
[image: image1.png]OASIS)

Service Component Architecture Web Service Binding Specification Version 1.1
Committee Specification Draft 05 /
Public Review Draft 03
28 July 2011
Specification URIs:
This version:

http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-csprd03.pdf (Authoritative)
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-csprd03.html
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-csprd03.doc
Previous version:

http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-cd04.pdf (Authoritative)
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-cd04.html
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-cd04.doc
Latest version:

http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec.pdf (Authoritative)

http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec.doc
Technical Committee:
OASIS Service Component Architecture / Bindings (SCA-Bindings) TC
Chair:

Simon Holdsworth (simon_holdsworth@uk.ibm.com), IBM
Editors:

Simon Holdsworth (simon_holdsworth@uk.ibm.com), IBM
Anish Karmarkar (Anish.Karmarkar@oracle.com), Oracle
Related work:

This specification replaces or supersedes:
· Service Component Architecture Web Service Binding Specification Version 1.00, March 21 2007
http://www.osoa.org/download/attachments/35/SCA_WebServiceBinding_V100.pdf?version=2
This specification is related to:
· Service Component Architecture Assembly Model Specification Version 1.1. Latest version.
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.html
· SCA Policy Framework Version 1.1. Latest version.
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.html
· TestCases for the SCA Web Service Binding Specification Version 1.1. Latest version.
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-testcases.html
Declared XML namespace:

http://docs.oasis-open.org/ns/opencsa/sca/200912
Abstract:

The SCA Web Service binding specified in this document applies to the services and references of an SCA composite [SCA-Assembly]. It defines the manner in which a service can be made available as a web service, and in which a reference can invoke a web service.

This binding is a WSDL-based binding; that means it either references an existing WSDL binding or specifies enough information to generate one. When an existing WSDL binding is not referenced, rules defined in this document specify how to generate a WSDL binding.

Status:

This document was last revised or approved by the OASIS Service Component Architecture / Bindings (SCA-Bindings) TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/sca-bindings/.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/sca-bindings/ipr.php).
Citation format:

When referencing this specification the following citation format should be used:
[SCA-WSBinding]
Service Component Architecture Web Service Binding Specification Version 1.1. 28 July 2011. OASIS Committee Specification Draft 05 / Public Review Draft 03.
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-csprd03.html.
Notices
Copyright © OASIS Open 2011. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The names "OASIS", "SCA", and "Service Component Architecture" are trademarks of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

Table of Contents
61
Introduction

61.1 Terminology

71.2 Normative References

81.3 Non-Normative References

81.4 Naming Conventions

81.5 Testcases

92
Web Service Binding Schema

112.1 Compatibility of SCA Service Interfaces and WSDL portTypes

112.2 Endpoint URI resolution

112.3 Interface mapping

122.4 Production of WSDL description for an SCA service

122.5 Additional binding configuration data

122.6 Web Service Binding and SOAP Intermediaries

122.7 Support for WSDL extensibility

122.8 Intents listed in the bindingType

132.9 Intents and binding configuration

143
Web Service Binding Examples

143.1 Example Using WSDL documents

143.2 Examples Without a WSDL Document

164
Transport Binding

164.1 Intents

164.2 Default Transport Binding Rules

164.2.1 WS-I Basic Profile Alignment

164.2.2 Default Transport Binding Rules

185
Implementing SCA Callbacks using Web Services

185.1 SCA Web Services Callback Protocol

195.2 SCA Web Services Callback Protocol with WS-MakeConnection

195.3 Policy Assertion for SCA Web Services Callback Protocol

195.3.1 Assertion Model

195.3.2 Normative Outline

205.3.3 Assertion Attachment

205.3.4 Assertion Example

215.3.5 Security Considerations

226
Conformance

226.1 SCA WS Binding XML Document

226.2 Web Service Callback Service

226.3 Web Service Callback Client

226.4 SCA Runtime

24A.
Web Services XML Binding Schema: sca-binding-ws-1.1.xsd (Normative)

25B.
SCA Web Services Callback Protocol Policy Assertion XML Schema: sca-binding-webservice-callback-1.1.xsd (Normative)

26C.
Conformance Items (Normative)

29D.
WSDL Generation (Non-Normative)

30E.
SCA Web Services Callback Protocol Message Examples (Non-Normative)

32E.1 Message Examples Using WS-MakeConnection

34F.
Acknowledgements (Non-Normative)

35G.
Revision History (Non-Normative)

1 Introduction

The SCA Web Service binding specified in this document applies to the services and references of composites and components [SCA-Assembly]. It defines the manner in which a service can be made available as a web service, and in which a reference can invoke a web service.

This binding is a WSDL-based binding; that means it either references an existing WSDL binding or can be configured to specify enough information to generate one. When an existing WSDL binding is not referenced, rules defined in this document specify how to generate a WSDL binding. This specification only defines a binding using WSDL 1.1.
The Web Service binding can point to an existing WSDL [WSDL11] document, separately authored, that specifies the details of the WSDL binding to be used to provide or invoke the web service. In this case the SCA web services binding allows anything that is valid in a WSDL binding, including rpc-encoded style and binding extensions. It is the responsibility of the SCA system provider to ensure support for all options specified in the WSDL binding. Interoperation of such services is not guaranteed.

The SCA Web Service binding also provides attributes that can be used to provide the details of a WSDL SOAP binding. This allows a WSDL document to be synthesized in the case that one does not already exist. In this case only WS-I compliant mapping is supported.

The SCA Web Service binding can be further customized through the use of SCA Policy Sets. For example, a requirement to conform to a WS-I profile [WSI-Profiles] could be represented with a policy set.

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
This specification uses predefined namespace prefixes throughout; they are given in the following list. Note that the choice of any namespace prefix is arbitrary and not semantically significant.

	Prefix
	Namespace
	Notes

	xs
	"http://www.w3.org/2001/XMLSchema"
	Defined by XML Schema 1.0 specification

	wsa
	"http://www.w3.org/2005/08/addressing"
	Defined by WS-Addressing 1.0

	wsp
	"http://www.w3.org/ns/ws-policy"
	Defined by WS-Policy 1.5

	soap
	Can be either "http://schemas.xmlsoap.org/soap/envelope/" or "http://www.w3.org/2003/05/soap-envelope"
	Defined by SOAP 1.1 or SOAP 1.2

	wsdli
	"http://www.w3.org/ns/wsdl-instance"
	Defined by WSDL 2.0

	wsoap11
	"http://schemas.xmlsoap.org/wsdl/soap/"
	Defined by WSDL 1.1 [WSDL11]

	wsoap12
	"http://schemas.xmlsoap.org/wsdl/soap12/"
	Defined by [W11-SOAP12]

	sca
	"http://docs.oasis-open.org/ns/opencsa/sca/200912"
	Defined by the SCA specifications

Table 1‑1: Prefixes and Namespaces Used in this Specification
1.2 Normative References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[SCA-Assembly]
OASIS Committee Specification Draft 07, Service Component Architecture Assembly Model Specification Version 1.1, January 2011
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-csd07.pdf
[SCA-Policy]
OASIS Committee Draft 04, SCA Policy Framework Specification Version 1.1, September 2010
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd04.pdf
[SCA-JCAA]
OASIS Committee Specification Draft 05, Service Component Architecture SCA-J Common Annotations and APIs Specification Version 1.1, November 2010
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csd05.pdf
[WSDL11]
E. Christensen et al, Web Service Description Language (WSDL) 1.1, http://www.w3.org/TR/2001/NOTE-wsdl-20010315, W3C Note, March 15 2001.

[WSDL20]
Chinnici et al, Web Service Description Language (WSDL) Version 2.0 Part 1: Core Language, http://www.w3.org/TR/2007/REC-wsdl20-20070626/, W3C Recommendation, June 26 2007.

