OASIS 19

Service Component Architecture Client
and Implementation Model for C++
Specification Version 1.1

Committee Draft 03 / Public Review Draft 01
19 March 2009

Specification URIs:

This Version:
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec-cd03.html
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec-cd03.doc
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec-cd03.pdf (Authoritative)

Previous Version:
http://www.oasis-open.org/committees/download.php/31066/sca-cppcni-1.1-spec-cd02.doc
http://www.oasis-open.org/committees/download.php/31736/sca-cppcni-1.1-spec-cd02.pdf
(Authoritative)

Latest Version:
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec.doc
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec.pdf (Authoritative)

Technical Committee:
OASIS Service Component Architecture / C and C++ (SCA-C-C++) TC

Chair:
Bryan Aupperle, IBM
Editors:
Bryan Aupperle, IBM
David Haney

Pete Robbins, IBM
Related work:
This specification replaces or supercedes:
e OSOA SCA C++ Client and Implementation V1.00
This specification is related to:

o OASIS Service Component Architecture Assembly Model Version 1.1
e OASIS SCA Policy Framework Version 1.1
e OASIS Service Component Architecture Web Service Binding Specification Version 1.1

Declared XML Namespace(s):
http://docs.oasis-open.org/ns/opencsa/sca/200903
http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901

Abstract:
This document describes the SCA Client and Implementation Model for the C++ programming
language.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 1 of 107

http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec-cd03.html
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec-cd03.doc
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec-cd03.pdf
http://www.oasis-open.org/committees/download.php/31066/sca-cppcni-1.1-spec-cd02.doc
http://www.oasis-open.org/committees/download.php/31736/sca-cppcni-1.1-spec-cd02.pdf
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec.doc
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-c-cpp
mailto:aupperle@us.ibm.com
mailto:aupperle@us.ibm.com
mailto:haney@roguewave.com
mailto:robbins@uk.ibm.com
http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModel_Cpp-V100.pdf?version=2
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.pdf
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec.pdf
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec.pdf
http://docs.oasis-open.org/ns/opencsa/sca/200903
http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901

The SCA C++ implementation model describes how to implement SCA components in C++. A
component implementation itself can also be a client to other services provided by other
components or external services. The document describes how a C++ implemented component
gets access to services and calls their operations.

The document also explains how non-SCA C++ components can be clients to services provided
by other components or external services. The document shows how those non-SCA C++
component implementations access services and call their operations.

Status:
This document was last revised or approved by the Service Component Architecture / C and C++
TC on the above date. The level of approval is also listed above. Check the “Latest Version” or
“Latest Approved Version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-c-cpp/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-c-cpp/ipr.php). The non-normative errata page for this specification is
located at http://www.0asis-open.org/committees/sca-c-cpp/.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 2 of 107

http://www.oasis-open.org/committees/sca-c-cpp/
http://www.oasis-open.org/committees/sca-c-cpp/
http://www.oasis-open.org/committees/sca-c-cpp/ipr.php
http://www.oasis-open.org/committees/sca-c-cpp/ipr.php
http://www.oasis-open.org/committees/sca-c-cpp/

Notices

Copyright © OASIS® 2006, 2009. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 3 of 107

http://www.oasis-open.org/who/trademark.php

Table of Contents

1 g e o (8 o1 1[o] o TP PO PP P PP PPPP PRI 8
1.1 =L 0118 To] oo | PP PPPUPPRRTTRPR 8
1.2 NOIMALIVE REFEIEINCESeiiiiiiie ittt ekt e s b e e s e e s anrn e e e 8
1.3 16761 1177=T 011 o] E ST PO PP P PPPPRTPRN 9

0 A P 0 o 1T o B @] 0 AV =1 o1 1T o 1= PSR 9
IR 72 Y/ o To T =1 o] a 1o @] 0 1Y/ 1[0 o 1 PRSP 9

2 Basic Component Implementation MOEIuuviiiiiiiiiiiieee e 10

2.1 IMPIEMENTING @ SEIVICE ..ooiiiiiii e e e e e e e e e e e e e e e e e s s s s e e e e araeeeeeees 10
2.1.1 Implementing a RemMOtable SErVICE.........ccuviiiiiiiii e 11
2.1.2 AlIOWSPASSBYRETEIENCEeeiiiiiiiiiiiii e e e 12
2.1.3 Implementing & LOCAI SEIVICE..........uuiiiiiiiiiiiii ettt e e e 12

2.2 Component IMplEMENLAtION SCOPEScoiiiiiiiiiiie ettt e e e e e e 13
22,1 SHALEIESS SCOPE ... ettieieeee ittt e ettt ettt e e e oottt e e e e ok bt e e e e ekt b e e e e e e e e n b b e e e e e e e e brrreeaeeaa 13
2.2.2 COMPOSITE SCOPE .. eteeteeeeiiuttieteee ettt et e e e e s at b e e et ee e s st b et e e e e e s ot b be e e e e e s abbbe e e e e e s sanbbeeeeeeeaanbnnneeaeeaans 13

2.3 Implementing a Configuration PrOPerty..............uuiieiiiiiiiiieeeei e 13

24 Component Type and COMPONENT.......ciiitiiiiaaa ettt e e et e et e e aaaaaaaaaaa e s e e s aaaaannnnes 14
A R [1 (=] = Yot =N o] o] TP PP RTOPPPPPPP 15
2.4.2 Function and CallbackFUNCHONcoiiiiiiiiiiiiiiiie e 16
A T 49T o1 (=T 0 g T=T g1 =Yoo o o o TS 16
2.4.4 Implementation FUNCHONttt e e e e e e e e e s e e e s e s s s e e ae e erasaeeeeeeees 17

25 INSTANTIALIONeeeee ettt e s st e e s e e s s s e e sn e e e s nr e e e s anneeena 17

3 BaSIC CHENt MOEL.........eeeieiiie ettt e s e et e e s e e e nnr e e e nnnes 18
3.1 Accessing Services from Component Implementations ... 18
3.2 INEEITACE PrOXIES ..ueeeiiiiiiiiiiiiee e e e ettt e ettt e et et e e e e e eaeaeeeeeaesaasaaaaansnsesnsennnnnnneeerees 19
3.3 Accessing Services from non-SCA component implementationsccccveeeevviiiienee e, 20
3.4 Calling ServiCe OPEIALIONSuiiii ettt e e st e e e e s sbb b e e e e e s abbaeeeeeesaae 21
3.5 Long Running Request-ResSpoNnse OPEratioNSccccoiiiriiiieeaiiiiiiieeeeeaiiiee e e e e e 21

3.5.1 RESPONSE CAlIDACK. ...ccceiiiiiiiiiie ittt e et e e e e s nb e e e e 23
3.5.2 RESPONSE POING. ..ceeiiiiiiiiiiieee ettt e et e e e e e e e e e e e e e e e e e et n et e e eeeeeees 23
3.5.3 SYNCIroNOUS RESPONSE ACCESSo ittt ettt ettt et e e e e e e e e e e e e e e e s e e s e s e s aaabbnbbebaeeeeeeeees 24
3.5.:4 RESPONSE CIASS ..eeeiiiiiiiiiiiie ettt et et ereeeee e 25

4 ASYNCNhronOUS ProgramIMingoooiiiiiiiiiiiiiiiiieii et e et e e e e e e e e e e e e e e s e s s s s s ebbb bbb st e e e e e e e eeeaeaaaaaaaaaaaaans 27
4.1 [N Lo g B o] Lo Tod (] o T = | £ P 27
4.2 CAlIDACKS ...t e et e e e e e e e s e e e e e 27

o R U = o @ 1] = Vo] S 28
4.2.2 Callback Instance ManagemENtociiiiiiiiiieiiiiier e e e e et e e e e e e e e s e s s e s s s s s sneanrenrrrrreereeees 29
4.2.3 Implementing Multiple Bidirectional INterfaces.........ccouuuiieiiiiiiiieeeeie e 30

5 L= o =T o [T oo SRR 31

6 L@ A PSRRI 32
6.1 Reference COoUNING POINTEIS ...ttt e e 32

L0 I T o 01T = 0 PP PR POPPTPPPPP 32
LT N o T 0[] = (0] TP PP TOPPTPPPPP 33
B.1.3 OPEIALON VOIO™ ...t ei ittt ettt e e e e skt e e e e s bbb e e e e e e e ab b b e e e e e s e anbre e e e e e e aan 33
SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 4 of 107

O I o T 0[] = (o] PP PP PPRTOPPPPPPPP 33

00 T T oo 1 (= T 33
B.1.6 AYNAMICCAST.....eiiitiiiiie ettt e e e e ettt e e e s s bbb e e e e e s aabb e e e e e e e nnbrreeeeeean 33

L A (=101 (=] 1 o (=] (O T SO PP OO PPPTPPUPPPPPN 34
LN TS - o O] SOOI 34

6.2 COMPONENT CONTEXE ...ttt et e e et e et e e aeeeeeeeesessssssaaannnnes 34
I R o [(G114 (=] o | F PRSP 34
2 o 1= 18 | PSPPSR 35
IR T o [6ST=] A [l TP PP PR TOPPPPPPP 35
B.2.4 QOIS BIVICES. ..ttt ettt ettt ettt et e ab bbb b e e e e e eee e 35
6.2.5 QEtSEIVICEREIBIENCE ...cciiiii e e e e e e e e e e e ae e 35
6.2.6 QEtSEIVICEREIBIENCEScoiiie e e e e e e e e e e e e e e s e e e reeere s 36
L A o 1= 1 o o] o =T 11O 36
(oI T o [11D = 1= L= Tox (] Y 36
6.2.9 QEtSEIfREIEIENCEeeiiiiiiiiee e —————————————— 36

6.3 SEIVICERETEIEINCEt e st e e e s st b e e e e e s s anbbaeeeeeeaae 37
Lo B R o [IS 1= oV ot PP P PPPTPPUPPPPP 37
6.3.2 GELCAIDACK. ..ottt e e e e 37

6.4 (Do) 10 F= T 1@ o]] (=) SRRSO PPPPPRP 38
B.4.1 GEESBIVICE. .. eiiiiei ittt ettt ettt e e et e e e e e e e s bbb e e e e e e b e e e e e s a b e e e e e e an 38

6.5 1O Y =y (o= o1 [o] o PP PP OO PP PPPRPPPPPPPPP 38
6.5.1 GELECIASSNAME.eiiiiiiiitiiie ettt e e e skt e e e e e e ae b e e e e e e s anbbr e e e e e e aan 38
6.5.2 gEIMESSAGET EXE ... eieieiiieiei ettt ettt et bbb e a e e e e e e n b e s 39
6.5.3 GEIFIENAIME ...ttt e e e e e e e e e e e e e e e e e e s e e bbb ae bt e eeeeee e 39
6.5.4 QEILINENUMDETveiiiiiieie e e e e e e e e e e e e e e s e e s e e e an b e rarereeeeeees 39
6.5.5 QEIFUNCHONNAMEooiiiiiiieiiee e e e e e et e e e e e e e e e e e s e e s s e s s aaaeranrenreaereeeeeees 39

6.6 SCANUIIPOINIEIEXCEPLIONuuvviiiiiiieeeeeii e et e e e e e e e e e e e e e e s e e s e s e et e e e e e e e et eaaaaaaeeaeasesssnannannnnnnns 40
6.7 SerVICERUNIMEEXCEPIIONuiiiiiiiiiiiieiii et ee e e e e e e e e e eaaeaeaaaaaesseesaenannnnes 40
6.8 ServiceUnavailabl@EXCEPLIONuuuveeiiiiiiiiieeeee e r e e e e e e e e e e e e e e e 40
6.9 0] 0] SRS Yoty (o =Y o] (o] o SO 40

7 (O O] o111 o111 o 1S SO 41
7.1 L ST o] =] [1 =SSP 41
7.1.1 Executable in CONDULIONcooiiiiiii i e e e e eeeeeeees 41
7.1.2 Executable shared with other contribution(S) (EXPOI)uvveeieiiiiiiiiieie et 41
7.1.3 Executable outside of contribution (IMPOIT)eueeeeiiiiiiiiii e 42

7.2 COMPONENETYPE FIIES ... e e e e e e 42
7.3 C++ ContribUtioN EXIENSIONSeeeiiiiiiiiiiiiee ettt et e e e e e e e e e e e e e ennnees 43
A T R = o To ¢ o o] « TR TT TP 43

S T [1010 To] £ B o3 o o KPP PPPPPP 44

8 Types Supported iN SErVICE INTEITACES.cooii i 45
8.1 [Tor= LYo o Tt RO PPRR 45
8.2 REMOLADIE SEIVICE ...veiiiiiiiiieiee et e e st e e e e s bt e e e e e e s bbb e e e e e e e nnseees 45

9 Restrictions 0N C++ NEAAET fIlESeiiii i 46
10 WSDL to C++ and C++ t0 WSDL MapPing......ccceiieiiiiiiiiierierieeeeeeerererestaeaeeeeasessssssssssnssssssssssssseeeees 47
10.1 Augmentations for WSDL t0 CH+ MaPPINg ...ccooueveeiiieiiiiiiiiiee sttt sniiiiee e siieeee e e e seaeneeee s 47
SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 5 of 107

10.11 Mapping WSDL targetNamespace to a C++ NameESPACEeeveeririviieieeniiiiiiieeeeeennees 47

10.1.2 Mapping WSDL Faults to C++ EXCEPLIONSuviiiiiiiiiiiiie et 48
10.1.3 Mapping of in, out, in/out parts to C++ member function parameters..................cceecenees 48
10.2 Augmentations for C++ t0 WSDL MapPPINGgcuuuveiiiaiiiiiiiiiee it 48
10.2.1 Mapping C++ namespaces to WSDL NAMESPACESccceeriuvrrrireeiiiiiiiiieesaaiireeee e eniees 48
10.2.2 Parameter and return type classifiCationcooiuiiiiiiiiii e 48
10.2.3 C++ {0 WSDL TYPE CONVEISION ...ceeiiiiitiiiiieeei ittt e sttt e et e e e st e e e e e s nnbaneeeeeaaaes 49
10.2.4 Service-SPeCifiC EXCEPLIONS.uuiiiiieiiitiie ettt e e et e e e et e e e e e 49
10.3 SDO DaAt@ BiNGING ...cooeeiiiiiiiitteeee ettt ettt e et e e et e aaaaae 49
10.3.1 Simple Content BiNGINGoooiieiiiee e e e e e e e e e e e e e e e e 49
10.3.2 Complex Content BINAING........cccccuuiiiiiiiiiiireeie e e re e e e e e e e e e aaaaaaeaaeeas 51
11 CONTOIMANCEottt oo oo oo oo oo oottt bbbttt et ettt et e e e e e e eaaaeeaeaaaeaaa e nannbebbbnbesseeeeeees 52
5 A @7 o1 {0 1 0 =T g (oL 1= 10 =Y £ SRR 52
5 S @7 N 491 0] 1= 1 1T o] = U o] g SRR 52
11.3 SCA DOCUMENTS ...ttt ettt e et e e e e e e e e e e e e e s e e s e bbb bbb s e e e e e et e et e et e e aeeeeeeeeaeesassanaannnnnn 52
O S O 1o PO PRPRPPTT 53
115 WSDL FlES .ottt ettt e e et e e e e e e e e e e e e e e st e e e e e eeeeeeeeasraaaaaaans 53
YN 0% {0 AN A o1 g To] r= 11 To o PSSP 54
A.1 Application of Annotations to C++ Program EIEMENTS...........ccooiiiiiiiiiiiiiiiiiiee e 54
A.2 Interface Header ANNOTALIONS.oiiiiiiiie ettt e e e e e e e e e e e e e e s e e s et eeeeeeeees 54
YN (3] 141 (=T ¢ 1= (ol = TP 54
A.2.2 @REMOLADIE c...eeeee e araas 55

F R R G L OF= 1] o = Tor 55
AL2.4 @ONEWAY ...ttt ettt e e e e e e e e e et e e oo e e e e oo aaab bbb b ettt ettt e ee e e et e e e e e aaeeeaaaeaaeaaaaananaae 56
A.3 Implementation Header ANNOLALIONSooiii i e e e e e e e e e e s reeeeeees 56
YN B R (o) o T o To T =T 15/ 1= SRR 56
NG T2 (21 Yo7) 1= O 57
NG TR B (21 == o 1= [o U EPURPPR R 57
A.3.4 @AIIOWSPASSBYREIEIENCEcovveiiiiieee e e e e e e e e e eeee s 58

F NG T (211 = (0] o 1= Y/ SO 58

F R SR @ LR =1 (=] (=111 59
YN 2 7 1Y AN g g o] = L o] T €1 r= 10 10 = | PSP 59
B Ct+t+ SCA POIICY ANNOTALIONSuiiiiiiiiiiiiiiie ettt e et e e e e e et e e e e e e e annnees 61
B.1 General INteNt ANNOTALIONSuuuiiiiiiiiii et e ettt et e e e e e e e aaaaeaaeeaeeaaeaaaaannnnnes 61
B.2 SPeCific INtENT ANNOTALIONSuuiiiiiiiiiie ettt ettt e e et e et e e e aaaaaaaeeaaeaaaaaaaannnnnes 62
B.2.1 SECUNLY INTEIACTION ..eeiiiiiiiiiiiee ettt e e e e e et e e e e e e aneb e e e e e e e nnnnees 63
B.2.2 Security IMPlemMeENTatioN.o et e e e e e e e e e e e e e e eas 63
B.2.3 Reliable MESSAGING......ccoiiiiiii it e ettt e e et e e e e e aaaaaaaaa s 63
B.2.4 TIrANSACHONS ...ciiiiiiiiiieee ettt ettt e et e e e e e e e e e e e e e e e e e s s e s e aaaabbb bbbt bbe et et e et eeeaaaaaaaeaeaaens 63
B.2.5 MISCEIIANEOUSooiiiiiieie ettt e et e ettt e e e et e e e e e e e aaaeeaaaeas 64
B.3 Application of INteNt ANNOTALIONSuuiiiiiiiiiiiiiecee e e e e e e e e e e e e e e e e e e s e nnenes 64
B.4 Inheritance and INtENt ANNOLALIONScoiiiiiiiiiiie et e e e e e s s sanraeeaens 64
B.5 Relationship of Declarative and Annotated INtENTS............ccoociiiiiiiiiiiieee e 66
S R o] 1103 YRS T=) AN] o) = (o o <R 66
B.7 Policy Annotation Grammar AAItIONSuueiiiiiiiiiiiie e 66
SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 6 of 107

B.8 ANNOLAtION CONSIANTS .. .eeteeieeieiee ettt et e e e et e e et e et e et e e e e et e s e et e e e s s eeaeeean s eesaresseseensesanaeeens 67

C C++ WSDL Mapping ANNOTALIONS.cceiiiiiiiiiiee ettt e e sttt ettt e e e e sttt e e e e s bbb e e e e e s aebeeeeeeeeaans 68
C.1 Interface Header ANNOTAIONS.ccoiiiiiiiiiiiiiiiee e e e e e e e e e e e e s e e e eeeeeeaeaaaaaeeeeeeas 68
(O I A 1TV o 17T oV, oL TSR 68
(O I 1TV =Y o] VT Lo 1o o TSP 69
O I I (21T @] g1 | TSR TOPORPP 70
(SR N N @ XYLV LT o] 2= T = 1 o AT 72
(SR S @ ATV =T o] 2 TCT] U T 74
O I o 1S @ 7Y = =71 oo 1o To [P EPP PRSPPI 76
CLL.7 @WEDFAUIL......eiiieiiiiiiiee ettt e e ettt e e e e s sttt eee e s st b b e e e e e e e santbreeeeeesantbaeeaaeenns 77
C.1.8 @WEDTRIOWS ..ottt e et e e e e e e et et e e e e e aaa e e s e e bba e essesbaeesssbbasessssanaeaees 79

D WSDL C++ Mapping EXIENSIONSccviiiiiiieeee ettt e e e e e e e e e e e e e e e s e e s s e e snnaa b e e rreeeeeaeeees 80
[20 (o o] o] o1 o 11 o 1= SRR 80

[B o] o = 1 SRR 80
(DR I o] o M= g = o] LoA VAV =T o] 0= 5] =R 80

[o o o =T 1o T o = Lo = >SS 82
D.5 <CPPIMEMDEIFUNCHONSot e e s e e e e e s e e e e e e s esaa e e e e e s ennraeeeens 83

(D I or o] o o F=T = 1.0 1=7 =] PP 84
D.7 JAX-WS WSDL EXIENSIONSuuuitiitiiiiieiieiitteteeeaeeaeeeee s e s s e e e e s e bbbt e tae e et eeeeeeaeaaaaaaaaessessassaaaaannnnnns 86
D.8 WSDL EXIENSIONS SCREIMA ...ttt ettt e e et e e e e e aaaaeeaeeaeesaeaaaaannnnnes 86

S Y | IS Yod o U= 11 - P PURPOTRR 88
E.1 SCA-INtEITACE-CPP-L.L.XSAetieieieei ittt ettt ettt e e st e e e et e e e e e s e bbb et e e e s anneneeeens 88
E.2 sca-implementation-CPP-L1.1.XS0.u ittt ettt et e e e e e e e e e e e e e e e 88
E.3 SCa-CONLHDULION-CPP-L.1.XSA ...ttt ettt bbbttt et e e et e e e aaaaeeaaeaeeaasaanaaannnnes 89

F CONTFOIMANCE TEEMIS ...ttt ettt ettt et e e e e e e e e e e e e e e e sa e s e e e e nnanbbbbbnbbenneeeeeees 91
F.1 JAX-WS CONTOIMMANCE ...ttt e e e e e et et e et bbb e ettt et e e et e e aeaaaaaaeeeesaaaaaaannnnne 95
F.1.1 Ignored ConformanCe STAtEMENTS.........uuuuiiiiiiiiiiiieie e e e e e e e e e e aaeaaaaeas 97

LT Y/ T | = L1 (o] o T EURUSURRRRPR 100
G.1 Method child elements of interface.cpp and implementation.CpP.......ccccovvviiiiiiiieiiiiiieceeeeee e, 100

[IR o g (011 [=T o [=T g T=T) PSSR 101
I REVISION HISTOTY ...eeiiiiiiiiiiiiii ettt e e e ettt et e e e s s bbbt e e e e e s st bbbt e e e e s abbbeeeeaesannes 102
SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 7 of 107

©ooo~N o0k~ wWw N B

10

11
12
13

14
15

16
17

18

19
20
21
22
23
24
25
26
27
28
29

30
31

32
33
34

1 Introduction

This document describes the SCA Client and Implementation Model for the C++ programming language.

The SCA C++ implementation model describes how to implement SCA components in C++. A component
implementation itself can also be a client to other services provided by other components or external
services. The document describes how a C++ implemented component gets access to services and calls
their operations.

The document also explains how non-SCA C++ components can be clients to services provided by other
components or external services. The document shows how those non-SCA C++ component
implementations access services and call their operations.

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119]

This specification uses predefined namespace prefixes throughout; they are given in the following list.
Note that the choice of any namespace prefix is arbitrary and not semantically significant.

