
sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 1 of 138

Service Component Architecture
Assembly Model Specification Version
1.1
Committee Specification Draft 08

31 May 2011
Specification URIs:
This Version:

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csd08.pdf
(Authoritative)
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csd08.doc
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csd08.html

Previous Version:
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-csd07.pdf
(Authoritative)
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-csd07.doc
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-csd07.html

Latest Version:
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1.pdf (Authoritative)
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1.doc
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1.html

Technical Committee:
OASIS Service Component Architecture / Assembly (SCA-Assembly) TC

Chairs:
Martin Chapman, Oracle
Mike Edwards, IBM

Editors:
Michael Beisiegel, IBM
Anish Karmarkar, Oracle
Sanjay Patil, SAP
Michael Rowley, Active Endpoints

Related work:
This specification replaces or supersedes:

• Service Component Architecture Assembly Model Specification Version 1.00, March 15,
2007

This specification is related to:

• Service Component Architecture Policy Framework Specification Version 1.1

Declared XML Namespace(s):
• http://docs.oasis-open.org/ns/opencsa/sca/200912

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csd08.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csd08.doc
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csd08.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-csd07.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-csd07.doc
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-csd07.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1.doc
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1.html
http://www.oasis-open.org/committees/sca-assembly/
mailto:martin.chapman@oracle.com
http://www.oracle.com/
mailto:mike_edwards@uk.ibm.com
http://www.ibm.com/
mailto:mbgl@us.ibm.com
http://www.ibm.com/
mailto:Anish.Karmarkar@oracle.com
http://www.oracle.com/
mailto:sanjay.patil@sap.com
http://www.sap.com/
mailto:michael.rowley@activevos.com
http://www.activevos.com/
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.html
http://docs.oasis-open.org/ns/opencsa/sca/200912

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 2 of 138

Abstract:

Service Component Architecture (SCA) provides a programming model for building applications
and solutions based on a Service Oriented Architecture. It is based on the idea that business
function is provided as a series of services, which are assembled together to create solutions that
serve a particular business need. These composite applications can contain both new services
created specifically for the application and also business function from existing systems and
applications, reused as part of the composition. SCA provides a model both for the composition
of services and for the creation of service components, including the reuse of existing application
function within SCA composites.

SCA is a model that aims to encompass a wide range of technologies for service components
and for the access methods which are used to connect them. For components, this includes not
only different programming languages, but also frameworks and environments commonly used
with those languages. For access methods, SCA compositions allow for the use of various
communication and service access technologies that are in common use, including, for example,
Web services, Messaging systems and Remote Procedure Call (RPC).

The SCA Assembly Model consists of a series of artifacts which define the configuration of an
SCA Domain in terms of composites which contain assemblies of service components and the
connections and related artifacts which describe how they are linked together.

This document describes the SCA Assembly Model, which covers

• A model for the assembly of services, both tightly coupled and loosely coupled

• A model for applying infrastructure capabilities to services and to service interactions,
including Security and Transactions

Status:
This document was last revised or approved by the OASIS Service Component Architecture /
Assembly (SCA-Assembly) TC on the above date. The level of approval is also listed above.
Check the “Latest Version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-assembly/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-assembly/ipr.php).

Citation Format:
When referencing this specification the following citation format should be used:

[SCA-ASSEMBLY]

Service Component Architecture Assembly Model Specification Version 1.1. 31 May 2011.
OASIS Committee Specification Draft 08. http://docs.oasis-open.org/opencsa/sca-assembly/sca-
assembly-spec-v1.1-csd08.html

http://www.oasis-open.org/committees/comments/index.php?wg_abbrev=sca-assembly
http://www.oasis-open.org/committees/sca-assembly/
http://www.oasis-open.org/committees/sca-assembly/
http://www.oasis-open.org/committees/sca-assembly/ipr.php
http://www.oasis-open.org/committees/sca-assembly/ipr.php
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csd08.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csd08.html

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 3 of 138

Notices
Copyright © OASIS Open 2011. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/intellectualproperty.php
http://www.oasis-open.org/
http://www.oasis-open.org/who/trademark.php

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 4 of 138

Table of Contents
1 Introduction ... 8

1.1 Terminology .. 8

1.2 Normative References .. 8

1.3 Non-Normative References .. 10

1.4 Naming Conventions ... 10

1.5 Testcases .. 11

2 Overview ... 12

2.1 Diagram used to Represent SCA Artifacts.. 13

3 Implementation and ComponentType .. 15

3.1 Component Type ... 15

3.1.1 Service ... 16

3.1.2 Reference .. 17

3.1.3 Property ... 19

3.1.4 Implementation .. 20

3.2 Example ComponentType .. 21

3.3 Example Implementation... 21

4 Component ... 24

4.1 Implementation .. 25

4.2 Service .. 26

4.3 Reference .. 27

4.3.1 Specifying the Target Service(s) for a Reference ... 30

4.4 Property ... 31

4.4.1 Property Type Compatibility... 34

4.4.2 Property Value File Format .. 35

4.5 Example Component ... 35

5 Composite ... 39

5.1 Service .. 40

5.1.1 Service Examples .. 42

5.2 Reference .. 43

5.2.1 Example Reference ... 46

5.3 Property ... 47

5.3.1 Property Examples .. 48

5.4 Wire ... 50

5.4.1 Wire Examples ... 52

5.4.2 Autowire ... 54

5.4.3 Autowire Examples .. 55

5.5 Using Composites as Component Implementations ... 57

5.5.1 Component Type of a Composite used as a Component Implementation 58

5.5.2 Example of Composite used as a Component Implementation .. 59

5.6 Using Composites through Inclusion .. 60

5.6.1 Included Composite Examples .. 61

5.7 Composites which Contain Component Implementations of Multiple Types 64

5.8 Structural URI of Components .. 64

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 5 of 138

6 Interface .. 66

6.1 Local and Remotable Interfaces ... 67

6.2 Interface Compatibility ... 67

6.2.1 Compatible Interfaces .. 68

6.2.2 Compatible Subset .. 68

6.2.3 Compatible Superset ... 69

6.3 Bidirectional Interfaces .. 69

6.4 Long-running Request-Response Operations .. 70

6.4.1 Background .. 70

6.4.2 Definition of "long-running" ... 71

6.4.3 The asyncInvocation Intent .. 71

6.4.4 Requirements on Bindings... 71

6.4.5 Implementation Type Support ... 71

6.5 SCA-Specific Aspects for WSDL Interfaces.. 71

6.6 WSDL Interface Type .. 72

6.6.1 Example of interface.wsdl .. 73

7 Binding .. 74

7.1 Messages containing Data not defined in the Service Interface ... 76

7.2 WireFormat ... 76

7.3 OperationSelector ... 76

7.4 Form of the URI of a Deployed Binding .. 77

7.4.1 Non-hierarchical URIs .. 77

7.4.2 Determining the URI scheme of a deployed binding ... 77

7.5 SCA Binding .. 78

7.5.1 Example SCA Binding ... 79

7.6 Web Service Binding ... 80

7.7 JMS Binding .. 80

8 SCA Definitions ... 81

9 Extension Model ... 82

9.1 Defining an Interface Type .. 82

9.2 Defining an Implementation Type ... 83

9.3 Defining a Binding Type .. 85

9.4 Defining an Import Type .. 87

9.5 Defining an Export Type.. 89

10 Packaging and Deployment .. 91

10.1 Domains .. 91

10.2 Contributions ... 91

10.2.1 SCA Artifact Resolution ... 92

10.2.2 SCA Contribution Metadata Document ... 94

10.2.3 Contribution Packaging using ZIP ... 96

10.3 States of Artifacts in the Domain ... 96

10.4 Installed Contribution .. 97

10.4.1 Installed Artifact URIs .. 97

10.5 Operations for Contributions ... 97

10.5.1 install Contribution & update Contribution ... 97

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 6 of 138

10.5.2 add Deployment Composite & update Deployment Composite .. 98

10.5.3 remove Contribution .. 98

10.6 Use of Existing (non-SCA) Mechanisms for Resolving Artifacts... 98

10.7 Domain-Level Composite .. 99

10.7.1 add To Domain-Level Composite .. 99

10.7.2 remove From Domain-Level Composite .. 99

10.7.3 get Domain-Level Composite .. 99

10.7.4 get QName Definition .. 99

10.8 Dynamic Behaviour of Wires in the SCA Domain ... 100

10.9 Dynamic Behaviour of Component Property Values .. 100

11 SCA Runtime Considerations ... 101

11.1 Error Handling ... 101

11.1.1 Errors which can be Detected at Deployment Time .. 101

11.1.2 Errors which are Detected at Runtime ... 101

12 Conformance .. 102

12.1 SCA Documents .. 102

12.2 SCA Runtime .. 102

12.2.1 Optional Items .. 103

A. XML Schemas... 104

A.1 sca.xsd .. 104

A.2 sca-core.xsd ... 104

A.3 sca-binding-sca.xsd .. 111

A.4 sca-interface-java.xsd ... 111

A.5 sca-interface-wsdl.xsd .. 112

A.6 sca-implementation-java.xsd .. 112

A.7 sca-implementation-composite.xsd .. 112

A.8 sca-binding-webservice.xsd ... 113

A.9 sca-binding-jms.xsd .. 113

A.10 sca-policy.xsd ... 113

A.11 sca-contribution.xsd .. 113

A.12 sca-definitions.xsd .. 114

B. SCA Concepts .. 116

B.1 Binding .. 116

B.2 Component ... 116

B.3 Service .. 116

B.3.1 Remotable Service .. 116

B.3.2 Local Service ... 117

B.4 Reference ... 117

B.5 Implementation ... 117

B.6 Interface .. 117

B.7 Composite ... 118

B.8 Composite inclusion .. 118

B.9 Property .. 118

B.10 Domain ... 118

B.11 Wire... 118

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 7 of 138

B.12 SCA Runtime .. 118

C. Conformance Items .. 120

C.1 Mandatory Items ... 120

C.2 Non-mandatory Items ... 130

D. Acknowledgements ... 131

E. Revision History .. 133

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 8 of 138

1 Introduction 1

This document describes the SCA Assembly Model, which covers 2

• A model for the assembly of services, both tightly coupled and loosely coupled 3

• A model for applying infrastructure capabilities to services and to service interactions, including 4
Security and Transactions 5

The document starts with a short overview of the SCA Assembly Model. 6

The next part of the document describes the core elements of SCA, SCA components and SCA 7
composites. 8

The final part of the document defines how the SCA assembly model can be extended. 9

This specification is defined in terms of Infoset and not in terms of XML 1.0, even though the specification 10
uses XML 1.0 terminology. A mapping from XML to infoset is trivial and it is suggested that this is used 11
for any non-XML serializations. 12

1.1 Terminology 13

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 14
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 15
in [RFC2119]. 16

1.2 Normative References 17

[RFC2119] 18
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 19
IETF RFC 2119, March 1997. 20
http://www.ietf.org/rfc/rfc2119.txt 21
 22

[SCA-Java] 23

OASIS Committee Draft 03, "SCA POJO Component Implementation Specification Version 1.1", 24
November 2010 25
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csprd03.pdf 26

 27

[SCA-Common-Java] 28

OASIS Committee Draft 05, "SCA Java Common Annotations and APIs Specification Version 1.1", 29
November 2010 30

http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csd05.pdf 31

 32

[SCA BPEL] 33

OASIS Committee Draft 02, "SCA WS-BPEL Client and Implementation Specification Version 1.1", 34
March 2009 35

http://docs.oasis-open.org/opencsa/sca-bpel/sca-bpel-1.1-spec-cd02.pdf2.pdf 36

 37

[WSDL-11] 38

WSDL Specification version 1.1 39

http://www.w3.org/TR/wsdl 40

http://www.ietf.org/rfc/rfc2119.txt
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-csprd03.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-csd05.pdf
http://docs.oasis-open.org/opencsa/sca-bpel/sca-bpel-1.1-spec-cd02.pdf2.pdf
http://www.w3.org/TR/wsdl

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 9 of 138

 41

[SCA-WSBINDING] 42

OASIS Committee Draft 04, "SCA Web Services Binding Specification Version 1.1", May 2010 43

http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-cd04.pdf 44

 45

[SCA-POLICY] 46

OASIS Committee Draft 04, "SCA Policy Framework Specification Version 1.1", September 2010 47

http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.pdf 48

 49

[SCA-JMSBINDING] 50

OASIS Committee Draft 05, "SCA JMS Binding Specification Version 1.1 Version 1.1", November 51
2010 52

http://docs.oasis-open.org/opencsa/sca-bindings/sca-jmsbinding-1.1-spec-csprd03.pdf 53

 54

[SCA-CPP-Client] 55

OASIS Committee Draft 06, "SCA Client and Implementation for C++ Specification Version 1.1", 56
October 2010 57

http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec-cd06.pdf 58

 59

[SCA-C-Client] 60

OASIS Committee Draft 06, "SCA Client and Implementation for C Specification Version 1.1", 61
October 2010 62

http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-ccni-1.1-spec-cd06.pdf 63

 64

[ZIP-FORMAT] 65

ZIP Format Definition 66

http://www.pkware.com/documents/casestudies/APPNOTE.TXT 67

 68

[XML-INFOSET] 69

Infoset Specification 70

http://www.w3.org/TR/xml-infoset/ 71

 72
[WSDL11_Identifiers] 73

WSDL 1.1 Element Identiifiers 74

http://www.w3.org/TR/wsdl11elementidentifiers/ 75

 76

[SCA-TSA] 77

OASIS Committee Draft 01, " Test Suite Adaptation for SCA Assembly Model Version 1.1 78
Specification", July 2010 79

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-testsuite-adaptation-cd01.pdf 80
 81

http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-cd04.pdf
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.pdf
http://docs.oasis-open.org/opencsa/sca-bindings/sca-jmsbinding-1.1-spec-csprd03.pdf
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec-cd06.pdf
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-ccni-1.1-spec-cd06.pdf
http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/wsdl11elementidentifiers/
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-testsuite-adaptation-cd01.pdf

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 10 of 138

[SCA-IMPLTYPDOC] 82
OASIS Committee Draft 01, " Implementation Type Documentation Requirements for SCA Assembly 83

Model Version 1.1 Specification", July 2010 84
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-85
cd01.pdf 86

 87

1.3 Non-Normative References 88

[SDO] 89

OASIS Committee Draft 02, "Service Data Objects Specification Version 3.0", November 2009 90
http://www.oasis-open.org/committees/download.php/35313/sdo-3.0-cd02.zip 91

[JAX-WS] 92

JAX-WS Specification 93

http://jcp.org/en/jsr/detail?id=224 94

 95

[WSI-BP] 96

WS-I Basic Profile 97

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile 98

 99

[WSI-BSP] 100

WS-I Basic Security Profile 101

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicsecurity 102

 103

[WS-BPEL] 104

OASIS Standard, "Web Services Business Process Execution Language Version 2.0", April 2007 105

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf 106

 107

[SCA-ASSEMBLY-TC] 108

OASIS Committee Draft, " TestCases for the SCA Assembly Model Version 1.1 Specification", August 109
2010. 110

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-testcases.pdf 111

1.4 Naming Conventions 112

This specification follows naming conventions for artifacts defined by the specification: 113

• For the names of elements and the names of attributes within XSD files, the names follow the 114
CamelCase convention, with all names starting with a lower case letter. 115
e.g. <element name="componentType" type="sca:ComponentType"/> 116

• For the names of types within XSD files, the names follow the CamelCase convention with all names 117
starting with an upper case letter. 118
eg. <complexType name="ComponentService"> 119

• For the names of intents, the names follow the CamelCase convention, with all names starting with a 120
lower case letter, EXCEPT for cases where the intent represents an established acronym, in which 121
case the entire name is in upper case. 122
An example of an intent which is an acronym is the "SOAP" intent. 123

 124

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-cd01.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-cd01.pdf
http://www.oasis-open.org/committees/download.php/35313/sdo-3.0-cd02.zip
http://jcp.org/en/jsr/detail?id=224
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicsecurity
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-testcases.pdf

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 11 of 138

1.5 Testcases 125

The TestCases for the SCA Assembly Model Version 1.1 Specification [SCA-ASSEMBLY-TC] defines 126
the TestCases for the SCA Assembly specification.The TestCases represent a series of tests that SCA 127
runtimes are expected to pass in order to claim conformance to the requirements of the SCA Assembly 128
specification. 129

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 12 of 138

2 Overview 130

Service Component Architecture (SCA) provides a programming model for building applications and 131
solutions based on a Service Oriented Architecture. It is based on the idea that business function is 132
provided as a series of services, which are assembled together to create solutions that serve a particular 133
business need. These composite applications can contain both new services created specifically for the 134
application and also business function from existing systems and applications, reused as part of the 135
composition. SCA provides a model both for the composition of services and for the creation of service 136
components, including the reuse of existing application function within SCA composites. 137

SCA is a model that aims to encompass a wide range of technologies for service components and for the 138
access methods which are used to connect them. For components, this includes not only different 139
programming languages, but also frameworks and environments commonly used with those languages. 140
For access methods, SCA compositions allow for the use of various communication and service access 141
technologies that are in common use, including, for example, Web services, Messaging systems and 142
Remote Procedure Call (RPC). 143

The SCA Assembly Model consists of a series of artifacts which define the configuration of an SCA 144
Domain in terms of composites which contain assemblies of service components and the connections 145
and related artifacts which describe how they are linked together. 146

One basic artifact of SCA is the component, which is the unit of construction for SCA. A component 147
consists of a configured instance of an implementation, where an implementation is the piece of program 148
code providing business functions. The business function is offered for use by other components as 149
services. Implementations can depend on services provided by other components – these dependencies 150
are called references. Implementations can have settable properties, which are data values which 151
influence the operation of the business function. The component configures the implementation by 152
providing values for the properties and by wiring the references to services provided by other 153
components. 154

SCA allows for a wide variety of implementation technologies, including "traditional" programming 155
languages such as Java, C++, and BPEL, but also scripting languages such as PHP and JavaScript and 156
declarative languages such as XQuery and SQL. 157

SCA describes the content and linkage of an application in assemblies called composites. Composites 158
can contain components, services, references, property declarations, plus the wiring that describes the 159
connections between these elements. Composites can group and link components built from different 160
implementation technologies, allowing appropriate technologies to be used for each business task. In 161
turn, composites can be used as complete component implementations: providing services, depending on 162
references and with settable property values. Such composite implementations can be used in 163
components within other composites, allowing for a hierarchical construction of business solutions, where 164
high-level services are implemented internally by sets of lower-level services. The content of composites 165
can also be used as groupings of elements which are contributed by inclusion into higher-level 166
compositions. 167

Composites are deployed within an SCA Domain. An SCA Domain typically represents a set of services 168
providing an area of business functionality that is controlled by a single organization. As an example, for 169
the accounts department in a business, the SCA Domain might cover all financial related function, and it 170
might contain a series of composites dealing with specific areas of accounting, with one for customer 171
accounts, another dealing with accounts payable. To help build and configure the SCA Domain, 172
composites can be used to group and configure related artifacts. 173

SCA defines an XML file format for its artifacts. These XML files define the portable representation of the 174
SCA artifacts. An SCA runtime might have other representations of the artifacts represented by these 175
XML files. In particular, component implementations in some programming languages might have 176
attributes or properties or annotations which can specify some of the elements of the SCA Assembly 177
model. The XML files define a static format for the configuration of an SCA Domain. An SCA runtime 178
might also allow for the configuration of the Domain to be modified dynamically. 179

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 13 of 138

2.1 Diagram used to Represent SCA Artifacts 180

This document introduces diagrams to represent the various SCA artifacts, as a way of visualizing the 181
relationships between the artifacts in a particular assembly. These diagrams are used in this document to 182
accompany and illuminate the examples of SCA artifacts and do not represent any formal graphical 183
notation for SCA. 184

Figure 2-1 illustrates some of the features of an SCA component: 185

Component… …

services

references

properties

Implementation
- Java
- BPEL
- Composite
…

 186
Figure 2-1: SCA Component Diagram 187

Figure 2-2 illustrates some of the features of a composite assembled using a set of components: 188

 189

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 14 of 138

Composite A

Component
AService

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Component
B

Service
- Java interface
- WSDL PortType

Reference
- Java interface
- WSDL PortType

Wire
PromotePromote

Reference

Property
setting

Properties

 190
Figure 2-2: SCA Composite Diagram 191

 192

Figure 2-3 illustrates an SCA Domain assembled from a series of high-level composites, some of which 193
are in turn implemented by lower-level composites: 194

 195

Composite Y

Component
 B

Component
 A

Composite A
Composite B

implementation
implementation

Wire

SCA Domain

Composite X

Component
 M

Java Class

 196
Figure 2-3: SCA Domain Diagram 197

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 15 of 138

3 Implementation and ComponentType 198

Component implementations are concrete implementations of business function which provide services 199
and/or which make references to services provided elsewhere. In addition, an implementation can have 200
some settable property values. 201

SCA allows a choice of any one of a wide range of implementation types, such as Java, BPEL or C++, 202
where each type represents a specific implementation technology. The technology might not simply 203
define the implementation language, such as Java, but might also define the use of a specific framework 204
or runtime environment. Examples include SCA Composite, Java implementations done using the Spring 205
framework or the Java EE EJB technology. 206

Services, references and properties are the configurable aspects of an implementation. SCA refers 207
to them collectively as the component type. 208

Depending on the implementation type, the implementation can declare the services, references and 209
properties that it has and it also might be able to set values for all the characteristics of those services, 210
references and properties. 211

So, for example: 212

• for a service, the implementation might define the interface, binding(s), a URI, intents, and policy sets, 213
including details of the bindings 214

• for a reference, the implementation might define the interface, binding(s), target URI(s), intents, policy 215
sets, including details of the bindings 216

• for a property the implementation might define its type and a default value 217

• the implementation itself might define policy intents or concrete policy sets 218

The means by which an implementation declares its services, references and properties depend on the 219
type of the implementation. For example, some languages like Java, provide annotations which can be 220
used to declare this information inline in the code. 221

Most of the characteristics of the services, references and properties can be overridden by a component 222
that uses and configures the implementation, or the component can decide not to override those 223
characteristics. Some characteristics cannot be overridden, such as intents. Other characteristics, such 224
as interfaces, can only be overridden in particular controlled ways (see the Component section for 225
details). 226

3.1 Component Type 227

Component type represents the configurable aspects of an implementation. A component type consists 228
of services that are offered, references to other services that can be wired and properties that can be set. 229
The settable properties and the settable references to services are configured by a component that uses 230
the implementation. 231

An implementation type specification (for example, the WS-BPEL Client and Implementation Specification 232
Version 1.1 [SCA BPEL]) specifies the mechanism(s) by which the component type associated with an 233
implementation of that type is derived. 234

Since SCA allows a broad range of implementation technologies, it is expected that some implementation 235
technologies (for example, the Java Component Implementation Specification Version 1.1 [SCA-Java]) 236
allow for introspecting the implementation artifact(s) (for example, a Java class) to derive the component 237
type information. Other implementation technologies might not allow for introspection of the 238
implementation artifact(s). In those cases where introspection is not allowed, SCA encourages the use of 239
a SCA component type side file. A component type side file is an XML file whose document root 240
element is sca:componentType. 241

The implementation type specification defines whether introspection is allowed, whether a side file is 242
allowed, both are allowed or some other mechanism specifies the component type. The component type 243
information derived through introspection is called the introspected component type. In any case, the 244

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 16 of 138

implementation type specification specifies how multiple sources of information are combined to produce 245
the effective component type. The effective component type is the component type metadata that is 246
presented to the using component for configuration. 247

The extension of a componentType side file name MUST be .componentType. [ASM40001] The name 248
and location of a componentType side file, if allowed, is defined by the implementation type specification. 249

If a component type side file is not allowed for a particular implementation type, the effective component 250
type and introspected component type are one and the same for that implementation type. 251

For the rest of this document, when the term 'component type' is used it refers to the 'effective component 252
type'. 253

Snippet 3-1 shows the componentType pseudo-schema: 254

 255

<?xml version="1.0" encoding="ASCII"?> 256
<!-- Component type schema snippet --> 257
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 258
 259
 <service … />* 260
 <reference … />* 261
 <property … />* 262
 <implementation … />? 263
 264
</componentType> 265

Snippet 3-1: componentType Pseudo-Schema 266

 267

The componentType element has the child elements: 268

• service : Service (0..n) – see component type service section. 269

• reference : Reference (0..n) – see component type reference section. 270

• property : Property (0..n) – see component type property section. 271

• implementation : Implementation (0..1) – see component type implementation 272
section. 273

3.1.1 Service 274

A Service represents an addressable interface of the implementation. The service is represented 275
by a service element which is a child of the componentType element. There can be zero or 276
more service elements in a componentType. Snippet 3-2 shows the componentType pseudo-277
schema with the pseudo-schema for a service child element: 278

 279

<?xml version="1.0" encoding="ASCII"?> 280
<!-- Component type service schema snippet --> 281
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" … > 282
 283
 <service name="xs:NCName" 284
 requires="list of xs:QName"? policySets="list of xs:QName"?>* 285
 <interface … /> 286
 <binding … />* 287
 <callback>? 288
 <binding … />+ 289
 </callback> 290
 <requires/>* 291
 <policySetAttachment/>* 292
 </service> 293
 294
 <reference … />* 295

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 17 of 138

 <property … />* 296
 <implementation … />? 297
 298
</componentType> 299

Snippet 3-2: componentType Pseudo-Schema with service Child Element 300

 301

The service element has the attributes: 302

• name : NCName (1..1) - the name of the service. The @name attribute of a <service/> child element 303
of a <componentType/> MUST be unique amongst the service elements of that <componentType/>. 304
[ASM40003] 305

• requires : listOfQNames (0..1) - a list of policy intents. See the Policy Framework specification 306
[SCA-POLICY] for a description of this attribute. 307

• policySets : listOfQNames (0..1) - a list of policy sets. See the Policy Framework specification 308
[SCA-POLICY] for a description of this attribute. 309

The service element has the child elements: 310

• interface : Interface (1..1) - A service has one interface, which describes the operations provided 311
by the service. For details on the interface element see the Interface section. 312

• binding : Binding (0..n) - A service element has zero or more binding elements as children. If the 313
binding element is not present it defaults to <binding.sca>. Details of the binding element are 314
described in the Bindings section. 315

• callback (0..1) / binding : Binding (1..n) - A callback element is used if the interface has a callback 316
defined, and the callback element has one or more binding elements as subelements. The callback 317
and its binding subelements are specified if there is a need to have binding details used to handle 318
callbacks. If the callback element is not present, the behaviour is runtime implementation dependent. 319
For details on callbacks, see the Bidirectional Interfaces section. 320

• requires : requires (0..n) - A service element has zero or more requires subelements. See the 321
Policy Framework specification [SCA-POLICY] for a description of this element. 322

• policySetAttachment : policySetAttachment (0..n) - A service element has zero or more 323
policySetAttachment subelements. See the Policy Framework specification [SCA-POLICY] for a 324
description of this element. 325

3.1.2 Reference 326

A Reference represents a requirement that the implementation has on a service provided by another 327
component. The reference is represented by a reference element which is a child of the componentType 328
element. There can be zero or more reference elements in a component type definition. Snippet 3-3 329
shows the componentType pseudo-schema with the pseudo-schema for a reference child element: 330

 331

<?xml version="1.0" encoding="ASCII"?> 332
<!-- Component type reference schema snippet --> 333
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" … > 334
 335
 <service … />* 336
 337
 <reference name="xs:NCName" 338
 autowire="xs:boolean"? 339
 multiplicity="0..1 or 1..1 or 0..n or 1..n"? 340
 wiredByImpl="xs:boolean"? requires="list of xs:QName"? 341
 policySets="list of xs:QName"?>* 342
 <interface … /> 343
 <binding … />* 344
 <callback>? 345

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 18 of 138

 <binding … />+ 346
 </callback> 347
 <requires/>* 348
 <policySetAttachment/>* 349
 </reference> 350
 351
 <property … />* 352
 <implementation … />? 353
 354
</componentType> 355

Snippet 3-3: componentType Pseudo-Schema with reference Child Element 356

 357

The reference element has the attributes: 358

• name : NCName (1..1) - the name of the reference. The @name attribute of a <reference/> child 359
element of a <componentType/> MUST be unique amongst the reference elements of that 360
<componentType/>. [ASM40004] 361

• multiplicity : 0..1|1..1|0..n|1..n (0..1) - defines the number of wires that can connect the reference to 362
target services. The multiplicity can have the following values 363

– 0..1 – zero or one wire can have the reference as a source 364

– 1..1 – one wire can have the reference as a source 365

– 0..n - zero or more wires can have the reference as a source 366

– 1..n – one or more wires can have the reference as a source 367

If @multiplicity is not specified, the default value is "1..1". 368

• autowire : boolean (0..1) - whether the reference is autowired, as described in the Autowire section. 369
Default is false. 370

• wiredByImpl : boolean (0..1) - a boolean value, "false" by default. If set to "false", the reference is 371
wired to the target(s) configured on the reference. If set to "true" it indicates that the target of the 372
reference is set at runtime by the implementation code (e.g. by the code obtaining an endpoint 373
reference by some means and setting this as the target of the reference through the use of 374
programming interfaces defined by the relevant Client and Implementation specification). If 375
@wiredByImpl is set to "true", then any reference targets configured for this reference MUST be 376
ignored by the runtime. [ASM40006] 377

• requires : listOfQNames (0..1) - a list of policy intents. See the Policy Framework specification 378
[SCA-POLICY] for a description of this attribute. 379

• policySets : listOfQNames (0..1) - a list of policy sets. See the Policy Framework specification 380
[SCA-POLICY] for a description of this attribute. 381

The reference element has the child elements: 382

• interface : Interface (1..1) - A reference has one interface, which describes the operations used by 383
the reference. The interface is described by an interface element which is a child element of the 384
reference element. For details on the interface element see the Interface section. 385

• binding : Binding (0..n) - A reference element has zero or more binding elements as children. 386
Details of the binding element are described in the Bindings section. 387

When used with a reference element, a binding element specifies an endpoint which is the target of 388
that binding. A reference cannot mix the use of endpoints specified via binding elements with target 389
endpoints specified via the @target attribute. If the @target attribute is set, the reference cannot also 390
have binding subelements. If binding elements with endpoints are specified, each endpoint uses the 391
binding type of the binding element in which it is defined. 392

• callback (0..1) / binding : Binding (1..n) - al callback element is used if the interface has a callback 393
defined and the callback element has one or more binding elements as subelements. The callback 394

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 19 of 138

and its binding subelements are specified if there is a need to have binding details used to handle 395
callbacks. If the callback element is not present, the behaviour is runtime implementation dependent. 396
For details on callbacks, see the Bidirectional Interfaces section. 397

• requires : requires (0..n) - A service element has zero or more requires subelements. See the 398
Policy Framework specification [SCA-POLICY] for a description of this element. 399

• policySetAttachment : policySetAttachment (0..n) - A service element has zero or more 400
policySetAttachment subelements. See the Policy Framework specification [SCA-POLICY] for a 401
description of this element. 402

For a full description of the setting of target service(s) for a reference, see the section "Specifying the 403
Target Service(s) for a Reference". 404

3.1.3 Property 405

Properties allow for the configuration of an implementation with externally set values. Each Property is 406
defined as a property element. The componentType element can have zero or more property elements 407
as its children. Snippet 3-4 shows the componentType pseudo-schema with the pseudo-schema for a 408
reference child element: 409

 410

<?xml version="1.0" encoding="ASCII"?> 411
<!-- Component type property schema snippet --> 412
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" … > 413
 414
 <service … />* 415
 <reference … >* 416
 417
 <property name="xs:NCName" (type="xs:QName" | element="xs:QName") 418
 many="xs:boolean"? mustSupply="xs:boolean"?>* 419
 default-property-value? 420
 </property> 421
 422
 <implementation … />? 423
 424
</componentType> 425

Snippet 3-4: componentType Pseudo-Schema with property Child Element 426

 427

The property element has the attributes: 428

• name : NCName (1..1) - the name of the property. The @name attribute of a <property/> child 429
element of a <componentType/> MUST be unique amongst the property elements of that 430
<componentType/>. [ASM40005] 431

• one of (1..1): 432

– type : QName - the type of the property defined as the qualified name of an XML schema type. 433
The value of the property @type attribute MUST be the QName of an XML schema type. 434
[ASM40007] 435

– element : QName - the type of the property defined as the qualified name of an XML schema 436
global element – the type is the type of the global element. The value of the property @element 437
attribute MUST be the QName of an XSD global element. [ASM40008] 438

A single property element MUST NOT contain both a @type attribute and an @element attribute. 439
[ASM40010] 440

• many : boolean (0..1) - whether the property is single-valued (false) or multi-valued (true). In the 441
case of a multi-valued property, it is presented to the implementation as a collection of property 442
values. If many is not specified, it takes a default value of false. 443

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 20 of 138

• mustSupply : boolean (0..1) - whether the property value needs to be supplied by the component 444
that uses the implementation. Default value is "false". When the componentType has 445
@mustSupply="true" for a property element, a component using the implementation MUST supply a 446
value for the property since the implementation has no default value for the property. [ASM40011] If 447
the implementation has a default-property-value then @mustSupply="false" is appropriate, since the 448
implication of a default value is that it is used when a value is not supplied by the using component. 449

• file : anyURI (0..1) - a dereferencable URI to a file containing a value for the property. The value of 450
the property @file attribute MUST be a dereferencable URI to a file containing the value for the 451
property. [ASM40012] The URI can be an absolute URI or a relative URI. For a relative URI, it is 452
taken relative to the base of the contribution containing the implementation. For a description of the 453
format of the file, see the section on Property Value File Format. 454

The property element can contain a default property value as its content. The form of the default property 455
value is as described in the section on Component Property. 456

The value for a property is supplied to the implementation of a component at the time that the 457
implementation is started. The implementation can use the supplied value in any way that it chooses. In 458
particular, the implementation can alter the internal value of the property at any time. However, if the 459
implementation queries the SCA system for the value of the property, the value as defined in the SCA 460
composite is the value returned. 461

The componentType property element can contain an SCA default value for the property declared by the 462
implementation. However, the implementation can have a property which has an implementation defined 463
default value, where the default value is not represented in the componentType. An example of such a 464
default value is where the default value is computed at runtime by some code contained in the 465
implementation. If a using component needs to control the value of a property used by an implementation, 466
the component sets the value explicitly. The SCA runtime MUST ensure that any implementation default 467
property value is replaced by a value for that property explicitly set by a component using that 468
implementation. [ASM40009] 469

3.1.4 Implementation 470

Implementation represents characteristics inherent to the implementation itself, in particular intents and 471
policies. See the Policy Framework specification [SCA-POLICY] for a description of intents and policies. 472
Snippet 3-5 shows the componentType pseudo-schema with the pseudo-schema for a implementation 473
child element: 474

 475

<?xml version="1.0" encoding="ASCII"?> 476
<!-- Component type implementation schema snippet --> 477
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" … > 478
 479
 <service … />* 480
 <reference … >* 481
 <property … />* 482
 483
 <implementation requires="list of xs:QName"? 484
 policySets="list of xs:QName"?> 485
 <requires/>* 486
 <policySetAttachment/>* 487
 </implementation>? 488
 489
</componentType> 490

Snippet 3-5: componentType Pseudo-Schema with implementation Child Element 491

 492

The implementation element has the attributes: 493

• requires : listOfQNames (0..1) - a list of policy intents. See the Policy Framework specification 494
[SCA-POLICY] for a description of this attribute. 495

http://www.osoa.org/jira/browse/ASSEMBLY-38
http://www.osoa.org/jira/secure/ViewProfile.jspa?name=scottv

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 21 of 138

• policySets : listOfQNames (0..1) - a list of policy sets. See the Policy Framework specification 496
[SCA-POLICY] for a description of this attribute. 497

The implementation element has the subelements: 498

• requires : requires (0..n) - A service element has zero or more requires subelements. See the 499
Policy Framework specification [SCA-POLICY] for a description of this element. 500

• policySetAttachment : policySetAttachment (0..n) - A service element has zero or more 501
policySetAttachment subelements. See the Policy Framework specification [SCA-POLICY] for a 502
description of this element. 503

3.2 Example ComponentType 504

Snippet 3-6 shows the contents of the componentType file for the MyValueServiceImpl implementation. 505
The componentType file shows the services, references, and properties of the MyValueServiceImpl 506
implementation. In this case, Java is used to define interfaces: 507

<?xml version="1.0" encoding="ASCII"?> 508
<componentType xmlns=http://docs.oasis-open.org/ns/opencsa/sca/200912 509
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 510
 511
 <service name="MyValueService"> 512
 <interface.java interface="services.myvalue.MyValueService"/> 513
 </service> 514
 515
 <reference name="customerService"> 516
 <interface.java interface="services.customer.CustomerService"/> 517
 </reference> 518
 <reference name="stockQuoteService"> 519
 <interface.java 520
 interface="services.stockquote.StockQuoteService"/> 521
 </reference> 522
 523
 <property name="currency" type="xsd:string">USD</property> 524
 525
</componentType> 526

Snippet 3-6: Example componentType 527

3.3 Example Implementation 528

Snippet 3-7 and Snippet 3-8 are an example implementation, written in Java. 529

AccountServiceImpl implements the AccountService interface, which is defined via a Java interface: 530
package services.account; 531
 532
@Remotable 533
public interface AccountService { 534
 535
 AccountReport getAccountReport(String customerID); 536
} 537

Snippet 3-7: Example Interface in Java 538

 539

Snippet 3-8 is a full listing of the AccountServiceImpl class, showing the Service it implements, plus the 540
service references it makes and the settable properties that it has. Notice the use of Java annotations to 541
mark SCA aspects of the code, including the @Property, @Reference and @Service annotations: 542

package services.account; 543
 544
import java.util.List; 545
 546
import commonj.sdo.DataFactory; 547
 548

http://docs.oasis-open.org/ns/opencsa/sca/200903

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 22 of 138

import org.oasisopen.sca.annotation.Property; 549
import org.oasisopen.sca.annotation.Reference; 550
import org.oasisopen.sca.annotation.Service; 551
 552
import services.accountdata.AccountDataService; 553
import services.accountdata.CheckingAccount; 554
import services.accountdata.SavingsAccount; 555
import services.accountdata.StockAccount; 556
import services.stockquote.StockQuoteService; 557
 558
@Service(AccountService.class) 559
public class AccountServiceImpl implements AccountService { 560
 561
 @Property 562
 private String currency = "USD"; 563
 564
 @Reference 565
 private AccountDataService accountDataService; 566
 @Reference 567
 private StockQuoteService stockQuoteService; 568
 569
 public AccountReport getAccountReport(String customerID) { 570
 571
 DataFactory dataFactory = DataFactory.INSTANCE; 572
 AccountReport accountReport = 573
 (AccountReport)dataFactory.create(AccountReport.class); 574
 List accountSummaries = accountReport.getAccountSummaries(); 575
 576
 CheckingAccount checkingAccount = accountDataService.getCheckingAccount(customerID); 577
 AccountSummary checkingAccountSummary = 578
 (AccountSummary)dataFactory.create(AccountSummary.class); 579
 checkingAccountSummary.setAccountNumber(checkingAccount.getAccountNumber()); 580
 checkingAccountSummary.setAccountType("checking"); 581
 582
checkingAccountSummary.setBalance(fromUSDollarToCurrency(checkingAccount.getBalance())); 583
 accountSummaries.add(checkingAccountSummary); 584
 585
 SavingsAccount savingsAccount = accountDataService.getSavingsAccount(customerID); 586
 AccountSummary savingsAccountSummary = 587
 (AccountSummary)dataFactory.create(AccountSummary.class); 588
 savingsAccountSummary.setAccountNumber(savingsAccount.getAccountNumber()); 589
 savingsAccountSummary.setAccountType("savings"); 590
 591
savingsAccountSummary.setBalance(fromUSDollarToCurrency(savingsAccount.getBalance())); 592
 accountSummaries.add(savingsAccountSummary); 593
 594
 StockAccount stockAccount = accountDataService.getStockAccount(customerID); 595
 AccountSummary stockAccountSummary = 596
 (AccountSummary)dataFactory.create(AccountSummary.class); 597
 stockAccountSummary.setAccountNumber(stockAccount.getAccountNumber()); 598
 stockAccountSummary.setAccountType("stock"); 599
 float balance = 600
 601
(stockQuoteService.getQuote(stockAccount.getSymbol()))*stockAccount.getQuantity(); 602
 stockAccountSummary.setBalance(fromUSDollarToCurrency(balance)); 603
 accountSummaries.add(stockAccountSummary); 604
 605
 return accountReport; 606
 } 607
 608
 private float fromUSDollarToCurrency(float value){ 609
 610
 if (currency.equals("USD")) return value; else 611
 if (currency.equals("EURO")) return value * 0.8f; else 612
 return 0.0f; 613
 } 614
} 615

