
sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 1 of 132

Service Component Architecture
Assembly Model Specification Version
1.1

Committee Draft 03 / Public Review Draft 01

10 March 2009

Specification URIs:
This Version:

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.doc
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.pdf (Authoritative)

Previous Version:
http://www.oasis-open.org/committees/download.php/30702/sca-assembly-1.1-spec-cd02.doc
http://www.oasis-open.org/committees/download.php/30701/sca-assembly-1.1-spec-cd02.pdf
(Authoritative)

Latest Version:
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.doc
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.pdf (Authoritative)

Technical Committee:
OASIS Service Component Architecture / Assembly (SCA-Assembly) TC

Chair(s):
Martin Chapman, Oracle
Mike Edwards, IBM

Editor(s):

Michael Beisiegel, IBM
Khanderao Khand, Oracle
Anish Karmarkar, Oracle
Sanjay Patil, SAP
Michael Rowley, Active Endpoints

Related work:
This specification replaces or supercedes:

 Service Component Architecture Assembly Model Specification Version 1.00, March 15,
2007

This specification is related to:

 Service Component Architecture Policy Framework Specification Version 1.1

Declared XML Namespace(s):
http://docs.oasis-open.org/ns/opencsa/sca/200903

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.doc
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.pdf
http://www.oasis-open.org/committees/download.php/30702/sca-assembly-1.1-spec-cd02.doc
http://www.oasis-open.org/committees/download.php/30701/sca-assembly-1.1-spec-cd02.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.doc
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-assembly
http://docs.oasis-open.org/ns/opencsa/sca/200903

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 2 of 132

Abstract:
Service Component Architecture (SCA) provides a programming model for building applications
and solutions based on a Service Oriented Architecture. It is based on the idea that business
function is provided as a series of services, which are assembled together to create solutions that
serve a particular business need. These composite applications can contain both new services
created specifically for the application and also business function from existing systems and
applications, reused as part of the composition. SCA provides a model both for the composition
of services and for the creation of service components, including the reuse of existing application
function within SCA composites.

SCA is a model that aims to encompass a wide range of technologies for service components
and for the access methods which are used to connect them. For components, this includes not
only different programming languages, but also frameworks and environments commonly used
with those languages. For access methods, SCA compositions allow for the use of various
communication and service access technologies that are in common use, including, for example,
Web services, Messaging systems and Remote Procedure Call (RPC).

The SCA Assembly Model consists of a series of artifacts which define the configuration of an
SCA Domain in terms of composites which contain assemblies of service components and the
connections and related artifacts which describe how they are linked together.

This document describes the SCA Assembly Model, which covers

 A model for the assembly of services, both tightly coupled and loosely coupled

 A model for applying infrastructure capabilities to services and to service interactions,
including Security and Transactions

Status:
This document was last revised or approved by the OASIS Service Component Architecture /
Assembly (SCA-Assembly) TC on the above date. The level of approval is also listed above.
Check the “Latest Version” or “Latest Approved Version” location noted above for possible later
revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-assembly/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-assembly/ipr.php.

The non-normative errata page for this specification is located at
http://www.oasis-open.org/committees/sca-assembly/

http://www.oasis-open.org/committees/sca-assembly/
http://www.oasis-open.org/committees/sca-assembly/
http://www.oasis-open.org/committees/sca-assembly/
http://www.oasis-open.org/committees/sca-assembly/
http://www.oasis-open.org/committees/sca-assembly/

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 3 of 132

Notices

Copyright © OASIS® 2005, 2009. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of
OASIS, the owner and developer of this specification, and should be used only to refer to the organization
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications,
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/who/trademark.php

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 4 of 132

Table of Contents

1 Introduction ... 7

1.1 Terminology .. 7

1.2 Normative References .. 7

1.3 Naming Conventions .. 8

2 Overview .. 9

2.1 Diagram used to Represent SCA Artifacts .. 10

3 Implementation and ComponentType .. 12

3.1 Component Type .. 12

3.1.1 Service .. 13

3.1.2 Reference .. 14

3.1.3 Property ... 16

3.1.4 Implementation .. 17

3.2 Example ComponentType .. 18

3.3 Example Implementation .. 18

4 Component ... 21

4.1 Implementation ... 22

4.2 Service .. 23

4.3 Reference ... 24

4.3.1 Specifying the Target Service(s) for a Reference .. 26

4.4 Property .. 28

4.5 Example Component .. 31

5 Composite .. 34

5.1 Service .. 35

5.1.1 Service Examples .. 37

5.2 Reference ... 38

5.2.1 Example Reference ... 40

5.3 Property .. 42

5.3.1 Property Examples .. 43

5.4 Wire .. 45

5.4.1 Wire Examples .. 47

5.4.2 Autowire .. 48

5.4.3 Autowire Examples .. 49

5.5 Using Composites as Component Implementations ... 52

5.5.1 Example of Composite used as a Component Implementation ... 53

5.6 Using Composites through Inclusion .. 53

5.6.1 Included Composite Examples .. 54

5.7 Composites which Contain Component Implementations of Multiple Types 57

5.8 Structural URI of Components .. 57

6 ConstrainingType ... 59

6.1 Example constrainingType ... 60

7 Interface ... 62

7.1 Local and Remotable Interfaces ... 63

7.2 Bidirectional Interfaces ... 63

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 5 of 132

7.3 Long-running Request-Response Operations .. 65

7.3.1 Background ... 65

7.3.2 Definition of "long-running" ... 65

7.3.3 The asyncInvocation Intent .. 65

7.3.4 Requirements on Bindings .. 65

7.3.5 Implementation Type Support ... 65

7.4 SCA-Specific Aspects for WSDL Interfaces .. 66

7.5 WSDL Interface Type ... 66

7.5.1 Example of interface.wsdl .. 67

8 Binding ... 68

8.1 Messages containing Data not defined in the Service Interface ... 70

8.2 WireFormat ... 70

8.3 OperationSelector ... 70

8.4 Form of the URI of a Deployed Binding .. 71

8.4.1 Non-hierarchical URIs ... 71

8.4.2 Determining the URI scheme of a deployed binding ... 71

8.5 SCA Binding ... 72

8.5.1 Example SCA Binding ... 72

8.6 Web Service Binding .. 73

8.7 JMS Binding.. 73

9 SCA Definitions .. 74

10 Extension Model ... 75

10.1 Defining an Interface Type .. 75

10.2 Defining an Implementation Type ... 76

10.3 Defining a Binding Type .. 78

10.4 Defining an Import Type ... 79

10.5 Defining an Export Type ... 81

11 Packaging and Deployment .. 83

11.1 Domains.. 83

11.2 Contributions... 83

11.2.1 SCA Artifact Resolution ... 84

11.2.2 SCA Contribution Metadata Document .. 86

11.2.3 Contribution Packaging using ZIP ... 88

11.3 Installed Contribution .. 88

11.3.1 Installed Artifact URIs .. 89

11.4 Operations for Contributions ... 89

11.4.1 install Contribution & update Contribution ... 89

11.4.2 add Deployment Composite & update Deployment Composite ... 89

11.4.3 remove Contribution .. 90

11.5 Use of Existing (non-SCA) Mechanisms for Resolving Artifacts ... 90

11.6 Domain-Level Composite ... 90

11.6.1 add To Domain-Level Composite .. 91

11.6.2 remove From Domain-Level Composite .. 91

11.6.3 get Domain-Level Composite .. 91

11.6.4 get QName Definition .. 91

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 6 of 132

11.7 Dynamic Behaviour of Wires in the SCA Domain ... 91

11.8 Dynamic Behaviour of Component Property Values ... 92

12 SCA Runtime Considerations ... 93

12.1 Error Handling... 93

12.1.1 Errors which can be Detected at Deployment Time... 93

12.1.2 Errors which are Detected at Runtime ... 93

13 Conformance .. 94

13.1 SCA Documents ... 94

13.2 SCA Runtime .. 95

A. XML Schemas .. 96

A.1 sca.xsd ... 96

A.2 sca-core.xsd ... 96

A.3 sca-binding-sca.xsd .. 105

A.4 sca-interface-java.xsd .. 106

A.5 sca-interface-wsdl.xsd .. 106

A.6 sca-implementation-java.xsd .. 106

A.7 sca-implementation-composite.xsd .. 106

A.8 sca-binding-webservice.xsd ... 107

A.9 sca-binding-jms.xsd .. 107

A.10 sca-policy.xsd ... 107

A.11 sca-contribution.xsd ... 107

A.12 sca-definitions.xsd .. 109

B. SCA Concepts .. 110

B.1 Binding ... 110

B.2 Component ... 110

B.3 Service ... 110

B.3.1 Remotable Service .. 110

B.3.2 Local Service .. 111

B.4 Reference ... 111

B.5 Implementation ... 111

B.6 Interface ... 111

B.7 Composite .. 112

B.8 Composite inclusion ... 112

B.9 Property .. 112

B.10 Domain ... 112

B.11 Wire .. 112

C. Conformance Items .. 114

D. Acknowledgements .. 126

E. Non-Normative Text ... 128

F. Revision History ... 129

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 7 of 132

1 Introduction 1

This document describes the SCA Assembly Model, which covers 2

 A model for the assembly of services, both tightly coupled and loosely coupled 3

 A model for applying infrastructure capabilities to services and to service interactions, including 4
Security and Transactions 5

The document starts with a short overview of the SCA Assembly Model. 6

The next part of the document describes the core elements of SCA, SCA components and SCA 7
composites. 8

The final part of the document defines how the SCA assembly model can be extended. 9

This specification is defined in terms of Infoset and not in terms of XML 1.0, even though the specification 10
uses XML 1.0 terminology. A mapping from XML to infoset is trivial and it is suggested that this is used 11
for any non-XML serializations. 12

1.1 Terminology 13

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 14
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 15
in [RFC2119]. 16

1.2 Normative References 17

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 18
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 19

[SCA-Java] OASIS Working Draft, SCA Java Component Implementation Specification 20

http://www.oasis-open.org/committees/download.php/31447/sca-javaci-1.1-spec-21
wd03.pdf 22

[SCA-Common-Java] OASIS Committee Draft, SCA Java Common Annotations and APIs 23

Specification 24

http://www.oasis-open.org/committees/download.php/31427/sca-javacaa-1.1-25
spec-cd02.pdf 26

[SCA BPEL] OASIS Committee Draft 01, SCA BPEL Client and Implementation Specification 27

http://docs.oasis-open.org/opencsa/sca-bpel/sca-bpel-1.1-spec-cd-01.pdf 28

[SDO] SDO Specification 29

http://www.osoa.org/download/attachments/36/Java-SDO-Spec-v2.1.0-FINAL.pdf 30

[3] SCA Example Code document 31

http://www.osoa.org/download/attachments/28/SCA_BuildingYourFirstApplication32
_V09.pdf 33

 [4] JAX-WS Specification 34

http://jcp.org/en/jsr/detail?id=101 35

[5] WS-I Basic Profile 36

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile 37

[6] WS-I Basic Security Profile 38

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicsecurity 39

 [7] OASIS Committee Draft, Business Process Execution Language (BPEL) 40

http://www.oasis-open.org/committees/documents.php?wg_abbrev=wsbpel 41

[8] WSDL Specification 42

WSDL 1.1: http://www.w3.org/TR/wsdl 43

WSDL 2.0: http://www.w3.org/TR/wsdl20/ 44

http://www.ietf.org/rfc/rfc2119.txt
http://www.oasis-open.org/committees/download.php/31447/sca-javaci-1.1-spec-wd03.pdf
http://www.oasis-open.org/committees/download.php/31447/sca-javaci-1.1-spec-wd03.pdf
http://www.oasis-open.org/committees/download.php/31427/sca-javacaa-1.1-spec-cd02.pdf
http://www.oasis-open.org/committees/download.php/31427/sca-javacaa-1.1-spec-cd02.pdf
http://docs.oasis-open.org/opencsa/sca-bpel/sca-bpel-1.1-spec-cd-01.pdf
http://www.osoa.org/download/attachments/36/Java-SDO-Spec-v2.1.0-FINAL.pdf
http://www.osoa.org/download/attachments/28/SCA_BuildingYourFirstApplication_V09.pdf
http://www.osoa.org/download/attachments/28/SCA_BuildingYourFirstApplication_V09.pdf
http://jcp.org/en/jsr/detail?id=101
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicsecurity
http://www.oasis-open.org/committees/documents.php?wg_abbrev=wsbpel
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 8 of 132

[9] OASIS Committee Draft 01, SCA Web Services Binding Specification 45

http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-46
cd01.pdf 47

[10] OASIS Committee Draft 01, SCA Policy Framework Specification 48

http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd-01.pdf 49

[11] OASIS Committee Draft 01, SCA JMS Binding Specification 50

http://docs.oasis-open.org/opencsa/sca-bindings/sca-jmsbinding-1.1-spec-51
cd01.pdf 52

[SCA-CPP-Client] OASIS Committee Draft 01, SCA C++ Client and Implementation Specification 53

http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec-cd-01.pdf 54

[SCA-C-Client] OASIS Committee Draft 01, SCA C Client and Implementation Specification 55

http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-ccni-1.1-spec-cd-01.pdf 56

[12] ZIP Format Definition 57

http://www.pkware.com/documents/casestudies/APPNOTE.TXT 58

[13] Infoset Specification 59

http://www.w3.org/TR/xml-infoset/ 60

[WSDL11_Identifiers] WSDL 1.1 Element Identiifiers 61

http://www.w3.org/TR/wsdl11elementidentifiers/ 62

1.3 Naming Conventions 63

This specification follows some naming conventions for artifacts defined by the specification, 64

as follows: 65

 For the names of elements and the names of attributes within XSD files, the names follow the 66
CamelCase convention, with all names starting with a lower case letter. 67
e.g. <element name="componentType" type="sca:ComponentType"/> 68

 For the names of types within XSD files, the names follow the CamelCase convention with all 69
names starting with an upper case letter. 70
eg. <complexType name="ComponentService"> 71

 For the names of intents, the names follow the CamelCase convention, with all names starting 72
with a lower case letter, EXCEPT for cases where the intent represents an established acronym, 73
in which case the entire name is in upper case. 74
An example of an intent which is an acronym is the "SOAP" intent. 75

http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-cd01.pdf
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec-cd01.pdf
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd-01.pdf
http://docs.oasis-open.org/opencsa/sca-bindings/sca-jmsbinding-1.1-spec-cd01.pdf
http://docs.oasis-open.org/opencsa/sca-bindings/sca-jmsbinding-1.1-spec-cd01.pdf
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec-cd-01.pdf
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-ccni-1.1-spec-cd-01.pdf
http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/wsdl11elementidentifiers/

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 9 of 132

2 Overview 76

Service Component Architecture (SCA) provides a programming model for building applications and 77
solutions based on a Service Oriented Architecture. It is based on the idea that business function is 78
provided as a series of services, which are assembled together to create solutions that serve a particular 79
business need. These composite applications can contain both new services created specifically for the 80
application and also business function from existing systems and applications, reused as part of the 81
composition. SCA provides a model both for the composition of services and for the creation of service 82
components, including the reuse of existing application function within SCA composites. 83

SCA is a model that aims to encompass a wide range of technologies for service components and for the 84
access methods which are used to connect them. For components, this includes not only different 85
programming languages, but also frameworks and environments commonly used with those languages. 86
For access methods, SCA compositions allow for the use of various communication and service access 87
technologies that are in common use, including, for example, Web services, Messaging systems and 88
Remote Procedure Call (RPC). 89

The SCA Assembly Model consists of a series of artifacts which define the configuration of an SCA 90
Domain in terms of composites which contain assemblies of service components and the connections 91
and related artifacts which describe how they are linked together. 92

One basic artifact of SCA is the component, which is the unit of construction for SCA. A component 93
consists of a configured instance of an implementation, where an implementation is the piece of program 94
code providing business functions. The business function is offered for use by other components as 95
services. Implementations can depend on services provided by other components – these dependencies 96
are called references. Implementations can have settable properties, which are data values which 97
influence the operation of the business function. The component configures the implementation by 98
providing values for the properties and by wiring the references to services provided by other 99
components. 100

SCA allows for a wide variety of implementation technologies, including "traditional" programming 101
languages such as Java, C++, and BPEL, but also scripting languages such as PHP and JavaScript and 102
declarative languages such as XQuery and SQL. 103

SCA describes the content and linkage of an application in assemblies called composites. Composites 104
can contain components, services, references, property declarations, plus the wiring that describes the 105
connections between these elements. Composites can group and link components built from different 106
implementation technologies, allowing appropriate technologies to be used for each business task. In 107
turn, composites can be used as complete component implementations: providing services, depending on 108
references and with settable property values. Such composite implementations can be used in 109
components within other composites, allowing for a hierarchical construction of business solutions, where 110
high-level services are implemented internally by sets of lower-level services. The content of composites 111
can also be used as groupings of elements which are contributed by inclusion into higher-level 112
compositions. 113

Composites are deployed within an SCA Domain. An SCA Domain typically represents a set of services 114
providing an area of business functionality that is controlled by a single organization. As an example, for 115
the accounts department in a business, the SCA Domain might cover all financial related function, and it 116
might contain a series of composites dealing with specific areas of accounting, with one for customer 117
accounts, another dealing with accounts payable. To help build and configure the SCA Domain, 118
composites can be used to group and configure related artifacts. 119

SCA defines an XML file format for its artifacts. These XML files define the portable representation of the 120
SCA artifacts. An SCA runtime might have other representations of the artifacts represented by these 121
XML files. In particular, component implementations in some programming languages might have 122
attributes or properties or annotations which can specify some of the elements of the SCA Assembly 123
model. The XML files define a static format for the configuration of an SCA Domain. An SCA runtime 124
might also allow for the configuration of the Domain to be modified dynamically. 125

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 10 of 132

2.1 Diagram used to Represent SCA Artifacts 126

This document introduces diagrams to represent the various SCA artifacts, as a way of visualizing the 127
relationships between the artifacts in a particular assembly. These diagrams are used in this document to 128
accompany and illuminate the examples of SCA artifacts and do not represent any formal graphical 129
notation for SCA. 130

The following picture illustrates some of the features of an SCA component: 131

Component… …

services

references

properties

Implementation

- Java

- BPEL

- Composite

…
 132

Figure 1: SCA Component Diagram 133

 134

The following picture illustrates some of the features of a composite assembled using a set of 135
components: 136

 137

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 11 of 132

Composite A

Component

AService

Binding

Web Service

SCA

JCA

JMS

SLSB

…

Binding

Web Service

SCA

JCA

JMS

SLSB

…

Component

B

Service

- Java interface

- WSDL PortType

Reference

- Java interface

- WSDL PortType

Wire
PromotePromote

Reference

Property

setting

Properties

 138

Figure 2: SCA Composite Diagram 139

 140

The following picture illustrates an SCA Domain assembled from a series of high-level composites, some 141
of which are in turn implemented by lower-level composites: 142

 143

Composite Y

Component

 B

Component

 A

Composite A
Composite B

implementation

implementation

Wire

SCA Domain

Composite X

Component

 M

Java Class

 144

Figure 3: SCA Domain Diagram 145

 146

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 12 of 132

3 Implementation and ComponentType 147

Component implementations are concrete implementations of business function which provide 148
services and/or which make references to services provided elsewhere. In addition, an 149
implementation can have some settable property values. 150

SCA allows a choice of any one of a wide range of implementation types, such as Java, BPEL or 151
C++, where each type represents a specific implementation technology. The technology might 152
not simply define the implementation language, such as Java, but might also define the use of a 153
specific framework or runtime environment. Examples include SCA Composite, Java 154
implementations done using the Spring framework or the Java EE EJB technology. 155

Services, references and properties are the configurable aspects of an implementation. 156
SCA refers to them collectively as the component type. 157

Depending on the implementation type, the implementation can declare the services, references 158
and properties that it has and it also might be able to set values for all the characteristics of those 159
services, references and properties. 160

So, for example: 161

 for a service, the implementation might define the interface, binding(s), a URI, intents, 162
and policy sets, including details of the bindings 163

 for a reference, the implementation might define the interface, binding(s), target URI(s), 164
intents, policy sets, including details of the bindings 165

 for a property the implementation might define its type and a default value 166

 the implementation itself might define policy intents or concrete policy sets 167

The means by which an implementation declares its services, references and properties depend on 168
the type of the implementation. For example, some languages like Java, provide annotations 169
which can be used to declare this information inline in the code. 170

Most of the characteristics of the services, references and properties can be overridden by a 171
component that uses and configures the implementation, or the component can decide not to 172
override those characteristics. Some characteristics cannot be overridden, such as intents. Other 173
characteristics, such as interfaces, can only be overridden in particular controlled ways (see the 174
Component section for details). 175

3.1 Component Type 176

Component type represents the configurable aspects of an implementation. A component type 177
consists of services that are offered, references to other services that can be wired and properties 178
that can be set. The settable properties and the settable references to services are configured by a 179
component that uses the implementation. 180

An implementation type specification (for example, the WS-BPEL Client and Implementation 181
Specification Version 1.1 [SCA BPEL]) specifies the mechanism(s) by which the component type 182
associated with an implementation of that type is derived. 183

Since SCA allows a broad range of implementation technologies, it is expected that some 184
implementation technologies (for example, the Java Component Implementation Specification 185
Version 1.1 [SCA-Java]) allow for introspecting the implementation artifact(s) (for example, a Java 186
class) to derive the component type information. Other implementation technologies might not 187
allow for introspection of the implementation artifact(s). In those cases where introspection is not 188
allowed, SCA encourages the use of a SCA component type side file. A component type side file 189
is an XML file whose document root element is sca:componentType. 190

The implementation type specification defines whether introspection is allowed, whether a side file 191
is allowed, both are allowed or some other mechanism specifies the component type. The 192
component type information derived through introspection is called the introspected component 193

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 13 of 132

type. In any case, the implementation type specification specifies how multiple sources of 194
information are combined to produce the effective component type. The effective component 195
type is the component type metadata that is presented to the using component for configuration. 196

The extension of a componentType side file name MUST be .componentType. [ASM40001] The 197
name and location of a componentType side file, if allowed, is defined by the implementation type 198
specification. 199

If a component type side file is not allowed for a particular implementation type, the effective 200
component type and introspected component type are one and the same for that implementation 201
type. 202

For the rest of this document, when the term 'component type' is used it refers to the 'effective 203
component type'. 204

The following snippet shows the componentType pseudo-schema: 205

<?xml version="1.0" encoding="ASCII"?> 206
<!-- Component type schema snippet --> 207
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 208
 constrainingType="xs:QName"? > 209
 210
 <service … />* 211
 <reference … />* 212
 <property … />* 213
 <implementation … />? 214
 215
</componentType> 216
 217

The componentType element has the following attribute: 218

 constrainingType : QName (0..1) – If present, the @constrainingType attribute of a 219
<componentType/> element MUST reference a <constrainingType/> element in the 220
Domain through its QName. [ASM40002] When specified, the set of services, references 221
and properties of the implementation, plus related intents, is constrained to the set 222
defined by the constrainingType. See the ConstrainingType Section for more details. 223

 224

The componentType element has the following child elements: 225

 service : Service (0..n) – see component type service section. 226

 reference : Reference (0..n) – see component type reference section. 227

 property : Property (0..n) – see component type property section. 228

 implementation : Implementation (0..1) – see component type implementation 229
section. 230

3.1.1 Service 231

A Service represents an addressable interface of the implementation. The service is represented 232
by a service element which is a child of the componentType element. There can be zero or 233
more service elements in a componentType. The following snippet shows the component type 234
schema with the schema for a service child element: 235

<?xml version="1.0" encoding="ASCII"?> 236
<!-- Component type service schema snippet --> 237
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" … 238
> 239
 240
 <service name="xs:NCName" 241

requires="list of xs:QName"? policySets="list of xs:QName"?>* 242
 <interface … /> 243

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 14 of 132

 <binding … />* 244
 <callback>? 245
 <binding … />+ 246
 </callback> 247
 </service> 248
 249
 <reference … />* 250
 <property … />* 251
 <implementation … />? 252
 253
</componentType> 254

 255

The service element has the following attributes: 256

 name : NCName (1..1) - the name of the service. The @name attribute of a <service/> 257
child element of a <componentType/> MUST be unique amongst the service elements of 258
that <componentType/>. [ASM40003] 259

 requires : QName (0..n) - a list of policy intents. See the Policy Framework specification 260
[10] for a description of this attribute. 261

 policySets : QName (0..n) - a list of policy sets. See the Policy Framework specification 262
[10] for a description of this attribute. 263

The service element has the following child elements: 264

 interface : Interface (1..1) - A service has one interface, which describes the 265
operations provided by the service. For details on the interface element see the Interface 266
section. 267

 binding : Binding (0..n) - A service element has zero or more binding elements as 268
children. If the binding element is not present it defaults to <binding.sca>. Details of the 269
binding element are described in the Bindings section. 270

 callback (0..1) / binding : Binding (1..n) - A callback element is used if the interface 271
has a callback defined, and the callback element has one or more binding elements as 272
subelements. The callback and its binding subelements are specified if there is a need to 273
have binding details used to handle callbacks. If the callback element is not present, the 274
behaviour is runtime implementation dependent. For details on callbacks, see the 275
Bidirectional Interfaces section. 276

3.1.2 Reference 277

A Reference represents a requirement that the implementation has on a service provided by 278
another component. The reference is represented by a reference element which is a child of the 279
componentType element. There can be zero or more reference elements in a component type 280
definition. The following snippet shows the component type schema with the schema for a 281
reference child element: 282

<?xml version="1.0" encoding="ASCII"?> 283
<!-- Component type reference schema snippet --> 284
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" … 285
> 286

 287
 <service … />* 288
 289

 <reference name="xs:NCName" 290
autowire="xs:boolean"? 291

 multiplicity="0..1 or 1..1 or 0..n or 1..n"? 292
 wiredByImpl="xs:boolean"? 293

requires="list of xs:QName"? policySets="list of xs:QName"?>* 294
 <interface … /> 295

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 15 of 132

 <binding … />* 296
 <callback>? 297
 <binding … />+ 298
 </callback> 299
 </reference> 300
 301
 <property … />* 302
 <implementation … />? 303
 304
</componentType> 305

 306

The reference element has the following attributes: 307

 name : NCName (1..1) - the name of the reference. The @name attribute of a 308
<reference/> child element of a <componentType/> MUST be unique amongst the 309
reference elements of that <componentType/>. [ASM40004] 310

 multiplicity : 0..1|1..1|0..n|1..n (0..1) - defines the number of wires that can connect 311
the reference to target services. The multiplicity can have the following values 312

o 0..1 – zero or one wire can have the reference as a source 313

o 1..1 – one wire can have the reference as a source 314

o 0..n - zero or more wires can have the reference as a source 315

o 1..n – one or more wires can have the reference as a source 316

If @multiplicity is not specified, the default value is "1..1". 317

 autowire : boolean (0..1) - whether the reference is autowired, as described in the 318
Autowire section. Default is false. 319

 wiredByImpl : boolean (0..1) - a boolean value, "false" by default. If set to "false", the 320
reference is wired to the target(s) configured on the reference. If set to "true" it indicates 321
that the target of the reference is set at runtime by the implementation code (e.g. by the 322
code obtaining an endpoint reference by some means and setting this as the target of the 323
reference through the use of programming interfaces defined by the relevant Client and 324
Implementation specification). If @wiredByImpl is set to "true", then any reference 325
targets configured for this reference MUST be ignored by the runtime. [ASM40006] 326

 requires : QName (0..n) - a list of policy intents. See the Policy Framework specification 327
[10] for a description of this attribute. 328

 policySets : QName (0..n) - a list of policy sets. See the Policy Framework specification 329
[10] for a description of this attribute. 330

The reference element has the following child elements: 331

 interface : Interface (1..1) - A reference has one interface, which describes the 332
operations used by the reference. The interface is described by an interface element 333
which is a child element of the reference element. For details on the interface element see 334
the Interface section. 335

 binding : Binding (0..n) - A reference element has zero or more binding elements as 336
children. Details of the binding element are described in the Bindings section. 337

When used with a reference element, a binding element specifies an endpoint which is the 338
target of that binding. A reference cannot mix the use of endpoints specified via binding 339
elements with target endpoints specified via the @target attribute. If the @target 340
attribute is set, the reference cannot also have binding subelements. If binding elements 341
with endpoints are specified, each endpoint uses the binding type of the binding element 342
in which it is defined. 343

 callback (0..1) / binding : Binding (1..n) - al callback element is used if the interface 344
has a callback defined and the callback element has one or more binding elements as 345

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 16 of 132

subelements. The callback and its binding subelements are specified if there is a need to 346
have binding details used to handle callbacks. If the callback element is not present, the 347
behaviour is runtime implementation dependent. For details on callbacks, see the 348
Bidirectional Interfaces section. 349

For a full description of the setting of target service(s) for a reference, see the section "Specifying 350
the Target Service(s) for a Reference". 351

3.1.3 Property 352

Properties allow for the configuration of an implementation with externally set values. Each 353
Property is defined as a property element. The componentType element can have zero or more 354
property elements as its children. The following snippet shows the component type schema with 355
the schema for a reference child element: 356

<?xml version="1.0" encoding="ASCII"?> 357
<!-- Component type property schema snippet --> 358
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" … 359
> 360

 361
 <service … />* 362

<reference … >* 363
 364
 <property name="xs:NCName" (type="xs:QName" | element="xs:QName") 365
 many="xs:boolean"? mustSupply="xs:boolean"? 366
 requires="list of xs:QName"? 367
 policySets="list of xs:QName"?>* 368
 default-property-value? 369
 </property> 370
 371
 <implementation … />? 372
 373
</componentType> 374

 375

The property element has the following attributes: 376

 name : NCName (1..1) - the name of the property. The @name attribute of a 377
<property/> child element of a <componentType/> MUST be unique amongst the 378
property elements of that <componentType/>. [ASM40005] 379

 one of (1..1): 380

o type : QName - the type of the property defined as the qualified name of an XML 381
schema type. The value of the property @type attribute MUST be the QName of 382
an XML schema type. [ASM40007] 383

o element : QName - the type of the property defined as the qualified name of an 384
XML schema global element – the type is the type of the global element. The value 385
of the property @element attribute MUST be the QName of an XSD global 386
element. [ASM40008] 387

A single property element MUST NOT contain both a @type attribute and an @element 388
attribute. [ASM40010] 389

 many : boolean (0..1) - whether the property is single-valued (false) or multi-valued 390
(true). In the case of a multi-valued property, it is presented to the implementation as a 391
collection of property values. If many is not specified, it takes a default value of false. 392

 mustSupply : boolean (0..1) - whether the property value needs to be supplied by the 393
component that uses the implementation. Default value is "false". When the 394
componentType has @mustSupply="true" for a property element, a component using the 395
implementation MUST supply a value for the property since the implementation has no 396
default value for the property. [ASM40011] If the implementation has a default-property-397

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 17 of 132

value then @mustSupply="false" is appropriate, since the implication of a default value is 398
that it is used when a value is not supplied by the using component. 399

 file : anyURI (0..1) - a dereferencable URI to a file containing a value for the property. 400

 requires : QName (0..n) - a list of policy intents. See the Policy Framework specification 401
[10] for a description of this attribute. 402

 policySets : QName (0..n) - a list of policy sets. See the Policy Framework specification 403
[10] for a description of this attribute. 404

The property element can contain a default property value as its content. The form of the default 405
property value is as described in the section on Component Property. 406

The value for a property is supplied to the implementation of a component at the time that the 407
implementation is started. The implementation can use the supplied value in any way that it 408
chooses. In particular, the implementation can alter the internal value of the property at any time. 409
However, if the implementation queries the SCA system for the value of the property, the value as 410
defined in the SCA composite is the value returned. 411

The componentType property element can contain an SCA default value for the property declared 412
by the implementation. However, the implementation can have a property which has an 413
implementation defined default value, where the default value is not represented in the 414
componentType. An example of such a default value is where the default value is computed at 415
runtime by some code contained in the implementation. If a using component needs to control the 416
value of a property used by an implementation, the component sets the value explicitly. The SCA 417
runtime MUST ensure that any implementation default property value is replaced by a value for 418
that property explicitly set by a component using that implementation. [ASM40009] 419