[WSI-Profiles]
“Basic Profile Version 1.1”
http://www.ws-i.org/Profiles/BasicProfile-1.1.html,

“Attachments Profile Version 1.0”
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html,

“Simple SOAP Binding Profile Version 1.0”
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html,

“Basic Security Profile Version 1.0”
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
[JAX-WS]
“JSR 224: JavaTM API for XML-Based Web Services (JAX-WS) 2.0” http://jcp.org/en/jsr/detail?id=224
[SOAP11]
Box et al, “Simple Object Access Protocol (SOAP) 1.1” http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, W3C Note May 2000

[SOAP]
Gudgin et al, “SOAP Version 1.2 Part 1: Messaging Framework” http://www.w3.org/TR/2003/REC-soap12-part1-20030624/, W3C Recommendation June 2003; Box et al, “Simple Object Access Protocol (SOAP) 1.1” http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, W3C Note May 2000

[SOAP12Adjuncts]
Gudgin et al, “SOAP Version 1.2 Part 2: Adjuncts (Second Edition)”

http://www.w3.org/TR/soap12-part2/, W3C Recommendation April 2007
[WS-Addr]
Gudgin et al, “Web Services Addressing 1.0 – Core” http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/, W3C Recommendation May 2006

[W11-SOAP12]
Angelov et al, “WSDL 1.1 Binding Extension for SOAP 1.2” http://www.w3.org/Submission/wsdl11soap12/, W3C Member Submission April 2006
[WS-Addr-SOAP]
Gudgin et al, “Web Services Addressing 1.0 – SOAP Binding” http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/, W3C Recommendation May 2006
[WS-MC]
OASIS Standard “Web Services Make Connection (WS-MakeConnection) Version 1.1”, February 2009
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.doc
[WS-Policy]
Vedamuthu et al, “Web Services Policy 1.5 – Framework” http://www.w3.org/TR/2007/REC-ws-policy-20070904, W3C Recommendation September 2007
[WS-PA]
Vedamuthu et al, “Web Services Policy 1.5 – Attachment” http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904, W3C Recommendation September 2007
1.3 Non-Normative References

[WSI-AP]
“Attachments Profile Version 1.0” http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
[MTOM]
Gudgin et al, “SOAP Message Transmission Optimization Mechanism” http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/, W3C Recommendation January 2005

[WS-Security]
Oasis Standard “Web Services Security: SOAP Message Security 1.1 (WS-Security 2004)” February 2006 http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
[WS-Testcases]
OASIS Committee Draft 01, "TestCases for the SCA Web Service

Binding Specification Version 1.1", July 2010, http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-testcases-cd01.pdf
1.4 Naming Conventions

The naming conventions used by artefacts defined in this specification are:
· The naming conventions defined by section 1.3 of the Assembly Specification [SCA-Assembly].

· Where the names of elements and attributes consist partially or wholly of acronyms, the letters of the acronyms use the same case. When the acronym appears at the start of the name of an element or an attribute, or after a period, it is in lower case. If it appears elsewhere in the name of an element or an attribute, it is in upper case. For example, an attribute might be named "uri" or "jndiURL".

· Where the names of types consist partially or wholly of acronyms, the letters of the acronyms are in all upper case. For example, an XML Schema type might be named "JCABinding" or "MessageID".

· Values, including local parts of QName values, follow the rules for names of elements and attributes as stated above, with the exception that the letters of acronyms are in all upper case. For example, a value might be "JMSDefault" or "namespaceURI".

1.5 Testcases

TestCases for SCA Web Service Binding Specification Version 1.1 [WS-Testcases] defines test cases for this specification. The TestCases represent a series of tests that SCA runtimes are expected to pass in order to claim conformance to the requirements of this specification.

2 Web Service Binding Schema

The Web Service binding element is defined by the pseudo-schema in Snippet 2‑1.

<binding.ws name="xs:NCName"?

 requires="list of xs:QName"?

 policySets="list of xs:QName"?
 uri="xs:anyURI"?

 wsdlElement="xs:anyURI"?

 wsdli:wsdlLocation="list of xs:anyURI pairs"? >

 <wireFormat ... />?

 <operationSelector ... />?

 <wsa:EndpointReference>...</wsa:EndpointReference>*

</binding.ws>
Snippet 2‑1: binding.ws Pseudo-Schema
The binding.ws element has the attributes:

· /binding.ws/@name - as defined in the SCA Assembly Specification [SCA-Assembly].

· /binding.ws/@requires - as defined in the SCA Assembly Specification [SCA-Assembly].

· /binding.ws/@policySets - as defined in the SCA Assembly Specification [SCA-Assembly].

· /binding.ws/@uri - the resolution algorithm of Section 2.2 describes how this attribute is interpreted. For an SCA reference, the @uri attribute MUST be an absolute value. [BWS20001]
· /binding.ws/@wsdlElement – when present this attribute specifies the URI of a WSDL element. The value of the @wsdlElement attribute MUST identify an element in an existing WSDL 1.1 document. [BWS20002] The URI can have the following forms:

· Service:

<WSDL-namespace-URI>#wsdl.service(<service-name>)

If the binding is for an SCA service, the wsdlElement attribute MUST NOT specify the wsdl.service form of URI. [BWS20003]
If the binding is for an SCA reference, the set of available ports for the reference consists of the ports in the WSDL service that have portTypes which are compatible supersets of the SCA reference as defined in the SCA Assembly Model specification [SCA-Assembly] and satisfy all the policy constraints of the binding.

If the wsdl.service form of wsdlElement is used on an SCA reference binding, the set of available ports for that reference binding MUST be non-empty. [BWS20004] The set of available ports represents a single SCA reference binding with respect to the multiplicity of that SCA reference. If the wsdl.service form of wsdlElement is used on an SCA reference binding, the SCA runtime MUST raise an error if there are no available ports that it supports. [BWS20005] When an invocation is made using an SCA reference binding with the wsdl.service form of wsdlElement, the SCA runtime MUST use exactly one port from the set of available ports for the reference (with port selection on a per-invocation basis permitted). [BWS20006]
· Port:

<WSDL-namespace-URI>#wsdl.port(<service-name>/<port-name>)

If the binding is for an SCA service, the portType associated with the specified WSDL port MUST be compatible with the SCA service interface as defined in section 2.1, and the port MUST satisfy all the policy constraints of the binding.[BWS20007] The SCA runtime MUST expose an endpoint for the specified WSDL port, or raise an error if it does not support the WSDL port. [BWS20008] If the binding is for an SCA reference, the portType associated with the specified WSDL port MUST be a compatible superset of the SCA reference interface as defined in the SCA Assembly Model specification [SCA-Assembly], and the port MUST satisfy all the policy constraints of the binding. [BWS20009] The SCA runtime MUST use the specified WSDL port for invocations made using the SCA reference binding, or raise an error if it does not support the WSDL port. [BWS20010]
· Binding:

<WSDL-namespace-URI>#wsdl.binding(<binding-name>)

If the binding is for an SCA service, the portType associated with the specified WSDL binding MUST be compatible with the SCA service interface as defined in section 2.1, and the WSDL binding MUST satisfy all the policy constraints of the binding. [BWS20011] The SCA runtime MUST expose an endpoint for the specified WSDL binding, or raise an error if it does not support the WSDL binding. [BWS20012]
If the binding is for an SCA reference, the portType associated with the specified WSDL binding MUST be a compatible superset of the SCA reference interface as defined in the SCA Assembly Model specification [SCA-Assembly], and the WSDL binding MUST satisfy all the policy constraints of the binding. [BWS20013] The SCA runtime MUST use the specified WSDL binding for invocations made using the SCA reference binding, or raise an error if it does not support the WSDL binding. [BWS20014]
When the wsdl.binding form of wsdlElement is used , the endpoint address URI for an SCA reference MUST be specified by either the @uri attribute on the binding or a WS-Addressing wsa:EndpointReference element, except where the SCA Assembly Model specification [SCA-Assembly] states that the @uri attribute can be omitted. [BWS20015]
· /binding.ws/@wsdli:wsdlLocation – when present this attribute specifies the location(s) of the WSDL document(s) associated with specific namespace(s).

The @wsdli:wsdlLocation attribute can be used in the event that the <WSDL-namespace-URI> value in the @wsdlElement attribute is not dereferencable, or when the intended WSDL document is to be found at a different location than the one pointed to by the <WSDL-namespace-URI>. The semantics of this attribute are specified in Section 7.1 of WSDL 2.0 [WSDL20].
If the @wsdli:wsdlLocation attribute is used the @wsdlElement attribute MUST also be specified. [BWS20017]
The value of the @wsdli:wsdlLocation attribute MUST identify an existing WSDL 1.1 document. [BWS20018]
· /binding.ws/wireFormat – as defined in the SCA Assembly Specification [SCA-Assembly]. This specification does not define any new wireFormat elements.

· /binding.ws/operationSelector – as defined in the SCA Assembly Specification [SCA-Assembly]. This specification does not define any new operationSelector elements.
· /binding.ws/wsa:EndpointReference – when present this element provides the WS-Addressing [WS-Addr] wsa:EndpointReference that specifies the endpoint for the service or reference.