Table 1-1 Prefixes and Namespaces used in this specification

Prefix | Namespace Notes
XS "http://www.w3.0rg/2001/XMLSchema" Defined by XML Schema 1.0
specification
sca "http://docs.oasis-open.org/ns/opencsa/sca/200903" Defined by the SCA specifications
cpp "http://docs.oasis-open.org/ns/opencsa/sca-c-
cpp/cpp/200901"

1.2 Normative References

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF
RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt
[ASSEMBLY] OASIS Committee Draft 03, Service Component Architecture Assembly Model

Specification Version 1.1, March 2009. http://docs.oasis-open.org/opencsa/sca-
assembly/sca-assembly-1.1-spec-cd03.pdf

[POLICY] OASIS Commmittee Draft 02, SCA Policy Framework Version 1.1, March 2009.
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec.pdf

[SDO21] OSOA, Service Data Objects For C++ Specification, December 2006.
http://www.osoa.org/download/attachments/36/CPP-SDO-Spec-v2.1.0-FINAL.pdf

[WSDL11] World Wide Web Consortium, Web Service Description Language (WSDL),
March 2001. http://www.w3.org/TR/wsdlI

[XSD] World Wide Web Consortium, XML Schema Part 2: Datatypes Second Edition,
October 2004. http://www.w3.0rg/TR/xmlschema-2/

[JAXWS21] Doug. Kohlert and Arun Gupta, The Java API for XML-Based Web Services

(JAX-WS) 2.1, JSR, JCP, May 2007.
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 8 of 107

http://www.ietf.org/rfc/rfc2119.txt
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.pdf
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec.pdf
http://www.osoa.org/download/attachments/36/CPP-SDO-Spec-v2.1.0-FINAL.pdf
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xmlschema-2/
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html

35

36

37

38
39

40

41
42

43

44
45
46

47

48
49
50

51
52

1.3 Conventions

1.3.1 Naming Conventions

This specification follows some naming conventions for artifacts defined by the specification, as follows:

e For the names of elements and the names of attributes within XSD files, the names follow the
CamelCase convention, with all names starting with a lower case letter.

e.g. <element name="componentType" type="sca:ComponentType"/>

e For the names of types within XSD files, the names follow the CamelCase convention with all names
starting with an upper case letter

e.g. <complexType name="ComponentService">

e For the names of intents, the names follow the CamelCase convention, with all names starting with a
lower case letter, EXCEPT for cases where the intent represents an established acronym, in which
case the entire name is in upper case.

An example of an intent which is an acronym is the "SOAP" intent.

1.3.2 Typographic Conventions
This specification follows some typographic conventions for some specific constructs
e XML attributes are identified in text as @attribute

e lLanguage identifiers used in text are in courier

e Literals in text are in italics

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 9 of 107

53

54
55
56

57
58

2 Basic Component Implementation Model

This section describes how SCA components are implemented using the C++ programming language. It
shows how a C++ implementation based component can implement a local or remotable service, and
how the implementation can be made configurable through properties.

A component implementation can itself be a client of services. This aspect of a component
implementation is described in the basic client model section.

2.1 Implementing a Service
A component implementation based on a C++ class (a C++ implementation) provides one or more
services.

A service provided by a C++ implementation has an interface (a service interface) which is defined using
one of:

e a C++ abstract base class
e aWSDL 1.1 portType [WSDL11]

An abstract base class is a class which has only pure virtual member functions. A C++ implementation
MUST implement all of the operation(s) of the service interface(s) of its componentType. [CPP20001]

The following snippets show the C++ service interface and the C++ implementation class of a C++
implementation.

Service interface.

// LoanService interface
class LoanService {
public:
virtual bool approveLoan (unsigned long customerNumber,
unsigned long loanAmount) = 0;

}i
Implementation declaration header file.

class LoanServiceImpl : public LoanService {
public:

LoanServiceImpl () ;

virtual ~LoanServiceImpl () ;

virtual bool approveloan (unsigned long customerNumber,
unsigned long loanAmount) ;

}i

Implementation.

#include "LoanServiceImpl.h"

LoanServiceImpl: :LoanServiceImpl ()
{

}
LoanServiceImpl: :~LoanServiceImpl ()

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 10 of 107

119

120
121

122

123

124

125
126
127

128
129

131
132
133
134

}

bool LoanServicelImpl: :approveloan (unsigned long customerNumber,
unsigned long loanAmount)

{
}

The following snippet shows the component type for this component implementation.

<?xml version="1.0" encoding="ASCII"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903">
<service name="LoanService">
<interface.cpp header="LoanService.h"/>
</service>
</componentType>

The following picture shows the relationship between the C++ header files and implementation files for a
component that has a single service and a single reference.

LoanServicelmpl.h

LoanServicelmpl.cpp

class LoanServiceImpl :

public LoanService

{
public:

LoanServiceImpl () ;

LoanService.h

class LoanService {
public:

.. operation (..)

i

, Service Component

LoanServiceImpl::
LoanServiceImpl ()

{

CustomerService.h

class CustomerService {
public:
.. operation (..)

2.1.1 Implementing a Remotable Service

A @remotable="true” attribute on an interface.cpp element indicates that the interface is remotable as
described in the Assembly Specification [ASSEMBLY]. The following snhippet shows the component type

for a remotable service:

<?xml version="1.0" encoding="ASCII"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903">

<service name="LoanService">

<interface.cpp header="LoanService.h" remotable="true"/>

</service>
</componentType>

SCA Client and Implementation Model Specification for C++ Version 1.1

Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 11 of 107

135

136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153

154

155
156

157

158
159

160
161

162
163

164
165

166
167
168

169

170
171
172

173
174
175
176

177
178

2.1.2 AllowsPassByReference

Calls to remotable services have by-value semantics. This means that input parameters passed to the
service can be modified by the service without these modifications being visible to the client. Similarly, the
return value or exception from the service can be modified by the client without these modifications being
visible to the service implemementation. For remote calls (either cross-machine or cross-process), these
semantics are a consequence of marshalling input parameters, return values and exceptions “on the wire”
and unmarshalling them “off the wire” which results in physical copies being made. For local calls within
the same operating system address space, C++ calling semantics include by-reference and therefore do
not provide the correct by-value semantics for SCA remotable interfaces. To compensate for this, the
SCA runtime can intervene in these calls to provide by-value semantics by making copies of any by-
reference values passed.

The cost of such copying can be very high relative to the cost of making a local call, especially if the data
being passed is large. Also, in many cases this copying is not needed if the implementation observes
certain conventions for how input parameters, return values and exceptions are used. An
@allowsPassByReference="true” attribute allows implementations to indicate that they use input
parameters, return values and exceptions in a manner that allows the SCA runtime to avoid the cost of
copying by-reference values when a remotable service is called locally within the same operating system
address space See Implementation.cpp and Implementation Function for a description of the
@allowsPassByReference attribute and how it is used.

2.1.2.1 Marking services and references as “allows pass by reference”

Marking a service member function implementation as “allows pass by reference” asserts that the
member function implementation observes the following restrictions:

e Member function execution will not modify any input parameter before the member function returns.

e The service implementation will not retain a reference or pointer to any by-reference input parameter,
return value or exception after the member function returns.

o The member function will observe “allows pass by value” client semantics (see below) for any
callbacks that it makes.

Marking a client as “allows pass by reference” asserts that the client observe the following restrictions for
all references’ member functions:

e The client implementation will not modify any member function’s input parameters before the member
function returns. Such modifications might occur in callbacks or separate client threads.

e If a member function is one-way, the client implementation will not modify any of the member
function’s input parameters at any time after calling the operation. This is because one-way member
function calls return immediately without waiting for the service member function to complete.

2.1.2.2 Using “allows pass by reference” to optimize remotable calls

The SCA runtime MAY use by-reference semantics when passing input parameters, return values or
exceptions on calls to remotable services within the same system address space if both the service
member function implementation and the client are marked “allows pass by reference”. [CPP20014]

The SCA runtime MUST use by-value semantics when passing input parameters, return values and
exceptions on calls to remotable services within the same system address space if the service member
function implementation is not marked “allows pass by reference” or the client is not marked “allows pass
by reference”. [CPP20015]

2.1.3 Implementing a Local Service

A service interface not marked as remotable is local.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 12 of 107

179

180
181
182
183

184

185
186

187
188

189

190

191
192
193
194

195

196
197

198
199
200
201

202

203
204
205

206
207
208

209
210
211

2.2 Component Implementation Scopes

Component implementations can either manage their own state or allow the SCA runtime to do so. In the
latter case, SCA defines the concept of implementation scope, which specifies the visibility and lifecycle
contract an implementation has with the runtime. Invocations on a service offered by a component will be
dispatched by the SCA runtime to an implementation instance according to the semantics of its scope.

Scopes are specified using the @scope attribute of the implementation.cpp element.

When a scope is not specified on an implementation class, the SCA runtime will interpret the
implementation scope as stateless.

An SCA runtime MUST support these scopes; stateless and composite. Additional scopes MAY be
provided by SCA runtimes. [CPP20003]

The following snippet shows the component type for a composite scoped component:

<component name="LoanService">
<implementation.cpp library="loan" class="LoanServiceImpl”
scope="composite"/>
</component>

2.2.1 Stateless scope

For stateless scope components, there is no implied correlation between implementation instances used
to dispatch service requests.

The concurrency model for the stateless scope is single threaded. An SCA runtime MUST ensure that a
stateless scoped implementation instance object is only ever dispatched on one thread at any one time.
In addition, within the SCA lifecycle of an instance, an SCA runtime MUST only make a single invocation
of one business method. [CPP20012]

2.2.2 Composite scope

All service requests are dispatched to the same implementation instance for the lifetime of the containing
composite. The lifetime of the containing composite is defined as the time it becomes active in the
runtime to the time it is deactivated, either normally or abnormally.

A composite scoped implementation can also specify eager initialization using the @eagerInit="true”
attribute on the implementation.cpp element of a component definition. When marked for eager
initialization, the composite scoped instance will be created when its containing component is started.

The concurrency model for the composite scope is multi-threaded. An SCA runtime MAY run multiple
threads in a single composite scoped implementation instance object and it MUST NOT perform any
synchronization. [CPP20013]

2.3 Implementing a Configuration Property

Component implementations can be configured through properties. The properties and their types (not
their values) are defined in the component type file. The C++ component can retrieve the properties using
the getProperties () onthe ComponentContext class.

The following code extract shows how to get the property values.
#include "ComponentContext.h"
using namespace oasis::sca;

void clientFunction ()

{

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 13 of 107

234

235
236
237
238
239
240
241
242
243
244

ComponentContext context = ComponentContext::getCurrent();
DataObjectPtr properties = context.getProperties();

long loanRating = properties->getlInteger (“maxLoanValue”) ;

}

2.4 Component Type and Component

For a C++ component implementation, a component type is specified in a side file. By default, the
componentType side file is in the root directory of the composite containing the component or some
subdirectory of the composite root directory with a name matching the implementation class of the
component. The location can be modified as described below.

This Client and Implementation Model for C++ extends the SCA Assembly model [ASSEMBLY] providing
support for the C++ interface type system and support for the C++ implementation type.

The following snippets show the C++ service interface and the C++ implementation class of a C++
service.

// LoanService interface
class LoanService {
public:
virtual bool approveLoan (unsigned long customerNumber,
unsigned long loanAmount) = 0;
bi

Implementation declaration header file.

class LoanServiceImpl : public LoanService {
public:

LoanServiceImpl () ;

virtual ~LoanServiceImpl () ;

virtual bool approveLoan (unsigned long customerNumber,

unsigned long loanAmount) ;
}i

Implementation.

#include "LoanServiceImpl.h"
// Construction/Destruction

LoanServiceImpl: :LoanServiceImpl ()

{
}

LoanServiceImpl: :~LoanServiceImpl ()

{
}

// Implementation

bool LoanServicelImpl: :approveloan (unsigned long customerNumber,
unsigned long loanAmount)

{

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 14 of 107

304

305
306

307
308
309
310
311

313
314
315

317
318
319

320
321

322
323
324
325

326
327

328
329
330
331

The following snippet shows the component type for this component implementation.

<?xml version="1.0" encoding="ASCII"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903">
<service name="LoanService">
<interface.cpp header="LoanService.h"/>
</service>
</componentType>

The following snippet shows the component using the implementation.

<?xml version="1.0" encoding="ASCII"?>
<composite xmlns="http://docs.ocasis-open.org/ns/opencsa/sca/200903"
name="LoanComposite" >

<component name="LoanService">
<implementation.cpp library="loan" class="LoanServiceImpl”/>
</component>
</composite>

2.4.1 Interface.cpp

The following snippet shows the schema for the C++ interface element used to type services and
references of component types.

<?xml version="1.0" encoding="ASCII"?>

<!—— interface.cpp schema snippet -->

<interface.cpp xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903"
header="string" class="Name"? remotable="boolean"?
callbackHeader="string" callbackClass="Name"? >

<function .. />*
<callbackFunction .. />%*

</interface.cpp>

The interface.cpp element has the following attributes:

header : string (1..1) — full name of the header file that describes the interface, including relative path
from the composite root.

class : Name (0..1) — name of the class declaration for the interface in the header file, including any
namespace definition. If the header file identified by the @header attribute of an <interface.cpp/>
element contains more than one class, then the @class attribute MUST be specified for the
<interface.cpp/> element. [CPP20005]

callbackHeader : string (0..1) — full name of the header file that describes the callback interface,
including relative path from the composite root.

callbackClass : Name (0..1) — name of the class declaration for the callback interface in the callback
header file, including any namespace definition. If the header file identified by the @callbackHeader
attribute of an <interface.cpp/> element contains more than one class, then the @callbackClass
attribute MUST be specified for the <interface.cpp/> element. [CPP20006]

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 15 of 107

332
333

334
335
336

337

338
339

340
341

342

343
344
345
346
347
348
349
350
351

352
353

354
355
356

357
358

359
360

e remotable : boolean (0..1) — indicates whether the service is remotable or local. The default is local.
See Implementing a Remotable Service

The interface.cpp element has the following child elements:
function : CPPFunction (0..n) — see Function and CallbackFunction
callbackFunction : CPPFunction (0..n) — see Function and CallbackFunction

2.4.2 Function and CallbackFunction

Some member functions of an interface have behavioral characteristics, which will be described later, that
need to be identified. This is done using a function or callbackFunction child element of interface.cpp

The following snippet shows the interface.cpp schema with the schema for the function and
callbackFunction child elements:

<?xml version="1.0" encoding="ASCII"?>
<!— Function schema snippet -->
<interface.cpp xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" .. >

<function name="NCName" requires="1istOfQNames"? oneWay="Boolean"? />*
<callbackFunction name="NCName" requires="1istOfQNames"?
oneWay="Boolean"? />*

</interface.cpp>

The function and callbackFunction elements have the following attributes:

e name : NCName (1..1) — name of the method being decorated. The @name attribute of a <function/>
child element of a <interface.cpp/> MUST be unique amongst the <function/> elements of that
<interface.cpp/>. [CPP20007]

The @name attribute of a <callbackFunction/> child element of a <interface.cpp/> MUST be unique
amongst the <callbackFunction/> elements of that <interface.cpp/>. [CPP20008]

e requires : listOfQNames (0..1) — list of intents [POLICY] needed by this member function.
e oneWay : boolean (0..1) — see Non-blocking Calls

2.4.3 Implementation.cpp

The following snippet shows the schema for the C++ implementation element used to define the
implementation of a component.

<?xml version="1.0" encoding="ASCII"?>

<!— implementation.cpp schema snippet -->

<implementation.cpp xmlns="http://docs.ocasis-open.org/ns/opencsa/sca/200903"
library="NCName" path="string"? class="Name"
scope="scope"? componentType="string"? allowsPassByReference="Boolean"?
eagerInit="boolean"? >

<method .. />*

</implementation.cpp>

The implementation.cpp element has the following attributes:

e library : NCName (1..1) — name of the dll or shared library that holds the factory for the service
component. This is the root name of the library.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 16 of 107

379
380
381

382
383
384
385
386

387
388

389
390
391

392
393
394

395
396

397
398
399

421

422
423

e path : string (0..1) - path to the library which is either relative to the root of the contribution containing
the composite or is prefixed with a contribution import name and is relative to the root of the import.
See C++ Contributions.

e class : Name (1..1) — name of the class declaration of the implementation, including any namespace
definition. The name of the componentType file for a C++ implementation MUST match the class
name (excluding any namespace definition) of the implementations as defined by the @class attribute
of the <implementation.cpp/> element. [CPP20009] The SCA runtime will append .componentType to
the class name to find the componentType file.

e scope: CPPImplementationScope (0..1) — identifies the scope of the component implementation.
The default is stateless. See Component Implementation Scopes

e componentType : string (0..1) — path to the componentType file which is relative to the root of the
contribution containing the composite or is prefixed with a contribution import name and is relative to
the root of the import.

o allowsPassByReference : boolean (0..1) — indicates the implementation allows pass by reference
data exchange semantics on calls to it or from it. These sematics apply to all services provided by
and references used by an implementation. See AllowsPassByReference

e eagerlnit : boolean (0..1) — indicates a composite scoped implementation is to be initialized when it
is loaded. See Composite scope

The implementation.cpp element has the following child element:
function : CPPImplementationMethod (0..n) — see Implementation Function

2.4.4 Implementation Function

Some member functions of an implementation have operational characteristics that need to be identified.
This is done using a function child element of implementation.cpp

The following snippet shows the implementation.cpp schema with the schema for a method child element:

<?xml version="1.0" encoding="ASCII"?>
<!—- ImplementationFunction schema snippet -->
<implementation.cpp xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" .. >

<function name="NCName" requires="1istOfQNames"?
allowsPassByReference="boolean"? />*

</implementation.cpp>

The function element has the following attributes:

¢ name : NCName (1..1) — name of the method being decorated. The @name attribute of a
<function/> child element of a <implementation.cpp/> MUST be unique amongst the <function/>
elements of that <implementation.cpp/>. [CPP20010]

e requires : listOfQNames (0..1) — list of intents [POLICY] needed by this member function.
o allowsPassByReference : boolean (0..1) — indicates the member function allows pass by reference

data exchange semantics. See AllowsPassByReference
2.5 Instantiation

A C++ implementation class MUST be default constructable by the SCA runtime to instantiate the
component. [CPP20011]

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 17 of 107

424

425
426

3 Basic Client Model

This section describes how to get access to SCA services from both SCA components and from non-SCA
components. It also describes how to call methods of these services.

3.1 Accessing Services from Component Implementations

A component can get access to a service using a component context.

The following snippet shows the ComponentContext C++ class with its getService () member
function.

namespace oasis {
namespace sca {

class ComponentContext {
public:
static ComponentContextPtr getCurrent () ;
virtual ServiceProxyPtr getService (
const std::string& referenceName) const = 0;

The getservice () member function takes as its input argument the name of the reference and returns
a pointer to a proxy providing access to the service. The returned pointer is to a generic ServiceProxy
and is assigned to a pointer to a proxy which is derived from ServiceProxy and implements the
interface of the reference.

The following shows a sample of how the ComponentContext is used in a C++ component
implementation. The getService () member function is called on the ComponentContext passing the
reference name as input. The return of the getService () member function is cast to the abstract base
class defined for the reference.

#include "ComponentContext.h"
#include "CustomerServiceProxy.h"
using namespace oasis::sca;

void clientFunction ()

{
unsigned long customerNumber = 1234;
ComponentContextPtr context = ComponentContext::getCurrent() ;
ServiceProxyPtr service = context->getService ("customerService");
CustomerServiceProxyPtr customerService =

dynamicCast<CustomerServiceProxy> (service) ;

if (customerService)
short rating = customerService->getCreditRating (customerNumber) ;

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 18 of 107

474

475
476
477
478

479
480

481

3.2 Interface Proxies

For each Reference used by a client, a proxy class is generated by an SCA implementation. The proxy
class for a Reference is derived from both the base ServiceProxy and the interface of the Reference
(details below) and implements the necessary functionality to inform the SCA runtime that an operation is

being invoked and submit the request over the transport determined by the wiring.
The base ServiceProxy class definition (in the namespace oasis: :sca) is:

class ServiceProxy {
public:
//Possible future extensions

}i

A remotable interface is always mappable to to WSDL, which can be mapped to C++ as described in
WSDL to C++ and C++ to WSDL Mapping. The proxy class for a remotable interface is derived from
ServiceProxy and contains the member functions mapped from the WSDL definition for the interface. If
a remotable interface is defined with a C++ class, an SCA implementation SHOULD map the interface

definition to WSDL before generating the proxy for the interface. [CPP30001]
For the interface definition:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/"

xmlns:cpp="http://docs.ocasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"

targetNamespace="http://www.example.org/">

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://www.example.org/"
attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://www.example.org/">

<xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>

<xs:element name="GetLastTradePriceResponse"
type="tns:GetLastTradePriceResponse"/>
<xs:complexType name="GetLastTradePrice">
<xs:sequence>
<xs:element name="tickerSymbol" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="GetLastTradePriceResponse">
<xs:sequence>
<xs:element name="return" type="xs:float"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

< message name="GetLastTradePrice">
<part name="parameters" element="tns:GetLastTradePrice">
</part>

</message>

< message name="GetLastTradePriceResponse">
<part name="parameters" element="tns:GetLastTradePriceResponse">
</part>

</ message>

<portType name="StockQuote">
<cpp:bindings>

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 19 of 107

577
578
579
580

581

582
583

<cpp:class name="StockQuoteService"/>
</cpp:bindings>
<operation name="GetLastTradePrice">
<cpp:bindings>
<cpp:memberFunction name="getTradePrice"/>
</cpp:bindings>
<input name="GetLastTradePrice" message="tns:GetLastTradePrice">
</input>
<output name="GetLastTradePriceResponse"
message="tns:GetLastTradePriceResponse">
</output>
</operation>
</portType>
</definitions>

The resulting abstract proxy class is:

// @WebService (name="StockQuote", targetNamespace="http://www.example.org/"
// serviceName="StockQuoteService")
class StockQuoteServiceProxy: public ServiceProxy ({

// @WebFunction (operationName="GetLastTradePrice",

// action="urn:GetLastTradePrice")

float getTradePrice(const std::stringé& tickerSymbol) ;
}i

The proxy class for a local interface is derived from ServiceProxy and contains the member functions
of the C++ class defining the interface. For the interface definition:

// LoanService interface
class LoanService {
public:
virtual bool approveloan (unsigned long customerNumber,
unsigned long loanAmount) = 0;

bi
The resulting proxy class is:

class LoanServiceProxy : public ServiceProxy {
public:
virtual bool approvelLoan (unsigned long customerNumber,
unsigned long loanAmount) = 0;
}i

For each reference of a component, an SCA implementation MUST generate a service proxy derived
from ServiceProxy that contains the operations of the reference’s interface definition. [CPP30002]

3.3 Accessing Services from non-SCA component implementations

Non-SCA components can access component services by obtaining a DomainContextPtr from the
SCA runtime and then following the same steps as a component implementation as described above.

The following shows a sample of how the DomainContext is used in non-SCA C++ code.

#include "DomainContext.h"
#include "CustomerServiceProxy.h"

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 20 of 107

608

609
610

611
612
613

614

615
616
617
618
619
620
621
622
623

624
625

626

627

628
629

630
631
632

633

void externalFunction ()

{
unsigned long customerNumber = 1234;
DomainContextPtr context = myImplGetDomain ("http://example.com/mydomain") ;

ServiceProxyPtr service = context->getService ("customerService");
CustomerServiceProxyPtr customerService =
dynamicCast<CustomerServiceProxy> (service) ;

if (customerService)
short rating = customerService->getCreditRating (customerNumber) ;

No SCA metadata is specified for the client. E.g. no binding or policies are specified. Non-SCA clients
cannot call services that use callbacks.