3.1.4 Implementation 420

Implementation represents characteristics inherent to the implementation itself, in particular 421
intents and policies. See the Policy Framework specification [10] for a description of intents and 422
policies. The following snippet shows the component type pseudo-schema with the pseudo-schema 423
for a implementation child element: 424

 425

<?xml version="1.0" encoding="ASCII"?> 426
<!-- Component type implementation schema snippet --> 427
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" … 428
> 429

 430
 <service … />* 431

<reference … >* 432
 <property … />* 433
 434
 <implementation requires="list of xs:QName"? 435
 policySets="list of xs:QName"?/>? 436
 437
</componentType> 438

 439

The implementation element has the following attributes: 440

 requires : QName (0..n) - a list of policy intents. See the Policy Framework specification 441
[10] for a description of this attribute. 442

 policySets : QName (0..n) - a list of policy sets. See the Policy Framework specification 443
[10] for a description of this attribute. 444

 445

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 18 of 132

3.2 Example ComponentType 446

The following snippet shows the contents of the componentType file for the MyValueServiceImpl 447
implementation. The componentType file shows the services, references, and properties of the 448
MyValueServiceImpl implementation. In this case, Java is used to define interfaces: 449

<?xml version="1.0" encoding="ASCII"?> 450
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903"> 451
 452
 <service name="MyValueService"> 453
 <interface.java interface="services.myvalue.MyValueService"/> 454
 </service> 455
 456
 <reference name="customerService"> 457
 <interface.java interface="services.customer.CustomerService"/> 458
 </reference> 459
 <reference name="stockQuoteService"> 460
 <interface.java 461
 interface="services.stockquote.StockQuoteService"/> 462
 </reference> 463
 464
 <property name="currency" type="xsd:string">USD</property> 465
 466
</componentType> 467

3.3 Example Implementation 468

The following is an example implementation, written in Java. See the SCA Example Code 469
document [3] for details. 470

AccountServiceImpl implements the AccountService interface, which is defined via a Java 471
interface: 472

package services.account; 473
 474

@Remotable 475
public interface AccountService { 476

 477
 AccountReport getAccountReport(String customerID); 478

} 479
 480

The following is a full listing of the AccountServiceImpl class, showing the Service it implements, 481
plus the service references it makes and the settable properties that it has. Notice the use of Java 482
annotations to mark SCA aspects of the code, including the @Property, @Reference and @Service 483
annotations: 484

package services.account; 485
 486

import java.util.List; 487
 488

import commonj.sdo.DataFactory; 489
 490
import org.oasisopen.sca.annotation.Property; 491
import org.oasisopen.sca.annotation.Reference; 492
import org.oasisopen.sca.annotation.Service; 493

 494
import services.accountdata.AccountDataService; 495
import services.accountdata.CheckingAccount; 496
import services.accountdata.SavingsAccount; 497
import services.accountdata.StockAccount; 498
import services.stockquote.StockQuoteService; 499

 500
@Service(AccountService.class) 501
public class AccountServiceImpl implements AccountService { 502

 503

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 19 of 132

 @Property 504
 private String currency = "USD"; 505
 506
 @Reference 507
 private AccountDataService accountDataService; 508
 @Reference 509
 private StockQuoteService stockQuoteService; 510
 511
 public AccountReport getAccountReport(String customerID) { 512
 513
 DataFactory dataFactory = DataFactory.INSTANCE; 514

 AccountReport accountReport = (AccountReport)dataFactory.create(AccountReport.class); 515
 List accountSummaries = accountReport.getAccountSummaries(); 516
 517
 CheckingAccount checkingAccount = accountDataService.getCheckingAccount(customerID); 518
 AccountSummary checkingAccountSummary = 519
 (AccountSummary)dataFactory.create(AccountSummary.class); 520
 checkingAccountSummary.setAccountNumber(checkingAccount.getAccountNumber()); 521
 checkingAccountSummary.setAccountType("checking"); 522
 checkingAccountSummary.setBalance(fromUSDollarToCurrency(checkingAccount.getBalance())); 523
 accountSummaries.add(checkingAccountSummary); 524
 525
 SavingsAccount savingsAccount = accountDataService.getSavingsAccount(customerID); 526
 AccountSummary savingsAccountSummary = 527
 (AccountSummary)dataFactory.create(AccountSummary.class); 528
 savingsAccountSummary.setAccountNumber(savingsAccount.getAccountNumber()); 529
 savingsAccountSummary.setAccountType("savings"); 530
 savingsAccountSummary.setBalance(fromUSDollarToCurrency(savingsAccount.getBalance())); 531
 accountSummaries.add(savingsAccountSummary); 532
 533
 StockAccount stockAccount = accountDataService.getStockAccount(customerID); 534
 AccountSummary stockAccountSummary = 535
 (AccountSummary)dataFactory.create(AccountSummary.class); 536
 stockAccountSummary.setAccountNumber(stockAccount.getAccountNumber()); 537
 stockAccountSummary.setAccountType("stock"); 538
 float balance= 539
 (stockQuoteService.getQuote(stockAccount.getSymbol()))*stockAccount.getQuantity(); 540
 stockAccountSummary.setBalance(fromUSDollarToCurrency(balance)); 541
 accountSummaries.add(stockAccountSummary); 542
 543
 return accountReport; 544
 } 545
 546
 private float fromUSDollarToCurrency(float value){ 547
 548
 if (currency.equals("USD")) return value; else 549
 if (currency.equals("EURO")) return value * 0.8f; else 550
 return 0.0f; 551
 } 552

} 553
 554

The following is the SCA componentType definition for the AccountServiceImpl, derived by 555
introspection of the code above: 556

<?xml version="1.0" encoding="ASCII"?> 557
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 558

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 559
 560
 <service name="AccountService"> 561
 <interface.java interface="services.account.AccountService"/> 562
 </service> 563
 <reference name="accountDataService"> 564
 <interface.java 565
 interface="services.accountdata.AccountDataService"/> 566
 </reference> 567
 <reference name="stockQuoteService"> 568
 <interface.java 569
 interface="services.stockquote.StockQuoteService"/> 570

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 20 of 132

 </reference> 571
 <property name="currency" type="xsd:string"/> 572
 573

</componentType> 574
 575

Note that the componentType property element for "currency" has no default value declared, 576
despite the code containing an initializer for the property field setting it to "USD". This is because 577
the initializer cannot be introspected at runtime and the value cannot be extracted. 578

For full details about Java implementations, see the Java Component Implementation Specification 579
[SCA-Java]. Other implementation types have their own specification documents. 580

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 21 of 132

4 Component 581

Components are the basic elements of business function in an SCA assembly, which are 582
combined into complete business solutions by SCA composites. 583

Components are configured instances of implementations. Components provide and consume 584
services. More than one component can use and configure the same implementation, where each 585
component configures the implementation differently. 586

Components are declared as subelements of a composite in a file with a .composite extension. A 587
component is represented by a component element which is a child of the composite element. 588
There can be zero or more component elements within a composite. The following snippet shows 589
the composite schema with the schema for the component child element. 590

<?xml version="1.0" encoding="UTF-8"?> 591
<!-- Component schema snippet --> 592
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" … > 593
 … 594
 <component name="xs:NCName" autowire="xs:boolean"? 595
 requires="list of xs:QName"? policySets="list of xs:QName"? 596
 constrainingType="xs:QName"?>* 597
 <implementation … />? 598
 <service … />* 599
 <reference … />* 600
 <property … />* 601
 </component> 602
 … 603
</composite> 604

 605

The component element has the following attributes: 606

 name : NCName (1..1) – the name of the component. The @name attribute of a 607
<component/> child element of a <composite/> MUST be unique amongst the component 608
elements of that <composite/> [ASM50001] 609

 autowire : boolean (0..1) – whether contained component references are autowired, as 610
described in the Autowire section. Default is false. 611

 requires : QName (0..n) – a list of policy intents. See the Policy Framework specification 612
[10] for a description of this attribute. 613

 policySets : QName (0..n) – a list of policy sets. See the Policy Framework specification 614
[10] for a description of this attribute. 615

 constrainingType : QName (0..1) – the name of a constrainingType. When specified, 616
the set of services, references and properties of the component, plus related intents, is 617
constrained to the set defined by the constrainingType. See the ConstrainingType Section 618
for more details. 619

The component element has the following child elements: 620

 implementation : ComponentImplementation (0..1) – see component 621
implementation section. 622

 service : ComponentService (0..n) – see component service section. 623

 reference : ComponentReference (0..n) – see component reference section. 624

 property : ComponentProperty (0..n) – see component property section. 625

 626

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 22 of 132

4.1 Implementation 627

A component element has zero or one implementation element as its child, which points to the 628
implementation used by the component. A component with no implementation element is not 629
runnable, but components of this kind can be useful during a "top-down" development process as 630
a means of defining the necessary characteristics of the implementation before the 631
implementation is written. 632

<?xml version="1.0" encoding="UTF-8"?> 633
<!-- Component Implementation schema snippet --> 634
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" … > 635
 … 636
 <component … >* 637
 <implementation … />? 638
 <service … />* 639
 <reference … />* 640
 <property … />* 641
 </component> 642
 … 643
</composite> 644

 645

The component provides the extensibility point in the assembly model for different implementation 646
types. The references to implementations of different types are expressed by implementation type 647
specific implementation elements. 648

For example the elements implementation.java, implementation.bpel, implementation.cpp, 649
and implementation.c point to Java, BPEL, C++, and C implementation types respectively. 650
implementation.composite points to the use of an SCA composite as an implementation. 651
implementation.spring and implementation.ejb are used for Java components written to the 652
Spring framework and the Java EE EJB technology respectively. 653

The following snippets show implementation elements for the Java and BPEL implementation types 654
and for the use of a composite as an implementation: 655

 656

<implementation.java class="services.myvalue.MyValueServiceImpl"/> 657

 658

<implementation.bpel process="ans:MoneyTransferProcess"/> 659
 660

<implementation.composite name="bns:MyValueComposite"/> 661

 662

New implementation types can be added to the model as described in the Extension Model section. 663

At runtime, an implementation instance is a specific runtime instantiation of the 664
implementation – its runtime form depends on the implementation technology used. The 665
implementation instance derives its business logic from the implementation on which it is based, 666
but the values for its properties and references are derived from the component which configures 667
the implementation. 668

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 23 of 132

Component Type

Component bComponent a

Implementation Instances

Implementation

Configure

 669

Figure 4: Relationship of Component and Implementation 670

 671

4.2 Service 672

The component element can have zero or more service elements as children which are used to 673
configure the services of the component. The services that can be configured are defined by the 674
implementation. The following snippet shows the component schema with the schema for a 675
service child element: 676

<?xml version="1.0" encoding="UTF-8"?> 677
<!-- Component Service schema snippet --> 678
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" … > 679
 … 680
 <component … >* 681
 <implementation … />? 682
 <service name="xs:NCName" requires="list of xs:QName"? 683
 policySets="list of xs:QName"?>* 684
 <interface … />? 685
 <binding … />* 686
 <callback>? 687
 <binding … />+ 688
 </callback> 689
 </service> 690
 <reference … />* 691
 <property … />* 692
 </component> 693
 … 694
</composite> 695

 696

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 24 of 132

The component service element has the following attributes: 697

 name : NCName (1..1) - the name of the service. The @name attribute of a service 698
element of a <component/> MUST be unique amongst the service elements of that 699
<component/> [ASM50002] The @name attribute of a service element of a 700
<component/> MUST match the @name attribute of a service element of the 701
componentType of the <implementation/> child element of the component. [ASM50003] 702

 requires : QName (0..n) – a list of policy intents. See the Policy Framework specification 703
[10] for a description of this attribute. 704
Note: The effective set of policy intents for the service consists of any intents explicitly 705
stated in this @requires attribute, combined with any intents specified for the service by 706
the implementation. 707

 policySets : QName (0..n) – a list of policy sets. See the Policy Framework specification 708
[10] for a description of this attribute. 709

The component service element has the following child elements: 710

 interface : Interface (0..1) - A service has zero or one interface, which describes the 711
operations provided by the service. The interface is described by an interface element 712
which is a child element of the service element. If no interface is specified, then the 713
interface specified for the service in the componentType of the implementation is in effect. 714
If a <service/> element has an interface subelement specified, the interface MUST provide 715
a compatible subset of the interface declared on the componentType of the 716
implementation [ASM50004] For details on the interface element see the Interface section. 717

 binding : Binding (0..n) - A service element has zero or more binding elements as 718
children. If no binding elements are specified for the service, then the bindings specified 719
for the equivalent service in the componentType of the implementation MUST be used, but 720
if the componentType also has no bindings specified, then <binding.sca/> MUST be used 721
as the binding. If binding elements are specified for the service, then those bindings MUST 722
be used and they override any bindings specified for the equivalent service in the 723
componentType of the implementation. [ASM50005] Details of the binding element are 724
described in the Bindings section. The binding, combined with any PolicySets in effect for 725
the binding, needs to satisfy the set of policy intents for the service, as described in the 726
Policy Framework specification [10]. 727

 callback (0..1) / binding : Binding (1..n) - A callback element is used if the interface 728
has a callback defined and the callback element has one or more binding elements as 729
subelements. The callback and its binding subelements are specified if there is a need to 730
have binding details used to handle callbacks. If the callback element is present and 731
contains one or more binding child elements, then those bindings MUST be used for the 732
callback. [ASM50006] If the callback element is not present, the behaviour is runtime 733
implementation dependent. 734

4.3 Reference 735

The component element can have zero or more reference elements as children which are used 736
to configure the references of the component. The references that can be configured are defined 737
by the implementation. The following snippet shows the component schema with the schema for a 738
reference child element: 739

<?xml version="1.0" encoding="UTF-8"?> 740
<!-- Component Reference schema snippet --> 741
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" … > 742
 … 743
 <component … >* 744
 <implementation … />? 745
 <service … />* 746
 <reference name="xs:NCName" 747

 target="list of xs:anyURI"? autowire="xs:boolean"? 748
multiplicity="0..1 or 1..1 or 0..n or 1..n"? 749

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 25 of 132

 nonOverridable="xs:boolean" 750
 wiredByImpl="xs:boolean"? requires="list of xs:QName"? 751

policySets="list of xs:QName"?>* 752
 <interface … />? 753
 <binding uri="xs:anyURI"? requires="list of xs:QName"? 754
 policySets="list of xs:QName"?/>* 755
 <callback>? 756
 <binding … />+ 757
 </callback> 758
 </reference> 759
 <property … />* 760
 </component> 761
 … 762
</composite> 763

 764

The component reference element has the following attributes: 765

 name : NCName (1..1) – the name of the reference. The @name attribute of a service 766
element of a <component/> MUST be unique amongst the service elements of that 767
<component/> [ASM50007] The @name attribute of a reference element of a 768
<component/> MUST match the @name attribute of a reference element of the 769
componentType of the <implementation/> child element of the component. [ASM50008] 770

 autowire : boolean (0..1) – whether the reference is autowired, as described in the 771
Autowire section. Default is false. 772

 requires : QName (0..n) – a list of policy intents. See the Policy Framework specification 773
[10] for a description of this attribute. 774
Note: The effective set of policy intents for the reference consists of any intents explicitly 775
stated in this @requires attribute, combined with any intents specified for the reference by 776
the implementation. 777

 policySets : QName (0..n) – a list of policy sets. See the Policy Framework specification 778
[10] for a description of this attribute. 779

 multiplicity : 0..1|1..1|0..n|1..n (0..1) - defines the number of wires that can connect 780
the reference to target services. Overrides the multiplicity specified for this reference in 781
the componentType of the implementation. The multiplicity can have the following values 782

o 0..1 – zero or one wire can have the reference as a source 783

o 1..1 – one wire can have the reference as a source 784

o 0..n - zero or more wires can have the reference as a source 785

o 1..n – one or more wires can have the reference as a source 786

The value of multiplicity for a component reference MUST only be equal or further restrict 787
any value for the multiplicity of the reference with the same name in the componentType 788
of the implementation, where further restriction means 0..n to 0..1 or 1..n to 1..1. 789
[ASM50009] 790

If not present, the value of multiplicity is equal to the multiplicity specificed for this 791
reference in the componentType of the implementation - if not present in the 792
componentType, the value defaults to 1..1. 793

 target : anyURI (0..n) – a list of one or more of target service URI’s, depending on 794
multiplicity setting. Each value wires the reference to a component service that resolves 795
the reference. For more details on wiring see the section on Wires. Overrides any target 796
specified for this reference on the implementation. 797

 wiredByImpl : boolean (0..1) – a boolean value, "false" by default, which indicates that 798
the implementation wires this reference dynamically. If set to "true" it indicates that the 799
target of the reference is set at runtime by the implementation code (e.g. by the code 800
obtaining an endpoint reference by some means and setting this as the target of the 801

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 26 of 132

reference through the use of programming interfaces defined by the relevant Client and 802
Implementation specification). If @wiredByImpl="true" is set for a reference, then the 803
reference MUST NOT be wired statically within a composite, but left unwired. [ASM50010] 804

 nonOverridable : boolean (0..1) - a boolean value, "false" by default, which indicates 805
whether this component reference can have its targets overridden by a composite 806
reference which promotes the component reference. 807
If @nonOverridable==false, the target(s) of the promoting composite reference replace all 808
the targets explicitly declared on the component reference for any value of @multiplicity 809
on the component reference. If the component reference has @nonOverridable==false 810
and @multiplicity 1..1 and the reference has a target, then any composite reference which 811
promotes the component reference has @multiplicity 0..1.by default and MAY have an 812
explicit @multiplicity of either 0..1 or 1..1. 813
If @nonOverridable==true, and the component reference has @multiplicity 0..1 or 1..1 814
and the component reference also declares a target, promotion implies that the promoting 815
composite reference has @wiredbyImpl==true and the composite reference cannot supply 816
a target, but can influence the policy attached to the component reference. 817
If @nonOverridable==true, and the component reference @multiplicity is 0..n or 1..n, 818
promotion targeting is additive. 819

The component reference element has the following child elements: 820

 interface : Interface (0..1) - A reference has zero or one interface, which describes 821
the operations of the reference. The interface is described by an interface element which 822
is a child element of the reference element. If no interface is specified, then the interface 823
specified for the reference in the componentType of the implementation is in effect. If an 824
interface is declared for a component reference, the interface MUST provide a compatible 825
superset of the interface declared for the equivalent reference in the componentType of 826
the implementation, i.e. provide the same operations or a superset of the operations 827
defined by the implementation for the reference. [ASM50011] For details on the interface 828
element see the Interface section. 829

 binding : Binding (0..n) - A reference element has zero or more binding elements as 830
children.If no binding elements are specified for the reference, then the bindings specified 831
for the equivalent reference in the componentType of the implementation MUST be used. 832
If binding elements are specified for the reference, then those bindings MUST be used and 833
they override any bindings specified for the equivalent reference in the componentType of 834
the implementation. [ASM50012] It is valid for there to be no binding elements on the 835
component reference and none on the reference in the componentType - the binding used 836
for such a reference is determined by the target service. See the section on the bindings 837
of component services for a description of how the binding(s) applying to a service are 838
determined. 839
Details of the binding element are described in the Bindings section. The binding, 840
combined with any PolicySets in effect for the binding, needs to satisfy the set of policy 841
intents for the reference, as described in the Policy Framework specification [10]. 842

A reference identifies zero or more target services that satisfy the reference. This can be 843
done in a number of ways, which are fully described in section "Specifying the Target 844
Service(s) for a Reference" 845

 callback (0..1) / binding : Binding (1..n) - A callback element used if the interface 846
has a callback defined and the callback element has one or more binding elements as 847
subelements. The callback and its binding subelements are specified if there is a need to 848
have binding details used to handle callbacks. If the callback element is present and 849
contains one or more binding child elements, then those bindings MUST be used for the 850
callback. [ASM50006] If the callback element is not present, the behaviour is runtime 851
implementation dependent. 852

4.3.1 Specifying the Target Service(s) for a Reference 853

A reference defines zero or more target services that satisfy the reference. The target service(s) 854
can be defined in the following ways: 855

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 27 of 132

1. Through a value specified in the @target attribute of the reference element 856

2. Through a target URI specified in the @uri attribute of a binding element which is a child 857
of the reference element 858

3. Through the setting of one or more values for binding-specific attributes and/or child 859
elements of a binding element that is a child of the reference element 860

4. Through the specification of @autowire="true" for the reference (or through inheritance 861
of that value from the component or composite containing the reference) 862

5. Through the specification of @wiredByImpl="true" for the reference 863

6. Through the promotion of a component reference by a composite reference of the 864
composite containing the component (the target service is then identified by the 865
configuration of the composite reference) 866

7. Through the presence of a <wire/> element which has the reference specified in its 867
@source attribute. 868

Combinations of these different methods are allowed, and the following rules MUST be observed: 869

 If @wiredByImpl="true", other methods of specifying the target service MUST NOT be 870
used. [ASM50013] 871

 If @autowire="true", the autowire procedure MUST only be used if no target is identified 872
by any of the other ways listed above. It is not an error if @autowire="true" and a target 873
is also defined through some other means, however in this case the autowire procedure 874
MUST NOT be used. [ASM50014] 875

 If a reference has a value specified for one or more target services in its @target attribute, 876
there MUST NOT be any child <binding/> elements declared for that reference. 877
[ASM50026] 878

 If a binding element has a value specified for a target service using its @uri attribute, the 879
binding element MUST NOT identify target services using binding specific attributes or 880
elements. [ASM50015] 881

 It is possible that a particular binding type MAY require that the address of a target service 882
uses more than a simple URI. In cases where a reference element has a binding 883
subelement of such a type, the @uri attribute of the binding element MUST NOT be used 884
to identify the target service - instead, binding specific attributes and/or child elements 885
MUST be used. [ASM50016] 886

 If any <wire/> element with its @replace attribute set to "true" has a particular reference 887
specified in its @source attribute, the value of the @target attribute for that reference 888
MUST be ignored and MUST NOT be used to define target services for that reference. 889
[ASM50034] 890

4.3.1.1 Multiplicity and the Valid Number of Target Services for a Reference 891

The number of target services configured for a reference are constrained by the following rules. 892

 A reference with multiplicity 0..1 or 0..n MAY have no target service defined. [ASM50018] 893

 A reference with multiplicity 0..1 or 1..1 MUST NOT have more that one target service 894
defined. [ASM50019] 895

 A reference with multiplicity 1..1 or 1..n MUST have at least one target service defined. 896
[ASM50020] 897

 A reference with multiplicity 0..n or 1..n MAY have one or more target services defined. 898
[ASM50021] 899

Where it is detected that the rules for the number of target services for a reference have been 900
violated, either at deployment or at execution time, an SCA Runtime MUST raise an error no later 901
than when the reference is invoked by the component implementation. [ASM50022] 902

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 28 of 132

For example, where a composite is used as a component implementation, wires and target 903
services cannot be added to the composite after deployment. As a result, for components which 904
are part of the composite, both missing wires and wires with a non-existent target can be detected 905
at deployment time through a scan of the contents of the composite. 906

A contrasting example is a component deployed to the SCA Domain. At the Domain level, the 907
target of a wire, or even the wire itself, can form part of a separate deployed contribution and as a 908
result these can be deployed after the original component is deployed. For the cases where it is 909
valid for the reference to have no target service specified, the component implementation 910
language specification needs to define the programming model for interacting with an untargetted 911
reference. 912

Where a component reference is promoted by a composite reference, the promotion MUST be 913
treated from a multiplicity perspective as providing 0 or more target services for the component 914
reference, depending upon the further configuration of the composite reference. These target 915
services are in addition to any target services identified on the component reference itself, subject 916
to the rules relating to multiplicity. [ASM50025] 917

4.4 Property 918

The component element has zero or more property elements as its children, which are used to 919
configure data values of properties of the implementation. Each property element provides a value 920
for the named property, which is passed to the implementation. The properties that can be 921
configured and their types are defined by the component type of the implementation. An 922
implementation can declare a property as multi-valued, in which case, multiple property values 923
can be present for a given property. 924

The property value can be specified in one of five ways: 925

 As a value, supplied in the @value attribute of the property element. 926
If the @value attribute of a component property element is declared, the type of the 927
property MUST be an XML Schema simple type and the @value attribute MUST contain a 928
single value of that type. [ASM50027] 929

For example, 930

<property name="pi" value="3.14159265" /> 931

 As a value, supplied as the content of the value subelement(s) of the property element. 932
If the value subelement of a component property is specified, the type of the property 933
MUST be an XML Schema simple type or an XML schema complex type. [ASM50028] 934

For example, 935

 property defined using a XML Schema simple type and which contains a single 936
value 937

<property name="pi"> 938
<value>3.14159265</value> 939

</property> 940
 property defined using a XML Schema simple type and which contains multiple 941

values 942

<property name="currency"> 943
<value>EURO</value> 944
<value>USDollar</value> 945

</property> 946
 property defined using a XML Schema complex type and which contains a single 947

value 948

<property name="complexFoo"> 949
<value attr="bar"> 950

<foo:a>TheValue</foo:a> 951
<foo:b>InterestingURI</foo:b> 952

</value> 953
</property> 954

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 29 of 132

 property defined using a XML Schema complex type and which contains multiple 955
values 956

<property name="complexBar"> 957
<value anotherAttr="foo"> 958

<bar:a>AValue</bar:a> 959
<bar:b>InterestingURI</bar:b> 960

</value> 961
<value attr="zing"> 962

<bar:a>BValue</bar:a> 963
<bar:b>BoringURI</bar:b> 964

</value> 965
</property> 966

 As a value, supplied as the content of the property element. 967
If a component property value is declared using a child element of the <property/> 968
element, the type of the property MUST be an XML Schema global element and the 969
declared child element MUST be an instance of that global element. [ASM50029] 970

For example, 971

 property defined using a XML Schema global element declartion and which 972
contains a single value 973

<property name="foo"> 974
<foo:SomeGED ...>...</foo:SomeGED> 975

</property> 976
 property defined using a XML Schema global element declaration and which 977

contains multiple values 978

<property name="bar"> 979
<bar:SomeOtherGED ...>...</bar:SomeOtherGED> 980
<bar:SomeOtherGED ...>...</bar:SomeOtherGED> 981

</property> 982
 By referencing a Property value of the composite which contains the component. The 983

reference is made using the @source attribute of the property element. 984
 985
The form of the value of the @source attribute follows the form of an XPath expression. 986
This form allows a specific property of the composite to be addressed by name. Where the 987
composite property is of a complex type, the XPath expression can be extended to refer to 988
a sub-part of the complex property value. 989
 990
So, for example, source="$currency" is used to reference a property of the composite 991
called "currency", while source="$currency/a" references the sub-part "a" of the 992
complex composite property with the name "currency". 993

 By specifying a dereferencable URI to a file containing the property value through the 994
@file attribute. The contents of the referenced file are used as the value of the property. 995

If more than one property value specification is present, the @source attribute takes precedence, 996
then the @file attribute. 997

For a property defined using a XML Schema simple type and for which a single value is desired, can 998
be set either using the @value attribute or the <value> child element. The two forms in such a case 999
are equivalent. 1000

When a property has multiple values set, they MUST all be contained within the same property 1001
element. A <component/> element MUST NOT contain two <property/> subelements with the same 1002
value of the @name attribute. [ASM50030] 1003

The type of the property can be specified in one of two ways: 1004

 by the qualified name of a type defined in an XML schema, using the @type attribute 1005

 by the qualified name of a global element in an XML schema, using the @element attribute 1006

The property type specified for the property element of a component MUST be compatible with the 1007
type of the property with the same @name declared in the component type of the implementation 1008

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 30 of 132

used by the component. If no type is declared in the component property element, the type of the 1009
property declared in the componentType of the implementation MUST be used. [ASM50036] 1010

The following snippet shows the component schema with the schema for a property child element: 1011
<?xml version="1.0" encoding="UTF-8"?> 1012
<!-- Component Property schema snippet --> 1013
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" … > 1014
 … 1015
 <component … >* 1016
 <implementation … />? 1017
 <service … />* 1018

<reference … />* 1019
 <property name="xs:NCName" 1020

(type="xs:QName" | element="xs:QName")? 1021
 many="xs:boolean"? 1022

source="xs:string"? file="xs:anyURI"? 1023
requires="list of xs:QName"? 1024
policySets="list of xs:QName"? 1025
value="xs:string"?>* 1026

 [<value>+ | xs:any+]? 1027
 </property> 1028
 </component> 1029
 … 1030
</composite> 1031

 1032
The component property element has the following attributes: 1033

 name : NCName (1..1) – the name of the property. The @name attribute of a property 1034
element of a <component/> MUST be unique amongst the property elements of that 1035
<component/>. [ASM50031] The @name attribute of a property element of a 1036
<component/> MUST match the @name attribute of a property element of the 1037
componentType of the <implementation/> child element of the component. [ASM50037] 1038

 zero or one of (0..1): 1039

o type : QName – the type of the property defined as the qualified name of an XML 1040
schema type 1041

o element : QName – the type of the property defined as the qualified name of an 1042
XML schema global element – the type is the type of the global element 1043

A single property element MUST NOT contain both a @type attribute and an @element 1044
attribute. [ASM50035] 1045

 source : string (0..1) – an XPath expression pointing to a property of the containing 1046
composite from which the value of this component property is obtained. 1047

 file : anyURI (0..1) – a dereferencable URI to a file containing a value for the property 1048

 many : boolean (0..1) – whether the property is single-valued (false) or multi-valued 1049
(true). Overrides the many specified for this property in the componentType of the 1050
implementation. The value can only be equal or further restrict, i.e. if the implementation 1051
specifies many true, then the component can say false. In the case of a multi-valued 1052
property, it is presented to the implementation as a Collection of property values. If many 1053
is not specified, it takes the value defined by the component type of the implementation 1054
used by the component. 1055

 value : string (0..1) - the value of the property if the property is defined using a simple 1056
type. 1057

 requires : QName (0..n) - a list of policy intents. See the Policy Framework specification 1058
[10] for a description of this attribute. 1059

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 31 of 132

 policySets : QName (0..n) - a list of policy sets. See the Policy Framework specification 1060
[10] for a description of this attribute. 1061

The component property element has the following child element: 1062

value :any (0..n) - A property has zero or more, value elements that specify the value(s) of a 1063
property that is defined using a XML Schema type. If a property is single-valued, the <value/> 1064
subelement MUST NOT occur more than once. [ASM50032] A property <value/> subelement MUST 1065
NOT be used when the @value attribute is used to specify the value for that property. [ASM50033] 1066

4.5 Example Component 1067

The following figure shows the component symbol that is used to represent a component in an 1068
assembly diagram. 1069

Component… …

services

references

properties

Implementation

- Java

- BPEL

- Composite

…
 1070

Figure 5: Component symbol 1071

The following figure shows the assembly diagram for the MyValueComposite containing the 1072
MyValueServiceComponent. 1073

 1074

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 32 of 132

MyValueComposite

Component

MyValue

Service

Component

Service

MyValue

Service

Reference

Customer

Service

Reference

StockQuote

Service

 1075

 1076

Figure 6: Assembly diagram for MyValueComposite 1077

The following snippet shows the MyValueComposite.composite file for the MyValueComposite 1078
containing the component element for the MyValueServiceComponent. A value is set for the 1079
property named currency, and the customerService and stockQuoteService references are 1080
promoted: 1081

<?xml version="1.0" encoding="ASCII"?> 1082
<!-- MyValueComposite_1 example --> 1083
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 1084
 targetNamespace="http://foo.com" 1085
 name="MyValueComposite" > 1086
 1087
 <service name="MyValueService" promote="MyValueServiceComponent"/> 1088
 1089
 <component name="MyValueServiceComponent"> 1090
 <implementation.java 1091
 class="services.myvalue.MyValueServiceImpl"/> 1092
 <property name="currency">EURO</property> 1093
 <reference name="customerService"/> 1094
 <reference name="stockQuoteService"/> 1095
 </component> 1096
 1097
 <reference name="CustomerService" 1098
 promote="MyValueServiceComponent/customerService"/> 1099
 1100
 <reference name="StockQuoteService" 1101
 promote="MyValueServiceComponent/stockQuoteService"/> 1102
 1103
</composite> 1104