A binding.ws element MUST NOT contain more than one of any of the following: the @uri attribute; the @wsdlElement attribute referring to a WSDL port or to a WSDL service; the wsa:EndpointReference element. [BWS20019]
The endpoint address URI for an SCA service or the callback element of an SCA reference is determined as specified in section 2.2. For the callback element of an SCA service, the binding MUST NOT specify an endpoint address URI or a WS-Addressing wsa:EndpointReference. [BWS20020]
The SCA runtime MUST support all the attributes of the <binding.ws> element, namely @name, @uri, @requires, @policySets, @wsdlElement, and @wsdli:wsdlLocation.[BWS20021]
The SCA runtime SHOULD support the element <wsa:EndpointReference>. [BWS20022] If an SCA runtime does not support the element <wsa:EndpointReference>, then it MUST reject an SCA WS Binding XML document (as defined in Section 5.1) that contains the element. [BWS20023]
The <binding.ws> element MUST conform to the XML schema defined in sca-binding-webservice-1.1.xsd. [BWS20024]
2.1 Compatibility of SCA Service Interfaces and WSDL portTypes

A WSDL portType is compatible with an SCA service interface if and only if all of these conditions are satisfied:

1. The SCA service interface is remotable.

2. The operations on the portType are the same as the operations on the SCA service interface, with the same operation name, same input types (taking order as significant), same output types (taking order as significant), and same fault/exception types. If the SCA service interface is not a WSDL portType, it is mapped to a WSDL portType for the purposes of this comparison. The mapping is defined in the relevant SCA specification for the interface type. If the interface cannot be mapped to WSDL, the SCA service interface is not compatible with the WSDL portType.

3. WSDL 1.1 message parts can point either to an XML Schema element declaration or to an XML Schema type declaration. When determining compatibility between two WSDL operations, a message part that points to an XML Schema element is considered to be incompatible with a message part that points to an XML Schema type.

4. If either the portType or the SCA service interface declares an SCA callback interface, then both the portType and the SCA service interface declare callback interfaces and these callback interfaces are compatible according to points 1 through 3 above.
2.2 Endpoint URI resolution

This specification does not mandate any particular way to determine the URI for a web services binding on an SCA service. An absolute URI can be indicated by the @uri attribute, by the URI in a wsa:Address element within an wsa:EndpointReference element, or by the URI indicated in a WSDL port via a @wsdlElement attribute. Implementations can use the specified URI as the service endpoint URI or they can use a different URI which might include portions of the specified URI. For example, the service endpoint URI might be produced by modifying any or all of the host name, the port number, and a portion of the path.

Note that if no absolute URI is indicated by any of these elements, implementations can use the structural URI for the binding as a portion of the URI for the eventual deployed endpoint. In addition, the @uri attribute value could be relative; implementations are encouraged to combine this value with the structural URI for the service in determining a deployed URI.

The target address for a reference binding is defined as one of:

A. The value of the @uri attribute

B. The value of the wsa:Address element of the wsa:EndpointReference element

C. The value of the address element of the WSDL port referenced by the @wsdlElement attribute

D. The value of the address element of one of the set of available WSDL ports as specified under the definition of the @wsdlElement attribute when it references a WSDL service element

If there is no target address for a reference binding, the SCA runtime MUST raise an error. [BWS20025]
For a reference binding, the SCA runtime MUST use the target address. [BWS20026]
2.3 Interface mapping

When binding.ws is used on a service or reference with an interface that is not defined by interface.wsdl, the SCA runtime MUST derive a WSDL portType for the service or reference from the interface using the WSDL-mapping rules defined for that SCA interface type. [BWS20027]
An SCA runtime MUST raise an error if the interface on a service or reference element with a binding.ws element does not map to a WSDL portType. [BWS20028]
For example, for interface.java, the mapping to a WSDL portType is as defined in the SCA Java Common Annotations and API Specification [SCA-JCAA].

binding.ws implementations can use appropriate standards, for example WS-I AP 1.0 [WSI-AP] or MTOM [MTOM], to map interface parameters to binary attachments transparently to the target component.

2.4 Production of WSDL description for an SCA service

Any service hosted by an SCA runtime with one or more web service bindings with HTTP endpoints is strongly encouraged to return a WSDL description of the service in response to an HTTP GET request with the ?wsdl suffix added to that HTTP endpoint URL. Regardless of the protocol supported by an SCA service endpoint using the web services binding, the SCA runtime is strongly encouraged to provide some means of obtaining the WSDL description of the service. This can include out of band mechanisms, for example publication to a UDDI registry.

Refer to section 4 for a detailed definition of the rules that are used for generating the WSDL description of an SCA service with one or more web service bindings.

2.5 Additional binding configuration data

SCA runtime implementations can provide additional metadata that is associated with a web service binding. This is done by providing extension points in the schema; refer to Appendix A: Web Services XML Binding Schema for the locations of these extension points.
This can be used for example to enable JAX-WS [JAX-WS] handlers to be executed as part of the target component dispatch. The specification of such metadata is SCA runtime-specific and is outside of the scope of this document.

2.6 Web Service Binding and SOAP Intermediaries

The Web Service binding does not provide any direct or explicit support for SOAP intermediaries [SOAP].

2.7 Support for WSDL extensibility

When a binding.ws element uses the @wsdlElement attribute, the details of the binding are specified by the WSDL element referenced by the value of the attribute. Per the WSDL specification, WSDL allows for extensibility via elements as well as attributes, and it specifies rules for processing such elements. This specification does not constrain the use of such extensibility in WSDL and relies on the rules specified in the WSDL specification for processing such extended elements.

An SCA runtime MUST support the WSDL extensions defined in the namespace associated with the prefix "sca" (as defined in section 1.1). [BWS20032]
The SCA runtime MUST support the WSDL 1.1 binding extension for SOAP 1.1 over HTTP [WSDL11], as identified by the WSDL element wsoap11:binding that has the @transport attribute with a value of "http://schemas.xmlsoap.org/soap/http". [BWS20033]
The SCA runtime can support the WSDL 1.1 binding extension for SOAP 1.2 over HTTP [W11-SOAP12], as identified by the WSDL element wsoap12:binding that has the @transport attribute with a value of "http://schemas.xmlsoap.org/soap/http". Because a WSDL document might contain extension elements that cannot be supported by the SCA runtime, when using the @wsdlElement form of binding.ws it is not possible to determine whether the binding is supported by the SCA runtime without parsing the referenced WSDL element and its dependent elements.

2.8 Intents listed in the bindingType

This specification places no requirements on the intents [SCA-Policy] that are listed as either @alwaysProvides or @mayProvides in the bindingType for binding.ws.

2.9 Intents and binding configuration

This binding mandates support for SOAP 1.1 and encourages SOAP 1.2 support. The <bindingType> element associated with this binding MUST include the SOAP.v1_1 intent in its @mayProvides or @alwaysProvides attributes. [BWS20035] Where the binding implementation provides support for SOAP 1.2 over HTTP described above, it is good practice for the <bindingType> element associated with this binding to include the SOAP.v1_2 intent in its @mayProvides attribute. For more details on the <bindingType> element see [SCA-Policy].
The SCA runtime MUST raise an error if a web service binding is configured with a policy intent(s) that conflicts with the binding instance's configuration. [BWS20037]
For example, it is an error to use the SOAP policy intent in combination with a WSDL binding that does not use SOAP.

3 Web Service Binding Examples

The following snippets show the sca.composite file for the MyValueComposite file containing the service element for the MyValueService and reference element for the StockQuoteService. Both the service and the reference use a Web Service binding.

3.1 Example Using WSDL documents

Snippet 3‑1 shows a service and reference using the SCA Web Service binding, using existing WSDL documents in both cases. In each case there is a single binding element, whose name defaults to the service/reference name.

The service’s binding is defined by the WSDL document associated with the given URI. This service conforms to WS-I Basic Profile 1.1.

The first reference’s binding is defined by the specified WSDL service in the WSDL document at the given location. The reference can use any of the WSDL service’s ports to invoke the target service. The second reference’s binding is defined by the specified WSDL binding. The specific endpoint URI to be invoked is provided via the @uri attribute.

<?xml version="1.0" encoding="ASCII"?>

<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 name="MyValueComposite">

 <service name="MyValueService">

 <interface.java interface="services.myvalue.MyValueService"/>

 <binding.ws wsdlElement="http://www.example.org/MyValueService#
 wsdl.binding(MyValueService/MyValueServiceSOAP)"/>

 ...

 </service>

 ...