The SCA infrastructure decides which binding is used OR extended form of serviceURI is used:
o componentName/serviceName/bindingName

The function mylmplGetDomain() is an example of how a non-SCA client might get a
DomainContextPtr and is not a function defined by this specification. The specific mechanism for how
an SCA runtime implementation returns a DomainContextPtr is not defined by this specification.

3.4 Calling Service Operations

The previous sections show the various options for getting access to a service. Once you have access to
the service, calling an operation of the service is like calling a member function of a C++ class.

If you have access to a service whose interface is marked as remotable, then on calls to operations of
that service you will experience remote semantics. Arguments and return are passed by-value and it is
possible to get a ServiceUnavailableException, whichis a ServiceRuntimeException.

3.5 Long Running Request-Response Operations

The Assembly Specification [ASSEMBLY] allows service interfaces or individual operations to be marked
long-running using an @requires="asynclnvocation” intent, with the meaning that the operation(s) might
not complete in any specified time interval, even when the operations are request-response operations.

A client calling such an operation has to be prepared for any arbitrary delay between the time a request is
made and the time the response is received. To support this kind of operation three invocation styles are
available: asynchronous — the client provides a response handler, polling — the client will poll the SCA
runtime to determine if a response is available, and synchronous — the SCA runtime handles suspension
of the main thread, asynchronously receiving the response and resuming the main thread. The details of
each of these styles are provided in the following sections.

For a service operation with signature

<return type> <function name> (<parameters>) ;

the asynchronous invocation style includes a member function in the interface proxy class

<proxy class>::<response message name>Response <function name>Async (
<in parameters>);

where <response message name>Response is the response class for the operation as defined by
Response Class. The client uses this member function to issue a request through the SCA runtime. The
response is returned immediately, and can be used to access the response when it becomes available.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 21 of 107

An SCA runtime MUST include an asynchronous invocation member function for every operation of a
reference interface with a @requires="asynclnvocation” intent applied either to the operation or the

reference as a whole. [CPP30003]
The following shows a sample proxy class interface providing an asynchronous API.

using namespace oasis::sca;
using namespace commonj::sdo;

class CustomerServiceProxy : public ServiceProxy {
public:

// synchronous member function
virtual short getCreditRating(unsigned long customerNumber) = 0;

// forward declare callback class
class getCreditRatingCallback;

// asynchronous response object
class getCreditRatingResponse {
public:
// I0U/Future member functions
virtual void cancel () = 0;
virtual bool isCancelled() = 0;
virtual bool isReady() = 0;
virtual void setCallback (getCreditRatingCallbackPtr callback) = 0;

virtual short getReturn() = 0;

}i

// asynchronous callback object
class getCreditRatingCallback {
public:
virtual void invoke (getCreditRatingResponsePtr) = 0;

}i

// asynchronous member function
virtual getCreditRatingResponsePtr getCreditRatingAsync (unsigned long
customerNumber) = 0;

}r

The following shows a sample of how the asynchronous invocation style is used in a C++ component

implementation.

#include “ComponentContext.h”
#include “CustomerServiceProxy.h”

using namespace oasis::sca;

void clientFunction ()

{

ComponentContextPtr context = ComponentContext::getCurrent () ;

ServiceProxyPtr service = context->getService ("customerService");
CustomerServiceProxyPtr customerService =
dynamicCast<CustomerServiceProxy> (service) ;

if (customerService) {
getCreditRatingResponsePtr response =
customerService->getCreditRatingAsync (1234) ;

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 22 of 107

747

748

749
750

//

Once a response object has been returned, the user can use the provided API in order to set a callback
object to be invoked when the response is ready, to poll the variable waiting for the response to become
available, or to block the current thread waiting for the response to become available.

3.5.1 Response Callback

If a callback is specified on a response object, that callback will be invoked when the response is received
by the runtime. The following example demonstrates creating a response object and setting it on a
response instance:

#include "ComponentContext.h"
#include "CustomerServiceProxy.h"

using namespace oasis::sca;

class CreditRatingCallback :
public CustomerServiceProxy::getCreditRatingCallback {

virtual void invoke (getCreditRatingResponsePtr response) {
try {
short rating = response->getReturn() ;
}
catch (...) {
//
}

}r

void clientFunction ()

{

ComponentContextPtr context = ComponentContext::getCurrent ()

ServiceProxyPtr service = context->getService ("customerService");
CustomerServiceProxyPtr customerService =
dynamicCast<CustomerServiceProxy> (service) ;

if (customerService) {
CustomerServiceProxy: :getCreditRatingResponsePtr response
customerService->getCreditRatingAsync (1234) ;

CustomerServiceProxy::getCreditRatingCallbackPtr callback
new CreditRatingCallback() ;

response->setCallback (callback) ;
//

}

3.5.2 Response Polling

A client can poll a response object in order to determine if a response has been received.

#include "ComponentContext.h"

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 23 of 107

779

#include "CustomerServiceProxy.h"
using namespace oasis::sca;
void clientFunction ()

{

ComponentContextPtr context = ComponentContext::getCurrent();

ServiceProxyPtr service = context->getService ("customerService");

CustomerServiceProxyPtr customerService =
dynamicCast<CustomerServiceProxy> (service) ;

if (customerService) {
CustomerServiceProxy: :getCreditRatingResponsePtr response =
customerService->getCreditRatingAsync (1234) ;

while (!response->isReady()) {
// do something else

}

// The response is ready and can be accessed without blocking.

try {

short rating = response->getReturn() ;
}
catch (...) {

//

3.5.3 Synchronous Response Access

If a client chooses to block until a response becomes available, they can attempt to access a part of the
response object. If the response has not been received, the call will block until the response is available.

Once the response is received and the response object is populated, the call will return.
#include "ComponentContext.h"
#include "CustomerServiceProxy.h"
using namespace oasis::sca;
void clientFunction ()

{

ComponentContextPtr context = ComponentContext::getCurrent();

ServiceProxyPtr service = context->getService ("customerService");

CustomerServiceProxyPtr customerService =
dynamicCast<CustomerServiceProxy> (service) ;

if (customerService) {
CustomerServiceProxy: :getCreditRatingResponsePtr response =
customerService->getCreditRatingAsync (1234) ;

// The response is ready and can be accessed without blocking.

try {

short rating = response->getReturn() ;
}
catch (...) {

//

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 24 of 107

812

813
814
815

816

817
818
819
820
821
822
823
824

825
826
827
828
829

830
831

832

833
834

835

836
837

3.5.4 Response Class

The proxy for an interface includes a response class for a response message type returned by an
operation that can be invoked asynchronously. A response class presents the following interface to the

client component.

class <response message name>Response {

public:
virtual <response message type> getReturn() const = 0;
virtual void setCallback (<response message name>CallbackPtr callback) = 0;
virtual boolean isReady () const = 0;
virtual void cancel () const = 0;
virtual boolean isCancelled() const = 0;

}i

An SCA runtime MUST include a response class for every response message of a reference interface
that can be returned by an operation of the interface with a @requires="asyncinvocation”intent applied
either to the operation of the reference as a whole. [CPP30004]

3.5.4.1 getReturn

A C++ component implementation uses getReturn () to retrieve the response data for an asynchronous

invocation.

Precondition

C++ component instance is running and has an outstanding asynchronous call

Input Parameter

Return

Response data for the operation.

Throws

Any exceptions defined for the operation.

Post Condition

The response object is marked as done.

3.5.4.2 setCallback

A C++ component implementation uses setCallback () to set a callback object for an asynchronous

invocation.

Precondition

C++ component instance is running and has an outstanding asynchronous call

Input Parameter

callback A pointer to the callback object for the response

Return

Post Condition

The response object is marked as done.

3.5.4.3 isReady

A C++ component implementation uses isReady () to determine if the response data for an polling
invocation is available.

Precondition

C++ component instance is running and has an outstanding polling call

Input Parameter

Return

True if the response is avaialble

Post Condition

No change

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 25 of 107

838
839

840

841
842

3.5.4.4 cancel

A C++ component implementation uses cancel () to cancel an outstanding invocation.

Precondition

C++ component instance is running and has an outstanding asynchronous call

Input Parameter

Return

Post Condition

If a response is subsequently received for the operation, it will be discarded.

3.5.4.5 isCancelled

A C++ component implementation uses isCancelled () to determine if another thread has cancelled an
outstanding invocation.

Precondition

C++ component instance is running and has an outstanding asynchronous call

Input Parameter

Return True if the operation has been cancelled
Post Condition No change
SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 26 of 107

843

844
845
846
847
848
849
850

874

875
876

877
878
879

880

881
882
883
884
885
886

4 Asynchronous Programming

Asynchronous programming of a service is where a client invokes a service and carries on executing
without waiting for the service to execute. Typically, the invoked service executes at some later time.
Output from the invoked service, if any, is fed back to the client through a separate mechanism, since no
output is available at the point where the service is invoked. This is in contrast to the call-and-return style
of synchronous programming, where the invoked service executes and returns any output to the client
before the client continues. The SCA asynchronous programming model consists of support for non-
blocking operation calls and callbacks. Each of these topics is discussed in the following sections.

4.1 Non-blocking Calls

Non-blocking calls represent the simplest form of asynchronous programming, where the client of the
service invokes the service and continues processing immediately, without waiting for the service to
execute.

Any member function that returns void, has only by-value parameters and has no declared exceptions
can be marked with the @oneWay="true” attribute in the interface definition of the service. An operation
marked as oneWay is considered non-blocking and the SCA runtime MAY use a binding that buffers the
requests to the member function and sends them at some time after they are made. [CPP40001]

The following snippet shows the component type for a service with the reportEvent () member
fucntion declared as a one-way operation:

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903">
<service name="LoanService">
<interface.cpp header="LoanService.h">
<function name="reportEvent" oneWay="true" />
</interface.cpp>
</service>
</componentType>

SCA does not currently define a mechanism for making non-blocking calls to methods that return values
or are declared to throw exceptions. Itis considered to be a best practice that service designers define
one-way member function as often as possible, in order to give the greatest degree of binding flexibility to
deployers.

4.2 Callbacks

Callback services are used by bidirectional services as defined in the Assembly Specification
[ASSEMBLY].

A callback interface is declared by the @callbackHeader and @callbackClass attributes in the interface
definition of the service. The following snippet shows the component type for a service MyService with the
interface defined in MyService.h and the interface for callbacks defined in MyServiceCallback.h,

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" >
<service name="MyService">
<interface.cpp header="MyService.h"
callbackHeader="MyServiceCallback.h"/>
</service>
</componentType>

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 27 of 107

887

888
889
890
891

892
893
894
895
896
897
898

4.2.1 Using Callbacks

Bidirectional interfaces and callbacks are used when a simple request/response pattern isn’t sufficient to
capture the business semantics of a service interaction. Callbacks are well suited for cases when a
service request can result in multiple responses or new requests from the service back to the client, or
where the service might respond to the client some time after the original request has completed.

The following example shows a scenario in which bidirectional interfaces and callbacks could be used. A
client requests a quotation from a supplier. To process the enquiry and return the quotation, some
suppliers might need additional information from the client. The client does not know which additional
items of information will be needed by different suppliers. This interaction can be modeled as a
bidirectional interface with callback requests to obtain the additional information.

class Quotation {

public:
virtual double requestQuotation(std::string productCode,
unsigned int quantity) = 0;
}i
class QuotationCallback {
public:
virtual std::string getState() = 0;
virtual std::string getZipCode () =

0F
virtual std::string getCreditRating() = 0;

bi

In this example, the requestQuotation operation requests a quotation to supply a given quantity of a
specified product. The QuotationCallBack interface provides a number of operations that the supplier can
use to obtain additional information about the client making the request. For example, some suppliers
might quote different prices based on the state or the zip code to which the order will be shipped, and
some suppliers might quote a lower price if the ordering company has a good credit rating. Other
suppliers might quote a standard price without requesting any additional information from the client.

The following code snippet illustrates a possible implementation of the example service.

#include "QuotationImpl.h"

#include "QuotationCallbackProxy.h"
#include "ComponentContext.h"

using namespace oasis::sca;

double QuotationImpl::requestQuotation (std::string productCode,
unsigned int quantity) {
double price = getPrice (productQuote, quantity);
double discount = 0;

ComponentContextPtr context = ComponentContext::getCurrent() ;
ServiceReferencePtr serviceRef = context->getSelfReference () ;
ServiceProxyPtr callback = serviceRef->getCallback() ;
QuotationCallbackQuotationCallbackProxyPtr quotationCallback =
dynamicCast<QuotationCallbackProxy> (callback) ;

if (quotationCallback) {
if (quantity > 1000 && callback->getState () .compare (“FL”) == 0)
discount = 0.05;
if (quantity > 10000 && callback->getCreditRating().data() == ‘A’)
discount += 0.05;
}

return price * (l-discount);

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 28 of 107

985

986
987
988
989
990

991
992
993
994
995
996

The code snippet below is taken from the client of this example service. The client’s service
implementation class implements the member functions of the QuotationCallback interface as well as
those of its own service interface ClientService.

#include "QuotationCallback.h"
#include "QuotationServiceProxy.h"
#include "ComponentContext.h"
using namespace oasis::sca;

void ClientImpl:: aClientFunction() {
ComponentContextPtr context = ComponentContext::getCurrent () ;

ServiceProxyPtr service = context->getService ("quotationService");
QuotationServiceProxyPtr quotationService =
dynamicCast<QuotationServiceProxy> (service) ;

if (quotationService)
quotationService->requestQuotation (“*AB123”, 2000) ;
}

std::string QuotationCallbackImpl::getState () {
return “TX”;

}
std::string QuotationCallbackImpl::getZipCode () {

return “78746";

}

std::string QuotationCallbackImpl::getCreditRating() {
return “AA”;

}

For each service of a component that includes a bidirectional interface, an SCA implementation MUST
generate a service proxy derived from ServiceProxy that contains the operations of the reference’s
callback interface definition. [CPP40002]

If a service of a component that has a callback interface contains operations with a
@requires="asynclnvocation” intent applied either to the operation of the reference as a whole, an SCA
implementation MUST include asynchronous invocation member functions and response classes as
described in Long Running Request-Response Operations. [CPP40003]

In the example the callback is stateless, i.e., the callback requests do not need any information relating
to the original service request. For a callback that needs information relating to the original service
request (a stateful callback), this information can be passed to the client by the service provider as
parameters on the callback request.

4.2.2 Callback Instance Management

Instance management for callback requests received by the client of the bidirectional service is handled in
the same way as instance management for regular service requests. If the client implementation has
STATELESS scope, the callback is dispatched using a newly initialized instance. If the client
implementation has COMPOSITE scope, the callback is dispatched using the same shared instance that
is used to dispatch regular service requests.

As described Error! Reference source not found., a stateful callback can obtain information relating to
the original service request from parameters on the callback request. Alternatively, a composite-scoped
client could store information relating to the original request as instance data and retrieve it when the
callback request is received. These approaches could be combined by using a key passed on the
callback request (e.g., an order ID) to retrieve information that was stored in a composite-scoped instance
by the client code that made the original request.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 29 of 107

997

998
999
1000
1001

4.2.3 Implementing Multiple Bidirectional Interfaces

Since it is possible for a single class to implement multiple services, it is also possible for callbacks to be

defined for each of the services that it implements. To access the callbacks the

ServiceReference: :getCallback (serviceName) member function is used, passing in the name

of the service for which the callback is to be obtained.

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 30 of 107

1002

1003

1004
1005

1006

1007
1008
1009

1010

1011
1012

1013
1014

1015
1016
1017
1018
1019

1020
1021
1022
1023

5 Error Handling

Clients calling service operations will experience business exceptions, and SCA runtime exceptions.

Business exceptions are raised by the implementation of the called service operation. It is expected that
these will be caught by client invoking the operation on the service.

SCA runtime exceptions are raised by the SCA runtime and signal problems in the management of the
execution of components, and in the interaction with remote services. Currently the following SCA runtime
exceptions are defined:

e SCAException — defines a root exception type from which all SCA defined exceptions derive.

— SCANullPointerException — signals that code attempted to dereference a null pointer from a
RefCountingPointer object.

— ServiceRuntimeException - signals problems in the management of the execution of SCA
components.

e ServiceUnavailableException — signals problems in the interaction with remote
services. This extends ServiceRuntimeException. These are exceptions that could be
transient, so retrying is appropriate. Any exception that is a ServiceRuntimeException
thatis not a ServiceUnavailableException is unlikely to be resolved by retrying the
operation, since it most likely requires human intervention.

e MultipleServicesException — signals that a member function expecting identification of
a single service is called where there are multiple services defined. Thrown by
ComponentContext::getService (), ComponentContext::getSelfReference ()
and ComponentContext: :getServiceReference ().

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 31 of 107

1060

1061
1062

6 C++ API

All the C++ interfaces are found in the namespace oasis: : sca, which has been omitted from the
following descriptions for clarity.

6.1 Reference Counting Pointers

These are a derived version of the familiar smart-pointer. The pointer class holds a real (dumb) pointer to
the object. If the reference counting pointer is copied, then a duplicate pointer is returned with the same
real pointer. A reference count within the object is incremented for each copy of the pointer, so only when
all pointers go out of scope will the object be freed.

Reference counting pointers in SCA have the same name as the type they are pointing to, with a suffix of
Ptr. (E.g. ComponentContextPtr, ServiceReferencePtr).

RefCountingPointer defines member functions with raw pointer like semantics. This includes
defining operators for dereferencing the pointer (*, ->), as well as operators for determining the validity of
the pointer.

template <typename T>
class RefCountingPointer {

public:
T& operator* () const;
T* operator-> () const;
operator void* () const;
bool operator! () const;

o

template <typename T, typename U>
RefCountingPointer<T> constCast (RefCountingPointer<U> other) ;

template <typename T, typename U>
RefCountingPointer<T> dynamicCast (RefCountingPointer<U> other) ;

template <typename T, typename U>
RefCountingPointer<T> reinterpretCast (RefCountingPointer<U> other) ;

template <typename T, typename U>
RefCountingPointer<T> staticCast (RefCountingPointer<U> other) ;

The RefCountingPointer class has the following member functions:

6.1.1 operator*

A C++ component implementation uses the * operator to dereferences the underlying pointer of a
reference counting pointer. This is equivalent to calling *p where p is the underlying pointer.

Precondition C++ component instance is running and has a reference counting pointer

Return A reference to the value of the pointer

Throws SCANullPointerException if the pointer is NULL

Post Condition No change

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 32 of 107

1063

1064
1065
1066

1067

1068
1069

1070

1071
1072

1073

1074
1075

1076

1077
1078

6.1.2 operator->

A C++ component implementation uses the -> operator to invoke member functions on the underlying
pointer of a reference counting pointer. This is equivalent to invoking p->func () where func () isa
member function defined on the underlying pointer type.

Precondition C++ component instance is running and has a reference counting pointer
Return

Throws SCANullPointerException if the pointer is NULL

Post Condition The underlying member functions has been processed.

6.1.3 operator void*

A C++ component implementation uses the void* operator to determine if the underlying pointer of a
reference counting pointer is set, i.e. if (p) { /* do something */ }.

Precondition C++ component instance is running and has a reference counting pointer
Return Zero if the underlying pointer is null, otherwise a non-zero value
Post Condition No change

6.1.4 operator!

A C++ component implementation uses the ! operator to determine if the underlying pointer of a
reference counting pointer is not set,i.e. if (!p) { /* do something */ }.

Precondition C++ component instance is running and has a reference counting pointer
Return A non-zero value if the underlying pointer is null, otherwise zero
Post Condition No change

6.1.5 constCast

The constCast global function provides the semantic behavior of the const_cast operator for use with
RefCountingPointers.

Precondition C++ component instance is running and has a reference counting pointer
Return A RefCountingPointer instance templatized on the target type.
Post Condition No change

6.1.6 dynamicCast

The dynamicCast global function provides the semantic behavior of the dynamic_cast operator for use
with RefCountingPointers.

Precondition C++ component instance is running and has a reference counting pointer
Return A RefCountingPointer instance templatized on the target type. This can return
an invalid RefCountingPointer instance if the cast fails.
Post Condition No change
SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 33 of 107

1079 6.1.7 reinterpretCast

1080 The reinterpretCast global function provides the semantic behavior of the reinterpret_cast operator for
1081 use with RefCountingPointers.

Precondition C++ component instance is running and has a reference counting pointer
Return A RefCountingPointer instance templatized on the target type.
Post Condition No change

1082 6.1.8 staticCast

1083 The staticCast global function provides the semantic behavior of the static_cast operator for use with
1084 RefCountingPointers.

Precondition C++ component instance is running and has a reference counting pointer
Return A RefCountingPointer instance templatized on the target type.
Post Condition No change

1085 6.2 Component Context

1086 The following shows the ComponentContext interface.

1087
1088 class ComponentContext {
1089 public:
1090 static ComponentContextPtr getCurrent ();
1091
1092 virtual std::string getURI() const = 0;
1093
1094 virtual ServiceProxyPtr getService (
1095 const std::strings referenceName) const = 0;
1096 virtual std::list<ServiceProxyPtr> getServices (
1097 const std::strings referenceName) const = 0;
1098
1099 virtual ServiceReferencePtr getServiceReference (
1100 const std::string& referenceName) const = 0;
1101 virtual std::list<ServiceReferencePtr> getServiceReferences (
1102 const std::string& referenceName) const = 0;
1103
1104
1105 virtual DataObjectPtr getProperties() const = 0;
1106 virtual DataFactoryPtr getDataFactory() const = 0;
1107
1108 virtual ServiceReferencePtr getSelfReference() const = 0;
1109 virtual ServiceReferencePtr getSelfReference (
1110 const std::strings& serviceName)const = 0;
1111)
1112
1113 The ComponentContext C++ interface has the following member functions:
1114 6.2.1 getCurrent
1115 A C++ component implementation uses ComponentContext: :getCurrent () to geta
1116 ComponentContext object for itself.

Precondition C++ component instance is running

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 34 of 107

1117
1118

1119

1120
1121

1122

1123
1124

1125

1126
1127

Input Parameter

Return ComponentContext for the current component

Post Condition The component instance has a valid context object to use for subsequent runtime
calls.

6.2.2 getURI

A C++ component implementation uses getURT () to get an absolute URI for itself.

Precondition C++ component instance is running and has a ComponentContext

Input Parameter

Return Absolute URI for the current component

Post Condition No change

6.2.3 getService

A C++ component implementation uses getService () to get a service proxy implementing the interface
defined for a Reference.

Precondition C++ component instance is running and has a ComponentContext
Input Parameter referenceName Name of the Reference to get an interface object for
Return Pointer to a ServiceProxy implementing the interface of the Reference. This will

be NULL if referenceName is not defined for the component.

Throws MultipleServicesException if the reference resolves to more than one service

Post Condition A ServiceProxy object for the Reference is constructed. This ServiceProxy
object is independent of any ServiceReference that are obtained for the Reference.

6.2.4 getServices

A C++ component implementation uses getServices () to get a list of service proxies implementing the
interface defined for a Reference.

Precondition C++ component instance is running and has a ComponentContext
Input Parameter referenceName Name of the Reference to get an interface object for
Return List of pointers to ServiceProxy objects implementing the interface of the

Reference. This list will be empty if referenceName is not defined for the
component. Operations need to be invoked on each object in the list.

Post Condition ServiceProxy objects for the Reference are constructed. These ServiceProxy
objects are independent of any ServiceReferences that are obtained for the
Reference.