 1105

Note that the references of MyValueServiceComponent are explicitly declared only for purposes of 1106
clarity – the references are defined by the MyValueServiceImpl implementation and there is no 1107
need to redeclare them on the component unless the intention is to wire them or to override some 1108
aspect of them. 1109

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 33 of 132

The following snippet gives an example of the layout of a composite file if both the currency 1110
property and the customerService reference of the MyValueServiceComponent are declared to be 1111
multi-valued (many=true for the property and multiplicity=0..n or 1..n for the reference): 1112

<?xml version="1.0" encoding="ASCII"?> 1113
<!-- MyValueComposite_2 example --> 1114
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 1115
 targetNamespace="http://foo.com" 1116
 name="MyValueComposite" > 1117
 1118
 <service name="MyValueService" promote="MyValueServiceComponent"/> 1119
 1120
 <component name="MyValueServiceComponent"> 1121
 <implementation.java 1122
 class="services.myvalue.MyValueServiceImpl"/> 1123
 <property name="currency"> 1124
 <value>EURO</value> 1125
 <value>Yen</value> 1126
 <value>USDollar</value> 1127
 </property> 1128
 <reference name="customerService" 1129
 target="InternalCustomer/customerService"/> 1130
 <reference name="stockQuoteService"/> 1131
 </component> 1132
 1133
 ... 1134
 1135
 <reference name="CustomerService" 1136
 promote="MyValueServiceComponent/customerService"/> 1137
 1138
 <reference name="StockQuoteService" 1139
 promote="MyValueServiceComponent/stockQuoteService"/> 1140
 1141
</composite> 1142

 1143

….this assumes that the composite has another component called InternalCustomer (not shown) 1144
which has a service to which the customerService reference of the MyValueServiceComponent is 1145
wired as well as being promoted externally through the composite reference CustomerService. 1146

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 34 of 132

5 Composite 1147

An SCA composite is used to assemble SCA elements in logical groupings. It is the basic unit of 1148
composition within an SCA Domain. An SCA composite contains a set of components, services, 1149
references and the wires that interconnect them, plus a set of properties which can be used to 1150
configure components. 1151

Composites can be used as component implementations in higher-level composites – in other 1152
words the higher-level composites can have components that are implemented by composites. 1153
For more detail on the use of composites as component implementations see the section Using 1154
Composites as Component Implementations. 1155

The content of a composite can be used within another composite through inclusion. When a 1156
composite is included by another composite, all of its contents are made available for use within 1157
the including composite – the contents are fully visible and can be referenced by other elements 1158
within the including composite. For more detail on the inclusion of one composite into another see 1159
the section Using Composites through Inclusion. 1160

A composite can be used as a unit of deployment. When used in this way, composites contribute 1161
components and wires to an SCA Domain. A composite can be deployed to the SCA Domain either 1162
by inclusion, or a composite can be deployed to the Domain as an implementation. For more 1163
detail on the deployment of composites, see the section dealing with the SCA Domain. 1164

A composite is defined in an xxx.composite file. A composite is represented by a composite 1165
element. The following snippet shows the schema for the composite element. 1166

<?xml version="1.0" encoding="ASCII"?> 1167
<!-- Composite schema snippet --> 1168
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 1169
 targetNamespace="xs:anyURI" 1170
 name="xs:NCName" local="xs:boolean"? 1171
 autowire="xs:boolean"? constrainingType="xs:QName"? 1172
 requires="list of xs:QName"? policySets="list of xs:QName"?> 1173
 1174
 <include … />* 1175

 1176
 <service … />* 1177
 <reference … />* 1178
 <property … />* 1179
 1180
 <component … />* 1181
 1182
 <wire … />* 1183
 1184
</composite> 1185

 1186

The composite element has the following attributes: 1187

 name : NCName (1..1) – the name of the composite. The form of a composite name is 1188
an XML QName, in the namespace identified by the @targetNamespace attribute. A 1189
composite @name attribute value MUST be unique within the namespace of the 1190
composite. [ASM60001] 1191

 targetNamespace : anyURI (0..1) – an identifier for a target namespace into which the 1192
composite is declared 1193

 local : boolean (0..1) – whether all the components within the composite all run in the 1194
same operating system process. @local="true" for a composite means that all the 1195
components within the composite MUST run in the same operating system process. 1196
[ASM60002] local="false", which is the default, means that different components within 1197

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 35 of 132

the composite can run in different operating system processes and they can even run on 1198
different nodes on a network. 1199

 autowire : boolean (0..1) – whether contained component references are autowired, as 1200
described in the Autowire section. Default is false. 1201

 constrainingType : QName (0..1) – the name of a constrainingType. When specified, 1202
the set of services, references and properties of the composite, plus related intents, is 1203
constrained to the set defined by the constrainingType. See the ConstrainingType Section 1204
for more details. 1205

 requires : QName (0..n) – a list of policy intents. See the Policy Framework 1206
specification [10] for a description of this attribute. 1207

 policySets : QName (0..n) – a list of policy sets. See the Policy Framework specification 1208
[10] for a description of this attribute. 1209

The composite element has the following child elements: 1210

 service : CompositeService (0..n) – see composite service section. 1211

 reference : CompositeReference (0..n) – see composite reference section. 1212

 property : CompositeProperty (0..n) – see composite property section. 1213

 component : Component (0..n) – see component section. 1214

 wire : Wire (0..n) – see composite wire section. 1215

 include : Include (0..n) – see composite include section 1216

 1217

Components contain configured implementations which hold the business logic of the composite. 1218
The components offer services and use references to other services. Composite services define 1219
the public services provided by the composite, which can be accessed from outside the composite. 1220
Composite references represent dependencies which the composite has on services provided 1221
elsewhere, outside the composite. Wires describe the connections between component services 1222
and component references within the composite. Included composites contribute the elements 1223
they contain to the using composite. 1224

Composite services involve the promotion of one service of one of the components within the 1225
composite, which means that the composite service is actually provided by one of the components 1226
within the composite. Composite references involve the promotion of one or more references of 1227
one or more components. Multiple component references can be promoted to the same composite 1228
reference, as long as all the component references are compatible with one another. Where 1229
multiple component references are promoted to the same composite reference, then they all share 1230
the same configuration, including the same target service(s). 1231

Composite services and composite references can use the configuration of their promoted services 1232
and references respectively (such as Bindings and Policy Sets). Alternatively composite services 1233
and composite references can override some or all of the configuration of the promoted services 1234
and references, through the configuration of bindings and other aspects of the composite service 1235
or reference. 1236

Component services and component references can be promoted to composite services and 1237
references and also be wired internally within the composite at the same time. For a reference, 1238
this only makes sense if the reference supports a multiplicity greater than 1. 1239

5.1 Service 1240

The services of a composite are defined by promoting services defined by components 1241
contained in the composite. A component service is promoted by means of a composite service 1242
element. 1243

A composite service is represented by a service element which is a child of the composite 1244
element. There can be zero or more service elements in a composite. The following snippet 1245
shows the pseudo-schema for a service child element: 1246

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 36 of 132

<?xml version="1.0" encoding="ASCII"?> 1247
<!-- Composite Service schema snippet --> 1248
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" … > 1249
 … 1250
 <service name="xs:NCName" promote="xs:anyURI" 1251
 requires="list of xs:QName"? policySets="list of xs:QName"?>* 1252
 <interface … />? 1253
 <binding … />* 1254
 <callback>? 1255
 <binding … />+ 1256
 </callback> 1257
 </service> 1258
 … 1259
</composite> 1260

 1261

The composite service element has the following attributes: 1262

 name : NCName (1..1) – the name of the service.The name of a composite <service/> 1263
element MUST be unique across all the composite services in the composite. [ASM60003] 1264
The name of the composite service can be different from the name of the promoted 1265
component service. 1266

 promote : anyURI (1..1) – identifies the promoted service, the value is of the form 1267
<component-name>/<service-name>. The service name can be omitted if the target 1268
component only has one service. The same component service can be promoted by more 1269
then one composite service. A composite <service/> element's @promote attribute MUST 1270
identify one of the component services within that composite. [ASM60004] <include/> 1271
processing MUST take place before the processing of the @promote attribute of a 1272
composite service is performed. [ASM60038] 1273

 requires : QName (0..n) – a list of policy intents. See the Policy Framework specification 1274
[10] for a description of this attribute. Specified intents add to or further qualify the 1275
required intents defined by the promoted component service. 1276

 policySets : QName (0..n) – a list of policy sets. See the Policy Framework specification 1277
[10] for a description of this attribute. 1278

The composite service element has the following child elements, whatever is not specified is 1279
defaulted from the promoted component service. 1280

 interface : Interface (0..1) - an interface which decribes the operations provided by the 1281
composite service. If a composite service interface is specified it MUST be the same or a 1282
compatible subset of the interface provided by the promoted component service, i.e. 1283
provide a subset of the operations defined by the component service. [ASM60005] The 1284
interface is described by zero or one interface element which is a child element of the 1285
service element. For details on the interface element see the Interface section. 1286

 binding : Binding (0..n) - If bindings are specified they override the bindings defined 1287
for the promoted component service from the composite service perspective. The bindings 1288
defined on the component service are still in effect for local wires within the composite 1289
that target the component service. A service element has zero or more binding elements 1290
as children. Details of the binding element are described in the Bindings section. For more 1291
details on wiring see the Wiring section. 1292

 callback (0..1) / binding : Binding (1..n) - A callback element is used if the interface 1293
has a callback defined and the callback has one or more binding elements as 1294
subelements. The callback and its binding subelements are specified if there is a need to 1295
have binding details used to handle callbacks. If the callback element is not present, the 1296
behaviour is runtime implementation dependent. 1297

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 37 of 132

5.1.1 Service Examples 1298

The following figure shows the service symbol that used to represent a service in an assembly 1299
diagram: 1300

Service

 1301

Figure 7: Service symbol 1302

 1303

The following figure shows the assembly diagram for the MyValueComposite containing the service 1304
MyValueService. 1305

MyValueComposite

Component

MyValue

Service

Component

Service

MyValue

Service

Reference

Customer

Service

Reference

StockQuote

Service

 1306

Figure 8: MyValueComposite showing Service 1307

 1308

The following snippet shows the MyValueComposite.composite file for the MyValueComposite 1309
containing the service element for the MyValueService, which is a promote of the service offered 1310
by the MyValueServiceComponent. The name of the promoted service is omitted since 1311
MyValueServiceComponent offers only one service. The composite service MyValueService is 1312
bound using a Web service binding. 1313

<?xml version="1.0" encoding="ASCII"?> 1314
<!-- MyValueComposite_4 example --> 1315
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 1316
 targetNamespace="http://foo.com" 1317
 name="MyValueComposite" > 1318
 1319
 ... 1320
 1321
 <service name="MyValueService" promote="MyValueServiceComponent"> 1322
 <interface.java interface="services.myvalue.MyValueService"/> 1323

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 38 of 132

 <binding.ws port="http://www.myvalue.org/MyValueService# 1324
 wsdl.endpoint(MyValueService/MyValueServiceSOAP)"/> 1325
 </service> 1326
 1327
 <component name="MyValueServiceComponent"> 1328
 <implementation.java 1329
 class="services.myvalue.MyValueServiceImpl"/> 1330
 <property name="currency">EURO</property> 1331
 <service name="MyValueService"/> 1332
 <reference name="customerService"/> 1333
 <reference name="stockQuoteService"/> 1334
 </component> 1335
 1336
 ... 1337
 1338
</composite> 1339

5.2 Reference 1340

The references of a composite are defined by promoting references defined by components 1341
contained in the composite. Each promoted reference indicates that the component reference 1342
needs to be resolved by services outside the composite. A component reference is promoted using 1343
a composite reference element. 1344

A composite reference is represented by a reference element which is a child of a composite 1345
element. There can be zero or more reference elements in a composite. The following snippet 1346
shows the composite schema with the schema for a reference element. 1347

<?xml version="1.0" encoding="ASCII"?> 1348
<!-- Composite Reference schema snippet --> 1349
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" … > 1350
 … 1351
 <reference name="xs:NCName" target="list of xs:anyURI"? 1352
 promote="list of xs:anyURI" wiredByImpl="xs:boolean"? 1353
 multiplicity="0..1 or 1..1 or 0..n or 1..n"? 1354
 requires="list of xs:QName"? policySets="list of xs:QName"?>* 1355
 <interface … />? 1356
 <binding … />* 1357
 <callback>? 1358
 <binding … />+ 1359
 </callback> 1360
 </reference> 1361
 … 1362
</composite> 1363

 1364

The composite reference element has the following attributes: 1365

 name : NCName (1..1) – the name of the reference. The name of a composite 1366
<reference/> element MUST be unique across all the composite references in the 1367
composite. [ASM60006] The name of the composite reference can be different than the 1368
name of the promoted component reference. 1369

 promote : anyURI (1..n) – identifies one or more promoted component references. The 1370
value is a list of values of the form <component-name>/<reference-name> separated by 1371
spaces. The reference name can be omitted if the component has only one reference. 1372
Each of the URIs declared by a composite reference's @promote attribute MUST identify a 1373
component reference within the composite. [ASM60007] <include/> processing MUST 1374
take place before the processing of the @promote attribute of a composite reference is 1375
performed. [ASM60037] 1376

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 39 of 132

The same component reference can be promoted more than once, using different 1377
composite references, but only if the multiplicity defined on the component reference is 1378
0..n or 1..n. The multiplicity on the composite reference can restrict accordingly. 1379

Where a composite reference promotes two or more component references: 1380

 the interfaces of the component references promoted by a composite reference 1381
MUST be the same, or if the composite reference itself declares an interface then 1382
all the component reference interfaces MUST be compatible with the composite 1383
reference interface. Compatible means that the component reference interface is 1384
the same or is a strict subset of the composite reference interface. [ASM60008] 1385

 the intents declared on a composite reference and on the component references 1386
which it promoites MUST NOT be mutually exclusive. [ASM60009] The intents 1387
which apply to the composite reference in this case are the union of the intents 1388
specified for each of the promoted component references plus any intents declared 1389
on the composite reference itself. If any intents in the set which apply to a 1390
composite reference are mutually exclusive then the SCA runtime MUST raise an 1391
error. [ASM60010] 1392

 requires : QName (0..n) – a list of policy intents. See the Policy Framework specification 1393
[10] for a description of this attribute. Specified intents add to or further qualify the 1394
intents defined for the promoted component reference. 1395

 policySets : QName (0..n) – a list of policy sets. See the Policy Framework specification 1396
[10] for a description of this attribute. 1397

 multiplicity : (0..1) - Defines the number of wires that can connect the reference to 1398
target services. When present, the multiplicity can have one of the following values 1399

o 0..1 – zero or one wire can have the reference as a source 1400

o 1..1 – one wire can have the reference as a source 1401

o 0..n - zero or more wires can have the reference as a source 1402

o 1..n – one or more wires can have the reference as a source 1403

The default value for the @multiplicity attribute is 1..1. 1404
 1405
The value specified for the @multiplicity attribute of a composite reference MUST be 1406
compatible with the multiplicity specified on each of the promoted component references, 1407
i.e. the multiplicity has to be equal or further restrict. So multiplicity 0..1 can be used 1408
where the promoted component reference has multiplicity 0..n, multiplicity 1..1 can be 1409
used where the promoted component reference has multiplicity 0..n or 1..n and 1410
multiplicity 1..n can be used where the promoted component reference has multiplicity 1411
0..n., However, a composite reference of multiplicity 0..n or 1..n cannot be used to 1412
promote a component reference of multiplicity 0..1 or 1..1 respectively. [ASM60011] 1413

 target : anyURI (0..n) – a list of one or more of target service URI’s, depending on 1414
multiplicity setting. Each value wires the reference to a service in a composite that uses 1415
the composite containg the reference as an implementation for one of its components. For 1416
more details on wiring see the section on Wires. 1417

 wiredByImpl : boolean (0..1) – a boolean value. If set to "true" it indicates that the 1418
target of the reference is set at runtime by the implementation code (for example by the 1419
code obtaining an endpoint reference by some means and setting this as the target of the 1420
reference through the use of programming interfaces defined by the relevant Client and 1421
Implementation specification). If "true" is set, then the reference is not intended to be 1422
wired statically within a using composite, but left unwired. 1423
All the component references promoted by a single composite reference MUST have the 1424
same value for @wiredByImpl. [ASM60035] If the @wiredByImpl attribute is not specified 1425
on the composite reference, the default value is "true" if all of the promoted component 1426
references have a wiredByImpl value of "true", and the default value is "false" if all the 1427
promoted component references have a wiredByImpl value of "false". If the @wiredByImpl 1428
attribute is specified, its value MUST be "true" if all of the promoted component references 1429

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 40 of 132

have a wiredByImpl value of "true", and its value MUST be "false" if all the promoted 1430
component references have a wiredByImpl value of "false". [ASM60036] 1431

The composite reference element has the following child elements, whatever is not specified is 1432
defaulted from the promoted component reference(s). 1433

 interface : Interface (0..1) - zero or one interface element which declares an 1434
interface for the composite reference. If a composite reference has an interface specified, 1435
it MUST provide an interface which is the same or which is a compatible superset of the 1436
interface(s) declared by the promoted component reference(s), i.e. provide a superset of 1437
the operations in the interface defined by the component for the reference. [ASM60012] If 1438
no interface is declared on a composite reference, the interface from one of its promoted 1439
component references is used, which MUST be the same as or a compatible superset of 1440
the interface(s) declared by the promoted component reference(s). 1441
[ASM60013] For details on the interface element see the Interface section. 1442

 binding : Binding (0..n) - A reference element has zero or more binding elements as 1443
children. If one or more bindings are specified they override any and all of the bindings 1444
defined for the promoted component reference from the composite reference perspective. 1445
The bindings defined on the component reference are still in effect for local wires within 1446
the composite that have the component reference as their source. Details of the binding 1447
element are described in the Bindings section. For more details on wiring see the section 1448
on Wires. 1449

A reference identifies zero or more target services which satisfy the reference. This can be 1450
done in a number of ways, which are fully described in section "Specifying the Target 1451
Service(s) for a Reference". 1452

 callback (0..1) / binding : Binding (1..n) - A callback element is used if the interface 1453
has a callback defined and the callback element has one or more binding elements as 1454
subelements. The callback and its binding subelements are specified if there is a need to 1455
have binding details used to handle callbacks. If the callback element is not present, the 1456
behaviour is runtime implementation dependent. 1457

5.2.1 Example Reference 1458

The following figure shows the reference symbol that is used to represent a reference in an 1459
assembly diagram. 1460

Reference

 1461

Figure 9: Reference symbol 1462

 1463

The following figure shows the assembly diagram for the MyValueComposite containing the 1464
reference CustomerService and the reference StockQuoteService. 1465

 1466

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 41 of 132

MyValueComposite

Component

MyValue

Service

Component

Service

MyValue

Service

Reference

Customer

Service

Reference

StockQuote

Service

 1467

Figure 10: MyValueComposite showing References 1468

 1469

The following snippet shows the MyValueComposite.composite file for the MyValueComposite 1470
containing the reference elements for the CustomerService and the StockQuoteService. The 1471
reference CustomerService is bound using the SCA binding. The reference StockQuoteService is 1472
bound using the Web service binding. The endpoint addresses of the bindings can be specified, for 1473
example using the binding @uri attribute (for details see the Bindings section), or overridden in 1474
an enclosing composite. Although in this case the reference StockQuoteService is bound to a Web 1475
service, its interface is defined by a Java interface, which was created from the WSDL portType of 1476
the target web service. 1477

<?xml version="1.0" encoding="ASCII"?> 1478
<!-- MyValueComposite_3 example --> 1479
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 1480
 targetNamespace="http://foo.com" 1481
 name="MyValueComposite" > 1482
 1483
 ... 1484
 1485
 <component name="MyValueServiceComponent"> 1486
 <implementation.java 1487
 class="services.myvalue.MyValueServiceImpl"/> 1488
 <property name="currency">EURO</property> 1489
 <reference name="customerService"/> 1490
 <reference name="stockQuoteService"/> 1491
 </component> 1492
 1493
 <reference name="CustomerService" 1494
 promote="MyValueServiceComponent/customerService"> 1495
 <interface.java interface="services.customer.CustomerService"/> 1496

 <!-- The following forces the binding to be binding.sca --> 1497
 <!-- whatever is specified by the component reference or --> 1498

 <!-- by the underlying implementation --> 1499
 <binding.sca/> 1500
 </reference> 1501
 1502
 <reference name="StockQuoteService" 1503
 promote="MyValueServiceComponent/stockQuoteService"> 1504
 <interface.java 1505
 interface="services.stockquote.StockQuoteService"/> 1506

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 42 of 132

 <binding.ws port="http://www.stockquote.org/StockQuoteService# 1507
 wsdl.endpoint(StockQuoteService/StockQuoteServiceSOAP)"/> 1508
 </reference> 1509
 1510
 ... 1511
 1512
</composite> 1513

5.3 Property 1514

Properties allow for the configuration of an implementation with externally set data values. A 1515
composite can declare zero or more properties. Each property has a type, which is either simple 1516
or complex. An implementation can also define a default value for a property. Properties can be 1517
configured with values in the components that use the implementation. 1518

The declaration of a property in a composite follows the form described in the following schema 1519
snippet: 1520

<?xml version="1.0" encoding="ASCII"?> 1521
<!-- Composite Property schema snippet --> 1522
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" … > 1523
 … 1524

 <property name="xs:NCName" (type="xs:QName" | element="xs:QName") 1525
requires="list of xs:QName"? 1526
policySets="list of xs:QName"? 1527
many="xs:boolean"? mustSupply="xs:boolean"?>* 1528

 default-property-value? 1529
 </property> 1530
 … 1531
</composite> 1532

 1533

The composite property element has the following attributes: 1534

 name : NCName (1..1) - the name of the property. The @name attribute of a composite 1535
property MUST be unique amongst the properties of the same composite. [ASM60014] 1536

 one of (1..1): 1537

o type : QName – the type of the property - the qualified name of an XML schema 1538
type 1539

o element : QName – the type of the property defined as the qualified name of an 1540
XML schema global element – the type is the type of the global element 1541

A single property element MUST NOT contain both a @type attribute and an @element 1542
attribute. [ASM60040] 1543

 many : boolean (0..1) - whether the property is single-valued (false) or multi-valued 1544
(true). The default is false. In the case of a multi-valued property, it is presented to the 1545
implementation as a collection of property values. 1546

 mustSupply : boolean (0..1) – whether the property value has to be supplied by the 1547
component that uses the composite – when mustSupply="true" the component has to 1548
supply a value since the composite has no default value for the property. A default-1549
property-value is only worth declaring when mustSupply="false" (the default setting for 1550
the @mustSupply attribute), since the implication of a default value is that it is used only 1551
when a value is not supplied by the using component. 1552

 requires : QName (0..n) - a list of policy intents. See the Policy Framework specification 1553
[10] for a description of this attribute. 1554

 policySets : QName (0..n) - a list of policy sets. See the Policy Framework specification 1555
[10] for a description of this attribute. 1556

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 43 of 132

The property element can contain a default-property-value, which provides default value for the 1557
property. The form of the default property value is as described in the section on Component 1558
Property. 1559

Implementation types other than composite can declare properties in an implementation-1560
dependent form (e.g. annotations within a Java class), or through a property declaration of exactly 1561
the form described above in a componentType file. 1562

Property values can be configured when an implementation is used by a component. The form of 1563
the property configuration is shown in the section on Components. 1564

5.3.1 Property Examples 1565

For the following example of Property declaration and value setting, the following complex type is 1566
used as an example: 1567

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" 1568
 targetNamespace="http://foo.com/" 1569
 xmlns:tns="http://foo.com/"> 1570
 <!-- ComplexProperty schema --> 1571
 <xsd:element name="fooElement" type="MyComplexType"/> 1572
 <xsd:complexType name="MyComplexType"> 1573
 <xsd:sequence> 1574
 <xsd:element name="a" type="xsd:string"/> 1575
 <xsd:element name="b" type="anyURI"/> 1576
 </xsd:sequence> 1577
 <attribute name="attr" type="xsd:string" use="optional"/> 1578
 </xsd:complexType> 1579
</xsd:schema> 1580

 1581

The following composite demostrates the declaration of a property of a complex type, with a 1582
default value, plus it demonstrates the setting of a property value of a complex type within a 1583
component: 1584

<?xml version="1.0" encoding="ASCII"?> 1585
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 1586
 xmlns:foo="http://foo.com" 1587
 targetNamespace="http://foo.com" 1588
 name="AccountServices"> 1589
<!-- AccountServices Example1 --> 1590
 1591
 ... 1592
 1593
 <property name="complexFoo" type="foo:MyComplexType"> 1594
 <value> 1595
 <foo:a>AValue</foo:a> 1596
 <foo:b>InterestingURI</foo:b> 1597
 </value> 1598
 </property> 1599
 1600
 <component name="AccountServiceComponent"> 1601
 <implementation.java class="foo.AccountServiceImpl"/> 1602
 <property name="complexBar" source="$complexFoo"/> 1603
 <reference name="accountDataService" 1604
 target="AccountDataServiceComponent"/> 1605
 <reference name="stockQuoteService" target="StockQuoteService"/> 1606
 </component> 1607

 1608
 ... 1609
 1610

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 44 of 132

</composite> 1611
 1612

In the declaration of the property named complexFoo in the composite AccountServices, the 1613
property is defined to be of type foo:MyComplexType. The namespace foo is declared in the 1614
composite and it references the example XSD, where MyComplexType is defined. The declaration 1615
of complexFoo contains a default value. This is declared as the content of the property element. 1616
In this example, the default value consists of the element value which is of type 1617
foo:MyComplexType and it has two child elements <foo:a> and <foo:b>, following the definition 1618
of MyComplexType. 1619

In the component AccountServiceComponent, the component sets the value of the property 1620
complexBar, declared by the implementation configured by the component. In this case, the 1621
type of complexBar is foo:MyComplexType. The example shows that the value of the complexBar 1622
property is set from the value of the complexFoo property – the @source attribute of the property 1623
element for complexBar declares that the value of the property is set from the value of a property 1624
of the containing composite. The value of the @source attribute is $complexFoo, where 1625
complexFoo is the name of a property of the composite. This value implies that the whole of the 1626
value of the source property is used to set the value of the component property. 1627

The following example illustrates the setting of the value of a property of a simple type (a string) 1628
from part of the value of a property of the containing composite which has a complex type: 1629

<?xml version="1.0" encoding="ASCII"?> 1630
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 1631
 xmlns:foo="http://foo.com" 1632
 targetNamespace="http://foo.com" 1633
 name="AccountServices"> 1634
<!-- AccountServices Example2 --> 1635
 1636
 ... 1637
 1638
 <property name="complexFoo" type="foo:MyComplexType"> 1639
 <value> 1640
 <foo:a>AValue</foo:a> 1641
 <foo:b>InterestingURI</foo:b> 1642
 </value> 1643
 </property> 1644
 1645
 <component name="AccountServiceComponent"> 1646
 <implementation.java class="foo.AccountServiceImpl"/> 1647
 <property name="currency" source="$complexFoo/a"/> 1648
 <reference name="accountDataService" 1649
 target="AccountDataServiceComponent"/> 1650
 <reference name="stockQuoteService" target="StockQuoteService"/> 1651
 </component> 1652
 1653
 ... 1654
 1655
</composite> 1656
 1657

In this example, the component AccountServiceComponent sets the value of a property called 1658
currency, which is of type string. The value is set from a property of the composite 1659
AccountServices using the @source attribute set to $complexFoo/a. This is an XPath 1660
expression that selects the property name complexFoo and then selects the value of the a 1661
subelement of the value of complexFoo. The "a" subelement is a string, matching the type of the 1662
currency property. 1663

Further examples of declaring properties and setting property values in a component follow: 1664

Declaration of a property with a simple type and a default value: 1665

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 45 of 132

<property name="SimpleTypeProperty" type="xsd:string"> 1666
MyValue 1667
</property> 1668

 1669

Declaration of a property with a complex type and a default value: 1670

<property name="complexFoo" type="foo:MyComplexType"> 1671
 <value> 1672
 <foo:a>AValue</foo:a> 1673
 <foo:b>InterestingURI</foo:b> 1674
 </value> 1675
</property> 1676
 1677

Declaration of a property with a global element type: 1678

<property name="elementFoo" element="foo:fooElement"> 1679
 <foo:fooElement> 1680
 <foo:a>AValue</foo:a> 1681
 <foo:b>InterestingURI</foo:b> 1682
 </foo:fooElement> 1683
</property> 1684

5.4 Wire 1685

SCA wires within a composite connect source component references to target component 1686
services. 1687

One way of defining a wire is by configuring a reference of a component using its @target 1688
attribute. The reference element is configured with the wire-target-URI of the service(s) that 1689
resolve the reference. Multiple target services are valid when the reference has a multiplicity of 1690
0..n or 1..n. 1691

An alternative way of defining a Wire is by means of a wire element which is a child of the 1692
composite element. There can be zero or more wire elements in a composite. This alternative 1693
method for defining wires is useful in circumstances where separation of the wiring from the 1694
elements the wires connect helps simplify development or operational activities. An example is 1695
where the components used to build a Domain are relatively static but where new or changed 1696
applications are created regularly from those components, through the creation of new assemblies 1697
with different wiring. Deploying the wiring separately from the components allows the wiring to 1698
be created or modified with minimum effort. 1699

Note that a Wire specified via a wire element is equivalent to a wire specified via the @target 1700
attribute of a reference. The rule which forbids mixing of wires specified with the @target 1701
attribute with the specification of endpoints in binding subelements of the reference also applies to 1702
wires specified via separate wire elements. 1703

The following snippet shows the composite schema with the schema for the reference elements of 1704
components and composite services and the wire child element: 1705

 1706

<?xml version="1.0" encoding="ASCII"?> 1707
<!-- Wires schema snippet --> 1708
<composite ...> 1709
 ... 1710
 <wire source="xs:anyURI" target="xs:anyURI" replace="xs:boolean"?/>* 1711
 ... 1712
</composite> 1713

 1714

The reference element of a component has a list of one or more of the following wire-target-1715
URI values for the target, with multiple values separated by a space: 1716

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 46 of 132

 <component-name>/<service-name> 1717

o where the target is a service of a component. The service name can be omitted if 1718
the target component only has one service with a compatible interface 1719

 1720

The wire element has the following attributes: 1721

 source (1..1) – names the source component reference. Valid URI schemes are: 1722

o <component-name>/<reference-name> 1723

 where the source is a component reference. The reference name can be 1724
omitted if the source component only has one reference 1725

 target (1..1) – names the target component service. Valid URI schemes are 1726

o <component-name>/<service-name> 1727

 where the target is a service of a component. The service name can be 1728
omitted if the target component only has one service with a compatible 1729
interface 1730

 replace (0..1) - a boolean value, with the default of "false". When a wire element has 1731
@replace="false", the wire is added to the set of wires which apply to the reference 1732
identified by the @source attribute. When a wire element has @replace="true", the wire 1733
is added to the set of wires which apply to the reference identified by the @source 1734
attribute - but any wires for that reference specified by means of the @target attribute of 1735
the reference are removed from the set of wires which apply to the reference. 1736
 1737
In other words, if any <wire/> element with @replace="true" is used for a particular 1738
reference, the value of the @target attribute on the reference is ignored - and this permits 1739
existing wires on the reference to be overridden by separate configuration, where the 1740
reference is on a component at the Domain level. 1741

<include/> processing MUST take place before the @source and @target attributes of a wire are 1742
resolved. [ASM60039] 1743

For a composite used as a component implementation, wires can only link sources and targets 1744
that are contained in the same composite (irrespective of which file or files are used to describe 1745
the composite). Wiring to entities outside the composite is done through services and references 1746
of the composite with wiring defined by the next higher composite. 1747