 <reference name="StockQuoteReference1">

 <interface.java interface="services.stockquote.StockQuoteService"/>

 <binding.ws wsdlElement="http://www.example.org/StockQuoteService#

 wsdl.service(StockQuoteService)"

 wsdli:wsdlLocation="http://www.example.org/StockQuoteService

 http://www.example.org/StockQuoteService.wsdl"/>

 </reference>

 <reference name="StockQuoteReference2">

 <interface.java interface="services.stockquote.StockQuoteService"/>

 <binding.ws wsdlElement="http://www.example.org/StockQuoteService#

 wsdl.binding(StockQuoteBinding)"

 wsdli:wsdlLocation="http://www.example.org/StockQuoteService

 http://www.example.org/StockQuoteService.wsdl"

 uri="http://www.example.org/StockQuoteService5"/>

 </reference>

</composite>
Snippet 3‑1: Example Binding with a WSDL Document
3.2 Examples Without a WSDL Document

Snippet 3‑2 shows the simplest form of the binding element without WSDL document, assuming all defaults for portType mapping and SOAP binding synthesis. The service and reference each have a single binding element, whose name defaults to the service/reference name.

The service is to be made available at a location determined by the deployment of this component. It will have a single port address and SOAP binding, with a simple WS-I BasicProfile 1.1 compliant binding, and using the default options for mapping the Java interface to a WSDL portType.

The reference indicates a service to be invoked which has a SOAP binding and portType that matches the default options for binding synthesis and interface mapping. One particular use of this case would be where the reference is to an SCA service with a web service binding which itself uses all the defaults.

<?xml version="1.0" encoding="ASCII"?>

<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 name="MyValueComposite">

 <service name="MyValueService">

 <interface.java interface="services.myvalue.MyValueService"/>

 <binding.ws/>

 ...

 </service>

 ...

 <reference name="StockQuoteService">

 <interface.java interface="services.stockquote.StockQuoteService"/>

 <binding.ws uri="http://www.example.org/StockQuoteService"/>

 </reference>

</composite>
Snippet 3‑2: Example Binding without a WSDL Document
Snippet 3‑3 shows the use of the binding element without a WSDL document, with multiple SOAP bindings with non-default values. The SOAP 1.2 binding name defaults to the service name, the SOAP 1.1 binding is given an explicit name. The reference has a web service binding which uses SOAP 1.2, but otherwise uses all the defaults for SOAP binding. The reference binding name defaults to the reference name.

<?xml version="1.0" encoding="ASCII"?>

<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 name="MyValueComposite">

 <service name="MyValueService">

 <interface.java interface="services.myvalue.MyValueService"/>

 <binding.ws name="MyValueServiceSOAP11" requires="SOAP.v1_1"/>

 <binding.ws requires="SOAP.v1_2"/>

 ...

 </service>

 ...

 <reference name="StockQuoteService">

 <interface.java interface="services.stockquote.StockQuoteService"/>

 <binding.ws uri="http://www.example.org/StockQuoteService"

 requires="SOAP.v1_2"/>

 </reference>

</composite>
Snippet 3‑3: Example Binding with Multiple SOAP Bindings
4 Transport Binding

The binding.ws element provides numerous ways to specify exactly how messages ought to be transmitted from or to the reference or service. Those ways include references to WSDL binding elements from the @wsdlElement attribute, policy intents, and even vendor extensions within the binding.ws element. This section describes the defaults to be used if the specific transport details are not otherwise specified.
4.1 Intents

So as to narrow the range of choices for how messages are carried, these policy intents affect the transport binding:
· SOAP

When the SOAP intent is required, the SCA runtime MUST transmit and receive messages using SOAP. One or more SOAP versions can be used. [BWS40001]
· SOAP.v1_1

When the SOAP.v1_1 intent is required, the SCA runtime MUST transmit and receive messages using only SOAP 1.1. [BWS40002]
· SOAP.v1_2

When the SOAP.v1_2 intent is required, the SCA runtime MUST transmit and receive messages using only SOAP 1.2. [BWS40003]
4.2 Default Transport Binding Rules

4.2.1 WS-I Basic Profile Alignment

To align to WS-I Basic Profile, the resulting WSDL port needs to be all document-literal, or all rpc-literal binding (per WS-I Basic Profile 1.1 R2705 [WSI-Profiles]). This means, for any given portType, for all messages referenced by all operations in that portType, either

· that every message part references an XML Schema type (rpc-literal pattern)

· or that every message references exactly zero or one XML Schema elements (document-literal pattern)

For an SCA service or reference element, the portType from the service's or reference’s interface or derived from that interface MUST follow either the rpc-literal pattern or the document-literal pattern. [BWS40004]
The rest of this section assumes the short-hand reference of a "rpc-literal" or "document-literal" pattern, depending on which of the two bullet points above it matches.

4.2.2 Default Transport Binding Rules

The default transport binding rules for the Web Service binding are:

· HTTP-based transfer protocol;

· SOAP 1.1 binding;

· "literal" format as described in section 3.5 of [WSDL11];

· Either the document literal or rpc literal pattern, depending on the service or reference interface as described in section 4.2.1;

· For document literal pattern, each message uses "document" style, as per section 3.5 of [WSDL11];

· For rpc-literal pattern, each message uses "rpc" style, as per section 3.5 of [WSDL11] and the child elements of the SOAP Body element are namespace qualified with a non-empty namespace name;

· For SOAP 1.1 messages, the SOAPAction HTTP header described in section 6.1.1 of [SOAP11] represents the empty string, in quotes ("");

· For SOAP 1.2 messages, the SOAP Action feature described in section 6.5 of [SOAP12Adjuncts] does not appear;

· All WSDL message parts are carried in the SOAP body.

In the event that the transport details are not determined by use of the @wsdlElement attribute, @uri attribute, wsa:EndpointReference element, policy intents, policy sets or extensions to the binding.ws element, an SCA runtime MUST enable the default transport binding rules. [BWS40005]

When using the default transport binding rules, the SCA runtime can provide additional WSDL bindings, unless policy is applied that explicitly restricts this.
When using the default transport binding rules with the rpc-literal pattern, the SCA runtime MUST use the structural URI associated with the binding as the namespace of the child elements of the SOAP body element. [BWS40007]
5 Implementing SCA Callbacks using Web Services

5.1 SCA Web Services Callback Protocol
This section defines a SOAP- and WS-Addressing-based SCA Web Services callback protocol that can be used to implement a bidirectional interface [SCA-Assembly]. For examples of wire messages exchanged when using this protocol see Appendix E.

The protocol involves two communicating parties: a Service that implements the SCA bidirectional interface using Web services (WSCB Service) and a client that invokes the SCA bidirectional interface using Web services (WSCB Client). The WSCB Service implements the forward interface and the WSCB Client implements the callback interface. SCA Web Services Callback Protocol involves the following rules.

5. Every request message from the WSCB Client that invokes the forward interface MUST contain a Callback EPR. [BWS50002] If the request message contains the wsa:From SOAP header block then the wsa:From header block specifies the Callback EPR. If the wsa:From header block is not present then the wsa:ReplyTo header block specifies the Callback EPR.

If the Callback EPR's [address] value is "http://www.w3.org/2005/08/addressing/anonymous" or "http://www.w3.org/2005/08/addressing/none" then the WSCB Service MUST generate the Invalid Addressing Header fault as specified in Section 6.4.1 of [WS-Addr-SOAP]. [BWS50004] Such a fault can include additional [Subsubcode] wsa:OnlyNonAnonymousAddressSupported.

6. A request message that invokes the forward interface can contain the wsa:MessageID SOAP header block. If there is a need to have the callback request message correlated to an individual forward request message, the wsa:MessageID SOAP header block can be used for this purpose.

7. When the WSCB Service invokes the callback interface, it MUST use the Callback EPR from a request message that invoked the forward interface. [BWS50005] Once the Callback EPR is selected, the WSCB Service MUST follow the rules defined in Section 3.3 of [WS-Addr] to invoke operations on the callback interface. [BWS50006]
When the WSCB Service invokes the callback interface, if the request message from which the Callback EPR was obtained contained the wsa:MessageID SOAP header block, the WSCB Service MUST include a wsa:RelatesTo SOAP header block in the callback message. [BWS50007] The wsa:RelatesTo SOAP header block MUST have the relationship type value of "http://docs.oasis-open.org/opencsa/sca-bindings/ws/callback" and the related message id MUST be the wsa:MessageID of the message from which the Callback EPR was obtained. [BWS50008]
If the request message from which the Callback EPR was obtained did not contain the wsa:MessageID SOAP header block, the WSCB Service MUST NOT include a wsa:RelatesTo SOAP header block with a relationship type value of "http://docs.oasis-open.org/opencsa/sca-bindings/ws/callback" in the callback message. [BWS50009]
When a service that offers a bidirectional interface is invoked, depending on the semantics and/or implementation of the service, it is possible that the service might invoke the callback interface before the forward operation ends. In such cases, it is necessary for the binding on the reference-side to be listening for callback request(s) from the service, before the forward operation request is sent on the wire to the service, and continue listening as long as callback requests are expected. It is possible that before the response to the forward request is sent a response to one or more callback requests are required by the service.