6.2.5 getServiceReference

A C++ component implementation uses getServiceReference () to geta ServiceReference fora
Reference.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 35 of 107

1128

1129
1130

1131
1132

1133

1134
1135

1136

1137
1138

Precondition

C++ component instance is running and has a ComponentContext

Input Parameter referenceName Name of the Reference to get a ServiceReference
for
Return ServiceReference for the Reference. This will be NULL if referenceName is
not defined for the component.
Throws MultipleServicesException if the reference resolves to more than one service

Post Condition

A ServiceReference for the Reference is constructed.

6.2.6 getServiceReferences

A C++ component implementation uses getServiceReferences () to get a list of
ServiceReference for a Reference.

Precondition

C++ component instance is running and has a ComponentContext

Input Parameter

referenceName Name of the Reference to get a list of

ServiceReferences for

Return

List of ServiceReferences for the Reference. This will be empty if
referenceName is not defined for the component.

Post Condition

ServiceReferences for the Reference are constructed.

6.2.7 getProperties

A C++ component implementation uses getProperties () to getits configured property values.

Precondition

C++ component instance is running and has a ComponentContext

Input Parameter

Return

An SDO [SDO21] from which all the properties defined in the componentType file
can be retrieved.

Post Condition

An SDO with the property values for the component instance is constructed.

6.2.8 getDataFactory

A C++ component implementation uses getDataFactory () to getits an SDO DataFactory which
can be used to create DataObjects for complex data types used by this component.

Precondition

C++ component instance is running and has a ComponentContext

Input Parameter

Return

An SDO DataFactory which has definitions for all complex data types used by a
component.

Post Condition

An SDO DataFactory is constructed

6.2.9 getSelfReference

A C++ component implementation uses getSelfReference ()10 get a ServiceReference for use
with some callback APIs.

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 36 of 107

1139
1140

1141

1152
1153

1138

1156
1157
1158
1159
1160
1161
1162
1163

1164
1165

1166
1167

1168
1169

There are two variations of this API.

Precondition C++ component instance is running and has a ComponentContext

Input Parameter

Return A ServiceReference for the service provided by this component.

Throws MultipleServicesException if the component implements more than one
Service

Post Condition A ServiceReference object is constructed

and

Precondition C++ component instance is running and has a ComponentContext

Input Parameter serviceName Name of the Service to get a ServiceReference for

Return A ServiceReference for the service provided by this component.

Post Condition A ServiceReference object is constructed

6.3 ServiceReference

The following shows the ServiceReference interface.

class ServiceReference {
public:
virtual ServiceProxyPtr getService() const = 0;

virtual ServiceProxyPtr getCallback() const = 0;
i

6.4 The ServiceReference interface has the following member
usage of these member functions is described in the section

The As%gm% %‘é&@éﬁo‘% ﬁ%‘?_% %%%P Qerr]wsc irgé?fggeas,tégﬂévidual operations to be marked

long-running using an @requires="asynclnvocation” intent, with the meaning that the operation(s) might
not complete in any specified time interval, even when the operations are request-response operations.

A client calling such an operation has to be prepared for any arbitrary delay between the time a request is
made and the time the response is received. To support this kind of operation three invocation styles are
available: asynchronous — the client provides a response handler, polling — the client will poll the SCA
runtime to determine if a response is available, and synchronous — the SCA runtime handles suspension
of the main thread, asynchronously receiving the response and resuming the main thread. The details of
each of these styles are provided in the following sections.

For a service operation with signature

<return type> <function name> (<parameters>) ;

the asynchronous invocation style includes a member function in the interface proxy class

<proxy class>::<response message name>Response <function name>Async (
<in parameters>);

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 37 of 107

where <response message name>Response is the response class for the operation as defined by
Response Class. The client uses this member function to issue a request through the SCA runtime. The
response is returned immediately, and can be used to access the response when it becomes available.

An SCA runtime MUST include an asynchronous invocation member function for every operation of a
reference interface with a @requires="asynclnvocation”intent applied either to the operation or the
reference as a whole. [CPP30003]

The following shows a sample proxy class interface providing an asynchronous API.

using namespace oasis::sca;
using namespace commonj: :sdo;

class CustomerServiceProxy : public ServiceProxy {
public:

b

// synchronous member function
virtual short getCreditRating(unsigned long customerNumber) = 0;

// forward declare callback class
class getCreditRatingCallback;

// asynchronous response object
class getCreditRatingResponse {

public:
// I0U/Future member functions
virtual void cancel() = 0;
virtual bool isCancelled() = 0;
virtual bool isReady() = 0;

virtual void setCallback (getCreditRatingCallbackPtr callback)

virtual short getReturn() = 0;

}i

// asynchronous callback object
class getCreditRatingCallback {
public:
virtual void invoke (getCreditRatingResponsePtr) = 0;

}i

// asynchronous member function

virtual getCreditRatingResponsePtr getCreditRatingAsync (unsigned long

customerNumber) = 0;

The following shows a sample of how the asynchronous invocation style is used in a C++ component
implementation.

#include “ComponentContext.h”
#include “CustomerServiceProxy.h”

using namespace oasis::sca;

void clientFunction ()

{

ComponentContextPtr context = ComponentContext::getCurrent () ;

ServiceProxyPtr service = context->getService ("customerService");

CustomerServiceProxyPtr customerService =
dynamicCast<CustomerServiceProxy> (service) ;

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 38 of 107

if (customerService) {
getCreditRatingResponsePtr response =
customerService->getCreditRatingAsync (1234) ;

/) oo
}

Once a response object has been returned, the user can use the provided APl in order to set a callback
object to be invoked when the response is ready, to poll the variable waiting for the response to become

available, or to block the current thread waiting for the response to become available.

6.4.1 Response Callback

If a callback is specified on a response object, that callback will be invoked when the response is received

by the runtime. The following example demonstrates creating a response object and setting it on a
response instance:

#include "ComponentContext.h"
#include "CustomerServiceProxy.h"

using namespace oasis::sca;

class CreditRatingCallback :
public CustomerServiceProxy::getCreditRatingCallback {

virtual void invoke (getCreditRatingResponsePtr response) {
try {
short rating = response->getReturn() ;
}
catch (...) {
10 oo
}
}
}i

void clientFunction ()

{

ComponentContextPtr context = ComponentContext::getCurrent ()

ServiceProxyPtr service = context->getService ("customerService");
CustomerServiceProxyPtr customerService =
dynamicCast<CustomerServiceProxy> (service) ;

if (customerService) {
CustomerServiceProxy::getCreditRatingResponsePtr response
customerService->getCreditRatingAsync (1234) ;

CustomerServiceProxy: :getCreditRatingCallbackPtr callback =
new CreditRatingCallback() ;

response->setCallback (callback) ;

7Y ooo

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 39 of 107

6.4.2 Response Polling

A client can poll a response object in order to determine if a response has been received.

#include "ComponentContext.h"
#include "CustomerServiceProxy.h"

using namespace oasis::sca;
void clientFunction ()

{

ComponentContextPtr context = ComponentContext::getCurrent () ;

ServiceProxyPtr service = context->getService ("customerService");

CustomerServiceProxyPtr customerService =
dynamicCast<CustomerServiceProxy> (service) ;

if (customerService) {
CustomerServiceProxy: :getCreditRatingResponsePtr response =
customerService->getCreditRatingAsync (1234) ;

while (!response->isReady()) {
// do something else

}

// The response is ready and can be accessed without blocking.

try {
short rating = response->getReturn () ;
}
catch (...) {
//
}

6.4.3 Synchronous Response Access

If a client chooses to block until a response becomes available, they can attempt to access a part of the
response object. If the response has not been received, the call will block until the response is available.

Once the response is received and the response object is populated, the call will return.
#include "ComponentContext.h"
#include "CustomerServiceProxy.h"
using namespace oasis::sca;
void clientFunction ()

{

ComponentContextPtr context = ComponentContext::getCurrent ()

ServiceProxyPtr service = context->getService ("customerService");

CustomerServiceProxyPtr customerService =
dynamicCast<CustomerServiceProxy> (service) ;

if (customerService) {
CustomerServiceProxy: :getCreditRatingResponsePtr response =
customerService->getCreditRatingAsync (1234) ;

// The response is ready and can be accessed without blocking.

try {
short rating = response->getReturn() ;

}

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 40 of 107

1372

1373
1374

1375

1376
1377

catch (...) {
/] ...

6.4.4 Response Class

The proxy for an interface includes a response class for a response message type returned by an
operation that can be invoked asynchronously. A response class presents the following interface to the
client component.

class <response message name>Response {

public:
virtual <response message type> getReturn() const = 0;
virtual void setCallback (<response message name>CallbackPtr callback) = 0;
virtual boolean isReady () const = 0;
virtual void cancel () const = 0;
virtual boolean isCancelled() const = 0;

}i

An SCA runtime MUST include a response class for every response message of a reference interface
that can be returned by an operation of the interface with a @requires="asyncinvocation”intent applied
either to the operation of the reference as a whole. [CPP30004]

6.4.4.1 getReturn

A C++ component implementation uses getReturn () to retrieve the response data for an asynchronous
invocation.

Precondition C++ component instance is running and has an outstanding asynchronous call

Input Parameter

Return Response data for the operation.
Throws Any exceptions defined for the operation.
Post Condition The response object is marked as done.

6.4.4.2 setCallback

A C++ component implementation uses setCallback () to set a callback object for an asynchronous
invocation.

Precondition C++ component instance is running and has an outstanding asynchronous call
Input Parameter callback A pointer to the callback object for the response
Return

Post Condition The response object is marked as done.

6.4.4.3 isReady

A C++ component implementation uses isReady () to determine if the response data for an polling
invocation is available.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 41 of 107

1378
1379

1380

1381
1382

1383

1384

1385
1386

1387

1388
1389

Precondition C++ component instance is running and has an outstanding polling call

Input Parameter

Return True if the response is avaialble
Post Condition No change
6.4.4.4 cancel

A C++ component implementation uses cancel () to cancel an outstanding invocation.

Precondition C++ component instance is running and has an outstanding asynchronous call

Input Parameter

Return

Post Condition If a response is subsequently received for the operation, it will be discarded.

6.4.4.5 isCancelled

A C++ component implementation uses isCancelled () to determine if another thread has cancelled an
outstanding invocation.

Precondition C++ component instance is running and has an outstanding asynchronous call

Input Parameter

Return True if the operation has been cancelled

Post Condition No change

Asynchronous Programming):

6.4.5 getService

A C++ component implementation uses getService () to get a service proxy implementing the interface
defined for a ServiceReference.

Precondition C++ component instance is running and has a ServiceReference

Input Parameter

Return Pointer to a ServiceProxy implementing the interface of the
ServiceReference.

Post Condition A ServiceProxy object for the ServiceReference is constructed.

6.4.6 getCallback

A C++ component implementation uses getCallback () to get a service proxy implementing the
callback interface defined for a ServiceReference.

Precondition C++ component instance is running and has a ServiceReference

Input Parameter

Return Pointer to a ServiceProxy implementing the callback interface of the
ServiceReference. This will be NULL if no callback interface is defined.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 42 of 107

1390
1391

1392
1393
1394
1395
1396

1397

1398
1399

Post Condition A ServiceProxy object for the callback interface of the ServiceReference is
constructed.

6.5 DomainContext

The following shows the DomainContext interface.

class DomainContext {
public:
virtual ServiceProxyPtr getService (
const std::stringé& serviceURI) const = 0;
bi

6.5.1 getService

Non-SCA C++ code uses getService () to get a service proxy implementing the interface of a service
in an SCA domain.

Precondition None
Input Parameter serviceURI URI of the Service to get an interface object for
Return Pointer to a ServiceProxy object implementing the interface of the Service. This

will be NULL if serviceURI is not defined in the domain.

Post Condition A ServiceProxy object for the Service is constructed.

6.6 SCAException

The following shows the SCAException interface.

class SCAException : public std::exception {

public:
const char* getEClassName () const;
const char* getMessageText () const;
const char* getFileName () const;

unsigned long getLineNumber () const;
const char* getFunctionName () const;
bi

The SCAException C++ interface has the following member functions (the details concerning this class
and its derived types are described in the section Error! Reference source not found.):

6.6.1 getEClassName

A C++ component implementation uses getEClassName () to get the name of the exception type.

Precondition C++ component instance is running and has caught an SCA Exception

Input Parameter

Return The type of the exception as a string. e.g. “ServiceUnavailableException”
Post Condition No change
SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 43 of 107

1416

1417
1418

1419

1420
1421

1422

1423
1424

1425

1426
1427

1428

1429
1430

6.6.2 getMessageText

A C++ component implementation uses getMessageText () to get any message included with the
exception.

Precondition C++ component instance is running and has caught an SCA Exception

Input Parameter

Return The message which the SCA runtime attached to the exception

Post Condition No change

6.6.3 getFileName

A C++ component implementation uses getFileName () to get the flename containing the function
where the exception occurred.

Precondition C++ component instance is running and has caught an SCA Exception

Input Parameter

Return The filename within which the exception occurred — Will be an empty string if the
filename is not known

Post Condition No change

6.6.4 getLineNumber

A C++ component implementation uses getLineNumber () to get the line number in the source file
where the exception occurred.

Precondition C++ component instance is running and has caught an SCA Exception

Input Parameter

Return The line number at which the exception occurred — Will O if the line number is not
known
Post Condition No change

6.6.5 getFunctionName

A C++ component implementation uses getFunctionName () to get the function name where the
exception occurred.

Precondition C++ component instance is running and has caught an SCA Exception

Input Parameter

Return The function name in which the exception occurred — Will be an empty string if the
function name is not known

Post Condition No change

6.7 SCANullPointerException

The following shows the SCANullPointerException interface.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 44 of 107

1431
1432

1433

1434
1435
1436

1437
1438

1439
1440
1441

1442
1443

1444
1445
1446

1447
1448

class SCANullPointerException : public SCAException {
}i

6.8 ServiceRuntimeException

The following shows the ServiceRuntimeException interface.

class ServiceRuntimeException : public SCAException {

i

6.9 ServiceUnavailableException

The following shows the ServiceUnavailableException interface.

class ServiceUnavailablException : public ServiceRuntimeException ({

b

6.10 MultipleServicesException

The following shows the MultipleServicesException interface.

class MultipleServicesException : public ServiceRuntimeException {
bi

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 45 of 107

7 C++ Contributions

Contributions are defined in the Assembly specification [ASSEMBLY]. C++ contributions are typically, but
not necessarily contained in .zip files. In addition to SCDL and potentially WSDL artifacts, C++
contributions include binary executable files, componentType files and potentially C++ interface headers.
No additional discussion is needed for header files, but here are some additional considerations for
executable and componentType files discussed in the following sections.

7.1 Executable files

Executable files containing the C++ implementations for a contribution can be contained in the
contribution, contained in another contribution or external to any contribution. In some cases, it could be
desirable to have contributions share an executable. In other cases, an implementation deployment
policy might dictate that executables are placed in specific directories in a file system.

7.1.1 Executable in contribution

When the executable file containing a C++ implementation is in the same contribution, the @path
attribute of the implementation.cpp element is used to specify the location of the executable. The specific
location of an executable within a contribution is not defined by this specification.

The following shows a contribution containing a DLL.

META-INF/
sca-contribution.xml
bin/
autoinsurance.dll
AutoInsurance/
AutoInsurance.composite
AutoInsuranceService/
AutoInsurance.h
AutoInsuranceImpl.componentType
include/
Customers.h
Underwriting.h
RateUtils.h

The SCDL for the AutolnsuranceService component is:

<component name="AutoInsuranceService">
<implementation.cpp library="autoinsurance" path="bin/"
class="AutoInsuranceImpl” />
</component>

7.1.2 Executable shared with other contribution(s) (Export)

If a contribution contains an executable that also implements C++ components found in other
contributions, the contribution has to export the executable. An executable in a contribution is made
visible to other contributions by adding an export.cpp element to the contribution definition as shown in
the following snippet.

<contribution>
<deployable composite="myNS:RateUtilities"
<export.cpp name="contribNS:rates" >
</contribution>

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 46 of 107

It is also possible to export only a subtree of a contribution. If a contribution contains the following:

META-INF/
sca-contribution.xml
bin/
rates.dll
RateUtilities/
RateUtilities.composite
RateUtilitiesService/
RateUtils.h
RateUtilsImpl.componentType

An export of the form:

<contribution>
<deployable composite="myNS:RateUtilities"
<export.cpp name="contribNS:ratesbin" path="bin/" >
</contribution>

only makes the contents of the bin directory visible to other contributions. By placing all of the executable
files of a contribution in a single directory and exporting only that directory, the amount of information
contribution that uses the exported executable files is limited. This is considered a best practice.

7.1.3 Executable outside of contribution (Import)

When the executable that implements a C++ component is located outside of a contribution, the
contribution MUST import the executable. If the executable is located in another contribution, the
import.cpp element of the contribution definition uses a @location attribute that identifies the name of the
export as defined in the contribution that defined the export as shown in the following snippet.

<contribution>
<deployable composite="myNS:Underwriting"
<import.cpp name="rates" location="contribNS:rates">
</contribution>

The SCDL for the UnderwritingService component is:

<component name="UnderwritingService">
<implementation.cpp library="rates" path="rates:bin/"
class="UnderwritingImpl” />
</component>

If the executable is located in the file system, the @location attribute identifies the location in the files
system used as the root of the import as shown in this snippet.

<contribution>
<deployable composite="myNS:CustomerUtilities"
<import.cpp name="usr-bin" location="/usr/bin/" >
</contribution>

7.2 componentType files

As stated in section 2.5, each component implemented in C++ has a corresponding componentType file.
This componentType file is, by default, located in the root directory of the composite containing the

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 47 of 107

1578
1579
1580

1581

1582
1583

1584
1585

1586
1587

1588
1589

1590
1591

component or a subdirectory of the composite root with the name <implementation
class>.componentType, as shown in the following example.

META-INF/
sca-contribution.xml
bin/
autoinsurance.dll
AutoInsurance/
AutoInsurance.composite
AutoInsuranceService/
AutoInsurance.h
AutoInsuranceImpl.componentType

The SCDL for the AutolnsuranceService component is:

<component name="AutoInsuranceService">
<implementation.cpp library="autoinsurance" path="bin/"
class="AutoInsuranceImpl” />
</component>

Since there is a one-to-one correspondence between implementations and componentTypes, when an
implementation is shared between contributions, it is desirable to also share the componentType file.
ComponentType files can be exported and imported in the same manner as executable files. The
location of a .componentType file can be specified using the @componentType attribute of the
implementation.cpp element.

<component name="UnderwritingService">
<implementation.cpp library="rates" path="rates:bin/"
class="UnderwritingImpl” componentType="rates:types/UnderwritingImpl"
/>

</component>

7.3 C++ Contribution Extensions

7.3.1 Export.cpp

The following snippet shows the schema for the C++ export element used to make an executable or
componentType file visible outside of a contribution.

<?xml version="1.0" encoding="ASCII"?>
<!—- export.cpp schema snippet -->

<export.cpp xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903"
name="QName" path="string"? >

The export.cpp element has the following attributes:

e name : QName (1..1) — name of the export. The@name attribute of a <export.cpp/> element MUST
be unigue amongst the <export.cpp/> elements in a domain. [CPP70001]

e path : string (0..1) — path of the exported executable relative to the root of the contribution. If not
present, the entire contribution is exported.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 48 of 107

1592

1593
1594
1595

1596
1597

1598
1599

1600
1601

1602
1603
1604

1605
1606

7.3.2 Import.cpp

The following snippet shows the schema for the C++ import element used to reference an executable or
componentType file that is outside of a contribution.

<?xml version="1.0" encoding="ASCII"?>
<!—- import.cpp schema snippet -->

<import.cpp xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903"
name="QName" location="string" >

The import.cpp element has the following attributes:

e name: QName (1..1) — name of the import. The@name attribute of a <import.cpp/> child element of
a <contribution/> MUST be unique amongst the <import.cpp/> elements in of that contribution.
[CPP70002]

e location : string (1..1) — either the QName of a export or a file system location. If the value does not
match an export name it is taken as an absolute file system path.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 49 of 107

1607

1608
1609

1610

1611
1612

1613
1614

1615

1616
1617

1618

1619
1620

1621
1622

1623

1624
1625
1626

1627

1628
1629

1630
1631

1632
1633

8 Types Supported in Service Interfaces

A service interface can support a restricted set of the types available to a C++ programmer. This section
summarizes the valid types that can be used.

8.1 Local service

The return type and types of the parameters of a member function of a local service interface MUST be
one of:

e Any of the C++ primitive types (for example, int, short, char). In this case the data will be passed
by value as is normal for C++.

e Pointers to any of the C++ primitive types (for example, int *, short *, char *).

e The const keyword can be used for any pointer to a C++ primitive type (for example const char
*). If this is used on a parameter then the destination can not change the value.

e C++ class. The class will be passed by value as is normal for C++.

e Pointer to a C++ class. A pointer will be passed to the destination which can then modify the original
contents.

e DataObjectPtr. An SDO pointer. This will be passed by reference.
o References to C++ classes (passed by reference). [CPP80001]

8.2 Remotable service

For a remotable service being called by another service the data exchange semantics is by-value. The
return type and types of the parameters of a member function of a remotable service interface MUST be
one of:

e Any of the C++ primitive types (for example, int, short, char). This will be copied.

e DataObjectPtr. An SDO pointer. The SDO will be copied and passed to the destination.
[CPP80002]

Unless the interface is marked as allowing pass by reference semantics, the behavior of the following are
not defined:

e Pointers.
e References.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 50 of 107

1634

1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

9 Restrictions on C++ header files

A C++ header file that is used to describe an interface has some restrictions.
A C++ header file used to define an interface MUST:
e Declare at least one class with:

— At least one public member function.

— All public member functions MUST be pure virtual (virtual with no implementation) [CPP90001]

A C++ header file used to define an interface MUST NOT use the following constructs:
e Macros

e Inline member functions

e Friend classes [CPP90002]

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 51 of 107

1645

1646
1647
1648
1649
1650

1651
1652
1653

1654
1655
1656

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668

1669
1670

1671
1672
1673

1674
1675
1676
1677

1678

1679

1680
1681
1682
1683
1684

10WSDL to C++ and C++ to WSDL Mapping

The SCA Client and Implementation Model for C++ applies the WSDL to Java and Java to WSDL
mapping rules (augmented for C++) as defined by the JAX-WS specification [JAXWS21] for generating
remotable C++ interfaces from WSDL portTypes and vice versa. Use of the JAX-WS specification as a
guideline for WSDL to C++ and C++ to WSDL mappings does not imply that any support for the Java
language is mandated by this specification.

For the purposes of the Java-to-WSDL mapping algorithm, the interface is treated as if it had a
@WebService annotation on the class, even if it doesn't. For the WSDL-to-Java mapping, the generated
@WebService annotation implies that the interface is @Remotable.

For the mapping from C++ types to XML schema types SCA supports the SDO 2.1 [SDO21] mapping. A
detailed mapping of C++ to WSDL types and WSDL to C++ types is covered in section SDO Data
Binding.