A wire can only connect a source to a target if the target implements an interface that is 1748
compatible with the interface declared by the source. The source and the target are compatible if 1749
the target interface is a compatible superset of the source interface, defined as follows: 1750

1. the source interface and the target interface of a wire MUST either both be remotable or 1751
else both be local [ASM60015] 1752

2. the operations on the target interface of a wire MUST be the same as or be a superset of 1753
the operations in the interface specified on the source [ASM60016] 1754

3. compatibility between the source interface and the target interface for a wire for the 1755
individual operations is defined as compatibility of the signature, that is operation name, 1756
input types, and output types MUST be the same. [ASM60017] 1757

4. the order of the input and output types for operations in the source interface and the 1758
target interface of a wire also MUST be the same. [ASM60018] 1759

5. the set of Faults and Exceptions expected by each operation in the source interface MUST 1760
be the same or be a superset of those specified by the target interface. [ASM60019] 1761

If either the source interface of a wire or the target interface of a wire declares a callback interface 1762
then both the source interface and the target interface MUST declare a callback interface and the 1763
callback interface declared on the target MUST be a compatible superset of the callback interface 1764
declared on the source. [ASM60020] 1765

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 47 of 132

A Wire can connect between different interface languages (e.g. Java interfaces and WSDL 1766
portTypes) in either direction, as long as the operations defined by the two interface types are 1767
equivalent. They are equivalent if the operation(s), parameter(s), return value(s) and 1768
faults/exceptions map to each other. 1769

Service clients cannot (portably) ask questions at runtime about additional interfaces that are 1770
provided by the implementation of the service (e.g. the result of “instance of” in Java is non 1771
portable). It is valid for an SCA implementation to have proxies for all wires, so that, for example, 1772
a reference object passed to an implementation might only have the business interface of the 1773
reference and might not be an instance of the (Java) class which is used to implement the target 1774
service, even where the interface is local and the target service is running in the same process. 1775

Note: It is permitted to deploy a composite that has references that are not wired. For the case of 1776
an un-wired reference with multiplicity 1..1 or 1..n the deployment process provided by an SCA 1777
runtime SHOULD issue a warning. [ASM60021] 1778

5.4.1 Wire Examples 1779

The following figure shows the assembly diagram for the MyValueComposite2 containing wires 1780
between service, components and references. 1781

MyValueComposite2

Component

MyValue

Service

Component

Service

MyValue

Service

Reference

Customer

Service

Reference

StockQuote

Service

Component

StockQuote

Mediator

Component

 1782

Figure 11: MyValueComposite2 showing Wires 1783

 1784

The following snippet shows the MyValueComposite2.composite file for the MyValueComposite2 1785
containing the configured component and service references. The service MyValueService is wired 1786
to the MyValueServiceComponent, using an explicit <wire/> element. The 1787
MyValueServiceComponent’s customerService reference is wired to the composite's 1788
CustomerService reference. The MyValueServiceComponent’s stockQuoteService reference is 1789
wired to the StockQuoteMediatorComponent, which in turn has its reference wired to the 1790
StockQuoteService reference of the composite. 1791

<?xml version="1.0" encoding="ASCII"?> 1792
<!-- MyValueComposite Wires examples --> 1793
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 1794
 targetNamespace="http://foo.com" 1795
 name="MyValueComposite2" > 1796
 1797
 <service name="MyValueService" promote="MyValueServiceComponent"> 1798
 <interface.java interface="services.myvalue.MyValueService"/> 1799
 <binding.ws port="http://www.myvalue.org/MyValueService# 1800
 wsdl.endpoint(MyValueService/MyValueServiceSOAP)"/> 1801
 </service> 1802

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 48 of 132

 1803
 <component name="MyValueServiceComponent"> 1804
 <implementation.java 1805
 class="services.myvalue.MyValueServiceImpl"/> 1806
 <property name="currency">EURO</property> 1807
 <service name="MyValueService"/> 1808
 <reference name="customerService"/> 1809
 <reference name="stockQuoteService"/> 1810
 </component> 1811
 1812
 <wire source="MyValueServiceComponent/stockQuoteService" 1813
 target="StockQuoteMediatorComponent"/> 1814
 1815
 <component name="StockQuoteMediatorComponent"> 1816
 <implementation.java class="services.myvalue.SQMediatorImpl"/> 1817
 <property name="currency">EURO</property> 1818
 <reference name="stockQuoteService"/> 1819
 </component> 1820
 1821
 <reference name="CustomerService" 1822
 promote="MyValueServiceComponent/customerService"> 1823
 <interface.java interface="services.customer.CustomerService"/> 1824
 <binding.sca/> 1825
 </reference> 1826
 1827
 <reference name="StockQuoteService" 1828
 promote="StockQuoteMediatorComponent"> 1829
 <interface.java 1830
 interface="services.stockquote.StockQuoteService"/> 1831
 <binding.ws port="http://www.stockquote.org/StockQuoteService# 1832
 wsdl.endpoint(StockQuoteService/StockQuoteServiceSOAP)"/> 1833
 </reference> 1834
 1835
</composite> 1836

5.4.2 Autowire 1837

SCA provides a feature named Autowire, which can help to simplify the assembly of composites. 1838
Autowire enables component references to be automatically wired to component services which 1839
will satisfy those references, without the need to create explicit wires between the references and 1840
the services. When the autowire feature is used, a component reference which is not promoted 1841
and which is not explicitly wired to a service within a composite is automatically wired to a target 1842
service within the same composite. Autowire works by searching within the composite for a 1843
service interface which matches the interface of the references. 1844

The autowire feature is not used by default. Autowire is enabled by the setting of an @autowire 1845
attribute to "true". Autowire is disabled by setting of the @autowire attribute to "false" The 1846
@autowire attribute can be applied to any of the following elements within a composite: 1847

 reference 1848

 component 1849

 composite 1850

Where an element does not have an explicit setting for the @autowire attribute, it inherits the 1851
setting from its parent element. Thus a reference element inherits the setting from its containing 1852
component. A component element inherits the setting from its containing composite. Where 1853
there is no setting on any level, autowire="false" is the default. 1854

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 49 of 132

As an example, if a composite element has autowire="true" set, this means that autowiring is 1855
enabled for all component references within that composite. In this example, autowiring can be 1856
turned off for specific components and specific references through setting autowire="false" on the 1857
components and references concerned. 1858

For each component reference for which autowire is enabled, the SCA runtime MUST search within 1859
the composite for target services which are compatible with the reference. [ASM60022] 1860
"Compatible" here means: 1861

 the target service interface MUST be a compatible superset of the reference interface 1862
when using autowire to wire a reference (as defined in the section on Wires) [ASM60023] 1863

 the intents, and policies applied to the service MUST be compatible with those on the 1864
reference when using autowire to wire a reference – so that wiring the reference to the 1865
service will not cause an error due to policy mismatch [ASM60024] (see the Policy 1866
Framework specification [10] for details) 1867

If the search finds 1 or more valid target service for a particular reference, the action taken 1868
depends on the multiplicity of the reference: 1869

 for an autowire reference with multiplicity 0..1 or 1..1, the SCA runtime MUST wire the 1870
reference to one of the set of valid target services chosen from the set in a runtime-1871
dependent fashion [ASM60025] 1872

 for an autowire reference with multiplicity 0..n or 1..n, the reference MUST be wired to all 1873
of the set of valid target services [ASM60026] 1874

If the search finds no valid target services for a particular reference, the action taken depends on 1875
the multiplicy of the reference: 1876

 for an autowire reference with multiplicity 0..1 or 0..n, if the SCA runtime finds no valid 1877
target service, there is no problem – no services are wired and the SCA runtime MUST 1878
NOT raise an error [ASM60027] 1879

 for an autowire reference with multiplicity 1..1 or 1..n, if the SCA runtime finds no valid 1880
target services an error MUST be raised by the SCA runtime since the reference is 1881
intended to be wired [ASM60028] 1882

5.4.3 Autowire Examples 1883

This example demonstrates two versions of the same composite – the first version is done using 1884
explicit wires, with no autowiring used, the second version is done using autowire. In both cases 1885
the end result is the same – the same wires connect the references to the services. 1886

First, here is a diagram for the composite: 1887

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 50 of 132

Payments

Component

Payment

Service

AccountsComposite

External

Banking

Service

Accounts

Ledger

Component

Product

Pricing

Component

Customer

Account

Component

 1888

Figure 12: Example Composite for Autowire 1889

First, the composite using explicit wires: 1890

<?xml version="1.0" encoding="UTF-8"?> 1891
<!-- Autowire Example - No autowire --> 1892
<composite xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance" 1893
 xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 1894
 xmlns:foo="http://foo.com" 1895
 targetNamespace="http://foo.com" 1896
 name="AccountComposite"> 1897
 1898
 <service name="PaymentService" promote="PaymentsComponent"/> 1899
 1900
 <component name="PaymentsComponent"> 1901
 <implementation.java class="com.foo.accounts.Payments"/> 1902
 <service name="PaymentService"/> 1903
 <reference name="CustomerAccountService" 1904
 target="CustomerAccountComponent"/> 1905
 <reference name="ProductPricingService" 1906
 target="ProductPricingComponent"/> 1907
 <reference name="AccountsLedgerService" 1908
 target="AccountsLedgerComponent"/> 1909
 <reference name="ExternalBankingService"/> 1910
 </component> 1911
 1912
 <component name="CustomerAccountComponent"> 1913
 <implementation.java class="com.foo.accounts.CustomerAccount"/> 1914
 </component> 1915
 1916
 <component name="ProductPricingComponent"> 1917
 <implementation.java class="com.foo.accounts.ProductPricing"/> 1918
 </component> 1919
 1920
 <component name="AccountsLedgerComponent"> 1921

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 51 of 132

 <implementation.composite name="foo:AccountsLedgerComposite"/> 1922
 </component> 1923
 1924
 <reference name="ExternalBankingService" 1925
 promote="PaymentsComponent/ExternalBankingService"/> 1926
 1927
</composite> 1928

 1929

Secondly, the composite using autowire: 1930

<?xml version="1.0" encoding="UTF-8"?> 1931
<!-- Autowire Example - With autowire --> 1932
<composite xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance" 1933
 xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 1934
 xmlns:foo="http://foo.com" 1935
 targetNamespace="http://foo.com" 1936
 name="AccountComposite"> 1937
 1938
 <service name="PaymentService" promote="PaymentsComponent"> 1939
 <interface.java class="com.foo.PaymentServiceInterface"/> 1940
 </service> 1941
 1942
 <component name="PaymentsComponent" autowire="true"> 1943
 <implementation.java class="com.foo.accounts.Payments"/> 1944
 <service name="PaymentService"/> 1945
 <reference name="CustomerAccountService"/> 1946
 <reference name="ProductPricingService"/> 1947
 <reference name="AccountsLedgerService"/> 1948
 <reference name="ExternalBankingService"/> 1949
 </component> 1950
 1951
 <component name="CustomerAccountComponent"> 1952
 <implementation.java class="com.foo.accounts.CustomerAccount"/> 1953
 </component> 1954
 1955
 <component name="ProductPricingComponent"> 1956
 <implementation.java class="com.foo.accounts.ProductPricing"/> 1957
 </component> 1958
 1959
 <component name="AccountsLedgerComponent"> 1960
 <implementation.composite name="foo:AccountsLedgerComposite"/> 1961
 </component> 1962
 1963
 <reference name="ExternalBankingService" 1964
 promote="PaymentsComponent/ExternalBankingService"/> 1965
 1966
</composite> 1967

In this second case, autowire is set on for the PaymentsComponent and there are no explicit wires 1968
for any of its references – the wires are created automatically through autowire. 1969

Note: In the second example, it would be possible to omit all of the service and reference 1970
elements from the PaymentsComponent. They are left in for clarity, but if they are omitted, the 1971
component service and references still exist, since they are provided by the implementation used 1972
by the component. 1973

 1974

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 52 of 132

5.5 Using Composites as Component Implementations 1975

Composites can be used as component implementations in higher-level composites – in other 1976
words the higher-level composites can have components which are implemented by composites. 1977

When a composite is used as a component implementation, it defines a boundary of visibility. 1978
Components within the composite cannot be referenced directly by the using component. The 1979
using component can only connect wires to the services and references of the used composite and 1980
set values for any properties of the composite. The internal construction of the composite is 1981
invisible to the using component. The boundary of visibility, sometimes called encapsulation, can 1982
be enforced when assembling components and composites, but such encapsulation structures 1983
might not be enforceable in a particular implementation language. 1984

A composite used as a component implementation also needs to honor a completeness contract. 1985
The services, references and properties of the composite form a contract (represented by the 1986
component type of the composite) which is relied upon by the using component. The concept of 1987
completeness of the composite implies that, once all <include/> element processing is performed 1988
on the composite: 1989

1. For a composite used as a component implementation, each composite service offered by 1990
the composite MUST promote a component service of a component that is within the 1991
composite. [ASM60032] 1992

2. For a composite used as a component implementation, every component reference of 1993
components within the composite with a multiplicity of 1..1 or 1..n MUST be wired or 1994
promoted. [ASM60033] (according to the various rules for specifying target services for a 1995
component reference described in the section " Specifying the Target Service(s) for a 1996
Reference"). 1997

3. For a composite used as a component implementation, all properties of components within 1998
the composite, where the underlying component implementation specifies 1999
"mustSupply=true" for the property, MUST either specify a value for the property or 2000
source the value from a composite property. [ASM60034] 2001

The component type of a composite is defined by the set of composite service elements, 2002
composite reference elements and composite property elements that are the children of the 2003
composite element. 2004

Composites are used as component implementations through the use of the 2005
implementation.composite element as a child element of the component. The schema snippet 2006
for the implementation.composite element is: 2007

<!-- implementation.composite pseudo-schema --> 2008
<implementation.composite name="xs:QName" requires="list of xs:QName"? 2009
policySets="list of xs:QName"?> 2010

 2011

The implementation.composite element has the following attributes: 2012

 name (1..1) – the name of the composite used as an implementation. The @name 2013
attribute of an <implementation.composite/> element MUST contain the QName of a 2014
composite in the SCA Domain. [ASM60030] 2015

 requires : QName (0..n) – a list of policy intents. See the Policy Framework specification 2016
[10] for a description of this attribute. Specified intents add to or further qualify the 2017
required intents defined for the promoted component reference. 2018

 policySets : QName (0..n) – a list of policy sets. See the Policy Framework specification 2019
[10] for a description of this attribute. 2020

 2021

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 53 of 132

5.5.1 Example of Composite used as a Component Implementation 2022

The following is an example of a composite which contains two components, each of which is 2023
implemented by a composite: 2024
 2025

<?xml version="1.0" encoding="UTF-8"?> 2026
<!-- CompositeComponent example --> 2027
<composite xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance" 2028
 xsd:schemaLocation="http://docs.oasis-open.org/ns/opencsa/sca/200903 2029
 file:/C:/Strategy/SCA/v09_osoaschemas/schemas/sca.xsd" 2030
 xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 2031
 targetNamespace="http://foo.com" 2032
 xmlns:foo="http://foo.com" 2033
 name="AccountComposite"> 2034
 2035
 <service name="AccountService" promote="AccountServiceComponent"> 2036
 <interface.java interface="services.account.AccountService"/> 2037
 <binding.ws port="AccountService# 2038
 wsdl.endpoint(AccountService/AccountServiceSOAP)"/> 2039
 </service> 2040
 2041
 <reference name="stockQuoteService" 2042
 promote="AccountServiceComponent/StockQuoteService"> 2043
 <interface.java 2044
 interface="services.stockquote.StockQuoteService"/> 2045
 <binding.ws 2046
 port="http://www.quickstockquote.com/StockQuoteService# 2047
 wsdl.endpoint(StockQuoteService/StockQuoteServiceSOAP)"/> 2048
 </reference> 2049
 2050
 <property name="currency" type="xsd:string">EURO</property> 2051
 2052
 <component name="AccountServiceComponent"> 2053
 <implementation.composite name="foo:AccountServiceComposite1"/> 2054
 2055
 <reference name="AccountDataService" target="AccountDataService"/> 2056
 <reference name="StockQuoteService"/> 2057
 2058
 <property name="currency" source="$currency"/> 2059
 </component> 2060
 2061
 <component name="AccountDataService"> 2062
 <implementation.composite name="foo:AccountDataServiceComposite"/> 2063
 2064
 <property name="currency" source="$currency"/> 2065
 </component> 2066
 2067
</composite> 2068

5.6 Using Composites through Inclusion 2069

In order to assist team development, composites can be developed in the form of multiple physical 2070
artifacts that are merged into a single logical unit. 2071

A composite can include another composite by using the include element. This provides a 2072
recursive inclusion capability. The semantics of included composites are that the element content 2073
children of the included composite are inlined, with certain modification, into the using composite. 2074
This is done recursively till the resulting composite does not contain an include element. The 2075

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 54 of 132

outer included composite element itself is discarded in this process – only its contents are included 2076
as described below: 2077

1. All the element content children of the included composite are inlined in the including 2078
composite. 2079

2. The attributes @targetNamespace, @name, @constrainingType, and @local of the 2080
included composites are discarded. 2081

3. All the namespace declaration on the included composite element are added to the inlined 2082
element content children unless the namespace binding is overridden by the element 2083
content children. 2084

4. The attribute @autowire, if specified on the included composite, is included on all inlined 2085
component element children unless the component child already specifies that attribute. 2086

5. The attribute values of @requires and @policySet, if specified on the included 2087
composite, are merged with corresponding attribute on the inlined component, service and 2088
reference children elements. Merge in this context means a set union. 2089

6. Extension attributes ,if present on the included composite, follow the rules defined for that 2090
extension. Authors of attribute extensions on the composite element define the rules 2091
applying to those attributes for inclusion. 2092

If the included composite has the value true for the attribute @local then the including composite 2093
MUST have the same value for the @local attribute, else it is an error. [ASM60041] 2094

The composite file used for inclusion can have any contents The composite element can contain 2095
any of the elements which are valid as child elements of a composite element, namely 2096
components, services, references, wires and includes. There is no need for the content of an 2097
included composite to be complete, so that artifacts defined within the using composite or in 2098
another associated included composite file can be referenced. For example, it is permissible to 2099
have two components in one composite file while a wire specifying one component as the source 2100
and the other as the target can be defined in a second included composite file. 2101

The SCA runtime MUST raise an error if the composite resulting from the inclusion of one 2102
composite into another is invalid. [ASM60031] For example, it is an error if there are duplicated 2103
elements in the using composite (e.g. two services with the same uri contributed by different 2104
included composites). It is not considered an erorr if the (using) composite resulting from the 2105
inclusion is incomplete (eg. wires with non-existent source or target). Such incomplete resulting 2106
composites are permitted to allow recursive composition. 2107

The following snippet shows the pseudo-schema for the include element. 2108

<?xml version="1.0" encoding="UTF-8"?> 2109
<!-- Include snippet --> 2110
<composite ...> 2111
 ... 2112
 <include name="xs:QName"/>* 2113
 ... 2114
</composite> 2115
 2116

The include element has the following attribute: 2117

 name: QName (1..1) – the name of the composite that is included. The @name attribute 2118
of an include element MUST be the QName of a composite in the SCA Domain. 2119
[ASM60042] 2120

 2121

5.6.1 Included Composite Examples 2122

The following figure shows the assembly diagram for the MyValueComposite2 containing four 2123
included composites. The MyValueServices composite contains the MyValueService service. The 2124
MyValueComponents composite contains the MyValueServiceComponent and the 2125

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 55 of 132

StockQuoteMediatorComponent as well as the wire between them. The MyValueReferences 2126
composite contains the CustomerService and StockQuoteService references. The MyValueWires 2127
composite contains the wires that connect the MyValueService service to the 2128
MyValueServiceComponent, that connect the customerService reference of the 2129
MyValueServiceComponent to the CustomerService reference, and that connect the 2130
stockQuoteService reference of the StockQuoteMediatorComponent to the StockQuoteService 2131
reference. Note that this is just one possible way of building the MyValueComposite2 from a set of 2132
included composites. 2133

MyValueWires

composite

MyValueComponents

composite

MyValueReferences

composite

MyValueServices

composite

MyValueComposite2

Component

MyValue

Service

Component

Service

MyValue

Service

Reference

Customer

Service

Reference

StockQuote

Service

Component

StockQuote

Mediator

Component

 2134

 2135

Figure 13 MyValueComposite2 built from 4 included composites 2136

 2137

The following snippet shows the contents of the MyValueComposite2.composite file for the 2138
MyValueComposite2 built using included composites. In this sample it only provides the name of 2139
the composite. The composite file itself could be used in a scenario using included composites to 2140
define components, services, references and wires. 2141

<?xml version="1.0" encoding="ASCII"?> 2142
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 2143
 targetNamespace="http://foo.com" 2144
 xmlns:foo="http://foo.com" 2145
 name="MyValueComposite2" > 2146
 2147
 <include name="foo:MyValueServices"/> 2148
 <include name="foo:MyValueComponents"/> 2149
 <include name="foo:MyValueReferences"/> 2150
 <include name="foo:MyValueWires"/> 2151
 2152
</composite> 2153

 2154
The following snippet shows the content of the MyValueServices.composite file. 2155

<?xml version="1.0" encoding="ASCII"?> 2156
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 2157
 targetNamespace="http://foo.com" 2158

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 56 of 132

 xmlns:foo="http://foo.com" 2159
 name="MyValueServices" > 2160
 2161
 <service name="MyValueService" promote="MyValueServiceComponent"> 2162
 <interface.java interface="services.myvalue.MyValueService"/> 2163
 <binding.ws port="http://www.myvalue.org/MyValueService# 2164
 wsdl.endpoint(MyValueService/MyValueServiceSOAP)"/> 2165
 </service> 2166
 2167
</composite> 2168

 2169

The following snippet shows the content of the MyValueComponents.composite file. 2170

<?xml version="1.0" encoding="ASCII"?> 2171
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 2172
 targetNamespace="http://foo.com" 2173
 xmlns:foo="http://foo.com" 2174
 name="MyValueComponents" > 2175
 2176
 <component name="MyValueServiceComponent"> 2177
 <implementation.java 2178
 class="services.myvalue.MyValueServiceImpl"/> 2179
 <property name="currency">EURO</property> 2180
 </component> 2181
 2182
 <component name="StockQuoteMediatorComponent"> 2183
 <implementation.java class="services.myvalue.SQMediatorImpl"/> 2184
 <property name="currency">EURO</property> 2185
 </component> 2186
 2187
<composite> 2188

 2189

The following snippet shows the content of the MyValueReferences.composite file. 2190

<?xml version="1.0" encoding="ASCII"?> 2191
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 2192
 targetNamespace="http://foo.com" 2193
 xmlns:foo="http://foo.com" 2194
 name="MyValueReferences" > 2195
 2196
 <reference name="CustomerService" 2197
 promote="MyValueServiceComponent/CustomerService"> 2198
 <interface.java interface="services.customer.CustomerService"/> 2199
 <binding.sca/> 2200
 </reference> 2201
 2202
 <reference name="StockQuoteService" 2203
 promote="StockQuoteMediatorComponent"> 2204
 <interface.java 2205
 interface="services.stockquote.StockQuoteService"/> 2206
 <binding.ws port="http://www.stockquote.org/StockQuoteService# 2207
 wsdl.endpoint(StockQuoteService/StockQuoteServiceSOAP)"/> 2208
 </reference> 2209
 2210
</composite> 2211

 2212

The following snippet shows the content of the MyValueWires.composite file. 2213

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 57 of 132

<?xml version="1.0" encoding="ASCII"?> 2214
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 2215
 targetNamespace="http://foo.com" 2216
 xmlns:foo="http://foo.com" 2217
 name="MyValueWires" > 2218
 2219
 <wire source="MyValueServiceComponent/stockQuoteService" 2220
 target="StockQuoteMediatorComponent"/> 2221
 2222
</composite> 2223

5.7 Composites which Contain Component Implementations of 2224

Multiple Types 2225

A Composite containing multiple components can have multiple component implementation types. 2226
For example, a Composite can contain one component with a Java POJO as its implementation and 2227
another component with a BPEL process as its implementation. 2228

5.8 Structural URI of Components 2229

The structural URI is a relative URI that describes each use of a given component in the Domain, 2230
relative to the URI of the Domain itself. It is never specified explicitly, but it calculated from the 2231
configuration of the components configured into the Domain. 2232

A component in a composite can be used more than once in the Domain, if its containing 2233
composite is used as the implementation of more than one higher-level component. The structural 2234
URI is used to separately identify each use of a component - for example, the structural URI can 2235
be used to attach different policies to each separate use of a component. 2236

For components directly deployed into the Domain, the structural URI is simply the name of the 2237
component. 2238

Where components are nested within a composite which is used as the implementation of a higher 2239
level component, the structural URI consists of the name of the nested component prepended with 2240
each of the names of the components upto and including the Domain level component. 2241

For example, consider a component named Component1 at the Domain level, where its 2242
implementation is Composite1 which in turn contains a component named Component2, which is 2243
implemented by Composite2 which contains a component named Component3. The three 2244
components in this example have the following structural URIs: 2245

1. Component1: Component1 2246

2. Component2: Component1/Component2 2247

3. Component3: Component1/Component2/Component3 2248

The structural URI can also be extended to refer to specific parts of a component, such as a 2249
service or a reference, by appending an appropriate fragment identifier to the component's 2250
structural URI, as follows: 2251

 Service: 2252
#service(servicename) 2253
 2254

 Reference: 2255
#reference(referencename) 2256
 2257

 Service binding: 2258
#service-binding(servicename/bindingname) 2259
 2260

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 58 of 132

 Reference binding: 2261
#reference-binding(referencename/bindingname) 2262

So, for example, the structural URI of the service named "testservice" of component 2263
"Component1" is Component1#service(testservice). 2264

 2265

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 59 of 132

6 ConstrainingType 2266

SCA allows a component, and its associated implementation, to be constrained by a 2267
constrainingType. The constrainingType element provides assistance in developing top-down 2268
usecases in SCA, where an architect or assembler can define the structure of a composite, 2269
including the necessary form of component implementations, before any of the implementations 2270
are developed. 2271

A constrainingType is expressed as an element which has services, reference and properties as 2272
child elements and which can have intents applied to it. The constrainingType is independent of 2273
any implementation. Since it is independent of an implementation it cannot contain any 2274
implementation-specific configuration information or defaults. Specifically, constrainingType does 2275
not contain bindings, policySets, property values or default wiring information. The 2276
constrainingType is applied to a component through a @constrainingType attribute on the 2277
component. 2278

A constrainingType provides the "shape" for a component and its implementation. Any component 2279
configuration that points to a constrainingType is constrained by this shape. The constrainingType 2280
specifies the services, references and properties that MUST be provided by the implementation of 2281
the component to which the constrainingType is attached. [ASM70001] This provides the ability 2282
for the implementer to program to a specific set of services, references and properties as defined 2283
by the constrainingType. Components are therefore configured instances of implementations and 2284
are constrained by an associated constrainingType. 2285

If the configuration of the component or its implementation does not conform to the 2286
constrainingType specified on the component element, the SCA runtime MUST raise an error. 2287
[ASM70002] 2288

A constrainingType is represented by a constrainingType element. The following snippet shows 2289
the pseudo-schema for the composite element. 2290

<?xml version="1.0" encoding="ASCII"?> 2291
<!-- ConstrainingType schema snippet --> 2292
<constrainingType xmlns="http://docs.oasis-2293
open.org/ns/opencsa/sca/200903" 2294
 targetNamespace="xs:anyURI"? 2295
 name="xs:NCName"> 2296
 2297
 2298
 <service name="xs:NCName">* 2299
 <interface … />? 2300
 </service> 2301
 2302
 <reference name="xs:NCName" 2303
 multiplicity="0..1 or 1..1 or 0..n or 1..n"?>* 2304
 <interface … />? 2305
 </reference> 2306
 2307
 <property name="xs:NCName" (type="xs:QName" | element="xs:QName") 2308
 many="xs:boolean"? mustSupply="xs:boolean"?/>* 2309

 2310
</constrainingType> 2311
 2312

The constrainingType element has the following attributes: 2313

 name (1..1) – the name of the constrainingType. The form of a constraingType name is 2314
an XML QName, in the namespace identified by the @targetNamespace attribute. The 2315
@name attribute of the constraining type MUST be unique in the SCA Domain. 2316
[ASM70003] 2317

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 60 of 132

 targetNamespace (0..1) – an identifier for a target namespace into which the 2318
constrainingType is declared 2319

ConstrainingType contains zero or more properties, services, references. 2320

When an implementation is constrained by a constrainingType its component type MUST contain 2321
all the services, references and properties specified in the constrainingType. [ASM70004] The 2322
constraining type’s references and services will have interfaces specified and can have intents 2323
specified. An implementation MAY contain additional services, additional references with 2324
@multiplicity=0..1 or @multiplicity=0..n and additional properties with @mustSupply=false 2325
beyond those declared in the constraining type, but MUST NOT contain additional references with 2326
@multiplicity=1..1 or @multiplicity=1..n or additional properties with @mustSupply=true 2327
[ASM70005] 2328

When a component is constrained by a constrainingType via the @constrainingType attribute, the 2329
entire componentType associated with the component and its implementation is not visible to the 2330
containing composite. The containing composite can only see a projection of the componentType 2331
associated with the component and implementation as scoped by the constrainingType of the 2332
component. Additional services, references and properties provided by the implementation which 2333
are not declared in the constrainingType associated with a component MUST NOT be configured in 2334
any way by the containing composite. [ASM70006] This requirement ensures that the 2335
constrainingType contract cannot be violated by the composite. 2336

A constrainingType can be applied to an implementation. In this case, the implementation's 2337
componentType has a @constrainingType attribute set to the QName of the constrainingType. 2338

6.1 Example constrainingType 2339

The following snippet shows the contents of the component called "MyValueServiceComponent" 2340
which is constrained by the constrainingType myns:CT. The componentType associated with the 2341
implementation is also shown. 2342

 2343

 <component name="MyValueServiceComponent" constrainingType="myns:CT> 2344
 <implementation.java class="services.myvalue.MyValueServiceImpl"/> 2345
 <property name="currency">EURO</property> 2346
 <reference name="customerService" target="CustomerService"> 2347
 <binding.ws ...> 2348
 <reference name="stockQuoteService" 2349
 target="StockQuoteMediatorComponent"/> 2350
 </component> 2351
 2352
 <constrainingType name="CT" 2353
 targetNamespace="http://myns.com"> 2354
 <service name="MyValueService"> 2355
 <interface.java interface="services.myvalue.MyValueService"/> 2356
 </service> 2357
 <reference name="customerService"> 2358
 <interface.java interface="services.customer.CustomerService"/> 2359
 </reference> 2360
 <reference name="stockQuoteService"> 2361
 <interface.java interface="services.stockquote.StockQuoteService"/> 2362
 </reference> 2363
 <property name="currency" type="xsd:string"/> 2364
 </constrainingType> 2365
 2366

The component MyValueServiceComponent is constrained by the constrainingType CT which 2367
means that it needs to provide: 2368

 service MyValueService with the interface services.myvalue.MyValueService 2369

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 61 of 132

 reference customerService with the interface services.stockquote.StockQuoteService 2370

 reference stockQuoteService with the interface services.stockquote.StockQuoteService 2371

 property currency of type xsd:string. 2372

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 62 of 132

7 Interface 2373

Interfaces define one or more business functions. These business functions are provided by 2374
Services and are used by References. A Service offers the business functionality of exactly one 2375
interface for use by other components. Each interface defines one or more service operations 2376
and each operation has zero or one request (input) message and zero or one response 2377
(output) message. The request and response messages can be simple types such as a string 2378
value or they can be complex types. 2379

SCA currently supports the following interface type systems: 2380

 Java interfaces 2381

 WSDL 1.1 portTypes (Web Services Definition Language [8]) 2382

 C++ classes 2383

 Collections of 'C' functions 2384

SCA is also extensible in terms of interface types. Support for other interface type systems can be 2385
added through the extensibility mechanisms of SCA, as described in the Extension Model section. 2386

 2387

The following snippet shows the definition for the interface base element. 2388

<interface remotable="boolean"? requires="list of xs:QName"? 2389
 policySets="list of xs:QName"?/> 2390