Snippet 3-8: Example Component Implementation in Java 616

 617

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 23 of 138

The following is the SCA componentType definition for the AccountServiceImpl, derived by introspection 618
of the code above: 619

<?xml version="1.0" encoding="ASCII"?> 620
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 621
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 622
 623
 <service name="AccountService"> 624
 <interface.java interface="services.account.AccountService"/> 625
 </service> 626
 <reference name="accountDataService"> 627
 <interface.java 628
 interface="services.accountdata.AccountDataService"/> 629
 </reference> 630
 <reference name="stockQuoteService"> 631
 <interface.java 632
 interface="services.stockquote.StockQuoteService"/> 633
 </reference> 634
 635
 <property name="currency" type="xsd:string"/> 636
 637
</componentType> 638

Snippet 3-9: Example componentType for Implementation in Snippet 3-8 639

 640

Note that the componentType property element for "currency" has no default value declared, despite the 641
code containing an initializer for the property field setting it to "USD". This is because the initializer cannot 642
be introspected at runtime and the value cannot be extracted. 643

For full details about Java implementations, see the Java Component Implementation Specification [SCA-644
Java]. Other implementation types have their own specification documents. 645

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 24 of 138

4 Component 646

Components are the basic elements of business function in an SCA assembly, which are combined into 647
complete business solutions by SCA composites. 648

Components are configured instances of implementations. Components provide and consume 649
services. More than one component can use and configure the same implementation, where each 650
component configures the implementation differently. 651

Components are declared as subelements of a composite in a file with a .composite extension. A 652
component is represented by a component element which is a child of the composite element. There 653
can be zero or more component elements within a composite. Snippet 4-1 shows the composite pseudo-654
schema with the pseudo-schema for the component child element: 655

 656

<?xml version="1.0" encoding="UTF-8"?> 657
<!-- Component schema snippet --> 658
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" … > 659
 … 660
 <component name="xs:NCName" autowire="xs:boolean"? 661
 requires="list of xs:QName"? policySets="list of xs:QName"?>* 662
 <implementation … />? 663
 <service … />* 664
 <reference … />* 665
 <property … />* 666
 <requires/>* 667
 <policySetAttachment/>* 668
 </component> 669
 … 670
</composite> 671

Snippet 4-1: composite Pseudo-Schema with component Child Element 672

 673

The component element has the attributes: 674

• name : NCName (1..1) – the name of the component. The @name attribute of a <component/> child 675
element of a <composite/> MUST be unique amongst the component elements of that <composite/> 676
[ASM50001] 677

• autowire : boolean (0..1) – whether contained component references are autowired, as described in 678
the Autowire section. Default is false. 679

• requires : listOfQNames (0..1) – a list of policy intents. See the Policy Framework specification 680
[SCA-POLICY] for a description of this attribute. 681

• policySets : listOfQNames (0..1) – a list of policy sets. See the Policy Framework specification 682
[SCA-POLICY] for a description of this attribute. 683

The component element has the child elements: 684

• implementation : ComponentImplementation (0..1) – see component implementation section. 685

• service : ComponentService (0..n) – see component service section. 686

• reference : ComponentReference (0..n) – see component reference section. 687

• property : ComponentProperty (0..n) – see component property section. 688

• requires : requires (0..n) - A service element has zero or more requires subelements. See the 689
Policy Framework specification [SCA-POLICY] for a description of this element. 690

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 25 of 138

• policySetAttachment : policySetAttachment (0..n) - A service element has zero or more 691
policySetAttachment subelements. See the Policy Framework specification [SCA-POLICY] for a 692
description of this element. 693

4.1 Implementation 694

A component element has one implementation element as its child, which points to the implementation 695
used by the component. 696

<?xml version="1.0" encoding="UTF-8"?> 697
<!-- Component Implementation schema snippet --> 698
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" … > 699
 … 700
 <component … >* 701
 <implementation requires="list of xs:QName"? 702
 policySets="list of xs:QName"?> 703
 <requires/>* 704
 <policySetAttachment/>* 705
 </implementation> 706
 <service … />* 707
 <reference … />* 708
 <property … />* 709
 </component> 710
 … 711
</composite> 712

Snippet 4-2: component Psuedo-Schema with implementation Child Element 713

 714

The component provides the extensibility point in the assembly model for different implementation types. 715
The references to implementations of different types are expressed by implementation type specific 716
implementation elements. 717

For example the elements implementation.java, implementation.bpel, implementation.cpp, and 718
implementation.c point to Java, BPEL, C++, and C implementation types respectively. 719
implementation.composite points to the use of an SCA composite as an implementation. 720
implementation.spring and implementation.ejb are used for Java components written to the Spring 721
framework and the Java EE EJB technology respectively. 722

Snippet 4-3 – Snippet 4-5 show implementation elements for the Java and BPEL implementation types 723
and for the use of a composite as an implementation: 724

 725
<implementation.java class="services.myvalue.MyValueServiceImpl"/> 726

Snippet 4-3: Example implementation.java Element 727

 728
<implementation.bpel process="ans:MoneyTransferProcess"/> 729

Snippet 4-4: Example implementation.bpel Element 730

 731
<implementation.composite name="bns:MyValueComposite"/> 732

Snippet 4-5: Example implementation.composite Element 733

 734

New implementation types can be added to the model as described in the Extension Model section. 735

At runtime, an implementation instance is a specific runtime instantiation of the implementation – its 736
runtime form depends on the implementation technology used. The implementation instance derives its 737
business logic from the implementation on which it is based, but the values for its properties and 738
references are derived from the component which configures the implementation. 739

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 26 of 138

Component Type

Component bComponent a

Implementation Instances

Implementation

Configure

 740
Figure 4-1: Relationship of Component and Implementation 741

4.2 Service 742

The component element can have zero or more service elements as children which are used to 743
configure the services of the component. The services that can be configured are defined by the 744
implementation. Snippet 4-6 shows the component pseudo-schema with the pseudo-schema for a service 745
child element: 746

 747

<?xml version="1.0" encoding="UTF-8"?> 748
<!-- Component Service schema snippet --> 749
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" … > 750
 … 751
 <component … >* 752
 <implementation … /> 753
 <service name="xs:NCName" requires="list of xs:QName"? 754
 policySets="list of xs:QName"?>* 755
 <interface … />? 756
 <binding … />* 757
 <callback>? 758
 <binding … />+ 759
 </callback> 760
 <requires/>* 761
 <policySetAttachment/>* 762
 </service> 763
 <reference … />* 764
 <property … />* 765
 </component> 766
 … 767
</composite> 768

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 27 of 138

Snippet 4-6: component Psuedo-Schema with service Child Element 769

 770

The component service element has the attributes: 771

• name : NCName (1..1) - the name of the service. The @name attribute of a service element of a 772
<component/> MUST be unique amongst the service elements of that <component/> [ASM50002] 773
The @name attribute of a service element of a <component/> MUST match the @name attribute of a 774
service element of the componentType of the <implementation/> child element of the component. 775
[ASM50003] 776

• requires : listOfQNames (0..1) – a list of policy intents. See the Policy Framework specification 777
[SCA-POLICY] for a description of this attribute. 778
Note: The effective set of policy intents for the service consists of any intents explicitly stated in this 779
@requires attribute, combined with any intents specified for the service by the implementation. 780

• policySets : listOfQNames (0..1) – a list of policy sets. See the Policy Framework specification 781
[SCA-POLICY] for a description of this attribute. 782

The component service element has the child elements: 783

• interface : Interface (0..1) - A service has zero or one interface, which describes the operations 784
provided by the service. The interface is described by an interface element which is a child element 785
of the service element. If no interface is specified, then the interface specified for the service in the 786
componentType of the implementation is in effect. If an interface is declared for a component service, 787
the interface MUST provide a compatible subset of the interface declared for the equivalent service in 788
the componentType of the implementation [ASM50004] For details on the interface element see the 789
Interface section. 790

• binding : Binding (0..n) - A service element has zero or more binding elements as children. If no 791
binding elements are specified for the service, then the bindings specified for the equivalent service in 792
the componentType of the implementation MUST be used, but if the componentType also has no 793
bindings specified, then <binding.sca/> MUST be used as the binding. If binding elements are 794
specified for the service, then those bindings MUST be used and they override any bindings specified 795
for the equivalent service in the componentType of the implementation. [ASM50005] Details of the 796
binding element are described in the Bindings section. The binding, combined with any PolicySets in 797
effect for the binding, needs to satisfy the set of policy intents for the service, as described in the 798
Policy Framework specification [SCA-POLICY]. 799

• callback (0..1) / binding : Binding (1..n) - A callback element is used if the interface has a callback 800
defined and the callback element has one or more binding elements as subelements. The callback 801
and its binding subelements are specified if there is a need to have binding details used to handle 802
callbacks. If the callback element is present and contains one or more binding child elements, then 803
those bindings MUST be used for the callback. [ASM50006] If the callback element is not present, the 804
behaviour is runtime implementation dependent. 805

• requires : requires (0..n) - A service element has zero or more requires subelements. See the 806
Policy Framework specification [SCA-POLICY] for a description of this element. 807

• policySetAttachment : policySetAttachment (0..n) - A service element has zero or more 808
policySetAttachment subelements. See the Policy Framework specification [SCA-POLICY] for a 809
description of this element. 810

4.3 Reference 811

The component element can have zero or more reference elements as children which are used to 812
configure the references of the component. The references that can be configured are defined by the 813
implementation. Snippet 4-7 shows the component pseudo-schema with the pseudo-schema for a 814
reference child element: 815

 816

<?xml version="1.0" encoding="UTF-8"?> 817

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 28 of 138

<!-- Component Reference schema snippet --> 818
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" … > 819
 … 820
 <component … >* 821
 <implementation … /> 822
 <service … />* 823
 <reference name="xs:NCName" 824
 target="list of xs:anyURI"? autowire="xs:boolean"? 825
 multiplicity="0..1 or 1..1 or 0..n or 1..n"? 826
 nonOverridable="xs:boolean" 827
 wiredByImpl="xs:boolean"? requires="list of xs:QName"? 828
 policySets="list of xs:QName"?>* 829
 <interface … />? 830
 <binding uri="xs:anyURI"? requires="list of xs:QName"? 831
 policySets="list of xs:QName"?/>* 832
 <callback>? 833
 <binding … />+ 834
 </callback> 835
 <requires/>* 836
 <policySetAttachment/>* 837
 </reference> 838
 <property … />* 839
 </component> 840
 … 841
</composite> 842

Snippet 4-7: component Psuedo-Schema with reference Child Element 843

 844

The component reference element has the attributes: 845

• name : NCName (1..1) – the name of the reference. The @name attribute of a service element of a 846
<component/> MUST be unique amongst the service elements of that <component/> [ASM50007] 847
The @name attribute of a reference element of a <component/> MUST match the @name attribute of 848
a reference element of the componentType of the <implementation/> child element of the component. 849
[ASM50008] 850

• autowire : boolean (0..1) – whether the reference is autowired, as described in the Autowire section. 851
The default value of the @autowire attribute MUST be the value of the @autowire attribute on the 852
component containing the reference, if present, or else the value of the @autowire attribute of the 853
composite containing the component, if present, and if neither is present, then it is "false". 854
[ASM50043] 855

• requires : listOfQNames (0..1) – a list of policy intents. See the Policy Framework specification 856
[SCA-POLICY] for a description of this attribute. 857
Note: The effective set of policy intents for the reference consists of any intents explicitly stated in this 858
@requires attribute, combined with any intents specified for the reference by the implementation. 859

• policySets : listOfQNames (0..1) – a list of policy sets. See the Policy Framework specification 860
[SCA-POLICY] for a description of this attribute. 861

• multiplicity : 0..1|1..1|0..n|1..n (0..1) - defines the number of wires that can connect the reference to 862
target services. Overrides the multiplicity specified for this reference in the componentType of the 863
implementation. The multiplicity can have the following values 864

– 0..1 – zero or one wire can have the reference as a source 865

– 1..1 – one wire can have the reference as a source 866

– 0..n - zero or more wires can have the reference as a source 867

– 1..n – one or more wires can have the reference as a source 868

The value of multiplicity for a component reference MUST only be equal or further restrict any value 869
for the multiplicity of the reference with the same name in the componentType of the implementation, 870
where further restriction means 0..n to 0..1 or 1..n to 1..1. [ASM50009] 871

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 29 of 138

If not present, the value of multiplicity is equal to the multiplicity specificed for this reference in the 872
componentType of the implementation - if not present in the componentType, the value defaults to 873
1..1. 874

• target : anyURI (0..n) – a list of one or more of target service URI’s, depending on multiplicity setting. 875
Each value wires the reference to a component service that resolves the reference. For more details 876
on wiring see the section on Wires. Overrides any target specified for this reference on the 877
implementation. 878

• wiredByImpl : boolean (0..1) – a boolean value, "false" by default, which indicates that the 879
implementation wires this reference dynamically. If set to "true" it indicates that the target of the 880
reference is set at runtime by the implementation code (e.g. by the code obtaining an endpoint 881
reference by some means and setting this as the target of the reference through the use of 882
programming interfaces defined by the relevant Client and Implementation specification). If 883
@wiredByImpl="true" is set for a reference, then the reference MUST NOT be wired statically within a 884
composite, but left unwired. [ASM50010] 885

• nonOverridable : boolean (0..1) - a boolean value, "false" by default, which indicates whether this 886
component reference can have its targets overridden by a composite reference which promotes the 887
component reference. 888
If @nonOverridable==false, if any target(s) are configured onto the composite references which 889
promote the component reference, then those targets replace all the targets explicitly declared on the 890
component reference for any value of @multiplicity on the component reference. If no targets are 891
defined on any of the composite references which promote the component reference, then any 892
targets explicitly declared on the component reference are used. This means in effect that any targets 893
declared on the component reference act as default targets for that reference. 894
 895
If a component reference has @multiplicity 0..1 or 1..1 and @nonOverridable==true, then the 896
component reference MUST NOT be promoted by any composite reference. [ASM50042] 897
 898
If @nonOverridable==true, and the component reference @multiplicity is 0..n or 1..n, any targets 899
configured onto the composite references which promote the component reference are added to any 900
references declared on the component reference - that is, the targets are additive. 901

The component reference element has the child elements: 902

• interface : Interface (0..1) - A reference has zero or one interface, which describes the operations 903
of the reference. The interface is described by an interface element which is a child element of the 904
reference element. If no interface is specified, then the interface specified for the reference in the 905
componentType of the implementation is in effect. If an interface is declared for a component 906
reference, the interface MUST provide a compatible superset of the interface declared for the 907
equivalent reference in the componentType of the implementation. [ASM50011] For details on the 908
interface element see the Interface section. 909

• binding : Binding (0..n) - A reference element has zero or more binding elements as children.If no 910
binding elements are specified for the reference, then the bindings specified for the equivalent 911
reference in the componentType of the implementation MUST be used. If binding elements are 912
specified for the reference, then those bindings MUST be used and they override any bindings 913
specified for the equivalent reference in the componentType of the implementation. [ASM50012] It is 914
valid for there to be no binding elements on the component reference and none on the reference in 915
the componentType - the binding used for such a reference is determined by the target service. See 916
the section on the bindings of component services for a description of how the binding(s) applying to 917
a service are determined. 918

Details of the binding element are described in the Bindings section. The binding, combined with any 919
PolicySets in effect for the binding, needs to satisfy the set of policy intents for the reference, as 920
described in the Policy Framework specification [SCA-POLICY]. 921

A reference identifies zero or more target services that satisfy the reference. This can be done in a 922
number of ways, which are fully described in section "Specifying the Target Service(s) for a 923
Reference" 924

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 30 of 138

• callback (0..1) / binding : Binding (1..n) - A callback element used if the interface has a callback 925
defined and the callback element has one or more binding elements as subelements. The callback 926
and its binding subelements are specified if there is a need to have binding details used to handle 927
callbacks. If the callback element is present and contains one or more binding child elements, then 928
those bindings MUST be used for the callback. [ASM50006] If the callback element is not present, 929
the behaviour is runtime implementation dependent. 930

• requires : requires (0..n) - A service element has zero or more requires subelements. See the 931
Policy Framework specification [SCA-POLICY] for a description of this element. 932

• policySetAttachment : policySetAttachment (0..n) - A service element has zero or more 933
policySetAttachment subelements. See the Policy Framework specification [SCA-POLICY] for a 934
description of this element. 935

4.3.1 Specifying the Target Service(s) for a Reference 936

A reference defines zero or more target services that satisfy the reference. The target service(s) can be 937
defined in the following ways: 938

1. Through a value specified in the @target attribute of the reference element 939

2. Through a target URI specified in the @uri attribute of a binding element which is 940
a child of the reference element 941

3. Through the setting of one or more values for binding-specific attributes and/or 942
child elements of a binding element that is a child of the reference element 943

4. Through the specification of @autowire="true" for the reference (or through 944
inheritance of that value from the component or composite containing the 945
reference) 946

5. Through the specification of @wiredByImpl="true" for the reference 947

6. Through the promotion of a component reference by a composite reference of the 948
composite containing the component (the target service is then identified by the 949
configuration of the composite reference) 950

7. Through the presence of a <wire/> element which has the reference specified in 951
its @source attribute. 952

Combinations of these different methods are allowed, and the following rules MUST be observed: 953

• If @wiredByImpl="true", other methods of specifying the target service MUST NOT be used. 954
[ASM50013] 955

• If @autowire="true", the autowire procedure MUST only be used if no target is identified by any of the 956
other ways listed above. It is not an error if @autowire="true" and a target is also defined through 957
some other means, however in this case the autowire procedure MUST NOT be used. [ASM50014] 958

• If a reference has a value specified for one or more target services in its @target attribute, there 959
MUST NOT be any child <binding/> elements declared for that reference. [ASM50026] 960

• If a binding element has a value specified for a target service using its @uri attribute, the binding 961
element MUST NOT identify target services using binding specific attributes or elements. 962
[ASM50015] 963

• It is possible that a particular binding type uses more than a simple URI for the address of a target 964
service. In cases where a reference element has a binding subelement that uses more than simple 965
URI, the @uri attribute of the binding element MUST NOT be used to identify the target service - in 966
this case binding specific attributes and/or child elements MUST be used. [ASM50016] 967

• If any <wire/> element with its @replace attribute set to "true" has a particular reference specified in 968
its @source attribute, the value of the @target attribute for that reference MUST be ignored and 969
MUST NOT be used to define target services for that reference. [ASM50034] 970

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 31 of 138

4.3.1.1 Multiplicity and the Valid Number of Target Services for a Reference 971

The number of target services configured for a reference are constrained by the following rules. 972

• A reference with multiplicity 0..1 MUST have no more than one target service defined. [ASM50039] 973

• A reference with multiplicity 1..1 MUST have exactly one target service defined. [ASM50040] 974

• A reference with multiplicity 1..n MUST have at least one target service defined. [ASM50041] 975

• A reference with multiplicity 0..n can have any number of target services defined. 976

Where it is detected that the rules for the number of target services for a reference have been violated, 977
either at deployment or at execution time, an SCA Runtime MUST raise an error no later than when the 978
reference is invoked by the component implementation. [ASM50022] 979

For example, where a composite is used as a component implementation, wires and target services 980
cannot be added to the composite after deployment. As a result, for components which are part of the 981
composite, both missing wires and wires with a non-existent target can be detected at deployment time 982
through a scan of the contents of the composite. 983

A contrasting example is a component deployed to the SCA Domain. At the Domain level, the target of a 984
wire, or even the wire itself, can form part of a separate deployed contribution and as a result these can 985
be deployed after the original component is deployed. For the cases where it is valid for the reference to 986
have no target service specified, the component implementation language specification needs to define 987
the programming model for interacting with an untargetted reference. 988

Where a component reference is promoted by a composite reference, the promotion MUST be treated 989
from a multiplicity perspective as providing 0 or more target services for the component reference, 990
depending upon the further configuration of the composite reference. These target services are in 991
addition to any target services identified on the component reference itself, subject to the rules relating to 992
multiplicity. [ASM50025] 993

4.4 Property 994

The component element has zero or more property elements as its children, which are used to 995
configure data values of properties of the implementation. Each property element provides a value for the 996
named property, which is passed to the implementation. The properties that can be configured and their 997
types are defined by the component type of the implementation. An implementation can declare a 998
property as multi-valued, in which case, multiple property values can be present for a given property. 999

The property value can be specified in one of five ways: 1000

• As a value, supplied in the @value attribute of the property element. 1001

If the @value attribute of a component property element is declared, the type of the property MUST 1002
be an XML Schema simple type and the @value attribute MUST contain a single value of that type. 1003
[ASM50027] 1004

For example, 1005

<property name="pi" value="3.14159265" /> 1006

Snippet 4-8: Example property using @value attribute 1007

 1008

• As a value, supplied as the content of the value subelement(s) of the property element. 1009

If the value subelement of a component property is specified, the type of the property MUST be an 1010
XML Schema simple type or an XML schema complex type. [ASM50028] 1011

For example, 1012

– property defined using a XML Schema simple type and which contains a single value 1013
<property name="pi"> 1014
 <value>3.14159265</value> 1015
</property> 1016

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 32 of 138

Snippet 4-9: Example property with a Simple Type Containing a Single Value 1017

 1018

– property defined using a XML Schema simple type and which contains multiple values 1019
<property name="currency"> 1020
 <value>EURO</value> 1021
 <value>USDollar</value> 1022
</property> 1023

Snippet 4-10: Example property with a Simple Type Containing Multiple Values 1024

 1025

– property defined using a XML Schema complex type and which contains a single value 1026
<property name="complexFoo"> 1027
 <value attr="bar"> 1028
 <foo:a>TheValue</foo:a> 1029
 <foo:b>InterestingURI</foo:b> 1030
 </value> 1031
</property> 1032

Snippet 4-11: Example property with a Complex Type Containing a Single Value 1033

 1034

– property defined using a XML Schema complex type and which contains multiple values 1035
<property name="complexBar"> 1036
 <value anotherAttr="foo"> 1037
 <bar:a>AValue</bar:a> 1038
 <bar:b>InterestingURI</bar:b> 1039
 </value> 1040
 <value attr="zing"> 1041
 <bar:a>BValue</bar:a> 1042
 <bar:b>BoringURI</bar:b> 1043
 </value> 1044
</property> 1045

Snippet 4-12: Example property with a Complex Type Containing Multiple Values 1046

 1047

• As a value, supplied as the content of the property element. 1048

If a component property value is declared using a child element of the <property/> element, the type 1049
of the property MUST be an XML Schema global element and the declared child element MUST be 1050
an instance of that global element. [ASM50029] 1051

For example, 1052

– property defined using a XML Schema global element declartion and which contains a single 1053
value 1054

<property name="foo"> 1055
 <foo:SomeGED ...>...</foo:SomeGED> 1056
</property> 1057

Snippet 4-13: Example property with a Global Element Declaration Containing a Single Value 1058

 1059

– property defined using a XML Schema global element declaration and which contains multiple 1060
values 1061

<property name="bar"> 1062
 <bar:SomeOtherGED ...>...</bar:SomeOtherGED> 1063
 <bar:SomeOtherGED ...>...</bar:SomeOtherGED> 1064
</property> 1065

Snippet 4-14 Example property with a Global Element Declaration Containing Multiple Values 1066

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 33 of 138

 1067

• By referencing a Property value of the composite which contains the component. The reference is 1068
made using the @source attribute of the property element. 1069

The form of the value of the @source attribute follows the form of an XPath expression. This form 1070
allows a specific property of the composite to be addressed by name. Where the composite property 1071
is of a complex type, the XPath expression can be extended to refer to a sub-part of the complex 1072
property value. 1073

So, for example, source="$currency" is used to reference a property of the composite called 1074
"currency", while source="$currency/a" references the sub-part "a" of the complex composite 1075
property with the name "currency". 1076

• By specifying a dereferencable URI to a file containing the property value through the @file attribute. 1077
The contents of the referenced file are used as the value of the property. 1078

 1079

If more than one property value specification is present, the @source attribute takes precedence, then the 1080
@file attribute. 1081

For a property defined using a XML Schema simple type and for which a single value is desired, can be 1082
set either using the @value attribute or the <value> child element. The two forms in such a case are 1083
equivalent. 1084

When a property has multiple values set, all the values MUST be contained within a single property 1085
element. [ASM50044] 1086

The type of the property can be specified in one of two ways: 1087

• by the qualified name of a type defined in an XML schema, using the @type attribute 1088

• by the qualified name of a global element in an XML schema, using the @element attribute 1089

The property type specified for the property element of a component MUST be compatible with the type of 1090
the property with the same @name declared in the component type of the implementation used by the 1091
component. If no type is declared in the component property element, the type of the property declared in 1092
the componentType of the implementation MUST be used. [ASM50036] 1093

The meaning of "compatible" for property types is defined in the section Property Type Compatibility. 1094

Snippet 4-15 shows the component pseudo-schema with the pseudo-schema for a property child 1095
element: 1096

 1097

<?xml version="1.0" encoding="UTF-8"?> 1098
<!-- Component Property schema snippet --> 1099
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" … > 1100
 … 1101
 <component … >* 1102
 <implementation … />? 1103
 <service … />* 1104
 <reference … />* 1105
 <property name="xs:NCName" 1106
 (type="xs:QName" | element="xs:QName")? 1107
 many="xs:boolean"? 1108
 source="xs:string"? file="xs:anyURI"? 1109
 value="xs:string"?>* 1110
 [<value>+ | xs:any+]? 1111
 </property> 1112
 </component> 1113
 … 1114
</composite> 1115

Snippet 4-15: component Psuedo-Schema with property Child Element 1116

 1117

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 34 of 138

The component property element has the attributes: 1118

• name : NCName (1..1) – the name of the property. The @name attribute of a property element of a 1119
<component/> MUST be unique amongst the property elements of that <component/>. [ASM50031] 1120
The @name attribute of a property element of a <component/> MUST match the @name attribute of 1121
a property element of the componentType of the <implementation/> child element of the component. 1122
[ASM50037] 1123

• zero or one of (0..1): 1124

– type : QName – the type of the property defined as the qualified name of an XML schema type 1125

– element : QName – the type of the property defined as the qualified name of an XML schema 1126
global element – the type is the type of the global element 1127

A single property element MUST NOT contain both a @type attribute and an @element attribute. 1128
[ASM50035] 1129

• source : string (0..1) – an XPath expression pointing to a property of the containing composite from 1130
which the value of this component property is obtained. 1131

• file : anyURI (0..1) – a dereferencable URI to a file containing a value for the property. The value of 1132
the component property @file attribute MUST be a dereferencable URI to a file containing the value 1133
for the property. [ASM50045] The URI can be an absolute URI or a relative URI. For a relative URI, it 1134
is taken relative to the base of the contribution containing the composite in which the component is 1135
declared. For a description of the format of the file, see the section on Property Value File Format. 1136

• many : boolean (0..1) – whether the property is single-valued (false) or multi-valued (true). 1137
Overrides the many specified for this property in the componentType of the implementation. The 1138
value can only be equal or further restrict, i.e. if the implementation specifies many true, then the 1139
component can say false. In the case of a multi-valued property, it is presented to the implementation 1140
as a Collection of property values. If many is not specified, it takes the value defined by the 1141
component type of the implementation used by the component. 1142

• value : string (0..1) - the value of the property if the property is defined using a simple type. 1143

The component property element has the child element: 1144

• value :any (0..n) - A property has zero or more, value elements that specify the value(s) of a 1145
property that is defined using a XML Schema type. If a property is single-valued, the <value/> 1146
subelement MUST NOT occur more than once. [ASM50032] A property <value/> subelement MUST 1147
NOT be used when the @value attribute is used to specify the value for that property. [ASM50033] 1148

4.4.1 Property Type Compatibility 1149

There are a number of situations where the declared type of a property element is matched with the 1150
declared type of another property element. These situations include: 1151

• Where a component <property/> sets a value for a property of an implementation, as declared in the 1152
componentType of the implementation 1153

• Where a component <property/> gets its value from the value of a composite <property/> by means 1154
of its @source attribute. This situation can also involve the @source attribute referencing a 1155
subelement of the composite <property/> value, in which case it is the type of the subelement which 1156
must be matched with the type of the component <property/> 1157

• Where the componentType of a composite used as an implementation is calculated and 1158
componentType <property/> elements are created for each composite <property/> 1159

In these cases where the types of two property elements are matched, the types declared for the two 1160
<property/> elements MUST be compatible [ASM50038] 1161

Two property types are compatible if they have the same XSD type (where declared as XSD types) or the 1162
same XSD global element (where declared as XSD global elements). For cases where the type of a 1163
property is declared using a different type system (eg Java), then the type of the property is mapped to 1164
XSD using the mapping rules defined by the appropriate implementation type specification 1165

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 35 of 138

4.4.2 Property Value File Format 1166

The format of the file which is referenced by the @file attribute of a component property or a 1167
componentType property is that it is an XML document which MUST contain an sca:values element which 1168
in turn contains one of: 1169

• a set of one or more <sca:value/> elements each containing a simple string - where the property 1170
type is a simple XML type 1171

• a set of one or more <sca:value/> elements or a set of one or more global elements - where the 1172
property type is a complex XML type 1173

[ASM50046] 1174

 1175
<?xml version="1.0" encoding="UTF-8"?> 1176
<values> 1177
 <value>MyValue</value> 1178
</values> 1179

Snippet 4-16: Property Value File Content for simple property type 1180

 1181
<?xml version="1.0" encoding="UTF-8"?> 1182
<values> 1183
 <foo:fooElement> 1184
 <foo:a>AValue</foo:a> 1185
 <foo:b>InterestingURI</foo:b> 1186
 </foo:fooElement> 1187
</values/> 1188

Snippet 4-17: Property Value File Content for a complex property type 1189

4.5 Example Component 1190

Figure 4-2 shows the component symbol that is used to represent a component in an assembly 1191
diagram. 1192

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 36 of 138

Component… …

services

references

properties

Implementation
- Java
- BPEL
- Composite
…

 1193
Figure 4-2: Component symbol 1194

Figure 4-3 shows the assembly diagram for the MyValueComposite containing the 1195
MyValueServiceComponent. 1196

 1197

MyValueComposite

Component
MyValue
Service

Component

Service
MyValue
Service

Reference
Customer

Service

Reference
StockQuote

Service

 1198

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 37 of 138

 1199

Figure 4-3: Assembly diagram for MyValueComposite 1200

Snippet 4-18: Example composite shows the MyValueComposite.composite file for the 1201
MyValueComposite containing the component element for the MyValueServiceComponent. A value 1202
is set for the property named currency, and the customerService and stockQuoteService 1203
references are promoted: 1204

<?xml version="1.0" encoding="ASCII"?> 1205
<!-- MyValueComposite_1 example --> 1206
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 1207
 targetNamespace="http://foo.com" 1208
 name="MyValueComposite" > 1209
 1210
 <service name="MyValueService" promote="MyValueServiceComponent"/> 1211
 1212
 <component name="MyValueServiceComponent"> 1213
 <implementation.java 1214
 class="services.myvalue.MyValueServiceImpl"/> 1215
 <property name="currency">EURO</property> 1216
 <reference name="customerService"/> 1217
 <reference name="stockQuoteService"/> 1218
 </component> 1219
 1220
 <reference name="CustomerService" 1221
 promote="MyValueServiceComponent/customerService"/> 1222
 1223
 <reference name="StockQuoteService" 1224
 promote="MyValueServiceComponent/stockQuoteService"/> 1225
 1226
</composite> 1227

Snippet 4-18: Example composite 1228

 1229

Note that the references of MyValueServiceComponent are explicitly declared only for purposes of clarity 1230
– the references are defined by the MyValueServiceImpl implementation and there is no need to 1231
redeclare them on the component unless the intention is to wire them or to override some aspect of them. 1232

The following snippet gives an example of the layout of a composite file if both the currency property and 1233
the customerService reference of the MyValueServiceComponent are declared to be multi-valued 1234
(many=true for the property and multiplicity=0..n or 1..n for the reference): 1235

<?xml version="1.0" encoding="ASCII"?> 1236
<!-- MyValueComposite_2 example --> 1237
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 1238
 targetNamespace="http://foo.com" 1239
 name="MyValueComposite" > 1240
 1241
 <service name="MyValueService" promote="MyValueServiceComponent"/> 1242
 1243
 <component name="MyValueServiceComponent"> 1244
 <implementation.java 1245
 class="services.myvalue.MyValueServiceImpl"/> 1246
 <property name="currency"> 1247
 <value>EURO</value> 1248
 <value>Yen</value> 1249
 <value>USDollar</value> 1250
 </property> 1251
 <reference name="customerService" 1252
 target="InternalCustomer/customerService"/> 1253
 <reference name="stockQuoteService"/> 1254
 </component> 1255
 1256
 ... 1257

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 38 of 138

 1258
 <reference name="CustomerService" 1259
 promote="MyValueServiceComponent/customerService"/> 1260
 1261
 <reference name="StockQuoteService" 1262
 promote="MyValueServiceComponent/stockQuoteService"/> 1263
 1264
</composite> 1265

Snippet 4-19: Example composite with Multi-Valued property and reference 1266

 1267

….this assumes that the composite has another component called InternalCustomer (not shown) which 1268
has a service to which the customerService reference of the MyValueServiceComponent is wired as well 1269
as being promoted externally through the composite reference CustomerService. 1270

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 39 of 138

5 Composite 1271

An SCA composite is used to assemble SCA elements in logical groupings. It is the basic unit of 1272
composition within an SCA Domain. An SCA composite contains a set of components, services, 1273
references and the wires that interconnect them, plus a set of properties which can be used to configure 1274
components. 1275

Composites can be used as component implementations in higher-level composites – in other words 1276
the higher-level composites can have components that are implemented by composites. For more detail 1277
on the use of composites as component implementations see the section Using Composites as 1278
Component Implementations. 1279

The content of a composite can be used within another composite through inclusion. When a composite 1280
is included by another composite, all of its contents are made available for use within the including 1281
composite – the contents are fully visible and can be referenced by other elements within the including 1282
composite. For more detail on the inclusion of one composite into another see the section Using 1283
Composites through Inclusion. 1284

A composite can be used as a unit of deployment. When used in this way, composites contribute 1285
components and wires to an SCA Domain. A composite can be deployed to the SCA Domain either by 1286
inclusion or a composite can be deployed to the Domain as an implementation. For more detail on the 1287
deployment of composites, see the section dealing with the SCA Domain. 1288

A composite is defined in an xxx.composite file. A composite is represented by a composite element. 1289
Snippet 5-1 shows the pseudo-schema for the composite element: 1290

 1291

<?xml version="1.0" encoding="ASCII"?> 1292
<!-- Composite schema snippet --> 1293
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 1294
 targetNamespace="xs:anyURI" 1295
 name="xs:NCName" local="xs:boolean"? 1296
 autowire="xs:boolean"? 1297
 requires="list of xs:QName"? policySets="list of xs:QName"?> 1298
 1299
 <include … />* 1300
 1301
 <requires/>* 1302
 <policySetAttachment/>* 1303
 1304
 <service … />* 1305
 <reference … />* 1306
 <property … />* 1307
 1308
 <component … />* 1309
 1310
 <wire … />* 1311
 1312
</composite> 1313

Snippet 5-1: composite Pseduo-Schema 1314

 1315

The composite element has the attributes: 1316

• name : NCName (1..1) – the name of the composite. The form of a composite name is an XML 1317
QName, in the namespace identified by the @targetNamespace attribute. A composite @name 1318
attribute value MUST be unique within the namespace of the composite. [ASM60001] 1319

• targetNamespace : anyURI (1..1) – an identifier for a target namespace into which the composite is 1320
declared 1321

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 40 of 138

• local : boolean (0..1) – whether all the components within the composite all run in the same 1322
operating system process. @local="true" for a composite means that all the components within the 1323
composite MUST run in the same operating system process. [ASM60002] local="false", which is the 1324
default, means that different components within the composite can run in different operating system 1325
processes and they can even run on different nodes on a network. 1326

• autowire : boolean (0..1) – whether contained component references are autowired, as described in 1327
the Autowire section. Default is false. 1328

• requires : listOfQNames (0..1) – a list of policy intents. See the Policy Framework specification 1329
[SCA-POLICY] for a description of this attribute. 1330

• policySets : listOfQNames (0..1) – a list of policy sets. See the Policy Framework specification 1331
[SCA-POLICY] for a description of this attribute. 1332

The composite element has the child elements: 1333

• service : CompositeService (0..n) – see composite service section. 1334

• reference : CompositeReference (0..n) – see composite reference section. 1335

• property : CompositeProperty (0..n) – see composite property section. 1336

• component : Component (0..n) – see component section. 1337

• wire : Wire (0..n) – see composite wire section. 1338

• include : Include (0..n) – see composite include section 1339

• requires : requires (0..n) - A service element has zero or more requires subelements. See the 1340
Policy Framework specification [SCA-POLICY] for a description of this element. 1341

• policySetAttachment : policySetAttachment (0..n) - A service element has zero or more 1342
policySetAttachment subelements. See the Policy Framework specification [SCA-POLICY] for a 1343
description of this element. 1344

Components contain configured implementations which hold the business logic of the composite. The 1345
components offer services and use references to other services. Composite services define the public 1346
services provided by the composite, which can be accessed from outside the composite. Composite 1347
references represent dependencies which the composite has on services provided elsewhere, outside 1348
the composite. Wires describe the connections between component services and component references 1349
within the composite. Included composites contribute the elements they contain to the using composite. 1350

Composite services involve the promotion of one service of one of the components within the composite, 1351
which means that the composite service is actually provided by one of the components within the 1352
composite. Composite references involve the promotion of one or more references of one or more 1353
components. Multiple component references can be promoted to the same composite reference, as long 1354
as each of the component references has an interface that is a compatible subset of the interface on the 1355
composite reference. Where multiple component references are promoted to the same composite 1356
reference, then they all share the same configuration, including the same target service(s). 1357

