as an array or as any type that
extends or implements java.util.Collection, then the SCA runtime
MUST introspect the component type of the implementation with a
<reference/> element with @multiplicity=0..n if the @Reference
annotation required attribute is false and with @multiplicity=1..n if the
@Reference annotation required attribute is true.

[JCA90022] An unwired reference with a multiplicity of 0..1 MUST be presented to
the implementation code by the SCA runtime as null (either via
injection or via API call).

[JCA90023] An unwired reference with a multiplicity of 0..n MUST be presented to
the implementation code by the SCA runtime as an empty array or
empty collection (either via injection or via API call).

 References MAY be reinjected by an SCA runtime after the initial
creation of a component if the reference target changes due to a
change in wiring that has occurred since the component was initialized.

 In order for reinjection to occur, the following MUST be true:

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 116 of 125

1. The component MUST NOT be STATELESS scoped.

2. The reference MUST use either field-based injection or setter
injection. References that are injected through constructor injection
MUST NOT be changed.

 If a reference target changes and the reference is not reinjected, the
reference MUST continue to work as if the reference target was not
changed.

 If an operation is called on a reference where the target of that
reference has been undeployed, the SCA runtime SHOULD throw an
InvalidServiceException.

 If an operation is called on a reference where the target of the
reference has become unavailable for some reason, the SCA runtime
SHOULD throw a ServiceUnavailableException.

 If the target service of the reference is changed, the reference MUST
either continue to work or throw an InvalidServiceException when it is
invoked.

 A ServiceReference that has been obtained from a reference by
ComponentContext.cast() corresponds to the reference that is passed
as a parameter to cast(). If the reference is subsequently reinjected,
the ServiceReference obtained from the original reference MUST
continue to work as if the reference target was not changed.

 If the target of a ServiceReference has been undeployed, the SCA
runtime SHOULD throw a InvalidServiceException when an operation
is invoked on the ServiceReference.

 If the target of a ServiceReference has become unavailable, the SCA
runtime SHOULD throw a ServiceUnavailableException when an
operation is invoked on the ServiceReference.

 If the target service of a ServiceReference is changed, the reference
MUST either continue to work or throw an InvalidServiceException
when it is invoked.

 A reference or ServiceReference accessed through the component
context by calling getService() or getServiceReference() MUST
correspond to the current configuration of the domain. This applies
whether or not reinjection has taken place.

 If the target of a reference or ServiceReference accessed through the
component context by calling getService() or getServiceReference()
has been undeployed or has become unavailable, the result SHOULD
be a reference to the undeployed or unavailable service, and attempts
to call business methods SHOULD throw an InvalidServiceException or
a ServiceUnavailableException.

 If the target service of a reference or ServiceReference accessed
through the component context by calling getService() or
getServiceReference() has changed, the returned value SHOULD be a
reference to the changed service.

 in the cases where reference reinjection is not allowed, the array or
Collection for a reference of multiplicity 0..n or multiplicity 1..n MUST
NOT change its contents when changes occur to the reference wiring
or to the targets of the wiring.

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 117 of 125

 In cases where the contents of a reference array or collection change
when the wiring changes or the targets change, then for references
that use setter injection, the setter method MUST be called by the SCA
runtime for any change to the contents.

 A reinjected array or Collection for a reference MUST NOT be the
same array or Collection object previously injected to the component.

[JCA90040] A remotable service can be published externally as a service and
MUST be translatable into a WSDL portType.

[JCA90041] The @Scope annotation MUST only be used on a service's
implementation class. It is an error to use this annotation on an
interface.

[JCA90042] An implementation class need not be declared as implementing all of
the interfaces implied by the services declared in its @Service
annotation, but all methods of all the declared service interfaces MUST
be present.

[JCA90045] If a component implementation has two services with the same Java
simple name, the names attribute of the @Service annotation MUST
be specified.

[JCA90046] When used to annotate a method or a field of an implementation class
for injection of a callback object, the@Callback annotation MUST NOT
specify any attributes.

[JCA90047] For a @Property annotation, if the type of the Java class field or the
type of the input parameter of the setter method or constructor is
defined as an array or as any type that extends or implements
java.util.Collection, then the SCA runtime MUST introspect the
component type of the implementation with a <property/> element with
a @many attribute set to true, otherwise @many MUST be set to false.

[JCA90050] The number of Strings in the names attribute array of the @Service
annotation MUST match the number of elements in the value attribute
array.

[JCA90052] The @AllowsPassByReference annotation MUST only annotate the
following locations:

 a service implementation class

 an individual method of a remotable service implementation

 an individual reference which uses a remotable interface, where
the reference is a field, a setter method, or a constructor parameter

[JCA90053] The @Remotable annotation is valid only on a Java interface, a Java
class, a field, a setter method, or a constructor parameter. It MUST
NOT appear anywhere else.