The following limitations apply:

o JAX-WS style external binding files are not supported. (See JAX-WS Sec. 2)

e MIME binding is not supported. (See JAX-WS Sec. 2.1.1)

e Holder classes are not supported. (See JAX-WS Sec. 2.3.3)

e Asynchronous mapping is not supported. (See JAX-WS Sec. 2.3.4)

e Generation of Service classes from WSDL is not supported. (See JAX-WS Sec. 2.7)

¢ Generation of WSDL from Service implementation classes is not supported (See JAX-WS Sec. 3.3)
e Templates are not supported when converting from C++ to WSDL (See JAX-WS Sec. 3.9)
The following general rules apply to the application of JAX-WS to C++.

e References to Java are considered references to C++.

o References to Java classes are considered references to C++ classes.

o References to Java methods are considered references to C++ member functions.

o References to Java interfaces are considered references to C++ classes which only define pure
virtual member functions.

e For the purposes of the C++-to-WSDL mapping algorithm, a C++ class with only pure-virtual functions
and no state is treated as if it had a @WebService annotation on the class. All default values are
assumed for the @WebService annotation.

Major divergences from JAX-WS:

e Algorithms for converting WSDL namespaces to C++ namespaces (and vice-versa).
e Mapping of WSDL faults to C++ exceptions and vice-versa.

e Managing of data bindings.

10.1 Augmentations for WSDL to C++ Mapping

10.1.1 Mapping WSDL targetNamespace to a C++ namespace

Since C++ does not define a standard convention for the use of namespaces, the SCA specification does
not define an implicit mapping of WSDL targetNamespaces to C++ namespaces. A WSDL file might
define a namespace using the <sca:namespace> WSDL extension, otherwise all C++ classes MUST be
placed in a default namespace as determined by the implementation. Implementations SHOULD provide
a mechanism for overriding the default namespace. [CPP100001]

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 52 of 107

1685 10.1.2 Mapping WSDL Faults to C++ Exceptions

1686 WSDL operations that specify one or more <wsdl:fault> elements will produce a C++ member function
1687 thatis annotated with an @WebThrows annotation listing a C++ exception class associated with each
1688 <wsdl:fault>.

1689 The C++ exception class associated with a fault will be generated based on the message that is
1690 associated with the <wsdl:fault> element, and in particular with the global element that the
1691 wsd:fault/wsdl:message/@part indicates.

1692

1693 FaultException(const char* message, const FaultInfo& faultInfo);
1694 FaultInfo getFaultInfo() const;

1695

1696 Where FaultException is the name of the generated exception class, and where Faultinfo is the name of
1697 the C++ type representing the fault’'s global element type.

1698 10.1.2.1 Multiple Fault References

1699 If multiple operations within the same portType indicate that they throw faults that reference the same
1700 global element, an SCA implementation MUST generate a single C++ exception class with each C++
1701 member function referencing this class in its @WebThrows annotation. [CPP100002]

1702 10.1.3 Mapping of in, out, in/fout parts to C++ member function
1703 parameters
1704 C++ diverges from the JAX-WS specification in it's handling of some parameter types, especially around

1705 how passing of out and in/out parameters are handled in the context of C++’s various pass-by styles.
1706 The following outlines an updated mapping for use with C++.

1707 e For unwrapped messages, an SCA implementation MUST map:

1708 — in - the message part to a member function parameter, passed by const-reference.

1709 — out - the message part to a member function parameter, passed by reference, or to the member
1710 function return type, returned by-value.

1711 — in/out - the message part to a member function parameter, passed by reference. [CPP100003]

1712

1713 e For wrapped messages, an SCA implementation MUST map:

1714 — in - the wrapper child to a member function parameter, passed by const-reference.

1715 — out - the wrapper child to a member function parameter, passed by reference, or to the member
1716 function return type, returned by-value.

1717 — infout - the wrapper child to a member function parameter, passed by reference. [CPP100004]

1718 10.2 Augmentations for C++ to WSDL Mapping

1719 10.2.1 Mapping C++ namespaces to WSDL namespaces

1720 Since C++ does not define a standard convention for the use of namespaces, the SCA specification does
1721 not define an implicit mapping of C++ namespaces to WSDL namespace URIs. The default

1722 targetNamespace is defined by the implementation. An SCA implementation SHOULD provide a

1723 mechanism for overriding the default targetNamespace. [CPP100005]

1724 10.2.2 Parameter and return type classification

1725 The classification of parameters and return types in C++ are determined based on how the value is
1726 passed into the function.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 53 of 107

1727
1728
1729

1730

1731

1732
1733

1734

1735
1736
1737
1738
1739

1740

1741

1742
1743

1744

An SCA implementation MUST map a method’s return type as an out parameter, a parameter passed by-
reference or by-pointer as an in/out parameter, and all other parameters, including those passed by-
const-reference as in parameters. [CPP100006]

An application can customize parameter classification using the @WebParam annotation.

10.2.3 C++ to WSDL Type Conversion

C++ types are mapped to WSDL and schema types based on the mapping described in Section Simple
Content Binding.

10.2.4 Service-specific Exceptions

C++ classes that define a web service interface can indicate which faults they might throw using the
@WebThrows annotation. @WebThrows lists the names of each C++ class that might be thrown as a
fault from a particular member function. An SCA implementation MUST ensure each class that is
referenced from an @WebThrows annotation MUST itself have a @WebFault annotation that associates
the fault with a particular global element that will be associated with the fault message. [CPP100007]

10.3SDO Data Binding
10.3.1 Simple Content Binding

The translation of XSD simple content types to C++ types follows the convention defined in the SDO
specification. The following table summarizes that mapping as it applies to SCA services.

XSD Schema Type A4 C++ Type A XSD Schema Type
anySimpleType std::string string

anyType commonj::sdo::DataObject anyType

anyURI std::string string

base64Binary char* string

boolean bool boolean

byte int8_t byte

date std::string string

dateTime std::string string

decimal std::string string

double double double

duration std::string string

ENTITIES std::list<std::string> IDREFS

ENTITY std::string string

float float float

gDay std::string string

gMonth std::string stirng

gMonthDay std::string string

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 54 of 107

1745
1746

gYear std::string string
gYearMonth std::string string
hexBinary char* string

ID std::string string

IDREF std::string string
IDREFS std::list<std::string> IDREFS

int int32_t int

integer std::string string
language std::string string

long int64_t long

Name std::string string
NCName std::string string
negativelnteger std::string string
NMTOKEN std::string string
NMTOKENS std::list<std::string> IDREFS
nonNegativelnteger std::string string
nonPositivelnteger std::string string
normalizedString std::string string
NOTATION std::string string
positivelnteger std::string string
QName std::string string

short int16 t short

string std::string string

time std::string string

token std::string string
unsignedByte uint8_t unsignedByte
unsignedint uint32_t unsignedint
unsignedLong uinté4_t unsignedLong
unsignedShort uintl6 t unsignedShort

Table 1: XSD simple type to C++ type mapping

C++Type A4

XSD Schema Type

char

string

SCA Client and Implementation Model Specification for C++ Version 1.1

Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 55 of 107

1747

1748

1749
1750
1751
1752

1753
1754

1755
1756

wchar_t string

signed char byte

unsigned char unsignedByte
short short
unsigned short unsignedShort
int int

unsigned int unsignedint
long long

unsigned long

unsignedLong

long long

long

unsigned long long

unsignedLong

wchar_t* string
long double decimal
time_t dateTime
struct tm dateTime

Table 2: C++ type to XSD type mapping

The C++ standard does not define value ranges for integer types so it is possible that on a platform
parameters or return values could have values that are out of range for the default XSD schema type. In
these circumstances, the mapping would need to be customized, using @WebParam or @WebResult if

supported, or some other implementation-specific mechanism.

An SCA implementation MUST map simple types as defined in Table 1 and Table 2 by default.

[CPP100008]

10.3.2

Any XSD complex types are mapped to an instance of an SDO DataObject.

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

Complex Content Binding

19 March 2009
Page 56 of 107

1757 11 Conformance

1758 An SCA implementation MUST reject a composite file that does not conform to http://docs.oasis-
1759 open.org/opencsal/sca/200903/sca-interface-cpp-1.1.xsd or http://docs.oasis-
1760 open.org/opencsa/sca/200903/sca-implementation-cpp-1.1.xsd. [CPP110001]

1761 An SCA implementation MUST reject a componentType or constraining type file that does not conform to
1762 http://docs.oasis-open.org/opencsa/sca/200903/sca-interface-cpp-1.1.xsd. [CPP110002]

1763 An SCA implementation MUST reject a contribution file that does not conform to http://docs.oasis-
1764 open.org/opencsa/sca/200903/sca-contribution-cpp-1.1.xsd. [CPP110003]

1765 An SCA implementation MUST reject a WSDL file that does not conform to http://docs.oasis-
1766 open.org/opencsal/sca-c-cpp/cpp/200901/sca-wsdlext-cpp-1.1.xsd. [CPP110004]

1767 11.1Conformance Targets

1768 The conformance targets of this specification are:

1769 e SCA implementations, which provide a runtime for SCA components and potentially tools for
1770 authoring SCA artifacts, component descriptions and/or runtime operations.

1771 e SCA documents, which describe SCA artifacts, and specific elements within these documents.
1772 e C++ component implementations, which execute under the control of an SCA runtime.

1773 o C++files, which define SCA service interfaces and implementations.

1774 e WSDL files, which define SCA service interfaces.

1775 11.2SCA Implementations

1776 Animplementation conforms to this specification if it meets the following conditions:

1777 1. It MUST conform to the SCA Assembly Model Specification [ASSEMBLY] and the SCA Policy
1778 Framework [POLICY].

1779 2. It MUST comply with all statements in Conformance Items related to an SCA implementation.
1780 3. It MUST implement the SCA C++ API defined in section C++ API.

1781 4. It MUST implement the mapping between C++ and WSDL 1.1 [WSDL11] defined in WSDL to C++
1782 and C++ to WSDL Mapping.

1783 5. It MUST support <interface.cpp/> and <implementation.cpp/> elements as defined in Component
1784 Type and Component in composite, componentType and constrainingType documents.

1785 6. It MUST support <export.cpp/> and <import.cpp/> elements as defined in C++ Contributions in
1786 contribution documents.

1787 7. It MAY support source file annotations as defined in C++ SCA Annotations, C++ SCA Policy
1788 Annotations and C++ WSDL Mapping Annotations.

1789 8. It MAY support WSDL extentsions as defined in WSDL C++ Mapping Extensions.

1790 11.3SCA Documents

1791 An SCA document conforms to this specification if it meets the following conditions:

1792 9. It MUST conform to the SCA Assembly Model Specification [ASSEMBLY] and, if appropriate, the
1793 SCA Policy Framework [POLICY].

1794 10. Ifitis a composite document, it MUST conform to the http://docs.oasis-

1795 open.org/opencsal/sca/200903/sca-interface-cpp-1.1.xsd and http://docs.oasis-
1796 open.org/opencsa/sca/200903/sca-implementation-cpp-1.1.xsd schema and MUST comply with the
1797 additional constraints on the document contents as defined in Conformance Items.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 57 of 107

http://docs.oasis-open.org/opencsa/sca/200903/sca-interface-cpp-1.1.xsd
http://docs.oasis-open.org/opencsa/sca/200903/sca-interface-cpp-1.1.xsd
http://docs.oasis-open.org/opencsa/sca/200903/sca-implementation-cpp-1.1.xsd
http://docs.oasis-open.org/opencsa/sca/200903/sca-implementation-cpp-1.1.xsd

1798
1799
1800

1801
1802
1803

1804

1805
1806

1807

1808
1809
1810

If it is a componentType or constrainingType document, it MUST conforms to the http://docs.oasis-
open.org/opencsa/sca/200903/sca-interface-cpp-1.1.xsd schema and MUST comply with the
additional constraints on the document contents as defined in Conformance Items.

If it is a contribution document, it MUST conforms to the http://docs.oasis-
open.org/opencsa/sca/200903/sca-contribution-cpp-1.1.xsd schema and MUST comply with the
additional constraints on the document contents as defined in Conformance Items.

11.4C++ Files

A C++ files conforms to this specification if it meets the following conditions:
1. It MUST comply with all statements in Conformance Items related to C++ contents and annotations .

11.5WSDL Files

A WSDL file conforms to this specification if it meets the following conditions:
1. Itisavalid WSDL 1.1 [WSDL11] document.
2. 1t MUST comply with all statements in Conformance Items related to WSDL contents and extensions.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 58 of 107

http://docs.oasis-open.org/opencsa/sca/200903/sca-interface-cpp-1.1.xsd
http://docs.oasis-open.org/opencsa/sca/200903/sca-interface-cpp-1.1.xsd
http://docs.oasis-open.org/opencsa/sca/200903/sca-contribution-cpp-1.1.xsd
http://docs.oasis-open.org/opencsa/sca/200903/sca-contribution-cpp-1.1.xsd

1811

1812
1813
1814
1815
1816
1817
1818

1849

1850
1851
1852

A C++ SCA Annotations

To allow developers to define SCA related information directly in source files, without having to separately
author SCDL files, a set of annotations is defined. If annotations are supported by an implementation, the
annotations defined here MUST be supported and MUST be mapped to SCDL as described. The SCA
runtime MUST only process the SCDL files and not the annotations. [CPPA0001]

The annotations are defined as C++ comments in interface and implementation header files, for example:

// @Scope ("stateless")

A.l1 Application of Annotations to C++ Program Elements

In general an annotation immediately precedes the program element it applies to. If multiple annotations
apply to a program element, all of the annotations SHOULD be in the same comment block. [CPPA0002]

e Class
The annotation immediately precedes the class.
Example:
// @Scope ("composite")
class LoanServiceImpl : public LoanService {
bi
e Member function
The annotation immediately precedes the member function.
Example:

class LoanService

{
public:
// @OneWay
virtual void reportEvent (int eventId) = 0;
bi
e Data Member
The annotation immediately precedes the data member.
Example:

// @Property(name="loanType", type="xsd:int")
long loanType;

Annotations follow normal inheritance rules. An annotation on a base class or any element of a base
class applies to any classes derived from the base class.

A.2 Interface Header Annotations

This section lists the annotations that can be used in the header file that defines a service interface.

A.2.1 @Interface

Annotation used to indicate a class defines an interface when multiple classes exist in a header file. An
SCA implementation MUST treat a class with an @WebService annotation specified as if an @Interface
annotation was specified. [CPPA0003]

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 59 of 107

1853 Corresponds to: @class attribute of an interface.cpp element.
1854 Format:

1855 // @Interface

1856 Applies to: Class

1857 Example:

1858 Interface header:

1859 // @Interface

1860 class LoanService {

1861 ..

1862 }s

1863

1864 Service definition:

1865 <service name="LoanService">

1866 <interface.cpp header="LoanService.h" class="LoanService" />
1867 </service>

1868 A.2.2 @Remotable

1869 Annotation on service interface class to indicate that a service is remotable.
1870 Corresponds to: @remotable="true” attribute of an interface.cpp element.
1871 Format:

1872 // @Remotable

1873 The default is false (not remotable).

1874 Applies to: Class

1875 Example:

1876 Interface header:

1877 // @Remotable

1878 class LoanService {

1879 ..

1880 g

1881

1882 Service definition:

1883 <service name="LoanService">

1884 <interface.cpp header="LoanService.h" remotable="true" />
1885 </service>

1886 A.2.3 @Callback

1887 Annotation on a service interface class to specify the callback interface.

1888 Corresponds to: @callbackHeader and @callbackClass attributes of an interface.cpp element.
1889 Format:

1890 // @Callback (header="headerName", class="className")

1891 where

1892 e headerName: (1..1) 7 is the name of the header defining the callback service interface.
1893 e className: (0..1) i is the name of the class for the callback interface.

1894 Applies to: Class

1895 Example:

1896 Interface header:
1897 // @Callback (header="MyServiceCallback.h", class="MyServiceCallback")
SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 60 of 107

class MyService {
public:
virtual void someFunction(unsigned int arg) = 0;

b:

Service definition:

<service name="MyService">
<interface.cpp header="MyService.h"
callbackHeader="MyServiceCallback.h"
callbackClass="MyServiceCallback" />
</service>

A.2.4 @OneWay
Annotation on a service interface member function to indicate the member function is one way. The
@OneWay annotation also affects the representation of a service in WSDL, see @OneWay.
Corresponds to: @oneWay="true” attribute of function element of an interface.cpp element.
Format:

// @OneWay
The default is false (not OneWay).
Applies to: Member function
Example:

Interface header:

class LoanService

{
public:
// @OneWay
virtual void reportEvent (int eventId) = 0;

bi

Service definition:

<service name="LoanService">
<interface.cpp header="LoanService.h">
<function name="reportEvent" oneWay="true" />
</interface.cpp>
</service>

A.3 Implementation Header Annotations

This section lists the annotations that can be used in the header file that defines a service
implementation.

A.3.1 @ComponentType
Annotation used to indicate which class implements a componentType when multiple classes exist in an
implementation file.
Corresponds to: @class attribute of an implementation.cpp element.
Format:
// @ComponentType
Applies to: Class

Example:

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 61 of 107

Implementation header:

// @ComponentType
class LoanServiceImpl : public LoanService {

I

Component definition:

<component name="LoanService">
<implementation.cpp library="loan" class="LoanServiceImpl”
class="LoanServiceImpl" />
</component>

A.3.2 @Scope

Annotation on a service implementation class to indicate the scope of the service.
Corresponds to: @scope attribute of an implementation.cpp element.
Format:
// @Scope ("value")
where

e value: [stateless | composite] (1..1) i specifies the scope of the implementation. The default value
is stateless.

Applies to: Class
Example:

Implementation header:

// @Scope ("composite")
class LoanServiceImpl : public LoanService {

b

Component definition:

<component name="LoanService">
<implementation.cpp library="loan" class="LoanServiceImpl"
scope="composite" />
</component>

A.3.3 @Eagerinit
Annotation on a service implementation class to indicate the implantation is to be instantiated when its
containing component is started.
Corresponds to: @eagerlnit="true” attribute of an implementation.cpp element.
Format:
// QEagerInit
The default is false (the service is initialized lazily).
Applies to: Class
Example:

Implementation header:

// @EagerInit
class LoanServiceImpl : public LoanService {

b

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 62 of 107

Component definition:

<component name="LoanService">
<implementation.cpp library="loan" class="LoanServiceImpl”
eagerInit="true" />
</component>

A.3.4 @AllowsPassByReference
Annotation on service implementation class or member function to indicate that a service or member
function allows pass by reference semantics.

Corresponds to: @allowsPassByReference="true” attribute of an implementation.cpp element or a
function child element of an implementation.cpp element.

Format:

// @AllowsPassByReference

The default is false (the service does not allow by reference parameters).
Applies to: Class or Member function
Example:

Implementation header:

// @AllowsPassByReference
class LoanService {

bi

Component definition:

<component name="LoanService">
<implementation.cpp library="loan" class="LoanServiceImpl"
allowsPassByReference="true" />
</component>

A.3.5 @Property

Annotation on a service implementation class data member to define a property of the service.
Corresponds to: property element of a componentType element.

Format:

// Q@Property (name="propertyName", type="typeQName"

// default="defaultValue", required="true")
where

name : NCName (0..1) - specifies the name of the property. If name is not specified the property
name is taken from the name of the following data member.

type : QName (0..1) - specifies the type of the property. If not specified the type of the property is
based on the C++ mapping of the type of the following data member to an xsd type as defined in
SDO Data Binding. If the data member is an array, then the property is many-valued.

required : boolean (0..1) - specifies whether a value has to be set in the component definition for this
property. Default is false

default : <type> (0..1) - specifies a default value and is only needed if required is false,

Applies to: DataMember
Example:

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

Implementation:

// Q@Property (name="loanType", type="xsd:int")
long loanType;

19 March 2009
Page 63 of 107

Component Type definition:

<componentType .. >

<service .. />

<property name="loanType" type="xsd:int" />
</componentType>

A.3.6 @Reference

Annotation on a service implementation class data member to define a reference of the service.
Corresponds to: reference element of a componentType element.

Format:
// @Reference (name="referenceName", interfaceHeader="LoanService.h",
// interfaceClass="LoanService", required="true")
where

e name : NCName (0..1) - specifies the name of the reference. If name is not specified the reference
name is taken from the name of the following data member.

e interfaceHeader : Name (1..1) - specifies the C++ header defining the interface for the reference.

e interfaceClass : Name (0..1) - specifies the C++ class defining the interface for the reference. If not
specified the class is derived from the type of the annotated data member.

e required : boolean (0..1) - specifies whether a value has to be set for this reference. Default is true.

If the annotated data member is a std::list then the implied component type has a reference with a
multiplicity of either 0..n or 1..n depending on the value of the @Reference required attribute — 1..n
applies if required=true. Otherwise a multiplicity of 0..1 or 1..1 is implied.

Applies to: Data Member
Example:
Implementation:

// @Reference (interfaceHeader="LoanService.h" required="true")
LoanService* loanService;

// @Reference (interfaceHeader="LoanService.h" required="false")
std::list<LoanService*> loanServices;

Component Type definition:

<componentType .. >
<service .. />
<reference name="loanService" multiplicity="1..1">
<interface.cpp header="LoanService.h" class="LoanService" />
</reference>
<reference name="loanServices" multiplicity="0..n">
<interface.cpp header="LoanService.h" class="LoanService" />
</reference>
</componentType>

A.4 Base Annotation Grammar

<annotation> ::= // @<baseAnnotation>
<baseAnnotation> ::= <name> [(<params>)]

<params> ::= <paramNameValue>[, <paramNameValue>]* |
<paramValue>[, <paramValue>]*

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 64 of 107

<paramNameValue> ::= <name>="<value>”"
<paramValue> ::= “<value>”

<name> ::= NCName

<value> ::= string

e Adjacent string constants are concatenated
e NCName is as defined by XML schema [XSD]
o Whitespace including newlines between tokens is ignored.

e Annotations with parameters can span multiple lines within a comment, and are considered complete
when the terminating “)” is reached.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 65 of 107

2100

2101
2102
2103
2104

2105
2106
2107
2108

2109
2110
2111
2112
2113
2114
2115

2116
2117
2118
2119

2120
2121
2122
2123

2124
2125

2126
2127
2128

2129
2130

2131
2132
2133

2134

2135
2136
2137
2138

2139

2140
2141
2142
2143

2144
2145

B C++ SCA Policy Annotations

SCA provides facilities for the attachment of policy-related metadata to SCA assemblies, which influence
how implementations, services and references behave at runtime. The policy facilities are described in
[POLICY]. In particular, the facilities include Intents and Policy Sets, where intents express abstract,
high-level policy requirements and policy sets express low-level detailed concrete policies.

Policy metadata can be added to SCA assemblies through the means of declarative statements placed
into Composite documents and into Component Type documents. These annotations are completely
independent of implementation code, allowing policy to be applied during the assembly and deployment
phases of application development.

However, it can be useful and more natural to attach policy metadata directly to the code of
implementations. This is particularly important where the policies concerned are relied on by the code
itself. An example of this from the Security domain is where the implementation code expects to run
under a specific security Role and where any service operations invoked on the implementation have to
be authorized to ensure that the client has the correct rights to use the operations concerned. By
annotating the code with appropriate policy metadata, the developer can rest assured that this metadata
is not lost or forgotten during the assembly and deployment phases.

The SCA C++ policy annotations provide the capability for the developer to attach policy information to
C++ implementation code. The annotations concerned first provide general facilities for attaching SCA
Intents and Policy Sets to C++ code. Secondly, there are further specific annotations that deal with
particular policy intents for certain policy domains such as Security.

B.1 General Intent Annotations

SCA provides the annotation @Requires for the attachment of any intent to a C++ class, to a C++
interface or to elements within classes and interfaces such as member functions and data members.