Composite services and composite references can use the configuration of their promoted services and 1358
references respectively (such as Bindings and Policy Sets). Alternatively composite services and 1359
composite references can override some or all of the configuration of the promoted services and 1360
references, through the configuration of bindings and other aspects of the composite service or reference. 1361

Component services and component references can be promoted to composite services and references 1362
and also be wired internally within the composite at the same time. For a reference, this only makes 1363
sense if the reference supports a multiplicity greater than 1. 1364

5.1 Service 1365

The services of a composite are defined by promoting services defined by components contained in the 1366
composite. A component service is promoted by means of a composite service element. 1367

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 41 of 138

A composite service is represented by a service element which is a child of the composite element. 1368
There can be zero or more service elements in a composite. Snippet 5-2 shows the composite pseudo-1369
schema with the pseudo-schema for a service child element: 1370

 1371

<?xml version="1.0" encoding="ASCII"?> 1372
<!-- Composite Service schema snippet --> 1373
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" … > 1374
 … 1375
 <service name="xs:NCName" promote="xs:anyURI" 1376
 requires="list of xs:QName"? policySets="list of xs:QName"?>* 1377
 <interface … />? 1378
 <binding … />* 1379
 <callback>? 1380
 <binding … />+ 1381
 </callback> 1382
 <requires/>* 1383
 <policySetAttachment/>* 1384
 </service> 1385
 … 1386
</composite> 1387

Snippet 5-2: composite Psuedo-Schema with service Child Element 1388

 1389

The composite service element has the attributes: 1390

• name : NCName (1..1) – the name of the service.The name of a composite <service/> element 1391
MUST be unique across all the composite services in the composite. [ASM60003] The name of the 1392
composite service can be different from the name of the promoted component service. 1393

• promote : anyURI (1..1) – identifies the promoted service, the value is of the form <component-1394
name>/<service-name>. The service name can be omitted if the target component only has one 1395
service. The same component service can be promoted by more then one composite service. A 1396
composite <service/> element's @promote attribute MUST identify one of the component services 1397
within that composite. [ASM60004] <include/> processing MUST take place before the processing of 1398
the @promote attribute of a composite service is performed. [ASM60038] 1399

• requires : listOfQNames (0..1) – a list of policy intents. See the Policy Framework specification 1400
[SCA-POLICY] for a description of this attribute. Specified intents add to or further qualify the required 1401
intents defined by the promoted component service. 1402

• policySets : listOfQNames (0..1) – a list of policy sets. See the Policy Framework specification 1403
[SCA-POLICY] for a description of this attribute. 1404

The composite service element has the child elements, whatever is not specified is defaulted from the 1405
promoted component service. 1406

• interface : Interface (0..1) - an interface which decribes the operations provided by the composite 1407
service. If a composite service interface is specified it MUST be the same or a compatible subset of 1408
the interface provided by the promoted component service. [ASM60005] The interface is described by 1409
zero or one interface element which is a child element of the service element. For details on the 1410
interface element see the Interface section. 1411

• binding : Binding (0..n) - If bindings are specified they override the bindings defined for the 1412
promoted component service from the composite service perspective. The bindings defined on the 1413
component service are still in effect for local wires within the composite that target the component 1414
service. A service element has zero or more binding elements as children. Details of the binding 1415
element are described in the Bindings section. For more details on wiring see the Wiring section. 1416

• callback (0..1) / binding : Binding (1..n) - A callback element is used if the interface has a callback 1417
defined and the callback has one or more binding elements as subelements. The callback and its 1418
binding subelements are specified if there is a need to have binding details used to handle callbacks. 1419
Callback binding elements attached to the composite service override any callback binding elements 1420

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 42 of 138

defined on the promoted component service. If the callback element is not present on the composite 1421
service, any callback binding elements on the promoted service are used. If the callback element is 1422
not present at all, the behaviour is runtime implementation dependent. 1423

• requires : requires (0..n) - A service element has zero or more requires subelements. See the 1424
Policy Framework specification [SCA-POLICY] for a description of this element. 1425

• policySetAttachment : policySetAttachment (0..n) - A service element has zero or more 1426
policySetAttachment subelements. See the Policy Framework specification [SCA-POLICY] for a 1427
description of this element. 1428

5.1.1 Service Examples 1429

Figure 5-1 shows the service symbol that used to represent a service in an assembly diagram: 1430

Service

 1431
Figure 5-1: Service symbol 1432

 1433

Figure 5-2 shows the assembly diagram for the MyValueComposite containing the service 1434
MyValueService. 1435

MyValueComposite

Component
MyValue
Service

Component

Service
MyValue
Service

Reference
Customer

Service

Reference
StockQuote

Service

 1436
Figure 5-2: MyValueComposite showing Service 1437

 1438

Snippet 5-3 shows the MyValueComposite.composite file for the MyValueComposite containing the 1439
service element for the MyValueService, which is a promote of the service offered by the 1440
MyValueServiceComponent. The name of the promoted service is omitted since 1441
MyValueServiceComponent offers only one service. The composite service MyValueService is bound 1442
using a Web service binding. 1443

 1444

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 43 of 138

<?xml version="1.0" encoding="ASCII"?> 1445
<!-- MyValueComposite_4 example --> 1446
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 1447
 targetNamespace="http://foo.com" 1448
 name="MyValueComposite" > 1449
 1450
 ... 1451
 1452
 <service name="MyValueService" promote="MyValueServiceComponent"> 1453
 <interface.java interface="services.myvalue.MyValueService"/> 1454
 <binding.ws wsdlElement="http://www.myvalue.org/MyValueService# 1455
 wsdl.port(MyValueService/MyValueServiceSOAP)"/> 1456
 </service> 1457
 1458
 <component name="MyValueServiceComponent"> 1459
 <implementation.java 1460
 class="services.myvalue.MyValueServiceImpl"/> 1461
 <property name="currency">EURO</property> 1462
 <service name="MyValueService"/> 1463
 <reference name="customerService"/> 1464
 <reference name="stockQuoteService"/> 1465
 </component> 1466
 1467
 ... 1468
 1469
</composite> 1470

Snippet 5-3: Example composite with a service 1471

5.2 Reference 1472

The references of a composite are defined by promoting references defined by components contained 1473
in the composite. Each promoted reference indicates that the component reference needs to be resolved 1474
by services outside the composite. A component reference is promoted using a composite reference 1475
element. 1476

A composite reference is represented by a reference element which is a child of a composite element. 1477
There can be zero or more reference elements in a composite. Snippet 5-4 shows the composite 1478
pseudo-schema with the pseudo-schema for a reference element: 1479

 1480

<?xml version="1.0" encoding="ASCII"?> 1481
<!-- Composite Reference schema snippet --> 1482
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" … > 1483
 … 1484
 <reference name="xs:NCName" target="list of xs:anyURI"? 1485
 promote="list of xs:anyURI" wiredByImpl="xs:boolean"? 1486
 multiplicity="0..1 or 1..1 or 0..n or 1..n" 1487
 requires="list of xs:QName"? policySets="list of xs:QName"?>* 1488
 <interface … />? 1489
 <binding … />* 1490
 <callback>? 1491
 <binding … />+ 1492
 </callback> 1493
 <requires/>* 1494
 <policySetAttachment/>* 1495
 </reference> 1496
 … 1497
</composite> 1498

Snippet 5-4: composite Psuedo-Schema with reference Child Element 1499

 1500

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 44 of 138

The composite reference element has the attributes: 1501

• name : NCName (1..1) – the name of the reference. The name of a composite <reference/> element 1502
MUST be unique across all the composite references in the composite. [ASM60006] The name of the 1503
composite reference can be different than the name of the promoted component reference. 1504

• promote : anyURI (1..n) – identifies one or more promoted component references. The value is a list 1505
of values of the form <component-name>/<reference-name> separated by spaces. The reference 1506
name can be omitted if the component has only one reference. Each of the URIs declared by a 1507
composite reference's @promote attribute MUST identify a component reference within the 1508
composite. [ASM60007] <include/> processing MUST take place before the processing of the 1509
@promote attribute of a composite reference is performed. [ASM60037] 1510

The same component reference can be promoted more than once, using different composite 1511
references, but only if the multiplicity defined on the component reference is 0..n or 1..n. The 1512
multiplicity on the composite reference can restrict accordingly. 1513

Where a composite reference promotes two or more component references: 1514

– the interfaces of the component references promoted by a composite reference MUST be the 1515
same, or if the composite reference itself declares an interface then each of the component 1516
reference interfaces MUST be a compatible subset of the composite reference interface.. 1517
[ASM60008] 1518

– the intents declared on a composite reference and on the component references which it 1519
promoites MUST NOT be mutually exclusive. [ASM60009] The intents which apply to the 1520
composite reference in this case are the union of the intents specified for each of the promoted 1521
component references plus any intents declared on the composite reference itself. If any intents 1522
in the set which apply to a composite reference are mutually exclusive then the SCA runtime 1523
MUST raise an error. [ASM60010] 1524

• requires : listOfQNames (0..1) – a list of policy intents. See the Policy Framework specification 1525
[SCA-POLICY] for a description of this attribute. Specified intents add to or further qualify the intents 1526
defined for the promoted component reference. 1527

• policySets : listOfQNames (0..1) – a list of policy sets. See the Policy Framework specification 1528
[SCA-POLICY] for a description of this attribute. 1529

• multiplicity : (1..1) - Defines the number of wires that can connect the reference to target services. 1530
The multiplicity of a composite reference is always specified explicitly and can have one of the 1531
following values 1532

– 0..1 – zero or one wire can have the reference as a source 1533

– 1..1 – one wire can have the reference as a source 1534

– 0..n - zero or more wires can have the reference as a source 1535

– 1..n – one or more wires can have the reference as a source 1536

The multiplicity of a composite reference MUST be equal to or further restrict the multiplicity of each 1537
of the component references that it promotes, with the exception that the multiplicity of the composite 1538
reference does not have to require a target if there is already a target on the component reference. 1539
This means that a component reference with multiplicity 1..1 and a target can be promoted by a 1540
composite reference with multiplicity 0..1, and a component reference with multiplicity 1..n and one or 1541
more targets can be promoted by a composite reference with multiplicity 0..n or 0..1. [ASM60011] 1542

The valid values for composite reference multiplicity are shown in the following tables: 1543
 1544

Composite
Reference
multiplicity

Component Reference multiplicity

(where there are no targets declared)

0..1 1..1 0..n 1..n

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 45 of 138

0..1 YES NO YES NO

1..1 YES YES YES YES

0..n NO NO YES NO

1..n NO NO YES YES

 1545

Composite
Reference
multiplicity

Component Reference multiplicity

(where there are targets declared)

0..1 1..1 0..n 1..n

0..1 YES YES YES YES

1..1 YES YES YES YES

0..n NO NO YES YES

1..n NO NO YES YES

 1546

• target : anyURI (0..n) – a list of one or more of target service URI’s, depending on multiplicity setting. 1547
Each value wires the reference to a service in a composite that uses the composite containg the 1548
reference as an implementation for one of its components. For more details on wiring see the section 1549
on Wires. 1550

• wiredByImpl : boolean (0..1) – a boolean value. If set to "true" it indicates that the target of the 1551
reference is set at runtime by the implementation code (for example by the code obtaining an 1552
endpoint reference by some means and setting this as the target of the reference through the use of 1553
programming interfaces defined by the relevant Client and Implementation specification). If "true" is 1554
set, then the reference is not intended to be wired statically within a using composite, but left unwired. 1555
All the component references promoted by a single composite reference MUST have the same value 1556
for @wiredByImpl. [ASM60035] If the @wiredByImpl attribute is not specified on the composite 1557
reference, the default value is "true" if all of the promoted component references have a wiredByImpl 1558
value of "true", and the default value is "false" if all the promoted component references have a 1559
wiredByImpl value of "false". If the @wiredByImpl attribute is specified, its value MUST be "true" if all 1560
of the promoted component references have a wiredByImpl value of "true", and its value MUST be 1561
"false" if all the promoted component references have a wiredByImpl value of "false". [ASM60036] 1562

The composite reference element has the child elements, whatever is not specified is 1563
defaulted from the promoted component reference(s). 1564

• interface : Interface (0..1) - zero or one interface element which declares an interface for the 1565
composite reference. If a composite reference has an interface specified, it MUST provide an 1566
interface which is the same or which is a compatible superset of the interface(s) declared by the 1567
promoted component reference(s). [ASM60012] If no interface is declared on a composite reference, 1568
the interface from one of its promoted component references MUST be used for the component type 1569
associated with the composite. [ASM60013] For details on the interface element see the Interface 1570
section. 1571

• binding : Binding (0..n) - A reference element has zero or more binding elements as children. If 1572
one or more bindings are specified they override any and all of the bindings defined for the 1573
promoted component reference from the composite reference perspective. The bindings defined on 1574
the component reference are still in effect for local wires within the composite that have the 1575
component reference as their source. Details of the binding element are described in the Bindings 1576
section. For more details on wiring see the section on Wires. 1577

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 46 of 138

A reference identifies zero or more target services which satisfy the reference. This can be done in a 1578
number of ways, which are fully described in section "Specifying the Target Service(s) for a 1579
Reference". 1580

• callback (0..1) / binding : Binding (1..n) - A callback element is used if the interface has a callback 1581
defined and the callback element has one or more binding elements as subelements. The callback 1582
and its binding subelements are specified if there is a need to have binding details used to handle 1583
callbacks. Callback binding elements attached to the composite reference override any callback 1584
binding elements defined on any of the promoted component references. If the callback element is 1585
not present on the composite service, any callback binding elements that are declared on all the 1586
promoted references are used. If the callback element is not present at all, the behaviour is runtime 1587
implementation dependent. 1588

• requires : requires (0..n) - A service element has zero or more requires subelements. See the 1589
Policy Framework specification [SCA-POLICY] for a description of this element. 1590

• policySetAttachment : policySetAttachment (0..n) - A service element has zero or more 1591
policySetAttachment subelements. See the Policy Framework specification [SCA-POLICY] for a 1592
description of this element. 1593

5.2.1 Example Reference 1594

Figure 5-3 shows the reference symbol that is used to represent a reference in an assembly diagram. 1595

Reference

 1596
Figure 5-3: Reference symbol 1597

 1598

Figure 5-4 shows the assembly diagram for the MyValueComposite containing the reference 1599
CustomerService and the reference StockQuoteService. 1600

 1601

MyValueComposite

Component
MyValue
Service

Component

Service
MyValue
Service

Reference
Customer

Service

Reference
StockQuote

Service

 1602
Figure 5-4: MyValueComposite showing References 1603

 1604

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 47 of 138

Snippet 5-5 shows the MyValueComposite.composite file for the MyValueComposite containing the 1605
reference elements for the CustomerService and the StockQuoteService. The reference CustomerService 1606
is bound using the SCA binding. The reference StockQuoteService is bound using the Web service 1607
binding. The endpoint addresses of the bindings can be specified, for example using the binding @uri 1608
attribute (for details see the Bindings section), or overridden in an enclosing composite. Although in this 1609
case the reference StockQuoteService is bound to a Web service, its interface is defined by a Java 1610
interface, which was created from the WSDL portType of the target web service. 1611

 1612
<?xml version="1.0" encoding="ASCII"?> 1613
<!-- MyValueComposite_3 example --> 1614
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 1615
 targetNamespace="http://foo.com" 1616
 name="MyValueComposite" > 1617
 1618
 ... 1619
 1620
 <component name="MyValueServiceComponent"> 1621
 <implementation.java 1622
 class="services.myvalue.MyValueServiceImpl"/> 1623
 <property name="currency">EURO</property> 1624
 <reference name="customerService"/> 1625
 <reference name="stockQuoteService"/> 1626
 </component> 1627
 1628
 <reference name="CustomerService" 1629
 promote="MyValueServiceComponent/customerService"> 1630
 <interface.java interface="services.customer.CustomerService"/> 1631
 <!-- The following forces the binding to be binding.sca --> 1632
 <!-- whatever is specified by the component reference or --> 1633
 <!-- by the underlying implementation --> 1634
 <binding.sca/> 1635
 </reference> 1636
 1637
 <reference name="StockQuoteService" 1638
 promote="MyValueServiceComponent/stockQuoteService"> 1639
 <interface.java 1640
 interface="services.stockquote.StockQuoteService"/> 1641
 <binding.ws wsdlElement="http://www.stockquote.org/StockQuoteService# 1642
 wsdl.port(StockQuoteService/StockQuoteServiceSOAP)"/> 1643
 </reference> 1644
 1645
 ... 1646
 1647
</composite> 1648

Snippet 5-5: Example composite with a reference 1649

5.3 Property 1650

Properties allow for the configuration of an implementation with externally set data values. A composite 1651
can declare zero or more properties. Each property has a type, which is either simple or complex. An 1652
implementation can also define a default value for a property. Properties can be configured with values in 1653
the components that use the implementation. 1654

Snippet 5-6 shows the composite pseudo-schema with the pseudo-schema for a reference element: 1655

 1656

<?xml version="1.0" encoding="ASCII"?> 1657
<!-- Composite Property schema snippet --> 1658
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" … > 1659
 … 1660
 <property name="xs:NCName" (type="xs:QName" | element="xs:QName") 1661

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 48 of 138

 many="xs:boolean"? mustSupply="xs:boolean"?>* 1662
 default-property-value? 1663
 </property> 1664
 … 1665
</composite> 1666

Snippet 5-6: composite Psuedo-Schema with property Child Element 1667

 1668

The composite property element has the attributes: 1669

• name : NCName (1..1) - the name of the property. The @name attribute of a composite property 1670
MUST be unique amongst the properties of the same composite. [ASM60014] 1671

• one of (1..1): 1672

– type : QName – the type of the property - the qualified name of an XML schema type 1673

– element : QName – the type of the property defined as the qualified name of an XML schema 1674
global element – the type is the type of the global element 1675

A single property element MUST NOT contain both a @type attribute and an @element 1676
attribute. [ASM60040] 1677

• many : boolean (0..1) - whether the property is single-valued (false) or multi-valued (true). The 1678
default is false. In the case of a multi-valued property, it is presented to the implementation as a 1679
collection of property values. 1680

• mustSupply : boolean (0..1) – whether the property value has to be supplied by the component that 1681
uses the composite – when mustSupply="true" the component has to supply a value since the 1682
composite has no default value for the property. A default-property-value is only worth declaring 1683
when mustSupply="false" (the default setting for the @mustSupply attribute), since the implication of 1684
a default value is that it is used only when a value is not supplied by the using component. 1685

The property element can contain a default-property-value, which provides default value for the 1686
property. The form of the default property value is as described in the section on Component Property. 1687

Implementation types other than composite can declare properties in an implementation-dependent form 1688
(e.g. annotations within a Java class), or through a property declaration of exactly the form described 1689
above in a componentType file. 1690

Property values can be configured when an implementation is used by a component. The form of the 1691
property configuration is shown in the section on Components. 1692

5.3.1 Property Examples 1693

For the example Property declaration and value setting in Snippet 5-8, the complex type in Snippet 5-7 is 1694
used as an example: 1695

 1696
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" 1697
 targetNamespace="http://foo.com/" 1698
 xmlns:tns="http://foo.com/"> 1699
 <!-- ComplexProperty schema --> 1700
 <xsd:element name="fooElement" type="tns:MyComplexType"/> 1701
 <xsd:complexType name="MyComplexType"> 1702
 <xsd:sequence> 1703
 <xsd:element name="a" type="xsd:string"/> 1704
 <xsd:element name="b" type="xsd:anyURI"/> 1705
 </xsd:sequence> 1706
 <attribute name="attr" type="xsd:string" use="optional"/> 1707
 </xsd:complexType> 1708
</xsd:schema> 1709

Snippet 5-7: Complex Type for Snippet 5-8 1710

 1711

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 49 of 138

The following composite demostrates the declaration of a property of a complex type, with a default value, 1712
plus it demonstrates the setting of a property value of a complex type within a component: 1713

 1714
<?xml version="1.0" encoding="ASCII"?> 1715
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 1716
 xmlns:foo="http://foo.com" 1717
 targetNamespace="http://foo.com" 1718
 name="AccountServices"> 1719
<!-- AccountServices Example1 --> 1720
 1721
 ... 1722
 1723
 <property name="complexFoo" type="foo:MyComplexType"> 1724
 <value> 1725
 <foo:a>AValue</foo:a> 1726
 <foo:b>InterestingURI</foo:b> 1727
 </value> 1728
 </property> 1729
 1730
 <component name="AccountServiceComponent"> 1731
 <implementation.java class="foo.AccountServiceImpl"/> 1732
 <property name="complexBar" source="$complexFoo"/> 1733
 <reference name="accountDataService" 1734
 target="AccountDataServiceComponent"/> 1735
 <reference name="stockQuoteService" target="StockQuoteService"/> 1736
 </component> 1737
 1738
 ... 1739
 1740
</composite> 1741

Snippet 5-8: Example property with a Complext Type 1742

 1743

In the declaration of the property named complexFoo in the composite AccountServices, the property is 1744
defined to be of type foo:MyComplexType. The namespace foo is declared in the composite and it 1745
references the example XSD, where MyComplexType is defined. The declaration of complexFoo 1746
contains a default value. This is declared as the content of the property element. In this example, the 1747
default value consists of the element value which is of type foo:MyComplexType and it has two child 1748
elements <foo:a> and <foo:b>, following the definition of MyComplexType. 1749

In the component AccountServiceComponent, the component sets the value of the property 1750
complexBar, declared by the implementation configured by the component. In this case, the type of 1751
complexBar is foo:MyComplexType. The example shows that the value of the complexBar property is set 1752
from the value of the complexFoo property – the @source attribute of the property element for 1753
complexBar declares that the value of the property is set from the value of a property of the containing 1754
composite. The value of the @source attribute is $complexFoo, where complexFoo is the name of a 1755
property of the composite. This value implies that the whole of the value of the source property is used to 1756
set the value of the component property. 1757

Snippet 5-9 illustrates the setting of the value of a property of a simple type (a string) from part of the 1758
value of a property of the containing composite which has a complex type: 1759

 1760
<?xml version="1.0" encoding="ASCII"?> 1761
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 1762
 xmlns:foo="http://foo.com" 1763
 targetNamespace="http://foo.com" 1764
 name="AccountServices"> 1765
<!-- AccountServices Example2 --> 1766
 1767
 ... 1768

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 50 of 138

 1769
 <property name="complexFoo" type="foo:MyComplexType"> 1770
 <value> 1771
 <foo:a>AValue</foo:a> 1772
 <foo:b>InterestingURI</foo:b> 1773
 </value> 1774
 </property> 1775
 1776
 <component name="AccountServiceComponent"> 1777
 <implementation.java class="foo.AccountServiceImpl"/> 1778
 <property name="currency" source="$complexFoo/a"/> 1779
 <reference name="accountDataService" 1780
 target="AccountDataServiceComponent"/> 1781
 <reference name="stockQuoteService" target="StockQuoteService"/> 1782
 </component> 1783
 1784
 ... 1785
 1786
</composite> 1787

Snippet 5-9: Example property with a Simple Type 1788

 1789

In the example in Snippet 5-9, the component AccountServiceComponent sets the value of a property 1790
called currency, which is of type string. The value is set from a property of the composite 1791
AccountServices using the @source attribute set to $complexFoo/a. This is an XPath expression that 1792
selects the property name complexFoo and then selects the value of the a subelement of the value of 1793
complexFoo. The "a" subelement is a string, matching the type of the currency property. 1794

Further examples of declaring properties and setting property values in a component: 1795

– Declaration of a property with a simple type and a default value: 1796
<property name="SimpleTypeProperty" type="xsd:string"> 1797
 <value>MyValue</value> 1798
</property> 1799

Snippet 5-10: Example property with a Simple Type and Default Value 1800

 1801

– Declaration of a property with a complex type and a default value: 1802
<property name="complexFoo" type="foo:MyComplexType"> 1803
 <value> 1804
 <foo:a>AValue</foo:a> 1805
 <foo:b>InterestingURI</foo:b> 1806
 </value> 1807
</property> 1808

Snippet 5-11: Example property with a Complex Type and Default Value 1809

 1810

– Declaration of a property with a global element type: 1811
<property name="elementFoo" element="foo:fooElement"> 1812
 <foo:fooElement> 1813
 <foo:a>AValue</foo:a> 1814
 <foo:b>InterestingURI</foo:b> 1815
 </foo:fooElement> 1816
</property> 1817

Snippet 5-12: Example property with a Global Element Type 1818

5.4 Wire 1819

SCA wires within a composite connect source component references to target component services. 1820

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 51 of 138

One way of defining a wire is by configuring a reference of a component using its @target attribute. 1821
The reference element is configured with the wire-target-URI of the service(s) that resolve the reference. 1822
Multiple target services are valid when the reference has a multiplicity of 0..n or 1..n. 1823

An alternative way of defining a Wire is by means of a wire element which is a child of the composite 1824
element. There can be zero or more wire elements in a composite. This alternative method for defining 1825
wires is useful in circumstances where separation of the wiring from the elements the wires connect helps 1826
simplify development or operational activities. An example is where the components used to build a 1827
Domain are relatively static but where new or changed applications are created regularly from those 1828
components, through the creation of new assemblies with different wiring. Deploying the wiring 1829
separately from the components allows the wiring to be created or modified with minimum effort. 1830

Note that a Wire specified via a wire element is equivalent to a wire specified via the @target attribute of 1831
a reference. The rule which forbids mixing of wires specified with the @target attribute with the 1832
specification of endpoints in binding subelements of the reference also applies to wires specified via 1833
separate wire elements. 1834

Snippet 5-13 shows the composite pseudo-schema with the pseudo-schema for the wire child element: 1835

 1836

<!-- Wires schema snippet --> 1837
<composite ...> 1838
 ... 1839
 <wire source="xs:anyURI" target="xs:anyURI" replace="xs:boolean"?/>* 1840
 ... 1841
</composite> 1842

Snippet 5-13: composite Psuedo-Schema with wire Child Element 1843

 1844

The reference element of a component has a list of one or more of the following wire-target-URI 1845
values for the target, with multiple values separated by a space: 1846

• <component-name>[/<service-name> [/<binding-name>]?]? 1847

o <component-name> is the name of the target component. 1848

o <service-name> is the name of the target service within the component. 1849

If <service-name> is present, the component service with @name corresponding 1850
to <service-name> MUST be used for the wire. [ASM60046] 1851

If there is no component service with @name corresponding to <service-name>, 1852
the SCA runtime MUST raise an error. [ASM60047] 1853

If <service-name> is not present, the target component MUST have one and only 1854
one service with an interface that is a compatible superset of the wire source’s 1855
interface and satisifies the policy requirements of the wire source, and the SCA 1856
runtime MUST use this service for the wire. [ASM60048] 1857

o <binding-name> is the name of the service’s binding to use. The <binding-name> 1858
can be the default name of a binding element (see section 8 “Binding”). 1859
 1860
If <binding-name> is present, the <binding/> subelement of the target service 1861
with @name corresponding to <binding-name> MUST be used for the wire. 1862
[ASM60049] If there is no <binding/> subelement of the target service with 1863
@name corresponding to <binding-name>, the SCA runtime MUST raise an error. 1864
[ASM60050] If <binding-name> is not present and the target service has multiple 1865
<binding/> subelements, the SCA runtime MUST choose one and only one of the 1866
<binding/> elements which satisfies the mutual policy requirements of the 1867
reference and the service, and the SCA runtime MUST use this binding for the 1868
wire. [ASM60051] 1869

 1870

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 52 of 138

The wire element has the attributes: 1871

• source (1..1) – names the source component reference. The valid URI scheme is: 1872

– <component-name>[/<reference-name>]? 1873

• where the source is a component reference. The reference name can be omitted if the 1874
source component only has one reference 1875

• target (1..1) – names the target component service. The valid URI scheme is the same as the one 1876
defined for component references above. 1877

• replace (0..1) - a boolean value, with the default of "false". When a wire element has 1878
@replace="false", the wire is added to the set of wires which apply to the reference identified by the 1879
@source attribute. When a wire element has @replace="true", the wire is added to the set of wires 1880
which apply to the reference identified by the @source attribute - but any wires for that reference 1881
specified by means of the @target attribute of the reference are removed from the set of wires which 1882
apply to the reference. 1883

In other words, if any <wire/> element with @replace="true" is used for a particular reference, the 1884
value of the @target attribute on the reference is ignored - and this permits existing wires on the 1885
reference to be overridden by separate configuration, where the reference is on a component at the 1886
Domain level. 1887

<include/> processing MUST take place before the @source and @target attributes of a wire are 1888
resolved. [ASM60039] 1889

For a composite used as a component implementation, wires can only link sources and targets that are 1890
contained in the same composite (irrespective of which file or files are used to describe the composite). 1891
Wiring to entities outside the composite is done through services and references of the composite with 1892
wiring defined by the next higher composite. 1893

The interface declared by the target of a wire MUST be a compatible superset of the interface declared by 1894
the source of the wire. [ASM60043] See the section on Interface Compatibility for a definition of 1895
"compatible superset". 1896

A Wire can connect between different interface languages (e.g. Java interfaces and WSDL portTypes) in 1897
either direction, as long as the operations defined by the two interface types are equivalent. They are 1898
equivalent if the operation(s), parameter(s), return value(s) and faults/exceptions map to each other. 1899

Service clients cannot (portably) ask questions at runtime about additional interfaces that are provided by 1900
the implementation of the service (e.g. the result of “instance of” in Java is non portable). It is valid for an 1901
SCA implementation to have proxies for all wires, so that, for example, a reference object passed to an 1902
implementation might only have the business interface of the reference and might not be an instance of 1903
the (Java) class which is used to implement the target service, even where the interface is local and the 1904
target service is running in the same process. 1905

Note: It is permitted to deploy a composite that has references that are not wired. For the case of an un-1906
wired reference with multiplicity 1..1 or 1..n the deployment process provided by an SCA runtime is 1907
encouraged to issue a warning. 1908

5.4.1 Wire Examples 1909

Figure 5-5: MyValueComposite2 showing Wires shows the assembly diagram for the 1910
MyValueComposite2 containing wires between service, components and references. 1911

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 53 of 138

MyValueComposite2

Component
MyValue
Service

Component

Service
MyValue
Service

Reference
Customer
Service

Reference
StockQuote
Service

Component
StockQuote
Mediator
Component

 1912
Figure 5-5: MyValueComposite2 showing Wires 1913

 1914

Snippet 5-14: Example composite with a wire shows the MyValueComposite2.composite file for the 1915
MyValueComposite2 containing the configured component and service references. The service 1916
MyValueService is wired to the MyValueServiceComponent, using an explicit <wire/> element. The 1917
MyValueServiceComponent’s customerService reference is wired to the composite's CustomerService 1918
reference. The MyValueServiceComponent’s stockQuoteService reference is wired to the 1919
StockQuoteMediatorComponent, which in turn has its reference wired to the StockQuoteService 1920
reference of the composite. 1921

 1922
<?xml version="1.0" encoding="ASCII"?> 1923
<!-- MyValueComposite Wires examples --> 1924
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 1925
 targetNamespace="http://foo.com" 1926
 name="MyValueComposite2" > 1927
 1928
 <service name="MyValueService" promote="MyValueServiceComponent"> 1929
 <interface.java interface="services.myvalue.MyValueService"/> 1930
 <binding.ws wsdlElement="http://www.myvalue.org/MyValueService# 1931
 wsdl.port(MyValueService/MyValueServiceSOAP)"/> 1932
 </service> 1933
 1934
 <component name="MyValueServiceComponent"> 1935
 <implementation.java 1936
 class="services.myvalue.MyValueServiceImpl"/> 1937
 <property name="currency">EURO</property> 1938
 <service name="MyValueService"/> 1939
 <reference name="customerService"/> 1940
 <reference name="stockQuoteService"/> 1941
 </component> 1942
 1943
 <wire source="MyValueServiceComponent/stockQuoteService" 1944
 target="StockQuoteMediatorComponent"/> 1945
 1946
 <component name="StockQuoteMediatorComponent"> 1947
 <implementation.java class="services.myvalue.SQMediatorImpl"/> 1948
 <property name="currency">EURO</property> 1949
 <reference name="stockQuoteService"/> 1950
 </component> 1951
 1952
 <reference name="CustomerService" 1953

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 54 of 138

 promote="MyValueServiceComponent/customerService"> 1954
 <interface.java interface="services.customer.CustomerService"/> 1955
 <binding.sca/> 1956
 </reference> 1957
 1958
 <reference name="StockQuoteService" 1959
 promote="StockQuoteMediatorComponent"> 1960
 <interface.java 1961
 interface="services.stockquote.StockQuoteService"/> 1962
 <binding.ws wsdlElement="http://www.stockquote.org/StockQuoteService# 1963
 wsdl.port(StockQuoteService/StockQuoteServiceSOAP)"/> 1964
 </reference> 1965
 1966
</composite> 1967

Snippet 5-14: Example composite with a wire 1968

5.4.2 Autowire 1969

SCA provides a feature named Autowire, which can help to simplify the assembly of composites. 1970
Autowire enables component references to be automatically wired to component services which will 1971
satisfy those references, without the need to create explicit wires between the references and the 1972
services. When the autowire feature is used, a component reference which is not promoted and which is 1973
not explicitly wired to a service within a composite is automatically wired to a target service within the 1974
same composite. Autowire works by searching within the composite for a service interface which 1975
matches the interface of the references. 1976

The autowire feature is not used by default. Autowire is enabled by the setting of an @autowire attribute 1977
to "true". Autowire is disabled by setting of the @autowire attribute to "false" The @autowire attribute can 1978
be applied to any of the following elements within a composite: 1979

• reference 1980

• component 1981

• composite 1982

Where an element does not have an explicit setting for the @autowire attribute, it inherits the setting from 1983
its parent element. Thus a reference element inherits the setting from its containing component. A 1984
component element inherits the setting from its containing composite. Where there is no setting on any 1985
level, autowire="false" is the default. 1986

As an example, if a composite element has autowire="true" set, this means that autowiring is enabled for 1987
all component references within that composite. In this example, autowiring can be turned off for specific 1988
components and specific references through setting autowire="false" on the components and references 1989
concerned. 1990

For each component reference for which autowire is enabled, the SCA runtime MUST search within the 1991
composite for target services which have an interface that is a compatible superset of the interface of the 1992
reference. [ASM60022] 1993

The intents, and policies applied to the service MUST be compatible with those on the reference when 1994
using autowire to wire a reference – so that wiring the reference to the service will not cause an error due 1995
to policy mismatch [ASM60024] (see the Policy Framework specification [SCA-POLICY] for details) 1996

If the search finds 1 or more valid target service for a particular reference, the action taken depends on 1997
the multiplicity of the reference: 1998

• for an autowire reference with multiplicity 0..1 or 1..1, the SCA runtime MUST wire the reference to 1999
one of the set of valid target services chosen from the set in a runtime-dependent fashion 2000
[ASM60025] 2001

• for an autowire reference with multiplicity 0..n or 1..n, the reference MUST be wired to all of the set of 2002
valid target services [ASM60026] 2003

If the search finds no valid target services for a particular reference, the action taken depends on the 2004
multiplicy of the reference: 2005

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 55 of 138

• for an autowire reference with multiplicity 0..1 or 0..n, if the SCA runtime finds no valid target service, 2006
there is no problem – no services are wired and the SCA runtime MUST NOT raise an error 2007
[ASM60027] 2008

• for an autowire reference with multiplicity 1..1 or 1..n, if the SCA runtime finds no valid target services 2009
an error MUST be raised by the SCA runtime since the reference is intended to be wired [ASM60028] 2010

5.4.3 Autowire Examples 2011

Snippet 5-15 and Snippet 5-16 demonstrate two versions of the same composite – the first version is 2012
done using explicit wires, with no autowiring used, the second version is done using autowire. In both 2013
cases the end result is the same – the same wires connect the references to the services. 2014

Figure 5-6 is a diagram for the composite: 2015

 2016

Payments
Component

Payment
Service

AccountsComposite
External
Banking
Service

Accounts
Ledger

Component

Product
Pricing

Component

Customer
Account

Component

 2017
Figure 5-6: Example Composite for Autowire 2018

 2019

Snippet 5-15 is the composite using explicit wires: 2020

 2021
<?xml version="1.0" encoding="UTF-8"?> 2022
<!-- Autowire Example - No autowire --> 2023
<composite xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance" 2024
 xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 2025
 xmlns:foo="http://foo.com" 2026
 targetNamespace="http://foo.com" 2027
 name="AccountComposite"> 2028
 2029
 <service name="PaymentService" promote="PaymentsComponent"/> 2030
 2031
 <component name="PaymentsComponent"> 2032
 <implementation.java class="com.foo.accounts.Payments"/> 2033
 <service name="PaymentService"/> 2034
 <reference name="CustomerAccountService" 2035
 target="CustomerAccountComponent"/> 2036
 <reference name="ProductPricingService" 2037

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 56 of 138

 target="ProductPricingComponent"/> 2038
 <reference name="AccountsLedgerService" 2039
 target="AccountsLedgerComponent"/> 2040
 <reference name="ExternalBankingService"/> 2041
 </component> 2042
 2043
 <component name="CustomerAccountComponent"> 2044
 <implementation.java class="com.foo.accounts.CustomerAccount"/> 2045
 </component> 2046
 2047
 <component name="ProductPricingComponent"> 2048
 <implementation.java class="com.foo.accounts.ProductPricing"/> 2049
 </component> 2050
 2051
 <component name="AccountsLedgerComponent"> 2052
 <implementation.composite name="foo:AccountsLedgerComposite"/> 2053
 </component> 2054
 2055
 <reference name="ExternalBankingService" 2056
 promote="PaymentsComponent/ExternalBankingService"/> 2057
 2058
</composite> 2059

Snippet 5-15: Example composite with Explicit wires 2060

 2061

Snippet 5-16 is the composite using autowire: 2062

 2063
<?xml version="1.0" encoding="UTF-8"?> 2064
<!-- Autowire Example - With autowire --> 2065
<composite xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance" 2066
 xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 2067
 xmlns:foo="http://foo.com" 2068
 targetNamespace="http://foo.com" 2069
 name="AccountComposite"> 2070
 2071
 <service name="PaymentService" promote="PaymentsComponent"> 2072
 <interface.java class="com.foo.PaymentServiceInterface"/> 2073
 </service> 2074
 2075
 <component name="PaymentsComponent" autowire="true"> 2076
 <implementation.java class="com.foo.accounts.Payments"/> 2077
 <service name="PaymentService"/> 2078
 <reference name="CustomerAccountService"/> 2079
 <reference name="ProductPricingService"/> 2080
 <reference name="AccountsLedgerService"/> 2081
 <reference name="ExternalBankingService"/> 2082
 </component> 2083
 2084
 <component name="CustomerAccountComponent"> 2085
 <implementation.java class="com.foo.accounts.CustomerAccount"/> 2086
 </component> 2087
 2088
 <component name="ProductPricingComponent"> 2089
 <implementation.java class="com.foo.accounts.ProductPricing"/> 2090
 </component> 2091
 2092
 <component name="AccountsLedgerComponent"> 2093
 <implementation.composite name="foo:AccountsLedgerComposite"/> 2094
 </component> 2095
 2096
 <reference name="ExternalBankingService" 2097
 promote="PaymentsComponent/ExternalBankingService"/> 2098