[JCA90054] When used to annotate a method or a field of an implementation class
for injection of a callback object, the type of the method or field MUST
be the callback interface of at least one bidirectional service offered by
the implementation class.

[JCA90055] A method annotated with @OneWay MUST have a void return type
and MUST NOT have declared checked exceptions.

[JCA90056] When a method of a Java interface is annotated with @OneWay, the

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 118 of 125

SCA runtime MUST ensure that all invocations of that method are
executed in a non-blocking fashion, as described in the section on
Asynchronous Programming.

[JCA90057] The @Callback annotation MUST NOT appear on a setter method or a
field of a Java implementation class that has COMPOSITE scope.

[JCA90058] When used to annotate a setter method or a field of an implementation

class for injection of a callback object, the SCA runtime MUST inject a

callback reference proxy into that method or field when the Java class

is initialized, if the component is invoked via a service which has a

callback interface and where the type of the setter method or field

corresponds to the type of the callback interface.

[JCA90060] The value of each element in the @Service names array MUST be
unique amongst all the other element values in the array.

[JCA90061] When the Java type of a field, setter method or constructor parameter
with the @Property annotation is a primitive type or a JAXB annotated
class, the SCA runtime MUST convert a property value specified by an
SCA component definition into an instance of the Java type as defined
by the XML to Java mapping in the JAXB specification [JAXB] with
XML schema validation enabled.

[JCA100001] For the purposes of the Java-to-WSDL mapping algorithm, the SCA
runtime MUST treat a Java interface as if it had a @WebService
annotation on the class, even if it doesn't.

[JCA100002] The SCA runtime MUST treat an
@org.oasisopen.sca.annotation.OneWay annotation as a synonym for
the @javax.jws.OneWay annotation.

[JCA100003] For the WSDL-to-Java mapping, the SCA runtime MUST take the
generated @WebService annotation to imply that the Java interface is
@Remotable.

[JCA100004] SCA runtimes MUST support the JAXB 2.1 mapping from XML
Schema to Java and from Java to XML Schema.

[JCA100005] SCA runtimes MAY support the SDO 2.1 mapping from XML schema
types to Java and from Java to XML Schema.

[JCA100006] For SCA service interfaces defined using interface.java, the Java
interface MUST NOT contain the additional client-side asynchronous
polling and callback methods defined by JAX-WS.

[JCA100007] For SCA reference interfaces defined using interface.java, the SCA
runtime MUST support a Java interface which contains the additional
client-side asynchronous polling and callback methods defined by JAX-
WS.

[JCA100008] If the additional client-side asynchronous polling and callback methods
defined by JAX-WS are present in the interface which declares the type
of a reference in the implementation, SCA Runtimes MUST NOT
include these methods in the SCA reference interface in the
component type of the implementation.

[JCA100009] SCA runtimes MUST support the use of the JAX-WS client

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 119 of 125

asynchronous model.

[JCA100010] For SCA service interfaces defined using interface.java, the SCA
runtime MUST support a Java interface which contains the server-side
asynchronous methods defined by SCA.

[JCA100011] An SCA runtime MUST apply the JAX-WS annotations as described in
Table 11-1 and Table 11-2 when introspecting a Java class or interface
class.

[JCA100012] A Java interface or class annotated with @WebService MUST be
treated as if annotated with the SCA @Remotable annotation

[JCA100013] A Java class annotated with the @WebService annotation with its
wsdlLocation attribute set MUST have its interface defined by the
referenced WSDL definition instead of the annotated Java class.

[JCA100014] A Java class annotated with the @WebService annotation with its
endpointInterface attribute set MUST have its interface defined by the
referenced interface instead of annotated Java class.

[JCA100015] A Java class or interface containing an @WebParam annotation with
its header attribute set to “true” MUST be treated as if the SOAP intent
is applied to the Java class or interface.

[JCA100016] A Java class or interface containing an @WebResult annotation with its
header attribute set to “true” MUST be treated as if the SOAP intent is
applied to the Java class or interface.

[JCA100017] A Java class containing an @ServiceMode annotation MUST be
treated as if the SOAP intent is applied to the Java class.

[JCA100018] An interface or class annotated with @WebServiceClient MUST NOT
be used to define an SCA interface.

[JCA100019] A class annotated with @WebServiceProvider MUST be treated as if
annotated with the SCA @Remotable annotation.

[JCA100020] A Java class annotated with the @WebServiceProvider annotation with
its wsdlLocation attribute set MUST have its interface defined by the
referenced WSDL definition is used instead of the annotated Java
class.