 2391

The interface base element has the following attributes: 2392

 remotable : boolean (0..1) – indicates whether an interface is remotable or not (see 2393
Error! Reference source not found.). A value of “true” means the interface is 2394
remotable, and a value of “false” means it is not. The @remotable attribute has no default 2395
value. This attribute is used as an alternative to interface type specific mechanisms such 2396
as the @Remotable annotation on a Java interface. The remotable nature of an interface 2397
in the absence of this attribute is interface type specific. The rules governing how this 2398
attribute relates to interface type specific mechanisms are defined by each interface type. 2399
When specified on an interface definition which includes a callback, this attribute also 2400
applies to the callback interface (see Error! Reference source not found.). 2401

 requires : QName (0..n) – a list of policy intents. See the Policy Framework specification 2402
[10] for a description of this attribute 2403

 policySets : QName (0..n) – a list of policy sets. See the Policy Framework specification 2404
[10] for a description of this attribute. 2405

 2406

For information about Java interfaces, including details of SCA-specific annotations, see the SCA 2407
Java Common Annotations and APIs specification [SCA-Common-Java]. 2408

For information about WSDL interfaces, including details of SCA-specific extensions, see SCA-2409
Specific Aspects for WSDL Interfaces and WSDL Interface Type. 2410

For information about C++ interfaces, see the SCA C++ Client and Implementation Model 2411
specification [SCA-CPP-Client]. 2412

For information about C interfaces, see the SCA C Client and Implementation Model specification 2413
[SCA-C-Client]. 2414

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 63 of 132

7.1 Local and Remotable Interfaces 2415

A remotable service is one which can be called by a client which is running in an operating system 2416
process different from that of the service itself (this also applies to clients running on different 2417
machines from the service). Whether a service of a component implementation is remotable is 2418
defined by the interface of the service. WSDL defined interfaces are always remotable. See the 2419
relevant specifications for details of interfaces defined using other languages. 2420

The style of remotable interfaces is typically coarse grained and intended for loosely coupled 2421
interactions. Remotable service Interfaces MUST NOT make use of method or operation 2422
overloading. [ASM80002] This restriction on operation overloading for remotable services aligns 2423
with the WSDL 2.0 specification, which disallows operation overloading, and also with the WS-I 2424
Basic Profile 1.1 (section 4.5.3 - R2304) which has a constraint which disallows operation 2425
overloading when using WSDL 1.1. 2426
Independent of whether the remotable service is called remotely from outside the process where 2427
the service runs or from another component running in the same process, the data exchange 2428
semantics are by-value. 2429

Implementations of remotable services can modify input messages (parameters) during or after 2430
an invocation and can modify return messages (results) after the invocation. If a remotable 2431
service is called locally or remotely, the SCA container MUST ensure sure that no modification of 2432
input messages by the service or post-invocation modifications to return messages are seen by 2433
the caller. [ASM80003] 2434

Here is a snippet which shows an example of a remotable java interface: 2435

package services.hello; 2436
 2437
@Remotable 2438
public interface HelloService { 2439

 2440
 String hello(String message); 2441

} 2442

It is possible for the implementation of a remotable service to indicate that it can be called using 2443
by-reference data exchange semantics when it is called from a component in the same process. 2444
This can be used to improve performance for service invocations between components that run in 2445
the same process. This can be done using the @AllowsPassByReference annotation (see the Java 2446
Client and Implementation Specification). 2447

A service typed by a local interface can only be called by clients that are running in the same 2448
process as the component that implements the local service. Local services cannot be published 2449
via remotable services of a containing composite. In the case of Java a local service is defined by a 2450
Java interface definition without a @Remotable annotation. 2451

The style of local interfaces is typically fine grained and intended for tightly coupled 2452
interactions. Local service interfaces can make use of method or operation overloading. 2453

The data exchange semantic for calls to services typed by local interfaces is by-reference. 2454

7.2 Bidirectional Interfaces 2455

The relationship of a business service to another business service is often peer-to-peer, requiring 2456
a two-way dependency at the service level. In other words, a business service represents both a 2457
consumer of a service provided by a partner business service and a provider of a service to the 2458
partner business service. This is especially the case when the interactions are based on 2459
asynchronous messaging rather than on remote procedure calls. The notion of bidirectional 2460
interfaces is used in SCA to directly model peer-to-peer bidirectional business service 2461
relationships. 2462

An interface element for a particular interface type system needs to allow the specification of a 2463
callback interface. If a callback interface is specified, SCA refers to the interface as a whole as a 2464
bidirectional interface. 2465

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 64 of 132

The following snippet shows the interface element defined using Java interfaces with a 2466
@callbackInterface attribute. 2467

<interface.java interface="services.invoicing.ComputePrice" 2468
 callbackInterface="services.invoicing.InvoiceCallback"/> 2469

If a service is defined using a bidirectional interface element then its implementation implements 2470
the interface, and its implementation uses the callback interface to converse with the client that 2471
called the service interface. 2472

If a reference is defined using a bidirectional interface element, the client component 2473
implementation using the reference calls the referenced service using the interface. The client 2474
MUST provide an implementation of the callback interface. [ASM80004] 2475

Callbacks can be used for both remotable and local services. Either both interfaces of a 2476
bidirectional service MUST be remotable, or both MUST be local. A bidirectional service MUST NOT 2477
mix local and remote services. [ASM80005] 2478

Note that an interface document such as a WSDL file or a Java interface can contain annotations 2479
that declare a callback interface for a particular interface (see the section on WSDL Interface type 2480
and the Java Common Annotations and APIs specification [SCA-Common-Java]). Whenever an 2481
interface document declaring a callback interface is used in the declaration of an <interface/> 2482
element in SCA, it MUST be treated as being bidirectional with the declared callback interface. 2483
[ASM80010] In such cases, there is no requirement for the <interface/> element to declare the 2484
callback interface explicitly. 2485

If an <interface/> element references an interface document which declares a callback interface 2486
and also itself contains a declaration of a callback interface, the two callback interfaces MUST be 2487
compatible. [ASM80011] 2488

Where a component uses an implementation and the component configuration explicitly declares 2489
an interface for a service or a reference, if the matching service or reference declaration in the 2490
component type declares an interface which has a callback interface, then the component interface 2491
declaration MUST also declare a compatible interface with a compatible callback interface. 2492
[ASM80012] If the service or reference declaration in the component type declares an interface 2493
without a callback interface, then the component configuration for the corresponding service or 2494
reference MUST NOT declare an interface with a callback interface. [ASM80013] 2495

Where a composite declares an interface for a composite service or a composite reference, if the 2496
promoted service or promoted reference has an interface which has a callback interface, then the 2497
interface declaration for the composite service or the composite reference MUST also declare a 2498
compatible interface with a compatible callback interface. [ASM80014] If the promoted service or 2499
promoted reference has an interface without a callback interface, then the interface declaration for 2500
the composite service or composite reference MUST NOT declare a callback interface. 2501
[ASM80015] 2502

See Section 6.4 Wires for a definition of "compatible interfaces". 2503

In a bidirectional interface, the service interface can have more than one operation defined, and 2504
the callback interface can also have more than one operation defined. SCA runtimes MUST allow 2505
an invocation of any operation on the service interface to be followed by zero, one or many 2506
invocations of any of the operations on the callback interface. [ASM80009] These callback 2507
operations can be invoked either before or after the operation on the service interface has 2508
returned a response message, if there is one. 2509

For a given invocation of a service operation, which operations are invoked on the callback 2510
interface, when these are invoked, the number of operations invoked, and their sequence are not 2511
described by SCA. It is possible that this metadata about the bidirectional interface can be 2512
supplied through mechanisms outside SCA. For example, it might be provided as a written 2513
description attached to the callback interface. 2514

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 65 of 132

7.3 Long-running Request-Response Operations 2515

7.3.1 Background 2516

A service offering one or more operations which map to a WSDL request-response pattern might 2517
be implemented in a long-running, potentially interruptible, way. Consider a BPEL process with 2518
receive and reply activities referencing the WSDL request-response operation. Between the two 2519
activities, the business process logic could be a long-running sequence of steps, including activities 2520
causing the process to be interrupted. Typical examples are steps where the process waits for 2521
another message to arrive or a specified time interval to expire, or the process performs 2522
asynchronous interactions such as service invocations bound to asynchronous protocols or user 2523
interactions. This is a common situation in business processes, and it causes the implementation 2524
of the WSDL request-response operation to run for a very long time, e.g., several months (!). In 2525
this case, it is not meaningful for any caller to remain in a synchronous wait for the response while 2526
blocking system resources or holding database locks. 2527

Note that it is possible to model long-running interactions as a pair of two independent operations 2528
as described in the section on bidirectional interfaces. However, it is a common practice (and in 2529
fact much more convenient) to model a request-response operation and let the infrastructure deal 2530
with the asynchronous message delivery and correlation aspects instead of putting this burden on 2531
the application developer. 2532

7.3.2 Definition of "long-running" 2533

A request-response operation is considered long-running if the implementation does not guarantee 2534
the delivery of the response within any specified time interval. Clients invoking such request-2535
response operations are strongly discouraged from making assumptions about when the response 2536
can be expected. 2537

7.3.3 The asyncInvocation Intent 2538

This specification permits a long-running request-response operation or a complete interface 2539
containing such operations to be marked using a policy intent with the name asyncInvocation. It 2540
is also possible for a service to set the asyncInvocation. intent when using an interface which is 2541
not marked with the asyncInvocation. intent. This can be useful when reusing an existing interface 2542
definition that does not contain SCA information. 2543

7.3.4 Requirements on Bindings 2544

In order to support a service operation which is marked with the asyncInvocation intent, it is 2545
necessary for the binding (and its associated policies) to support separate handling of the request 2546
message and the response message. Bindings which only support a synchronous style of message 2547
handling, such as a conventional HTTP binding, cannot be used to support long-running 2548
operations. 2549

The requirements on a binding to support the asyncInvocation intent are the same as those to 2550
support services with bidirectional interfaces - namely that the binding needs to be able to treat 2551
the transmission of the request message separately from the transmission of the response 2552
message, with an arbitrarily large time interval between the two transmissions. 2553

An example of a binding/policy combination that supports long-running request-response 2554
operations is a Web service binding used in conjunction with the WS-Addressing 2555
"wsam:NonAnonymousResponses" assertion. 2556

7.3.5 Implementation Type Support 2557

SCA implementation types can provide special asynchronous client-side and asynchronous server-2558
side mappings to assist in the development of services and clients for long-running request-2559
response operations. 2560

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 66 of 132

7.4 SCA-Specific Aspects for WSDL Interfaces 2561

There are a number of aspects that SCA applies to interfaces in general, such as marking them as 2562
having a callback interface. These aspects apply to the interfaces themselves, rather than their 2563
use in a specific place within SCA. There is thus a need to provide appropriate ways of marking 2564
the interface definitions themselves, which go beyond the basic facilities provided by the interface 2565
definition language. 2566

For WSDL interfaces, there is an extension mechanism that permits additional information to be 2567
included within the WSDL document. SCA takes advantage of this extension mechanism. In order 2568
to use the SCA extension mechanism, the SCA namespace (http://docs.oasis-2569
open.org/ns/opencsa/sca/200903) needs to be declared within the WSDL document. 2570

First, SCA defines a global attribute in the SCA namespace which provides a mechanism to attach 2571
policy intents - @requires. The definition of this attribute is as follows: 2572

 <attribute name="requires" type="sca:listOfQNames"/> 2573

 2574

 <simpleType name="listOfQNames"> 2575
 <list itemType="QName"/> 2576

 </simpleType> 2577

The @requires attribute can be applied to WSDL Port Type elements (WSDL 1.1). The attribute 2578
contains one or more intent names, as defined by the Policy Framework specification [10]. Any 2579
service or reference that uses an interface marked with intents MUST implicitly add those intents 2580
to its own @requires list. [ASM80008] 2581

SCA defines an attribute which is used to indicate that a given WSDL Port Type element (WSDL 2582
1.1) has an associated callback interface. This is the @callback attribute, which applies to a WSDL 2583
<portType/> element. 2584
 2585
The @callback attribute is defined as a global attribute in the SCA namespace, as follows: 2586

<attribute name="callback" type="QName"/> 2587

 2588

The value of the @callback attribute is the QName of a Port Type. The port type declared by the 2589
@callback attribute is the callback interface to use for the portType which is annotated by the 2590
@callback attribute. 2591
 2592
Here is an example of a portType element with a @callback attribute: 2593

 2594
<portType name="LoanService" sca:callback="foo:LoanServiceCallback"> 2595

<operation name="apply"> 2596
<input message="tns:ApplicationInput"/> 2597
<output message="tns:ApplicationOutput"/> 2598

</operation> 2599
... 2600

</portType> 2601

7.5 WSDL Interface Type 2602

The WSDL interface type is used to declare interfaces for services and for references, where the interface 2603
is defined in terms of a WSDL document. An interface is defined in terms of a WSDL 1.1 Port Type with 2604
the arguments and return of the service operations described using XML schema. 2605

 2606

A WSDL interface is declared by an interface.wsdl element. The following shows the pseudo-schema 2607
for the interface.wsdl element: 2608

http://www.osoa.org/xmlns/sca/1.0
http://www.osoa.org/xmlns/sca/1.0

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 67 of 132

<!-- WSDL Interface schema snippet --> 2609
<interface.wsdl interface="xs:anyURI" callbackInterface="xs:anyURI"? 2610
 remotable="xs:boolean"? > 2611

The interface.wsdl element has the following attributes: 2612

 interface : uri (1..1) - the URI of a WSDL Port Type 2613

The interface.wsdl @interface attribute MUST reference a portType of a WSDL 1.1 2614
document. [ASM80001] 2615

 callbackInterface : uri (0..1) - a callback interface, which is the URI of a WSDL Port Type 2616

The interface.wsdl @callbackInterface attribute, if present, MUST reference a portType of a 2617
WSDL 1.1 document. [ASM80016] 2618

 remotable : boolean (0..1) – indicates whether the interface is remotable or not. @remotable 2619
has a default value of true. WSDL interfaces are always remotable and therefore an 2620
<interface.wsdl/> element MUST NOT contain remotable=”false”. [ASM80017] 2621

 2622

The form of the URI for WSDL port types follows the syntax described in the WSDL 1.1 Element 2623
Identifiers specification [WSDL11_Identifiers] 2624

7.5.1 Example of interface.wsdl 2625

<interface.wsdl interface=”http://www.stockquote.org/StockQuoteService# 2626
 wsdl.porttype(StockQuote)” 2627
callbackInterface=”http://www.stockquote.org/StockQuoteService# 2628
 wsdl.porttype(StockQuoteCallback)”/> 2629

 2630

This declares an interface in terms of the WSDL port type "StockQuote" with a callback interface defined 2631
by the "StockQuoteCallback" port type. 2632

 2633

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 68 of 132

8 Binding 2634

Bindings are used by services and references. References use bindings to describe the access 2635
mechanism used to call a service (which can be a service provided by another SCA composite). 2636
Services use bindings to describe the access mechanism that clients (which can be a client from 2637
another SCA composite) have to use to call the service. 2638

SCA supports the use of multiple different types of bindings. Examples include SCA service, Web 2639
service, stateless session EJB, database stored procedure, EIS service. SCA provides an 2640
extensibility mechanism by which an SCA runtime can add support for additional binding types. 2641
For details on how additional binding types are defined, see the section on the Extension Model. 2642

A binding is defined by a binding element which is a child element of a service or of a reference 2643
element in a composite. The following snippet shows the composite schema with the schema for 2644
the binding element. 2645

<?xml version="1.0" encoding="ASCII"?> 2646
<!-- Bindings schema snippet --> 2647
<composite ... > 2648
 ... 2649
 <service ... >* 2650
 <interface … />? 2651
 <binding uri="xs:anyURI"? name="xs:NCName"? 2652
 requires="list of xs:QName"? 2653
 policySets="list of xs:QName"?>* 2654
 <wireFormat/>? 2655
 <operationSelector/>? 2656
 </binding> 2657
 <callback>? 2658
 <binding uri="xs:anyURI"? name="xs:NCName"? 2659
 requires="list of xs:QName"? 2660
 policySets="list of xs:QName"?>+ 2661
 <wireFormat/>? 2662
 <operationSelector/>? 2663
 </binding> 2664
 </callback> 2665
 </service> 2666
 ... 2667
 <reference ... >* 2668
 <interface … />? 2669
 <binding uri="xs:anyURI"? name="xs:NCName"? 2670
 requires="list of xs:QName"? 2671
 policySets="list of xs:QName"?>* 2672
 <wireFormat/>? 2673
 <operationSelector/>? 2674
 </binding> 2675
 <callback>? 2676
 <binding uri="xs:anyURI"? name="xs:NCName"? 2677
 requires="list of xs:QName"? 2678
 policySets="list of xs:QName"?>+ 2679
 <wireFormat/>? 2680
 <operationSelector/>? 2681
 </binding> 2682
 </callback> 2683
 </reference> 2684
 ... 2685
</composite> 2686

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 69 of 132

 2687

The element name of the binding element is architected; it is in itself a qualified name. The first 2688
qualifier is always named “binding”, and the second qualifier names the respective binding-type 2689
(e.g. binding.sca, binding.ws, binding.ejb, binding.eis). 2690

 2691

A binding element has the following attributes: 2692

 uri (0..1) - has the following semantic. 2693

o The @uri attribute can be omitted. 2694

o For a binding of a reference the @uri attribute defines the target URI of the 2695
reference. This MUST be either the componentName/serviceName for a wire to an 2696
endpoint within the SCA Domain, or the accessible address of some service 2697
endpoint either inside or outside the SCA Domain (where the addressing scheme is 2698
defined by the type of the binding). [ASM90001] 2699

o The circumstances under which the @uri attribute can be used are defined in 2700
section "Specifying the Target Service(s) for a Reference." 2701

o For a binding of a service the @uri attribute defines the bindingURI. If present, 2702
the bindingURI can be used by the binding as described in the section "Form of the 2703
URI of a Deployed Binding". 2704

 name (0..1) – a name for the binding instance (an NCName). The @name attribute 2705
allows distinction between multiple binding elements on a single service or reference. The 2706
default value of the @name attribute is the service or reference name. When a service or 2707
reference has multiple bindings, only one binding can have the default @name value; all 2708
others MUST have a @name value specified that is unique within the service or reference. 2709
[ASM90002] The @name also permits the binding instance to be referenced from 2710
elsewhere – particularly useful for some types of binding, which can be declared in a 2711
definitions document as a template and referenced from other binding instances, 2712
simplifying the definition of more complex binding instances (see the JMS Binding 2713
specification [11] for examples of this referencing). 2714

 requires (0..1) - a list of policy intents. See the Policy Framework specification [10] for a 2715
description of this attribute. 2716

 policySets (0..1) – a list of policy sets. See the Policy Framework specification [10] for a 2717
description of this attribute. 2718

A binding element has the following child elements: 2719

 wireFormat (0..1) - a wireFormat to apply to the data flowing using the binding. See the 2720
wireFormat section for details. 2721

 operationSelector(0..1) - an operationSelector element that is used to match a 2722
particular message to a particular operation in the interface. See the operationSelector 2723
section for details 2724

When multiple bindings exist for a service, it means that the service is available through any of 2725
the specified bindings. The technique that the SCA runtime uses to choose among available 2726
bindings is left to the implementation and it might include additional (nonstandard) configuration. 2727
Whatever technique is used needs to be documented by the runtime. 2728

Services and References can always have their bindings overridden at the SCA Domain level, 2729
unless restricted by Intents applied to them. 2730

If a reference has any bindings, they MUST be resolved, which means that each binding MUST 2731
include a value for the @uri attribute or MUST otherwise specify an endpoint. The reference MUST 2732
NOT be wired using other SCA mechanisms. [ASM90003] To specify constraints on the kinds of 2733
bindings that are acceptable for use with a reference, the user specifies either policy intents or 2734
policy sets. 2735
 2736
Users can also specifically wire, not just to a component service, but to a specific binding offered 2737

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 70 of 132

by that target service. To do so, a wire target MAY be specified with a syntax of 2738
"componentName/serviceName/bindingName". [ASM90004] 2739

The following sections describe the SCA and Web service binding type in detail. 2740

8.1 Messages containing Data not defined in the Service Interface 2741

It is possible for a message to include information that is not defined in the interface used to 2742
define the service, for instance information can be contained in SOAP headers or as MIME 2743
attachments. 2744

Implementation types can make this information available to component implementations in their 2745
execution context. The specifications for these implementation types describe how this 2746
information is accessed and in what form it is presented. 2747

8.2 WireFormat 2748

A wireFormat is the form that a data structure takes when it is transmitted using some 2749
communication binding. Another way to describe this is "the form that the data takes on the wire". 2750
A wireFormat can be specific to a given communication method, or it can be general, applying to 2751
many different communication methods. An example of a general wireFormat is XML text format. 2752

Where a particular SCA binding can accommodate transmitting data in more than one format, the 2753
configuration of the binding can include a definition of the wireFormat to use. This is done using an 2754
<sca:wireFormat/> subelement of the <binding/> element. 2755

Where a binding supports more than one wireFormat, the binding defines one of the wireFormats 2756
to be the default wireFormat which applies if no <wireFormat/> subelement is present. 2757

The base sca:wireFormat element is abstract and it has no attributes and no child elements. For a 2758
particular wireFormat, an extension subtype is defined, using substitution groups, for example: 2759

 <sca:wireFormat.xml/> 2760
A wireFormat that transmits the data as an XML text datastructure 2761

 <sca:wireFormat.jms/> 2762
The "default JMS wireFormat" as described in the JMS Binding specification 2763

 2764

Specific wireFormats can have elements that include either attributes or subelements or both. 2765

For details about specific wireFormats, see the related SCA Binding specifications. 2766

8.3 OperationSelector 2767

An operationSelector is necessary for some types of transport binding where messages are 2768
transmitted across the transport without any explicit relationship between the message and the 2769
interface operation to which it relates. SOAP is an example of a protocol where the messages do 2770
contain explicit information that relates each message to the operation it targets. However, other 2771
transport bindings have messages where this relationship is not expressed in the message or in 2772
any related headers (pure JMS messages, for example). In cases where the messages arrive at a 2773
service without any explicit information that maps them to specific operations, it is necessary for 2774
the metadata attached to the service binding to contain the mapping information. The information 2775
is held in an operationSelector element which is a child element of the binding element. 2776

The base sca:operationSelector element is abstract and it has no attributes and no child elements. 2777
For a particular operationSelector, an extension subtype is defined, using substitution groups, for 2778
example: 2779

 <sca:operationSelector.XPath/> 2780
An operation selector that uses XPath to filter out specific messages and target them to 2781
particular named operations. 2782

 2783

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 71 of 132

Specific operationSelectors can have elements that include either attributes or subelements or 2784
both. 2785

For details about specific operationSelectors, see the related SCA Binding specifications. 2786

8.4 Form of the URI of a Deployed Binding 2787

SCA Bindings specifications can choose to use the structural URI defined in the section 2788
"Structural URI of Components" above to derive a binding specific URI according to some Binding-2789
related scheme. The relevant binding specification describes this. 2790

Alternatively, <binding/> elements have a @uri attribute, which is termed a bindingURI. 2791

If the bindingURI is specified on a given <binding/> element, the binding can use it to derive an 2792
endpoint URI relevant to the binding. The derivation is binding specific and is described by the 2793
relevant binding specification. 2794

For binding.sca, which is described in the SCA Assembly specification, this is as follows: 2795

 If the binding @uri attribute is specified on a reference, it identifies the target service in 2796
the SCA Domain by specifying the service's structural URI. 2797

 If the binding @uri attribute is specified on a service, it is ignored. 2798

8.4.1 Non-hierarchical URIs 2799

Bindings that use non-hierarchical URI schemes (such as jms: or mailto:) can make use of the 2800
@uri attritibute, which is the complete representation of the URI for that service binding. Where 2801
the binding does not use the @uri attribute, the binding needs to offer a different mechanism for 2802
specifying the service address. 2803

8.4.2 Determining the URI scheme of a deployed binding 2804

One of the things that needs to be determined when building the effective URI of a deployed 2805
binding (i.e. endpoint) is the URI scheme. The process of determining the endpoint URI scheme is 2806
binding type specific. 2807

If the binding type supports a single protocol then there is only one URI scheme associated with it. 2808
In this case, that URI scheme is used. 2809

If the binding type supports multiple protocols, the binding type implementation determines the 2810
URI scheme by introspecting the binding configuration, which can include the policy sets 2811
associated with the binding. 2812

A good example of a binding type that supports multiple protocols is binding.ws, which can be 2813
configured by referencing either an “abstract” WSDL element (i.e. portType or interface) or a 2814
“concrete” WSDL element (i.e. binding, port or endpoint). When the binding references a PortType 2815
or Interface, the protocol and therefore the URI scheme is derived from the intents/policy sets 2816
attached to the binding. When the binding references a “concrete” WSDL element, there are two 2817
cases: 2818

1) The referenced WSDL binding element uniquely identifies a URI scheme. This is the most 2819
common case. In this case, the URI scheme is given by the protocol/transport specified in the 2820
WSDL binding element. 2821

2) The referenced WSDL binding element doesn’t uniquely identify a URI scheme. For example, 2822
when HTTP is specified in the @transport attribute of the SOAP binding element, both “http” 2823
and “https” could be used as valid URI schemes. In this case, the URI scheme is determined 2824
by looking at the policy sets attached to the binding. 2825

It is worth noting that an intent supported by a binding type can completely change the behavior 2826
of the binding. For example, when the intent "confidentiality/transport” is attached to an HTTP 2827
binding, SSL is turned on. This basically changes the URI scheme of the binding from “http” to 2828
“https”. 2829

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 72 of 132

8.5 SCA Binding 2830

The SCA binding element is defined by the following schema. 2831

<binding.sca /> 2832

The SCA binding can be used for service interactions between references and services contained 2833
within the SCA Domain. The way in which this binding type is implemented is not defined by the 2834
SCA specification and it can be implemented in different ways by different SCA runtimes. The only 2835
requirement is that any specified qualities of service are implemented for the SCA binding type. 2836
The SCA binding type is not intended to be an interoperable binding type. For interoperability, an 2837
interoperable binding type such as the Web service binding is used. 2838

A service definition with no binding element specified uses the SCA binding. 2839

<binding.sca/> would only have to be specified in override cases, or when you specify a 2840

set of bindings on a service definition and the SCA binding needs to be one of them. 2841

If a reference does not have a binding, then the binding used can be any of the bindings 2842

specified by the service provider, as long as the intents attached to the reference and 2843

the service are all honoured. 2844

If the interface of the service or reference is local, then the local variant of the SCA 2845

binding will be used. If the interface of the service or reference is remotable, then either 2846

the local or remote variant of the SCA binding will be used depending on whether source 2847

and target are co-located or not. 2848

If a reference specifies a URI via its @uri attribute, then this provides the default wire to a service 2849
provided by another Domain level component. The value of the URI has to be as follows: 2850

 <domain-component-name>/<service-name> 2851

8.5.1 Example SCA Binding 2852

The following snippet shows the MyValueComposite.composite file for the MyValueComposite 2853
containing the service element for the MyValueService and a reference element for the 2854
StockQuoteService. Both the service and the reference use an SCA binding. The target for the 2855
reference is left undefined in this binding and would have to be supplied by the composite in which 2856
this composite is used. 2857

<?xml version="1.0" encoding="ASCII"?> 2858
<!-- Binding SCA example --> 2859
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 2860
 targetNamespace="http://foo.com" 2861
 name="MyValueComposite" > 2862
 2863
 <service name="MyValueService" promote="MyValueComponent"> 2864
 <interface.java interface="services.myvalue.MyValueService"/> 2865
 <binding.sca/> 2866
 … 2867
 </service> 2868
 2869
 … 2870
 2871
 <reference name="StockQuoteService" 2872
 promote="MyValueComponent/StockQuoteReference"> 2873
 <interface.java interface="services.stockquote.StockQuoteService"/> 2874
 <binding.sca/> 2875
 </reference> 2876
 2877
</composite> 2878

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 73 of 132

8.6 Web Service Binding 2879

SCA defines a Web services binding. This is described in a separate specification document [9]. 2880

8.7 JMS Binding 2881

SCA defines a JMS binding. This is described in a separate specification document [11]. 2882

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 74 of 132

9 SCA Definitions 2883

There are a variety of SCA artifacts which are generally useful and which are not specific to a 2884
particular composite or a particular component. These shared artifacts include intents, policy sets, 2885
bindings, binding type definitions and implementation type definitions. 2886

All of these artifacts within an SCA Domain are defined in SCA contributions in files called META-2887
INF/definitions.xml (relative to the contribution base URI). An SCA runtime MUST make available 2888
to the Domain all the artifacts contained within the definitions.xml files in the Domain. 2889
[ASM10002] An SCA runtime MUST reject a definitions.xml file that does not conform to the sca-2890
definitions.xsd schema. [ASM10003] 2891

Although the definitions are specified within a single SCA contribution, the definitions are visible 2892
throughout the Domain. Because of this, all of the QNames for the definitions contained in 2893
definitions.xml files MUST be unique within the Domain.. [ASM10001] The definitions.xml file 2894
contains a definitions element that conforms to the following pseudo-schema snippet: 2895

<?xml version="1.0" encoding="ASCII"?> 2896
<!-- Composite schema snippet --> 2897
<definitions xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903" 2898
 targetNamespace="xs:anyURI"> 2899
 2900
 <sca:intent/>* 2901
 2902
 <sca:policySet/>* 2903
 2904
 <sca:binding/>* 2905
 2906
 <sca:bindingType/>* 2907
 2908
 <sca:implementationType/>* 2909
 2910
</definitions> 2911

The definitions element has the following attribute: 2912

 targetNamespace (1..1) – the namespace into which the child elements of this 2913
definitions element are placed (used for artifact resolution) 2914

The definitions element contains child elements – intent, policySet, binding, bindingType and 2915
implementationType. These elements are described elsewhere in this specification or in the SCA 2916
Policy Framework specification [10]. The use of the elements declared within a definitions 2917
element is described in the SCA Policy Framework specification [10] and in the JMS Binding 2918
specification [11]. 2919

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 75 of 132

10 Extension Model 2920

The assembly model can be extended with support for new interface types, implementation types 2921
and binding types. The extension model is based on XML schema substitution groups. There are 2922
three XML Schema substitution group heads defined in the SCA namespace: interface, 2923
implementation and binding, for interface types, implementation types and binding types, 2924
respectively. 2925

The SCA Client and Implementation specifications and the SCA Bindings specifications (see [1], 2926
[9], [11]) use these XML Schema substitution groups to define some basic types of interfaces, 2927
implementations and bindings, but additional types can be defined as needed, where support for 2928
these extra ones is available from the runtime. The inteface type elements, implementation type 2929
elements, and binding type elements defined by the SCA specifications are all part of the SCA 2930
namespace ("http://docs.oasis-open.org/ns/opencsa/sca/200903"), as indicated in their 2931
respective schemas. New interface types, implementation types and binding types that are defined 2932
using this extensibility model, which are not part of these SCA specifications are defined in 2933
namespaces other than the SCA namespace. 2934

The "." notation is used in naming elements defined by the SCA specifications (e.g. 2935
<implementation.java … />, <interface.wsdl … />, <binding.ws … />), not as a parallel 2936
extensibility approach but as a naming convention that improves usability of the SCA assembly 2937
language. 2938

 2939

Note: How to contribute SCA model extensions and their runtime function to an SCA runtime will 2940
be defined by a future version of the specification. 2941

10.1 Defining an Interface Type 2942

The following snippet shows the base definition for the interface element and Interface type 2943
contained in sca-core.xsd; see appendix for complete schema. 2944

<?xml version="1.0" encoding="UTF-8"?> 2945
<!-- (c) Copyright SCA Collaboration 2006 --> 2946
<schema xmlns="http://www.w3.org/2001/XMLSchema" 2947
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 2948
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 2949
 elementFormDefault="qualified"> 2950
 2951
 ... 2952
 2953
 <element name="interface" type="sca:Interface" abstract="true"/> 2954
 <complexType name="Interface"/> 2955