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 57 of 138

 2099
</composite> 2100

Snippet 5-16: composite of Snippet 5-15 Using autowire 2101

 2102

In this second case, autowire is set on for the PaymentsComponent and there are no explicit wires for 2103
any of its references – the wires are created automatically through autowire. 2104

Note: In the second example, it would be possible to omit all of the service and reference elements from 2105
the PaymentsComponent. They are left in for clarity, but if they are omitted, the component service and 2106
references still exist, since they are provided by the implementation used by the component. 2107

5.5 Using Composites as Component Implementations 2108

Composites can be used as component implementations in higher-level composites – in other words 2109
the higher-level composites can have components which are implemented by composites. 2110

When a composite is used as a component implementation, it defines a boundary of visibility. 2111
Components within the composite cannot be referenced directly by the using component. The using 2112
component can only connect wires to the services and references of the used composite and set values 2113
for any properties of the composite. The internal construction of the composite is invisible to the using 2114
component. The boundary of visibility, sometimes called encapsulation, can be enforced when 2115
assembling components and composites, but such encapsulation structures might not be enforceable in a 2116
particular implementation language. 2117

A composite used as a component implementation also needs to honor a completeness contract. The 2118
services, references and properties of the composite form a contract (represented by the component type 2119
of the composite) which is relied upon by the using component. The concept of completeness of the 2120
composite implies that, once all <include/> element processing is performed on the composite: 2121

1. For a composite used as a component implementation, each composite service 2122
offered by the composite MUST promote a component service of a component 2123
that is within the composite. [ASM60032] 2124

2. For a composite used as a component implementation, every component 2125
reference of components within the composite with a multiplicity of 1..1 or 1..n 2126
MUST be wired or promoted. [ASM60033] (according to the various rules for 2127
specifying target services for a component reference described in the section " 2128
Specifying the Target Service(s) for a Reference"). 2129

3. For a composite used as a component implementation, all properties of 2130
components within the composite, where the underlying component 2131
implementation specifies "mustSupply=true" for the property, MUST either 2132
specify a value for the property or source the value from a composite property. 2133
[ASM60034] 2134

The component type of a composite is defined by the set of composite service elements, composite 2135
reference elements and composite property elements that are the children of the composite element. 2136

Composites are used as component implementations through the use of the implementation.composite 2137
element as a child element of the component. Snippet 5-17 shows the pseudo-schema for the 2138
implementation.composite element: 2139

 2140

<!-- implementation.composite pseudo-schema --> 2141
<implementation.composite name="xs:QName" requires="list of xs:QName"? 2142
policySets="list of xs:QName"?> 2143

Snippet 5-17: implementation.composite Pseudo-Schema 2144

 2145

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 58 of 138

The implementation.composite element has the attributes: 2146

• name (1..1) – the name of the composite used as an implementation. The @name attribute of an 2147
<implementation.composite/> element MUST contain the QName of a composite in the SCA Domain. 2148
[ASM60030] 2149

• requires : listOfQNames (0..1) – a list of policy intents. See the Policy Framework specification 2150
[SCA-POLICY] for a description of this attribute. Specified intents add to or further qualify the required 2151
intents defined for the promoted component reference. 2152

• policySets : listOfQNames (0..1) – a list of policy sets. See the Policy Framework specification 2153
[SCA-POLICY] for a description of this attribute. 2154

5.5.1 Component Type of a Composite used as a Component 2155

Implementation 2156

An SCA runtime MUST introspect the componentType of a Composite used as a Component 2157
Implementation following the rules defined in the section "Component Type of a Composite used as a 2158
Component Implementation" [ASM60045] 2159

The componentType of a Composite used as a Component Implementation is introspected from the 2160
Composite document as follows: 2161

A <service/> element exists for each direct <service/> subelement of the <composite/> element 2162

• @name attribute set to the value of the @name attribute of the <service/> in the composite 2163

• @requires attribute set to the value of the @requires attribute of the <service/> in the composite, 2164
if present (the value of the @requires attribute contains the intents which apply to the promoted 2165
component service, as defined in the Policy Framework specification [SCA_POLICY]). If no 2166
intents apply to the <service/> in the composite, the @requires attribute is omitted. 2167

• @policySets attribute set to the value of the @policySets attribute of the <service/> in the 2168
composite, if it is present. If the @policySets attribute of the <service/> element in the composite 2169
is absent, the @policySets attribute is omitted. 2170

• <interface/> subelement set to the <interface/> subelement of the <service/> element in the 2171
composite. If not declared on the composite service, it is set to the <interface/> subelement which 2172
applies to the component service which is promoted by the composite service (this is either an 2173
explicit <interface/> subelement of the component <service/>, or the <interface/> element of the 2174
corresponding <service/> in the componentType of the implementation used by the component). 2175

• <binding/> subelements set to the <binding/> subelements of the <service/> element in the 2176
composite. If not declared on the composite service, the <binding/> subelements which apply to 2177
the component service promoted by the composite service are used, if any are present. If none 2178
are present in both of these locations, <binding/> subelements are omitted. 2179

• <callback/> subelement is set to the <callback/> subelement of the <service/> element in the 2180
composite. If no <callback/> subelement is present on the composite <service/> element, the 2181
<callback/> subelement is omitted. 2182

A <reference/> element exists for each direct <reference/> subelement of the <composite/> element. 2183

• @name attribute set to the value of the @name attribute of the <reference/> in the composite 2184

• @requires attribute set to the value of the @requires attribute of the <reference/> in the 2185
composite, if present (the value of the @requires attribute contains the intents which apply to the 2186
promoted component references, as defined in the Policy Framework specification 2187
[SCA_POLICY]). If no intents apply to the <reference/> in the composite, the @requires attribute 2188
is omitted. 2189

• @policySets attribute set to the value of the @policySets attribute of the <reference/> in the 2190
composite, if present. If the @policySets attribute of the <reference/> element in the composite is 2191
absent, the @policySets attribute is omitted. 2192

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 59 of 138

• @target attribute is set to the value of the @target attribute of the <reference/> in the composite, 2193
if present, otherwise the @target attribute is omitted. 2194

• @wiredByImpl attribute is set to the value of the @wiredByImpl attribute of the <reference/> in 2195
the composite, if present. If it is not declared on the composite reference, it is set to the value of 2196
the @wiredByImpl attribute of the promoted reference(s). 2197

• @multiplicity attribute is set to the value of the @multiplicity attribute of the <reference/> in the 2198
composite 2199

• <interface/> subelement set to the <interface/> subelement of the <reference/> element in the 2200
composite. If not declared on the composite reference, it is set to the <interface/> subelement 2201
which applies to one of the component reference(s) which are promoted by the composite 2202
reference (this is either an explicit <interface/> subelement of the component <reference/>, or the 2203
<interface/> element of the corresponding <reference/> in the componentType of the 2204
implementation used by the component). 2205

• <binding/> subelements set to the <binding/> subelements of the <reference/> element in the 2206
composite. Otherwise, <binding/> subelements are omitted. 2207

• <callback/> subelement is set to the <callback/> subelement of the <reference/> element in the 2208
composite. Otherwise, <callback/> subelements are omitted. 2209

A <property/> element exists for each direct <property/> subelement of the <composite/> element. 2210

• @name attribute set to the value of the @name attribute of the <property/> in the composite 2211

• @type attribute set to the value of the @type attribute of the <property/> in the composite, if 2212
present 2213

• @element attribute set to the value of the @element attribute of the <property/> in the composite, 2214
if present 2215
(Note: either a @type attribute is present or an @element attribute is present - one of them has to 2216
be present, but both are not allowed) 2217

• @many attribute set to the value of the @many attribute of the <property/> in the composite, if 2218
present, otherwise omitted. 2219

• @mustSupply attribute set to the value of the @mustSupply attribute of the <property/> in the 2220
composite, if present, otherwise omitted. 2221

• @requires attribute set to the value of the @requires attribute of the <property/> in the composite, 2222
if present, otherwise omitted. 2223

• @policySets attribute set to the value of the @policySets attribute of the <property/> in the 2224
composite, if present, otherwise omitted. 2225

A <implementation/> element exists if the <composite/> element has either of the @requires or 2226
@policySets attributes declared, with: 2227

• @requires attribute set to the value of the @requires attribute of the composite, if present, 2228
otherwise omitted. 2229

• @policySets attribute set to the value of he @policySets attribute of the composite, if present, 2230
otherwise omitted. 2231

 2232

5.5.2 Example of Composite used as a Component Implementation 2233

Snippet 5-18 shows an example of a composite which contains two components, each of which is 2234
implemented by a composite: 2235
 2236

<?xml version="1.0" encoding="UTF-8"?> 2237
<!-- CompositeComponent example --> 2238
<composite xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance" 2239
 xsd:schemaLocation="http://docs.oasis-open.org/ns/opencsa/sca/200912 2240

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 60 of 138

 file:/C:/Strategy/SCA/v09_osoaschemas/schemas/sca.xsd" 2241
 xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 2242
 targetNamespace="http://foo.com" 2243
 xmlns:foo="http://foo.com" 2244
 name="AccountComposite"> 2245
 2246
 <service name="AccountService" promote="AccountServiceComponent"> 2247
 <interface.java interface="services.account.AccountService"/> 2248
 <binding.ws wsdlElement="AccountService# 2249
 wsdl.port(AccountService/AccountServiceSOAP)"/> 2250
 </service> 2251
 2252
 <reference name="stockQuoteService" 2253
 promote="AccountServiceComponent/StockQuoteService"> 2254
 <interface.java 2255
 interface="services.stockquote.StockQuoteService"/> 2256
 <binding.ws 2257
 wsdlElement="http://www.quickstockquote.com/StockQuoteService# 2258
 wsdl.port(StockQuoteService/StockQuoteServiceSOAP)"/> 2259
 </reference> 2260
 2261
 <property name="currency" type="xsd:string">EURO</property> 2262
 2263
 <component name="AccountServiceComponent"> 2264
 <implementation.composite name="foo:AccountServiceComposite1"/> 2265
 2266
 <reference name="AccountDataService" target="AccountDataService"/> 2267
 <reference name="StockQuoteService"/> 2268
 2269
 <property name="currency" source="$currency"/> 2270
 </component> 2271
 2272
 <component name="AccountDataService"> 2273
 <implementation.composite name="foo:AccountDataServiceComposite"/> 2274
 2275
 <property name="currency" source="$currency"/> 2276
 </component> 2277
 2278
</composite> 2279

Snippet 5-18: Example of a composite Using implementation.composite 2280

5.6 Using Composites through Inclusion 2281

In order to assist team development, composites can be developed in the form of multiple physical 2282
artifacts that are merged into a single logical unit. 2283

A composite can include another composite by using the include element. This provides a recursive 2284
inclusion capability. The semantics of included composites are that the element content children of the 2285
included composite are inlined, with certain modification, into the using composite. This is done 2286
recursively till the resulting composite does not contain an include element. The outer included 2287
composite element itself is discarded in this process – only its contents are included as described below: 2288

1. All the element content children of the included composite are inlined in the 2289
including composite. 2290

2. The attributes @targetNamespace, @name and @local of the included 2291
composites are discarded. 2292

3. All the namespace declaration on the included composite element are added to 2293
the inlined element content children unless the namespace binding is overridden 2294
by the element content children. 2295

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 61 of 138

4. The attribute @autowire, if specified on the included composite, is included on 2296
all inlined component element children unless the component child already 2297
specifies that attribute. 2298

5. The attribute values of @requires and @policySet, if specified on the included 2299
composite, are merged with corresponding attribute on the inlined component, 2300
service and reference children elements. Merge in this context means a set union. 2301

6. Extension attributes ,if present on the included composite, follow the rules 2302
defined for that extension. Authors of attribute extensions on the composite 2303
element define the rules applying to those attributes for inclusion. 2304

If the included composite has the value true for the attribute @local then the including composite MUST 2305
have the same value for the @local attribute, else it is an error. [ASM60041] 2306

The composite file used for inclusion can have any contents. The composite element can contain any of 2307
the elements which are valid as child elements of a composite element, namely components, services, 2308
references, wires and includes. There is no need for the content of an included composite to be complete, 2309
so that artifacts defined within the using composite or in another associated included composite file can 2310
be referenced. For example, it is permissible to have two components in one composite file while a wire 2311
specifying one component as the source and the other as the target can be defined in a second included 2312
composite file. 2313

The SCA runtime MUST raise an error if the composite resulting from the inclusion of one composite into 2314
another is invalid. [ASM60031] For example, it is an error if there are duplicated elements in the using 2315
composite (e.g. two services with the same uri contributed by different included composites). It is not 2316
considered an erorr if the (using) composite resulting from the inclusion is incomplete (eg. wires with non-2317
existent source or target). Such incomplete resulting composites are permitted to allow recursive 2318
composition. 2319

Snippet 5-19 snippet shows the pseudo-schema for the include element: 2320

 2321

<?xml version="1.0" encoding="UTF-8"?> 2322
<!-- Include snippet --> 2323
<composite ...> 2324
 ... 2325
 <include name="xs:QName"/>* 2326
 ... 2327
</composite> 2328

Snippet 5-19: include Pseudo-Schema 2329

 2330

The include element has the attribute: 2331

• name: QName (1..1) – the name of the composite that is included. The @name attribute 2332
of an include element MUST be the QName of a composite in the SCA Domain. 2333
[ASM60042] 2334

5.6.1 Included Composite Examples 2335

Figure 5-7 shows the assembly diagram for the MyValueComposite2 containing four included 2336
composites. The MyValueServices composite contains the MyValueService service. The 2337
MyValueComponents composite contains the MyValueServiceComponent and the 2338
StockQuoteMediatorComponent as well as the wire between them. The MyValueReferences composite 2339
contains the CustomerService and StockQuoteService references. The MyValueWires composite 2340
contains the wires that connect the MyValueService service to the MyValueServiceComponent, that 2341
connect the customerService reference of the MyValueServiceComponent to the CustomerService 2342
reference, and that connect the stockQuoteService reference of the StockQuoteMediatorComponent to 2343
the StockQuoteService reference. Note that this is just one possible way of building the 2344
MyValueComposite2 from a set of included composites. 2345

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 62 of 138

 2346

MyValueWires
composite

MyValueComponents
composite

MyValueReferences
composite

MyValueServices
composite

MyValueComposite2

Component
MyValue
Service
Component

Service
MyValue
Service

Reference
Customer

Service

Reference
StockQuote

Service

Component
StockQuote
Mediator
Component

 2347
Figure 5-7 MyValueComposite2 built from 4 included composites 2348

 2349

Snippet 5-20 shows the contents of the MyValueComposite2.composite file for the MyValueComposite2 2350
built using included composites. In this sample it only provides the name of the composite. The composite 2351
file itself could be used in a scenario using included composites to define components, services, 2352
references and wires. 2353

 2354
<?xml version="1.0" encoding="ASCII"?> 2355
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 2356
 targetNamespace="http://foo.com" 2357
 xmlns:foo="http://foo.com" 2358
 name="MyValueComposite2" > 2359
 2360
 <include name="foo:MyValueServices"/> 2361
 <include name="foo:MyValueComponents"/> 2362
 <include name="foo:MyValueReferences"/> 2363
 <include name="foo:MyValueWires"/> 2364
 2365
</composite> 2366

Snippet 5-20: Example composite with includes 2367

 2368
Snippet 5-21 shows the content of the MyValueServices.composite file. 2369

 2370

<?xml version="1.0" encoding="ASCII"?> 2371
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 2372
 targetNamespace="http://foo.com" 2373
 xmlns:foo="http://foo.com" 2374
 name="MyValueServices" > 2375
 2376
 <service name="MyValueService" promote="MyValueServiceComponent"> 2377
 <interface.java interface="services.myvalue.MyValueService"/> 2378
 <binding.ws wsdlElement="http://www.myvalue.org/MyValueService# 2379

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 63 of 138

 wsdl.port(MyValueService/MyValueServiceSOAP)"/> 2380
 </service> 2381
 2382
</composite> 2383

Snippet 5-21: Example Partial composite with Only a service 2384

 2385

Snippet 5-22 shows the content of the MyValueComponents.composite file. 2386

 2387

<?xml version="1.0" encoding="ASCII"?> 2388
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 2389
 targetNamespace="http://foo.com" 2390
 xmlns:foo="http://foo.com" 2391
 name="MyValueComponents" > 2392
 2393
 <component name="MyValueServiceComponent"> 2394
 <implementation.java 2395
 class="services.myvalue.MyValueServiceImpl"/> 2396
 <property name="currency">EURO</property> 2397
 </component> 2398
 2399
 <component name="StockQuoteMediatorComponent"> 2400
 <implementation.java class="services.myvalue.SQMediatorImpl"/> 2401
 <property name="currency">EURO</property> 2402
 </component> 2403
 2404
<composite> 2405

Snippet 5-22: Example Partial composite with Only components 2406

 2407

Snippet 5-23 shows the content of the MyValueReferences.composite file. 2408

 2409

<?xml version="1.0" encoding="ASCII"?> 2410
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 2411
 targetNamespace="http://foo.com" 2412
 xmlns:foo="http://foo.com" 2413
 name="MyValueReferences" > 2414
 2415
 <reference name="CustomerService" 2416
 promote="MyValueServiceComponent/CustomerService"> 2417
 <interface.java interface="services.customer.CustomerService"/> 2418
 <binding.sca/> 2419
 </reference> 2420
 2421
 <reference name="StockQuoteService" 2422
 promote="StockQuoteMediatorComponent"> 2423
 <interface.java 2424
 interface="services.stockquote.StockQuoteService"/> 2425
 <binding.ws wsdlElement="http://www.stockquote.org/StockQuoteService# 2426
 wsdl.port(StockQuoteService/StockQuoteServiceSOAP)"/> 2427
 </reference> 2428
 2429
</composite> 2430

Snippet 5-23: Example Partial composite with Only references 2431

 2432

Snippet 5-24 shows the content of the MyValueWires.composite file. 2433

 2434

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 64 of 138

<?xml version="1.0" encoding="ASCII"?> 2435
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 2436
 targetNamespace="http://foo.com" 2437
 xmlns:foo="http://foo.com" 2438
 name="MyValueWires" > 2439
 2440
 <wire source="MyValueServiceComponent/stockQuoteService" 2441
 target="StockQuoteMediatorComponent"/> 2442
 2443
</composite> 2444

Snippet 5-24: Example Partial composite with Only a wire 2445

5.7 Composites which Contain Component Implementations of 2446

Multiple Types 2447

A Composite containing multiple components can have multiple component implementation types. For 2448
example, a Composite can contain one component with a Java POJO as its implementation and another 2449
component with a BPEL process as its implementation. 2450

5.8 Structural URI of Components 2451

The structural URI is a relative URI that describes each use of a given component in the Domain, 2452
relative to the URI of the Domain itself. It is never specified explicitly, but it calculated from the 2453
configuration of the components configured into the Domain. 2454

A component in a composite can be used more than once in the Domain, if its containing composite is 2455
used as the implementation of more than one higher-level component. The structural URI is used to 2456
separately identify each use of a component - for example, the structural URI can be used to attach 2457
different policies to each separate use of a component. 2458

For components directly deployed into the Domain, the structural URI is simply the name of the 2459
component. 2460

Where components are nested within a composite which is used as the implementation of a higher level 2461
component, the structural URI consists of the name of the nested component prepended with each of the 2462
names of the components upto and including the Domain level component. 2463

For example, consider a component named Component1 at the Domain level, where its implementation is 2464
Composite1 which in turn contains a component named Component2, which is implemented by 2465
Composite2 which contains a component named Component3. The three components in this example 2466
have the following structural URIs: 2467

1. Component1: Component1 2468

2. Component2: Component1/Component2 2469

3. Component3: Component1/Component2/Component3 2470

The structural URI can also be extended to refer to specific parts of a component, such as a service or a 2471
reference, by appending an appropriate fragment identifier to the component's structural URI, as follows: 2472

• Service: 2473

#service(servicename) 2474

• Reference: 2475

#reference(referencename) 2476

• Service binding: 2477

#service-binding(servicename/bindingname) 2478

• Reference binding: 2479

#reference-binding(referencename/bindingname) 2480

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 65 of 138

So, for example, the structural URI of the service named "testservice" of component "Component1" is 2481
Component1#service(testservice). 2482

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 66 of 138

6 Interface 2483

Interfaces define one or more business functions. These business functions are provided by Services 2484
and are used by References. A Service offers the business functionality of exactly one interface for use 2485
by other components. Each interface defines one or more service operations and each operation has 2486
zero or one request (input) message and zero or one response (output) message. The request and 2487
response messages can be simple types such as a string value or they can be complex types. 2488

SCA currently supports the following interface type systems: 2489

• Java interfaces 2490

• WSDL 1.1 portTypes (Web Services Definition Language [WSDL-11]) 2491

• C++ classes 2492

• Collections of 'C' functions 2493

SCA is also extensible in terms of interface types. Support for other interface type systems can be added 2494
through the extensibility mechanisms of SCA, as described in the Extension Model section. 2495

Snippet 6-1 shows the pseudo-schema for the interface base element: 2496

 2497

<interface remotable="boolean"? requires="list of xs:QName"? 2498
 policySets="list of xs:QName"?> 2499
 <requires/>* 2500
 <policySetAttachment/>* 2501
</interface> 2502

Snippet 6-1: interface Pseudo-Schema 2503

 2504

The interface base element has the attributes: 2505

• remotable : boolean (0..1) – indicates whether an interface is remotable or not (see the section on 2506
Local and Remotable interfaces). A value of “true” means the interface is remotable, and a value of 2507
“false” means it is not. The @remotable attribute has no default value. This attribute is used as an 2508
alternative to interface type specific mechanisms such as the @Remotable annotation on a Java 2509
interface. The remotable nature of an interface in the absence of this attribute is interface type 2510
specific. The rules governing how this attribute relates to interface type specific mechanisms are 2511
defined by each interface type. When specified on an interface definition which includes a callback, 2512
this attribute also applies to the callback interface (see the section on Bidirectional Interfaces). 2513

• requires : listOfQNames (0..1) – a list of policy intents. See the Policy Framework specification 2514
[SCA-POLICY] for a description of this attribute 2515

• policySets : listOfQNames (0..1) – a list of policy sets. See the Policy Framework specification 2516
[SCA-POLICY] for a description of this attribute. 2517

The interface element has the following subelements: 2518

• requires : requires (0..n) - A service element has zero or more requires subelements. See the 2519
Policy Framework specification [SCA-POLICY] for a description of this element. 2520

• policySetAttachment : policySetAttachment (0..n) - A service element has zero or more 2521
policySetAttachment subelements. See the Policy Framework specification [SCA-POLICY] for a 2522
description of this element. 2523

For information about Java interfaces, including details of SCA-specific annotations, see the SCA Java 2524
Common Annotations and APIs specification [SCA-Common-Java]. 2525

For information about WSDL interfaces, including details of SCA-specific extensions, see SCA-Specific 2526
Aspects for WSDL Interfaces and WSDL Interface Type. 2527

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 67 of 138

For information about C++ interfaces, see the SCA C++ Client and Implementation Model specification 2528
[SCA-CPP-Client]. 2529

For information about C interfaces, see the SCA C Client and Implementation Model specification [SCA-2530
C-Client]. 2531

6.1 Local and Remotable Interfaces 2532

A remotable service is one which can be called by a client which is running in an operating system 2533
process different from that of the service itself (this also applies to clients running on different machines 2534
from the service). Whether a service of a component implementation is remotable is defined by the 2535
interface of the service. WSDL defined interfaces are always remotable. See the relevant specifications 2536
for details of interfaces defined using other languages. 2537

The style of remotable interfaces is typically coarse grained and intended for loosely coupled 2538
interactions. Remotable service Interfaces MUST NOT make use of method or operation overloading. 2539
[ASM80002] This restriction on operation overloading for remotable services aligns with the WSDL 2.0 2540
specification, which disallows operation overloading, and also with the WS-I Basic Profile 1.1 (section 2541
4.5.3 - R2304) which has a constraint which disallows operation overloading when using WSDL 1.1. 2542
Independent of whether the remotable service is called remotely from outside the process where the 2543
service runs or from another component running in the same process, the data exchange semantics are 2544
by-value. 2545

Implementations of remotable services can modify input messages (parameters) during or after an 2546
invocation and can modify return messages (results) after the invocation.If a remotable service is called 2547
locally or remotely, the SCA container MUST ensure sure that no modification of input messages by the 2548
service or post-invocation modifications to return messages are seen by the caller. [ASM80003] 2549

Snippet 6-2 shows an example of a remotable java interface: 2550

 2551
package services.hello; 2552
 2553
@Remotable 2554
public interface HelloService { 2555
 2556
 String hello(String message); 2557
} 2558

Snippet 6-2: Example remotable interface 2559

 2560

It is possible for the implementation of a remotable service to indicate that it can be called using by-2561
reference data exchange semantics when it is called from a component in the same process. This can be 2562
used to improve performance for service invocations between components that run in the same process. 2563
This can be done using the @AllowsPassByReference annotation (see the Java Client and 2564
Implementation Specification). 2565

A service typed by a local interface can only be called by clients that are running in the same process as 2566
the component that implements the local service. Local services cannot be published via remotable 2567
services of a containing composite. In the case of Java a local service is defined by a Java interface 2568
definition without a @Remotable annotation. 2569

The style of local interfaces is typically fine grained and intended for tightly coupled interactions. Local 2570
service interfaces can make use of method or operation overloading. 2571

The data exchange semantic for calls to services typed by local interfaces is by-reference. 2572

6.2 Interface Compatibility 2573

The compatibility of two interfaces is defined in this section and these definitions are used throughout 2574
this specification. Three forms of compatibility are defined: 2575

• Compatible interfaces 2576

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 68 of 138

• Compatible subset 2577

• Compatible superset 2578

Note that WSDL 1.1 message parts can point to an XML Schema element declaration or to an XML 2579
Schema types. When determining compatibility between two WSDL operations, a message part that 2580
points to an XML Schema element declaration is considered to be incompatible with a message part that 2581
points to an XML Schema type. 2582

6.2.1 Compatible Interfaces 2583

An interface A is Compatible with a second interface B if and only if all of points 1 through 7 in the 2584
following list apply: 2585

1. interfaces A and B are either both remotable or else both local 2586

2. the set of operations in interface A is the same as the set of operations in 2587
interface B 2588

3. compatibility for individual operations of the interfaces A and B is defined as 2589
compatibility of the signature, i.e., the operation name, the input types, and the 2590
output types are the same 2591

4. the order of the input and output types for each operation in interface A is the 2592
same as the order of the input and output types for the corresponding operation 2593
in interface B 2594

5. the set of Faults and Exceptions expected by each operation in interface A is the 2595
same as the set of Faults and Exceptions specified by the corresponding 2596
operation in interface B 2597

6. for checking the compatibility of 2 remotable interfaces which are in different 2598
interface languages, both are mapped to WSDL 1.1 (if not already WSDL 1.1) and 2599
compatibility checking is done between the WSDL 1.1 mapped interfaces. 2600
 2601
For checking the compatibility of 2 local interfaces which are in different interface 2602
languages, the method of checking compatibility is defined by the specifications 2603
which define those interface types, which must define mapping rules for the 2 2604
interface types concerned. 2605

7. if either interface A or interface B declares a callback interface then both interface 2606
A and interface B declare callback interfaces and the callback interface declared 2607
on interface A is compatible with the callback interface declared on interface B, 2608
according to points 1 through 6 above 2609

6.2.2 Compatible Subset 2610

An interface A is a Compatible Subset of a second interface B if and only if all of points 1 through 7 in 2611
the following list apply: 2612

1. interfaces A and B are either both remotable or else both local 2613

2. the set of operations in interface A is the same as or is a subset of the set of 2614
operations in interface B 2615

3. compatibility for individual operations of the interfaces A and B is defined as 2616
compatibility of the signature, i.e., the operation name, the input types, and the 2617
output types are the same 2618

4. the order of the input and output types for each operation in interface A is the 2619
same as the order of the input and output types for the corresponding operation 2620
in interface B 2621

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 69 of 138

5. the set of Faults and Exceptions expected by each operation in interface A is the 2622
same as or is a superset of the set of Faults and Exceptions specified by the 2623
corresponding operation in interface B 2624

6. for checking the compatibility of 2 remotable interfaces which are in different 2625
interface languages, both are mapped to WSDL 1.1 (if not already WSDL 1.1) and 2626
compatibility checking is done between the WSDL 1.1 mapped interfaces. 2627
 2628
For checking the compatibility of 2 local interfaces which are in different interface 2629
languages, the method of checking compatibility is defined by the specifications 2630
which define those interface types, which must define mapping rules for the 2 2631
interface types concerned. 2632

7. if either interface A or interface B declares a callback interface then both interface 2633
A and interface B declare callback interfaces and the callback interface declared 2634
on interface B is a compatible subset of the callback interface declared on 2635
interface A, according to points 1 through 6 above 2636

6.2.3 Compatible Superset 2637

An interface A is a Compatible Superset of a second interface B if and only if all of points 1 through 7 in 2638
the following list apply: 2639

1. interfaces A and B are either both remotable or else both local 2640

2. the set of operations in interface A is the same as or is a superset of the set of 2641
operations in interface B 2642

3. compatibility for individual operations of the interfaces A and B is defined as 2643
compatibility of the signature, i.e., the operation name, the input types, and the 2644
output types are the same 2645

4. the order of the input and output types for each operation in interface B is the 2646
same as the order of the input and output types for the corresponding operation 2647
in interface A 2648

5. the set of Faults and Exceptions expected by each operation in interface A is the 2649
same as or is a subset of the set of Faults and Exceptions specified by the 2650
corresponding operation in interface B 2651

6. for checking the compatibility of 2 remotable interfaces which are in different 2652
interface languages, both are mapped to WSDL 1.1 (if not already WSDL 1.1) and 2653
compatibility checking is done between the WSDL 1.1 mapped interfaces. 2654
 2655
For checking the compatibility of 2 local interfaces which are in different interface 2656
languages, the method of checking compatibility is defined by the specifications 2657
which define those interface types, which must define mapping rules for the 2 2658
interface types concerned. 2659

7. if either interface A or interface B declares a callback interface then both interface 2660
A and interface B declare callback interfaces and the callback interface declared 2661
on interface B is a compatible superset of the callback interface declared on 2662
interface A, according to points 1 through 6 above 2663

6.3 Bidirectional Interfaces 2664

The relationship of a business service to another business service is often peer-to-peer, requiring a two-2665
way dependency at the service level. In other words, a business service represents both a consumer of a 2666
service provided by a partner business service and a provider of a service to the partner business 2667

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 70 of 138

service. This is especially the case when the interactions are based on asynchronous messaging rather 2668
than on remote procedure calls. The notion of bidirectional interfaces is used in SCA to directly model 2669
peer-to-peer bidirectional business service relationships. 2670

An interface element for a particular interface type system needs to allow the specification of a callback 2671
interface. If a callback interface is specified, SCA refers to the interface as a whole as a bidirectional 2672
interface. 2673

Snippet 6-3 shows the interface element defined using Java interfaces with a @callbackInterface 2674
attribute. 2675

 2676
<interface.java interface="services.invoicing.ComputePrice" 2677
 callbackInterface="services.invoicing.InvoiceCallback"/> 2678

Snippet 6-3: Example interface with a callback 2679

 2680

If a service is defined using a bidirectional interface element then its implementation implements the 2681
interface, and its implementation uses the callback interface to converse with the client that called the 2682
service interface. 2683

If a reference is defined using a bidirectional interface element, the client component implementation 2684
using the reference calls the referenced service using the interface. The client MUST provide an 2685
implementation of the callback interface. [ASM80004] 2686

Callbacks can be used for both remotable and local services.Either both interfaces of a bidirectional 2687
service MUST be remotable, or both MUST be local. A bidirectional service MUST NOT mix local and 2688
remote services. [ASM80005] 2689

Note that an interface document such as a WSDL file or a Java interface can contain annotations that 2690
declare a callback interface for a particular interface (see the section on WSDL Interface type and the 2691
Java Common Annotations and APIs specification [SCA-Common-Java]). Whenever an interface 2692
document declaring a callback interface is used in the declaration of an <interface/> element in SCA, it 2693
MUST be treated as being bidirectional with the declared callback interface. [ASM80010] In such cases, 2694
there is no requirement for the <interface/> element to declare the callback interface explicitly. 2695

If an <interface/> element references an interface document which declares a callback interface and also 2696
itself contains a declaration of a callback interface, the two callback interfaces MUST be compatible. 2697
[ASM80011] 2698

See the section on Interface Compatibility for a definition of "compatible interfaces". 2699

In a bidirectional interface, the service interface can have more than one operation defined, and the 2700
callback interface can also have more than one operation defined. SCA runtimes MUST allow an 2701
invocation of any operation on the service interface to be followed by zero, one or many invocations of 2702
any of the operations on the callback interface. [ASM80009] These callback operations can be invoked 2703
either before or after the operation on the service interface has returned a response message, if there is 2704
one. 2705

For a given invocation of a service operation, which operations are invoked on the callback interface, 2706
when these are invoked, the number of operations invoked, and their sequence are not described by 2707
SCA. It is possible that this metadata about the bidirectional interface can be supplied through 2708
mechanisms outside SCA. For example, it might be provided as a written description attached to the 2709
callback interface. 2710

6.4 Long-running Request-Response Operations 2711

6.4.1 Background 2712

A service offering one or more operations which map to a WSDL request-response pattern might be 2713
implemented in a long-running, potentially interruptible, way. Consider a BPEL process with receive and 2714
reply activities referencing the WSDL request-response operation. Between the two activities, the 2715

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 71 of 138

business process logic could be a long-running sequence of steps, including activities causing the 2716
process to be interrupted. Typical examples are steps where the process waits for another message to 2717
arrive or a specified time interval to expire, or the process performs asynchronous interactions such as 2718
service invocations bound to asynchronous protocols or user interactions. This is a common situation in 2719
business processes, and it causes the implementation of the WSDL request-response operation to run for 2720
a very long time, e.g., several months (!). In this case, it is not meaningful for any caller to remain in a 2721
synchronous wait for the response while blocking system resources or holding database locks. 2722

Note that it is possible to model long-running interactions as a pair of two independent operations as 2723
described in the section on bidirectional interfaces. However, it is a common practice (and in fact much 2724
more convenient) to model a request-response operation and let the infrastructure deal with the 2725
asynchronous message delivery and correlation aspects instead of putting this burden on the application 2726
developer. 2727

6.4.2 Definition of "long-running" 2728

A request-response operation is considered long-running if the implementation does not guarantee the 2729
delivery of the response within any specified time interval. Clients invoking such request-response 2730
operations are strongly discouraged from making assumptions about when the response can be 2731
expected. 2732

6.4.3 The asyncInvocation Intent 2733

This specification permits a long-running request-response operation or a complete interface containing 2734
such operations to be marked using a policy intent with the name asyncInvocation. It is also possible for 2735
a service to set the asyncInvocation. intent when using an interface which is not marked with the 2736
asyncInvocation. intent. This can be useful when reusing an existing interface definition that does not 2737
contain SCA information. 2738

6.4.4 Requirements on Bindings 2739

In order to support a service operation which is marked with the asyncInvocation intent, it is necessary for 2740
the binding (and its associated policies) to support separate handling of the request message and the 2741
response message. Bindings which only support a synchronous style of message handling, such as a 2742
conventional HTTP binding, cannot be used to support long-running operations. 2743

The requirements on a binding to support the asyncInvocation intent are the same as those to support 2744
services with bidirectional interfaces - namely that the binding needs to be able to treat the transmission 2745
of the request message separately from the transmission of the response message, with an arbitrarily 2746
large time interval between the two transmissions. 2747

An example of a binding/policy combination that supports long-running request-response operations is a 2748
Web service binding used in conjunction with the WS-Addressing "wsam:NonAnonymousResponses" 2749
assertion. 2750

6.4.5 Implementation Type Support 2751

SCA implementation types can provide special asynchronous client-side and asynchronous server-side 2752
mappings to assist in the development of services and clients for long-running request-response 2753
operations. 2754

6.5 SCA-Specific Aspects for WSDL Interfaces 2755

There are a number of aspects that SCA applies to interfaces in general, such as marking them as having 2756
a callback interface. These aspects apply to the interfaces themselves, rather than their use in a specific 2757
place within SCA. There is thus a need to provide appropriate ways of marking the interface definitions 2758
themselves, which go beyond the basic facilities provided by the interface definition language. 2759

For WSDL interfaces, there is an extension mechanism that permits additional information to be included 2760
within the WSDL document. SCA takes advantage of this extension mechanism. In order to use the SCA 2761

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 72 of 138

extension mechanism, the SCA namespace (http://docs.oasis-open.org/ns/opencsa/sca/200912) needs 2762
to be declared within the WSDL document. 2763

First, SCA defines a global element in the SCA namespace which provides a mechanism to attach policy 2764
intents - requires. Snippet 6-4 shows the definition of the requires element: 2765

 2766

 <element name="requires"> 2767
 <complexType> 2768
 <sequence minOccurs="0" maxOccurs="unbounded"> 2769
 <any namespace="##other" processContents="lax"/> 2770
 </sequence> 2771
 <attribute name="intents" type="sca:listOfQNames" use="required"/> 2772
 <anyAttribute namespace="##other" processContents="lax"/> 2773
 </complexType> 2774
 </element> 2775
 2776
 <simpleType name="listOfQNames"> 2777
 <list itemType="QName"/> 2778
 </simpleType> 2779

Snippet 6-4: requires WSDL extension definition 2780

 2781

The requires element can be used as a subelement of the WSDL portType and operation elements. The 2782
element contains one or more intent names, as defined by the Policy Framework specification [SCA-2783
POLICY]. Any service or reference that uses an interface marked with intents MUST implicitly add those 2784
intents to its own @requires list. [ASM80008] 2785

SCA defines an attribute which is used to indicate that a given WSDL portType element (WSDL 1.1) has 2786
an associated callback interface. This is the @callback attribute, which applies to a WSDL portType 2787
element. 2788
Snippet 6-5 shows the definition of the @callback attribute: 2789

 2790

<attribute name="callback" type="QName"/> 2791

Snippet 6-5: callback WSDL extension definition 2792

 2793

The value of the @callback attribute is the QName of a portType. The portType declared by the 2794
@callback attribute is the callback interface to use for the portType which is annotated by the 2795
@callback attribute. 2796
Snippet 6-6 is an example of a portType element with a @callback attribute: 2797

 2798
<portType name="LoanService" sca:callback="foo:LoanServiceCallback"> 2799
<operation name="apply"> 2800
<input message="tns:ApplicationInput"/> 2801
<output message="tns:ApplicationOutput"/> 2802
</operation> 2803
... 2804
</portType> 2805

Snippet 6-6: Example use of @callback 2806

6.6 WSDL Interface Type 2807

The WSDL interface type is used to declare interfaces for services and for references, where the interface 2808
is defined in terms of a WSDL document. An interface is defined in terms of a WSDL 1.1 portType with 2809
the arguments and return of the service operations described using XML schema. 2810

http://www.osoa.org/xmlns/sca/1.0

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 73 of 138

A WSDL interface is declared by an interface.wsdl element. Snippet 6-7 shows the pseudo-schema for 2811
the interface.wsdl element: 2812