The @Requires annotation can attach one or multiple intents in a single statement.

Each intent is expressed as a string. Intents are XML QNames, which consist of a Namespace URI
followed by the name of the Intent. The precise form used is as follows:

"{" + Namespace URI + "}" + intentname

Intents can be qualified, in which case the string consists of the base intent name, followed by a ".",
followed by the name of the qualifier. There can also be multiple levels of qualification.

This representation is quite verbose, so we expect that reusable constants will be defined for the
namespace part of this string, as well as for each intent that is used by C++ code. SCA defines constants
for intents such as the following:

// @Define SCA PREFIX "{http://docs.oasis-
open.org/ns/opencsa/sca/200903}"

// @Define CONFIDENTIALITY SCA PREFIX ## "confidentiality"

// @Define CONFIDENTIALITY MESSAGE CONFIDENTIALITY ## ".message"

Notice that, by convention, qualified intents include the qualifier as part of the name of the constant,
separated by an underscore. These intent constants are defined in the file that defines an annotation for
the intent (annotations for intents, and the formal definition of these constants, are covered in a following
section).

Multiple intents (qualified or not) are expressed as separate strings within an array declaration.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 66 of 107

Corresponds to: @requires attribute of a service, reference, operation or property element.
Format:

// @Requires ("qualifiedIntent" | {"qualifiedIntent" [, "qualifiedIntent"]})
where
qualifiedIntent ::= QName | QName.qualifier | QName.qualifierl.qualifier?2

Applies to: Class, Member Function

Examples:
Attaching the intents "confidentiality.message" and "integrity.message".
// @Requires ({CONFIDENTIALITY MESSAGE, INTEGRITY MESSAGE})

A reference requiring support for confidentiality:
class Foo {
// @Requires (CONFIDENTIALITY)

// QReference (interfaceHeader="SetBar.h")
void setBar (Bar* bar);

Users can also choose to only use constants for the namespace part of the QName, so that they can add
new intents without having to define new constants. In that case, this definition would instead look like
this:

class Foo {

// @Requires (SCA PREFIX "confidentiality ")
// QReference (interfaceHeader="SetBar.h")
volid setBar (Bar* bar);

}

B.2 Specific Intent Annotations
In addition to the general intent annotation supplied by the @Requires annotation described above, there
are C++ annotations that correspond to some specific policy intents.

The general form of these specific intent annotations is an annotation with a name derived from the name
of the intent itself. If the intent is a qualified intent, qualifiers are supplied as an attribute to the annotation
in the form of a string or an array of strings.

For example, the SCA confidentiality intent described in General Intent Annotations using the
@Requires(CONFIDENTIALITY) intent can also be specified with the specific @Confidentiality intent
annotation. The specific intent annotation for the "integrity” security intent is:

// @Integrity
Corresponds to: @requires="<Intent>" attribute of a service, reference, operation or property element.
Format:

// @<Intent>[(qualifiers)]
where Intent is an NCName that denotes a particular type of intent.

Intent ::= NCName
qualifiers ::= "qualifier " | {"qualifier" [, "qualifier"] }
qualifier ::= NCName | NCName/qualifier

Applies to: Class, Member Function — but see specific intents for restrictions

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 67 of 107

2195
2196

2197
2198
2199

2200
2201

2202

2203
2204
2205
2206

2207

2208
2209
2210

2211

2212

2213

Example:

// QAuthentication({“message”,

“transport”})

This annotation attaches the pair of qualified intents: authentication.message and authentication.transport
(the sca: namespace is assumed in both of these cases — "http://docs.oasis-

open.org/opencsa/ns/sca/200903").

The Policy Framework [POLICY] defines a number of intents and qualifiers. The following sections

define the annotations for those intents.

B.2.1 Security Interaction

Intent

Annotation

authentication

@Authentication

confidentiality

@Confidentiality

integrity @Integrity

These three intents can be qualified with

e transport

e message

B.2.2 Security Implementation

Intent Annotation

runAs @RunAs(role’role”)

Allow @Allow(roles="<comma separated list of roles>")
permitAll @PermitAll

denyAll @DenyAll

In addition to allow roles to defined, an SCA runtime MAY use the following annotation

@DeclareRoles(<comma separated list of roles>")

B.2.3 Reliable Messaging

Intent Annotation
atLeastOnce @AtLeastOnce
atMostOnce @AtMostOnce
Ordered @Ordered
exactlyOnce @ExactlyOnce

B.2.4 Transactions

Intent Annotation

Qualifiers

SCA Client and Implementation Model Specification for C++ Version 1.1

Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 68 of 107

managedTransaction @ManagedTransaction Local
global
transactedOneWay @TransactedOneWay
immediateOneWay @ImmediateOneWay
propagates Transaction @PropagatesTransaction
suspendsTransaction @SuspendsTransaction
2214
2215 B.2.5 Miscellaneous
Intent Annotation Qualifiers
SOAP @SOAP 11
1.2
JMS @JIMS

2216 B.3 Application of Intent Annotations

2217 Where multiple intent annotations (general or specific) are applied to the same C++ element, they are
2218 additive in effect. An example of multiple policy annotations being used together follows:

2220 // QAuthentication
2221 // @Requires ({CONFIDENTIALITY MESSAGE, INTEGRITY MESSAGE})
2222

2223 In this case, the effective intents are authentication, confidentiality.message and integrity.message.

2224 If an annotation is specified at both the class/interface level and the member function or data member
2225 level, then the member function or data member level annotation completely overrides the class level
2226 annotation of the same type.

2227 The intent annotation can be applied either to classes or to class member functions when adding
2228 annotated policy on SCA services.
2229 B.4 Inheritance and Intent Annotations

2230 The following example shows the inheritance relations of intents on classes, operations, and super
2231 classes.

2232

2233 // @Remotable

2234 // @Integrity ("transport")
2235 // @Authentication

2236 class HelloService {

2237 public:

2238 // @Integrity

2239 // @Authentication ("message")
2240 wchar t* hello(wchar t* message) {...}
2241

2242 // @Integrity

2243 // @Authentication ("transport")
2244 wchar t* helloThere() {...}
2245 }

2246

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 69 of 107

// @Remotable
// @Confidentiality ("message")
class HelloChildService : public HelloService {

public:
// @Confidentiality ("transport")
wchar t* hello(wchar t* message) {...}

// QAuthentication
wchar t* helloWorld(){...}
}

Example 1a. Usage example of annotated policy and inheritance.

The effective intent annotation on the helloWorld member function is @Integrity(“transport”),
@Authentication, and @Confidentiality(“message”).

The effective intent annotation on the hello member function of the HelloChildService is
@Integrity(“transport”), @Authentication, and @Confidentiality(“transport”),

The effective intent annotation on the helloThere member function of the HelloChildService is
@Integrity and @Authentication(“transport”), the same as in HelloService class.

The effective intent annotation on the hello member function of the HelloService is @Integrity and
@Authentication(“message”)

The listing below contains the equivalent declarative security interaction policy of the HelloService and
HelloChildService implementation corresponding to the C++ classes shown in Example 1a.

<?xml version="1.0" encoding="ASCII"?>

<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903"
name="HelloServiceComposite" >

<component name="HelloServiceComponent">
<service name="HelloService" requires="integrity/transport
authentication">

</service>
<implementation.cpp library="HelloService.dll"
class="HellowServiceImpl”>
<function name="hello” requires="integrity
authentication/message"/>
<function name="helloThere” requires="integrity
authentication/transport"/>
</implementation.cpp>
</component>
<component name="HelloChildServiceComponent">
<service name="HelloChildService" requires="integrity/transport
authentication confidentiality/message">

</service>

<implementation.cpp library="HelloChildService.dll"
class="HelloChildServiceImpl">
<function name="hello" requires="confidentiality/transport"/>
<function name="helloThere" requires="integrity/transport

authentication"/>

<function name="helloWorld" requires="authentication"/>

</implementation.cpp>

</component>

</composite>

Example 1b. Declaratives intents equivalent to annotated intents in Example la.

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 70 of 107

B.5 Relationship of Declarative and Annotated Intents

Annotated intents on a C++ class cannot be overridden by declarative intents either in a composite
document which uses the class as an implementation or by statements in a componentType document
associated with the class. This rule follows the general rule for intents that they represent fundamental
requirements of an implementation.

An unqualified version of an intent expressed through an annotation in the C function or function
declaration can be qualified by a declarative intent in a using composite document.

B.6 Policy Set Annotations

The SCA Policy Framework uses Policy Sets to capture detailed low-level concrete policies (for example,
a concrete policy is the specific encryption algorithm to use when encrypting messages when using a
specific communication protocol to link a reference to a service).

Policy Sets can be applied directly to C++ implementations using the @PolicySets annotation. The
PolicySets annotation either takes the QName of a single policy set as a string or the name of two or
more policy sets as an array of strings.

Corresponds to: @policySets attribute of a service, reference, operation or property element.
Format:

// @PolicySets ("<policy set QName>" |
{ "<policy set QName>" [, "<policy set QName>"] })

As for intents, PolicySet names are QNames — in the form of “{Namespace-URI}localPart”.
Applies to: Class, Member Function,

Example:
// QReference (name="helloService", interfaceHeader="helloService.h",
// required="true")
// @PolicySets ({ MY NS “WS Encryption Policy",
// MY NS "WS Authentication Policy"})

HelloService* helloService;

In this case, the Policy Sets WS_Encryption_Policy and WS_Authentication_Policy are applied, both
using the namespace defined for the constant MY_NS.

PolicySets satisfy intents expressed for the implementation when both are present, according to the rules
defined in [POLICY].

B.7 Policy Annotation Grammar Additions

<annotation> ::= // @<baseAnnotation> | @<requiresAnnotation> |
@<intentAnnotation> | @<policySetAnnotation>

<requiresAnnotation> ::= Requires (<intents>)

<intents> ::= “<qualifiedIntent>" |
{“<qualifiedIntent>”[, “<qualifiedIntent>"]*})

<qualifiedIntent> ::= <intentName> | <intentName>.<qualifier> |
<intentName>.<qualifier>.qualifier>

<intentName> ::= {aAnyURI}NCName
<intentAnnotation> ::= <intent>[(<qualifiers>)]
<intent> ::= NCName [(param)]

<qualifiers> ::= “<qualifier>” | {“<qualifier>”[, “<qualifier>"]*}

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 71 of 107

2365

2366
2367
2368
2369
2370

2371

<qualifier> ::= NCName | NCName/<qualifier>

<policySetAnnotation> ::= policySets (<policysets>)

<policySets> ::= “<policySetName>” | {“<policySetName>"[, “<policySetName>"]*}

<policySetName> ::= {aAnyURI}NCName
e anyURIis as defined by XML schema [XSD]

B.8 Annotation Constants

<annotationConstant> ::= // @Define <identifier> <token string>
<identifier> ::= token
<token string> ::= “string” | “string”[## <token string>]

e Constants are immediately expanded

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 72 of 107

2372

2373
2374
2375

2376

C C++ WSDL Mapping Annotations

To allow developers to control the mapping of C++ to WSDL, a set of annotations is defined. If WSDL
mapping annotations are supported by an implementation, the annotations defined here MUST be
supported and MUST be mapped to WSDL as described. [CPPC0001]

C.1 Interface Header Annotations

C.1.1 @WebService

Annotation on a C++ class indicating that it represents a web service. An SCA implementation MUST
treat any instance of a @Interface annotation and without an explicit @WebService annotation as if a
@WebService annotation with no parameters was specified.An SCA implementation MUST treat any
instance of a @Interface annotation and without an explicit @WebService annotation as if a
@WebService annotation with no parameters was specified.An SCA implementation MUST treat any
instance of a @Interface annotation and without an explicit @WebService annotation as if a
@WebService annotation with no parameters was specified. [CPPC0002]

Corresponds to: javax.jws.WebService annotation in the JAX-WS specification (7.11.1)

Format:
// @WebService (name="portTypeName", targetNamespace="namespaceURI",
// serviceName="WSDLServiceName", portName="WSDLPortName")
where:

e name : NCName (0..1) i specifies the name of the web service portType. The default is the name of
the C++ class the annotation is applied to.

e targetNamespace : anyURI (0..1) i specifies the target namespace for the web service. The default
namespace is determined by the implementation.

e serviceName : NCName (0..1) T specifies the target name for the associated service. The default
service name is the name of the C++ class suffixed with “Service”. The name of the associated
binding is also determined by the serviceName. In the case of a SOAP binding, the binding name is
the name of the service suffixed with “SoapBinding”.

e portName : NCName (0..1) i specifies the name to be used for the associated WSDL port for the
service. If a @WebService does not have a portName element, an SCA implementation MUST use
the value associated with the name element, suffixed with “Port”. [CPPC0003]

Applies to: Class

Example:
Input C++ source file:
// @WebService (name="StockQuote", targetNamespace="http://www.example.org/",
// serviceName="StockQuoteService")

class StockQuoteService {

b:

Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/"
xmlns:cpp="http://docs.ocasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"
targetNamespace="http://www.example.org/">

<portType name="StockQuote">
<cpp:bindings>
<cpp:class name="StockQuoteService"/>

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 73 of 107

</cpp:bindings>
</portType>

<binding name="StockQuoteServiceSoapBinding">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
</binding>

<service name="StockQuoteService">
<port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">
<soap:address location="REPLACE WITH ACTUAL URL"/>
</port>
</service>
</definitions>

C.1.2 @WebFunction

Annotation on a C++ member function indicating that it represents a web service operation.
Corresponds to: javax.jws.WebMethod annotation in the JAX-WS specification (7.11.2)
Format:

// @WebFunction (operationName="operation", action="SOAPAction",
// exclude="false")

where:

e operationName : NCName (0..1) i specifies the name of the WSDL operation to associate with this
function. The default is the name of the C++ member function the annotation is applied to.

e action : string (0..1) T specifies the value associated with the soap:operation/@soapAction attribute
in the resulting code. The default value is an empty string.

e exclude: boolean (0..1) i specifies whether this member function is included in the web service
interface. The default value is “false”.

Applies to: Member function.

Example:
Input C++ source file:
// @WebService (name="StockQuote", targetNamespace="http://www.example.org/"
// serviceName="StockQuoteService")

class StockQuoteService ({

// @WebFunction (operationName="GetLastTradePrice",
// action="urn:GetLastTradePrice")
float getlLastTradePrice (const std::string& tickerSymbol) ;

// @WebFunction (exclude=true)
void setLastTradePrice (const std::string& tickerSymbol, float value);

}i

Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/"
xmlns:cpp="http://docs.ocasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"
targetNamespace="http://www.example.org/">

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://www.example.org/"
attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://www.example.org/">
<xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 74 of 107

<xs:element name="GetLastTradePriceResponse"
type="tns:GetLastTradePriceResponse" />
<xs:complexType name="GetLastTradePrice">
<xs:sequence>
<xs:element name="tickerSymbol" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="GetLastTradePriceResponse">
<xs:sequence>
<xs:element name="return" type="xs:float"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

< message name="GetLastTradePrice">
<part name="parameters" element="tns:GetLastTradePrice">
</part>

</message>

< message name="GetLastTradePriceResponse">
<part name="parameters" element="tns:GetLastTradePriceResponse">
</part>

</ message>

<portType name="StockQuote">
<cpp:bindings>
<cpp:class name="StockQuoteService"/>
</cpp:bindings>
<operation name="GetLastTradePrice">
<cpp:bindings>
<cpp:memberFunction name="getLastTradePrice"/>
</cpp:bindings>

<input name="GetLastTradePrice" message="tns:GetLastTradePrice">

</input>
<output name="GetLastTradePriceResponse"
message="tns:GetLastTradePriceResponse">
</output>
</operation>
</portType>

<binding name="StockQuoteServiceSoapBinding">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="GetLastTradePrice">

<soap:operation soapAction="urn:GetLastTradePrice" style="document"/>

<wsdl:input name="GetLastTradePrice">
<soap:body use="literal"/>

</wsdl:input>

<wsdl:output name="GetLastTradePriceResponse">
<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>
</binding>

<service name="StockQuoteService">

<port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">

<soap:address location="REPLACE WITH ACTUAL URL"/>
</port>
</service>

</definitions>

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 75 of 107

C.1.3 @OneWay

Annotation on a C++ member function indicating that it represents a one-way request. The @OneWay

annotation also affects the service interface, see @OneWay.
Corresponds to: javax.jws.OneWay annotation in the JAX-WS specification (7.11.3)

Format:
// @OneWay
Applies to: Member function.

Example:
Input C++ source file:
// @WebService (name="StockQuote", targetNamespace="http://www.example.org/"
// serviceName="StockQuoteService")

class StockQuoteService {

// @WebFunction (operationName="SetTradePrice",

// action="urn:SetTradePrice")

// @OneWay

void setTradePrice (const std::stringé& tickerSymbol, float price);

b

Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/"
xmlns:cpp="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"
targetNamespace="http://www.example.org/">

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://www.example.org/"
attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://www.example.org/">
<xs:element name="SetTradePrice" type="tns:SetTradePrice"/>
<xs:complexType name="SetTradePrice">
<xs:sequence>
<xs:element name="tickerSymbol" type="xs:string"/>
<xs:element name="price" type="xs:float"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

< message name="SetTradePrice">
<part name="parameters" element="tns:SetTradePrice">
</part>

</message>

<portType name="StockQuote">
<cpp:bindings>
<cpp:class name="StockQuoteService"/>
</cpp:bindings>
<operation name="SetTradePrice">
<cpp:bindings>
<cpp:memberFunction name="setTradePrice"/>
</cpp:bindings>
<input name="SetTradePrice" message="tns:SetTradePrice">
</input>
</operation>
</portType>

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 76 of 107

<binding name="StockQuoteServiceSoapBinding">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="SetTradePrice">
<soap:operation soapAction="urn:SetTradePrice" style="document"/>
<wsdl:input name="SetTradePrice">
<soap:body use="literal"/>
</wsdl:input>
</wsdl:operation>
</binding>

<service name="StockQuoteService">
<port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">
<soap:address location="REPLACE WITH ACTUAL URL"/>
</port>
</service>
</definitions>

C.1.4 @WebParam

Annotation on a C++ member function indicating the mapping of a parameter to the associated input and
output WSDL messages.

Corresponds to: javax.jws.WebParam annotation in the JAX-WS specification (7.11.4)

Format:
// @WebParam (paramName=<="parameter", name="WSDLElement",
// targetNamespace="namespaceURI", mode="IN"|"OUT"|"INOUT",
// header="false", partName="WSDLPart", type="xsdType")
where:

e paramName : NCName (1..1) i specifies the name of the parameter that this annotation applies to.
Only named parameters MAY be referenced by a @WebParam annotation. [CPPC0004]

e name : NCName (0..1) i specifies the name of the associated WSDL part or element. The default
value is the name of the parameter. If an @WebParam annotation is not present, and the parameter
is unnamed, then a name of “argN”, where N is an incrementing value from 1 indicating the position of
he parameter in the argument list, will be used.

e targetNamespace : string (0..1) i specifies the target namespace for the part. The default
namespace is the namespace of the associated @WebService. The targetNamespace attribute is
ignored unless the binding style is document, and the binding parameterStyle is bare. See
@SOAPBInding.

e mode : token (0..1) i specifies whether the parameter is associated with the input message, output
message, or both. The default value is determined by the passing mechanism for the parameter, see
Parameter and return type classification.

e header: boolean (0..1) i specifies whether this parameter is associated with a SOAP header
element. The default value is “false”.

e partName : NCName (0..1) i specifies the name of the WSDL part associated with this item. The
default value is the value of name.

e type: NCName (0..1) i specifies the XML Schema type of the WSDL part or element associated with
this parameter. The value of the type property of a @WebParam annotation MUST be one of the
simpleTypes defined in namespace http:/Mmww.w3.0rg/2001/XMLSchema. [CPPCO0005] The default
type is determined by the mapping defined in Simple Content Binding.

Applies to: Member function parameter.

Example:
Input C++ source file:
// @WebService (name="StockQuote", targetNamespace="http://www.example.org/"
SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 77 of 107

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

// serviceName="StockQuoteService")
class StockQuoteService {

// @WebFunction (operationName="GetLastTradePrice",

// action="urn:GetLastTradePrice")

// @WebParam (paramName="tickerSymbol", name="symbol")

float getlastTradePrice (const std::string& tickerSymbol) ;
bi

Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/"
xmlns:cpp="http://docs.ocasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"
targetNamespace="http://www.example.org/">

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://www.example.org/"
attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://www.example.org/">
<xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>
<xs:element name="GetLastTradePriceResponse"
type="tns:GetLastTradePriceResponse"/>
<xs:complexType name="GetLastTradePrice">
<xs:sequence>
<xs:element name="symbol" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="GetLastTradePriceResponse">
<xs:sequence>
<xs:element name="return" type="xs:float"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

< message name="GetLastTradePrice">
<part name="parameters" element="tns:GetLastTradePrice">
</part>

</message>

< message name="GetLastTradePriceResponse">
<part name="parameters" element="tns:GetLastTradePriceResponse">
</part>

</ message>

<portType name="StockQuote">
<cpp:bindings>
<cpp:class name="StockQuoteService"/>
</cpp:bindings>
<operation name="GetLastTradePrice">
<cpp:bindings>
<cpp:memberFunction name="getLastTradePrice"/>
<cpp:parameter name="tickerSymbol"
part="tns:GetLastTradePrice/parameter"
childElementName="symbol" />
</cpp:bindings>
<input name="GetLastTradePrice" message="tns:GetLastTradePrice">
</input>
<output name="GetLastTradePriceResponse"
message="tns:GetLastTradePriceResponse">
</output>
</operation>

19 March 2009
Page 78 of 107

</portType>

<binding name="StockQuoteServiceSoapBinding">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="GetLastTradePrice">
<soap:operation soapAction="urn:GetLastTradePrice" style="document"/>
<wsdl:input name="GetLastTradePrice">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="GetLastTradePriceResponse">
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</binding>

<service name="StockQuoteService">
<port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">
<soap:address location="REPLACE WITH ACTUAL URL"/>
</port>
</service>
</definitions>

C.1.5 @WebResult

Annotation on a C++ member function indicating the mapping of the member function’s return type to the
associated output WSDL message.

Corresponds to: javax.jws.WebResult annotation in the JAX-WS specification (7.11.5)

Format:

// @WebResult (name=<="WSDLElement", targetNamespace="namespaceURI",
// header="false", partName="WSDLPart", type="xsdType")

where:

¢ name : NCName (0..1) i specifies the name of the associated WSDL part or element. The default
value is “return”.

o targetNamespace : string (0..1) i specifies the target namespace for the part. The default
namespace is the namespace of the associated @WebService. The targetNamespace attribute is
ignored unless the binding style is document, and the binding parameterStyle is bare. See
@SOAPBInding.

e header: boolean (0..1) i specifies whether the result is associated with a SOAP header element.
The default value is “false”.

e partName : NCName (0..1) i specifies the name of the WSDL part associated with this item. The
default value is the value of name.

e type: NCName (0..1) i specifies the XML Schema type of the WSDL part or element associated with
this parameter. The value of the type property of a @WebResult annotation MUST be one of the
simpleTypes defined in namespace http://mwww.w3.0rg/2001/XMLSchema. [CPPCO0006] The default
type is determined by the mapping defined in Simple Content Binding.