[JCA100021] A Java class or interface containing an @SOAPBinding annotation
MUST be treated as if the SOAP intent is applied to the Java class or
interface.

[JCA100022] SCA runtimes MUST support the JAX-WS 2.1 mappings from WSDL to
Java and from Java to WSDL.

[JCA100023] The value of the name attribute of the @WebService annotation, if
present, MUST be used to define the name of an SCA service when
there is no @Service annotation present in the SCA component
implementation.

[JCA100024] For a Java method annotated with the @WebMethod annotation with
the operationName set, an SCA runtime MUST use the value of the
operationName attribute as the SCA operation name.

[JCA100025] An SCA runtime MUST NOT include a Java method annotated with the
@WebMethod annotation with the exclude attribute set to true in an
SCA interface.

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 120 of 125

[JCA100026] For a Java parameter annotated with the @WebParam annotation with
the mode attribute set, an SCA runtime MUST apply the value of the
mode attribute when comparing interfaces.

The value of the name attribute
of the @WebService
annotation, if present, MUST be
used to define the name of an
SCA service when the
@Service annotation is present
without the names attribute and
indicates that the Java interface
or class annotated with the
@WebService annotation
defines an SCA service
interface. [JCA100028]

The value of the name attribute of the @WebService annotation, if
present, MUST be used to define the name of an SCA service when
the @Service annotation is present without the names attribute and
indicates that the Java interface or class annotated with the
@WebService annotation defines an SCA service interface.

 4105

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 121 of 125

Appendix D. Acknowledgements 4106

The following individuals have participated in the creation of this specification and are gratefully 4107
acknowledged: 4108

Participants: 4109

Participant Name Affiliation

Bryan Aupperle IBM

Ron Barack SAP AG*

Mirza Begg Individual

Michael Beisiegel IBM

Henning Blohm SAP AG*

David Booz IBM

Martin Chapman Oracle Corporation

Graham Charters IBM

Shih-Chang Chen Oracle Corporation

Chris Cheng Primeton Technologies, Inc.

Vamsavardhana Reddy Chillakuru IBM

Roberto Chinnici Sun Microsystems

Pyounguk Cho Oracle Corporation

Eric Clairambault IBM

Mark Combellack Avaya, Inc.

Jean-Sebastien Delfino IBM

Derek Dougans Individual

Mike Edwards IBM

Ant Elder IBM

Raymond Feng IBM

Bo Ji Primeton Technologies, Inc.

Uday Joshi Oracle Corporation

Anish Karmarkar Oracle Corporation

Khanderao Kand Oracle Corporation

Michael Keith Oracle Corporation

Rainer Kerth SAP AG*

Meeraj Kunnumpurath Individual

Simon Laws IBM

Yang Lei IBM

Mark Little Red Hat

Ashok Malhotra Oracle Corporation

Jim Marino Individual

Jeff Mischkinsky Oracle Corporation

Sriram Narasimhan TIBCO Software Inc.

Simon Nash Individual

Sanjay Patil SAP AG*

Plamen Pavlov SAP AG*

Peter Peshev SAP AG*

Ramkumar Ramalingam IBM

Luciano Resende IBM

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 122 of 125

Michael Rowley Active Endpoints, Inc.

Vladimir Savchenko SAP AG*

Pradeep Simha TIBCO Software Inc.

Raghav Srinivasan Oracle Corporation

Scott Vorthmann TIBCO Software Inc.

Feng Wang Primeton Technologies, Inc.

Paul Yang

Changfeng Open Standards

Platform Software

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 123 of 125

Appendix E. Revision History 4110

 4111

Revision Date Editor Changes Made

1 2007-09-26 Anish Karmarkar Applied the OASIS template + related changes
to the Submission

2 2008-02-28 Anish Karmarkar Applied resolution of issues: 4, 11, and 26

3 2008-04-17 Mike Edwards Ed changes

4 2008-05-27 Anish Karmarkar

David Booz

Mark Combellack

Added InvalidServiceException in Section 7

Various editorial updates

WD04 2008-08-15 Anish Karmarkar * Applied resolution of issue 9 (it was applied
before, not sure by whom, but it was applied
incorrectly)

* Applied resolution of issue 12, 22, 23, 29, 31,
35, 36, 37, 44, 45

* Note that issue 33 was applied, but not noted,
in a previous version

* Replaced the osoa.org NS with the oasis-
open.org NS

WD05 2008-10-03 Anish Karmarkar * Fixed the resolution of issue 37 but re-adding
the sentence: "However, the @... annotation
must be used in order to inject a property onto a
non-public field. -- in the @Property and
@Reference section

* resolution of issue 9 was applied incorrectly.
Fixed that -- removed the requirement for
throwing an exception on
ComponentContext.getServiceReferences()
when multiplicity of references > 1

* minor ed changes

cd01-rev1 2008-12-11 Anish Karmarkar * Fixed reference style to [RFC2119] instead of
[1].