 2813

<!-- WSDL Interface schema snippet --> 2814
<interface.wsdl interface="xs:anyURI" callbackInterface="xs:anyURI"? 2815
 remotable="xs:boolean"? 2816
 requires="listOfQNames"? 2817
 policySets="listOfQNames"> 2818
 <requires/>* 2819
 <policySetAttachment/>* 2820
</interface.wsdl> 2821

Snippet 6-7: interface.wsdl Pseudo-Schema 2822

 2823

The interface.wsdl element has the attributes: 2824

• interface : uri (1..1) - the URI of a WSDL portType 2825

The interface.wsdl @interface attribute MUST reference a portType of a WSDL 1.1 document. 2826
[ASM80001] 2827

• callbackInterface : uri (0..1) - a callback interface, which is the URI of a WSDL portType 2828

The interface.wsdl @callbackInterface attribute, if present, MUST reference a portType of a WSDL 2829
1.1 document. [ASM80016] 2830

• remotable : boolean (0..1) – indicates whether the interface is remotable or not. @remotable has a 2831
default value of true. WSDL interfaces are always remotable and therefore an <interface.wsdl/> 2832
element MUST NOT contain remotable=”false”. [ASM80017] 2833

• requires : listOfQNames (0..1) – a list of policy intents. See the Policy Framework specification 2834
[SCA-POLICY] for a description of this attribute. 2835

• policySets : listOfQNames (0..1) – a list of policy sets. See the Policy Framework specification 2836
[SCA-POLICY] for a description of this attribute. 2837

The form of the URI for WSDL portTypes follows the syntax described in the WSDL 1.1 Element 2838
Identifiers specification [WSDL11_Identifiers] 2839

The interface.wsdl element has the following subelements: 2840

• requires : requires (0..n) - A service element has zero or more requires subelements. See the 2841
Policy Framework specification [SCA-POLICY] for a description of this element. 2842

• policySetAttachment : policySetAttachment (0..n) - A service element has zero or more 2843
policySetAttachment subelements. See the Policy Framework specification [SCA-POLICY] for a 2844
description of this element. 2845

6.6.1 Example of interface.wsdl 2846

Snippet 6-8 shows an interface defined by the WSDL portType "StockQuote" with a callback interface 2847
defined by the "StockQuoteCallback" portType. 2848

 2849
<interface.wsdl interface=”http://www.stockquote.org/StockQuoteService# 2850
 wsdl.porttype(StockQuote)” 2851
 callbackInterface=”http://www.stockquote.org/StockQuoteService# 2852
 wsdl.porttype(StockQuoteCallback)”/> 2853

Snippet 6-8: Example interface.wsdl 2854

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 74 of 138

7 Binding 2855

Bindings are used by services and references. References use bindings to describe the access 2856
mechanism used to call a service (which can be a service provided by another SCA composite). Services 2857
use bindings to describe the access mechanism that clients (which can be a client from another SCA 2858
composite) have to use to call the service. 2859

SCA supports the use of multiple different types of bindings. Examples include SCA service, Web 2860
service, stateless session EJB, database stored procedure, EIS service. SCA provides an 2861
extensibility mechanism by which an SCA runtime can add support for additional binding types. For 2862
details on how additional binding types are defined, see the section on the Extension Model. 2863

A binding is defined by a binding element which is a child element of a service or of a reference element 2864
in a composite. Snippet 7-1 shows the composite pseudo-schema with the pseudo-schema for the 2865
binding element. 2866

<?xml version="1.0" encoding="ASCII"?> 2867
<!-- Bindings schema snippet --> 2868
<composite ... > 2869
 ... 2870
 <service ... >* 2871
 <interface … />? 2872
 <binding uri="xs:anyURI"? name="xs:NCName"? 2873
 requires="list of xs:QName"? 2874
 policySets="list of xs:QName"?>* 2875
 <wireFormat/>? 2876
 <operationSelector/>? 2877
 <requires/>* 2878
 <policySetAttachment/>* 2879
 </binding> 2880
 <callback>? 2881
 <binding uri="xs:anyURI"? name="xs:NCName"? 2882
 requires="list of xs:QName"? 2883
 policySets="list of xs:QName"?>+ 2884
 <wireFormat/>? 2885
 <operationSelector/>? 2886
 <requires/>* 2887
 <policySetAttachment/>* 2888
 </binding> 2889
 </callback> 2890
 </service> 2891
 ... 2892
 <reference ... >* 2893
 <interface … />? 2894
 <binding uri="xs:anyURI"? name="xs:NCName"? 2895
 requires="list of xs:QName"? 2896
 policySets="list of xs:QName"?>* 2897
 <wireFormat/>? 2898
 <operationSelector/>? 2899
 <requires/>* 2900
 <policySetAttachment/>* 2901
 </binding> 2902
 <callback>? 2903
 <binding uri="xs:anyURI"? name="xs:NCName"? 2904
 requires="list of xs:QName"? 2905
 policySets="list of xs:QName"?>+ 2906
 <wireFormat/>? 2907
 <operationSelector/>? 2908
 <requires/>* 2909
 <policySetAttachment/>* 2910
 </binding> 2911

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 75 of 138

 </callback> 2912
 </reference> 2913
 ... 2914
</composite> 2915

Snippet 7-1: composite Pseudo-Schema with binding Child element 2916

 2917

The element name of the binding element is architected; it is in itself a qualified name. The first qualifier is 2918
always named “binding”, and the second qualifier names the respective binding-type (e.g. binding.sca, 2919
binding.ws, binding.ejb, binding.eis). 2920

A binding element has the attributes: 2921

• uri (0..1) - has the semantic: 2922

– The @uri attribute can be omitted. 2923

– For a binding of a reference the @uri attribute defines the target URI of the reference. This 2924
MUST be either the componentName/serviceName/bindingName for a wire to an endpoint within 2925
the SCA Domain, or the accessible address of some service endpoint either inside or outside the 2926
SCA Domain (where the addressing scheme is defined by the type of the binding). [ASM90001] 2927

– The circumstances under which the @uri attribute can be used are defined in section "Specifying 2928
the Target Service(s) for a Reference." 2929

– For a binding of a service the @uri attribute defines the bindingURI. If present, the bindingURI 2930
can be used by the binding as described in the section "Form of the URI of a Deployed Binding". 2931

• name (0..1) – a name for the binding instance (an NCName). The @name attribute allows distinction 2932
between multiple binding elements on a single service or reference. The default value of the @name 2933
attribute is the service or reference name. When a service or reference has multiple bindings, all non-2934
callback bindings of the service or reference MUST have unique names, and all callback bindings of 2935
the service or reference MUST have unique names. [ASM90002] This uniqueness requirement 2936
implies that only one non-callback binding of a service or reference can have the default @name 2937
value, and only one callback binding of a service or reference can have the default @name value. 2938
 2939
The @name also permits the binding instance to be referenced from elsewhere – particularly useful 2940
for some types of binding, which can be declared in a definitions document as a template and 2941
referenced from other binding instances, simplifying the definition of more complex binding instances 2942
(see the JMS Binding specification [SCA-JMSBINDING] for examples of this referencing). 2943

• requires (0..1) - a list of policy intents. See the Policy Framework specification [SCA-POLICY] for a 2944
description of this attribute. 2945

• policySets (0..1) – a list of policy sets. See the Policy Framework specification [SCA-POLICY] for a 2946
description of this attribute. 2947

A binding element has the child elements: 2948

• wireFormat (0..1) - a wireFormat to apply to the data flowing using the binding. See the wireFormat 2949
section for details. 2950

• operationSelector(0..1) - an operationSelector element that is used to match a particular message to 2951
a particular operation in the interface. See the operationSelector section for details 2952

• requires : requires (0..n) - A service element has zero or more requires subelements. See the 2953
Policy Framework specification [SCA-POLICY] for a description of this element. 2954

• policySetAttachment : policySetAttachment (0..n) - A service element has zero or more 2955
policySetAttachment subelements. See the Policy Framework specification [SCA-POLICY] for a 2956
description of this element. 2957

When multiple bindings exist for a service, it means that the service is available through any of the 2958
specified bindings. The technique that the SCA runtime uses to choose among available bindings is left 2959

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 76 of 138

to the implementation and it might include additional (nonstandard) configuration. Whatever technique is 2960
used needs to be documented by the runtime. 2961

Services and References can always have their bindings overridden at the SCA Domain level, unless 2962
restricted by Intents applied to them. 2963

If a reference has any bindings, they MUST be resolved, which means that each binding MUST include a 2964
value for the @uri attribute or MUST otherwise specify an endpoint. The reference MUST NOT be wired 2965
using other SCA mechanisms. [ASM90003] To specify constraints on the kinds of bindings that are 2966
acceptable for use with a reference, the user specifies either policy intents or policy sets. 2967
 2968
Users can also specifically wire, not just to a component service, but to a specific binding offered by that 2969
target service. To wire to a specific binding of a target service the syntax 2970
"componentName/serviceName/bindingName" MUST be used. [ASM90004] 2971

The following sections describe the SCA and Web service binding type in detail. 2972

7.1 Messages containing Data not defined in the Service Interface 2973

It is possible for a message to include information that is not defined in the interface used to define the 2974
service, for instance information can be contained in SOAP headers or as MIME attachments. 2975

Implementation types can make this information available to component implementations in their 2976
execution context. The specifications for these implementation types describe how this information is 2977
accessed and in what form it is presented. 2978

7.2 WireFormat 2979

A wireFormat is the form that a data structure takes when it is transmitted using some communication 2980
binding. Another way to describe this is "the form that the data takes on the wire". A wireFormat can be 2981
specific to a given communication method, or it can be general, applying to many different communication 2982
methods. An example of a general wireFormat is XML text format. 2983

Where a particular SCA binding can accommodate transmitting data in more than one format, the 2984
configuration of the binding can include a definition of the wireFormat to use. This is done using an 2985
<sca:wireFormat/> subelement of the <binding/> element. 2986

Where a binding supports more than one wireFormat, the binding defines one of the wireFormats to be 2987
the default wireFormat which applies if no <wireFormat/> subelement is present. 2988

The base sca:wireFormat element is abstract and it has no attributes and no child elements. For a 2989
particular wireFormat, an extension subtype is defined, using substitution groups, for example: 2990

• <sca:wireFormat.xml/> 2991
A wireFormat that transmits the data as an XML text datastructure 2992

• <sca:wireFormat.jms/> 2993
The "default JMS wireFormat" as described in the JMS Binding specification 2994

Specific wireFormats can have elements that include either attributes or subelements or both. 2995

For details about specific wireFormats, see the related SCA Binding specifications. 2996

7.3 OperationSelector 2997

An operationSelector is necessary for some types of transport binding where messages are transmitted 2998
across the transport without any explicit relationship between the message and the interface operation to 2999
which it relates. SOAP is an example of a protocol where the messages do contain explicit information 3000
that relates each message to the operation it targets. However, other transport bindings have messages 3001
where this relationship is not expressed in the message or in any related headers (pure JMS messages, 3002
for example). In cases where the messages arrive at a service without any explicit information that maps 3003
them to specific operations, it is necessary for the metadata attached to the service binding to contain the 3004
mapping information. The information is held in an operationSelector element which is a child element of 3005
the binding element. 3006

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 77 of 138

The base sca:operationSelector element is abstract and it has no attributes and no child elements. For a 3007
particular operationSelector, an extension subtype is defined, using substitution groups, for example: 3008

• <sca:operationSelector.XPath/> 3009
An operation selector that uses XPath to filter out specific messages and target them to 3010
particular named operations. 3011

Specific operationSelectors can have elements that include either attributes or subelements or both. 3012

For details about specific operationSelectors, see the related SCA Binding specifications. 3013

7.4 Form of the URI of a Deployed Binding 3014

SCA Bindings specifications can choose to use the structural URI defined in the section "Structural URI 3015
of Components" above to derive a binding specific URI according to some Binding-related scheme. The 3016
relevant binding specification describes this. 3017

Alternatively, <binding/> elements have a @uri attribute, which is termed a bindingURI. 3018

If the bindingURI is specified on a given <binding/> element, the binding can use it to derive an endpoint 3019
URI relevant to the binding. The derivation is binding specific and is described by the relevant binding 3020
specification. 3021

For binding.sca, which is described in the SCA Assembly specification, this is as follows: 3022

• If the binding @uri attribute is specified on a reference, it identifies the target service in 3023
the SCA Domain by specifying the service's structural URI. 3024

• If the binding @uri attribute is specified on a service, it is ignored. 3025

7.4.1 Non-hierarchical URIs 3026

Bindings that use non-hierarchical URI schemes (such as jms: or mailto:) can make use of the @uri 3027
attritibute, which is the complete representation of the URI for that service binding. Where the binding 3028
does not use the @uri attribute, the binding needs to offer a different mechanism for specifying the 3029
service address. 3030

7.4.2 Determining the URI scheme of a deployed binding 3031

One of the things that needs to be determined when building the effective URI of a deployed binding (i.e. 3032
endpoint) is the URI scheme. The process of determining the endpoint URI scheme is binding type 3033
specific. 3034

If the binding type supports a single protocol then there is only one URI scheme associated with it. In this 3035
case, that URI scheme is used. 3036

If the binding type supports multiple protocols, the binding type implementation determines the URI 3037
scheme by introspecting the binding configuration, which can include the policy sets associated with the 3038
binding. 3039

A good example of a binding type that supports multiple protocols is binding.ws, which can be configured 3040
by referencing either an “abstract” WSDL element (i.e. portType or interface) or a “concrete” WSDL 3041
element (i.e. binding or port). When the binding references a portType or Interface, the protocol and 3042
therefore the URI scheme is derived from the intents/policy sets attached to the binding. When the 3043
binding references a “concrete” WSDL element, there are two cases: 3044

1) The referenced WSDL binding element uniquely identifies a URI scheme. This is the most 3045
common case. In this case, the URI scheme is given by the protocol/transport specified in the 3046
WSDL binding element. 3047

2) The referenced WSDL binding element doesn’t uniquely identify a URI scheme. For example, 3048
when HTTP is specified in the @transport attribute of the SOAP binding element, both “http” 3049
and “https” could be used as valid URI schemes. In this case, the URI scheme is determined 3050
by looking at the policy sets attached to the binding. 3051

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 78 of 138

It is worth noting that an intent supported by a binding type can completely change the behavior of the 3052
binding. For example, when the intent "confidentiality/transport” is attached to an HTTP binding, SSL is 3053
turned on. This basically changes the URI scheme of the binding from “http” to “https”. 3054

 3055

7.5 SCA Binding 3056

Snippet Snippet 7-2 shows the SCA binding element pseudo-schema. 3057

<binding.sca uri="xs:anyURI"? 3058
 name="xs:NCName"? 3059
 requires="list of xs:QName"? 3060
 policySets="list of xs:QName"?> 3061
 <wireFormat/>? 3062
 <operationSelector/>? 3063
 <requires/>* 3064
 <policySetAttachment/>* 3065
</binding.sca> 3066

Snippet 7-2: binding.sca pseudo-schema 3067

 3068

A binding.sca element has the attributes: 3069

• uri (0..1) - has the semantic: 3070

– The @uri attribute can be omitted. 3071

– If a <binding.sca/> element of a component reference specifies a URI via its @uri attribute, then 3072
this provides a wire to a target service provided by another component. The form of the URI 3073
which points to the service of a component that is in the same composite as the source 3074
component is as follows: 3075
 3076
 <component-name>/<service-name> 3077
or 3078
 <component-name>/<service-name>/<binding-name> 3079
 3080
in cases where the service has multiple bindings present. 3081

– The circumstances under which the @uri attribute can be used are defined in the section 3082
"Specifying the Target Service(s) for a Reference." 3083

– For a binding.sca of a component service, the @uri attribute MUST NOT be present. [ASM90005] 3084

• name (0..1) – a name for the binding instance (an NCName), as defined for the base <binding/> 3085
element type. 3086

• requires (0..1) - a list of policy intents. See the Policy Framework specification [SCA-POLICY] for a 3087
description of this attribute. 3088

• policySets (0..1) – a list of policy sets. See the Policy Framework specification [SCA-POLICY] for a 3089
description of this attribute. 3090

A binding.sca element has the child elements: 3091

• wireFormat (0..1) - a wireFormat to apply to the data flowing using the binding. binding.sca does not 3092
define any specific wireFormat elements. 3093

• operationSelector(0..1) - an operationSelector element that is used to match a particular message to 3094
a particular operation in the interface. binding.sca does not define any specific operationSelector 3095
elements. 3096

• requires : requires (0..n) - A service element has zero or more requires subelements. See the 3097
Policy Framework specification [SCA-POLICY] for a description of this element. 3098

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 79 of 138

• policySetAttachment : policySetAttachment (0..n) - A service element has zero or more 3099
policySetAttachment subelements. See the Policy Framework specification [SCA-POLICY] for a 3100
description of this element. 3101

The SCA binding can be used for service interactions between references and services contained within 3102
the SCA Domain. The way in which this binding type is implemented is not defined by the SCA 3103
specification and it can be implemented in different ways by different SCA runtimes. The only requirement 3104
is that any specified qualities of service are implemented for the SCA binding type. Qualities of service for 3105
<binding.sca/> are expressed using intents and/or policy sets following the rules defined in the SCA 3106
Policy specification [SCA-POLICY]. 3107

The SCA binding type is not intended to be an interoperable binding type. For interoperability, an 3108
interoperable binding type such as the Web service binding is used. 3109

An SCA runtime has to support the binding.sca binding type. See the section on SCA Runtime 3110
conformance. 3111

A service definition with no binding element specified uses the SCA binding (see ASM50005 in section 3112
4.2 on Component Service). <binding.sca/> only has to be specified explicitly in override cases, or when 3113
a set of bindings is specified on a service definition and the SCA binding needs to be one of them. 3114

If a reference does not have a binding subelement specified, then the binding used is one of the bindings 3115
specified by the service provider, as long as the intents attached to the reference and the service are all 3116
honoured, as described in the section on Component References. 3117

If the interface of the service or reference is local, then the local variant of the SCA binding will be used. If 3118
the interface of the service or reference is remotable, then either the local or remote variant of the SCA 3119
binding will be used depending on whether source and target are co-located or not. 3120

If a <binding.sca/> element of a <component/> <reference/> specifies a URI via its @uri attribute, then 3121
this provides a wire to a target service provided by another component. 3122

The form of the URI which points to the service of a component that is in the same composite as the 3123
source component is as follows: 3124

• <domain-component-name>/<service-name> 3125

7.5.1 Example SCA Binding 3126

Snippet 7-3 shows the MyValueComposite.composite file for the MyValueComposite containing the 3127
service element for the MyValueService and a reference element for the StockQuoteService. Both the 3128
service and the reference use an SCA binding. The target for the reference is left undefined in this 3129
binding and would have to be supplied by the composite in which this composite is used. 3130

<?xml version="1.0" encoding="ASCII"?> 3131
<!-- Binding SCA example --> 3132
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3133
 targetNamespace="http://foo.com" 3134
 name="MyValueComposite" > 3135
 3136
 <service name="MyValueService" promote="MyValueComponent"> 3137
 <interface.java interface="services.myvalue.MyValueService"/> 3138
 <binding.sca/> 3139
 … 3140
 </service> 3141
 3142
 … 3143
 3144
 <reference name="StockQuoteService" 3145
 promote="MyValueComponent/StockQuoteReference"> 3146
 <interface.java interface="services.stockquote.StockQuoteService"/> 3147
 <binding.sca/> 3148
 </reference> 3149
 3150
</composite> 3151

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 80 of 138

Snippet 7-3: Example binding.sca 3152

7.6 Web Service Binding 3153

SCA defines a Web services binding. This is described in a separate specification document [SCA-3154
WSBINDING]. 3155

7.7 JMS Binding 3156

SCA defines a JMS binding. This is described in a separate specification document [SCA-JMSBINDING]. 3157

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 81 of 138

8 SCA Definitions 3158

There are a variety of SCA artifacts which are generally useful and which are not specific to a particular 3159
composite or a particular component. These shared artifacts include intents, policy sets, binding type 3160
definitions, implementation type definitions, and external attachment definitions. 3161

All of these artifacts within an SCA Domain are defined in SCA contributions in files called META-3162
INF/definitions.xml (relative to the contribution base URI). An SCA runtime MUST make available to the 3163
Domain all the artifacts contained within the definitions.xml files in the Domain. [ASM10002] An SCA 3164
runtime MUST reject a definitions.xml file that does not conform to the sca-definitions.xsd schema. 3165
[ASM10003] 3166

Although the definitions are specified within a single SCA contribution, the definitions are visible 3167
throughout the Domain. Because of this, all of the QNames for the definitions contained in definitions.xml 3168
files MUST be unique within the Domain.. [ASM10001] The definitions.xml file contains a definitions 3169
element that conforms to the pseudo-schema shown in Snippet 8-1: 3170

 3171

<?xml version="1.0" encoding="ASCII"?> 3172
<!-- Composite schema snippet --> 3173
<definitions xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3174
 targetNamespace="xs:anyURI"> 3175
 3176
 <sca:intent/>* 3177
 3178
 <sca:policySet/>* 3179
 3180
 <sca:bindingType/>* 3181
 3182
 <sca:implementationType/>* 3183
 3184
 <sca:externalAttachment/>* 3185
 3186
</definitions> 3187

Snippet 8-1: definitions Pseudo-Schema 3188

 3189

The definitions element has the attribute: 3190

• targetNamespace (1..1) – the namespace into which the child elements of this definitions element 3191
are placed (used for artifact resolution) 3192

The definitions element contains child elements – intent, policySet, bindingType, implementationType and 3193
externalAttachment. These elements are described elsewhere in this specification or in the SCA Policy 3194
Framework specification [SCA-POLICY]. 3195

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 82 of 138

9 Extension Model 3196

The assembly model can be extended with support for new interface types, implementation types and 3197
binding types. The extension model is based on XML schema substitution groups. There are five XML 3198
Schema substitution group heads defined in the SCA namespace: interface, implementation, binding, 3199
import and export, for interface types, implementation types, binding types import types and export 3200
types, respectively. 3201

The SCA Client and Implementation specifications and the SCA Bindings specifications (see 3202
[SCA_Common_Java], [SCA_Java] and [SCA-WSBINDING] as examples) use these XML Schema 3203
substitution groups to define some basic types of interfaces, implementations and bindings, but additional 3204
types can be defined as needed, where support for these extra ones is available from the runtime. The 3205
inteface type elements, implementation type elements, binding type elements, import type elements and 3206
export type elements defined by the SCA specifications are all part of the SCA namespace 3207
("http://docs.oasis-open.org/ns/opencsa/sca/200912"), as indicated in their respective schemas. New 3208
interface types, implementation types and binding types that are defined using this extensibility model, 3209
which are not part of these SCA specifications are defined in namespaces other than the SCA 3210
namespace. 3211

The "." notation is used in naming elements defined by the SCA specifications (e.g. <implementation.java 3212
… />, <interface.wsdl … />, <binding.ws … />), not as a parallel extensibility approach but as a naming 3213
convention that improves usability of the SCA assembly language. 3214

A conforming implementation type, interface type, import type or export type MUST meet the 3215
requirements in "Implementation Type Documentation Requirements for SCA Assembly Model Version 3216
1.1 Specification". [ASM11001] 3217

A binding extension element MUST be declared as an element in the substitution group of the sca:binding 3218
element. [ASM11002] A binding extension element MUST be declared to be of a type which is an 3219
extension of the sca:Binding type. [ASM11003] 3220

9.1 Defining an Interface Type 3221

Snippet 9-1 shows the base definition for the interface element and Interface type contained in sca-3222
core.xsd; see sca-core.xsd for the complete schema. 3223

 3224

<?xml version="1.0" encoding="UTF-8"?> 3225
<!-- (c) Copyright SCA Collaboration 2006 --> 3226
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3227
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3228
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3229
 elementFormDefault="qualified"> 3230
 3231
 ... 3232
 3233
 <element name="interface" type="sca:Interface" abstract="true"/> 3234
 <complexType name="Interface" abstract="true"> 3235
 <choice minOccurs="0" maxOccurs="unbounded"> 3236
 <element ref="sca:requires"/> 3237
 <element ref="sca:policySetAttachment"/> 3238
 </choice> 3239
 <attribute name="remotable" type="boolean" use="optional"/> 3240
 <attribute name="requires" type="sca:listOfQNames" use="optional"/> 3241
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 3242
 </complexType> 3243
 3244
 ... 3245
 3246

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 83 of 138

</schema> 3247

Snippet 9-1: interface and Interface Schema 3248

 3249

Snippet 9-2 is an example of how the base definition is extended to support Java interfaces. The snippet 3250
shows the definition of the interface.java element and the JavaInterface type contained in sca-3251
interface-java.xsd. 3252

 3253
<?xml version="1.0" encoding="UTF-8"?> 3254
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3255
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3256
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 3257
 3258
 <element name="interface.java" type="sca:JavaInterface" 3259
 substitutionGroup="sca:interface"/> 3260
 <complexType name="JavaInterface"> 3261
 <complexContent> 3262
 <extension base="sca:Interface"> 3263
 <attribute name="interface" type="NCName" 3264
 use="required"/> 3265
 </extension> 3266
 </complexContent> 3267
 </complexType> 3268
</schema> 3269

Snippet 9-2: Extending interface to interface.java 3270

 3271

Snippet 9-3 is an example of how the base definition can be extended by other specifications to support a 3272
new interface not defined in the SCA specifications. The snippet shows the definition of the my-interface-3273
extension element and the my-interface-extension-type type. 3274

 3275
<?xml version="1.0" encoding="UTF-8"?> 3276
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3277
 targetNamespace="http://www.example.org/myextension" 3278
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3279
 xmlns:tns="http://www.example.org/myextension"> 3280
 3281
 <element name="my-interface-extension" 3282
 type="tns:my-interface-extension-type" 3283
 substitutionGroup="sca:interface"/> 3284
 <complexType name="my-interface-extension-type"> 3285
 <complexContent> 3286
 <extension base="sca:Interface"> 3287
 ... 3288
 </extension> 3289
 </complexContent> 3290
 </complexType> 3291
</schema> 3292

Snippet 9-3: Example interface extension 3293

9.2 Defining an Implementation Type 3294

Snippet 9-4 shows the base definition for the implementation element and Implementation type 3295
contained in sca-core.xsd; see sca-core.xsdfor complete schema. 3296
 3297

<?xml version="1.0" encoding="UTF-8"?> 3298
<!-- (c) Copyright SCA Collaboration 2006 --> 3299

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 84 of 138

<schema xmlns="http://www.w3.org/2001/XMLSchema" 3300
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3301
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3302
 elementFormDefault="qualified"> 3303
 3304
 ... 3305
 3306
 <element name="implementation" type="sca:Implementation" 3307
 abstract="true"/> 3308
 <complexType name="Implementation" abstract="true"> 3309
 <complexContent> 3310
 <extension base="sca:CommonExtensionBase"> 3311
 <choice minOccurs="0" maxOccurs="unbounded"> 3312
 <element ref="sca:requires"/> 3313
 <element ref="sca:policySetAttachment"/> 3314
 </choice> 3315
 <attribute name="requires" type="sca:listOfQNames" 3316
 use="optional"/> 3317
 <attribute name="policySets" type="sca:listOfQNames" 3318
 use="optional"/> 3319
 </extension> 3320
 </complexContent> 3321
 </complexType> 3322
 3323
 ... 3324
 3325
</schema> 3326

Snippet 9-4: implementation and Implementation Schema 3327

 3328

Snippet 9-5 shows how the base definition is extended to support Java implementation. The snippet 3329
shows the definition of the implementation.java element and the JavaImplementation type contained in 3330
sca-implementation-java.xsd. 3331

 3332
<?xml version="1.0" encoding="UTF-8"?> 3333
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3334
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3335
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 3336
 3337
<element name="implementation.java" type="sca:JavaImplementation" 3338
substitutionGroup="sca:implementation"/> 3339
 <complexType name="JavaImplementation"> 3340
 <complexContent> 3341
 <extension base="sca:Implementation"> 3342
 <attribute name="class" type="NCName" 3343
 use="required"/> 3344
 </extension> 3345
 </complexContent> 3346
 </complexType> 3347
</schema> 3348

Snippet 9-5: Extending implementation to implementation.java 3349

 3350

Snippet 9-6 is an example of how the base definition can be extended by other specifications to support a 3351
new implementation type not defined in the SCA specifications. The snippet shows the definition of the 3352
my-impl-extension element and the my-impl-extension-type type. 3353

 3354
<?xml version="1.0" encoding="UTF-8"?> 3355
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3356

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 85 of 138

 targetNamespace="http://www.example.org/myextension" 3357
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3358
 xmlns:tns="http://www.example.org/myextension"> 3359
 3360
 <element name="my-impl-extension" type="tns:my-impl-extension-type" 3361
 substitutionGroup="sca:implementation"/> 3362
 <complexType name="my-impl-extension-type"> 3363
 <complexContent> 3364
 <extension base="sca:Implementation"> 3365
 ... 3366
 </extension> 3367
 </complexContent> 3368
 </complexType> 3369
</schema> 3370

Snippet 9-6: Example implementation extension 3371

 3372

In addition to the definition for the new implementation instance element, there needs to be an associated 3373
implementationType element which provides metadata about the new implementation type. The pseudo 3374
schema for the implementationType element is shown in Snippet 9-7: 3375

 3376

<implementationType type="xs:QName" 3377
 alwaysProvides="list of intent xs:QName" 3378
 mayProvide="list of intent xs:QName"/> 3379

Snippet 9-7: implementationType Pseudo-Schema 3380

 3381

The implementation type has the attributes: 3382

• type (1..1) – the type of the implementation to which this implementationType element applies. This 3383
is intended to be the QName of the implementation element for the implementation type, such as 3384
"sca:implementation.java" 3385

• alwaysProvides (0..1) – a set of intents which the implementation type always provides. See the 3386
Policy Framework specification [SCA-POLICY] for details. 3387

• mayProvide (0..1) – a set of intents which the implementation type provides only when the intent is 3388
attached to the implementation element. See the Policy Framework specification [SCA-POLICY] for 3389
details. 3390

9.3 Defining a Binding Type 3391

Snippet 9-8 shows the base definition for the binding element and Binding type contained in sca-3392
core.xsd; see sca-core.xsdfor complete schema. 3393

 3394

<?xml version="1.0" encoding="UTF-8"?> 3395
<!-- binding type schema snippet --> 3396
<!-- (c) Copyright SCA Collaboration 2006, 2009 --> 3397
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3398
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3399
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3400
 elementFormDefault="qualified"> 3401
 3402
 ... 3403
 3404
 <element name="binding" type="sca:Binding" abstract="true"/> 3405
 <complexType name="Binding"> 3406
 <attribute name="uri" type="anyURI" use="optional"/> 3407
 <attribute name="name" type="NCName" use="optional"/> 3408

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 86 of 138

 <attribute name="requires" type="sca:listOfQNames" 3409
 use="optional"/> 3410
 <attribute name="policySets" type="sca:listOfQNames" 3411
 use="optional"/> 3412
 </complexType> 3413
 3414
 ... 3415
 3416
</schema> 3417

Snippet 9-8: binding and Binding Schema 3418

 3419

Snippet 9-9 is an example of how the base definition is extended to support Web service binding. The 3420
snippet shows the definition of the binding.ws element and the WebServiceBinding type contained in 3421
sca-binding-webservice.xsd. 3422

 3423
<?xml version="1.0" encoding="UTF-8"?> 3424
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3425
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3426
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 3427
 3428
 <element name="binding.ws" type="sca:WebServiceBinding" 3429
substitutionGroup="sca:binding"/> 3430
 <complexType name="WebServiceBinding"> 3431
 <complexContent> 3432
 <extension base="sca:Binding"> 3433
 <attribute name="port" type="anyURI" use="required"/> 3434
 </extension> 3435
 </complexContent> 3436
 </complexType> 3437
</schema> 3438

Snippet 9-9: Extending binding to binding.ws 3439

 3440

Snippet 9-10 is an example of how the base definition can be extended by other specifications to support 3441
a new binding not defined in the SCA specifications. The snippet shows the definition of the my-binding-3442
extension element and the my-binding-extension-type type. 3443

 3444
<?xml version="1.0" encoding="UTF-8"?> 3445
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3446
 targetNamespace="http://www.example.org/myextension" 3447
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3448
 xmlns:tns="http://www.example.org/myextension"> 3449
 3450
 <element name="my-binding-extension" 3451
 type="tns:my-binding-extension-type" 3452
 substitutionGroup="sca:binding"/> 3453
 <complexType name="my-binding-extension-type"> 3454
 <complexContent> 3455
 <extension base="sca:Binding"> 3456
 ... 3457
 </extension> 3458
 </complexContent> 3459
 </complexType> 3460
</schema> 3461

Snippet 9-10: Example binding extension 3462

 3463

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 87 of 138

In addition to the definition for the new binding instance element, there needs to be an associated 3464
bindingType element which provides metadata about the new binding type. The pseudo schema for the 3465
bindingType element is shown in Snippet 9-11: 3466

 3467

<bindingType type="xs:QName" 3468
 alwaysProvides="list of intent QNames"? 3469
 mayProvide = "list of intent QNames"?/> 3470

Snippet 9-11: bindingType Pseudo-Schema 3471

 3472

The binding type has the following attributes: 3473

• type (1..1) – the type of the binding to which this bindingType element applies. This is intended to be 3474
the QName of the binding element for the binding type, such as "sca:binding.ws" 3475

• alwaysProvides (0..1) – a set of intents which the binding type always provides. See the Policy 3476
Framework specification [SCA-POLICY] for details. 3477

• mayProvide (0..1) – a set of intents which the binding type provides only when the intent is attached 3478
to the binding element. See the Policy Framework specification [SCA-POLICY] for details. 3479

9.4 Defining an Import Type 3480

Snippet 9-12 shows the base definition for the import element and Import type contained in sca-3481
core.xsd; see sca-core.xsdfor complete schema. 3482

 3483

<?xml version="1.0" encoding="UTF-8"?> 3484
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. OASIS trademark, 3485
IPR and other policies apply. --> 3486
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3487
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3488
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3489
 elementFormDefault="qualified"> 3490
 3491
... 3492
 3493
 <!-- Import --> 3494
 <element name="importBase" type="sca:Import" abstract="true" /> 3495
 <complexType name="Import" abstract="true"> 3496
 <complexContent> 3497
 <extension base="sca:CommonExtensionBase"> 3498
 <sequence> 3499
 <any namespace="##other" processContents="lax" minOccurs="0" 3500
 maxOccurs="unbounded"/> 3501
 </sequence> 3502
 </extension> 3503
 </complexContent> 3504
 </complexType> 3505
 3506
 <element name="import" type="sca:ImportType" 3507
 substitutionGroup="sca:importBase"/> 3508
 <complexType name="ImportType"> 3509
 <complexContent> 3510
 <extension base="sca:Import"> 3511
 <attribute name="namespace" type="string" use="required"/> 3512
 <attribute name="location" type="anyURI" use="required"/> 3513
 </extension> 3514
 </complexContent> 3515
 </complexType> 3516
 3517

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 88 of 138

... 3518
 3519
</schema> 3520

Snippet 9-12: import and Import Schema 3521

 3522

Snippet 9-13 shows how the base import definition is extended to support Java imports. In the import 3523
element, the namespace is expected to be an XML namespace, an import.java element uses a Java 3524
package name instead. The snippet shows the definition of the import.java element and the 3525
JavaImportType type contained in sca-import-java.xsd. 3526

 3527
<?xml version="1.0" encoding="UTF-8"?> 3528
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3529
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3530
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 3531
 3532
 <element name="import.java" type="sca:JavaImportType" 3533
 substitutionGroup="sca:importBase"/> 3534
 <complexType name="JavaImportType"> 3535
 <complexContent> 3536
 <extension base="sca:Import"> 3537
 <attribute name="package" type="xs:String" use="required"/> 3538
 <attribute name="location" type="xs:AnyURI" use="optional"/> 3539
 </extension> 3540
 </complexContent> 3541
 </complexType> 3542
</schema> 3543

Snippet 9-13: Extending import to import.java 3544

 3545

Snippet 9-14 shows an example of how the base definition can be extended by other specifications to 3546
support a new interface not defined in the SCA specifications. The snippet shows the definition of the my-3547
import-extension element and the my-import-extension-type type. 3548

 3549
<?xml version="1.0" encoding="UTF-8"?> 3550
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3551
 targetNamespace="http://www.example.org/myextension" 3552
 xmlns:sca=" http://docs.oasis-open.org/ns/opencsa/sca/200912" 3553
 xmlns:tns="http://www.example.org/myextension"> 3554
 3555
 <element name="my-import-extension" 3556
 type="tns:my-import-extension-type" 3557
 substitutionGroup="sca:importBase"/> 3558
 <complexType name="my-import-extension-type"> 3559
 <complexContent> 3560
 <extension base="sca:Import"> 3561
 ... 3562
 </extension> 3563
 </complexContent> 3564
 </complexType> 3565
</schema> 3566

Snippet 9-14: Example import extension 3567

 3568

For a complete example using this extension point, see the definition of import.java in the SCA Java 3569
Common Annotations and APIs Specification [SCA-Java]. 3570

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 89 of 138

9.5 Defining an Export Type 3571

Snippet 9-15 shows the base definition for the export element and ExportType type contained in sca-3572
core.xsd; see appendix for complete schema. 3573

 3574

<?xml version="1.0" encoding="UTF-8"?> 3575
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. OASIS trademark, 3576
IPR and other policies apply. --> 3577
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3578
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3579
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3580
 elementFormDefault="qualified"> 3581
 3582
... 3583
 <!-- Export --> 3584
 <element name="exportBase" type="sca:Export" abstract="true" /> 3585
 <complexType name="Export" abstract="true"> 3586
 <complexContent> 3587
 <extension base="sca:CommonExtensionBase"> 3588
 <sequence> 3589
 <any namespace="##other" processContents="lax" minOccurs="0" 3590
 maxOccurs="unbounded"/> 3591
 </sequence> 3592
 </extension> 3593
 </complexContent> 3594
 </complexType> 3595
 3596
 <element name="export" type="sca:ExportType" 3597
 substitutionGroup="sca:exportBase"/> 3598
 <complexType name="ExportType"> 3599
 <complexContent> 3600
 <extension base="sca:Export"> 3601
 <attribute name="namespace" type="string" use="required"/> 3602
 </extension> 3603
 </complexContent> 3604
 </complexType> 3605
... 3606
</schema> 3607

Snippet 9-15: export and Export Schema 3608

 3609

Snippet 9-16 shows how the base definition is extended to support Java exports. In a base export 3610
element, the @namespace attribute specifies XML namespace being exported. An export.java element 3611
uses a @package attribute to specify the Java package to be exported. The snippet shows the definition 3612
of the export.java element and the JavaExport type contained in sca-export-java.xsd. 3613

 3614
<?xml version="1.0" encoding="UTF-8"?> 3615
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3616
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 3617
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912"> 3618
 3619
 <element name="export.java" type="sca:JavaExportType" 3620
 substitutionGroup="sca:exportBase"/> 3621
 <complexType name="JavaExportType"> 3622
 <complexContent> 3623
 <extension base="sca:Export"> 3624
 <attribute name="package" type="xs:String" use="required"/> 3625
 </extension> 3626
 </complexContent> 3627
 </complexType> 3628

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 90 of 138

</schema> 3629

Snippet 9-16: Extending export to export.java 3630

 3631

Snippet 9-17 we shows an example of how the base definition can be extended by other specifications to 3632
support a new interface not defined in the SCA specifications. The snippet shows the definition of the my-3633
export-extension element and the my-export-extension-type type. 3634