5.2 SCA Web Services Callback Protocol with WS-MakeConnection

It is possible that the invoker of a service that uses a bidirectional interface has a binding that cannot accept connections for callbacks from a service (for example, when it has the noListener intent [SCA-Policy]). When this is the case, it is necessary for the binding to support a polling mechanism. An example of a polling mechanism is WS-MakeConnection [WS-MC]. This section describes the use of the SCA Web Services Callback Protocol in conjunction with WS-MakeConnection. For examples of wire messages exchanged when using the SCA Web Services Callback protocol in conjunction with WS-MakeConnection see Appendix E.1.

When the SCA Web Services Callback protocol is implemented in conjunction with WS-MakeConnection, it has to adhere to the rules described for the SCA Web Services Callback Protocol and also to those of WS-MakeConnection.

The Callback EPR's [address] value present in the request message that invoked the forward interface follows the form of the MakeConnection Anonymous URI, i.e. "http://docs.oasis-open.org/ws-rx/wsmc/200702/anonymous?id={unique-String}".

The unique-String value is a globally unique value such as a UUID, as defined by the WS-MakeConnection specification.

When the service implementation invokes the callback interface, it uses the Callback EPR from a request message that invoked the forward interface, and the callback request message is sent as the response to a wsmc:MakeConnection message that contains the wsmc:Address value that matches the MakeConnection Anonymous URI in the Callback EPR.

When a service that offers a bidirectional interface is invoked using WS-MakeConnection Anonymous URI as the value for the Callback EPR address, depending on the semantics and/or implementation of the service, it is possible that the service might invoke the callback interface before the forward operation ends. In such cases, it is necessary for the binding on the reference-side to start polling for callback request(s) from the service, before or right after the forward operation request is sent and before a response is received, and continue polling as long as callback requests are expected. It is possible that before the response to the forward request is sent a response to one or more callback requests are required by the service.

5.3 Policy Assertion for SCA Web Services Callback Protocol

WS-Policy Framework [WS-Policy] and WS-Policy Attachment [WS-PA] collectively define a framework, model and grammar for expressing the requirements, and general characteristics of entities in an XML Web services-based system. To enable a Web service client and a Web service to describe their requirements for implementing SCA Web Services Callback Protocol, this specification defines a single policy assertion that leverages the WS-Policy framework.

5.3.1 Assertion Model

The WSCallback policy assertion indicates that the WSCB Client and the WSCB Service MUST use SCA Web Services Callback Protocol to implement callbacks. [BWS50010] Specifically, the protocol determines the requirements on the forward request message, the EPR used for callbacks and the requirements on the callback request message.

5.3.2 Normative Outline

The normative outline for the WSCallback assertion is:

<sca:WSCallback ...>

 ...

</sca:WSCallback>

Snippet 5‑1: WSCallback Assertion

The content model of the WSCallback element is:

· /sca:WSCallback: A policy assertion that specifies that SCA Web Services Callback protocol is used when sending messages.

5.3.3 Assertion Attachment

The WSCallback policy assertion can have the following Policy Subjects [WS-PA]:

· Endpoint Policy Subject

WS-PolicyAttachment defines a set of WSDL/1.1 policy attachment points for each of the above Policy Subjects. Since a WSCallback policy assertion specifies a concrete behavior, it cannot be attached to the abstract WSDL policy attachment points.

The following is the list of WSDL/1.1 elements whose scope contains the Policy Subjects allowed for a WSCallback policy assertion but which cannot have WSCallback policy assertions attached: wsdlPortType
The following is the list of WSDL/1.1 elements whose scope contains the Policy Subjects allowed for a WSCallback policy assertion and which can have WSCallback policy assertions attached:

· wsdl:port

· wsdl:binding

5.3.4 Assertion Example

Snippet 5‑2 the use of the WSCallback policy assertion in a WSDL document.

(01)<wsdl:definitions

(02) targetNamespace="example.com"

(03) xmlns:tns="example.com"

(04) xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

(05) xmlns:wsp="http://www.w3.org/ns/ws-policy"

(06) xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912"

(07) xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

(08)

(09) <wsp:UsingPolicy wsdl:required="true" />

(10)

(11) <wsp:Policy wsu:Id="MyPolicy" >

(12) <sca:WSCallback/>

(13) </wsp:Policy>

(14)

(15) <!-- omitted elements -->

(16)

(17) <wsdl:binding name="MyBinding" type="tns:MyPortType" >

(18) <wsp:PolicyReference URI="#MyPolicy" />

(19) <!-- omitted elements -->

(20) </wsdl:binding>

(21)

(22)</wsdl:definitions>

Snippet 5‑2: WSCallback Policy Asserion Used in a WSDL Document

Line (09) in Snippet 5‑2 indicates that WS-Policy is in use as a required extension. Lines (11-13) are a policy expression that includes a WSCallback policy assertion (line 12) to indicate that SCA Web Services Callback protocol is used. Lines (17-20) are a WSDL binding. Line (18) indicates that the policy in lines (11-13) applies to this binding, specifically indicating that SCA Web Services Callback protocol is used over all the messages in the binding.

5.3.5 Security Considerations

It is good practice for Policies and Assertions to be signed to prevent tampering. It is acceptable for an SCA runtime to reject a Policy that is not signed or where there is no associated security token which indicates that the signer has appropriate claims for the policy. That is, a relying party shouldn't rely on a policy unless the policy is signed and presented with sufficient claims to pass the relying parties acceptance criteria.

Note that the mechanisms described in this document could be secured as part of a SOAP message using WS-Security [WS-Security] or embedded within other objects using object-specific security mechanisms.

6 Conformance

The XML schema pointed to by the RDDL document at the namespace URI, defined by this specification, are considered to be authoritative and take precedence over the XML schema defined in the appendix of this document.
This specification defines four targets for conformance:

a) SCA WS Binding XML Document

b) Web Service Callback Service (WSCB Service)

c) Web Service Callback Client (WSCB Client)

d) SCA Runtime

6.1 SCA WS Binding XML Document
An SCA WS Binding XML document is an SCA Composite Document, or an SCA ComponentType Document, as defined by the SCA Assembly specification Section 13.1 [SCA-Assembly], that uses the <binding.ws> element.

An SCA WS Binding XML document MUST be a conformant SCA Composite Document or a SCA ComponentType Document, as defined by the SCA Assembly specification [SCA-Assembly], and MUST comply with all statements in Appendix C: Conformance Items related to elements and attributes in an SCA WS Binding XML document, notably all "MUST" statements have to be implemented.

A WSDL 1.1 portType element associated with an SCA service or reference MUST NOT have the WSCallback policy assertion attached. "associated with" is intended to cover both the referencing of a concrete WSDL document from within an SCA XML document (by any element) and also cover the dynamic creation and advertising of a WSDL by a runtime service.

6.2 Web Service Callback Service

An implementation that claims to conform to the requirements of a WSCB Service defined in this specification MUST conform to all the statements in Appendix C: Conformance Items related to a WSCB Service.

6.3 Web Service Callback Client

An implementation that claims to conform to the requirements of a WSCB Client defined in this specification MUST conform to all the statements in Appendix C: Conformance Items related to a WSCB Client.

6.4 SCA Runtime

An implementation that claims to conform to the requirements of an SCA Runtime defined in this specification has to meet the following conditions:

8. The implementation MUST comply with all statements in Appendix C: Conformance Items related to an SCA Runtime, except for those that originate from Section 5, notably all “MUST” statements have to be implemented.

9. The implementation MUST conform to the SCA Assembly Model Specification Version 1.1 [SCA-Assembly], and to the SCA Policy Framework Version 1.1 [SCA-Policy].