Applies to: Member function return value.
Example:
Input C++ source file:

// @WebService (name="StockQuote", targetNamespace="http://www.example.org/"
// serviceName="StockQuoteService")
class StockQuoteService ({

// @WebFunction (operationName="GetLastTradePrice",
// action="urn:GetLastTradePrice")
// @WebResult (name="price")

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 79 of 107

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

float getlastTradePrice (const std::string& tickerSymbol) ;
bi

Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/"
xmlns:cpp="http://docs.ocasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"
targetNamespace="http://www.example.org/">

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://www.example.org/"
attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://www.example.org/">
<xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>
<xs:element name="GetLastTradePriceResponse"
type="tns:GetLastTradePriceResponse" />
<xs:complexType name="GetLastTradePrice">
<xs:sequence>
<xs:element name="tickerSymbol" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="GetLastTradePriceResponse">
<xs:sequence>
<xs:element name="price" type="xs:float"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

< message name="GetLastTradePrice">
<part name="parameters" element="tns:GetLastTradePrice">
</part>

</message>

< message name="GetLastTradePriceResponse">
<part name="parameters" element="tns:GetLastTradePriceResponse">
</part>

</ message>

<portType name="StockQuote">
<cpp:bindings>
<cpp:class name="StockQuoteService"/>
</cpp:bindings>
<operation name="GetLastTradePrice">
<cpp:bindings>
<cpp:memberFunction name="getLastTradePrice"/>
</cpp:bindings>
<input name="GetLastTradePrice" message="tns:GetLastTradePrice">
</input>
<output name="GetLastTradePriceResponse"
message="tns:GetLastTradePriceResponse">
</output>
</operation>
</portType>

<binding name="StockQuoteServiceSoapBinding">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="GetLastTradePrice">

<soap:operation soapAction="urn:GetLastTradePrice" style="document"/>

<wsdl:input name="GetLastTradePrice">
<soap:body use="literal"/>

19 March 2009
Page 80 of 107

</wsdl:input>
<wsdl:output name="GetLastTradePriceResponse">
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</binding>

<service name="StockQuoteService">
<port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">
<soap:address location="REPLACE WITH ACTUAL URL"/>
</port>
</service>
</definitions>

C.1.6 @SOAPBInding

Annotation on a C++ member function indicating that it represents a web service operation.
Corresponds to: javax.jws.SOAPBInding annotation in the JAX-WS specification (7.11.6)
Format:

// @SOAPBinding (style="DOCUMENT" |"RPC", use="LITERAL"|"ENCODED",
// parameterStyle="BARE" | "WRAPPED")

where:
o style: token (0..1) i specifies the WSDL binding style. The default value is “DOCUMENT”.
e use:token (0..1) 7 specifies the WSDL binding use. The default value is “LITERAL”.

e parameterStyle : token (0..1) T specifies the WSDL parameter style. The default value is
“WRAPPED".

Applies to: Class, Member function.
Example:
Input C++ source file:

// @WebService (name="StockQuote", targetNamespace="http://www.example.org/"
// serviceName="StockQuoteService")

// @SOAPBinding (style="RPC")

class StockQuoteService {

bi

Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/"
xmlns:cpp="http://docs.ocasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"
targetNamespace="http://www.example.org/">

<portType name="StockQuote">
<cpp:bindings>
<cpp:class name="StockQuoteService"/>
</cpp:bindings>
</portType>

<binding name="StockQuoteServiceSoapBinding">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
</binding>

<service name="StockQuoteService">

<port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">

<soap:address location="REPLACE_WITH_ACTUAL_URL"/>
</port>

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 81 of 107

</service>
</definitions>

C.1.7 @WebFault

Annotation on a C++ exception class indicating that it might be thrown as a fault by a web service
function. A C++ class with a @WebFault annotation MUST provide a constructor that takes two
parameters, a std::string and a type representing the fault information. Additionally, the class MUST
provide a const member function “getFaultinfo” that takes no parameters, and returns the same type as

defined in the constructor. [CPPC0007]
Corresponds to: javax.xml.ws.WebFault annotation in the JAX-WS specification (7.2)
Format:

// @WebFault (name="WSDLElement", targetNamespace="namespaceURI")

where:
e name : NCName (1..1) 7 specifies local name of the global element mapped to this fault.

e targetNamespace : string (0..1) i specifies the namespace of the global element mapped to this

fault. The default namespace is determined by the implementation.
Applies to: Class.
Example:
Input C++ source file:

// @WebFault (name="UnknownSymbolFault",
// targetNamespace="http://www.example.org/")
class UnknownSymbol {
UnknownSymbol (const char* message,
const std::string& faultInfo);

std:string getFaultInfo() const;
}i

// @WebService (name="StockQuote", targetNamespace="http://www.example.org/"

// serviceName="StockQuoteService")
class StockQuoteService {

// @WebFunction (operationName="GetLastTradePrice",

// action="urn:GetLastTradePrice")

// @WebThrows (faults="UnknownSymbol")

float getlastTradePrice (const std::string& tickerSymbol) ;
i

Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/"

xmlns:cpp="http://docs.ocasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"

targetNamespace="http://www.example.org/">

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://www.example.org/"
attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://www.example.org/">

<xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>

<xs:element name="GetLastTradePriceResponse"
type="tns:GetLastTradePriceResponse"/>
<xs:complexType name="GetLastTradePrice">
<xs:sequence>
<xs:element name="tickerSymbol" type="xs:string"/>

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 82 of 107

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

</xs:sequence>
</xs:complexType>
<xs:complexType name="GetLastTradePriceResponse">
<xs:sequence>
<xs:element name="return" type="xs:float"/>
</xs:sequence>
</xs:complexType>
<xs:element name="UnknownSymbolFault" type="xs:string"/>
</xs:schema>

<message name="GetLastTradePrice">
<part name="parameters" element="tns:GetLastTradePrice">
</part>

</message>

<message name="GetLastTradePriceResponse">
<part name="parameters" element="tns:GetLastTradePriceResponse">
</part>

</message>

<message name="UnknownSymbol”>
<part name="parameters” element="tns:UnknownSymbolFault”>
</part>

</message>

<portType name="StockQuote">
<cpp:bindings>
<cpp:class name="StockQuoteService"/>
</cpp:bindings>
<operation name="GetLastTradePrice">
<cpp:bindings>
<cpp:memberFunction name="getLastTradePrice"/>
</cpp:bindings>
<input name="GetLastTradePrice" message="tns:GetLastTradePrice">
</input>
<output name="GetLastTradePriceResponse"
message="tns:GetLastTradePriceResponse">
</output>
<fault name="UnknownSymbol" message="tns:UnknownSymbol">
</fault>
</operation>
</portType>

<binding name="StockQuoteServiceSoapBinding">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="GetLastTradePrice">
<soap:operation soapAction="urn:GetLastTradePrice" style="document"/>
<wsdl:input name="GetLastTradePrice">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="GetLastTradePriceResponse">
<soap:body use="literal"/>
</wsdl:output>
<wsdl:fault>
<soap:fault name="UnknownSymbol" use="literal"/>
</wsdl:fault>
</wsdl:operation>
</binding>

<service name="StockQuoteService">
<port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">
<soap:address location="REPLACE WITH ACTUAL URL"/>
</port>

19 March 2009
Page 83 of 107

2998
2999

3000

3001
3002

3003
3004

3005

3006
3007
3008

3009
3010
3011

</service>
</definitions>

C.1.8 @WebThrows

Annotation on a C++ class indicating which faults might be thrown by this class.
Corresponds to: No equivalent in JAX-WS.

Format:
// @WebThrows (faults="faultMsgl"[, "faultMsgn"]*)

where:

o faults : NMTOKEN (1..n) T specifies the names of all faults that might be thrown by this member
function. The name of the fault is the name of its associated C++ class name. A C++ class that is
listed in a @WebThrows annotation MUST itself have a @WebFault annotation. [CPPC0008]

Applies to: Member function.
Example:
See @WebFault.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 84 of 107

D WSDL C++ Mapping Extensions

The following WSDL extensions are used to augment the conversion process from WSDL to C++. All of
these extensions are defined in the namespace http://docs.oasis-open.org/ns/opencsal/sca-c-
cpp/cpp/200901. For brevity, all definitions of these extensions will be fully qualified, and all references to
the “cpp” prefix are associated with the namespace above. If WSDL extensions are supported by an
implementation, all the extensions defined here MUST be supported and MUST be mapped to C++ as
described. [CPPD0001]

D.1 <cpp:bindings>

<cpp:bindings> is a container type which can be used as a WSDL extension. All other SCA wsdl
extensions will be specified as children of a <cpp:bindings> element. A <cpp:bindings> element can be
used as an extension to any WSDL type that accepts extensions.

D.2 <cpp:class>

<cpp:class> provides a mechanism for defining an alternate C++ class name for a WSDL construct.
Format:

<cpp:class name="xsd:string"/>
where:
e class/@name : NCName (1..1) i specifies the name of the C++ class associated with this WSDL

element.
Applicable WSDL element(s):
o wsdl:portType
o wsdl:fault
A <cpp:bindings/> element MUST NOT have more than one <cpp:class/> child element. [CPPD0002]
Example:

Input WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/"
xmlns:cpp="http://docs.ocasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"
targetNamespace="http://www.example.org/">

<portType name="StockQuote”>
<cpp:bindings>
<cpp:class name="StockQuoteService”/>
</cpp:bindings>
</portType>
</definitions>

Generated C++ file:

// @WebService (name="StockQuote", targetNamespace="http://www.example.org/"
// serviceName="StockQuoteService")

class StockQuoteService {

}i

D.3 <cpp:enableWrapperStyle>
<cpp:enableWrapperStyle> indicates whether or not the wrapper style for messages is applied, when
otherwise applicable. If false, the wrapper style will never be applied.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 85 of 107

Format:
<cpp:enableWrapperStyle>value</cpp:enableWrapperStyle>
where:

¢ enableWrapperStyle/text() : boolean (1..1) — specifies whether wrapper style is enabled or disabled
for this element and any of it's children. The default value is “true”.

Applicable WSDL element(s):
e wsdl:definitions
o wsdl:portType — overrides a binding applied to wsdl:definitions

o wsdl:portType/wsdl:operation — overrides a binding applied to wsdl:definitions or the enclosing
wsdl:portType

<cpp:bindings/> element MUST NOT have more than one <cpp:enableWrapperStyle/> child element.
[CPPDO0003]

Example:
Input WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/"
xmlns:cpp="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"
targetNamespace="http://www.example.org/">

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://www.example.org/"
attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://www.example.org/">
<xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>
<xs:element name="GetLastTradePriceResponse"
type="tns:GetLastTradePriceResponse"/>
<xs:complexType name="GetLastTradePrice">
<xs:sequence>
<xs:element name="tickerSymbol" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="GetLastTradePriceResponse">
<xs:sequence>
<xs:element name="return" type="xs:float"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

< message name="GetLastTradePrice">
<part name="parameters" element="tns:GetLastTradePrice">
</part>

</message>

< message name="GetLastTradePriceResponse">
<part name="parameters" element="tns:GetlLastTradePriceResponse">
</part>

</ message>

<portType name="StockQuote">
<cpp:bindings>
<cpp:class name="StockQuoteService"/>
<cpp:enableWrapperStyle>false</cpp:enableWrapperStyle>
<cpp:bindings>
<operation name="GetLastTradePrice">
<cpp:bindings>
<cpp:memberFunction name="getLastTradePrice"/>

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 86 of 107

</cpp:bindings>
<input name="GetLastTradePrice" message="tns:GetLastTradePrice">
</input>
<output name="GetlLastTradePriceResponse"
message="tns:GetLastTradePriceResponse">
</output>
</operation>
</portType>
</definitions>

Generated C++ file:

// @WebService (name="StockQuote", targetNamespace="http://www.example.org/"
// serviceName="StockQuoteService")
class StockQuoteService ({

// @WebFunction (operationName="GetLastTradePrice",

// action="urn:GetLastTradePrice")

commoni : :sdo: :DataObjectPtr
getlLastTradePrice (commonj: :sdo: :DataObjectPtr parameters) ;

b

D.4 <cpp:namespace>

<cpp:namespace> specifies the name of the C++ namespace that the associated WSDL element (and
any of it's children) are created in.

Format:
<cpp:namespace name='"namespaceURI"/>
where:

e namespace/@name : anyURI (1..1) i specifies the name of the C++ namespace associated with
this WSDL element.

Applicable WSDL element(s):
e wsdl:definitions

A <cpp:bindings/> element MUST NOT have more than one <cpp:namespace/> child element.
[CPPD0004]

Example:
Input WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/"
xmlns:cpp="http://docs.ocasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"
targetNamespace="http://www.example.org/">

<cpp:bindings>
<cpp:namespace name="stock"/>

</cpp:bindings>

<portType name="StockQuote">
<cpp:bindings>
<cpp:class name="StockQuoteService"/>
</cpp:bindings>
</portType>
</definitions>

Generated C++ file:

namespace stock

{

// @WebService (name="StockQuote", targetNamespace="http://www.example.org/"

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 87 of 107

// serviceName="StockQuoteService")
// @WebService (name="”StockQuote”,
class StockQuoteService {

bz

D.5 <cpp:memberFunction>

<cpp:memberFunction> specifies the name of the C++ member function that the associated WSDL
operation is associated with.

Format:
<cpp:memberFunction name="myFunction"/>
where:

e memberFunction/@name : NCName (1..1) — specifies the name of the C++ member function
associated with this WSDL operation.

Applicable WSDL element(s):
o wsdl:portType/wsdl:operation

A <cpp:bindings/> element MUST NOT have more than one <cpp:memberFunction/> child element.
[CPPDO0005]

Example:
Input WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/"
xmlns:cpp="http://docs.ocasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"
targetNamespace="http://www.example.org/">

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://www.example.org/"
attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://www.example.org/">
<xs:element name="GetLastTradePrice" type="tns:GetlLastTradePrice"/>
<xs:element name="GetLastTradePriceResponse"
type="tns:GetLastTradePriceResponse" />
<xs:complexType name="GetLastTradePrice">
<xs:sequence>
<xs:element name="tickerSymbol" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="GetLastTradePriceResponse">
<xs:sequence>
<xs:element name="return" type="xs:float"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

< message name="GetLastTradePrice">
<part name="parameters" element="tns:GetLastTradePrice">
</part>

</message>

< message name="GetLastTradePriceResponse">
<part name="parameters" element="tns:GetLastTradePriceResponse">
</part>

</ message>

<portType name="StockQuote">

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 88 of 107

<cpp:bindings>
<cpp:class name="StockQuoteService"/>
</cpp:bindings>
<operation name="GetLastTradePrice">
<cpp:bindings>
<cpp:memberFunction name="getTradePrice"/>
</cpp:bindings>
<input name="GetLastTradePrice" message="tns:GetLastTradePrice">
</input>
<output name="GetLastTradePriceResponse"
message="tns:GetLastTradePriceResponse">
</output>
</operation>
</portType>
</definitions>

Generated C++ file:

// @WebService (name="StockQuote", targetNamespace="http://www.example.org/"
// serviceName="StockQuoteService")
class StockQuoteService {

// @WebFunction (operationName="GetLastTradePrice",

// action="urn:GetLastTradePrice")

float getTradePrice (const std::stringé& tickerSymbol) ;
}i

D.6 <cpp:parameter>

<cpp:parameter> specifies the name of the C++ member function parameter associated with a specifc
WSDL message part or wrapper child element.

Format:

<cpp:parameter name="CPPParameter" part="WSDLPart"
childElementName="WSDLElement" type="CPPType"/>

where:

e parameter/@name : NCName (1..1) — specifies the name of the C++ member function parameter
associated with this WSDL operation. “return” is used to denote the return value.

e parameter/@part : string (1..1) - an XPath expression identifying the wsdl:part of a wsdl:message.

o parameter/@childElementName : QName (1..1) — specifies the qualified name of a child element of
the global element identified by parameter/@part.

e type: NCName (0..1) i specifies the type of the parameter or struct member or return type. The
@type attribute of a <cpp:parameter/> element MUST be a valid C++ type. [CPPD0006] The default
type is determined by the mapping defined in Simple Content Binding.

Applicable WSDL element(s):
e wsdl:portType/wsdl:operation
Example:

Input WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/"
xmlns:cpp="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"
targetNamespace="http://www.example.org/">

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://www.example.org/"
attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://www.example.org/">

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 89 of 107

<xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>
<xs:element name="GetlLastTradePriceResponse"
type="tns:GetLastTradePriceResponse" />
<xs:complexType name="GetLastTradePrice">
<xs:sequence>
<xs:element name="symbol" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="GetLastTradePriceResponse">
<xs:sequence>
<xs:element name="return" type="xs:float"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

< message name="GetLastTradePrice">
<part name="parameters" element="tns:GetLastTradePrice">
</part>

</message>

< message name="GetLastTradePriceResponse">
<part name="parameters" element="tns:GetlLastTradePriceResponse">
</part>

</ message>

<portType name="StockQuote">
<cpp:bindings>
<cpp:class name="StockQuoteService"/>
</cpp:bindings>
<operation name="GetLastTradePrice">
<cpp:bindings>
<cpp:memberFunction name="getLastTradePrice"/>
<cpp:parameter name="tickerSymbol”
part="tns:GetLastTradePrice/parameter"
childElementName="symbol" />
</cpp:bindings>
<input name="GetLastTradePrice" message="tns:GetLastTradePrice">
</input>
<output name="GetlLastTradePriceResponse"
message="tns:GetLastTradePriceResponse">
</output>
</operation>
</portType>

<binding name="StockQuoteServiceSoapBinding">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="GetLastTradePrice">

<soap:operation soapAction="urn:GetLastTradePrice" style="document"/>

<wsdl:input name="GetLastTradePrice">
<soap:body use="literal"/>

</wsdl:input>

<wsdl:output name="GetLastTradePriceResponse">
<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>
</binding>

<service name="StockQuoteService">

<port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">

<soap:address location="REPLACE WITH ACTUAL URL"/>
</port>
</service>
</definitions>

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 90 of 107

Generated C++ file:

// @WebService (name="StockQuote", targetNamespace="http://www.example.org/"
// serviceName="StockQuoteService")
class StockQuoteService ({

// @WebFunction (operationName="GetLastTradePrice",

// action="urn:GetLastTradePrice")

// @WebParam (paramName="tickerSymbol", name="symbol")
float getlLastTradePrice (const std::string& tickerSymbol) ;

i

D.7 JAX-WS WSDL Extensions

An SCA implementation MAY support the reading and interpretation of JAX-WS defined WSDL
extensions; however it MUST give precedence to the corresponding SCA WSDL extension if present.

[CPPDO0007] The following is a list of JAX-WS WSDL extensions that MAY be recognized, and their
corresponding SCA WSDL extension.

JAX-WS Extension

SCA Extension

jaxws:bindings

cpp:bindings

jaxws:class

cpp:class

jaxws:method

cpp:memberFunction

jaxws:parameter

cpp:parameter

jaxws:enableWrapperStyle

cpp:enableWrapperStyle

D.8 WSDL Extensions Schema

The XML schema pointed to by the RDDL document at the SCA C++ namespace URI, defined by this
specification, is considered to be authoritative and takes precedence over the XML schema in this

appendix.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca-c—

cpp/cpp/200901"

xmlns:cpp="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/cpp/200901"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">

<element name="bindings" type="cpp:BindingsType" />
<complexType name="BindingsType">
<choice minOccurs="0" maxOccurs="unbounded">

<element
<element
<element
<element
<element

</choice>

</complexType>

ref="cpp:namespace" />
ref="cpp:class" />
ref="cpp:enableWrapperStyle" />
ref="cpp:memberFunction" />
ref="cpp:parameter" />

<element name="namespace" type="cpp:NamespaceType" />
<complexType name="NamespaceType">

<attribute nam
</complexType>

e="name" type="xsd:anyURI" use="required" />

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved.

Page 91 of 107

<element name="class" type="cpp:ClassType" />
<complexType name="ClassType">

<attribute name="name" type='"xsd:NCName" use="required"
</complexType>

<element name="memberFunction" type="cpp:MemberFunctionType" />
<complexType name="MemberFunctionType">

<attribute name="name" type="xsd:NCName" use="required"
</complexType>

<element name="parameter" type="cpp:ParameterType" />
<complexType name="ParameterType">
<attribute name="part" type="xsd:string" use="required"
<attribute name="childElementName" type="xsd:QName"
use="required" />
<attribute name="name" type="xsd:NCName" use="required"
<attribute name="type" type="xsd:string" use="optional"
</complexType>

<element name="enableWrapperStyle" type="xsd:boolean" />

</schema>

/>

/>

/>

/>
/>

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 92 of 107

sa00 E XML Schemas

3410 Three XML schemas are defined to support the use of C++ for implementation and definition of
3411 interfaces.

3412 The XML schema pointed to by the RDDL document at the SCA namespace URI, defined by the
3413 Assembly specification [ASSEMBLY] and extended by this specification, are considered to be
3414 authoritative and take precedence over the XML schema in this appendix.

3415 E.l1 sca-interface-cpp-1.1.xsd

3416 <?xml version="1.0" encoding="UTF-8"?2>

3417 <schema xmlns="http://www.w3.0rg/2001/XMLSchema"

3418 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903"
3419 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903"

3420 elementFormDefault="qualified">

3421

3422 <include schemalLocation="sca-core.xsd"/>

3423

3424 <element name="interface.cpp" type="sca:CPPInterface"

3425 substitutionGroup="sca:interface"/>

3426

3427 <complexType name="CPPInterface">

3428 <complexContent>

3429 <extension base="sca:Interface">

3430 <sequence>

3431 <element name="function" type="sca:CPPFunction"

3432 minOccurs="0" maxOccurs="unbounded" />

3433 <element name="callbackFunction" type="sca:CPPFunction"
3434 minOccurs="0" maxOccurs="unbounded" />

3435 <any namespace="##other" processContents="lax"

3436 minOccurs="0" maxOccurs="unbounded"/>

3437 </sequence>

3438 <attribute name="header" type="string" use="required"/>
3439 <attribute name="class" type="Name" use="required"/>

3440 <attribute name="callbackHeader" type="string" use="optional"/>
3441 <attribute name="callbackClass" type="Name" use="optional"/>
3442 <anyAttribute namespace="##other" processContents="lax"/>
3443 </extension>

3444 </complexContent>

3445 </complexType>

3446

3447 <complexType name="CPPFunction">

3448 <attribute name="name" type="NCName" use="required"/>

3449 <attribute name="requires" type="sca:listOfQNames" use="optional"/>
3450 <attribute name="oneWay" type="boolean" use="optional"/>

3451 <anyAttribute namespace="##other" processContents="lax"/>

3452 </complexType>

3453

3454 </schema>

3455 E.2 sca-implementation-cpp-1.1.xsd

3456 <?xml version="1.0" encoding="UTF-8"?2>
3457 <schema =xmlns="http://www.w3.0rg/2001/XMLSchema"
3458 targetNamespace="http://docs.ocasis-open.org/ns/opencsa/sca/200903"
3459 xmlns:sca="http://docs.ocasis-open.org/ns/opencsa/sca/200903"
3460 elementFormDefault="qualified">
3461
SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009

Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 93 of 107

<include schemalocation="sca-core.xsd"/>

<element name="implementation.cpp" type="sca:CPPImplementation"
substitutionGroup="sca:implementation" />
<complexType name="CPPImplementation">
<complexContent>
<extension base="sca:Implementation">
<sequence>

<element name="function" type="sca:CPPImplementationFunction"

minOccurs="0" maxOccurs="unbounded" />
<any namespace="##other" processContents="lax"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
<attribute name="library" type="NCName" use="required"/>
<attribute name="header" type="NCName" use="required"/>
<attribute name="path" type="string" use="optional"/>
<attribute name="class" type="Name" use="optional"/>
<attribute name="componentType" type="string" use="optional"/>
<attribute name="scope" type="sca:CPPImplementationScope"
use="optional"/>
<attribute name="eagerInit" type="boolean" use="optional"/>
<attribute name="allowsPassByReference" type="boolean"
use="optional"/>
<anyAttribute namespace="##other" processContents="1lax"/>
</extension>
</complexContent>
</complexType>

<simpleType name="CPPImplementationScope">
<restriction base="string">
<enumeration value="stateless"/>
<enumeration value="composite"/>
</restriction>
</simpleType>

<complexType name="CPPImplementationFunction">
<attribute name="name" type="NCName" use="required"/>
<attribute name="requires" type="sca:listOfQNames" use="optional"/>
<attribute name="allowsPassByReference" type="boolean"
use="optional"/>
<anyAttribute namespace="##other" processContents="lax"/>
</complexType>

</schema>

E.3 sca-contribution-cpp-1.1.xsd

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903"
xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903"
elementFormDefault="qualified">

<include schemalocation="sca-contributions.xsd"/>

<element name="export.cpp" type="sca:CPPExport"
substitutionGroup="sca:Export"/>

<complexType name="CPPExport">
<complexContent>
<attribute name="name" type="QName" use="required"/>
<attribute name="path" type="string" use="optional"/>
</complexContent>

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 94 of 107

</complexType>

<element name="import.cpp" type="sca:CPPImport"
substitutionGroup="sca: Import"/>

<complexType name="CPPImport">
<complexContent>
<attribute name="name" type="QName" use="required"/>
<attribute name="location" type="string" use="required"/>
</complexContent>
</complexType>

</schema>

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 95 of 107

3536

3537
3538

F Conformance Iltems

This section contains a list of conformance items for the SCA C++ Client and Implementation Model

specification.