 3635
<?xml version="1.0" encoding="UTF-8"?> 3636
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3637
 targetNamespace="http://www.example.org/myextension" 3638
 xmlns:sca="http:// docs.oasis-open.org/ns/opencsa/sca/200903" 3639
 xmlns:tns="http://www.example.org/myextension"> 3640
 3641
 <element name="my-export-extension" 3642
 type="tns:my-export-extension-type" 3643
 substitutionGroup="sca:exportBase"/> 3644
 <complexType name="my-export-extension-type"> 3645
 <complexContent> 3646
 <extension base="sca:Export"> 3647
 ... 3648
 </extension> 3649
 </complexContent> 3650
 </complexType> 3651
</schema> 3652

Snippet 9-17: Example export extension 3653

 3654

For a complete example using this extension point, see the definition of export.java in the SCA Java 3655
Common Annotations and APIs Specification [SCA-Java]. 3656

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 91 of 138

10 Packaging and Deployment 3657

This section describes the SCA Domain and the packaging and deployment of artifacts contributed to the 3658
Domain. 3659

10.1 Domains 3660

An SCA Domain represents a complete runtime configuration, potentially distributed over a series of 3661
interconnected runtime nodes. 3662

A single SCA Domain defines the boundary of visibility for all SCA mechanisms. For example, SCA wires 3663
can only be used to connect components within a single SCA Domain. Connections to services outside 3664
the Domain use binding specific mechanisms for addressing services (such as WSDL endpoint URIs). 3665
Also, SCA mechanisms such as intents and policySets can only be used in the context of a single 3666
Domain. In general, external clients of a service that is developed and deployed using SCA are not able 3667
to tell that SCA is used to implement the service – it is an implementation detail. 3668

The size and configuration of an SCA Domain is not constrained by the SCA Assembly specification and 3669
is expected to be highly variable. An SCA Domain typically represents an area of business functionality 3670
controlled by a single organization. For example, an SCA Domain might be the whole of a business, or it 3671
might be a department within a business. 3672

As an example, for the accounts department in a business, the SCA Domain might cover all finance-3673
related functions, and it might contain a series of composites dealing with specific areas of accounting, 3674
with one for Customer accounts and another dealing with Accounts Payable. 3675

An SCA Domain has the following: 3676

• A virtual domain-level composite whose components are deployed and running 3677

• A set of installed contributions that contain implementations, interfaces and other artifacts necessary 3678
to execute components 3679

• A set of logical services for manipulating the set of contributions and the virtual domain-level 3680
composite. 3681

The information associated with an SCA Domain can be stored in many ways, including but not limited to 3682
a specific filesystem structure or a repository. 3683

10.2 Contributions 3684

An SCA Domain might need a large number of different artifacts in order to work. These artifacts include 3685
artifacts defined by SCA and other artifacts such as object code files and interface definition files. The 3686
SCA-defined artifact types are all XML documents. The root elements of the different SCA definition 3687
documents are: composite, componentType and definitions. XML artifacts that are not defined by SCA 3688
but which are needed by an SCA Domain include XML Schema documents, WSDL documents, and 3689
BPEL documents. SCA constructs, like other XML-defined constructs, use XML qualified names for their 3690
identity (i.e. namespace + local name). 3691

Non-XML artifacts are also needed within an SCA Domain. The most obvious examples of such non-3692
XML artifacts are Java, C++ and other programming language files necessary for component 3693
implementations. Since SCA is extensible, other XML and non-XML artifacts might also be needed. 3694

SCA defines an interoperable packaging format for contributions (ZIP), as specified below. This format is 3695
not the only packaging format that an SCA runtime can use. SCA allows many different packaging 3696
formats, but it is necessary for an SCA runtime to support the ZIP contribution format. When using the 3697
ZIP format for deploying a contribution, this specification does not specify whether that format is retained 3698
after deployment. For example, a Java EE based SCA runtime could convert the ZIP package to an EAR 3699
package. SCA expects certain characteristics of any packaging: 3700

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 92 of 138

• For any contribution packaging it MUST be possible to present the artifacts of the packaging to SCA 3701
as a hierarchy of resources based off of a single root [ASM12001] 3702

• Within any contribution packaging A directory resource SHOULD exist at the root of the hierarchy 3703
named META-INF [ASM12002] 3704

• Within any contribution packaging a document SHOULD exist directly under the META-INF directory 3705
named sca-contribution.xml which lists the SCA Composites within the contribution that are runnable. 3706
[ASM12003] 3707

The same document can also list namespaces of constructs that are defined within the contribution 3708
and which are available for use by other contributions, through export elements. 3709

These additional elements might not be physically present in the packaging, but might be generated 3710
based on the definitions and references that are present, or they might not exist at all if there are no 3711
unresolved references. 3712

See the section "SCA Contribution Metadata Document" for details of the format of this file. 3713

To illustrate that a variety of packaging formats can be used with SCA, the following are examples of 3714
formats that might be used to package SCA artifacts and metadata (as well as other artifacts) as a 3715
contribution: 3716

• A filesystem directory 3717

• An OSGi bundle 3718

• A compressed directory (zip, gzip, etc) 3719

• A JAR file (or its variants – WAR, EAR, etc) 3720

Contributions do not contain other contributions. If the packaging format is a JAR file that contains other 3721
JAR files (or any similar nesting of other technologies), the internal files are not treated as separate SCA 3722
contributions. It is up to the implementation to determine whether the internal JAR file is represented as a 3723
single artifact in the contribution hierarchy or whether all of the contents are represented as separate 3724
artifacts. 3725

A goal of SCA’s approach to deployment is that the contents of a contribution do not need to be modified 3726
in order to install and use the contents of the contribution in a Domain. 3727

10.2.1 SCA Artifact Resolution 3728

Contributions can be self-contained, in that all of the artifacts necessary to run the contents of the 3729
contribution are found within the contribution itself. However, it can also be the case that the contents of 3730
the contribution make one or many references to artifacts that are not contained within the contribution. 3731
These references can be to SCA artifacts such as composites or they can be to other artifacts such as 3732
WSDL files, XSD files or to code artifacts such as Java class files and BPEL process files. Note: This 3733
form of artifact resolution does not apply to imports of composite files, as described in Section 6.6. 3734

A contribution can use some artifact-related or packaging-related means to resolve artifact references. 3735
Examples of such mechanisms include: 3736

• @wsdlLocation and @schemaLocation attributes in references to WSDL and XSD schema artifacts 3737
respectively 3738

• OSGi bundle mechanisms for resolving Java class and related resource dependencies 3739

Where present, artifact-related or packaging-related artifact resolution mechanisms MUST be used by the 3740
SCA runtime to resolve artifact dependencies. [ASM12005] The SCA runtime MUST raise an error if an 3741
artifact cannot be resolved using these mechanisms, if present. [ASM12021] 3742

SCA also provides an artifact resolution mechanism. The SCA artifact resolution mechanism is can be 3743
used where no other mechanisms are available, for example in cases where the mechanisms used by the 3744
various contributions in the same SCA Domain are different. An example of this is where an OSGi 3745
Bundle is used for one contribution but where a second contribution used by the first one is not 3746
implemented using OSGi - e.g. the second contribution relates to a mainframe COBOL service whose 3747
interfaces are declared using a WSDL which is accessed by the first contribution. 3748

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 93 of 138

The SCA artifact resolution is likely to be most useful for SCA Domains containing heterogeneous 3749
mixtures of contribution, where artifact-related or packaging-related mechanisms are unlikely to work 3750
across different kinds of contribution. 3751

SCA artifact resolution works on the principle that a contribution which needs to use artifacts defined 3752
elsewhere expresses these dependencies using import statements in metadata belonging to the 3753
contribution. A contribution controls which artifacts it makes available to other contributions through 3754
export statements in metadata attached to the contribution. SCA artifact resolution is a general 3755
mechanism that can be extended for the handling of specific types of artifact. The general mechanism 3756
that is described in the following paragraphs is mainly intended for the handling of XML artifacts. Other 3757
types of artifacts, for example Java classes, use an extended version of artifact resolution that is 3758
specialized to their nature (eg. instead of "namespaces", Java uses "packages"). Descriptions of these 3759
more specialized forms of artifact resolution are contained in the SCA specifications that deal with those 3760
artifact types. 3761

Import and export statements for XML artifacts work at the level of namespaces - so that an import 3762
statement declares that artifacts from a specified namespace are found in other contributions, while an 3763
export statement makes all the artifacts from a specified namespace available to other contributions. 3764

An import declaration can simply specify the namespace to import. In this case, the locations which are 3765
searched for artifacts in that namespace are the contribution(s) in the Domain which have export 3766
declarations for the same namespace, if any. Alternatively an import declaration can specify a location 3767
from which artifacts for the namespace are obtained, in which case, that specific location is searched. 3768
There can be multiple import declarations for a given namespace. Where multiple import declarations 3769
are made for the same namespace, all the locations specified MUST be searched in lexical order. 3770
[ASM12022] 3771

For an XML namespace, artifacts can be declared in multiple locations - for example a given namespace 3772
can have a WSDL declared in one contribution and have an XSD defining XML data types in a second 3773
contribution. 3774

If the same artifact is declared in multiple locations, this is not an error. The first location as defined by 3775
lexical order is chosen. If no locations are specified no order exists and the one chosen is implementation 3776
dependent. 3777

When a contribution contains a reference to an artifact from a namespace that is declared in an import 3778
statement of the contribution, if the SCA artifact resolution mechanism is used to resolve the artifact, the 3779
SCA runtime MUST resolve artifacts in the following order: 3780

1. from the locations identified by the import statement(s) for the namespace. 3781
Locations MUST NOT be searched recursively in order to locate artifacts (i.e. only 3782
a one-level search is performed). 3783

2. from the contents of the contribution itself. [ASM12023] 3784

Checking for errors in artifacts MUST NOT be done for artifacts in the Installed state (ie where the 3785
artifacts are simply part of installed contributions) [ASM12031] 3786

For example: 3787

• a first contribution "C1" references an artifact "A1" in the namespace "n1" and imports the "n1" 3788
namespace from a second contribution "C2". 3789

• in contribution "C2" the artifact "A1" in the "n1" namespace references an artifact "A2" also in the "n1" 3790
namespace", which is resolved through an import of the "n1" namespace in "C2" which specifies the 3791
location "C3". 3792

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 94 of 138

 3793

Contribution C1

Contribution C2 Contribution C3

import n1 location=C2

A1A1 A2A2

import n1 location=C3
export n1

Some artifactSome artifact

export n1

 3794
Figure 10-1: Example of SCA Artifact Resolution between Contributions 3795

 3796

The "A2" artifact is contained within the third contribution "C3" from which it is resolved by the contribution 3797
"C2". The "C3" contribution is never used to resolve artifacts directly for the "C1" contribution, since "C3" 3798
is not declared as an import location for "C1". 3799

For example, if for a contribution "C1",an import is used to resolve a composite "X1" contained in 3800
contribution "C2", and composite "X1" contains references to other artifacts such as WSDL files or XSDs, 3801
those references in "X1" are resolved in the context of contribution "C2" and not in the context of 3802
contribution "C1". 3803

The SCA runtime MUST ignore local definitions of an artifact if the artifact is found through resolving an 3804
import statement. [ASM12024] 3805

The SCA runtime MUST raise an error if an artifact cannot be resolved by using artifact-related or 3806
packaging-related artifact resolution mechanisms, if present, by searching locations identified by the 3807
import statements of the contribution, if present, and by searching the contents of the contribution. 3808
[ASM12025] 3809

10.2.2 SCA Contribution Metadata Document 3810

The contribution can contain a document that declares runnable composites, exported definitions and 3811
imported definitions. The document is found at the path of META-INF/sca-contribution.xml relative to the 3812
root of the contribution. Frequently some SCA metadata needs to be specified by hand while other 3813
metadata is generated by tools (such as the <import> elements described below). To accommodate this, 3814
it is also possible to have an identically structured document at META-INF/sca-contribution-3815
generated.xml. If this document exists (or is generated on an as-needed basis), it will be merged into the 3816
contents of sca-contribution.xml, with the entries in sca-contribution.xml taking priority if there are any 3817
conflicting declarations. 3818

An SCA runtime MUST make the <import/> and <export/> elements found in the META-INF/sca-3819
contribution.xml and META-INF/sca-contribution-generated.xml files available for the SCA artifact 3820
resolution process. [ASM12026] An SCA runtime MUST reject files that do not conform to the schema 3821
declared in sca-contribution.xsd. [ASM12027] An SCA runtime MUST merge the contents of sca-3822
contribution-generated.xml into the contents of sca-contribution.xml, with the entries in sca-3823
contribution.xml taking priority if there are any conflicting declarations. [ASM12028] 3824
 3825
The format of the document is: 3826

<?xml version="1.0" encoding="ASCII"?> 3827
<!-- sca-contribution pseudo-schema --> 3828

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 95 of 138

<contribution xmlns=http://docs.oasis-open.org/ns/opencsa/sca/200912> 3829
 3830
 <deployable composite="xs:QName"/>* 3831
 <import namespace="xs:String" location=”xs:AnyURI”?/>* 3832
 <export namespace="xs:String"/>* 3833
 3834
</contribution> 3835

Snippet 10-1: contribution Pseudo-Schema 3836

 3837

deployable element: Identifies a composite which is a composite within the contribution that is a 3838
composite intended for potential inclusion into the virtual domain-level composite. Other composites in 3839
the contribution are not intended for inclusion but only for use by other composites. New composites can 3840
be created for a contribution after it is installed, by using the add Deployment Composite capability and 3841
the add To Domain Level Composite capability. An SCA runtime MAY deploy the composites in 3842
<deployable/> elements found in the META-INF/sca-contribution.xml and META-INF/sca-contribution-3843
generated.xml files. [ASM12029] 3844

Attributes of the deployable element: 3845

• composite (1..1) – The QName of a composite within the contribution. 3846

Export element: A declaration that artifacts belonging to a particular namespace are exported and are 3847
available for use within other contributions. An export declaration in a contribution specifies a 3848
namespace, all of whose definitions are considered to be exported. By default, definitions are not 3849
exported. 3850

The SCA artifact export is useful for SCA Domains containing heterogeneous mixtures of contribution 3851
packagings and technologies, where artifact-related or packaging-related mechanisms are unlikely to 3852
work across different kinds of contribution. 3853

Attributes of the export element: 3854

• namespace (1..1) – For XML definitions, which are identified by QNames, the @namespace attribute 3855
of the export element MUST be the namespace URI for the exported definitions. [ASM12030] For 3856
XML technologies that define multiple symbol spaces that can be used within one namespace (e.g. 3857
WSDL portTypes are a different symbol space from WSDL bindings), all definitions from all symbol 3858
spaces are exported. 3859

Technologies that use naming schemes other than QNames use a different export element from the 3860
same substitution group as the the SCA <export> element. The element used identifies the 3861
technology, and can use any value for the namespace that is appropriate for that technology. For 3862
example, <export.java> can be used to export java definitions, in which case the namespace is a fully 3863
qualified package name. 3864

Import element: Import declarations specify namespaces of definitions that are needed by the definitions 3865
and implementations within the contribution, but which are not present in the contribution. It is expected 3866
that in most cases import declarations will be generated based on introspection of the contents of the 3867
contribution. In this case, the import declarations would be found in the META-INF/ sca-contribution-3868
generated.xml document. 3869

Attributes of the import element: 3870

• namespace (1..1) – For XML definitions, which are identified by QNames, the namespace is the 3871
namespace URI for the imported definitions. For XML technologies that define multiple symbol 3872
spaces that can be used within one namespace (e.g. WSDL portTypes are a different symbol space 3873
from WSDL bindings), all definitions from all symbol spaces are imported. 3874

Technologies that use naming schemes other than QNames use a different import element from the 3875
same substitution group as the the SCA <import> element. The element used identifies the 3876
technology, and can use any value for the namespace that is appropriate for that technology. For 3877
example, <import.java> can be used to import java definitions, in which case the namespace is a fully 3878
qualified package name. 3879

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 96 of 138

• location (0..1) – a URI to resolve the definitions for this import. SCA makes no specific 3880
requirements for the form of this URI, nor the means by which it is resolved. It can point to another 3881
contribution (through its URI) or it can point to some location entirely outside the SCA Domain. 3882
It is expected that SCA runtimes can define implementation specific ways of resolving location 3883
information for artifact resolution between contributions. These mechanisms will however usually be 3884
limited to sets of contributions of one runtime technology and one hosting environment. 3885

In order to accommodate imports of artifacts between contributions of disparate runtime technologies, it is 3886
strongly suggested that SCA runtimes honor SCA contribution URIs as location specification. 3887

SCA runtimes that support contribution URIs for cross-contribution resolution of SCA artifacts are 3888
expected to do so similarly when used as @schemaLocation and @wsdlLocation and other artifact 3889
location specifications. 3890

The order in which the import statements are specified can play a role in this mechanism. Since 3891
definitions of one namespace can be distributed across several artifacts, multiple import declarations can 3892
be made for one namespace. 3893

The location value is only a default, and dependent contributions listed in the call to installContribution 3894
can override the value if there is a conflict. However, the specific mechanism for resolving conflicts 3895
between contributions that define conflicting definitions is implementation specific. 3896

If the value of the @location attribute is an SCA contribution URI, then the contribution packaging can 3897
become dependent on the deployment environment. In order to avoid such a dependency, it is 3898
recommended that dependent contributions are specified only when deploying or updating contributions 3899
as specified in the section 'Operations for Contributions' below. 3900

10.2.3 Contribution Packaging using ZIP 3901

SCA allows many different packaging formats that SCA runtimes can support, but SCA requires that all 3902
runtimes MUST support the ZIP packaging format for contributions. [ASM12006] This format allows that 3903
metadata specified by the section 'SCA Contribution Metadata Document' be present. Specifically, it can 3904
contain a top-level "META-INF" directory and a "META-INF/sca-contribution.xml" file and there can also 3905
be a "META-INF/sca-contribution-generated.xml" file in the package. SCA defined artifacts as well as 3906
non-SCA defined artifacts such as object files, WSDL definition, Java classes can be present anywhere in 3907
the ZIP archive, 3908

A definition of the ZIP file format is published by PKWARE in an Application Note on the .ZIP file format 3909
[ZIP-FORMAT]. 3910

10.3 States of Artifacts in the Domain 3911

Artifacts in the SCA domain are in one of 3 states: 3912

 3913

1. Installed 3914

2. Deployed 3915

3. Running 3916

 3917

Installed artifacts are artifacts that are part of a Contribution that is installed into the Domain. Installed 3918
artifacts are available for use by other artifacts that are deployed, See "install Contribution" and "remove 3919
Contribution" to understand how artifacts are installed and uninstalled. 3920

Deployed artifacts are artifacts that are available to the SCA runtime to be run.. Artifacts are deployed 3921
either through explicit deployment actions or through the presence of <deployable/> elements in sca-3922
contribution.xml files within a Contribution. If an artifact is deployed which has dependencies on other 3923
artifacts, then those dependent artifacts are also deployed. 3924

When the SCA runtime has one or more deployable artifacts, the runtime attempts to put those artifacts 3925
and any artifacts they depend on into the Running state. This can fail due to errors in one or more of the 3926
artifacts or the process can be delayed until all dependencies are available. 3927

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 97 of 138

Checking for errors in artifacts MUST NOT be done for artifacts in the Installed state (ie where the 3928
artifacts are simply part of installed contributions) [ASM12032] 3929

Errors in artifacts MUST be detected either during the Deployment of the artifacts, or during the process 3930
of putting the artifacts into the Running state, [ASM12033] 3931

10.4 Installed Contribution 3932

As noted in the section above, the contents of a contribution do not need to be modified in order to install 3933
and use it within a Domain. An installed contribution is a contribution with all of the associated 3934
information necessary in order to execute deployable composites within the contribution. 3935

An installed contribution is made up of the following things: 3936

• Contribution Packaging – the contribution that will be used as the starting point for resolving all 3937
references 3938

• Contribution base URI 3939

• Dependent contributions: a set of snapshots of other contributions that are used to resolve the import 3940
statements from the root composite and from other dependent contributions 3941

– Dependent contributions might or might not be shared with other installed contributions. 3942

– When the snapshot of any contribution is taken is implementation defined, ranging from the time 3943
the contribution is installed to the time of execution 3944

• Deployment-time composites. 3945
These are composites that are added into an installed contribution after it has been deployed. This 3946
makes it possible to provide final configuration and access to implementations within a contribution 3947
without having to modify the contribution. These do not have to be provided as composites that 3948
already exist within the contribution can also be used for deployment. 3949

Installed contributions provide a context in which to resolve qualified names (e.g. QNames in XML, fully 3950
qualified class names in Java). 3951

If multiple dependent contributions have exported definitions with conflicting qualified names, the 3952
algorithm used to determine the qualified name to use is implementation dependent. Implementations of 3953
SCA MAY also raise an error if there are conflicting names exported from multiple contributions. 3954
[ASM12007] 3955

10.4.1 Installed Artifact URIs 3956

When a contribution is installed, all artifacts within the contribution are assigned URIs, which are 3957
constructed by starting with the base URI of the contribution and adding the relative URI of each artifact 3958
(recalling that SCA demands that any packaging format be able to offer up its artifacts in a single 3959
hierarchy). 3960

10.5 Operations for Contributions 3961

SCA Runtimes provide the following conceptual functionality associated with contributions to the Domain 3962
(meaning the function might not be represented as addressable services and also meaning that 3963
equivalent functionality might be provided in other ways). It is strongly encouraged that an SCA runtime 3964
provides the contribution operation functions (install Contribution, update Contribution, add Deployment 3965
Composite, update Deployment Composite, remove Contribution); how these are provided is 3966
implementation specific. 3967

10.5.1 install Contribution & update Contribution 3968

Creates or updates an installed contribution with a supplied root contribution, and installed at a supplied 3969
base URI. A supplied dependent contribution list (<export/> elements) specifies the contributions that are 3970
used to resolve the dependencies of the root contribution and other dependent contributions. These 3971

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 98 of 138

override any dependent contributions explicitly listed via the @location attribute in the import statements 3972
of the contribution. 3973

SCA follows the simplifying assumption that the use of a contribution for resolving anything also means 3974
that all other exported artifacts can be used from that contribution. Because of this, the dependent 3975
contribution list is just a list of installed contribution URIs. There is no need to specify what is being used 3976
from each one. 3977

Each dependent contribution is also an installed contribution, with its own dependent contributions. By 3978
default these dependent contributions of the dependent contributions (which we will call indirect 3979
dependent contributions) are included as dependent contributions of the installed contribution. However, 3980
if a contribution in the dependent contribution list exports any conflicting definitions with an indirect 3981
dependent contribution, then the indirect dependent contribution is not included (i.e. the explicit list 3982
overrides the default inclusion of indirect dependent contributions). Also, if there is ever a conflict 3983
between two indirect dependent contributions, then the conflict MUST be resolved by an explicit entry in 3984
the dependent contribution list. [ASM12009] 3985

Note that in many cases, the dependent contribution list can be generated. In particular, if the creator of 3986
a Domain is careful to avoid creating duplicate definitions for the same qualified name, then it is easy for 3987
this list to be generated by tooling. 3988

10.5.2 add Deployment Composite & update Deployment Composite 3989

Adds or updates a deployment composite using a supplied composite ("composite by value" – a data 3990
structure, not an existing resource in the Domain) to the contribution identified by a supplied contribution 3991
URI. The added or updated deployment composite is given a relative URI that matches the @name 3992
attribute of the composite, with a “.composite” suffix. Since all composites run within the context of a 3993
installed contribution (any component implementations or other definitions are resolved within that 3994
contribution), this functionality makes it possible for the deployer to create a composite with final 3995
configuration and wiring decisions and add it to an installed contribution without having to modify the 3996
contents of the root contribution. 3997

Also, in some use cases, a contribution might include only implementation code (e.g. PHP scripts). It is 3998
then possible for those to be given component names by a (possibly generated) composite that is added 3999
into the installed contribution, without having to modify the packaging. 4000

10.5.3 remove Contribution 4001

Removes the deployed contribution identified by a supplied contribution URI. 4002

10.6 Use of Existing (non-SCA) Mechanisms for Resolving Artifacts 4003

For certain types of artifact, there are existing and commonly used mechanisms for referencing a specific 4004
concrete location where the artifact can be resolved. 4005

Examples of these mechanisms include: 4006

• For WSDL files, the @wsdlLocation attribute is a hint that has a URI value pointing to the place 4007
holding the WSDL itself. 4008

• For XSDs, the @schemaLocation attribute is a hint which matches the namespace to a URI where 4009
the XSD is found. 4010

Note: In neither of these cases is the runtime obliged to use the location hint and the URI does not have 4011
to be dereferenced. 4012

SCA permits the use of these mechanisms Where present, non-SCA artifact resolution mechanisms 4013
MUST be used by the SCA runtime in precendence to the SCA mechanisms. [ASM12010] However, use 4014
of these mechanisms is discouraged because tying assemblies to addresses in this way makes the 4015
assemblies less flexible and prone to errors when changes are made to the overall SCA Domain. 4016

Note: If one of the non-SCA artifact resolution mechanisms is present, but there is a failure to find the 4017
resource indicated when using the mechanism (e.g. the URI is incorrect or invalid, say) the SCA runtime 4018

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 99 of 138

MUST raise an error and MUST NOT attempt to use SCA resolution mechanisms as an alternative. 4019
[ASM12011] 4020

10.7 Domain-Level Composite 4021

The domain-level composite is a virtual composite, in that it is not defined by a composite definition 4022
document. Rather, it is built up and modified through operations on the Domain. However, in other 4023
respects it is very much like a composite, since it contains components, wires, services and references. 4024

The value of @autowire for the logical Domain composite MUST be autowire="false". [ASM12012] 4025

For components at the Domain level, with references for which @autowire="true" applies, the behaviour 4026
of the SCA runtime for a given Domain is implementation specific although it is expected that ONE of the 4027
3 behaviours below is followed: 4028

1) The SCA runtime disallows deployment of any components with autowire references. In this case, 4029
the SCA runtime can raise an exception at the point where the component is deployed. 4030

2) The SCA runtime evaluates the target(s) for the reference at the time that the component is 4031
deployed and does not update those targets when later deployment actions occur. 4032

3) The SCA runtime re-evaluates the target(s) for the reference dynamically as later deployment 4033
actions occur resulting in updated reference targets which match the new Domain configuration. 4034
How the reconfiguration of the reference takes place is described by the relevant client and 4035
implementation specifications. 4036

The abstract domain-level functionality for modifying the domain-level composite is as follows, although a 4037
runtime can supply equivalent functionality in a different form: 4038

10.7.1 add To Domain-Level Composite 4039

This functionality adds the composite identified by a supplied URI to the Domain Level Composite. The 4040
supplied composite URI refers to a composite within an installed contribution. The composite's installed 4041
contribution determines how the composite’s artifacts are resolved (directly and indirectly). The supplied 4042
composite is added to the domain composite with semantics that correspond to the domain-level 4043
composite having an <include> statement that references the supplied composite. All of the composites 4044
components become top-level components and the component services become externally visible 4045
services (eg. they would be present in a WSDL description of the Domain). The meaning of any promoted 4046
services and references in the supplied composite is not defined; since there is no composite scope 4047
outside the domain composite, the usual idea of promotion has no utility. 4048

10.7.2 remove From Domain-Level Composite 4049

Removes from the Domain Level composite the elements corresponding to the composite identified by a 4050
supplied composite URI. This means that the removal of the components, wires, services and references 4051
originally added to the domain level composite by the identified composite. 4052

10.7.3 get Domain-Level Composite 4053

Returns a <composite> definition that has an <include> line for each composite that had been added to 4054
the domain level composite. It is important to note that, in dereferencing the included composites, any 4055
referenced artifacts are resolved in terms of that installed composite. 4056

10.7.4 get QName Definition 4057

In order to make sense of the domain-level composite (as returned by get Domain-Level Composite), it 4058
needs to be possible to get the definitions for named artifacts in the included composites. This 4059
functionality takes the supplied URI of an installed contribution (which provides the context), a supplied 4060
qualified name of a definition to look up, and a supplied symbol space (as a QName, e.g. wsdl:portType). 4061
The result is a single definition, in whatever form is appropriate for that definition type. 4062

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 100 of 138

Note that this, like all the other domain-level operations, is a conceptual operation. Its capabilities need to 4063
exist in some form, but not necessarily as a service operation with exactly this signature. 4064

10.8 Dynamic Behaviour of Wires in the SCA Domain 4065

For components with references which are at the Domain level, there is the potential for dynamic 4066
behaviour when the wires for a component reference change (this can only apply to component 4067
references at the Domain level and not to components within composites used as implementations): 4068

The configuration of the wires for a component reference of a component at the Domain level can change 4069
by means of deployment actions: 4070

1. <wire/> elements can be added, removed or replaced by deployment actions 4071

2. Components can be updated by deployment actions (i.e. this can change the 4072
component reference configuration) 4073

3. Components which are the targets of reference wires can be updated or removed 4074

4. Components can be added that are potential targets for references which are 4075
marked with @autowire=true 4076

 4077

Where <wire/> elements are added, removed or replaced by deployment actions, the components whose 4078
references are affected by those deployment actions can have their references updated by the SCA 4079
runtime dynamically without the need to stop and start those components. How this is achieved is 4080
implementation specific. 4081

Where components are updated by deployment actions (their configuration is changed in some way, 4082
which includes changing the wires of component references), the SCA implementation needs to ensure 4083
that the updates apply to all new instances of those components once the update is complete. An SCA 4084
runtime can choose to maintain existing instances with the old configuration of components updated by 4085
deployment actions, although an implementation of an SCA runtime can choose to stop and discard 4086
existing instances of those components. 4087

Where a component that is the target of a wire is removed, without the wire being changed, then future 4088
invocations of the reference that use that wire can fail with a fault indicating that the service is 4089
unavailable. If the wire is the result of the autowire process, the SCA runtime can attempt to update the 4090
wire if there exists an alternative target component that satisfies the autowire process. 4091

Where a component that is the target of a wire is updated, an SCA runtime can direct future invocations 4092
of that reference to the updated component. 4093

Where a component is added to the Domain that is a potential target for a domain level component 4094
reference where that reference is marked as @autowire=true, the SCA runtime can: 4095

• either update the references for the source component once the new component is running. 4096

• or alternatively, defer the updating of the references of the source component until the source 4097
component is stopped and restarted. 4098

10.9 Dynamic Behaviour of Component Property Values 4099

For a domain level component with a Property whose value is obtained from a Domain-level Property 4100
through the use of the @source attribute, if the domain level property is updated by means of deployment 4101
actions, the SCA runtime MUST 4102

• either update the property value of the domain level component once the update of the domain 4103
property is complete 4104

• or defer the updating of the component property value until the component is stopped and 4105
restarted 4106

[ASM12034] 4107

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 101 of 138

11 SCA Runtime Considerations 4108

This section describes aspects of an SCA Runtime that are defined by this specification. 4109

11.1 Error Handling 4110

The SCA Assembly specification identifies situations where the configuration of the SCA Domain and its 4111
contents are in error. When one of these situations occurs, the specification requires that the SCA 4112
Runtime that is interacting with the SCA Domain and the artifacts it contains recognises that there is an 4113
error, raise the error in a suitable manner and also refuse to run components and services that are in 4114
error. 4115

The SCA Assembly specification is not prescriptive about the functionality of an SCA Runtime and the 4116
specification recognizes that there can be a range of design points for an SCA runtime. As a result, the 4117
SCA Assembly specification describes a range of error handling approaches which can be adopted by an 4118
SCA runtime. 4119

An SCA Runtime MUST raise an error for every situation where the configuration of the SCA Domain or 4120
its contents are in error. The error is either raised at deployment time or at runtime, depending on the 4121
nature of the error and the design of the SCA Runtime. [ASM14005] 4122

11.1.1 Errors which can be Detected at Deployment Time 4123

Some error situations can be detected at the point that artifacts are deployed to the Domain. An example 4124
is a composite document that is invalid in a way that can be detected by static analysis, such as 4125
containing a component with two services with the same @name attribute. 4126

An SCA runtime is expected to detect errors at deployment time where those errors can be found through 4127
static analysis. An SCA runtime has to prevent deployment of contributions that are in error, and raise an 4128
error to the process performing the deployment (e.g. write a message to an interactive console or write a 4129
message to a log file). The exact timing of checking contributions for errors is implementation specific. 4130

The SCA Assembly specification recognizes that there are reasons why a particular SCA runtime finds it 4131
desirable to deploy contributions that contain errors (e.g. to assist in the process of development and 4132
debugging) - and as a result also supports an error handling strategy that is based on detecting problems 4133
at runtime. However, it is wise to consider reporting problems at an early stage in the deployment 4134
proocess. 4135

11.1.2 Errors which are Detected at Runtime 4136

An SCA runtime can detect problems at runtime. These errors can include some which can be found 4137
from static analysis (e.g. the inability to wire a reference because the target service does not exist in the 4138
Domain) and others that can only be discovered dynamically (e.g. the inability to invoke some remote 4139
Web service because the remote endpoint is unavailable). 4140

Where errors can be detected through static analysis, the principle is that components that are known to 4141
be in error are not run. So, for example, if there is a component with a required reference (multiplicity 1..1 4142
or 1..n) which is not wired, best practice is that the component is not run. If an attempt is made to invoke 4143
a service operation of that component, a "ServiceUnavailable" fault is raised to the invoker. It is also 4144
regarded as best practice that errors of this kind are also raised through appropriate management 4145
interfaces, for example to the deployer or to the operator of the system. 4146

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 102 of 138

12 Conformance 4147

The XML schema pointed to by the RDDL document at the namespace URI, defined by this specification, 4148
are considered to be authoritative and take precedence over the XML schema defined in the appendix of 4149
this 4150

document. 4151

An SCA runtime MUST reject a composite file that does not conform to the sca-core.xsd, sca-interface-4152
wsdl.xsd, sca-implementation-composite.xsd and sca-binding-sca.xsd schema.. [ASM13001] 4153

An SCA runtime MUST reject a contribution file that does not conform to the sca-contribution.xsd schema. 4154
[ASM13002] 4155

An SCA runtime MUST reject a definitions file that does not conform to the sca-definitions.xsd schema. 4156
[ASM13003] 4157

There are two categories of artifacts that this specification defines conformance for: SCA Documents and 4158
SCA Runtimes. 4159

12.1 SCA Documents 4160

For a document to be a valid SCA Document, it MUST comply with one of the SCA document types 4161
below: 4162

SCA Composite Document: 4163

An SCA Composite Document is a file that MUST have an SCA <composite/> element as its root 4164
element and MUST conform to the sca-core-1.1.xsd schema and MUST comply with the 4165
additional constraints on the document contents as defined in Appendix C. 4166

SCA ComponentType Document: 4167

An SCA ComponentType Document is a file that MUST have an SCA <componentType/> 4168
element as its root element and MUST conform to the sca-core-1.1.xsd schema and MUST 4169
comply with the additional constraints on the document contents as defined in 4170
Appendix C. 4171

SCA Definitions Document: 4172

An SCA Definitions Document is a file that MUST have an SCA <definitions/> element as its root 4173
and MUST conform to the sca-definition-1.1.xsd schema and MUST comply with the additional 4174
constraints on the document contents as defined in Appendix C. 4175

SCA Contribution Document: 4176

An SCA Contribution Document is a file that MUST have an SCA <contributution/> element as its 4177
root element and MUST conform to the sca-contribution-1.1.xsd schema and MUST comply with 4178
the additional constraints on the document contents as defined in Appendix C. 4179

SCA Interoperable Packaging Document: 4180

A ZIP file containing SCA Documents and other related artifacts. The ZIP file SHOULD contain a 4181
top-level "META-INF" directory, and SHOULD contain a "META-INF/sca-contribution.xml" file, and 4182
MAY contain a "META-INF/sca-contribution-generated.xml" file. 4183

 4184

 4185

12.2 SCA Runtime 4186

An implementation that claims to conform to the requirements of an SCA Runtime defined in this 4187
specification MUST meet the following conditions: 4188

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 103 of 138

1. The implementation MUST comply with all mandatory statements listed in table 4189
Mandatory Items in Appendix C: Conformance Items, related to an SCA Runtime. 4190

2. The implementation MUST conform to the SCA Policy Framework v 1.1 Specification [SCA-4191
POLICY]. 4192

3. The implementation MUST support at least one implementation type standardized by the 4193
OpenCSA Member Section or at least one implementation type that complies with the 4194
following rules: 4195
 4196
a. The implementation type is defined in compliance with the SCA Assembly Extension Model 4197
(Section 9 of the SCA Assembly Specification). 4198
 4199
b. A document describing the mapping of the constructs defined in the SCA Assembly 4200
specification with those of the implementation type exists and is made available to its 4201
prospective user community. Such a document describes how SCA components can be 4202
developed using the implementation type, how these components can be configured and 4203
assembled together (as instances of Components in SCA compositions). The form and 4204
content of such a document are described in the specification "Implementation Type 4205
Documentation Requirements for SCA Assembly Model Version 1.1 Specification" [SCA-4206
IMPLTYPDOC]. The contents outlined in this specification template MUST be provided in 4207
order for an SCA runtime to claim compliance with the SCA Assembly Specification on the 4208
basis of providing support for that implementation type. An example of a document that 4209
describes an implementation type is the "SCA POJO Component Implementation 4210
Specification Version 1.1" [SCA-Java]. 4211
 4212
c. An adapted version of the SCA Assembly Test Suite which uses the implementation type 4213
exists and is made available to its prospective user community. The steps required to adapt 4214
the SCA Assembly Test Suite for a new implementation type are described in the 4215
specification "Test Suite Adaptation for SCA Assembly Model Version 1.1 Specification" 4216
[SCA-TSA]. The requirements described in this specification MUST be met in order for an 4217
SCA runtime to claim compliance with the SCA Assembly Specification on the basis of 4218
providing support for that implementation type. 4219

4. The implementation MUST support binding.sca and MUST support and conform to the SCA 4220
Web Service Binding Specification v 1.1. 4221

12.2.1 Optional Items 4222

In addition to mandatory items, Appendix C: Conformance Items lists a number of non-mandatory items 4223
that can be implemented SCA Runtimes. These items are categorized into functionally related classes as 4224
follows: 4225

• Development – items to improve the development of SCA contributions, debugging, etc. 4226

• Enhancement – items that add functionality and features to the SCA Runtime. 4227

• Interoperation – items that improve interoperability of SCA contributions and Runtimes 4228

These classifications are not rigid and some may overlap; items are classified according to their primary 4229
intent. 4230
 4231

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 104 of 138

A. XML Schemas 4232

A.1 sca.xsd 4233

sca-1.1.xsd is provided for convenience. It contains <include/> elements for each of the schema files that 4234
contribute to the http://docs.oasis-open.org/ns/opencsa/sca/200912 namespace. 4235