10. The implementation MUST reject a SCA WS Binding XML Document that is not conformant per Section 6.1.

Note that when an SCA Runtime implementation claims to conform to the SCA Web Services Callback Protocol, the implementation acts as a WSCB Service/Client on behalf of an SCA component. In such a case the component developer does not have to implement the protocol and can rely on the SCA Runtime's support of the protocol.
A. Web Services XML Binding Schema: sca-binding-ws-1.1.xsd (Normative)

<?xml version="1.0" encoding="UTF-8"?>

<!-- Copyright(C) OASIS(R) 2005,2010. All Rights Reserved.

 OASIS trademark, IPR and other policies apply. -->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 xmlns:wsdli="http://www.w3.org/ns/wsdl-instance"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 elementFormDefault="qualified">

 <import namespace="http://www.w3.org/ns/wsdl-instance"

 schemaLocation="http://www.w3.org/2007/05/wsdl/wsdl20-instance.xsd"/>

 <import namespace="http://www.w3.org/2005/08/addressing"

 schemaLocation="http://www.w3.org/2006/03/addressing/ws-addr.xsd"/>

 <include schemaLocation="sca-core-1.1-cd05.xsd"/>

 <element name="binding.ws" type="sca:WebServiceBinding"

 substitutionGroup="sca:binding"/>

 <complexType name="WebServiceBinding">

 <complexContent>

 <extension base="sca:Binding">

 <sequence>

 <element ref="wsa:EndpointReference"

 minOccurs="0" maxOccurs="unbounded"/>

 <element ref="sca:extensions" minOccurs="0" maxOccurs="1" />
 </sequence>

 <attribute name="wsdlElement" type="anyURI" use="optional"/>

 <attribute ref="wsdli:wsdlLocation" use="optional"/>

 </extension>

 </complexContent>

 </complexType>

</schema>

B. SCA Web Services Callback Protocol Policy Assertion XML Schema: sca-binding-webservice-callback-1.1.xsd (Normative)

<?xml version="1.0" encoding="UTF-8"?>

<!-- (c) Copyright OASIS 2005, 2010. All Rights Reserved.

 OASIS trademark, IPR and other policies apply. -->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 elementFormDefault="qualified">

 <element name="WSCallback">

 <complexType>

 <sequence>

 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>

 </sequence>

 <anyAttribute namespace="##any" processContents="lax"/>

 </complexType>

 </element>

</schema>

C. Conformance Items (Normative)

This section contains a list of conformance items for the SCA Web Service Binding specification.

	Conformance ID
	Description

	[BWS20001]
	For an SCA reference, the @uri attribute MUST be an absolute value.

	[BWS20002]
	The value of the @wsdlElement attribute MUST identify an element in an existing WSDL 1.1 document.

	[BWS20003]
	If the binding is for an SCA service, the wsdlElement attribute MUST NOT specify the wsdl.service form of URI.

	[BWS20004]
	If the wsdl.service form of wsdlElement is used on an SCA reference binding, the set of available ports for that reference binding MUST be non-empty.

	[BWS20005]
	If the wsdl.service form of wsdlElement is used on an SCA reference binding, the SCA runtime MUST raise an error if there are no available ports that it supports.

	[BWS20006]
	When an invocation is made using an SCA reference binding with the wsdl.service form of wsdlElement, the SCA runtime MUST use exactly one port from the set of available ports for the reference (with port selection on a per-invocation basis permitted).

	[BWS20007]
	If the binding is for an SCA service, the portType associated with the specified WSDL port MUST be compatible with the SCA service interface as defined in section 2.1, and the port MUST satisfy all the policy constraints of the binding.

	[BWS20008]
	The SCA runtime MUST expose an endpoint for the specified WSDL port, or raise an error if it does not support the WSDL port.

	[BWS20009]
	If the binding is for an SCA reference, the portType associated with the specified WSDL port MUST be a compatible superset of the SCA reference interface as defined in the SCA Assembly Model specification [SCA-Assembly], and the port MUST satisfy all the policy constraints of the binding.

	[BWS20010]
	The SCA runtime MUST use the specified WSDL port for invocations made using the SCA reference binding, or raise an error if it does not support the WSDL port.

	[BWS20011]
	If the binding is for an SCA service, the portType associated with the specified WSDL binding MUST be compatible with the SCA service interface as defined in section 2.1, and the WSDL binding MUST satisfy all the policy constraints of the binding.

	[BWS20012]
	The SCA runtime MUST expose an endpoint for the specified WSDL binding, or raise an error if it does not support the WSDL binding.

	[BWS20013]
	If the binding is for an SCA reference, the portType associated with the specified WSDL binding MUST be a compatible superset of the SCA reference interface as defined in the SCA Assembly Model specification [SCA-Assembly], and the WSDL binding MUST satisfy all the policy constraints of the binding.

	[BWS20014]
	The SCA runtime MUST use the specified WSDL binding for invocations made using the SCA reference binding, or raise an error if it does not support the WSDL binding.

	[BWS20015]
	When the wsdl.binding form of wsdlElement is used , the endpoint address URI for an SCA reference MUST be specified by either the @uri attribute on the binding or a WS-Addressing wsa:EndpointReference element, except where the SCA Assembly Model specification [SCA-Assembly] states that the @uri attribute can be omitted.

	[BWS20017]
	If the @wsdli:wsdlLocation attribute is used the @wsdlElement attribute MUST also be specified.

	[BWS20018]
	The value of the @wsdli:wsdlLocation attribute MUST identify an existing WSDL 1.1 document.

	[BWS20019]
	A binding.ws element MUST NOT contain more than one of any of the following: the @uri attribute; the @wsdlElement attribute referring to a WSDL port or to a WSDL service; the wsa:EndpointReference element.

	[BWS20020]
	For the callback element of an SCA service, the binding MUST NOT specify an endpoint address URI or a WS-Addressing wsa:EndpointReference.

	[BWS20021]
	The SCA runtime MUST support all the attributes of the <binding.ws> element, namely @name, @uri, @requires, @policySets, @wsdlElement, and @wsdli:wsdlLocation.

	[BWS20022]
	The SCA runtime SHOULD support the element <wsa:EndpointReference>.

	[BWS20023]
	If an SCA runtime does not support the element <wsa:EndpointReference>, then it MUST reject an SCA WS Binding XML document (as defined in Section 5.1) that contains the element.

	[BWS20024]
	The <binding.ws> element MUST conform to the XML schema defined in sca-binding-webservice-1.1.xsd.

	[BWS20025]
	If there is no target address for a reference binding, the SCA runtime MUST raise an error.

	[BWS20026]
	For a reference binding, the SCA runtime MUST use the target address.

	[BWS20027]
	When binding.ws is used on a service or reference with an interface that is not defined by interface.wsdl, the SCA runtime MUST derive a WSDL portType for the service or reference from the interface using the WSDL-mapping rules defined for that SCA interface type.

	[BWS20028]
	An SCA runtime MUST raise an error if the interface on a service or reference element with a binding.ws element does not map to a WSDL portType.

	[BWS20032]
	An SCA runtime MUST support the WSDL extensions defined in the namespace associated with the prefix "sca" (as defined in section 1.1).

	[BWS20033]
	The SCA runtime MUST support the WSDL 1.1 binding extension for SOAP 1.1 over HTTP [WSDL11], as identified by the WSDL element wsoap11:binding that has the @transport attribute with a value of "http://schemas.xmlsoap.org/soap/http".

	[BWS20035]
	The <bindingType> element associated with this binding MUST include the SOAP.v1_1 intent in its @mayProvides or @alwaysProvides attributes.

	[BWS20037]
	The SCA runtime MUST raise an error if a web service binding is configured with a policy intent(s) that conflicts with the binding instance's configuration.

	[BWS40001]
	When the SOAP intent is required, the SCA runtime MUST transmit and receive messages using SOAP. One or more SOAP versions can be used.

	[BWS40002]
	When the SOAP.v1_1 intent is required, the SCA runtime MUST transmit and receive messages using only SOAP 1.1.

	[BWS40003]
	When the SOAP.v1_2 intent is required, the SCA runtime MUST transmit and receive messages using only SOAP 1.2.

	[BWS40004]
	For an SCA service or reference element, the portType from the service's or reference’s interface or derived from that interface MUST follow either the rpc-literal pattern or the document-literal pattern.

	[BWS40005]
	In the event that the transport details are not determined by use of the @wsdlElement attribute, @uri attribute, wsa:EndpointReference element, policy intents, policy sets or extensions to the binding.ws element, an SCA runtime MUST enable the default transport binding rules.

	[BWS40007]
	When using the default transport binding rules with the rpc-literal pattern, the SCA runtime MUST use the structural URI associated with the binding as the namespace of the child elements of the SOAP body element.