 <complexType name="Interface" abstract="true"> 2956
 <attribute name="requires" type="sca:listOfQNames" use="optional"/> 2957
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 2958
 </complexType> 2959

 2960
 ... 2961
 2962
</schema> 2963

In the following snippet is an example of how the base definition is extended to support Java 2964
interfaces. The snippet shows the definition of the interface.java element and the 2965
JavaInterface type contained in sca-interface-java.xsd. 2966

<?xml version="1.0" encoding="UTF-8"?> 2967
<schema xmlns="http://www.w3.org/2001/XMLSchema" 2968

 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 2969

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 76 of 132

 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903"> 2970
 2971
 <element name="interface.java" type="sca:JavaInterface" 2972
 substitutionGroup="sca:interface"/> 2973
 <complexType name="JavaInterface"> 2974
 <complexContent> 2975
 <extension base="sca:Interface"> 2976
 <attribute name="interface" type="NCName" 2977
 use="required"/> 2978
 </extension> 2979
 </complexContent> 2980
 </complexType> 2981

</schema> 2982

In the following snippet is an example of how the base definition can be extended by other 2983
specifications to support a new interface not defined in the SCA specifications. The snippet shows 2984
the definition of the my-interface-extension element and the my-interface-extension-type 2985
type. 2986

<?xml version="1.0" encoding="UTF-8"?> 2987
<schema xmlns="http://www.w3.org/2001/XMLSchema" 2988
 targetNamespace="http://www.example.org/myextension" 2989
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 2990
 xmlns:tns="http://www.example.org/myextension"> 2991
 2992
 <element name="my-interface-extension" 2993
 type="tns:my-interface-extension-type" 2994
 substitutionGroup="sca:interface"/> 2995
 <complexType name="my-interface-extension-type"> 2996
 <complexContent> 2997
 <extension base="sca:Interface"> 2998
 ... 2999
 </extension> 3000
 </complexContent> 3001
 </complexType> 3002
</schema> 3003

10.2 Defining an Implementation Type 3004

The following snippet shows the base definition for the implementation element and 3005
Implementation type contained in sca-core.xsd; see appendix for complete schema. 3006

 3007
<?xml version="1.0" encoding="UTF-8"?> 3008
<!-- (c) Copyright SCA Collaboration 2006 --> 3009
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3010
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3011
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3012
 elementFormDefault="qualified"> 3013
 3014
 ... 3015
 3016
 <element name="implementation" type="sca:Implementation" 3017
 abstract="true"/> 3018
 <complexType name="Implementation"/> 3019
 3020
 ... 3021
 3022
</schema> 3023

 3024

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 77 of 132

In the following snippet we show how the base definition is extended to support Java 3025
implementation. The snippet shows the definition of the implementation.java element and the 3026
JavaImplementation type contained in sca-implementation-java.xsd. 3027

<?xml version="1.0" encoding="UTF-8"?> 3028
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3029

 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3030
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903"> 3031
 3032

<element name="implementation.java" type="sca:JavaImplementation" 3033
substitutionGroup="sca:implementation"/> 3034

 <complexType name="JavaImplementation"> 3035
 <complexContent> 3036
 <extension base="sca:Implementation"> 3037
 <attribute name="class" type="NCName" 3038
 use="required"/> 3039
 </extension> 3040
 </complexContent> 3041

 </complexType> 3042
</schema> 3043

In the following snippet is an example of how the base definition can be extended by other 3044
specifications to support a new implementation type not defined in the SCA specifications. The 3045
snippet shows the definition of the my-impl-extension element and the my-impl-extension-3046
type type. 3047

<?xml version="1.0" encoding="UTF-8"?> 3048
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3049
 targetNamespace="http://www.example.org/myextension" 3050
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3051
 xmlns:tns="http://www.example.org/myextension"> 3052
 3053
 <element name="my-impl-extension" type="tns:my-impl-extension-type" 3054
 substitutionGroup="sca:implementation"/> 3055
 <complexType name="my-impl-extension-type"> 3056
 <complexContent> 3057
 <extension base="sca:Implementation"> 3058
 ... 3059
 </extension> 3060
 </complexContent> 3061
 </complexType> 3062
</schema> 3063

 3064

In addition to the definition for the new implementation instance element, there needs to be an 3065
associated implementationType element which provides metadata about the new implementation 3066
type. The pseudo schema for the implementationType element is shown in the following snippet: 3067

<implementationType type="xs:QName" 3068
 alwaysProvides="list of intent xs:QName" 3069
 mayProvide="list of intent xs:QName"/> 3070

 3071

The implementation type has the following attributes: 3072

 type (1..1) – the type of the implementation to which this implementationType element 3073
applies. This is intended to be the QName of the implementation element for the 3074
implementation type, such as "sca:implementation.java" 3075

 alwaysProvides (0..1) – a set of intents which the implementation type always 3076
provides. See the Policy Framework specification [10] for details. 3077

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 78 of 132

 mayProvide (0..1) – a set of intents which the implementation type provides only when 3078
the intent is attached to the implementation element. See the Policy Framework 3079
specification [10] for details. 3080

10.3 Defining a Binding Type 3081

The following snippet shows the base definition for the binding element and Binding type 3082
contained in sca-core.xsd; see appendix for complete schema. 3083

<?xml version="1.0" encoding="UTF-8"?> 3084
<!-- binding type schema snippet --> 3085
<!-- (c) Copyright SCA Collaboration 2006, 2009 --> 3086
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3087
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3088
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3089
 elementFormDefault="qualified"> 3090
 3091
 ... 3092
 3093
 <element name="binding" type="sca:Binding" abstract="true"/> 3094
 <complexType name="Binding"> 3095
 <attribute name="uri" type="anyURI" use="optional"/> 3096
 <attribute name="name" type="NCName" use="optional"/> 3097
 <attribute name="requires" type="sca:listOfQNames" 3098
 use="optional"/> 3099
 <attribute name="policySets" type="sca:listOfQNames" 3100
 use="optional"/> 3101
 </complexType> 3102
 3103
 ... 3104
 3105
</schema> 3106

 3107

In the following snippet is an example of how the base definition is extended to support Web 3108
service binding. The snippet shows the definition of the binding.ws element and the 3109
WebServiceBinding type contained in sca-binding-webservice.xsd. 3110

<?xml version="1.0" encoding="UTF-8"?> 3111
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3112

 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3113
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903"> 3114
 3115
 <element name="binding.ws" type="sca:WebServiceBinding" 3116

substitutionGroup="sca:binding"/> 3117
 <complexType name="WebServiceBinding"> 3118
 <complexContent> 3119
 <extension base="sca:Binding"> 3120
 <attribute name="port" type="anyURI" use="required"/> 3121
 </extension> 3122
 </complexContent> 3123
 </complexType> 3124

</schema> 3125

In the following snippet is an example of how the base definition can be extended by other 3126
specifications to support a new binding not defined in the SCA specifications. The snippet shows 3127
the definition of the my-binding-extension element and the my-binding-extension-type type. 3128

<?xml version="1.0" encoding="UTF-8"?> 3129
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3130
 targetNamespace="http://www.example.org/myextension" 3131

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 79 of 132

 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3132
 xmlns:tns="http://www.example.org/myextension"> 3133
 3134
 <element name="my-binding-extension" 3135
 type="tns:my-binding-extension-type" 3136
 substitutionGroup="sca:binding"/> 3137
 <complexType name="my-binding-extension-type"> 3138
 <complexContent> 3139
 <extension base="sca:Binding"> 3140
 ... 3141
 </extension> 3142
 </complexContent> 3143
 </complexType> 3144
</schema> 3145

In addition to the definition for the new binding instance element, there needs to be an associated 3146
bindingType element which provides metadata about the new binding type. The pseudo schema 3147
for the bindingType element is shown in the following snippet: 3148

<bindingType type="xs:QName" 3149
 alwaysProvides="list of intent QNames"? 3150
 mayProvide = "list of intent QNames"?/> 3151

 3152

The binding type has the following attributes: 3153

 type (1..1) – the type of the binding to which this bindingType element applies. This is 3154
intended to be the QName of the binding element for the binding type, such as 3155
"sca:binding.ws" 3156

 alwaysProvides (0..1) – a set of intents which the binding type always provides. See 3157
the Policy Framework specification [10] for details. 3158

 mayProvide (0..1) – a set of intents which the binding type provides only when the 3159
intent is attached to the binding element. See the Policy Framework specification [10] for 3160
details. 3161

10.4 Defining an Import Type 3162

The following snippet shows the base definition for the import element and Import type contained in sca-3163
core.xsd; see appendix for complete schema. 3164

<?xml version="1.0" encoding="UTF-8"?> 3165
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. OASIS trademark, 3166
IPR and other policies apply. --> 3167
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3168
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3169
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3170
 elementFormDefault="qualified"> 3171
 3172
... 3173
 3174
 <!-- Import --> 3175
 <element name="importBase" type="sca:Import" abstract="true" /> 3176
 <complexType name="Import" abstract="true"> 3177
 <complexContent> 3178
 <extension base="sca:CommonExtensionBase"> 3179
 <sequence> 3180
 <any namespace="##other" processContents="lax" minOccurs="0" 3181
 maxOccurs="unbounded"/> 3182
 </sequence> 3183
 </extension> 3184

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 80 of 132

 </complexContent> 3185
 </complexType> 3186
 3187
 <element name="import" type="sca:ImportType" 3188
 substitutionGroup="sca:importBase"/> 3189
 <complexType name="ImportType"> 3190
 <complexContent> 3191
 <extension base="sca:Import"> 3192
 <attribute name="namespace" type="string" use="required"/> 3193
 <attribute name="location" type="anyURI" use="required"/> 3194
 </extension> 3195
 </complexContent> 3196
 </complexType> 3197
 3198
... 3199
 3200
</schema> 3201

 3202

In the following snippet we show how the base import definition is extended to support Java imports. In 3203
the import element, the namespace is expected to be an XML namespace, an import.java element uses a 3204
Java package name instead. The snippet shows the definition of the import.java element and the 3205
JavaImportType type contained in sca-import-java.xsd. 3206

<?xml version="1.0" encoding="UTF-8"?> 3207
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3208
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3209
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903"> 3210
 3211
 <element name="import.java" type="sca:JavaImportType" 3212
 substitutionGroup="sca:importBase"/> 3213
 <complexType name="JavaImportType"> 3214
 <complexContent> 3215
 <extension base="sca:Import"> 3216
 <attribute name="package" type="xs:String" use="required"/> 3217
 <attribute name="location" type="xs:AnyURI" use="optional"/> 3218
 </extension> 3219
 </complexContent> 3220
 </complexType> 3221
</schema> 3222

 3223

In the following snippet we show an example of how the base definition can be extended by other 3224
specifications to support a new interface not defined in the SCA specifications. The snippet shows the 3225
definition of the my-import-extension element and the my-import-extension-type type. 3226

<?xml version="1.0" encoding="UTF-8"?> 3227
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3228
 targetNamespace="http://www.example.org/myextension" 3229
 xmlns:sca=" http://docs.oasis-open.org/ns/opencsa/sca/200903" 3230
 xmlns:tns="http://www.example.org/myextension"> 3231
 3232
 <element name="my-import-extension" 3233
 type="tns:my-import-extension-type" 3234
 substitutionGroup="sca:importBase"/> 3235
 <complexType name="my-import-extension-type"> 3236
 <complexContent> 3237
 <extension base="sca:Import"> 3238
 ... 3239
 </extension> 3240

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 81 of 132

 </complexContent> 3241
 </complexType> 3242
</schema> 3243

 3244

For a complete example using this extension point, see the definition of import.java in the SCA Java 3245
Common Annotations and APIs Specification [SCA-Java]. 3246

10.5 Defining an Export Type 3247

The following snippet shows the base definition for the export element and ExportType type contained in 3248
sca-core.xsd; see appendix for complete schema. 3249

<?xml version="1.0" encoding="UTF-8"?> 3250
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. OASIS trademark, 3251
IPR and other policies apply. --> 3252
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3253
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3254
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3255
 elementFormDefault="qualified"> 3256
 3257
... 3258
 <!-- Export --> 3259
 <element name="exportBase" type="sca:Export" abstract="true" /> 3260
 <complexType name="Export" abstract="true"> 3261
 <complexContent> 3262
 <extension base="sca:CommonExtensionBase"> 3263
 <sequence> 3264
 <any namespace="##other" processContents="lax" minOccurs="0" 3265
 maxOccurs="unbounded"/> 3266
 </sequence> 3267
 </extension> 3268
 </complexContent> 3269
 </complexType> 3270
 3271
 <element name="export" type="sca:ExportType" 3272
 substitutionGroup="sca:exportBase"/> 3273
 <complexType name="ExportType"> 3274
 <complexContent> 3275
 <extension base="sca:Export"> 3276
 <attribute name="namespace" type="string" use="required"/> 3277
 </extension> 3278
 </complexContent> 3279
 </complexType> 3280
... 3281
</schema> 3282

 3283

The following snippet shows how the base definition is extended to support Java exports. In a base 3284
export element, the @namespace attribute specifies XML namespace being exported. An export.java 3285
element uses a @package attribute to specify the Java package to be exported. The snippet shows the 3286
definition of the export.java element and the JavaExport type contained in sca-export-java.xsd. 3287

<?xml version="1.0" encoding="UTF-8"?> 3288
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3289
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3290
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903"> 3291
 3292
 <element name="export.java" type="sca:JavaExportType" 3293
 substitutionGroup="sca:exportBase"/> 3294

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 82 of 132

 <complexType name="JavaExportType"> 3295
 <complexContent> 3296
 <extension base="sca:Export"> 3297
 <attribute name="package" type="xs:String" use="required"/> 3298
 </extension> 3299
 </complexContent> 3300
 </complexType> 3301
</schema> 3302

 3303

In the following snippet we show an example of how the base definition can be extended by other 3304
specifications to support a new interface not defined in the SCA specifications. The snippet shows the 3305
definition of the my-export-extension element and the my-export-extension-type type. 3306

<?xml version="1.0" encoding="UTF-8"?> 3307
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3308
 targetNamespace="http://www.example.org/myextension" 3309
 xmlns:sca="http:// docs.oasis-open.org/ns/opencsa/sca/200903" 3310
 xmlns:tns="http://www.example.org/myextension"> 3311
 3312
 <element name="my-export-extension" 3313
 type="tns:my-export-extension-type" 3314
 substitutionGroup="sca:exportBase"/> 3315
 <complexType name="my-export-extension-type"> 3316
 <complexContent> 3317
 <extension base="sca:Export"> 3318
 ... 3319
 </extension> 3320
 </complexContent> 3321
 </complexType> 3322
</schema> 3323

 3324

For a complete example using this extension point, see the definition of export.java in the SCA Java 3325
Common Annotations and APIs Specification [SCA-Java]. 3326

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 83 of 132

11 Packaging and Deployment 3327

This section describes the SCA Domain and the packaging and deployment of artifacts contributed to the 3328
Domain. 3329

11.1 Domains 3330

An SCA Domain represents a complete runtime configuration, potentially distributed over a series 3331
of interconnected runtime nodes. 3332

A single SCA Domain defines the boundary of visibility for all SCA mechanisms. For example, SCA 3333
wires can only be used to connect components within a single SCA Domain. Connections to 3334
services outside the Domain use binding specific mechanisms for addressing services (such as 3335
WSDL endpoint URIs). Also, SCA mechanisms such as intents and policySets can only be used in 3336
the context of a single Domain. In general, external clients of a service that is developed and 3337
deployed using SCA are not able to tell that SCA is used to implement the service – it is an 3338
implementation detail. 3339

The size and configuration of an SCA Domain is not constrained by the SCA Assembly specification 3340
and is expected to be highly variable. An SCA Domain typically represents an area of business 3341
functionality controlled by a single organization. For example, an SCA Domain might be the whole 3342
of a business, or it might be a department within a business. 3343

As an example, for the accounts department in a business, the SCA Domain might cover all 3344
finance-related functions, and it might contain a series of composites dealing with specific areas of 3345
accounting, with one for Customer accounts and another dealing with Accounts Payable. 3346

An SCA Domain has the following: 3347

 A virtual domain-level composite whose components are deployed and running 3348

 A set of installed contributions that contain implementations, interfaces and other artifacts 3349
necessary to execute components 3350

 A set of logical services for manipulating the set of contributions and the virtual domain-3351
level composite. 3352

The information associated with an SCA Domain can be stored in many ways, including but not 3353
limited to a specific filesystem structure or a repository. 3354

11.2 Contributions 3355

An SCA Domain might need a large number of different artifacts in order to work. These artifacts 3356
include artifacts defined by SCA and other artifacts such as object code files and interface 3357
definition files. The SCA-defined artifact types are all XML documents. The root elements of the 3358
different SCA definition documents are: composite, componentType, constrainingType and 3359
definitions. XML artifacts that are not defined by SCA but which are needed by an SCA Domain 3360
include XML Schema documents, WSDL documents, and BPEL documents. SCA constructs, like 3361
other XML-defined constructs, use XML qualified names for their identity (i.e. namespace + local 3362
name). 3363

Non-XML artifacts are also needed within an SCA Domain. The most obvious examples of such 3364
non-XML artifacts are Java, C++ and other programming language files necessary for component 3365
implementations. Since SCA is extensible, other XML and non-XML artifacts might also be needed. 3366

SCA defines an interoperable packaging format for contributions (ZIP), as specified below. This 3367
format is not the only packaging format that an SCA runtime can use. SCA allows many different 3368
packaging formats, but it is necessary for an SCA runtime to support the ZIP contribution format. 3369
When using the ZIP format for deploying a contribution, this specification does not specify whether 3370
that format is retained after deployment. For example, a Java EE based SCA runtime could convert 3371
the ZIP package to an EAR package. SCA expects certain characteristics of any packaging: 3372

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 84 of 132

 For any contribution packaging it MUST be possible to present the artifacts of the 3373
packaging to SCA as a hierarchy of resources based off of a single root [ASM12001] 3374

 Within any contribution packaging A directory resource SHOULD exist at the root of the 3375
hierarchy named META-INF [ASM12002] 3376

 Within any contribution packaging a document SHOULD exist directly under the META-INF 3377
directory named sca-contribution.xml which lists the SCA Composites within the 3378
contribution that are runnable. [ASM12003] 3379
 3380
The same document can also list namespaces of constructs that are defined within the 3381
contribution and which are available for use by other contributions, through export 3382
elements. 3383
Error! Reference source not found. 3384
These additional elements might not be physically present in the packaging, but might be 3385
generated based on the definitions and references that are present, or they might not 3386
exist at all if there are no unresolved references. 3387
 3388
See the section "SCA Contribution Metadata Document" for details of the format of this 3389
file. 3390

To illustrate that a variety of packaging formats can be used with SCA, the following are examples 3391
of formats that might be used to package SCA artifacts and metadata (as well as other artifacts) 3392
as a contribution: 3393

 A filesystem directory 3394

 An OSGi bundle 3395

 A compressed directory (zip, gzip, etc) 3396

 A JAR file (or its variants – WAR, EAR, etc) 3397

Contributions do not contain other contributions. If the packaging format is a JAR file that 3398
contains other JAR files (or any similar nesting of other technologies), the internal files are not 3399
treated as separate SCA contributions. It is up to the implementation to determine whether the 3400
internal JAR file is represented as a single artifact in the contribution hierarchy or whether all of 3401
the contents are represented as separate artifacts. 3402

A goal of SCA’s approach to deployment is that the contents of a contribution do not need to be 3403
modified in order to install and use the contents of the contribution in a Domain. 3404

11.2.1 SCA Artifact Resolution 3405

Contributions can be self-contained, in that all of the artifacts necessary to run the contents of the 3406
contribution are found within the contribution itself. However, it can also be the case that the 3407
contents of the contribution make one or many references to artifacts that are not contained 3408
within the contribution. These references can be to SCA artifacts such as composites or they can 3409
be to other artifacts such as WSDL files, XSD files or to code artifacts such as Java class files and 3410
BPEL process files. Note: This form of artifact resolution does not apply to imports of composite 3411
files, as described in Section 6.6. 3412

A contribution can use some artifact-related or packaging-related means to resolve artifact 3413
references. Examples of such mechanisms include: 3414

 @wsdlLocation and @schemaLocation attributes in references to WSDL and XSD schema 3415
artifacts respectively 3416

 OSGi bundle mechanisms for resolving Java class and related resource dependencies 3417

Where present, artifact-related or packaging-related artifact resolution mechanisms MUST be used 3418
by the SCA runtime to resolve artifact dependencies. [ASM12005] The SCA runtime MUST raise 3419
an error if an artifact cannot be resolved using these mechanisms, if present. [ASM12021] 3420

 3421

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 85 of 132

SCA also provides an artifact resolution mechanism. The SCA artifact resolution mechanism is can 3422
be used where no other mechanisms are available, for example in cases where the mechanisms 3423
used by the various contributions in the same SCA Domain are different. An example of this is 3424
where an OSGi Bundle is used for one contribution but where a second contribution used by the 3425
first one is not implemented using OSGi - e.g. the second contribution relates to a mainframe 3426
COBOL service whose interfaces are declared using a WSDL which is accessed by the first 3427
contribution. 3428

The SCA artifact resolution is likely to be most useful for SCA Domains containing heterogeneous 3429
mixtures of contribution, where artifact-related or packaging-related mechanisms are unlikely to 3430
work across different kinds of contribution. 3431

SCA artifact resolution works on the principle that a contribution which needs to use artifacts 3432
defined elsewhere expresses these dependencies using import statements in metadata belonging 3433
to the contribution. A contribution controls which artifacts it makes available to other 3434
contributions through export statements in metadata attached to the contribution. SCA artifact 3435
resolution is a general mechanism that can be extended for the handling of specific types of 3436
artifact. The general mechanism that is described in the following paragraphs is mainly intended 3437
for the handling of XML artifacts. Other types of artifacts, for example Java classes, use an 3438
extended version of artifact resolution that is specialized to their nature (eg. instead of 3439
"namespaces", Java uses "packages"). Descriptions of these more specialized forms of artifact 3440
resolution are contained in the SCA specifications that deal with those artifact types. 3441

Import and export statements for XML artifacts work at the level of namespaces - so that an 3442
import statement declares that artifacts from a specified namespace are found in other 3443
contributions, while an export statement makes all the artifacts from a specified namespace 3444
available to other contributions. 3445

An import declaration can simply specify the namespace to import. In this case, the locations 3446
which are searched for artifacts in that namespace are the contribution(s) in the Domain which 3447
have export declarations for the same namespace, if any. Alternatively an import declaration can 3448
specify a location from which artifacts for the namespace are obtained, in which case, that specific 3449
location is searched. There can be multiple import declarations for a given namespace. Where 3450
multiple import declarations are made for the same namespace, all the locations specified MUST 3451
be searched in lexical order. [ASM12022] 3452

For an XML namespace, artifacts can be declared in multiple locations - for example a given 3453
namespace can have a WSDL declared in one contribution and have an XSD defining XML data 3454
types in a second contribution. 3455

If the same artifact is declared in multiple locations, this is not an error. The first location as 3456
defined by lexical order is chosen. If no locations are specified no order exists and the one chosen 3457
is implementation dependent. 3458

When a contribution contains a reference to an artifact from a namespace that is declared in an import 3459
statement of the contribution, if the SCA artifact resolution mechanism is used to resolve the artifact, the 3460
SCA runtime MUST resolve artifacts in the following order: 3461

1. from the locations identified by the import statement(s) for the namespace. Locations MUST NOT 3462
be searched recursively in order to locate artifacts (i.e. only a one-level search is performed). 3463

2. from the contents of the contribution itself. [ASM12023] 3464

When a contribution uses an artifact contained in another contribution through SCA artifact 3465
resolution, if that artifact itself has dependencies on other artifacts, the SCA runtime MUST resolve 3466
these dependencies in the context of the contribution containing the artifact, not in the context of 3467
the original contribution. [ASM12031] 3468

For example: 3469

 a first contribution "C1" references an artifact "A1" in the namespace "n1" and imports the 3470
"n1" namespace from a second contribution "C2". 3471

 in contribution "C2" the artifact "A1" in the "n1" namespace references an artifact "A2" 3472
also in the "n1" namespace", which is resolved through an import of the "n1" namespace 3473
in "C2" which specifies the location "C3". 3474

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 86 of 132

 3475

Contribution C1

Contribution C2 Contribution C3

import n1 location=C2

A1A1 A2A2

import n1 location=C3

export n1

Some artifactSome artifact

export n1

 3476

Figure 14: Example of SCA Artifact Resolution between Contributions 3477

The "A2" artifact is contained within the third contribution "C3" from which it is resolved by the 3478
contribution "C2". The "C3" contribution is never used to resolve artifacts directly for the "C1" 3479
contribution, since "C3" is not declared as an import location for "C1". 3480

For example, if for a contribution "C1",an import is used to resolve a composite "X1" contained in 3481
contribution "C2", and composite "X1" contains references to other artifacts such as WSDL files or 3482
XSDs, those references in "X1" are resolved in the context of contribution "C2" and not in the 3483
context of contribution "C1". 3484

The SCA runtime MUST ignore local definitions of an artifact if the artifact is found through 3485
resolving an import statement. [ASM12024] 3486

The SCA runtime MUST raise an error if an artifact cannot be resolved by using artifact-related or 3487
packaging-related artifact resolution mechanisms, if present, by searching locations identified by 3488
the import statements of the contribution, if present, and by searching the contents of the 3489
contribution. [ASM12025] 3490

11.2.2 SCA Contribution Metadata Document 3491

The contribution can contain a document that declares runnable composites, exported definitions 3492
and imported definitions. The document is found at the path of META-INF/sca-contribution.xml 3493
relative to the root of the contribution. Frequently some SCA metadata needs to be specified by 3494
hand while other metadata is generated by tools (such as the <import> elements described 3495
below). To accommodate this, it is also possible to have an identically structured document at 3496
META-INF/sca-contribution-generated.xml. If this document exists (or is generated on an as-3497
needed basis), it will be merged into the contents of sca-contribution.xml, with the entries in sca-3498
contribution.xml taking priority if there are any conflicting declarations. 3499

An SCA runtime MUST make the <import/> and <export/> elements found in the META-INF/sca-3500
contribution.xml and META-INF/sca-contribution-generated.xml files available for the SCA artifact 3501
resolution process. [ASM12026] An SCA runtime MUST reject files that do not conform to the 3502
schema declared in sca-contribution.xsd. [ASM12027] An SCA runtime MUST merge the contents 3503
of sca-contribution-generated.xml into the contents of sca-contribution.xml, with the entries in 3504
sca-contribution.xml taking priority if there are any conflicting declarations. [ASM12028] 3505
 3506
The format of the document is: 3507

<?xml version="1.0" encoding="ASCII"?> 3508
<!-- sca-contribution pseudo-schema --> 3509
<contribution xmlns=http://docs.oasis-open.org/ns/opencsa/sca/200903> 3510
 3511

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 87 of 132

 <deployable composite="xs:QName"/>* 3512
 <import namespace="xs:String" location=”xs:AnyURI”?/>* 3513
 <export namespace="xs:String"/>* 3514
 3515
</contribution> 3516

 3517

deployable element: Identifies a composite which is a composite within the contribution that is a 3518
composite intended for potential inclusion into the virtual domain-level composite. Other 3519
composites in the contribution are not intended for inclusion but only for use by other composites. 3520
New composites can be created for a contribution after it is installed, by using the add Deployment 3521
Composite capability and the add To Domain Level Composite capability. An SCA runtime MAY 3522
deploy the composites in <deployable/> elements found in the META-INF/sca-contribution.xml 3523
and META-INF/sca-contribution-generated.xml files. [ASM12029] 3524

Attributes of the deployable element: 3525

 composite (1..1) – The QName of a composite within the contribution. 3526

Export element: A declaration that artifacts belonging to a particular namespace are exported 3527
and are available for use within other contributions. An export declaration in a contribution 3528
specifies a namespace, all of whose definitions are considered to be exported. By default, 3529
definitions are not exported. 3530

The SCA artifact export is useful for SCA Domains containing heterogeneous mixtures of 3531
contribution packagings and technologies, where artifact-related or packaging-related mechanisms 3532
are unlikely to work across different kinds of contribution. 3533

Attributes of the export element: 3534

 namespace (1..1) – For XML definitions, which are identified by QNames, the 3535
@namespace attribute of the export element SHOULD be the namespace URI for the 3536
exported definitions. [ASM12030] For XML technologies that define multiple symbol spaces 3537
that can be used within one namespace (e.g. WSDL port types are a different symbol 3538
space from WSDL bindings), all definitions from all symbol spaces are exported. 3539
 3540
Technologies that use naming schemes other than QNames use a different export element 3541
from the same substitution group as the the SCA <export> element. The element used 3542
identifies the technology, and can use any value for the namespace that is appropriate for 3543
that technology. For example, <export.java> can be used to export java definitions, in 3544
which case the namespace is a fully qualified package name. 3545

Import element: Import declarations specify namespaces of definitions that are needed by the 3546
definitions and implementations within the contribution, but which are not present in the 3547
contribution. It is expected that in most cases import declarations will be generated based on 3548
introspection of the contents of the contribution. In this case, the import declarations would be 3549
found in the META-INF/ sca-contribution-generated.xml document. 3550

Attributes of the import element: 3551

 namespace (1..1) – For XML definitions, which are identified by QNames, the namespace 3552
is the namespace URI for the imported definitions. For XML technologies that define 3553
multiple symbol spaces that can be used within one namespace (e.g. WSDL port types are 3554
a different symbol space from WSDL bindings), all definitions from all symbol spaces are 3555
imported. 3556
 3557
Technologies that use naming schemes other than QNames use a different import element 3558
from the same substitution group as the the SCA <import> element. The element used 3559
identifies the technology, and can use any value for the namespace that is appropriate for 3560
that technology. For example, <import.java> can be used to import java definitions, in 3561
which case the namespace is a fully qualified package name. 3562

 location (0..1) – a URI to resolve the definitions for this import. SCA makes no specific 3563
requirements for the form of this URI, nor the means by which it is resolved. It can point 3564

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 88 of 132

to another contribution (through its URI) or it can point to some location entirely outside 3565
the SCA Domain. 3566

It is expected that SCA runtimes can define implementation specific ways of resolving location 3567
information for artifact resolution between contributions. These mechanisms will however usually 3568
be limited to sets of contributions of one runtime technology and one hosting environment. 3569

In order to accommodate imports of artifacts between contributions of disparate runtime 3570
technologies, it is strongly suggested that SCA runtimes honor SCA contribution URIs as location 3571
specification. 3572

SCA runtimes that support contribution URIs for cross-contribution resolution of SCA artifacts are 3573
expected to do so similarly when used as @schemaLocation and @wsdlLocation and other artifact 3574
location specifications. 3575

The order in which the import statements are specified can play a role in this mechanism. Since 3576
definitions of one namespace can be distributed across several artifacts, multiple import 3577
declarations can be made for one namespace. 3578

The location value is only a default, and dependent contributions listed in the call to 3579
installContribution can override the value if there is a conflict. However, the specific mechanism 3580
for resolving conflicts between contributions that define conflicting definitions is implementation 3581
specific. 3582

If the value of the @location attribute is an SCA contribution URI, then the contribution packaging 3583
can become dependent on the deployment environment. In order to avoid such a dependency, it 3584
is recommended that dependent contributions are specified only when deploying or updating 3585
contributions as specified in the section 'Operations for Contributions' below. 3586

11.2.3 Contribution Packaging using ZIP 3587

SCA allows many different packaging formats that SCA runtimes can support, but SCA requires 3588
that all runtimes MUST support the ZIP packaging format for contributions. [ASM12006] This 3589
format allows that metadata specified by the section 'SCA Contribution Metadata Document' be 3590
present. Specifically, it can contain a top-level "META-INF" directory and a "META-INF/sca-3591
contribution.xml" file and there can also be a "META-INF/sca-contribution-generated.xml" file in 3592
the package. SCA defined artifacts as well as non-SCA defined artifacts such as object files, WSDL 3593
definition, Java classes can be present anywhere in the ZIP archive, 3594