A.2 sca-core.xsd 4236

<?xml version="1.0" encoding="UTF-8"?> 4237
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. 4238
 OASIS trademark, IPR and other policies apply. --> 4239
<schema xmlns="http://www.w3.org/2001/XMLSchema" 4240
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 4241
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 4242
 elementFormDefault="qualified"> 4243
 4244
 <include schemaLocation="sca-policy-1.1-cd03.xsd"/> 4245
 <import namespace="http://www.w3.org/XML/1998/namespace" 4246
 schemaLocation="http://www.w3.org/2001/xml.xsd"/> 4247
 4248
 <!-- Common extension base for SCA definitions --> 4249
 <complexType name="CommonExtensionBase"> 4250
 <sequence> 4251
 <element ref="sca:documentation" minOccurs="0" 4252
 maxOccurs="unbounded"/> 4253
 </sequence> 4254
 <anyAttribute namespace="##other" processContents="lax"/> 4255
 </complexType> 4256
 4257
 <element name="documentation" type="sca:Documentation"/> 4258
 <complexType name="Documentation" mixed="true"> 4259
 <sequence> 4260
 <any namespace="##other" processContents="lax" minOccurs="0" 4261
 maxOccurs="unbounded"/> 4262
 </sequence> 4263
 <attribute ref="xml:lang"/> 4264
 </complexType> 4265
 4266
 <!-- Component Type --> 4267
 <element name="componentType" type="sca:ComponentType"/> 4268
 <complexType name="ComponentType"> 4269
 <complexContent> 4270
 <extension base="sca:CommonExtensionBase"> 4271
 <sequence> 4272
 <element ref="sca:implementation" minOccurs="0"/> 4273
 <choice minOccurs="0" maxOccurs="unbounded"> 4274
 <element name="service" type="sca:ComponentService"/> 4275
 <element name="reference" 4276
 type="sca:ComponentTypeReference"/> 4277
 <element name="property" type="sca:Property"/> 4278
 </choice> 4279
 <any namespace="##other" processContents="lax" minOccurs="0" 4280
 maxOccurs="unbounded"/> 4281
 </sequence> 4282
 </extension> 4283
 </complexContent> 4284
 </complexType> 4285
 4286
 <!-- Composite --> 4287

http://docs.oasis-open.org/ns/opencsa/sca/200912

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 105 of 138

 <element name="composite" type="sca:Composite"/> 4288
 <complexType name="Composite"> 4289
 <complexContent> 4290
 <extension base="sca:CommonExtensionBase"> 4291
 <sequence> 4292
 <element ref="sca:include" minOccurs="0" 4293
 maxOccurs="unbounded"/> 4294
 <choice minOccurs="0" maxOccurs="unbounded"> 4295
 <element ref="sca:requires"/> 4296
 <element ref="sca:policySetAttachment"/> 4297
 <element name="service" type="sca:Service"/> 4298
 <element name="property" type="sca:Property"/> 4299
 <element name="component" type="sca:Component"/> 4300
 <element name="reference" type="sca:Reference"/> 4301
 <element name="wire" type="sca:Wire"/> 4302
 </choice> 4303
 <element ref="sca:extensions" minOccurs="0" maxOccurs="1"/> 4304
 </sequence> 4305
 <attribute name="name" type="NCName" use="required"/> 4306
 <attribute name="targetNamespace" type="anyURI" use="required"/> 4307
 <attribute name="local" type="boolean" use="optional" 4308
 default="false"/> 4309
 <attribute name="autowire" type="boolean" use="optional" 4310
 default="false"/> 4311
 <attribute name="requires" type="sca:listOfQNames" 4312
 use="optional"/> 4313
 <attribute name="policySets" type="sca:listOfQNames" 4314
 use="optional"/> 4315
 </extension> 4316
 </complexContent> 4317
 </complexType> 4318
 4319
 <!-- Contract base type for Service, Reference --> 4320
 <complexType name="Contract" abstract="true"> 4321
 <complexContent> 4322
 <extension base="sca:CommonExtensionBase"> 4323
 <sequence> 4324
 <element ref="sca:interface" minOccurs="0" maxOccurs="1" /> 4325
 <element ref="sca:binding" minOccurs="0" 4326
 maxOccurs="unbounded" /> 4327
 <element ref="sca:callback" minOccurs="0" maxOccurs="1" /> 4328
 <element ref="sca:requires" minOccurs="0" 4329
 maxOccurs="unbounded"/> 4330
 <element ref="sca:policySetAttachment" minOccurs="0" 4331
 maxOccurs="unbounded"/> 4332
 <element ref="sca:extensions" minOccurs="0" maxOccurs="1" /> 4333
 </sequence> 4334
 <attribute name="name" type="NCName" use="required" /> 4335
 <attribute name="requires" type="sca:listOfQNames" 4336
 use="optional" /> 4337
 <attribute name="policySets" type="sca:listOfQNames" 4338
 use="optional"/> 4339
 </extension> 4340
 </complexContent> 4341
 </complexType> 4342
 4343
 <!-- Service --> 4344
 <complexType name="Service"> 4345
 <complexContent> 4346
 <extension base="sca:Contract"> 4347
 <attribute name="promote" type="anyURI" use="required"/> 4348
 </extension> 4349
 </complexContent> 4350
 </complexType> 4351

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 106 of 138

 4352
 <!-- Interface --> 4353
 <element name="interface" type="sca:Interface" abstract="true"/> 4354
 <complexType name="Interface" abstract="true"> 4355
 <complexContent> 4356
 <extension base="sca:CommonExtensionBase"> 4357
 <choice minOccurs="0" maxOccurs="unbounded"> 4358
 <element ref="sca:requires"/> 4359
 <element ref="sca:policySetAttachment"/> 4360
 </choice> 4361
 <attribute name="remotable" type="boolean" use="optional"/> 4362
 <attribute name="requires" type="sca:listOfQNames" 4363
 use="optional"/> 4364
 <attribute name="policySets" type="sca:listOfQNames" 4365
 use="optional"/> 4366
 </extension> 4367
 </complexContent> 4368
 </complexType> 4369
 4370
 <!-- Reference --> 4371
 <complexType name="Reference"> 4372
 <complexContent> 4373
 <extension base="sca:Contract"> 4374
 <attribute name="target" type="sca:listOfAnyURIs" 4375
 use="optional"/> 4376
 <attribute name="wiredByImpl" type="boolean" use="optional" 4377
 default="false"/> 4378
 <attribute name="multiplicity" type="sca:Multiplicity" 4379
 use="required"/> 4380
 <attribute name="promote" type="sca:listOfAnyURIs" 4381
 use="required"/> 4382
 </extension> 4383
 </complexContent> 4384
 </complexType> 4385
 4386
 <!-- Property --> 4387
 <complexType name="SCAPropertyBase" mixed="true"> 4388
 <sequence> 4389
 <any namespace="##any" processContents="lax" minOccurs="0" 4390
 maxOccurs="unbounded"/> 4391
 <!-- NOT an extension point; This any exists to accept 4392
 the element-based or complex type property 4393
 i.e. no element-based extension point under "sca:property" --> 4394
 </sequence> 4395
 <!-- mixed="true" to handle simple type --> 4396
 <attribute name="name" type="NCName" use="required"/> 4397
 <attribute name="type" type="QName" use="optional"/> 4398
 <attribute name="element" type="QName" use="optional"/> 4399
 <attribute name="many" type="boolean" use="optional" default="false"/> 4400
 <attribute name="value" type="anySimpleType" use="optional"/> 4401
 <anyAttribute namespace="##other" processContents="lax"/> 4402
 </complexType> 4403
 4404
 <complexType name="Property" mixed="true"> 4405
 <complexContent mixed="true"> 4406
 <extension base="sca:SCAPropertyBase"> 4407
 <attribute name="mustSupply" type="boolean" use="optional" 4408
 default="false"/> 4409
 </extension> 4410
 </complexContent> 4411
 </complexType> 4412
 4413
 <complexType name="PropertyValue" mixed="true"> 4414
 <complexContent mixed="true"> 4415

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 107 of 138

 <extension base="sca:SCAPropertyBase"> 4416
 <attribute name="source" type="string" use="optional"/> 4417
 <attribute name="file" type="anyURI" use="optional"/> 4418
 </extension> 4419
 </complexContent> 4420
 </complexType> 4421
 4422
 <!-- Binding --> 4423
 <element name="binding" type="sca:Binding" abstract="true"/> 4424
 <complexType name="Binding" abstract="true"> 4425
 <complexContent> 4426
 <extension base="sca:CommonExtensionBase"> 4427
 <sequence> 4428
 <element ref="sca:wireFormat" minOccurs="0" maxOccurs="1" /> 4429
 <element ref="sca:operationSelector" minOccurs="0" 4430
 maxOccurs="1" /> 4431
 <element ref="sca:requires" minOccurs="0" 4432
 maxOccurs="unbounded"/> 4433
 <element ref="sca:policySetAttachment" minOccurs="0" 4434
 maxOccurs="unbounded"/> 4435
 </sequence> 4436
 <attribute name="uri" type="anyURI" use="optional"/> 4437
 <attribute name="name" type="NCName" use="optional"/> 4438
 <attribute name="requires" type="sca:listOfQNames" 4439
 use="optional"/> 4440
 <attribute name="policySets" type="sca:listOfQNames" 4441
 use="optional"/> 4442
 </extension> 4443
 </complexContent> 4444
 </complexType> 4445
 4446
 <!-- Binding Type --> 4447
 <element name="bindingType" type="sca:BindingType"/> 4448
 <complexType name="BindingType"> 4449
 <complexContent> 4450
 <extension base="sca:CommonExtensionBase"> 4451
 <sequence> 4452
 <any namespace="##other" processContents="lax" minOccurs="0" 4453
 maxOccurs="unbounded"/> 4454
 </sequence> 4455
 <attribute name="type" type="QName" use="required"/> 4456
 <attribute name="alwaysProvides" type="sca:listOfQNames" 4457
 use="optional"/> 4458
 <attribute name="mayProvide" type="sca:listOfQNames" 4459
 use="optional"/> 4460
 </extension> 4461
 </complexContent> 4462
 </complexType> 4463
 4464
 <!-- WireFormat Type --> 4465
 <element name="wireFormat" type="sca:WireFormatType" abstract="true"/> 4466
 <complexType name="WireFormatType" abstract="true"> 4467
 <anyAttribute namespace="##other" processContents="lax"/> 4468
 </complexType> 4469
 4470
 <!-- OperationSelector Type --> 4471
 <element name="operationSelector" type="sca:OperationSelectorType" 4472
 abstract="true"/> 4473
 <complexType name="OperationSelectorType" abstract="true"> 4474
 <anyAttribute namespace="##other" processContents="lax"/> 4475
 </complexType> 4476
 4477
 <!-- Callback --> 4478
 <element name="callback" type="sca:Callback"/> 4479

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 108 of 138

 <complexType name="Callback"> 4480
 <complexContent> 4481
 <extension base="sca:CommonExtensionBase"> 4482
 <choice minOccurs="0" maxOccurs="unbounded"> 4483
 <element ref="sca:binding"/> 4484
 <element ref="sca:requires"/> 4485
 <element ref="sca:policySetAttachment"/> 4486
 <element ref="sca:extensions" minOccurs="0" maxOccurs="1"/> 4487
 </choice> 4488
 <attribute name="requires" type="sca:listOfQNames" 4489
 use="optional"/> 4490
 <attribute name="policySets" type="sca:listOfQNames" 4491
 use="optional"/> 4492
 </extension> 4493
 </complexContent> 4494
 </complexType> 4495
 4496
 <!-- Component --> 4497
 <complexType name="Component"> 4498
 <complexContent> 4499
 <extension base="sca:CommonExtensionBase"> 4500
 <sequence> 4501
 <element ref="sca:implementation" minOccurs="1" 4502
 maxOccurs="1"/> 4503
 <choice minOccurs="0" maxOccurs="unbounded"> 4504
 <element name="service" type="sca:ComponentService"/> 4505
 <element name="reference" type="sca:ComponentReference"/> 4506
 <element name="property" type="sca:PropertyValue"/> 4507
 <element ref="sca:requires"/> 4508
 <element ref="sca:policySetAttachment"/> 4509
 </choice> 4510
 <any namespace="##other" processContents="lax" minOccurs="0" 4511
 maxOccurs="unbounded"/> 4512
 </sequence> 4513
 <attribute name="name" type="NCName" use="required"/> 4514
 <attribute name="autowire" type="boolean" use="optional"/> 4515
 <attribute name="requires" type="sca:listOfQNames" 4516
 use="optional"/> 4517
 <attribute name="policySets" type="sca:listOfQNames" 4518
 use="optional"/> 4519
 </extension> 4520
 </complexContent> 4521
 </complexType> 4522
 4523
 <!-- Component Service --> 4524
 <complexType name="ComponentService"> 4525
 <complexContent> 4526
 <extension base="sca:Contract"> 4527
 </extension> 4528
 </complexContent> 4529
 </complexType> 4530
 4531
 <!-- Component Reference --> 4532
 <complexType name="ComponentReference"> 4533
 <complexContent> 4534
 <extension base="sca:Contract"> 4535
 <attribute name="autowire" type="boolean" use="optional"/> 4536
 <attribute name="target" type="sca:listOfAnyURIs" 4537
 use="optional"/> 4538
 <attribute name="wiredByImpl" type="boolean" use="optional" 4539
 default="false"/> 4540
 <attribute name="multiplicity" type="sca:Multiplicity" 4541
 use="optional" default="1..1"/> 4542
 <attribute name="nonOverridable" type="boolean" use="optional" 4543

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 109 of 138

 default="false"/> 4544
 </extension> 4545
 </complexContent> 4546
 </complexType> 4547
 4548
 <!-- Component Type Reference --> 4549
 <complexType name="ComponentTypeReference"> 4550
 <complexContent> 4551
 <restriction base="sca:ComponentReference"> 4552
 <sequence> 4553
 <element ref="sca:documentation" minOccurs="0" 4554
 maxOccurs="unbounded"/> 4555
 <element ref="sca:interface" minOccurs="0"/> 4556
 <element ref="sca:binding" minOccurs="0" 4557
 maxOccurs="unbounded"/> 4558
 <element ref="sca:callback" minOccurs="0"/> 4559
 <element ref="sca:requires" minOccurs="0" 4560
 maxOccurs="unbounded"/> 4561
 <element ref="sca:policySetAttachment" minOccurs="0" 4562
 maxOccurs="unbounded"/> 4563
 <element ref="sca:extensions" minOccurs="0" maxOccurs="1" /> 4564
 </sequence> 4565
 <attribute name="name" type="NCName" use="required"/> 4566
 <attribute name="autowire" type="boolean" use="optional"/> 4567
 <attribute name="wiredByImpl" type="boolean" use="optional" 4568
 default="false"/> 4569
 <attribute name="multiplicity" type="sca:Multiplicity" 4570
 use="optional" default="1..1"/> 4571
 <attribute name="requires" type="sca:listOfQNames" 4572
 use="optional"/> 4573
 <attribute name="policySets" type="sca:listOfQNames" 4574
 use="optional"/> 4575
 <anyAttribute namespace="##other" processContents="lax"/> 4576
 </restriction> 4577
 </complexContent> 4578
 </complexType> 4579
 4580
 4581
 <!-- Implementation --> 4582
 <element name="implementation" type="sca:Implementation" abstract="true"/> 4583
 <complexType name="Implementation" abstract="true"> 4584
 <complexContent> 4585
 <extension base="sca:CommonExtensionBase"> 4586
 <choice minOccurs="0" maxOccurs="unbounded"> 4587
 <element ref="sca:requires"/> 4588
 <element ref="sca:policySetAttachment"/> 4589
 </choice> 4590
 <attribute name="requires" type="sca:listOfQNames" 4591
 use="optional"/> 4592
 <attribute name="policySets" type="sca:listOfQNames" 4593
 use="optional"/> 4594
 </extension> 4595
 </complexContent> 4596
 </complexType> 4597
 4598
 <!-- Implementation Type --> 4599
 <element name="implementationType" type="sca:ImplementationType"/> 4600
 <complexType name="ImplementationType"> 4601
 <complexContent> 4602
 <extension base="sca:CommonExtensionBase"> 4603
 <sequence> 4604
 <any namespace="##other" processContents="lax" minOccurs="0" 4605
 maxOccurs="unbounded"/> 4606
 </sequence> 4607

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 110 of 138

 <attribute name="type" type="QName" use="required"/> 4608
 <attribute name="alwaysProvides" type="sca:listOfQNames" 4609
 use="optional"/> 4610
 <attribute name="mayProvide" type="sca:listOfQNames" 4611
 use="optional"/> 4612
 </extension> 4613
 </complexContent> 4614
 </complexType> 4615
 4616
 <!-- Wire --> 4617
 <complexType name="Wire"> 4618
 <complexContent> 4619
 <extension base="sca:CommonExtensionBase"> 4620
 <sequence> 4621
 <any namespace="##other" processContents="lax" minOccurs="0" 4622
 maxOccurs="unbounded"/> 4623
 </sequence> 4624
 <attribute name="source" type="anyURI" use="required"/> 4625
 <attribute name="target" type="anyURI" use="required"/> 4626
 <attribute name="replace" type="boolean" use="optional" 4627
 default="false"/> 4628
 </extension> 4629
 </complexContent> 4630
 </complexType> 4631
 4632
 <!-- Include --> 4633
 <element name="include" type="sca:Include"/> 4634
 <complexType name="Include"> 4635
 <complexContent> 4636
 <extension base="sca:CommonExtensionBase"> 4637
 <attribute name="name" type="QName"/> 4638
 </extension> 4639
 </complexContent> 4640
 </complexType> 4641
 4642
 <!-- Extensions element --> 4643
 <element name="extensions"> 4644
 <complexType> 4645
 <sequence> 4646
 <any namespace="##other" processContents="lax" 4647
 minOccurs="1" maxOccurs="unbounded"/> 4648
 </sequence> 4649
 </complexType> 4650
 </element> 4651
 4652
 <!-- Intents within WSDL documents --> 4653
 <attribute name="requires" type="sca:listOfQNames"/> 4654
 4655
 <!-- Global attribute definition for @callback to mark a WSDL port type 4656
 as having a callback interface defined in terms of a second port 4657
 type. --> 4658
 <attribute name="callback" type="anyURI"/> 4659
 4660
 <!-- Value type definition for property values --> 4661
 <element name="value" type="sca:ValueType"/> 4662
 <complexType name="ValueType" mixed="true"> 4663
 <sequence> 4664
 <any namespace="##any" processContents="lax" minOccurs="0" 4665
 maxOccurs='unbounded'/> 4666
 </sequence> 4667
 <!-- mixed="true" to handle simple type --> 4668
 <anyAttribute namespace="##any" processContents="lax"/> 4669
 </complexType> 4670
 4671

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 111 of 138

 <!-- Miscellaneous simple type definitions --> 4672
 <simpleType name="Multiplicity"> 4673
 <restriction base="string"> 4674
 <enumeration value="0..1"/> 4675
 <enumeration value="1..1"/> 4676
 <enumeration value="0..n"/> 4677
 <enumeration value="1..n"/> 4678
 </restriction> 4679
 </simpleType> 4680
 4681
 <simpleType name="OverrideOptions"> 4682
 <restriction base="string"> 4683
 <enumeration value="no"/> 4684
 <enumeration value="may"/> 4685
 <enumeration value="must"/> 4686
 </restriction> 4687
 </simpleType> 4688
 4689
 <simpleType name="listOfQNames"> 4690
 <list itemType="QName"/> 4691
 </simpleType> 4692
 4693
 <simpleType name="listOfAnyURIs"> 4694
 <list itemType="anyURI"/> 4695
 </simpleType> 4696
 4697
 <simpleType name="CreateResource"> 4698
 <restriction base="string"> 4699
 <enumeration value="always" /> 4700
 <enumeration value="never" /> 4701
 <enumeration value="ifnotexist" /> 4702
 </restriction> 4703
 </simpleType> 4704
</schema> 4705

A.3 sca-binding-sca.xsd 4706

<?xml version="1.0" encoding="UTF-8"?> 4707
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. 4708
 OASIS trademark, IPR and other policies apply. --> 4709
<schema xmlns="http://www.w3.org/2001/XMLSchema" 4710
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 4711
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 4712
 elementFormDefault="qualified"> 4713
 4714
 <include schemaLocation="sca-core-1.1-cd05.xsd"/> 4715
 4716
 <!-- SCA Binding --> 4717
 <element name="binding.sca" type="sca:SCABinding" 4718
 substitutionGroup="sca:binding"/> 4719
 <complexType name="SCABinding"> 4720
 <complexContent> 4721
 <extension base="sca:Binding"/> 4722
 </complexContent> 4723
 </complexType> 4724
 4725
</schema> 4726

A.4 sca-interface-java.xsd 4727

Is described in the SCA Java Common Annotations and APIs specification [SCA-Common-Java]. 4728

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 112 of 138

A.5 sca-interface-wsdl.xsd 4729

<?xml version="1.0" encoding="UTF-8"?> 4730
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. 4731
 OASIS trademark, IPR and other policies apply. --> 4732
<schema xmlns="http://www.w3.org/2001/XMLSchema" 4733
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 4734
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 4735
 elementFormDefault="qualified"> 4736
 4737
 <include schemaLocation="sca-core-1.1-cd05.xsd"/> 4738
 4739
 <!-- WSDL Interface --> 4740
 <element name="interface.wsdl" type="sca:WSDLPortType" 4741
 substitutionGroup="sca:interface"/> 4742
 <complexType name="WSDLPortType"> 4743
 <complexContent> 4744
 <extension base="sca:Interface"> 4745
 <sequence> 4746
 <any namespace="##other" processContents="lax" minOccurs="0" 4747
 maxOccurs="unbounded"/> 4748
 </sequence> 4749
 <attribute name="interface" type="anyURI" use="required"/> 4750
 <attribute name="callbackInterface" type="anyURI" 4751
 use="optional"/> 4752
 </extension> 4753
 </complexContent> 4754
 </complexType> 4755
 4756
</schema> 4757

A.6 sca-implementation-java.xsd 4758

Is described in the Java Component Implementation specification [SCA-Java] 4759

A.7 sca-implementation-composite.xsd 4760

<?xml version="1.0" encoding="UTF-8"?> 4761
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. 4762
 OASIS trademark, IPR and other policies apply. --> 4763
<schema xmlns="http://www.w3.org/2001/XMLSchema" 4764
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 4765
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 4766
 elementFormDefault="qualified"> 4767
 4768
 <include schemaLocation="sca-core-1.1-cd05.xsd"/> 4769
 4770
 <!-- Composite Implementation --> 4771
 <element name="implementation.composite" type="sca:SCAImplementation" 4772
 substitutionGroup="sca:implementation"/> 4773
 <complexType name="SCAImplementation"> 4774
 <complexContent> 4775
 <extension base="sca:Implementation"> 4776
 <sequence> 4777
 <any namespace="##other" processContents="lax" minOccurs="0" 4778
 maxOccurs="unbounded"/> 4779
 </sequence> 4780
 <attribute name="name" type="QName" use="required"/> 4781
 </extension> 4782
 </complexContent> 4783
 </complexType> 4784
 4785

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 113 of 138

</schema> 4786

A.8 sca-binding-webservice.xsd 4787

Is described in the SCA Web Services Binding specification [SCA-WSBINDING] 4788

A.9 sca-binding-jms.xsd 4789

Is described in the SCA JMS Binding specification [SCA-JMSBINDING] 4790

A.10 sca-policy.xsd 4791

Is described in the SCA Policy Framework specification [SCA-POLICY] 4792

A.11 sca-contribution.xsd 4793

<?xml version="1.0" encoding="UTF-8"?> 4794
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. 4795
 OASIS trademark, IPR and other policies apply. --> 4796
<schema xmlns="http://www.w3.org/2001/XMLSchema" 4797
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 4798
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 4799
 elementFormDefault="qualified"> 4800
 4801
 <include schemaLocation="sca-core-1.1-cd05.xsd"/> 4802
 4803
 <!-- Contribution --> 4804
 <element name="contribution" type="sca:ContributionType"/> 4805
 <complexType name="ContributionType"> 4806
 <complexContent> 4807
 <extension base="sca:CommonExtensionBase"> 4808
 <sequence> 4809
 <element name="deployable" type="sca:DeployableType" 4810
 minOccurs="0" maxOccurs="unbounded"/> 4811
 <element ref="sca:importBase" minOccurs="0" 4812
 maxOccurs="unbounded"/> 4813
 <element ref="sca:exportBase" minOccurs="0" 4814
 maxOccurs="unbounded"/> 4815
 <element ref="sca:extensions" minOccurs="0" maxOccurs="1"/> 4816
 </sequence> 4817
 </extension> 4818
 </complexContent> 4819
 </complexType> 4820
 4821
 <!-- Deployable --> 4822
 <complexType name="DeployableType"> 4823
 <complexContent> 4824
 <extension base="sca:CommonExtensionBase"> 4825
 <sequence> 4826
 <any namespace="##other" processContents="lax" minOccurs="0" 4827
 maxOccurs="unbounded"/> 4828
 </sequence> 4829
 <attribute name="composite" type="QName" use="required"/> 4830
 </extension> 4831
 </complexContent> 4832
 </complexType> 4833
 4834
 <!-- Import --> 4835
 <element name="importBase" type="sca:Import" abstract="true" /> 4836
 <complexType name="Import" abstract="true"> 4837
 <complexContent> 4838

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 114 of 138

 <extension base="sca:CommonExtensionBase"> 4839
 <sequence> 4840
 <any namespace="##other" processContents="lax" minOccurs="0" 4841
 maxOccurs="unbounded"/> 4842
 </sequence> 4843
 </extension> 4844
 </complexContent> 4845
 </complexType> 4846
 4847
 <element name="import" type="sca:ImportType" 4848
 substitutionGroup="sca:importBase"/> 4849
 <complexType name="ImportType"> 4850
 <complexContent> 4851
 <extension base="sca:Import"> 4852
 <attribute name="namespace" type="string" use="required"/> 4853
 <attribute name="location" type="anyURI" use="optional"/> 4854
 </extension> 4855
 </complexContent> 4856
 </complexType> 4857
 4858
 <!-- Export --> 4859
 <element name="exportBase" type="sca:Export" abstract="true" /> 4860
 <complexType name="Export" abstract="true"> 4861
 <complexContent> 4862
 <extension base="sca:CommonExtensionBase"> 4863
 <sequence> 4864
 <any namespace="##other" processContents="lax" minOccurs="0" 4865
 maxOccurs="unbounded"/> 4866
 </sequence> 4867
 </extension> 4868
 </complexContent> 4869
 </complexType> 4870
 4871
 <element name="export" type="sca:ExportType" 4872
 substitutionGroup="sca:exportBase"/> 4873
 <complexType name="ExportType"> 4874
 <complexContent> 4875
 <extension base="sca:Export"> 4876
 <attribute name="namespace" type="string" use="required"/> 4877
 </extension> 4878
 </complexContent> 4879
 </complexType> 4880
 4881
</schema> 4882

A.12 sca-definitions.xsd 4883

<?xml version="1.0" encoding="UTF-8"?> 4884
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. 4885
 OASIS trademark, IPR and other policies apply. --> 4886
<schema xmlns="http://www.w3.org/2001/XMLSchema" 4887
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912" 4888
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912" 4889
 elementFormDefault="qualified"> 4890
 4891
 <include schemaLocation="sca-core-1.1-cd05.xsd"/> 4892
 <include schemaLocation="sca-policy-1.1-cd03.xsd"/> 4893
 4894
 <!-- Definitions --> 4895
 <element name="definitions" type="sca:tDefinitions"/> 4896
 <complexType name="tDefinitions"> 4897
 <complexContent> 4898

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 115 of 138

 <extension base="sca:CommonExtensionBase"> 4899
 <choice minOccurs="0" maxOccurs="unbounded"> 4900
 <element ref="sca:intent"/> 4901
 <element ref="sca:policySet"/> 4902
 <element ref="sca:bindingType"/> 4903
 <element ref="sca:implementationType"/> 4904
 <element ref="sca:externalAttachment"/> 4905
 <any namespace="##other" processContents="lax" 4906
 minOccurs="0" maxOccurs="unbounded"/> 4907
 </choice> 4908
 <attribute name="targetNamespace" type="anyURI" use="required"/> 4909
 </extension> 4910
 </complexContent> 4911
 </complexType> 4912
 4913
</schema> 4914

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 116 of 138

B. SCA Concepts 4915

B.1 Binding 4916

Bindings are used by services and references. References use bindings to describe the access 4917
mechanism used to call the service to which they are wired. Services use bindings to describe the 4918
access mechanism(s) that clients use to call the service. 4919

SCA supports multiple different types of bindings. Examples include SCA service, Web service, 4920
stateless session EJB, database stored procedure, EIS service. SCA provides an extensibility 4921
mechanism by which an SCA runtime can add support for additional binding types. 4922

B.2 Component 4923

SCA components are configured instances of SCA implementations, which provide and consume 4924
services. SCA allows many different implementation technologies such as Java, BPEL, C++. SCA defines 4925
an extensibility mechanism that allows you to introduce new implementation types. The current 4926
specification does not mandate the implementation technologies to be supported by an SCA runtime, 4927
vendors can choose to support the ones that are important for them. A single SCA implementation can be 4928
used by multiple Components, each with a different configuration. 4929

The Component has a reference to an implementation of which it is an instance, a set of property values, 4930
and a set of service reference values. Property values define the values of the properties of the 4931
component as defined by the component’s implementation. Reference values define the services that 4932
resolve the references of the component as defined by its implementation. These values can either be a 4933
particular service of a particular component, or a reference of the containing composite. 4934

B.3 Service 4935

SCA services are used to declare the externally accessible services of an implementation. For a 4936
composite, a service is typically provided by a service of a component within the composite, or by a 4937
reference defined by the composite. The latter case allows the republication of a service with a new 4938
address and/or new bindings. The service can be thought of as a point at which messages from external 4939
clients enter a composite or implementation. 4940

A service represents an addressable set of operations of an implementation that are designed to be 4941
exposed for use by other implementations or exposed publicly for use elsewhere (e.g. public Web 4942
services for use by other organizations). The operations provided by a service are specified by an 4943
Interface, as are the operations needed by the service client (if there is one). An implementation can 4944
contain multiple services, when it is possible to address the services of the implementation separately. 4945

A service can be provided as SCA remote services, as Web services, as stateless session EJB’s, as 4946
EIS services, and so on. Services use bindings to describe the way in which they are published. SCA 4947
provides an extensibility mechanism that makes it possible to introduce new binding types for new 4948
types of services. 4949

B.3.1 Remotable Service 4950

A Remotable Service is a service that is designed to be published remotely in a loosely-coupled SOA 4951
architecture. For example, SCA services of SCA implementations can define implementations of industry-4952
standard web services. Remotable services use pass-by-value semantics for parameters and returned 4953
results. 4954

Interfaces can be identified as remotable through the <interface /> XML, but are typically specified as 4955
remotable using a component implementation technology specific mechanism, such as Java annotations. 4956
See the relevant SCA Implementation Specification for more information. As an example, to define a 4957
Remotable Service, a Component implemented in Java would have a Java Interface with the 4958
@Remotable annotation 4959

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 117 of 138

B.3.2 Local Service 4960

Local services are services that are designed to be only used “locally” by other implementations that are 4961
deployed concurrently in a tightly-coupled architecture within the same operating system process. 4962

Local services can rely on by-reference calling conventions, or can assume a very fine-grained interaction 4963
style that is incompatible with remote distribution. They can also use technology-specific data-types. 4964

How a Service is identified as local is dependant on the Component implementation technology used. 4965
See the relevant SCA Implementation Specification for more information. As an example, to define a 4966
Local Service, a Component implemented in Java would define a Java Interface that does not have the 4967
@Remotable annotation. 4968

B.4 Reference 4969

SCA references represent a dependency that an implementation has on a service that is provided by 4970
some other implementation, where the service to be used is specified through configuration. In other 4971
words, a reference is a service that an implementation can call during the execution of its business 4972
function. References are typed by an interface. 4973

For composites, composite references can be accessed by components within the composite like any 4974
service provided by a component within the composite. Composite references can be used as the targets 4975
of wires from component references when configuring Components. 4976

A composite reference can be used to access a service such as: an SCA service provided by another 4977
SCA composite, a Web service, a stateless session EJB, a database stored procedure or an EIS service, 4978
and so on. References use bindings to describe the access method used to their services. SCA provides 4979
an extensibility mechanism that allows the introduction of new binding types to references. 4980

B.5 Implementation 4981

An implementation is concept that is used to describe a piece of software technology such as a Java 4982
class, BPEL process, XSLT transform, or C++ class that is used to implement one or more services in a 4983
service-oriented application. An SCA composite is also an implementation. 4984

Implementations define points of variability including properties that can be set and settable references to 4985
other services. The points of variability are configured by a component that uses the implementation. The 4986
specification refers to the configurable aspects of an implementation as its componentType. 4987

B.6 Interface 4988

Interfaces define one or more business functions. These business functions are provided by Services 4989
and are used by components through References. Services are defined by the Interface they implement. 4990
SCA currently supports a number of interface type systems, for example: 4991

• Java interfaces 4992

• WSDL portTypes 4993

• C, C++ header files 4994

 4995

SCA also provides an extensibility mechanism by which an SCA runtime can add support for additional 4996
interface type systems. 4997

Interfaces can be bi-directional. A bi-directional service has service operations which are provided by 4998
each end of a service communication – this could be the case where a particular service demands a 4999
“callback” interface on the client, which it calls during the process of handing service requests from the 5000
client. 5001

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 118 of 138

B.7 Composite 5002

An SCA composite is the basic unit of composition within an SCA Domain. An SCA Composite is an 5003
assembly of Components, Services, References, and the Wires that interconnect them. Composites can 5004
be used to contribute elements to an SCA Domain. 5005

A composite has the following characteristics: 5006

• It can be used as a component implementation. When used in this way, it defines a boundary for 5007
Component visibility. Components cannot be directly referenced from outside of the composite in 5008
which they are declared. 5009

• It can be used to define a unit of deployment. Composites are used to contribute business logic 5010
artifacts to an SCA Domain. 5011

B.8 Composite inclusion 5012

One composite can be used to provide part of the definition of another composite, through the process of 5013
inclusion. This is intended to make team development of large composites easier. Included composites 5014
are merged together into the using composite at deployment time to form a single logical composite. 5015

Composites are included into other composites through <include…/> elements in the using composite. 5016
The SCA Domain uses composites in a similar way, through the deployment of composite files to a 5017
specific location. 5018

B.9 Property 5019

Properties allow for the configuration of an implementation with externally set data values. The data 5020
value is provided through a Component, possibly sourced from the property of a containing composite. 5021

Each Property is defined by the implementation. Properties can be defined directly through the 5022
implementation language or through annotations of implementations, where the implementation language 5023
permits, or through a componentType file. A Property can be either a simple data type or a complex data 5024
type. For complex data types, XML schema is the preferred technology for defining the data types. 5025

B.10 Domain 5026

An SCA Domain represents a set of Services providing an area of Business functionality that is controlled 5027
by a single organization. As an example, for the accounts department in a business, the SCA Domain 5028
might cover all finance-related functions, and it might contain a series of composites dealing with specific 5029
areas of accounting, with one for Customer accounts, another dealing with Accounts Payable. 5030

A Domain specifies the instantiation, configuration and connection of a set of components, provided via 5031
one or more composite files. A Domain also contains Wires that connect together the Components. A 5032
Domain does not contain promoted Services or promoted References, since promotion has no meaning 5033
at the Domain level. 5034

B.11 Wire 5035

SCA wires connect service references to services. 5036

Valid wire sources are component references. Valid wire targets are component services. 5037

When using included composites, the sources and targets of the wires don’t have to be declared in the 5038
same composite as the composite that contains the wire. The sources and targets can be defined by 5039
other included composites. Targets can also be external to the SCA Domain. 5040

B.12 SCA Runtime 5041

An SCA Runtime is a set of one or more software programs which, when executed, can accept and run 5042
SCA artifacts as defined in the SCA specifications. An SCA runtime provides an implementation of the 5043
SCA Domain and an implementation of capabilities for populating the domain with artifacts and with 5044

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 119 of 138

capabilities for running specific artifacts. An SCA Runtime can vary in size and organization and can 5045
involve a single process running on a single machine, multiple processes running on a single machine or 5046
multiple processes running across multiple machines that are linked by network communications. 5047

An SCA runtime supports at least one SCA implementation type and also supports at least one binding 5048
type. 5049

SCA Runtimes can include tools provided to assist developers in creating, testing and debugging of SCA 5050
applications and can be used to host and run SCA applications that provide business capabilities. 5051

An SCA runtime can be implemented using any technologies (i.e. it is not restricted to be implemented 5052
using any particular technologies) and it can be hosted on any operating system platform. 5053

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 120 of 138

C. Conformance Items 5054

This section contains a list of conformance items for the SCA Assembly specification. 5055

C.1 Mandatory Items 5056

Conformance ID Description

[ASM40001] The extension of a componentType side file name MUST be
.componentType.

[ASM40003] The @name attribute of a <service/> child element of a
<componentType/> MUST be unique amongst the service
elements of that <componentType/>.

[ASM40004] The @name attribute of a <reference/> child element of a
<componentType/> MUST be unique amongst the reference
elements of that <componentType/>.

[ASM40005] The @name attribute of a <property/> child element of a
<componentType/> MUST be unique amongst the property
elements of that <componentType/>.

[ASM40006] If @wiredByImpl is set to "true", then any reference targets
configured for this reference MUST be ignored by the runtime.

[ASM40007] The value of the property @type attribute MUST be the QName of
an XML schema type.

[ASM40008] The value of the property @element attribute MUST be the
QName of an XSD global element.

[ASM40009] The SCA runtime MUST ensure that any implementation default
property value is replaced by a value for that property explicitly
set by a component using that implementation.

[ASM40010] A single property element MUST NOT contain both a @type
attribute and an @element attribute.

[ASM40011] When the componentType has @mustSupply="true" for a
property element, a component using the implementation MUST
supply a value for the property since the implementation has no
default value for the property.

[ASM40012] The value of the property @file attribute MUST be a
dereferencable URI to a file containing the value for the property.

[ASM50001] The @name attribute of a <component/> child element of a
<composite/> MUST be unique amongst the component elements
of that <composite/>

[ASM50002] The @name attribute of a service element of a <component/>
MUST be unique amongst the service elements of that
<component/>

[ASM50003] The @name attribute of a service element of a <component/>
MUST match the @name attribute of a service element of the

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 121 of 138

componentType of the <implementation/> child element of the
component.

 [ASM50004] If an interface is declared for a component service, the interface
MUST provide a compatible subset of the interface declared for
the equivalent service in the componentType of the
implementation

 [ASM50005] If no binding elements are specified for the service, then the
bindings specified for the equivalent service in the
componentType of the implementation MUST be used, but if the
componentType also has no bindings specified, then
<binding.sca/> MUST be used as the binding. If binding elements
are specified for the service, then those bindings MUST be used
and they override any bindings specified for the equivalent
service in the componentType of the implementation.

[ASM50006] If the callback element is present and contains one or more
binding child elements, then those bindings MUST be used for the
callback.

[ASM50007] The @name attribute of a service element of a <component/>
MUST be unique amongst the service elements of that
<component/>

[ASM50008] The @name attribute of a reference element of a <component/>
MUST match the @name attribute of a reference element of the
componentType of the <implementation/> child element of the
component.

[ASM50009] The value of multiplicity for a component reference MUST only be
equal or further restrict any value for the multiplicity of the
reference with the same name in the componentType of the
implementation, where further restriction means 0..n to 0..1 or
1..n to 1..1.