	[BWS50002]
	Every request message from the WSCB Client that invokes the forward interface MUST contain a Callback EPR.

	[BWS50004]
	If the Callback EPR's [address] value is "http://www.w3.org/2005/08/addressing/anonymous" or "http://www.w3.org/2005/08/addressing/none" then the WSCB Service MUST generate the Invalid Addressing Header fault as specified in Section 6.4.1 of [WS-Addr-SOAP].

	[BWS50005]
	When the WSCB Service invokes the callback interface, it MUST use the Callback EPR from a request message that invoked the forward interface.

	[BWS50006]
	Once the Callback EPR is selected, the WSCB Service MUST follow the rules defined in Section 3.3 of [WS-Addr] to invoke operations on the callback interface.

	[BWS50007]
	When the WSCB Service invokes the callback interface, if the request message from which the Callback EPR was obtained contained the wsa:MessageID SOAP header block, the WSCB Service MUST include a wsa:RelatesTo SOAP header block in the callback message.

	[BWS50008]
	The wsa:RelatesTo SOAP header block MUST have the relationship type value of "http://docs.oasis-open.org/opencsa/sca-bindings/ws/callback" and the related message id MUST be the wsa:MessageID of the message from which the Callback EPR was obtained.

	[BWS50009]
	If the request message from which the Callback EPR was obtained did not contain the wsa:MessageID SOAP header block, the WSCB Service MUST NOT include a wsa:RelatesTo SOAP header block with a relationship type value of "http://docs.oasis-open.org/opencsa/sca-bindings/ws/callback" in the callback message.

	[BWS50010]
	The WSCallback policy assertion indicates that the WSCB Client and the WSCB Service MUST use SCA Web Services Callback Protocol to implement callbacks.

D. WSDL Generation (Non-Normative)

Due to the number of factors that determine how a WSDL might be generated, including compatibility with existing WSDL uses, precise details cannot be specified. For example, implementation decisions can affect the way WSDL might be generated. For reference, and consistency, this section suggests non-normative choices for some of the various details involved in generating WSDL. For brevity, the following definitions apply:

· component name = the value of the @name attribute of the component element containing the binding.ws element

· service name = the value of the @name attribute of the service element containing the binding.ws element

· binding name = the value of @name attribute of the binding.ws element, or the default if no @name attribute is present

· SOAP version = either "SOAP11" or "SOAP12" as appropriate

With those definitions in place, here are the suggested choices:

· wsdl:definitions/@name = <component name> + "." + <service name>

· wsdl:definitions/@targetNamespace = <structural URI for the service>

· import each WSDL 1.1 portType, rather than putting them inline

· wsdl:binding/@name = <binding name> + <SOAP version> + "Binding"

· wsdl:service/@name = <service name>

· wsdl:port/@name = <binding name> + <SOAP version> + "Port"

E. SCA Web Services Callback Protocol Message Examples (Non-Normative)

The message examples in this section are for a configuration that consists of a reference R that is wired to a Service S. S has a bidirectional interface and the binding used in both directions, forward and callback, is binding.ws configured for SOAP. The forward interface and the callback interface both contain a single one-way operation.

The following message exchanges take place between R and S:

11. R invokes the forward operation and sets the callback address to RC1. Let's call the message that invokes the forward operation R1. S then calls the callback operation twice. Let’s call the callback messages S1 and S2

12. R invokes the forward operation again with the same callback address RC1. Let’s call the message that invokes the forward operation R2. S then calls the callback operation once. Let’s call the callback message S3.

13. R invokes the forward operation yet another time, but this time uses a difference callback address: RC2. Let's call the message that invokes the forward operation R3. S then calls the callback operation twice. Let’s call the callback messages S4 and S5.

The messages R1, R2, R3, S1, S2, S3, S4 and S4 are shown. The namespace prefix 'soap' can be bound to either the SOAP 1.1 or SOAP 1.2 namespace. The 'wsa' prefix is bound to the WS-Addressing 1.0 namespace.

R1:

<soap:Envelope ...>
 <soap:Header>
 <wsa:From>
 <wsa:Address>http://example.com/callback</wsa:Address>
 <wsa:ReferenceProperties>
 <myNS:SomeID>1</myNS:SomeID>
 </wsa:ReferenceProperties>
 </wsa:From>
 <wsa:MessageID>urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6</wsa:messageID>
 ...
 </soap:Header>
 <soap:Body>
 ...
 </soap:Body>
</soap:Envelope>

S1, S2:

<soap:Envelope ...>
 <soap:Header>
 <wsa:To>http://example.com/callback</wsa:To>
 <myNS:SomeID>1</myNS:SomeID>
 <wsa:RelatesTo RelationshipType="http://docs.oasis-open.org/opencsa/sca-bindings/ws/callback">urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6</wsa:RelatesTo>
 ...
 </soap:Header>
 <soap:Body>
 ...
 </soap:Body>
</soap:Envelope>

R2:

<soap:Envelope ...>
 <soap:Header>
 <wsa:From>
 <wsa:Address>http://example.com/callback</wsa:Address>
 <wsa:ReferenceProperties>
 <myNS:SomeID>1</myNS:SomeID>
 </wsa:ReferenceProperties>
 </wsa:From>
 <wsa:MessageID>urn:uuid:f81d4fae-8dec-11d0-a765-00a0c91e6bf6</wsa:messageID>
 ...
 </soap:Header>
 <soap:Body>
 ...
 </soap:Body>

</soap:Envelope>

S3:

<soap:Envelope ...>
 <soap:Header>
 <wsa:To>http://example.com/callback</wsa:To>
 <myNS:SomeID>1</myNS:SomeID>
 <wsa:RelatesTo RelationshipType="http://docs.oasis-open.org/opencsa/sca-bindings/ws/callback">
 urn:uuid:f81d4fae-8dec-11d0-a765-00a0c91e6bf6
 </wsa:RelatesTo>
 ...
 </soap:Header>
 <soap:Body>
 ...
 </soap:Body>
</soap:Envelope>

R3:

<soap:Envelope ...>
 <soap:Header>
 <wsa:From>
 <wsa:Address>http://example.com/callback-other</wsa:Address>
 <wsa:ReferenceProperties>
 <myNS:SomeID>2</myNS:SomeID>
 </wsa:ReferenceProperties>
 </wsa:From>
 <wsa:MessageID>urn:uuid:f81d4fae-9dec-11d0-a765-00a0c91e6bf6</wsa:messageID>
 ...
 </soap:Header>
 <soap:Body>
 ...
 </soap:Body>
</soap:Envelope>

S4, S5:

<soap:Envelope ...>
 <soap:Header>
 <wsa:To>http://example.com/callback-other</wsa:To>
 <myNS:SomeID>2</myNS:SomeID>
 <wsa:RelatesTo RelationshipType="http://docs.oasis-open.org/opencsa/sca-bindings/ws/callback">urn:uuid:f81d4fae-9dec-11d0-a765-00a0c91e6bf6</wsa:RelatesTo>
 ...
 </soap:Header>
 <soap:Body>
 ...
 </soap:Body>
</soap:Envelope>

E.1 Message Examples Using WS-MakeConnection

In this case the reference R cannot host a listener and uses WS-MakeConnection to poll for callback requests. The interaction between the two consists of reference R sending a forward request R4. When using HTTP, the HTTP response to R4 contains an empty entity body. This is followed by a MakeConnection message from the reference to the service. This is a polling message from the reference and establishes a connection. If the callback request is ready when the connection is established, the service sends a callback request S6 to the reference in the entity body of the HTTP response.