A definition of the ZIP file format is published by PKWARE in an Application Note on the .ZIP file 3595
format [12]. 3596

11.3 Installed Contribution 3597

As noted in the section above, the contents of a contribution do not need to be modified in order 3598
to install and use it within a Domain. An installed contribution is a contribution with all of the 3599
associated information necessary in order to execute deployable composites within the 3600
contribution. 3601

An installed contribution is made up of the following things: 3602

 Contribution Packaging – the contribution that will be used as the starting point for 3603
resolving all references 3604

 Contribution base URI 3605

 Dependent contributions: a set of snapshots of other contributions that are used to resolve 3606
the import statements from the root composite and from other dependent contributions 3607

o Dependent contributions might or might not be shared with other installed 3608
contributions. 3609

o When the snapshot of any contribution is taken is implementation defined, ranging 3610
from the time the contribution is installed to the time of execution 3611

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 89 of 132

 Deployment-time composites. 3612
These are composites that are added into an installed contribution after it has been 3613
deployed. This makes it possible to provide final configuration and access to 3614
implementations within a contribution without having to modify the contribution. These do 3615
not have to be provided as composites that already exist within the contribution can also 3616
be used for deployment. 3617

Installed contributions provide a context in which to resolve qualified names (e.g. QNames in XML, 3618
fully qualified class names in Java). 3619

If multiple dependent contributions have exported definitions with conflicting qualified names, the 3620
algorithm used to determine the qualified name to use is implementation dependent. 3621
Implementations of SCA MAY also raise an error if there are conflicting names exported from 3622
multiple contributions. [ASM12007] 3623

11.3.1 Installed Artifact URIs 3624

When a contribution is installed, all artifacts within the contribution are assigned URIs, which are 3625
constructed by starting with the base URI of the contribution and adding the relative URI of each 3626
artifact (recalling that SCA demands that any packaging format be able to offer up its artifacts in a 3627
single hierarchy). 3628

11.4 Operations for Contributions 3629

SCA Runtimes provide the following conceptual functionality associated with contributions to the 3630
Domain (meaning the function might not be represented as addressable services and also 3631
meaning that equivalent functionality might be provided in other ways). An SCA runtime MAY 3632
provide the contribution operation functions (install Contribution, update Contribution, add 3633
Deployment Composite, update Deployment Composite, remove Contribution).[ASM12008] 3634

11.4.1 install Contribution & update Contribution 3635

Creates or updates an installed contribution with a supplied root contribution, and installed at a 3636
supplied base URI. A supplied dependent contribution list (<export/> elements) specifies the 3637
contributions that are used to resolve the dependencies of the root contribution and other 3638
dependent contributions. These override any dependent contributions explicitly listed via the 3639
@location attribute in the import statements of the contribution. 3640

SCA follows the simplifying assumption that the use of a contribution for resolving anything also 3641
means that all other exported artifacts can be used from that contribution. Because of this, the 3642
dependent contribution list is just a list of installed contribution URIs. There is no need to specify 3643
what is being used from each one. 3644

Each dependent contribution is also an installed contribution, with its own dependent 3645
contributions. By default these dependent contributions of the dependent contributions (which we 3646
will call indirect dependent contributions) are included as dependent contributions of the installed 3647
contribution. However, if a contribution in the dependent contribution list exports any conflicting 3648
definitions with an indirect dependent contribution, then the indirect dependent contribution is not 3649
included (i.e. the explicit list overrides the default inclusion of indirect dependent contributions). 3650
Also, if there is ever a conflict between two indirect dependent contributions, then the conflict 3651
MUST be resolved by an explicit entry in the dependent contribution list. [ASM12009] 3652

Note that in many cases, the dependent contribution list can be generated. In particular, if the 3653
creator of a Domain is careful to avoid creating duplicate definitions for the same qualified name, 3654
then it is easy for this list to be generated by tooling. 3655

11.4.2 add Deployment Composite & update Deployment Composite 3656

Adds or updates a deployment composite using a supplied composite ("composite by value" – a 3657
data structure, not an existing resource in the Domain) to the contribution identified by a supplied 3658
contribution URI. The added or updated deployment composite is given a relative URI that 3659
matches the @name attribute of the composite, with a “.composite” suffix. Since all composites 3660

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 90 of 132

run within the context of a installed contribution (any component implementations or other 3661
definitions are resolved within that contribution), this functionality makes it possible for the 3662
deployer to create a composite with final configuration and wiring decisions and add it to an 3663
installed contribution without having to modify the contents of the root contribution. 3664

Also, in some use cases, a contribution might include only implementation code (e.g. PHP scripts). 3665
It is then possible for those to be given component names by a (possibly generated) composite 3666
that is added into the installed contribution, without having to modify the packaging. 3667

11.4.3 remove Contribution 3668

Removes the deployed contribution identified by a supplied contribution URI. 3669

11.5 Use of Existing (non-SCA) Mechanisms for Resolving Artifacts 3670

For certain types of artifact, there are existing and commonly used mechanisms for referencing a 3671
specific concrete location where the artifact can be resolved. 3672

Examples of these mechanisms include: 3673

 For WSDL files, the @wsdlLocation attribute is a hint that has a URI value pointing to the 3674
place holding the WSDL itself. 3675

 For XSDs, the @schemaLocation attribute is a hint which matches the namespace to a 3676
URI where the XSD is found. 3677

Note: In neither of these cases is the runtime obliged to use the location hint and the URI does 3678
not have to be dereferenced. 3679

SCA permits the use of these mechanisms Where present, non-SCA artifact resolution 3680
mechanisms MUST be used by the SCA runtime in precendence to the SCA mechanisms. 3681
[ASM12010] However, use of these mechanisms is discouraged because tying assemblies to 3682
addresses in this way makes the assemblies less flexible and prone to errors when changes are 3683
made to the overall SCA Domain. 3684

Note: If one of the non-SCA artifact resolution mechanisms is present, but there is a failure to 3685
find the resource indicated when using the mechanism (e.g. the URI is incorrect or invalid, say) 3686
the SCA runtime MUST raise an error and MUST NOT attempt to use SCA resolution mechanisms 3687
as an alternative. [ASM12011] 3688

11.6 Domain-Level Composite 3689

The domain-level composite is a virtual composite, in that it is not defined by a composite 3690
definition document. Rather, it is built up and modified through operations on the Domain. 3691
However, in other respects it is very much like a composite, since it contains components, wires, 3692
services and references. 3693

The value of @autowire for the logical Domain composite MUST be autowire="false". [ASM12012] 3694

For components at the Domain level, with References for which @autowire="true" applies, the 3695
behaviour of the SCA runtime for a given Domain MUST take ONE of the 3 following forms: 3696

1) The SCA runtime MAY disallow deployment of any components with autowire References. In 3697
this case, the SCA runtime MUST raise an exception at the point where the component is 3698
deployed. 3699

2) The SCA runtime MAY evaluate the target(s) for the reference at the time that the component 3700
is deployed and not update those targets when later deployment actions occur. 3701

3) The SCA runtime MAY re-evaluate the target(s) for the reference dynamically as later 3702
deployment actions occur resulting in updated reference targets which match the new Domain 3703
configuration. How the new configuration of the reference takes place is described by the relevant 3704
client and implementation specifications. 3705

[ASM12013] 3706

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 91 of 132

The abstract domain-level functionality for modifying the domain-level composite is as follows, 3707
although a runtime can supply equivalent functionality in a different form: 3708

11.6.1 add To Domain-Level Composite 3709

This functionality adds the composite identified by a supplied URI to the Domain Level Composite. 3710
The supplied composite URI refers to a composite within an installed contribution. The 3711
composite's installed contribution determines how the composite’s artifacts are resolved (directly 3712
and indirectly). The supplied composite is added to the domain composite with semantics that 3713
correspond to the domain-level composite having an <include> statement that references the 3714
supplied composite. All of the composites components become top-level components and the 3715
component services become externally visible services (eg. they would be present in a WSDL 3716
description of the Domain). The meaning of any promoted services and references in the supplied 3717
composite is not defined; since there is no composite scope outside the domain composite, the 3718
usual idea of promotion has no utility. 3719

11.6.2 remove From Domain-Level Composite 3720

Removes from the Domain Level composite the elements corresponding to the composite 3721
identified by a supplied composite URI. This means that the removal of the components, wires, 3722
services and references originally added to the domain level composite by the identified 3723
composite. 3724

11.6.3 get Domain-Level Composite 3725

Returns a <composite> definition that has an <include> line for each composite that had been 3726
added to the domain level composite. It is important to note that, in dereferencing the included 3727
composites, any referenced artifacts are resolved in terms of that installed composite. 3728

11.6.4 get QName Definition 3729

In order to make sense of the domain-level composite (as returned by get Domain-Level 3730
Composite), it needs to be possible to get the definitions for named artifacts in the included 3731
composites. This functionality takes the supplied URI of an installed contribution (which provides 3732
the context), a supplied qualified name of a definition to look up, and a supplied symbol space (as 3733
a QName, e.g. wsdl:PortType). The result is a single definition, in whatever form is appropriate 3734
for that definition type. 3735

Note that this, like all the other domain-level operations, is a conceptual operation. Its capabilities 3736
need to exist in some form, but not necessarily as a service operation with exactly this signature. 3737

11.7 Dynamic Behaviour of Wires in the SCA Domain 3738

For components with references which are at the Domain level, there is the potential for dynamic 3739
behaviour when the wires for a component reference change (this can only apply to component 3740
references at the Domain level and not to components within composites used as implementations): 3741

The configuration of the wires for a component reference of a component at the Domain level can change 3742
by means of deployment actions: 3743

1. <wire/> elements can be added, removed or replaced by deployment actions 3744

2. Components can be updated by deployment actions (i.e. this can change the component reference 3745
configuration) 3746

3. Components which are the targets of reference wires can be updated or removed 3747

4. Components can be added that are potential targets for references which are marked with 3748
@autowire=true 3749

 3750

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 92 of 132

Where <wire/> elements are added, removed or replaced by deployment actions, the components whose 3751
references are affected by those deployment actions MAY have their references updated by the SCA 3752
runtime dynamically without the need to stop and start those components. [ASM12014] 3753

Where components are updated by deployment actions (their configuration is changed in some way, 3754
which includes changing the wires of component references), the new configuration MUST apply to all 3755
new instances of those components once the update is complete. [ASM12015] An SCA runtime MAY 3756
choose to maintain existing instances with the old configuration of components updated by deployment 3757
actions, but an SCA runtime MAY choose to stop and discard existing instances of those components. 3758
[ASM12016] 3759

Where a component that is the target of a wire is removed, without the wire being changed, then future 3760
invocations of the reference that use that wire SHOULD fail with a ServiceUnavailable fault. If the wire is 3761
the result of the autowire process, the SCA runtime MUST: 3762

 either cause future invocation of the target component's services to fail with a 3763
ServiceUnavailable fault 3764

 or alternatively, if an alternative target component is available that satisfies the autowire 3765
process, update the reference of the source component [ASM12017] 3766

Where a component that is the target of a wire is updated, future invocations of that reference SHOULD 3767
use the updated component. [ASM12018] 3768

Where a component is added to the Domain that is a potential target for a domain level component 3769
reference where that reference is marked as @autowire=true, the SCA runtime MUST: 3770

- either update the references for the source component once the new component is running. 3771

- or alternatively, defer the updating of the references of the source component until the source 3772
component is stopped and restarted. [ASM12020] 3773

11.8 Dynamic Behaviour of Component Property Values 3774

For a domain level component with a Property whose value is obtained from a Domain-level Property 3775
through the use of the @source attribute, if the domain level property is updated by means of deployment 3776
actions, the SCA runtime MUST 3777

- either update the property value of the domain level component once the update of the domain 3778
property is complete 3779

- or defer the updating of the component property value until the component is stopped and 3780
restarted 3781

 3782

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 93 of 132

12 SCA Runtime Considerations 3783

This section describes aspects of an SCA Runtime that are defined by this specification. 3784

12.1 Error Handling 3785

The SCA Assembly specification identifies situations where the configuration of the SCA Domain and its 3786
contents are in error. When one of these situations occurs, the specification requires that the SCA 3787
Runtime that is interacting with the SCA Domain and the artifacts it contains recognises that there is an 3788
error, raise the error in a suitable manner and also refuse to run components and services that are in 3789
error. 3790

The SCA Assembly specification is not prescriptive about the functionality of an SCA Runtime and the 3791
specification recognizes that there can be a range of design points for an SCA runtime. As a result, the 3792
SCA Assembly specification describes a range of error handling approaches which can be adopted by an 3793
SCA runtime. 3794

12.1.1 Errors which can be Detected at Deployment Time 3795

Some error situations can be detected at the point that artifacts are deployed to the Domain. An example 3796
is a composite document that is invalid in a way that can be detected by static analysis, such as 3797
containing a component with two services with the same @name attribute. 3798

An SCA runtime SHOULD detect errors at deployment time where those errors can be found through 3799
static analysis. [ASM14001] The SCA runtime SHOULD prevent deployment of contributions that are in 3800
error, and raise the error to the process performing the deployment (e.g. write a message to an interactive 3801
console or write a message to a log file). [ASM14002] 3802

The SCA Assembly specification recognizes that there are reasons why a particular SCA runtime finds it 3803
desirable to deploy contributions that contain errors (e.g. to assist in the process of development and 3804
debugging) - and as a result also supports an error handling strategy that is based on detecting problems 3805
at runtime. However, it is wise to consider reporting problems at an early stage in the deployment 3806
proocess. 3807

12.1.2 Errors which are Detected at Runtime 3808

An SCA runtime can detect problems at runtime. These errors can include some which can be found 3809
from static analysis (e.g. the inability to wire a reference because the target service does not exist in the 3810
Domain) and others that can only be discovered dynamically (e.g. the inability to invoke some remote 3811
Web service because the remote endpoint is unavailable). 3812

Where errors can be detected through static analysis, the principle is that components that are known to 3813
be in error are not run. So, for example, if there is a component with a required reference (multiplicity 1..1 3814
or 1..n) which is not wired, best practice is that the component is not run. If an attempt is made to invoke 3815
a service operation of that component, a "ServiceUnavailable" fault is raised to the invoker. It is also 3816
regarded as best practice that errors of this kind are also raised through appropriate management 3817
interfaces, for example to the deployer or to the operator of the system. 3818

Where errors are only detected at runtime, when the error is detected an error MUST be raised to the 3819
component that is attempting the activity concerned with the error. [ASM14003] For example, if a 3820
component invokes an operation on a reference, but the target service is unavailable, a 3821
"ServiceUnavailable" fault is raised to the component. When an error that could have been detected 3822
through static analysis is detected and raised at runtime for a component, the component SHOULD NOT 3823
be run until the error is fixed. [ASM14004] Such errors can be fixed by redeployment or deployment of 3824
other components in the domain. 3825

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 94 of 132

13 Conformance 3826

The XML schema pointed to by the RDDL document at the namespace URI, defined by this specification, 3827
are considered to be authoritative and take precedence over the XML schema defined in the appendix of 3828
this document. 3829

An SCA runtime MUST reject a composite file that does not conform to the sca-core.xsd, sca-interface-3830
wsdl.xsd, sca-implementation-composite.xsd and sca-binding-sca.xsd schema.. [ASM13001] 3831

An SCA runtime MUST reject a contribution file that does not conform to the sca-contribution.xsd schema. 3832
[ASM13002] 3833

An SCA runtime MUST reject a definitions file that does not conform to the sca-definitions.xsd schema. 3834
[ASM13003] 3835

There are two categories of artifacts that this specification defines conformance for: SCA Documents and 3836
SCA Runtimes. 3837

13.1 SCA Documents 3838

For a document to be a valid SCA Document, it MUST comply with one of the SCA document types 3839
below: 3840

SCA Composite Document: 3841

An SCA Composite Document is a file that MUST have an SCA <composite/> element as its root 3842
element and MUST conform to the sca-core-1.1.xsd schema and MUST comply with the 3843
additional constraints on the document contents as defined in Appendix C. 3844

SCA ComponentType Document: 3845

An SCA ComponentType Document is a file that MUST have an SCA <componentType/> 3846
element as its root element and MUST conform to the sca-core-1.1.xsd schema and MUST 3847
comply with the additional constraints on the document contents as defined in 3848
Appendix C. 3849

SCA ConstrainingType Document: 3850

An SCA ConstrainingType Document is a file that MUST have an SCA <constrainingType/> 3851
element as its root element and MUST conform to the sca-core-1.1.xsd schema and MUST 3852
comply with the additional constraints on the document contents as defined in Appendix C. 3853

SCA Definitions Document: 3854

An SCA Definitions Document is a file that MUST have an SCA <definitions/> element as its root 3855
and MUST conform to the sca-definition-1.1.xsd schema and MUST comply with the additional 3856
constraints on the document contents as defined in Appendix C. 3857

SCA Contribution Document: 3858

An SCA Contribution Document is a file that MUST have an SCA <contributution/> element as its 3859
root element and MUST conform to the sca-contribution-1.1.xsd schema and MUST comply with 3860
the additional constraints on the document contents as defined in Appendix C. 3861

SCA Interoperable Packaging Document: 3862

A ZIP file containing SCA Documents and other related artifacts. The ZIP file SHOULD contain a 3863
top-level "META-INF" directory, and SHOULD contain a "META-INF/sca-contribution.xml" file, and 3864
MAY contain a "META-INF/sca-contribution-generated.xml" file. 3865

 3866

 3867

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 95 of 132

13.2 SCA Runtime 3868

An implementation that claims to conform to the requirements of an SCA Runtime defined in this 3869
specification MUST meet the following conditions: 3870

1. The implementation MUST comply with all statements in Appendix C: Conformance Items related to 3871
an SCA Runtime, notably all MUST statements have to be implemented. 3872

2. The implementation MUST conform to the SCA Policy Framework v 1.1 Specification [Policy]. 3873

3. The implementation MUST support and comply with at least one of the OpenCSA Member Section 3874
adopted implementation types. 3875

4. The implementation MUST support binding.sca and MUST support and conform to the SCA Web 3876
Service Binding Specification v 1.1. 3877

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 96 of 132

A. XML Schemas 3878

A.1 sca.xsd 3879

 3880

<?xml version="1.0" encoding="UTF-8"?> 3881
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. 3882
 OASIS trademark, IPR and other policies apply. --> 3883
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3884
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3885
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903"> 3886
 3887
 <include schemaLocation="sca-core-1.1-cd03.xsd"/> 3888
 3889
 <include schemaLocation="sca-interface-java-1.1-cd03.xsd"/> 3890
 <include schemaLocation="sca-interface-wsdl-1.1-cd03.xsd"/> 3891
 <include schemaLocation="sca-interface-cpp-1.1-cd02.xsd"/> 3892
 <include schemaLocation="sca-interface-c-1.1-cd02.xsd"/> 3893
 3894
 <include schemaLocation="sca-implementation-java-1.1-cd01.xsd"/> 3895
 <include schemaLocation="sca-implementation-composite-1.1-cd03.xsd"/> 3896
 <include schemaLocation="sca-implementation-cpp-1.1-cd02.xsd"/> 3897
 <include schemaLocation="sca-implementation-c-1.1-cd02.xsd"/> 3898
 <include schemaLocation="sca-implementation-bpel-1.1-cd02.xsd"/> 3899
 3900
 <include schemaLocation="sca-binding-ws-1.1-cd02.xsd"/> 3901
 <include schemaLocation="sca-binding-jms-1.1-cd02.xsd"/> 3902
 <include schemaLocation="sca-binding-jca-1.1-cd02.xsd"/> 3903
 <include schemaLocation="sca-binding-sca-1.1-cd03.xsd"/> 3904
 3905
 <include schemaLocation="sca-definitions-1.1-cd03.xsd"/> 3906
 <include schemaLocation="sca-policy-1.1-cd02.xsd"/> 3907
 3908
 <include schemaLocation="sca-contribution-1.1-cd03.xsd"/> 3909
 <include schemaLocation="sca-contribution-cpp-1.1-cd02.xsd"/> 3910
 <include schemaLocation="sca-contribution-c-1.1-cd02.xsd"/> 3911
 3912
</schema> 3913

 3914

A.2 sca-core.xsd 3915

 3916

<?xml version="1.0" encoding="UTF-8"?> 3917
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. 3918
 OASIS trademark, IPR and other policies apply. --> 3919
<schema xmlns="http://www.w3.org/2001/XMLSchema" 3920
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3921
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 3922
 elementFormDefault="qualified"> 3923
 3924
 <import namespace="http://www.w3.org/XML/1998/namespace" 3925
 schemaLocation="http://www.w3.org/2001/xml.xsd"/> 3926
 3927
 <!-- Common extension base for SCA definitions --> 3928

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 97 of 132

 <complexType name="CommonExtensionBase"> 3929
 <sequence> 3930
 <element ref="sca:documentation" minOccurs="0" 3931
 maxOccurs="unbounded"/> 3932
 </sequence> 3933
 <anyAttribute namespace="##other" processContents="lax"/> 3934
 </complexType> 3935
 3936
 <element name="documentation" type="sca:Documentation"/> 3937
 <complexType name="Documentation" mixed="true"> 3938
 <sequence> 3939
 <any namespace="##other" processContents="lax" minOccurs="0" 3940
 maxOccurs="unbounded"/> 3941
 </sequence> 3942
 <attribute ref="xml:lang"/> 3943
 </complexType> 3944
 3945
 <!-- Component Type --> 3946
 <element name="componentType" type="sca:ComponentType"/> 3947
 <complexType name="ComponentType"> 3948
 <complexContent> 3949
 <extension base="sca:CommonExtensionBase"> 3950
 <sequence> 3951
 <element ref="sca:implementation" minOccurs="0"/> 3952
 <choice minOccurs="0" maxOccurs="unbounded"> 3953
 <element name="service" type="sca:ComponentService"/> 3954
 <element name="reference" 3955
 type="sca:ComponentTypeReference"/> 3956
 <element name="property" type="sca:Property"/> 3957
 </choice> 3958
 <any namespace="##other" processContents="lax" minOccurs="0" 3959
 maxOccurs="unbounded"/> 3960
 </sequence> 3961
 <attribute name="constrainingType" type="QName" use="optional"/> 3962
 </extension> 3963
 </complexContent> 3964
 </complexType> 3965
 3966
 <!-- Composite --> 3967
 <element name="composite" type="sca:Composite"/> 3968
 <complexType name="Composite"> 3969
 <complexContent> 3970
 <extension base="sca:CommonExtensionBase"> 3971
 <sequence> 3972
 <element name="include" type="anyURI" minOccurs="0" 3973
 maxOccurs="unbounded"/> 3974
 <choice minOccurs="0" maxOccurs="unbounded"> 3975
 <element name="service" type="sca:Service"/> 3976
 <element name="property" type="sca:Property"/> 3977
 <element name="component" type="sca:Component"/> 3978
 <element name="reference" type="sca:Reference"/> 3979
 <element name="wire" type="sca:Wire"/> 3980
 </choice> 3981
 <any namespace="##other" processContents="lax" minOccurs="0" 3982
 maxOccurs="unbounded"/> 3983
 </sequence> 3984
 <attribute name="name" type="NCName" use="required"/> 3985
 <attribute name="targetNamespace" type="anyURI" use="required"/> 3986

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 98 of 132

 <attribute name="local" type="boolean" use="optional" 3987
 default="false"/> 3988
 <attribute name="autowire" type="boolean" use="optional" 3989
 default="false"/> 3990
 <attribute name="constrainingType" type="QName" use="optional"/> 3991
 <attribute name="requires" type="sca:listOfQNames" 3992
 use="optional"/> 3993
 <attribute name="policySets" type="sca:listOfQNames" 3994
 use="optional"/> 3995
 </extension> 3996
 </complexContent> 3997
 </complexType> 3998
 3999
 <!-- Contract base type for Service, Reference --> 4000
 <complexType name="Contract" abstract="true"> 4001
 <complexContent> 4002
 <extension base="sca:CommonExtensionBase"> 4003
 <sequence> 4004
 <element ref="sca:interface" minOccurs="0" maxOccurs="1" /> 4005
 <element ref="sca:binding" minOccurs="0" 4006
 maxOccurs="unbounded" /> 4007
 <element ref="sca:callback" minOccurs="0" maxOccurs="1" /> 4008
 <any namespace="##other" processContents="lax" minOccurs="0" 4009
 maxOccurs="unbounded" /> 4010
 </sequence> 4011
 <attribute name="name" type="NCName" use="required" /> 4012
 <attribute name="requires" type="sca:listOfQNames" 4013
 use="optional" /> 4014
 <attribute name="policySets" type="sca:listOfQNames" 4015
 use="optional"/> 4016
 </extension> 4017
 </complexContent> 4018
 </complexType> 4019
 4020
 <!-- Service --> 4021
 <complexType name="Service"> 4022
 <complexContent> 4023
 <extension base="sca:Contract"> 4024
 <attribute name="promote" type="anyURI" use="required"/> 4025
 </extension> 4026
 </complexContent> 4027
 </complexType> 4028
 4029
 <!-- Interface --> 4030
 <element name="interface" type="sca:Interface" abstract="true"/> 4031
 <complexType name="Interface" abstract="true"> 4032
 <complexContent> 4033
 <extension base="sca:CommonExtensionBase"> 4034
 <attribute name="remotable" type="boolean" use="optional"/> 4035
 <attribute name="requires" type="sca:listOfQNames" 4036
 use="optional"/> 4037
 <attribute name="policySets" type="sca:listOfQNames" 4038
 use="optional"/> 4039
 </extension> 4040
 </complexContent> 4041
 </complexType> 4042
 4043
 <!-- Reference --> 4044

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 99 of 132

 <complexType name="Reference"> 4045
 <complexContent> 4046
 <extension base="sca:Contract"> 4047
 <attribute name="autowire" type="boolean" use="optional"/> 4048
 <attribute name="target" type="sca:listOfAnyURIs" 4049
 use="optional"/> 4050
 <attribute name="wiredByImpl" type="boolean" use="optional" 4051
 default="false"/> 4052
 <attribute name="multiplicity" type="sca:Multiplicity" 4053
 use="optional" default="1..1"/> 4054
 <attribute name="promote" type="sca:listOfAnyURIs" 4055
 use="required"/> 4056
 </extension> 4057
 </complexContent> 4058
 </complexType> 4059
 4060
 <!-- Property --> 4061
 <complexType name="SCAPropertyBase" mixed="true"> 4062
 <sequence> 4063
 <any namespace="##any" processContents="lax" minOccurs="0"/> 4064
 <!-- NOT an extension point; This any exists to accept 4065
 the element-based or complex type property 4066
 i.e. no element-based extension point under "sca:property" --> 4067
 </sequence> 4068
 <!-- mixed="true" to handle simple type --> 4069
 <attribute name="requires" type="sca:listOfQNames" use="optional"/> 4070
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 4071
 </complexType> 4072
 4073
 <complexType name="Property" mixed="true"> 4074
 <complexContent mixed="true"> 4075
 <extension base="sca:SCAPropertyBase"> 4076
 <attribute name="name" type="NCName" use="required"/> 4077
 <attribute name="type" type="QName" use="optional"/> 4078
 <attribute name="element" type="QName" use="optional"/> 4079
 <attribute name="many" type="boolean" use="optional" 4080
 default="false"/> 4081
 <attribute name="mustSupply" type="boolean" use="optional" 4082
 default="false"/> 4083
 <anyAttribute namespace="##any" processContents="lax"/> 4084
 </extension> 4085
 <!-- extension defines the place to hold default value --> 4086
 <!-- an extension point ; attribute-based only --> 4087
 </complexContent> 4088
 </complexType> 4089
 4090
 <!-- ConstrainingProperty is equivalent to the Property type but removes 4091
 the capability to contain a value --> 4092
 <complexType name="ConstrainingProperty" mixed="true"> 4093
 <complexContent mixed="true"> 4094
 <restriction base="sca:Property"> 4095
 <attribute name="name" type="NCName" use="required"/> 4096
 <attribute name="type" type="QName" use="optional"/> 4097
 <attribute name="element" type="QName" use="optional"/> 4098
 <attribute name="many" type="boolean" use="optional" 4099
 default="false"/> 4100
 <attribute name="mustSupply" type="boolean" use="optional" 4101
 default="false"/> 4102

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 100 of 132

 <anyAttribute namespace="##any" processContents="lax"/> 4103
 </restriction> 4104
 </complexContent> 4105
 </complexType> 4106
 4107
 <complexType name="PropertyValue" mixed="true"> 4108
 <complexContent mixed="true"> 4109
 <extension base="sca:SCAPropertyBase"> 4110
 <attribute name="name" type="NCName" use="required"/> 4111
 <attribute name="type" type="QName" use="optional"/> 4112
 <attribute name="element" type="QName" use="optional"/> 4113
 <attribute name="many" type="boolean" use="optional" 4114
 default="false"/> 4115
 <attribute name="source" type="string" use="optional"/> 4116
 <attribute name="file" type="anyURI" use="optional"/> 4117
 <anyAttribute namespace="##any" processContents="lax"/> 4118
 </extension> 4119
 <!-- an extension point ; attribute-based only --> 4120
 </complexContent> 4121
 </complexType> 4122
 4123
 <!-- Binding --> 4124
 <element name="binding" type="sca:Binding" abstract="true"/> 4125
 <complexType name="Binding" abstract="true"> 4126
 <complexContent> 4127
 <extension base="sca:CommonExtensionBase"> 4128
 <sequence> 4129
 <element ref="sca:wireFormat" minOccurs="0" maxOccurs="1" /> 4130
 <element ref="sca:operationSelector" minOccurs="0" 4131
 maxOccurs="1" /> 4132
 </sequence> 4133
 <attribute name="uri" type="anyURI" use="optional"/> 4134
 <attribute name="name" type="NCName" use="optional"/> 4135
 <attribute name="requires" type="sca:listOfQNames" 4136
 use="optional"/> 4137
 <attribute name="policySets" type="sca:listOfQNames" 4138
 use="optional"/> 4139
 </extension> 4140
 </complexContent> 4141
 </complexType> 4142
 4143
 <!-- Binding Type --> 4144
 <element name="bindingType" type="sca:BindingType"/> 4145
 <complexType name="BindingType"> 4146
 <complexContent> 4147
 <extension base="sca:CommonExtensionBase"> 4148
 <sequence> 4149
 <any namespace="##other" processContents="lax" minOccurs="0" 4150
 maxOccurs="unbounded"/> 4151
 </sequence> 4152
 <attribute name="type" type="QName" use="required"/> 4153
 <attribute name="alwaysProvides" type="sca:listOfQNames" 4154
 use="optional"/> 4155
 <attribute name="mayProvide" type="sca:listOfQNames" 4156
 use="optional"/> 4157
 </extension> 4158
 </complexContent> 4159
 </complexType> 4160