* Applied resolutions of issues 20, 21, 41, 42,
43, 47, 48, 49.

cd01-rev2 2008-12-12 Anish Karmarkar * Applied resolutions of issues 61, 71, 72, 73,
79, 81, 82, 84, 112

cd01-rev3 2008-12-16 David Booz * Applied resolution of issues 56, 75, 111

cd01-rev4 2009-01-18 Anish Karmarkar * Applied resolutions of issues 28, 52, 94, 96,
99, 101

cd02 2009-01-26 Mike Edwards Minor editorial cleanup.

All changes accepted.

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 124 of 125

All comments removed.

cd02-rev1 2009-02-03 Mike Edwards Issues 25+95

Issue 120

cd02-rev2 2009-02-08 Mike Edwards Merge annotation definitions contained in
section 10 into section 8

Move remaining parts of section 10 to section 7.

Accept all changes.

cd02-rev3 2009-03-16 Mike Edwards Issue 104 - RFC2119 work and formal marking
of all normative statements - all sections

- Completion of Appendix B (list of all normative
statements)

Accept all changes

cd02-rev4 2009-03-20 Mike Edwards Editorially removed sentence about
componentType side files in Section1

Editorially changed package name to
org.oasisopen from org.osoa in lines 291, 292

Issue 6 - add Section 2.3, modify section 9.1

Issue 30 - Section 2.2.2

Issue 76 - Section 6.2.4

Issue 27 - Section 7.6.2, 7.6.2.1

Issue 77 - Section 1.2

Issue 102 - Section 9.21

Issue 123 - conersations removed

Issue 65 - Added a new Section 4

** Causes renumbering of later sections **

** NB new numbering is used below **

Issue 119 - Added a new section 12

Issue 125 - Section 3.1

Issue 130 - (new number) Section 8.6.2.1

Issue 132 - Section 1

Issue 133 - Section 10.15, Section 10.17

Issue 134 - Section 10.3, Section 10.18

Issue 135 - Section 10.21

Issue 138 - Section 11

Issue 141 - Section 9.1

Issue 142 - Section 10.17.1

cd02-rev5 2009-04-20 Mike Edwards Issue 154 - Appendix A

Issue 129 - Section 8.3.1.1

cd02-rev6 2009-04-28 Mike Edwards Issue 148 - Section 3

Issue 98 - Section 8

cd02-rev7 2009-04-30 Mike Edwards Editorial cleanup throughout the spec

sca-javacaa-1.1-spec-csprd04 15 August 2011
Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 125 of 125

cd02-rev8 2009-05-01 Mike Edwards Further extensive editorial cleanup throughout
the spec

Issue 160 - Section 8.6.2 & 8.6.2.1 removed

cd02-rev8a 2009-05-03 Simon Nash Minor editorial cleanup

cd03 2009-05-04 Anish Karmarkar Updated references and front page clean up

cd03-rev1 2009-09-15 David Booz Applied Issues:
1,13,125,131,156,157,158,159,161,165,172,177

cd03-rev2 2010-01-19 David Booz Updated to current Assembly namespace

Applied issues:
127,155,168,181,184,185,187,189,190,194

cd03-rev3 2010-02-01 Mike Edwards Applied issue 54.

Editorial updates to code samples.

cd03-rev4 2010-02-05 Bryan Aupperle,
Dave Booz

Editorial update for OASIS formatting

CD04 2010-02-06 Dave Booz Editorial updates for Committee Draft 04

All changes accepted

CD04-rev1 2010-07-13 Dave Booz Applied issues 199, 200

CD04-rev2 2010-10-19 Dave Booz Applied issues 201,212,213

CSD04-rev3 2010-11-05 Dave Booz Applied issue 216, ed. updates for CSD vote

CSD05 2010-11-08 OASIS TC Admin Cleaned and published.

WD051 2011-06-20 Mike Edwards Issues 240, 241, 242:

1) Made non-normative JCA90024 thru
JCA90039 inclusive. Reword section 10.24.1

2) Made JCA20009 non-normative. Section
2.3.4 reworded.
3) Removed JCA80052

Issues 233 - updated frontmatter, added section
1.4

WD052 2011-07-18 Mike Edwards Issue 243: Changes to the Java Client API - all
affect the SCAClientFactoryFinderImpl class in
section B.1.3

Removed JCA80054 as part of JAVA-240

WD053 2011-08-08 Mike Edwards All changes accepted

WD054 2011-08-15 Mike Edwards Issue 244 - reword [JCA30001] in Section 3.1

All changes accepted.

 4112