R4:

<soap:Envelope ...>
 <soap:Header>
 <wsa:From>
 <wsa:Address>http://docs.oasis-open.org/ws-

 HYPERLINK "http://example.com/callback"
rx/wsmc/200702/anonymous?id=650e8400-f29b-11d4-a716-446655440010</wsa:Address>
 </wsa:From>
 <wsa:MessageID>urn:uuid:f81d4fae-10dec-11d0-a765-00a0c91e6bf6</wsa:messageID>
 ...
 </soap:Header>
 <soap:Body>
 ...
 </soap:Body>
</soap:Envelope>

MakeConnection polling message (from R to S):

<soap:Envelope ...>
 <soap:Header>

 <wsa:Action>http://docs.oasis-open.org/ws-rx/wsmc/200702/MakeConnection</wsa:Action>

 ...
 </soap:Header>
 <soap:Body>
 <wsmc:MakeConnection>

 <wsmc:Address>http://docs.oasis-open.org/ws-

 HYPERLINK "http://example.com/callback"
rx/wsmc/200702/anonymous?id=650e8400-f29b-11d4-a716-446655440010

 HYPERLINK "http://example.com/callback"
</wsmc:Address>

 </wsmc:MakeConnection>
 </soap:Body>
</soap:Envelope>

S6:

<soap:Envelope ...>
 <soap:Header>
 <wsa:To>http://docs.oasis-open.org/ws-

 HYPERLINK "http://example.com/callback"
rx/wsmc/200702/anonymous?id=650e8400-f29b-11d4-a716-446655440010</wsa:To>
 <wsa:RelatesTo RelationshipType="http://docs.oasis-open.org/opencsa/sca-bindings/ws/callback">urn:uuid:f81d4fae-10dec-11d0-a765-00a0c91e6bf6</wsa:RelatesTo>
 ...
 </soap:Header>
 <soap:Body>
 ...
 </soap:Body>
</soap:Envelope>

F. Acknowledgements (Non-Normative)

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
	Participant Name
	Affiliation

	Bryan Aupperle
	IBM

	Ron Barack
	SAP AG

	Michael Beisiegel
	IBM

	Henning Blohm
	SAP AG

	David Booz
	IBM

	Martin Chapman
	Oracle Corporation

	Jean-Sebastien Delfino
	IBM

	Laurent Domenech
	TIBCO Software Inc.

	Jacques Durand
	Fujitsu Limited

	Mike Edwards
	IBM

	Billy Feng
	Primeton Technologies, Inc.

	Nimish Hathalia
	TIBCO Software Inc.

	Simon Holdsworth
	IBM

	Eric Johnson
	TIBCO Software Inc.

	Uday Joshi
	Oracle Corporation

	Khanderao Kand
	Oracle Corporation

	Anish Karmarkar
	Oracle Corporation

	Nickolaos Kavantzas
	Oracle Corporation

	Mark Little
	Red Hat

	Ashok Malhotra
	Oracle Corporation

	Jim Marino
	Individual

	Jeff Mischkinsky
	Oracle Corporation

	Dale Moberg
	Axway Software

	Simon Nash
	Individual

	Sanjay Patil
	SAP AG

	Plamen Pavlov
	SAP AG

	Peter Peshev
	SAP AG

	Piotr Przybylski
	IBM

	Luciano Resende
	IBM

	Tom Rutt
	Fujitsu Limited

	Vladimir Savchenko
	SAP AG

	Scott Vorthmann
	TIBCO Software Inc.

	Tim Watson
	Oracle Corporation

	Owen Williams
	Avaya, Inc.

	Prasad Yendluri
	Software AG, Inc.

G. Revision History (Non-Normative)

 MACROBUTTON NoMacro [optional; should not be included in OASIS Standards]
	Revision
	Date
	Editor
	Changes Made

	1
	2007-09-25
	Anish Karmarkar
	Applied the OASIS template + related changes to the Submission

	2
	2008-04-02
	Anish Karmarkar
	* Partially applied the resolution of issue 14 in the conformance section.

* Applied resolution to issue 9.

* Applied resolution to issue 15.

* Applied resolution to issue 16.

* Applied resolution to issue 10.

* Applied resolution to issue 8.

* Applied resolution to issue 3.

	3
	2008-06-12
	Simon Holdsworth
	* Completed application of resolution to issue 10

* Applied most of the editorial changes from Eric Johnson’s review

	4
	2008-08-13
	Anish Karmarkar
	* Applied rest of Eric Johnson's ed review comments.

* Applied resolution of issue 13.

* Reapplied resolution of issue 15 (it was not applied correctly before)

* Applied resolution of issue 19.

* Applied resolution of issue 30.

* Applied resolution of issue 32.

* Applied resolution of issue 36.

* Applied resolution of issue 38.

	cd01-rev1
	2008-10-16
	Simon Holdsworth
	Applied resolution of issue 41.

	cd01-rev2
	2008-10-20
	Anish Karmarkar
	Added rfc2119 statements.

	cd01-rev3
	2008-11-19
	Anish Karmarkar
	Incorporated feedback from Bryan, Eric & Dave

	cd01-rev3
	2008-12-02
	Anish Karmarkar
	Removed 'required' word associated with description of pseudo-schema + changed section 2.6 (wsdl extensibility) per the TC decision. Both of these were associated with issue 51 (2119 stmts)

	cd01-rev5
	2009-02-06
	Simon Holdsworth
	Applied resolution of issue 11

Applied resolution of issue 49

Applied action item 20080904-1

	cd02
	2009-02-16
	Simon Holdsworth
	Renamed, applied editorial issues

	cd02-rev1
	2009-06-02
	Anish Karmarkar
	* Applied resolution of issue 61 by using the document at http://www.oasis-open.org/apps/org/workgroup/sca-bindings/download.php/32160/sca-binding-ws-1.1-spec-cd02-issue61-rev3.doc as the base document.

* Updated NS URI (Applied action item 20090311-2).

* Updated Copyright statement in various places.

* Updated schema per http://lists.oasis-open.org/archives/sca-bindings/200903/msg00057.html (Applied action item 20090312-1).

* Applied resolution of issue 23, 25, 43, 54, 55, 64.

* Replaced 3 occurrences of ‘required’ with ‘specified’.

* Recreated all bookmarks, cross-references, and conformance item table.

	cd02-rev2
	2009-06-09
	Anish Karmarkar
	Ed. fixes. Changed the way the crossrefs/bookmarks for RFC2119 keywords work. Fixed a few references.

	cd02-rev3
	2009-06-11
	Anish Karmarkar
	* Removed ‘:’ from 40005, reformatted 40006/40007.

* minor ed changes pointed out by SimonN.

* minor formatting changes.

* modified BWS20018 to remove the first sentence.

	cd02-rev4
	2009-06-17
	Anish Karmarkar
	* Not fixed in this rev, but issue 57 resolution was applied in previous rev.

* Added list of participants in the Ack section.

* Ed changes pointed out by Eric.

	cd02-rev5
	2009-06-22
	Anish Karmarkar
	* Port of the fix made in JMS/JCA binding for issues 74/75. Specifically SCA WS Binding XML document requirements were made less vague (by referring to attributes/elements)

	cd02-rev6
	2009-06-24
	Anish Karmarkar
	* Applied resolution of issue 76, 79, 82.

* Some very minor ed changes.

* Reverted the document naming scheme to the old scheme.

	cd02-rev7
	2009-07-01
	Simon Holdsworth
	* Applied resolution of issue 2

* Fixed application of resolution of issue 76

	cd03
	2009-07-01
	Simon Holdsworth
	Renamed for cd03

	cd03-rev1
	2010-02-07
	Bryan
	Added table #, snippet #, etc.

	cd03-rev2
	2010-03-10
	Anish Karmarkar
	* Updated 'Notices' section for trademarks

* Applied resolution of issue 99 points 9, 10, 16

* Added references per http://lists.oasis-open.org/archives/sca-bindings/200912/msg00013.html
* Applied resolution of issue 84, 86, 91, 92, 116, 117, 118, 119

* Updated NS URI from 200903 to 200912

	cd03-rev3
	2010-03-31
	Anish Karmarkar
	* Updated schema appendix title to include "1.1"

* Applied resolution of issue 124

* Ed changes associated with issue 124 resolution

	cd03-rev4
	2010-04-22
	Anish Karmarkar
	* Fixed ed issues pointed out at http://lists.oasis-open.org/archives/sca-bindings/201004/msg00004.html

	cd03-rev5
	2010-05-06
	Anish Karmarkar
	* Updated reference to assembly

* Minor ed tweaks in the namespace prefix table

* Applied resolution of issue 127

	cd04
	2010-05-14
	Simon Holdsworth
	Fix up for publication

	wd041
	2011-06-23
	Mike Edwards
	Issue 145 - Section 1.3, new section 1,5

Issue 160 - Section 5.3.3, section 6.1

Issue 161 - Section 5.3.5

Issue 163 - Section 2.4

Issue 164 - Section 4.2.2

Issue 165 - Section 5.3.5

Issue 166 - Section 6.4

Issue 168 - Sections 2.7, 2.9

	wd042
	2011-07-04
	Simon Holdsworth
	Editorial formatting changes

	wd043
	2011-07-22
	Simon Holdsworth
	Updated references to SCA Assembly, Policy and JCAA specifications

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 5 of 37
sca-wsbinding-1.1-spec-csprd03

28 July 2011
Standards Track Work Product
Copyright © OASIS Open 2011. All Rights Reserved.
Page 1 of 37