Conformance ID

Description

[CPP20001]

A C++ implementation MUST implement all of the operation(s) of the service
interface(s) of its componentType.

[CPP20003]

An SCA runtime MUST support these scopes; stateless and composite. Additional
scopes MAY be provided by SCA runtimes.

[CPP20005]

If the header file identified by the @header attribute of an <interface.cpp/> element
contains more than one class, then the @class attribute MUST be specified for the
<interface.cpp/> element.

[CPP20006]

If the header file identified by the @callbackHeader attribute of an <interface.cpp/>
element contains more than one class, then the @callbackClass attribute MUST be
specified for the <interface.cpp/> element.

[CPP20007]

The @name attribute of a <function/> child element of a <interface.cpp/> MUST be
unique amongst the <function/> elements of that <interface.cpp/>.

[CPP20008]

The @name attribute of a <callbackFunction/> child element of a <interface.cpp/>
MUST be unique amongst the <callbackFunction/> elements of that
<interface.cpp/>.

[CPP20009]

The name of the componentType file for a C++ implementation MUST match the
class name (excluding any namespace definition) of the implementations as defined
by the @class attribute of the <implementation.cpp/> element.

[CPP20010]

The @name attribute of a <function/> child element of a <implementation.cpp/>
MUST be unique amongst the <function/> elements of that <implementation.cpp/>.

[CPP20011]

A C++ implementation class MUST be default constructable by the SCA runtime to
instantiate the component.

[CPP20012]

An SCA runtime MUST ensure that a stateless scoped implementation instance
object is only ever dispatched on one thread at any one time. In addition, within the
SCA lifecycle of an instance, an SCA runtime MUST only make a single invocation
of one business method.

[CPP20013]

An SCA runtime MAY run multiple threads in a single composite scoped
implementation instance object and it MUST NOT perform any synchronization.

[CPP20014]

The SCA runtime MAY use by-reference semantics when passing input parameters,
return values or exceptions on calls to remotable services within the same system
address space if both the service member function implementation and the client
are marked “allows pass by reference”.

[CPP20015]

The SCA runtime MUST use by-value semantics when passing input parameters,
return values and exceptions on calls to remotable services within the same system
address space if the service member function implementation is not marked “allows
pass by reference” or the client is not marked “allows pass by reference”.

[CPP30001]

If a remotable interface is defined with a C++ class, an SCA implementation
SHOULD map the interface definition to WSDL before generating the proxy for the

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 96 of 107

interface.

[CPP30002]

For each reference of a component, an SCA implementation MUST generate a
service proxy derived from ServiceProxy that contains the operations of the
reference’s interface definition.

[CPP30003]

An SCA runtime MUST include an asynchronous invocation member function for
every operation of a reference interface with a @requires="asynclnvocation” intent
applied either to the operation or the reference as a whole.

[CPP30004]

An SCA runtime MUST include a response class for every response message of a
reference interface that can be returned by an operation of the interface with a
@requires="asynclnvocation”intent applied either to the operation of the reference
as a whole.

[CPP40001]

An operation marked as oneWay is considered non-blocking and the SCA runtime
MAY use a binding that buffers the requests to the member function and sends
them at some time after they are made.

[CPP40002]

For each service of a component that includes a bidirectional interface, an SCA
implementation MUST generate a service proxy derived from ServiceProxy that
contains the operations of the reference’s callback interface definition.

[CPP40003]

If a service of a component that has a callback interface contains operations with a
@requires="asynclnvocation” intent applied either to the operation of the reference
as a whole, an SCA implementation MUST include asynchronous invocation
member functions and response classes as described in Long Running Request-
Response Operations.

[CPP70001]

The@name attribute of a <export.cpp/> element MUST be unique amongst the
<export.cpp/> elements in a domain.

[CPP70002]

The@name attribute of a <import.cpp/> child element of a <contribution/> MUST be
unique amongst the <import.cpp/> elements in of that contribution.

[CPP80001]

The return type and types of the parameters of a member function of a local service
interface MUST be one of:

e Any of the C++ primitive types (for example, int, short, char). In this case
the data will be passed by value as is normal for C++.

e Pointers to any of the C++ primitive types (for example, int *, short *, char
*)_
e The const keyword can be used for any pointer to a C++ primitive type (for

example const char *). If thisis used on a parameter then the destination
can not change the value.

e C++ class. The class will be passed by value as is normal for C++.

e Pointer to a C++ class. A pointer will be passed to the destination which can
then modify the original contents.

e DataObjectPtr. An SDO pointer. This will be passed by reference.
e References to C++ classes (passed by reference).

[CPP80002]

The return type and types of the parameters of a member function of a remotable
service interface MUST be one of:

e Any of the C++ primitive types (for example, int, short, char). This will be
copied.

e DataObjectPtr. An SDO pointer. The SDO will be copied and passed to the

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 97 of 107

destination.

[CPP90001]

A C++ header file used to define an interface MUST:
e Declare at least one class with:
— At least one public member function.

— All public member functions MUST be pure virtual (virtual with no
implementation)

[CPP90002]

A C++ header file used to define an interface MUST NOT use the following
constructs:

e Macros
¢ Inline member functions
e Friend classes

[CPP100001]

A WSDL file might define a namespace using the <sca:namespace> WSDL
extension, otherwise all C++ classes MUST be placed in a default namespace as
determined by the implementation. Implementations SHOULD provide a
mechanism for overriding the default namespace.

[CPP100002]

If multiple operations within the same portType indicate that they throw faults that
reference the same global element, an SCA implementation MUST generate a
single C++ exception class with each C++ member function referencing this class in
its @WebThrows annotation.

[CPP100003]

e For unwrapped messages, an SCA implementation MUST map:

— in - the message part to a member function parameter, passed by const-
reference.

— out - the message part to a member function parameter, passed by
reference, or to the member function return type, returned by-value.

— infout - the message part to a member function parameter, passed by
reference.

[CPP100004]

e For wrapped messages, an SCA implementation MUST map:

— in - the wrapper child to a member function parameter, passed by const-
reference.

— out - the wrapper child to a member function parameter, passed by
reference, or to the member function return type, returned by-value.

— infout - the wrapper child to a member function parameter, passed by
reference.

[CPP100005]

An SCA implementation SHOULD provide a mechanism for overriding the default
targetNamespace.

[CPP100006]

An SCA implementation MUST map a method’s return type as an out parameter, a
parameter passed by-reference or by-pointer as an in/out parameter, and all other
parameters, including those passed by-const-reference as in parameters.

[CPP100007]

An SCA implementation MUST ensure each class that is referenced from an
@WebThrows annotation MUST itself have a @WebFault annotation that
associates the fault with a particular global element that will be associated with the
fault message.

[CPP100008]

An SCA implementation MUST map simple types as defined in Table 1 and Table 2
by default.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 98 of 107

[CPP110001] An SCA implementation MUST reject a composite file that does not conform to
http://docs.oasis-open.org/opencsa/sca/200903/sca-interface-cpp-1.1.xsd or
http://docs.oasis-open.org/opencsa/sca/200903/sca-implementation-cpp-1.1.xsd.

[CPP110002] An SCA implementation MUST reject a componentType or constraining type
file that does not conform to http://docs.oasis-open.org/opencsa/sca/200903/sca-
interface-cpp-1.1.xsd.

[CPP110003] An SCA implementation MUST reject a contribution file that does not conform to
http://docs.oasis-open.org/opencsa/sca/200903/sca-contribution-cpp-1.1.xsd.

[CPP110004] An SCA implementation MUST reject a WSDL file that does not conform to
http://docs.oasis-open.org/opencsa/sca-c-cpp/cpp/200901/sca-wsdlext-cpp-1.1.xsd.

[CPPAOO001] If annotations are supported by an implementation, the annotations defined here
MUST be supported and MUST be mapped to SCDL as described. The SCA
runtime MUST only process the SCDL files and not the annotations.

[CPPAO002] If multiple annotations apply to a program element, all of the annotations SHOULD
be in the same comment block.

[CPPAO0O03] An SCA implementation MUST treat a class with an @WebService annotation
specified as if an @Interface annotation was specified.

[CPPCO0001] If WSDL mapping annotations are supported by an implementation, the annotations
defined here MUST be supported and MUST be mapped to WSDL as described.

[CPPCO0002] An SCA implementation MUST treat any instance of a @Interface annotation and
without an explicit @WebService annotation as if a @WebService annotation with
no parameters was specified.

[CPPC0003] If a @WebService does not have a portName element, an SCA implementation
MUST use the value associated with the name element, suffixed with “Port”.

[CPPC0004] Only named parameters MAY be referenced by a @WebParam annotation.

[CPPCO0005] The value of the type property of a @WebParam annotation MUST be one of the
simpleTypes defined in namespace http://www.w3.0rg/2001/XMLSchema.

[CPPCO0006] The value of the type property of a @WebResult annotation MUST be one of the
simpleTypes defined in namespace http://www.w3.0rg/2001/XMLSchema.

[CPPCO0007] A C++ class with a @WebFault annotation MUST provide a constructor that takes
two parameters, a std::string and a type representing the fault information.
Additionally, the class MUST provide a const member function “getFaultinfo” that
takes no parameters, and returns the same type as defined in the constructor.

[CPPCO0008] A C++ class that is listed in a @WebThrows annotation MUST itself have a
@WebFault annotation.

[CPPDO0001] If WSDL extensions are supported by an implementation, all the extensions defined
here MUST be supported and MUST be mapped to C++ as described.

[CPPDO0002] A <cpp:bindings/> element MUST NOT have more than one <cpp:class/> child
element.

[CPPDO0003] <cpp:bindings/> element MUST NOT have more than one
<cpp:enableWrapperStyle/> child element.

[CPPDO0004] A <cpp:bindings/> element MUST NOT have more than one <cpp:namespace/>

child element.

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 99 of 107

http://docs.oasis-open.org/opencsa/sca/200903/sca-interface-cpp-1.1.xsd
http://docs.oasis-open.org/opencsa/sca/200903/sca-implementation-cpp-1.1.xsd
http://docs.oasis-open.org/opencsa/sca/200903/sca-interface-cpp-1.1.xsd
http://docs.oasis-open.org/opencsa/sca/200903/sca-interface-cpp-1.1.xsd
http://docs.oasis-open.org/opencsa/sca/200903/sca-contribution-cpp-1.1.xsd
http://docs.oasis-open.org/opencsa/sca-c-cpp/cpp/200901/sca-wsdlext-cpp-1.1.xsd
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

3539

3540
3541
3542

[CPPDO0005] A <cpp:bindings/> element MUST NOT have more than one
<cpp:memberFunction/> child element.

[CPPDO0006] The @type attribute of a <cpp:parameter/> element MUST be a valid C++ type.

[CPPDO0007] An SCA implementation MAY support the reading and interpretation of JAX-WS
defined WSDL extensions; however it MUST give precedence to the corresponding
SCA WSDL extension if present.

F.1 JAX-WS Conformance

The JAX-WS 2.1 specification [JAXWS21] defines conformance statements for various requirements
defined by that specification. The following table outlines those conformance statements, and describes
whether the conformance statement applies to the WSDL binding described in this specification.

Section
2
2

21
21

211
2.2
2.2

2.3
2.3

2.3

2.3

231

Conformance Statement
WSDL 1.1 support

Customization required

Annotations on generated
classes

Definitions mapping

WSDL and XML Schema
import directives

Optional WSDL extensions
SEI naming

javax.jws.WebService
required

Method naming

javax.jws.WebMethod
required

Transmission primitive
support

Using javax.jws.OneWay

Using
javax.jws.SOAPBInding

Notes
(Al

[CPPDO0001]

The reference to the JAX-WS binding
language are treated as a reference to the
C++ WSDL extensions defined in section
WSDL C++ Mapping Extensions.

[CPP100001]

(B]

References to javax.jws.WebService in the
conformance statement are treated as the
C++ annotation @WebService.

[Al, [B]

References to javax.jws.WebMethod in the
conformance statement are treated as the
C++ annotation @WebFunction.

[Al, [B]

References to javax.jws.OneWay in the
conformance statement are treated as the
C++ annotation @OneWay.

[Al, [B]

References to javax.jws.SOAPBInding in

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

Conformance ID

[CPPF0001]

[CPPF0002]

[CPPF0003]

[CPPF0004]
[CPPFO0005]
[CPPFO0006]

[CPPF0007]
[CPPF0008]

[CPPF0009]

[CPPF0010]

[CPPF0011]

19 March 2009
Page 100 of 107

2.3.1

231

2311

23.1.2
23.1.2

23.1.2

23.1.2
2.5

2.5
2.5
2.6

26.1
26.2.1

2.6.2.1

3.1
3.11

Using
javax.jws.WebParam

Using
javax.jws.WebResult

Non-wrapped parameter
naming

Default mapping mode

Disabling wrapper style

Wrapped parameter
naming

Parameter name clash

javax.xml.ws.WebFault
required

Exception naming
Fault equivalence

Required WSDL
extensions

Unbound message parts

Duplicate headers in
binding

Duplicate headers in
message

WSDL 1.1 support

Standard annotations

Java identifier mapping

Method name
disambiguation

the conformance statement are treated as
the C++ annotation @ SOAPBInding.
[A], [B]

References to javax.jws.WebParam in the
conformance statement are treated as the
C++ annotation @WebParam.

[Al, [B]

References to javax.jws.WebResult in the
conformance statement are treated as the
C++ annotation @WebResult.

[B]

References to jaxws:enableWrapperStyle in

the conformance statement are treated as
the WSDL extension
cpp:enableWrapperStyle.

[Al
[B]

References to javax.jws.WebFault in the
conformance statement are treated as the
C++ annotation @WebFault.

[Al

MIME Binding not necessary

[Al

[A]
(Al
[CPPC0001]
[A]
[A]

References to javax.jws.WebMethod in the
conformance statement are treated as the
C++ annotation @WebFunction.

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

[CPPF0012]

[CPPF0013]

[CPPF0014]

[CPPF0015]
[CPPF0016]

[CPPF0017]

[CPPF0018]
[CPPF0019]

[CPPF0020]
[CPPF0021]
[CPPF0022]

[CPPF0023]
[CPPF0024]

[CPPF0025]

[CPPF0026]

[CPPF0027]
[CPPF0028]

19 March 2009
Page 101 of 107

3543
3544

3545

3.2

3.4
34.1
34.1

3.5
3.5.1

351
3.6.1
3.6.1
3.6.1
3.6.1

3.7

3.8

3.10

3.10.1

3.11
3.11

WSDL and XML Schema
import directives

portType naming
Inheritance flattening

Inherited interface
mapping

Operation naming

One-way mapping

One-way mapping errors
Parameter classification
Parameter naming
Result naming

Header mapping of
parameters and results

Exception naming

Binding selection

SOAP binding support

SOAP binding style
required

Port selection

Port binding

[Al

(B]

References to javax.jws.OneWay in the
conformance statement are treated as the
C++ annotation @OneWay.

[CPP100006]

References to javax.jws.WebParam in the
conformance statement are treated as the
C++ annotation @WebParam.

References to javax.jws.WebResult in the
conformance statement are treated as the
C++ annotation @WebResult.

[Al
References to javax.jws.WebFault in the

conformance statement are treated as the
C++ annotation @WebFault.

References to the BindingType annotation
are treated as references to SOAP related
intents defined by [POLICY].

[Al

References to the BindingType annotation
are treated as references to SOAP related
intents defined by [POLICY].

[A] All references to Java in the conformance statement are treated as C++.

[CPPF0029]

[CPPF0030]
[CPPF0044]
[CPPF0045]

[CPPF0031]
[CPPF0032]

[CPPF0033]

[CPPF0035]
[CPPF0036]
[CPPF0037]

[CPPF0038]

[CPPF0039]

[CPPF0040]

[CPPF0041]

[CPPF0042]
[CPPF0043]

[B] Annotation generation is only necessary if annotations are supported by an SCA implementation.

F.1.1 Ignored Conformance Statements

Section

Conformance Statement

Notes

2.2

javax.xml.bind.XmISeeAlso required

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 102 of 107

231 use of JAXB annotations

2.3.1.2 | Using javax.xml.ws.RequestWrapper
2.3.1.2 | Using javax.xml.ws.ResponseWrapper
2.3.3 Use of Holder

2.3.4 Asynchronous mapping required
2.3.4 Asynchronous mapping option
2.3.4.2 | Asynchronous method naming
2.3.4.2 | Asynchronous parameter naming
2.3.4.2 | Failed method invocation

2.3.4.4 | Response bean naming

2.3.4.5 | Asynchronous fault reporting

2.3.4.5 | Asychronous fault cause

2.4 JAXB class mapping

24 JAXB customization use

24 JAXB customization clash

24.1 javax.xml.ws.wsaddressing.W3CEndpointReference
25 Fault Equivalence

2.6.3.1 | Use of MIME type information
2.6.3.1 | MIME type mismatch

2.6.3.1 | MIME part identification

2.7 Service superclass required

2.7 Service class naming

2.7 javax.xml.ws.WebServiceClient required
2.7 Default constructor required

2.7 2 argument constructor required

2.7 Failed getPort Method

2.7 javax.xml.ws.WebEndpoint required
3.2 Package name mapping

3.3 Class mapping

3.6 use of JAXB annotations

3.6.2.1 | Default wrapper bean names

3.6.2.1 | Default wrapper bean package
3.6.2.3 | Null Values in rpc/literal

SCA Client and Implementation Model Specification for C++ Version 1.1
Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 103 of 107

3.7

java.lang.RuntimeExceptions and
java.rmi.RemoteExceptions

3.7

Fault bean name clash

3.11

Service creation

SCA Client and Implementation Model Specification for C++ Version 1.1

Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 104 of 107

3546

3547
3548
3549

3550

3551
3552

G Migration

To aid migration of an implementation or clients using an implementation based the version of the Service
Component Architecture for C++ defined in OSOA SCA C++ Client and Implementation V1.00, this
appendix identifies the relevant changes to APIs, annotations, or behavior defined in V1.00.

G.1 Method child elements of interface.cpp and implementation.cpp

The <method/> child element of <interface.cpp/> and the <method/> child element of
<implementation.cpp/> have both been renamed to <function/> to be consistent with C++ terminology.

SCA Client and Implementation Model Specification for C++ Version 1.1 19 March 2009
Copyright © OASIS® 2006, 2009. All Rights Reserved. Page 105 of 107

http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModel_Cpp-V100.pdf?version=2

3553

3554
3555

3556
3557

H Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully

acknowledged:
Participants:

Participant Name
Bryan Aupperle
Andrew Borley
Jean-Sebastien Delfino
Mike Edwards
David Haney
Mark Little
Jeff Mischkinsky
Peter Robbins

Affiliation
IBM
IBM
IBM
IBM
Individual
Red Hat
Oracle Corporation
IBM

SCA Client and Implementation Model Specification for C++ Version 1.1

Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 106 of 107

3558

3559
3560

3561

| Revision History

[optional; should not be included in OASIS Standards]

Revision

Date

Editor

Changes Made

SCA Client and Implementation Model Specification for C++ Version 1.1

Copyright © OASIS® 2006, 2009. All Rights Reserved.

19 March 2009
Page 107 of 107

	rfc2119
	assembly
	policy
	sdo21
	wsdl11
	xsd
	jaxws21
	R_CPP20001
	R_CPP20014
	R_CPP20015
	R_CPP20003
	R_CPP20012
	R_CPP20013
	R_CPP20005
	R_CPP20006
	R_CPP20007
	R_CPP20008
	R_CPP20009
	R_CPP20010
	R_CPP20011
	R_CPP30001
	R_CPP30002
	R_CPP30003
	R_CPP30004
	R_CPP40001
	R_CPP40002
	R_CPP40003
	R_CPP70001
	R_CPP70002
	R_CPP80001
	R_CPP80002
	R_CPP90001
	R_CPP90002
	R_CPP100001
	R_CPP100002
	R_CPP100003
	R_CPP100004
	R_CPP100005
	R_CPP100006
	R_CPP100007
	R_CPP100008
	R_CPP110001
	R_CPP110002
	R_CPP110003
	R_CPP110004
	R_CPPA0001
	R_CPPA0002
	R_CPPA0003
	R_CPPC0001
	R_CPPC0002
	R_CPPC0003
	R_CPPC0004
	R_CPPC0005
	R_CPPC0006
	R_CPPC0007
	R_CPPC0008
	R_CPPD0001
	R_CPPD0002
	R_CPPD0003
	R_CPPD0004
	R_CPPD0005
	R_CPPD0006
	R_CPPD0007
	CPP20001
	CPP20003
	CPP20005
	CPP20006
	CPP20007
	CPP20008
	CPP20009
	CPP20010
	CPP20011
	CPP20012
	CPP20013
	CPP20014
	CPP20015
	CPP30001
	CPP30002
	CPP30003
	CPP30004
	CPP40001
	CPP40002
	CPP40003
	CPP70001
	CPP70002
	CPP80001
	CPP80002
	CPP90001
	CPP90002
	CPP100001
	CPP100002
	CPP100003
	CPP100004
	CPP100005
	CPP100006
	CPP100007
	CPP100008
	CPP110001
	CPP110002
	CPP110003
	CPP110004
	CPPA0001
	CPPA0002
	CPPA0003
	CPPC0001
	CPPC0002
	CPPC0003
	CPPC0004
	CPPC0005
	CPPC0006
	CPPC0007
	CPPC0008
	CPPD0001
	CPPD0002
	CPPD0003
	CPPD0004
	CPPD0005
	CPPD0006
	CPPD0007