[ASM50010] If @wiredByImpl="true" is set for a reference, then the reference
MUST NOT be wired statically within a composite, but left
unwired.

 [ASM50011] If an interface is declared for a component reference, the
interface MUST provide a compatible superset of the interface
declared for the equivalent reference in the componentType of
the implementation.

[ASM50012] If no binding elements are specified for the reference, then the
bindings specified for the equivalent reference in the
componentType of the implementation MUST be used. If binding
elements are specified for the reference, then those bindings
MUST be used and they override any bindings specified for the
equivalent reference in the componentType of the
implementation.

[ASM50013] If @wiredByImpl="true", other methods of specifying the target
service MUST NOT be used.

[ASM50014] If @autowire="true", the autowire procedure MUST only be used
if no target is identified by any of the other ways listed above. It is
not an error if @autowire="true" and a target is also defined

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 122 of 138

through some other means, however in this case the autowire
procedure MUST NOT be used.

[ASM50015] If a binding element has a value specified for a target service
using its @uri attribute, the binding element MUST NOT identify
target services using binding specific attributes or elements.

[ASM50016] It is possible that a particular binding type uses more than a
simple URI for the address of a target service. In cases where a
reference element has a binding subelement that uses more than
simple URI, the @uri attribute of the binding element MUST NOT
be used to identify the target service - in this case binding specific
attributes and/or child elements MUST be used.

[ASM50022] Where it is detected that the rules for the number of target
services for a reference have been violated, either at deployment
or at execution time, an SCA Runtime MUST raise an error no
later than when the reference is invoked by the component
implementation.

[ASM50025] Where a component reference is promoted by a composite
reference, the promotion MUST be treated from a multiplicity
perspective as providing 0 or more target services for the
component reference, depending upon the further configuration of
the composite reference. These target services are in addition to
any target services identified on the component reference itself,
subject to the rules relating to multiplicity.

[ASM50026] If a reference has a value specified for one or more target
services in its @target attribute, there MUST NOT be any child
<binding/> elements declared for that reference.

[ASM50027] If the @value attribute of a component property element is
declared, the type of the property MUST be an XML Schema
simple type and the @value attribute MUST contain a single
value of that type.

[ASM50028] If the value subelement of a component property is specified, the
type of the property MUST be an XML Schema simple type or an
XML schema complex type.

[ASM50029] If a component property value is declared using a child element of
the <property/> element, the type of the property MUST be an
XML Schema global element and the declared child element
MUST be an instance of that global element.

[ASM50031] The @name attribute of a property element of a <component/>
MUST be unique amongst the property elements of that
<component/>.

[ASM50032] If a property is single-valued, the <value/> subelement MUST
NOT occur more than once.

[ASM50033] A property <value/> subelement MUST NOT be used when the
@value attribute is used to specify the value for that property.

[ASM50034] If any <wire/> element with its @replace attribute set to "true" has
a particular reference specified in its @source attribute, the value
of the @target attribute for that reference MUST be ignored and

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 123 of 138

MUST NOT be used to define target services for that reference.

[ASM50035] A single property element MUST NOT contain both a @type
attribute and an @element attribute.

[ASM50036] The property type specified for the property element of a
component MUST be compatible with the type of the property
with the same @name declared in the component type of the
implementation used by the component. If no type is declared in
the component property element, the type of the property
declared in the componentType of the implementation MUST be
used.

[ASM50037] The @name attribute of a property element of a <component/>
MUST match the @name attribute of a property element of the
componentType of the <implementation/> child element of the
component.

[ASM50038] In these cases where the types of two property elements are
matched, the types declared for the two <property/> elements
MUST be compatible

[ASM50039] A reference with multiplicity 0..1 MUST have no more than one
target service defined.

[ASM50040] A reference with multiplicity 1..1 MUST have exactly one target
service defined.

[ASM50041] A reference with multiplicity 1..n MUST have at least one target
service defined.

[ASM50042] If a component reference has @multiplicity 0..1 or 1..1 and
@nonOverridable==true, then the component reference MUST
NOT be promoted by any composite reference.

[ASM50043] The default value of the @autowire attribute MUST be the value
of the @autowire attribute on the component containing the
reference, if present, or else the value of the @autowire attribute
of the composite containing the component, if present, and if
neither is present, then it is "false".

[ASM50044] When a property has multiple values set, all the values MUST be
contained within a single property element.

[ASM50045] The value of the component property @file attribute MUST be a
dereferencable URI to a file containing the value for the property.

[ASM50046] The format of the file which is referenced by the @file attribute of
a component property or a componentType property is that it is
an XML document which MUST contain an sca:values element
which in turn contains one of:

• a set of one or more <sca:value/> elements each
containing a simple string - where the property type is a simple
XML type

• a set of one or more <sca:value/> elements or a set of
one or more global elements - where the property type is a
complex XML type

[ASM60001] A composite @name attribute value MUST be unique within the

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 124 of 138

namespace of the composite.

[ASM60002] @local="true" for a composite means that all the components
within the composite MUST run in the same operating system
process.

[ASM60003] The name of a composite <service/> element MUST be unique
across all the composite services in the composite.

[ASM60004] A composite <service/> element's @promote attribute MUST
identify one of the component services within that composite.

[ASM60005] If a composite service interface is specified it MUST be the same
or a compatible subset of the interface provided by the promoted
component service.

[ASM60006] The name of a composite <reference/> element MUST be unique
across all the composite references in the composite.

[ASM60007] Each of the URIs declared by a composite reference's @promote
attribute MUST identify a component reference within the
composite.

[ASM60008] the interfaces of the component references promoted by a
composite reference MUST be the same, or if the composite
reference itself declares an interface then each of the component
reference interfaces MUST be a compatible subset of the
composite reference interface..

[ASM60009] the intents declared on a composite reference and on the
component references which it promoites MUST NOT be mutually
exclusive.

[ASM60010] If any intents in the set which apply to a composite reference are
mutually exclusive then the SCA runtime MUST raise an error.

[ASM60011] The multiplicity of a composite reference MUST be equal to or
further restrict the multiplicity of each of the component
references that it promotes, with the exception that the multiplicity
of the composite reference does not have to require a target if
there is already a target on the component reference. This
means that a component reference with multiplicity 1..1 and a
target can be promoted by a composite reference with multiplicity
0..1, and a component reference with multiplicity 1..n and one or
more targets can be promoted by a composite reference with
multiplicity 0..n or 0..1.

[ASM60012] If a composite reference has an interface specified, it MUST
provide an interface which is the same or which is a compatible
superset of the interface(s) declared by the promoted component
reference(s).

[ASM60013] If no interface is declared on a composite reference, the interface
from one of its promoted component references MUST be used
for the component type associated with the composite.

[ASM60014] The @name attribute of a composite property MUST be unique
amongst the properties of the same composite.

[ASM60022] For each component reference for which autowire is enabled, the

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 125 of 138

SCA runtime MUST search within the composite for target
services which have an interface that is a compatible superset of
the interface of the reference.

[ASM60024] The intents, and policies applied to the service MUST be
compatible with those on the reference when using autowire to
wire a reference – so that wiring the reference to the service will
not cause an error due to policy mismatch

[ASM60025] for an autowire reference with multiplicity 0..1 or 1..1, the SCA
runtime MUST wire the reference to one of the set of valid target
services chosen from the set in a runtime-dependent fashion

[ASM60026] for an autowire reference with multiplicity 0..n or 1..n, the
reference MUST be wired to all of the set of valid target services

[ASM60027] for an autowire reference with multiplicity 0..1 or 0..n, if the SCA
runtime finds no valid target service, there is no problem – no
services are wired and the SCA runtime MUST NOT raise an
error

[ASM60028] for an autowire reference with multiplicity 1..1 or 1..n, if the SCA
runtime finds no valid target services an error MUST be raised by
the SCA runtime since the reference is intended to be wired

[ASM60030] The @name attribute of an <implementation.composite/> element
MUST contain the QName of a composite in the SCA Domain.

[ASM60031] The SCA runtime MUST raise an error if the composite resulting
from the inclusion of one composite into another is invalid.

[ASM60032] For a composite used as a component implementation, each
composite service offered by the composite MUST promote a
component service of a component that is within the composite.

[ASM60033] For a composite used as a component implementation, every
component reference of components within the composite with
a multiplicity of 1..1 or 1..n MUST be wired or promoted.

[ASM60034] For a composite used as a component implementation, all
properties of components within the composite, where the
underlying component implementation specifies
"mustSupply=true" for the property, MUST either specify a value
for the property or source the value from a composite property.

[ASM60035] All the component references promoted by a single composite
reference MUST have the same value for @wiredByImpl.

[ASM60036] If the @wiredByImpl attribute is not specified on the composite
reference, the default value is "true" if all of the promoted
component references have a wiredByImpl value of "true", and
the default value is "false" if all the promoted component
references have a wiredByImpl value of "false". If the
@wiredByImpl attribute is specified, its value MUST be "true" if all
of the promoted component references have a wiredByImpl value
of "true", and its value MUST be "false" if all the promoted
component references have a wiredByImpl value of "false".

[ASM60037] <include/> processing MUST take place before the processing of
the @promote attribute of a composite reference is performed.

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 126 of 138

[ASM60038] <include/> processing MUST take place before the processing of
the @promote attribute of a composite service is performed.

[ASM60039] <include/> processing MUST take place before the @source and
@target attributes of a wire are resolved.

[ASM60040] A single property element MUST NOT contain both a @type
attribute and an @element attribute.

[ASM60041] If the included composite has the value true for the attribute
@local then the including composite MUST have the same value
for the @local attribute, else it is an error.

[ASM60042] The @name attribute of an include element MUST be the QName
of a composite in the SCA Domain.

[ASM60043] The interface declared by the target of a wire MUST be a
compatible superset of the interface declared by the source of the
wire.

[ASM60045] An SCA runtime MUST introspect the componentType of a
Composite used as a Component Implementation following the
rules defined in the section "Component Type of a Composite
used as a Component Implementation"

[ASM60046] If <service-name> is present, the component service with @name
corresponding to <service-name> MUST be used for the wire.

[ASM60047] If there is no component service with @name corresponding to
<service-name>, the SCA runtime MUST raise an error.

[ASM60048] If <service-name> is not present, the target component MUST
have one and only one service with an interface that is a
compatible superset of the wire source’s interface and satisifies
the policy requirements of the wire source, and the SCA runtime
MUST use this service for the wire.

[ASM60049] If <binding-name> is present, the <binding/> subelement of the
target service with @name corresponding to <binding-name>
MUST be used for the wire.

[ASM60050] If there is no <binding/> subelement of the target service with
@name corresponding to <binding-name>, the SCA runtime
MUST raise an error.

[ASM60051] If <binding-name> is not present and the target service has
multiple <binding/> subelements, the SCA runtime MUST choose
one and only one of the <binding/> elements which satisfies the
mutual policy requirements of the reference and the service, and
the SCA runtime MUST use this binding for the wire.

[ASM80001] The interface.wsdl @interface attribute MUST reference a
portType of a WSDL 1.1 document.

[ASM80002] Remotable service Interfaces MUST NOT make use of method
or operation overloading.

[ASM80003] If a remotable service is called locally or remotely, the SCA
container MUST ensure sure that no modification of input
messages by the service or post-invocation modifications to

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 127 of 138

return messages are seen by the caller.

[ASM80004] If a reference is defined using a bidirectional interface element,
the client component implementation using the reference calls the
referenced service using the interface. The client MUST provide
an implementation of the callback interface.

[ASM80005] Either both interfaces of a bidirectional service MUST be
remotable, or both MUST be local. A bidirectional service MUST
NOT mix local and remote services.

[ASM80008] Any service or reference that uses an interface marked with
intents MUST implicitly add those intents to its own @requires list.

[ASM80009] In a bidirectional interface, the service interface can have more
than one operation defined, and the callback interface can also
have more than one operation defined. SCA runtimes MUST
allow an invocation of any operation on the service interface to be
followed by zero, one or many invocations of any of the
operations on the callback interface.

[ASM80010] Whenever an interface document declaring a callback interface is
used in the declaration of an <interface/> element in SCA, it
MUST be treated as being bidirectional with the declared callback
interface.

[ASM80011] If an <interface/> element references an interface document
which declares a callback interface and also itself contains a
declaration of a callback interface, the two callback interfaces
MUST be compatible.

[ASM80016] The interface.wsdl @callbackInterface attribute, if present, MUST
reference a portType of a WSDL 1.1 document.

[ASM80017] WSDL interfaces are always remotable and therefore an
<interface.wsdl/> element MUST NOT contain remotable=”false”.

[ASM90001] For a binding of a reference the @uri attribute defines the target
URI of the reference. This MUST be either the
componentName/serviceName/bindingName for a wire to an
endpoint within the SCA Domain, or the accessible address of
some service endpoint either inside or outside the SCA Domain
(where the addressing scheme is defined by the type of the
binding).

[ASM90002] When a service or reference has multiple bindings, all non-
callback bindings of the service or reference MUST have unique
names, and all callback bindings of the service or reference
MUST have unique names.

[ASM90003] If a reference has any bindings, they MUST be resolved, which
means that each binding MUST include a value for the @uri
attribute or MUST otherwise specify an endpoint. The reference
MUST NOT be wired using other SCA mechanisms.

 [ASM90004] To wire to a specific binding of a target service the syntax
"componentName/serviceName/bindingName" MUST be used.

[ASM90005] For a binding.sca of a component service, the @uri attribute
MUST NOT be present.

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 128 of 138

[ASM10001] all of the QNames for the definitions contained in definitions.xml
files MUST be unique within the Domain.

[ASM10002] An SCA runtime MUST make available to the Domain all the
artifacts contained within the definitions.xml files in the Domain.

[ASM10003] An SCA runtime MUST reject a definitions.xml file that does not
conform to the sca-definitions.xsd schema.

[ASM11001] A conforming implementation type, interface type, import type or
export type MUST meet the requirements in "Implementation
Type Documentation Requirements for SCA Assembly Model
Version 1.1 Specification".

[ASM11002] A binding extension element MUST be declared as an element in
the substitution group of the sca:binding element.

[ASM11003] A binding extension element MUST be declared to be of a type
which is an extension of the sca:Binding type.

[ASM12001] For any contribution packaging it MUST be possible to present
the artifacts of the packaging to SCA as a hierarchy of resources
based off of a single root

[ASM12002] Within any contribution packaging A directory resource SHOULD
exist at the root of the hierarchy named META-INF

[ASM12003] Within any contribution packaging a document SHOULD exist
directly under the META-INF directory named sca-
contribution.xml which lists the SCA Composites within the
contribution that are runnable.

[ASM12005] Where present, artifact-related or packaging-related artifact
resolution mechanisms MUST be used by the SCA runtime to
resolve artifact dependencies.

[ASM12006] SCA requires that all runtimes MUST support the ZIP packaging
format for contributions.

[ASM12009] if there is ever a conflict between two indirect dependent
contributions, then the conflict MUST be resolved by an explicit
entry in the dependent contribution list.

[ASM12010] Where present, non-SCA artifact resolution mechanisms MUST
be used by the SCA runtime in precendence to the SCA
mechanisms.

 [ASM12011] If one of the non-SCA artifact resolution mechanisms is present,
but there is a failure to find the resource indicated when using the
mechanism (e.g. the URI is incorrect or invalid, say) the SCA
runtime MUST raise an error and MUST NOT attempt to use SCA
resolution mechanisms as an alternative.

[ASM12012] The value of @autowire for the logical Domain composite MUST
be autowire="false".

[ASM12021] The SCA runtime MUST raise an error if an artifact cannot be
resolved using these mechanisms, if present.

[ASM12022] There can be multiple import declarations for a given namespace.

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 129 of 138

Where multiple import declarations are made for the same
namespace, all the locations specified MUST be searched in
lexical order.

[ASM12023] When a contribution contains a reference to an artifact from a
namespace that is declared in an import statement of the
contribution, if the SCA artifact resolution mechanism is used to
resolve the artifact, the SCA runtime MUST resolve artifacts in the
following order:

5. from the locations identified by the import
statement(s) for the namespace. Locations
MUST NOT be searched recursively in order to
locate artifacts (i.e. only a one-level search is
performed).

6. from the contents of the contribution itself.

[ASM12024] The SCA runtime MUST ignore local definitions of an artifact if the
artifact is found through resolving an import statement.

[ASM12025] The SCA runtime MUST raise an error if an artifact cannot be
resolved by using artifact-related or packaging-related artifact
resolution mechanisms, if present, by searching locations
identified by the import statements of the contribution, if present,
and by searching the contents of the contribution.

[ASM12026] An SCA runtime MUST make the <import/> and <export/>
elements found in the META-INF/sca-contribution.xml and META-
INF/sca-contribution-generated.xml files available for the SCA
artifact resolution process.

[ASM12027] An SCA runtime MUST reject files that do not conform to the
schema declared in sca-contribution.xsd.

[ASM12028] An SCA runtime MUST merge the contents of sca-contribution-
generated.xml into the contents of sca-contribution.xml, with the
entries in sca-contribution.xml taking priority if there are any
conflicting declarations.

[ASM12030] For XML definitions, which are identified by QNames, the
@namespace attribute of the export element MUST be the
namespace URI for the exported definitions.

[ASM12031] When a contribution uses an artifact contained in another
contribution through SCA artifact resolution, if that artifact itself
has dependencies on other artifacts, the SCA runtime MUST
resolve these dependencies in the context of the contribution
containing the artifact, not in the context of the original
contribution.

[ASM12032] Checking for errors in artifacts MUST NOT be done for artifacts in
the Installed state (ie where the artifacts are simply part of
installed contributions)

[ASM12033] Errors in artifacts MUST be detected either during the
Deployment of the artifacts, or during the process of putting the
artifacts into the Running state,

[ASM12034] For a domain level component with a Property whose value is

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 130 of 138

 obtained from a Domain-level Property through the use of the
@source attribute, if the domain level property is updated by
means of deployment actions, the SCA runtime MUST

• either update the property value of the domain level
component once the update of the domain property is complete

• or defer the updating of the component property value
until the component is stopped and restarted

[ASM13001] An SCA runtime MUST reject a composite file that does not
conform to the sca-core.xsd, sca-interface-wsdl.xsd, sca-
implementation-composite.xsd and sca-binding-sca.xsd schema.

[ASM13002] An SCA runtime MUST reject a contribution file that does not
conform to the sca-contribution.xsd schema.

[ASM13003] An SCA runtime MUST reject a definitions file that does not
conform to the sca-definitions.xsd schema.

[ASM14005] An SCA Runtime MUST raise an error for every situation where
the configuration of the SCA Domain or its contents are in error.
The error is either raised at deployment time or at runtime,
depending on the nature of the error and the design of the SCA
Runtime.

C.2 Non-mandatory Items 5057

Conformance ID Description Classification

[ASM12002] Within any contribution packaging A directory
resource SHOULD exist at the root of the hierarchy
named META-INF

Interoperation

[ASM12003] Within any contribution packaging a document
SHOULD exist directly under the META-INF directory
named sca-contribution.xml which lists the SCA
Composites within the contribution that are runnable.

Interoperation

[ASM12007] Implementations of SCA MAY also raise an error if
there are conflicting names exported from multiple
contributions.

Development

[ASM12029] An SCA runtime MAY deploy the composites in
<deployable/> elements found in the META-INF/sca-
contribution.xml and META-INF/sca-contribution-
generated.xml files.

Interoperation

 5058

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 131 of 138

D. Acknowledgements 5059

The following individuals have participated in the creation of this specification and are gratefully 5060
acknowledged: 5061

Participants: 5062
 5063

Participant Name Affiliation
Bryan Aupperle IBM
Ron Barack SAP AG*
Michael Beisiegel IBM
Megan Beynon IBM
Vladislav Bezrukov SAP AG*
Henning Blohm SAP AG*
Fraser Bohm IBM
David Booz IBM
Fred Carter AmberPoint
Martin Chapman Oracle Corporation
Graham Charters IBM
Shih-Chang Chen Oracle Corporation
Chris Cheng Primeton Technologies, Inc.
Vamsavardhana Reddy Chillakuru IBM
Mark Combellack Avaya, Inc.
Jean-Sebastien Delfino IBM
David DiFranco Oracle Corporation
Mike Edwards IBM
Jeff Estefan Jet Propulsion Laboratory:*
Raymond Feng IBM
Billy Feng Primeton Technologies, Inc.
Paul Fremantle WSO2*
Robert Freund Hitachi, Ltd.
Peter Furniss Iris Financial Solutions Ltd.
Genadi Genov SAP AG*
Mark Hapner Sun Microsystems
Zahir HEZOUAT IBM
Simon Holdsworth IBM
Sabin Ielceanu TIBCO Software Inc.
Bo Ji Primeton Technologies, Inc.
Uday Joshi Oracle Corporation
Mike Kaiser IBM
Khanderao Kand Oracle Corporation
Anish Karmarkar Oracle Corporation
Nickolaos Kavantzas Oracle Corporation
Rainer Kerth SAP AG*
Dieter Koenig IBM
Meeraj Kunnumpurath Individual
Jean Baptiste Laviron Axway Software*

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 132 of 138

Simon Laws IBM
Rich Levinson Oracle Corporation
Mark Little Red Hat
Ashok Malhotra Oracle Corporation
Jim Marino Individual
Carl Mattocks CheckMi*
Jeff Mischkinsky Oracle Corporation
Ian Mitchell IBM
Dale Moberg Axway Software*
Simon Moser IBM
Simon Nash Individual
Peter Niblett IBM
Duane Nickull Adobe Systems
Eisaku Nishiyama Hitachi, Ltd.
Sanjay Patil SAP AG*
Plamen Pavlov SAP AG*
Peter Peshev SAP AG*
Gilbert Pilz Oracle Corporation
Nilesh Rade Deloitte Consulting LLP
Martin Raepple SAP AG*
Luciano Resende IBM
Michael Rowley Active Endpoints, Inc.
Vicki Shipkowitz SAP AG*
Ivana Trickovic SAP AG*
Clemens Utschig - Utschig Oracle Corporation
Scott Vorthmann TIBCO Software Inc.
Feng Wang Primeton Technologies, Inc.
Tim Watson Oracle Corporation
Eric Wells Hitachi, Ltd.
Robin Yang Primeton Technologies, Inc.
Prasad Yendluri Software AG, Inc.*
 5064

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 133 of 138

E. Revision History 5065

 5066

Revision Date Editor Changes Made

1 2007-09-24 Anish Karmarkar Applied the OASIS template + related changes
to the Submission

2 2008-01-04 Michael Beisiegel composite section
- changed order of subsections from property,
reference, service to service, reference,
property
- progressive disclosure of pseudo schemas,
each section only shows what is described
- attributes description now starts with name :
type (cardinality)
- child element description as list, each item
starting with name : type (cardinality)
- added section in appendix to contain
complete pseudo schema of composite

- moved component section after
implementation section
- made the ConstrainingType section a top
level section
- moved interface section to after constraining
type section

component section
- added subheadings for Implementation,
Service, Reference, Property
- progressive disclosure of pseudo schemas,
each section only shows what is described
- attributes description now starts with name :
type (cardinality)
- child element description as list, each item
starting with name : type (cardinality)

implementation section
- changed title to “Implementation and
ComponentType”
- moved implementation instance related stuff
from implementation section to component
implementation section
- added subheadings for Service, Reference,
Property, Implementation
- progressive disclosure of pseudo schemas,
each section only shows what is described
- attributes description now starts with name :
type (cardinality)
- child element description as list, each item
starting with name : type (cardinality)
- attribute and element description still needs to
be completed, all implementation statements

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 134 of 138

on services, references, and properties should
go here
- added complete pseudo schema of
componentType in appendix

- added “Quick Tour by Sample” section, no
content yet
- added comment to introduction section that
the following text needs to be added
 "This specification is efined
in terms of infoset and not XML
1.0, even though the spec uses XML
1.0/1.1 terminology. A mapping from
XML to infoset (... link to infoset
specification ...) is trivial and
should be used for non-XML
serializations."

3 2008-02-15 Anish Karmarkar

Michael Beisiegel

Incorporated resolutions from 2008 Jan f2f.
- issue 9
- issue 19
- issue 21
- issue 4
- issue 1A
- issue 27

- in Implementation and ComponentType
 section added attribute and element
 description for service, reference, and
 property
- removed comments that helped understand
 the initial restructuring for WD02
- added changes for issue 43
- added changes for issue 45, except the
 changes for policySet and requires attribute
 on property elements
- used the NS http://docs.oasis-
open.org/ns/opencsa/sca/200712
- updated copyright stmt
- added wordings to make PDF normative and
xml schema at the NS uri autoritative

4 2008-04-22 Mike Edwards Editorial tweaks for CD01 publication:
- updated URL for spec documents
- removed comments from published CD01
version
- removed blank pages from body of spec

5 2008-06-30 Anish Karmarkar

Michael Beisiegel

Incorporated resolutions of issues: 3, 6, 14
(only as it applies to the component property
element), 23, 25, 28, 25, 38, 39, 40, 42, 45
(except for adding @requires and @policySets
to property elements), 57, 67, 68, 69

6 2008-09-23 Mike Edwards Editorial fixes in response to Mark
Combellack's review contained in email:
http://lists.oasis-open.org/archives/sca-
assembly/200804/msg00089.html

7 CD01 - Rev3 2008-11-18 Mike Edwards • Specification marked for conformance

http://docs.oasis-open.org/ns/opencsa/sca/200712
http://docs.oasis-open.org/ns/opencsa/sca/200712

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 135 of 138

statements. New Appendix (D) added
containing a table of all conformance
statements. Mass of related minor editorial
changes to remove the use of RFC2119
words where not appropriate.

8 CD01 - Rev4 2008-12-11 Mike Edwards - Fix problems of misplaced statements in
Appendix D
- Fixed problems in the application of Issue 57 -
section 5.3.1 & Appendix D as defined in email:
http://lists.oasis-open.org/archives/sca-
assembly/200811/msg00045.html
- Added Conventions section, 1.3, as required
by resolution of Issue 96.
- Issue 32 applied - section B2
- Editorial addition to section 8.1 relating to no
operation overloading for remotable interfaces,
as agreed at TC meeting of 16/09/2008.

9 CD01 - Rev5 2008-12-22 Mike Edwards - Schemas in Appendix B updated with
resolutions of Issues 32 and 60
- Schema for contributions - Appendix B12 -
updated with resolutions of Issues 53 and 74.
- Issues 53 and 74 incorporated - Sections
11.4, 11.5

10 CD01-Rev6 2008-12-23 Mike Edwards - Issues 5, 71, 92
- Issue 14 - remaining updates applied to
ComponentType (section 4.1.3) and to
Composite Property (section 6.3)

11 CD01-Rev7 2008-12-23 Mike Edwards All changes accepted before revision from
Rev6 started - due to changes being applied to
previously changed sections in the Schemas
Issues 12 & 18 - Section B2
Issue 63 - Section C3
Issue 75 - Section C12
Issue 65 - Section 7.0
Issue 77 - Section 8 + Appendix D
Issue 69 - Sections 5.1, 8
Issue 45 - Sections 4.1.3, 5.4, 6.3, B2.
Issue 56 - Section 8.2, Appendix D
Issue 41 - Sections 5.3.1, 6.4, 12.7, 12.8,
Appendix D

12 CD01-Rev8 2008-12-30 Mike Edwards Issue 72 - Removed Appendix A
Issue 79 - Sections 9.0, 9.2, 9.3, Appendix A.2
Issue 62 - Sections 4.1.3, 5.4
Issue 26 - Section 6.5
Issue 51 - Section 6.5
Issue 36 - Section 4.1
Issue 44 - Section 10, Appendix C
Issue 89 - Section 8.2, 8.5, Appendix A,
Appendix C
Issue 16 - Section 6.8, 9.4
Issue 8 - Section 11.2.1
Issue 17 - Section 6.6
Issue 30 - Sections 4.1.1, 4.1.2, 5.2, 5.3, 6.1,
6.2, 9
Issue 33 - insert new Section 8.4

12 CD01- 2009-01-13 Bryan Aupperle Issue 99 - Section 8

http://lists.oasis-open.org/archives/sca-assembly/200811/msg00045.html
http://lists.oasis-open.org/archives/sca-assembly/200811/msg00045.html

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 136 of 138

Rev8a Mike Edwards

13 CD02 2009-01-14 Mike Edwards All changes accepted
All comments removed

14 CD02-Rev2 2009-01-30 Mike Edwards Issue 94 applied (removal of conversations)

15 CD02-Rev3 2009-01-30 Mike Edwards Issue 98 - Section 5.3
Minor editorial cleanup (various locations)
Removal of <operation/> element as decided at
Jan 2009 F2F - various sections
Issue 95 - Section 6.2
Issue 2 - Section 2.1
Issue 37 - Sections 2.1, 6, 12.6.1, B10
Issue 48 - Sections 5.3, A2
Issue 90 - Sections 6.1, 6.2, 6.4
Issue 64 - Sections 7, A2
Issue 100 - Section 6.2
Issue 103 - Sections 10, 12.2.2, A.13
Issue 104 - Sections 4.1.3, 5.4, 6.3
Section 3 (Quick Tour By Sample) removed by
decision of Jan 2009 Assembly F2F meeting

16 CD02-Rev4 2009-02-06 Mike Edwards All changes accepted
Major Editorial work to clean out all RFC2119
wording and to ensure that no normative
statements have been missed.

16 CD02-Rev6 2009-02-24 Mike Edwards Issue 107 - sections 4, 5, 11, Appendix C
Editorial updates resulting from Review
Issue 34 - new section 12 inserted, + minor
editorial changes in sections 4, 11
Issue 110 - Section 8.0
Issue 111 - Section 4.4, Appendix C
Issue 112 - Section 4.5
Issue 113 - Section 3.3
Issue 108 - Section 13, Appendix C
Minor editorial changes to the example in
section 3.3

17 CD02-Rev7 2009-03-02 Mike Edwards Editorial changes resulting from Vamsi's review
of CD02 Rev6
Issue 109 - Section 8, Appendix A.2, Appendix
B.3.1, Appendix C
Added back @requires and @policySets to
<interface/> as editorial correction since they
were lost by accident in earlier revision
Issue 101 - Section 13
Issue 120 - Section

18 CD02-Rev
8

2009-03-05 Mike Edwards XSDs corrected and given new namespace.
Namespace updated throughout document.

19 CD03 2009-03-05 Mike Edwards All Changes Accepted

20 CD03 2009-03-17 Anish Karmarkar Changed CD03 per TC’s CD03/PR01
resolution. Fixed the footer, front page.

21 CD03 Rev1 2009-06-16 Mike Edwards Issue 115 - Sections 3.1.3, 4.4, 5.3, A.2
Editorial: Use the form "portType" in all cases
when referring to WSDL portType
Issue 117 - Sections 4.2, 4.3, 5.0, 5.1, 5.2, 5.4,
5.4.2, 6.0, add new 7.2, old 7.2
Note: REMOVED assertions:

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 137 of 138

ASM60015 ASM60015 ASM60016 ASM60017
ASM60018 ASM60019 ASM60020 ASM60023
ASM60024 ASM80012 ASM80013 ASM80014
ASM80015
ADDED ASM70007
Issue 122 - Sections 4.3, 4.3.1, 4.3.1.1, 6.0,
8.0, 11.6
Issue 123 - Section A.2
Issue 124 - Sections A2, A5
Issue 125 - Section 7.6
Editorial - fixed broken reference links in
Sections 7.0, 11.2
Issue 126 - Section 7.6
Issue 127 - Section 4.4, added Section 4.4.1
Issue 128 - Section A2
Issue 129 - Section A2
Issue 130 - multiple sections
Issue 131 - Section A.11
Issue 135 - Section 8.4.2
Issue 141 - Section 4.3

22 CD03 Rev2 2009-07-28 Mike Edwards Issue 151 - Section A.2
Issue 133 - Sections 7, 11.2
Issue 121 - Section 13.1, 13.2, C.1, C.2
Issue 134 - Section 5.2
Issue 153 - Section 3.2, 5.3.1

23 CD03 Rev3 2009-09-23 Mike Edwards Major formatting update - all snippets and
examples given a caption and consistent
formatting. All references to snippets and
examples updated to use the caption
numbering.
Issue 147 - Section 5.5.1 added
Issue 136 - Section 4.3, 5.2
Issue 144 - Section 4.4
Issue 156 - Section 8
Issue 160 - Section 12.1
Issue 176 - Section A.5
Issue 180 - Section A.1
Issue 181 - Section 5.1, 5.2

24 CD03 Rev4 2009-09-23 Mike Edwards All changes accepted
Issue 157 - Section 6 removed, other changes
scattered through many other sections,
including the XSDs and normative statements.
Issue 182 - Appendix A

25 CD03 Rev5 2009-11-20 Mike Edwards All changes accepted
Issue 138 - Section 10.3 added
Issue 142 - Section 4.3 updated
Issue 143 - Section 7.5 updated
Issue 145 - Section 4.4 updated
Issue 158 - Section 5.3.1 updated
Issue 183 - Section 7.5 updated
Issue 185 - Section 10.9 updated

26 CD03 Rev6 2009-12-03 Mike Edwards All changes accepted
Issue 175 - Section A2 updated
Issue 177 - Section A2 updated
Issue 188 - Sections 3.1.1, 3.1.2, 3.1.4, 4, 4.1,
4.2, 4.3, 5, 5.1, 5.2, 6, 6.6, 7, 7.5, 9, A2

sca-assembly-spec-v1.1-csd08 31 May 2011

Standards Track Work Product Copyright © OASIS Open 2011. All Rights Reserved. Page 138 of 138

updated
Issue 192 - editorial fixes in Sections 5.1, 5.2,
5.4.1, 5.5, 5.6.1
SCA namespace updated to
http://docs.oasis-
open.org/ns/opencsa/sca/200912
as decided at Dec 1st F2F meeting - changes
scattered through the document
Issue 137 - Sections 5.4, 7 updated
Issue 189 - Section 6.5 updated

27 CD04 2009-12-09 Mike Edwards All changes accepted

28 CD05 2010-01-12 Mike Edwards All changes accepted
Issue 215 – Section 8 and A.12

29 CD05 Rev1 2010-07-13 Bryan Aupperle Issue 221 – Sections 3.1.3, 4.4 updated and
4.4.2 added
Issue 222 – Section 8 and A.12 updated
Issue 223 – Sections A.2 and A.11 updated
Issue 225 – Section B.12 added
Issue 228 – Section A.2 updated
Issue 229 – Section 5 updated

30 CD05 Rev2 2010-08-10 Mike Edwards

Bryan Aupperle

Issue 237 – Section A.1 updated
Templated requirements – Section 1.4 added
References to other SCA specifications
updated to current drafts – Section 1.3 updated

31 CD06 2010-08-10 Mike Edwards All changes accepted
Editorial cleaning

32 WD061 2011-01-04 Mike Edwards Issue 252 - Sections 1.2 & 12.2 updated

33 WD071 2011-05-16 Mike Edwards Issue 258 - Section 9 updated
Issue 260 - Sections 5,10,11 updated
Issue 261 - Section 10, 11 updated.
Editorial corrects (missing entries in Normative
Statement table), colour corrections.

34 WD072 2011-05-16 Mike Edwards All changes accepted.

35 WD073 2011-05-17 Mike Edwards Added reference to the Assembly TestCases
document - Sections 1.3, 1.5

36 WD074 2011-05-17 Mike Edwards Issue 262 - Sections 1.3, 1.5

37 WD075 2011-05-31 Mike Edwards Fix ASM50041 text to match the content of the
table in Appendix C (actually contained a
reference to the text of ASM50040)
Fix ASM50007 text to match the resolution of
Issue 141 (editorial change)
Downgrade ASM12008 to meet the resolution
of Issue 260

 5067

http://docs.oasis-open.org/ns/opencsa/sca/200912
http://docs.oasis-open.org/ns/opencsa/sca/200912

	1.1 Terminology
	1.2 Normative References
	1.3 Non-Normative References
	1.4 Naming Conventions
	1.5 Testcases
	2.1 Diagram used to Represent SCA Artifacts
	3.1 Component Type
	3.1.1 Service
	3.1.2 Reference
	3.1.3 Property
	3.1.4 Implementation

	3.2 Example ComponentType
	3.3 Example Implementation
	4.1 Implementation
	4.2 Service
	4.3 Reference
	4.3.1 Specifying the Target Service(s) for a Reference

	4.4 Property
	4.4.1 Property Type Compatibility
	4.4.2 Property Value File Format

	4.5 Example Component
	5.1 Service
	5.1.1 Service Examples

	5.2 Reference
	5.2.1 Example Reference

	5.3 Property
	5.3.1 Property Examples

	5.4 Wire
	5.4.1 Wire Examples
	5.4.2 Autowire
	5.4.3 Autowire Examples

	5.5 Using Composites as Component Implementations
	5.5.1 Component Type of a Composite used as a Component Implementation
	5.5.2 Example of Composite used as a Component Implementation

	5.6 Using Composites through Inclusion
	5.6.1 Included Composite Examples

	5.7 Composites which Contain Component Implementations of Multiple Types
	5.8 Structural URI of Components
	6.1 Local and Remotable Interfaces
	6.2 Interface Compatibility
	6.2.1 Compatible Interfaces
	6.2.2 Compatible Subset
	6.2.3 Compatible Superset

	6.3 Bidirectional Interfaces
	6.4 Long-running Request-Response Operations
	6.4.1 Background
	6.4.2 Definition of "long-running"
	6.4.3 The asyncInvocation Intent
	6.4.4 Requirements on Bindings
	6.4.5 Implementation Type Support

	6.5 SCA-Specific Aspects for WSDL Interfaces
	6.6 WSDL Interface Type
	6.6.1 Example of interface.wsdl

	7.1 Messages containing Data not defined in the Service Interface
	7.2 WireFormat
	7.3 OperationSelector
	7.4 Form of the URI of a Deployed Binding
	7.4.1 Non-hierarchical URIs
	7.4.2 Determining the URI scheme of a deployed binding

	7.5 SCA Binding
	7.5.1 Example SCA Binding

	7.6 Web Service Binding
	7.7 JMS Binding
	9.1 Defining an Interface Type
	9.2 Defining an Implementation Type
	9.3 Defining a Binding Type
	9.4 Defining an Import Type
	9.5 Defining an Export Type
	10.1 Domains
	10.2 Contributions
	10.2.1 SCA Artifact Resolution
	10.2.2 SCA Contribution Metadata Document
	10.2.3 Contribution Packaging using ZIP

	10.3 States of Artifacts in the Domain
	10.4 Installed Contribution
	10.4.1 Installed Artifact URIs

	10.5 Operations for Contributions
	10.5.1 install Contribution & update Contribution
	10.5.2 add Deployment Composite & update Deployment Composite
	10.5.3 remove Contribution

	10.6 Use of Existing (non-SCA) Mechanisms for Resolving Artifacts
	10.7 Domain-Level Composite
	10.7.1 add To Domain-Level Composite
	10.7.2 remove From Domain-Level Composite
	10.7.3 get Domain-Level Composite
	10.7.4 get QName Definition

	10.8 Dynamic Behaviour of Wires in the SCA Domain
	10.9 Dynamic Behaviour of Component Property Values
	11.1 Error Handling
	11.1.1 Errors which can be Detected at Deployment Time
	11.1.2 Errors which are Detected at Runtime

	12.1 SCA Documents
	12.2 SCA Runtime
	12.2.1 Optional Items