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 101 of 132

 4161
 <!-- WireFormat Type --> 4162
 <element name="wireFormat" type="sca:WireFormatType"/> 4163
 <complexType name="WireFormatType" abstract="true"> 4164
 <sequence> 4165
 <any namespace="##other" processContents="lax" minOccurs="0" 4166
 maxOccurs="unbounded" /> 4167
 </sequence> 4168
 <anyAttribute namespace="##other" processContents="lax"/> 4169
 </complexType> 4170
 4171
 <!-- OperationSelector Type --> 4172
 <element name="operationSelector" type="sca:OperationSelectorType"/> 4173
 <complexType name="OperationSelectorType" abstract="true"> 4174
 <sequence> 4175
 <any namespace="##other" processContents="lax" minOccurs="0" 4176
 maxOccurs="unbounded" /> 4177
 </sequence> 4178
 <anyAttribute namespace="##other" processContents="lax"/> 4179
 </complexType> 4180
 4181
 <!-- Callback --> 4182
 <element name="callback" type="sca:Callback"/> 4183
 <complexType name="Callback"> 4184
 <complexContent> 4185
 <extension base="sca:CommonExtensionBase"> 4186
 <choice minOccurs="0" maxOccurs="unbounded"> 4187
 <element ref="sca:binding"/> 4188
 <any namespace="##other" processContents="lax"/> 4189
 </choice> 4190
 <attribute name="requires" type="sca:listOfQNames" 4191
 use="optional"/> 4192
 <attribute name="policySets" type="sca:listOfQNames" 4193
 use="optional"/> 4194
 </extension> 4195
 </complexContent> 4196
 </complexType> 4197
 4198
 <!-- Component --> 4199
 <complexType name="Component"> 4200
 <complexContent> 4201
 <extension base="sca:CommonExtensionBase"> 4202
 <sequence> 4203
 <element ref="sca:implementation" minOccurs="0"/> 4204
 <choice minOccurs="0" maxOccurs="unbounded"> 4205
 <element name="service" type="sca:ComponentService"/> 4206
 <element name="reference" type="sca:ComponentReference"/> 4207
 <element name="property" type="sca:PropertyValue"/> 4208
 </choice> 4209
 <any namespace="##other" processContents="lax" minOccurs="0" 4210
 maxOccurs="unbounded"/> 4211
 </sequence> 4212
 <attribute name="name" type="NCName" use="required"/> 4213
 <attribute name="autowire" type="boolean" use="optional"/> 4214
 <attribute name="constrainingType" type="QName" use="optional"/> 4215
 <attribute name="requires" type="sca:listOfQNames" 4216
 use="optional"/> 4217
 <attribute name="policySets" type="sca:listOfQNames" 4218

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 102 of 132

 use="optional"/> 4219
 </extension> 4220
 </complexContent> 4221
 </complexType> 4222
 4223
 <!-- Component Service --> 4224
 <complexType name="ComponentService"> 4225
 <complexContent> 4226
 <extension base="sca:Contract"> 4227
 </extension> 4228
 </complexContent> 4229
 </complexType> 4230
 4231
 <!-- Constraining Service --> 4232
 <complexType name="ConstrainingService"> 4233
 <complexContent> 4234
 <restriction base="sca:ComponentService"> 4235
 <sequence> 4236
 <element ref="sca:interface" minOccurs="0" maxOccurs="1" /> 4237
 <element ref="sca:callback" minOccurs="0" maxOccurs="1" /> 4238
 <any namespace="##other" processContents="lax" minOccurs="0" 4239
 maxOccurs="unbounded" /> 4240
 </sequence> 4241
 <attribute name="name" type="NCName" use="required" /> 4242
 </restriction> 4243
 </complexContent> 4244
 </complexType> 4245
 4246
 4247
 <!-- Component Reference --> 4248
 <complexType name="ComponentReference"> 4249
 <complexContent> 4250
 <extension base="sca:Contract"> 4251
 <attribute name="autowire" type="boolean" use="optional"/> 4252
 <attribute name="target" type="sca:listOfAnyURIs" 4253
 use="optional"/> 4254
 <attribute name="wiredByImpl" type="boolean" use="optional" 4255
 default="false"/> 4256
 <attribute name="multiplicity" type="sca:Multiplicity" 4257
 use="optional" default="1..1"/> 4258
 <attribute name="nonOverridable" type="boolean" use="optional" 4259
 default="false"/> 4260
 </extension> 4261
 </complexContent> 4262
 </complexType> 4263
 4264
 <!-- Constraining Reference --> 4265
 <complexType name="ConstrainingReference"> 4266
 <complexContent> 4267
 <restriction base="sca:ComponentReference"> 4268
 <sequence> 4269
 <element ref="sca:interface" minOccurs="0" maxOccurs="1" /> 4270
 <element ref="sca:callback" minOccurs="0" maxOccurs="1" /> 4271
 <any namespace="##other" processContents="lax" minOccurs="0" 4272
 maxOccurs="unbounded" /> 4273
 </sequence> 4274
 <attribute name="name" type="NCName" use="required" /> 4275
 <attribute name="autowire" type="boolean" use="optional"/> 4276

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 103 of 132

 <attribute name="wiredByImpl" type="boolean" use="optional" 4277
 default="false"/> 4278
 <attribute name="multiplicity" type="sca:Multiplicity" 4279
 use="optional" default="1..1"/> 4280
 </restriction> 4281
 </complexContent> 4282
 </complexType> 4283
 4284
 <!-- Component Type Reference --> 4285
 <complexType name="ComponentTypeReference"> 4286
 <complexContent> 4287
 <restriction base="sca:ComponentReference"> 4288
 <sequence> 4289
 <element ref="sca:documentation" minOccurs="0" 4290
 maxOccurs="unbounded"/> 4291
 <element ref="sca:interface" minOccurs="0"/> 4292
 <element ref="sca:binding" minOccurs="0" 4293
 maxOccurs="unbounded"/> 4294
 <element ref="sca:callback" minOccurs="0"/> 4295
 <any namespace="##other" processContents="lax" minOccurs="0" 4296
 maxOccurs="unbounded"/> 4297
 </sequence> 4298
 <attribute name="name" type="NCName" use="required"/> 4299
 <attribute name="autowire" type="boolean" use="optional"/> 4300
 <attribute name="wiredByImpl" type="boolean" use="optional" 4301
 default="false"/> 4302
 <attribute name="multiplicity" type="sca:Multiplicity" 4303
 use="optional" default="1..1"/> 4304
 <attribute name="requires" type="sca:listOfQNames" 4305
 use="optional"/> 4306
 <attribute name="policySets" type="sca:listOfQNames" 4307
 use="optional"/> 4308
 <anyAttribute namespace="##other" processContents="lax"/> 4309
 </restriction> 4310
 </complexContent> 4311
 </complexType> 4312
 4313
 4314
 <!-- Implementation --> 4315
 <element name="implementation" type="sca:Implementation" abstract="true"/> 4316
 <complexType name="Implementation" abstract="true"> 4317
 <complexContent> 4318
 <extension base="sca:CommonExtensionBase"> 4319
 <attribute name="requires" type="sca:listOfQNames" 4320
 use="optional"/> 4321
 <attribute name="policySets" type="sca:listOfQNames" 4322
 use="optional"/> 4323
 </extension> 4324
 </complexContent> 4325
 </complexType> 4326
 4327
 <!-- Implementation Type --> 4328
 <element name="implementationType" type="sca:ImplementationType"/> 4329
 <complexType name="ImplementationType"> 4330
 <complexContent> 4331
 <extension base="sca:CommonExtensionBase"> 4332
 <sequence> 4333
 <any namespace="##other" processContents="lax" minOccurs="0" 4334

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 104 of 132

 maxOccurs="unbounded"/> 4335
 </sequence> 4336
 <attribute name="type" type="QName" use="required"/> 4337
 <attribute name="alwaysProvides" type="sca:listOfQNames" 4338
 use="optional"/> 4339
 <attribute name="mayProvide" type="sca:listOfQNames" 4340
 use="optional"/> 4341
 </extension> 4342
 </complexContent> 4343
 </complexType> 4344
 4345
 <!-- Wire --> 4346
 <complexType name="Wire"> 4347
 <complexContent> 4348
 <extension base="sca:CommonExtensionBase"> 4349
 <sequence> 4350
 <any namespace="##other" processContents="lax" minOccurs="0" 4351
 maxOccurs="unbounded"/> 4352
 </sequence> 4353
 <attribute name="source" type="anyURI" use="required"/> 4354
 <attribute name="target" type="anyURI" use="required"/> 4355
 <attribute name="replace" type="boolean" use="optional" 4356
 default="false"/> 4357
 </extension> 4358
 </complexContent> 4359
 </complexType> 4360
 4361
 <!-- Include --> 4362
 <element name="include" type="sca:Include"/> 4363
 <complexType name="Include"> 4364
 <complexContent> 4365
 <extension base="sca:CommonExtensionBase"> 4366
 <attribute name="name" type="QName"/> 4367
 </extension> 4368
 </complexContent> 4369
 </complexType> 4370
 4371
 <!-- Constraining Type --> 4372
 <element name="constrainingType" type="sca:ConstrainingType"/> 4373
 <complexType name="ConstrainingType"> 4374
 <complexContent> 4375
 <extension base="sca:CommonExtensionBase"> 4376
 <sequence> 4377
 <choice minOccurs="0" maxOccurs="unbounded"> 4378
 <element name="service" type="sca:ConstrainingService"/> 4379
 <element name="reference" 4380
 type="sca:ConstrainingReference"/> 4381
 <element name="property" type="sca:ConstrainingProperty"/> 4382
 </choice> 4383
 <any namespace="##other" processContents="lax" minOccurs="0" 4384
 maxOccurs="unbounded"/> 4385
 </sequence> 4386
 <attribute name="name" type="NCName" use="required"/> 4387
 <attribute name="targetNamespace" type="anyURI"/> 4388
 </extension> 4389
 </complexContent> 4390
 </complexType> 4391
 4392

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 105 of 132

 <!-- Intents within WSDL documents --> 4393
 <attribute name="requires" type="sca:listOfQNames"/> 4394
 4395
 <!-- Global attribute definition for @callback to mark a WSDL port type 4396
 as having a callback interface defined in terms of a second port 4397
 type. --> 4398
 <attribute name="callback" type="anyURI"/> 4399
 4400
 <!-- Miscellaneous simple type definitions --> 4401
 <simpleType name="Multiplicity"> 4402
 <restriction base="string"> 4403
 <enumeration value="0..1"/> 4404
 <enumeration value="1..1"/> 4405
 <enumeration value="0..n"/> 4406
 <enumeration value="1..n"/> 4407
 </restriction> 4408
 </simpleType> 4409
 4410
 <simpleType name="OverrideOptions"> 4411
 <restriction base="string"> 4412
 <enumeration value="no"/> 4413
 <enumeration value="may"/> 4414
 <enumeration value="must"/> 4415
 </restriction> 4416
 </simpleType> 4417
 4418
 <simpleType name="listOfQNames"> 4419
 <list itemType="QName"/> 4420
 </simpleType> 4421
 4422
 <simpleType name="listOfAnyURIs"> 4423
 <list itemType="anyURI"/> 4424
 </simpleType> 4425
 4426
</schema> 4427

 4428

A.3 sca-binding-sca.xsd 4429

 4430

<?xml version="1.0" encoding="UTF-8"?> 4431
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. 4432
 OASIS trademark, IPR and other policies apply. --> 4433
<schema xmlns="http://www.w3.org/2001/XMLSchema" 4434
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 4435
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 4436
 elementFormDefault="qualified"> 4437
 4438
 <include schemaLocation="sca-core-1.1-cd03.xsd"/> 4439
 4440
 <!-- SCA Binding --> 4441
 <element name="binding.sca" type="sca:SCABinding" 4442
 substitutionGroup="sca:binding"/> 4443
 <complexType name="SCABinding"> 4444
 <complexContent> 4445
 <extension base="sca:Binding"/> 4446
 </complexContent> 4447

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 106 of 132

 </complexType> 4448
 4449
</schema> 4450
 4451

A.4 sca-interface-java.xsd 4452

Is described in the SCA Java Common Annotations and APIs specification [SCA-Common-Java]. 4453

 4454

A.5 sca-interface-wsdl.xsd 4455

 4456

<?xml version="1.0" encoding="UTF-8"?> 4457
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. 4458
 OASIS trademark, IPR and other policies apply. --> 4459
<schema xmlns="http://www.w3.org/2001/XMLSchema" 4460
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 4461
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 4462
 elementFormDefault="qualified"> 4463
 4464
 <include schemaLocation="sca-core-1.1-cd03.xsd"/> 4465
 4466
 <!-- WSDL Interface --> 4467
 <element name="interface.wsdl" type="sca:WSDLPortType" 4468
 substitutionGroup="sca:interface"/> 4469
 <complexType name="WSDLPortType"> 4470
 <complexContent> 4471
 <extension base="sca:Interface"> 4472
 <sequence> 4473
 <any namespace="##other" processContents="lax" minOccurs="0" 4474
 maxOccurs="unbounded"/> 4475
 </sequence> 4476
 <attribute name="interface" type="anyURI" use="required"/> 4477
 <attribute name="callbackInterface" type="anyURI" 4478
 use="optional"/> 4479
 <anyAttribute namespace="##any" processContents="lax"/> 4480
 </extension> 4481
 </complexContent> 4482
 </complexType> 4483
 4484
</schema> 4485

 4486

A.6 sca-implementation-java.xsd 4487

Is described in the Java Component Implementation specification [SCA-Java] 4488

A.7 sca-implementation-composite.xsd 4489

 4490

<?xml version="1.0" encoding="UTF-8"?> 4491
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. 4492
 OASIS trademark, IPR and other policies apply. --> 4493
<schema xmlns="http://www.w3.org/2001/XMLSchema" 4494
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 4495

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 107 of 132

 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 4496
 elementFormDefault="qualified"> 4497
 4498
 <include schemaLocation="sca-core-1.1-cd03.xsd"/> 4499
 4500
 <!-- Composite Implementation --> 4501
 <element name="implementation.composite" type="sca:SCAImplementation" 4502
 substitutionGroup="sca:implementation"/> 4503
 <complexType name="SCAImplementation"> 4504
 <complexContent> 4505
 <extension base="sca:Implementation"> 4506
 <sequence> 4507
 <any namespace="##other" processContents="lax" minOccurs="0" 4508
 maxOccurs="unbounded"/> 4509
 </sequence> 4510
 <attribute name="name" type="QName" use="required"/> 4511
 </extension> 4512
 </complexContent> 4513
 </complexType> 4514
 4515
</schema> 4516

 4517

A.8 sca-binding-webservice.xsd 4518

Is described in the SCA Web Services Binding specification [9] 4519

A.9 sca-binding-jms.xsd 4520

Is described in the SCA JMS Binding specification [11] 4521

A.10 sca-policy.xsd 4522

Is described in the SCA Policy Framework specification [10] 4523

 4524

A.11 sca-contribution.xsd 4525

 4526

<?xml version="1.0" encoding="UTF-8"?> 4527
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. 4528
 OASIS trademark, IPR and other policies apply. --> 4529
<schema xmlns="http://www.w3.org/2001/XMLSchema" 4530
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 4531
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 4532
 elementFormDefault="qualified"> 4533
 4534
 <include schemaLocation="sca-core-1.1-cd03.xsd"/> 4535
 4536
 <!-- Contribution --> 4537
 <element name="contribution" type="sca:ContributionType"/> 4538
 <complexType name="ContributionType"> 4539
 <complexContent> 4540
 <extension base="sca:CommonExtensionBase"> 4541
 <sequence> 4542
 <element name="deployable" type="sca:DeployableType" 4543
 maxOccurs="unbounded"/> 4544

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 108 of 132

 <element ref="sca:importBase" minOccurs="0" 4545
 maxOccurs="unbounded"/> 4546
 <element ref="sca:exportBase" minOccurs="0" 4547
 maxOccurs="unbounded"/> 4548
 <any namespace="##other" processContents="lax" minOccurs="0" 4549
 maxOccurs="unbounded"/> 4550
 </sequence> 4551
 </extension> 4552
 </complexContent> 4553
 </complexType> 4554
 4555
 <!-- Deployable --> 4556
 <complexType name="DeployableType"> 4557
 <complexContent> 4558
 <extension base="sca:CommonExtensionBase"> 4559
 <sequence> 4560
 <any namespace="##other" processContents="lax" minOccurs="0" 4561
 maxOccurs="unbounded"/> 4562
 </sequence> 4563
 <attribute name="composite" type="QName" use="required"/> 4564
 </extension> 4565
 </complexContent> 4566
 </complexType> 4567
 4568
 <!-- Import --> 4569
 <element name="importBase" type="sca:Import" abstract="true" /> 4570
 <complexType name="Import" abstract="true"> 4571
 <complexContent> 4572
 <extension base="sca:CommonExtensionBase"> 4573
 <sequence> 4574
 <any namespace="##other" processContents="lax" minOccurs="0" 4575
 maxOccurs="unbounded"/> 4576
 </sequence> 4577
 </extension> 4578
 </complexContent> 4579
 </complexType> 4580
 4581
 <element name="import" type="sca:ImportType" 4582
 substitutionGroup="sca:importBase"/> 4583
 <complexType name="ImportType"> 4584
 <complexContent> 4585
 <extension base="sca:Import"> 4586
 <attribute name="namespace" type="string" use="required"/> 4587
 <attribute name="location" type="anyURI" use="optional"/> 4588
 </extension> 4589
 </complexContent> 4590
 </complexType> 4591
 4592
 <!-- Export --> 4593
 <element name="exportBase" type="sca:Export" abstract="true" /> 4594
 <complexType name="Export" abstract="true"> 4595
 <complexContent> 4596
 <extension base="sca:CommonExtensionBase"> 4597
 <sequence> 4598
 <any namespace="##other" processContents="lax" minOccurs="0" 4599
 maxOccurs="unbounded"/> 4600
 </sequence> 4601
 </extension> 4602

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 109 of 132

 </complexContent> 4603
 </complexType> 4604
 4605
 <element name="export" type="sca:ExportType" 4606
 substitutionGroup="sca:exportBase"/> 4607
 <complexType name="ExportType"> 4608
 <complexContent> 4609
 <extension base="sca:Export"> 4610
 <attribute name="namespace" type="string" use="required"/> 4611
 </extension> 4612
 </complexContent> 4613
 </complexType> 4614
 4615
</schema> 4616

 4617

A.12 sca-definitions.xsd 4618

 4619

<?xml version="1.0" encoding="UTF-8"?> 4620
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved. 4621
 OASIS trademark, IPR and other policies apply. --> 4622
<schema xmlns="http://www.w3.org/2001/XMLSchema" 4623
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903" 4624
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903" 4625
 elementFormDefault="qualified"> 4626
 4627
 <include schemaLocation="sca-core-1.1-cd03.xsd"/> 4628
 <include schemaLocation="sca-policy-1.1-cd02.xsd"/> 4629
 4630
 <!-- Definitions --> 4631
 <element name="definitions" type="sca:tDefinitions"/> 4632
 <complexType name="tDefinitions"> 4633
 <complexContent> 4634
 <extension base="sca:CommonExtensionBase"> 4635
 <choice minOccurs="0" maxOccurs="unbounded"> 4636
 <element ref="sca:intent"/> 4637
 <element ref="sca:policySet"/> 4638
 <element ref="sca:binding"/> 4639
 <element ref="sca:bindingType"/> 4640
 <element ref="sca:implementationType"/> 4641
 <any namespace="##other" processContents="lax" 4642
 minOccurs="0" maxOccurs="unbounded"/> 4643
 </choice> 4644
 <attribute name="targetNamespace" type="anyURI" use="required"/> 4645
 </extension> 4646
 </complexContent> 4647
 </complexType> 4648
 4649
</schema> 4650

 4651

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 110 of 132

B. SCA Concepts 4652

B.1 Binding 4653

Bindings are used by services and references. References use bindings to describe the access 4654
mechanism used to call the service to which they are wired. Services use bindings to describe the 4655
access mechanism(s) that clients use to call the service. 4656

SCA supports multiple different types of bindings. Examples include SCA service, Web service, 4657
stateless session EJB, database stored procedure, EIS service. SCA provides an extensibility 4658
mechanism by which an SCA runtime can add support for additional binding types. 4659

 4660

B.2 Component 4661

SCA components are configured instances of SCA implementations, which provide and consume 4662
services. SCA allows many different implementation technologies such as Java, BPEL, C++. SCA defines 4663
an extensibility mechanism that allows you to introduce new implementation types. The current 4664
specification does not mandate the implementation technologies to be supported by an SCA runtime, 4665
vendors can choose to support the ones that are important for them. A single SCA implementation can be 4666
used by multiple Components, each with a different configuration. 4667

The Component has a reference to an implementation of which it is an instance, a set of property values, 4668
and a set of service reference values. Property values define the values of the properties of the 4669
component as defined by the component’s implementation. Reference values define the services that 4670
resolve the references of the component as defined by its implementation. These values can either be a 4671
particular service of a particular component, or a reference of the containing composite. 4672

B.3 Service 4673

SCA services are used to declare the externally accessible services of an implementation. For a 4674
composite, a service is typically provided by a service of a component within the composite, or by a 4675
reference defined by the composite. The latter case allows the republication of a service with a new 4676
address and/or new bindings. The service can be thought of as a point at which messages from external 4677
clients enter a composite or implementation. 4678

A service represents an addressable set of operations of an implementation that are designed to be 4679
exposed for use by other implementations or exposed publicly for use elsewhere (e.g. public Web 4680
services for use by other organizations). The operations provided by a service are specified by an 4681
Interface, as are the operations needed by the service client (if there is one). An implementation can 4682
contain multiple services, when it is possible to address the services of the implementation separately. 4683

A service can be provided as SCA remote services, as Web services, as stateless session EJB’s, as 4684
EIS services, and so on. Services use bindings to describe the way in which they are published. SCA 4685
provides an extensibility mechanism that makes it possible to introduce new binding types for new 4686
types of services. 4687

B.3.1 Remotable Service 4688

A Remotable Service is a service that is designed to be published remotely in a loosely-coupled SOA 4689
architecture. For example, SCA services of SCA implementations can define implementations of industry-4690
standard web services. Remotable services use pass-by-value semantics for parameters and returned 4691
results. 4692

Interfaces can be identified as remotable through the <interface /> XML, but are typically specified as 4693
remotable using a component implementation technology specific mechanism, such as Java annotations. 4694
See the relevant SCA Implementation Specification for more information. As an example, to define a 4695

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 111 of 132

Remotable Service, a Component implemented in Java would have a Java Interface with the 4696
@Remotable annotation 4697

B.3.2 Local Service 4698

Local services are services that are designed to be only used “locally” by other implementations that are 4699
deployed concurrently in a tightly-coupled architecture within the same operating system process. 4700

Local services can rely on by-reference calling conventions, or can assume a very fine-grained interaction 4701
style that is incompatible with remote distribution. They can also use technology-specific data-types. 4702

How a Service is identified as local is dependant on the Component implementation technology used. 4703
See the relevant SCA Implementation Specification for more information. As an example, to define a 4704
Local Service, a Component implemented in Java would define a Java Interface that does not have the 4705
@Remotable annotation. 4706

 4707

B.4 Reference 4708

SCA references represent a dependency that an implementation has on a service that is provided by 4709
some other implementation, where the service to be used is specified through configuration. In other 4710
words, a reference is a service that an implementation can call during the execution of its business 4711
function. References are typed by an interface. 4712

For composites, composite references can be accessed by components within the composite like any 4713
service provided by a component within the composite. Composite references can be used as the targets 4714
of wires from component references when configuring Components. 4715

A composite reference can be used to access a service such as: an SCA service provided by another 4716
SCA composite, a Web service, a stateless session EJB, a database stored procedure or an EIS service, 4717
and so on. References use bindings to describe the access method used to their services. SCA provides 4718
an extensibility mechanism that allows the introduction of new binding types to references. 4719

 4720

B.5 Implementation 4721

An implementation is concept that is used to describe a piece of software technology such as a Java 4722
class, BPEL process, XSLT transform, or C++ class that is used to implement one or more services in a 4723
service-oriented application. An SCA composite is also an implementation. 4724

Implementations define points of variability including properties that can be set and settable references to 4725
other services. The points of variability are configured by a component that uses the implementation. The 4726
specification refers to the configurable aspects of an implementation as its componentType. 4727

B.6 Interface 4728

Interfaces define one or more business functions. These business functions are provided by Services 4729
and are used by components through References. Services are defined by the Interface they implement. 4730
SCA currently supports a number of interface type systems, for example: 4731

 Java interfaces 4732

 WSDL portTypes 4733

 C, C++ header files 4734

 4735

SCA also provides an extensibility mechanism by which an SCA runtime can add support for additional 4736
interface type systems. 4737

Interfaces can be bi-directional. A bi-directional service has service operations which are provided by 4738
each end of a service communication – this could be the case where a particular service demands a 4739

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 112 of 132

“callback” interface on the client, which it calls during the process of handing service requests from the 4740
client. 4741

 4742

B.7 Composite 4743

An SCA composite is the basic unit of composition within an SCA Domain. An SCA Composite is an 4744
assembly of Components, Services, References, and the Wires that interconnect them. Composites can 4745
be used to contribute elements to an SCA Domain. 4746

A composite has the following characteristics: 4747

 It can be used as a component implementation. When used in this way, it defines a boundary for 4748
Component visibility. Components cannot be directly referenced from outside of the composite in 4749
which they are declared. 4750

 It can be used to define a unit of deployment. Composites are used to contribute business logic 4751
artifacts to an SCA Domain. 4752

 4753

B.8 Composite inclusion 4754

One composite can be used to provide part of the definition of another composite, through the process of 4755
inclusion. This is intended to make team development of large composites easier. Included composites 4756
are merged together into the using composite at deployment time to form a single logical composite. 4757

Composites are included into other composites through <include…/> elements in the using composite. 4758
The SCA Domain uses composites in a similar way, through the deployment of composite files to a 4759
specific location. 4760

 4761

B.9 Property 4762

Properties allow for the configuration of an implementation with externally set data values. The data 4763
value is provided through a Component, possibly sourced from the property of a containing composite. 4764

Each Property is defined by the implementation. Properties can be defined directly through the 4765
implementation language or through annotations of implementations, where the implementation language 4766
permits, or through a componentType file. A Property can be either a simple data type or a complex data 4767
type. For complex data types, XML schema is the preferred technology for defining the data types. 4768

 4769

B.10 Domain 4770

An SCA Domain represents a set of Services providing an area of Business functionality that is controlled 4771
by a single organization. As an example, for the accounts department in a business, the SCA Domain 4772
might cover all finance-related functions, and it might contain a series of composites dealing with specific 4773
areas of accounting, with one for Customer accounts, another dealing with Accounts Payable. 4774

A Domain specifies the instantiation, configuration and connection of a set of components, provided via 4775
one or more composite files. A Domain also contains Wires that connect together the Components. A 4776
Domain does not contain promoted Services or promoted References, since promotion has no meaning 4777
at the Domain level. 4778

 4779

B.11 Wire 4780

SCA wires connect service references to services. 4781

Valid wire sources are component references. Valid wire targets are component services. 4782

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 113 of 132

When using included composites, the sources and targets of the wires don’t have to be declared in the 4783
same composite as the composite that contains the wire. The sources and targets can be defined by 4784
other included composites. Targets can also be external to the SCA Domain. 4785

 4786

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 114 of 132

C. Conformance Items 4787

This section contains a list of conformance items for the SCA Assembly specification. 4788

 4789

Conformance ID Description

[ASM13001] An SCA runtime MUST reject a composite file that does not
conform to the sca-core.xsd, sca-interface-wsdl.xsd, sca-
implementation-composite.xsd and sca-binding-sca.xsd schema.

[ASM13002] An SCA runtime MUST reject a contribution file that does not
conform to the sca-contribution.xsd schema.

[ASM13003] An SCA runtime MUST reject a definitions file that does not
conform to the sca-definitions.xsd schema.

[ASM40001] The extension of a componentType side file name MUST be
.componentType.

[ASM40002] If present, the @constrainingType attribute of a
<componentType/> element MUST reference a
<constrainingType/> element in the Domain through its QName.

[ASM40003] The @name attribute of a <service/> child element of a
<componentType/> MUST be unique amongst the service
elements of that <componentType/>.

[ASM40004] The @name attribute of a <reference/> child element of a
<componentType/> MUST be unique amongst the reference
elements of that <componentType/>.

[ASM40005] The @name attribute of a <property/> child element of a
<componentType/> MUST be unique amongst the property
elements of that <componentType/>.

[ASM40006] If @wiredByImpl is set to "true", then any reference targets
configured for this reference MUST be ignored by the runtime.

[ASM40007] The value of the property @type attribute MUST be the QName of
an XML schema type.

[ASM40008] The value of the property @element attribute MUST be the
QName of an XSD global element.

[ASM40009] The SCA runtime MUST ensure that any implementation default
property value is replaced by a value for that property explicitly
set by a component using that implementation.

[ASM40010] A single property element MUST NOT contain both a @type
attribute and an @element attribute.

[ASM40011] When the componentType has @mustSupply="true" for a
property element, a component using the implementation MUST
supply a value for the property since the implementation has no
default value for the property.

[ASM50001] The @name attribute of a <component/> child element of a
<composite/> MUST be unique amongst the component elements

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 115 of 132

of that <composite/>

[ASM50002] The @name attribute of a service element of a <component/>
MUST be unique amongst the service elements of that
<component/>

[ASM50003] The @name attribute of a service element of a <component/>
MUST match the @name attribute of a service element of the
componentType of the <implementation/> child element of the
component.

 [ASM50004] If a <service/> element has an interface subelement specified, the
interface MUST provide a compatible subset of the interface
declared on the componentType of the implementation

 [ASM50005] If no binding elements are specified for the service, then the
bindings specified for the equivalent service in the
componentType of the implementation MUST be used, but if the
componentType also has no bindings specified, then
<binding.sca/> MUST be used as the binding. If binding elements
are specified for the service, then those bindings MUST be used
and they override any bindings specified for the equivalent
service in the componentType of the implementation.

[ASM50006] If the callback element is present and contains one or more
binding child elements, then those bindings MUST be used for the
callback.

[ASM50007] The @name attribute of a service element of a <component/>
MUST be unique amongst the service elements of that
<component/>

[ASM50008] The @name attribute of a reference element of a <component/>
MUST match the @name attribute of a reference element of the
componentType of the <implementation/> child element of the
component.

[ASM50009] The value of multiplicity for a component reference MUST only be
equal or further restrict any value for the multiplicity of the
reference with the same name in the componentType of the
implementation, where further restriction means 0..n to 0..1 or
1..n to 1..1.

[ASM50010] If @wiredByImpl="true" is set for a reference, then the reference
MUST NOT be wired statically within a composite, but left
unwired.

 [ASM50011] If an interface is declared for a component reference, the
interface MUST provide a compatible superset of the interface
declared for the equivalent reference in the componentType of
the implementation, i.e. provide the same operations or a
superset of the operations defined by the implementation for the
reference.

[ASM50012] If no binding elements are specified for the reference, then the
bindings specified for the equivalent reference in the
componentType of the implementation MUST be used. If binding
elements are specified for the reference, then those bindings
MUST be used and they override any bindings specified for the
equivalent reference in the componentType of the

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 116 of 132

implementation.

[ASM50013] If @wiredByImpl="true", other methods of specifying the target
service MUST NOT be used.

[ASM50014] If @autowire="true", the autowire procedure MUST only be used
if no target is identified by any of the other ways listed above. It is
not an error if @autowire="true" and a target is also defined
through some other means, however in this case the autowire
procedure MUST NOT be used.

[ASM50015] If a binding element has a value specified for a target service
using its @uri attribute, the binding element MUST NOT identify
target services using binding specific attributes or elements.

[ASM50016] It is possible that a particular binding type MAY require that the
address of a target service uses more than a simple URI. In
cases where a reference element has a binding subelement of
such a type, the @uri attribute of the binding element MUST NOT
be used to identify the target service - instead, binding specific
attributes and/or child elements MUST be used.

[ASM50018] A reference with multiplicity 0..1 or 0..n MAY have no target
service defined.

[ASM50019] A reference with multiplicity 0..1 or 1..1 MUST NOT have more
that one target service defined.

[ASM50020] A reference with multiplicity 1..1 or 1..n MUST have at least one
target service defined.

[ASM50021] A reference with multiplicity 0..n or 1..n MAY have one or more
target services defined.

[ASM50022] Where it is detected that the rules for the number of target
services for a reference have been violated, either at deployment
or at execution time, an SCA Runtime MUST raise an error no
later than when the reference is invoked by the component
implementation.

[ASM50025] Where a component reference is promoted by a composite
reference, the promotion MUST be treated from a multiplicity
perspective as providing 0 or more target services for the
component reference, depending upon the further configuration of
the composite reference. These target services are in addition to
any target services identified on the component reference itself,
subject to the rules relating to multiplicity.

[ASM50026] If a reference has a value specified for one or more target
services in its @target attribute, there MUST NOT be any child
<binding/> elements declared for that reference.

[ASM50027] If the @value attribute of a component property element is
declared, the type of the property MUST be an XML Schema
simple type and the @value attribute MUST contain a single
value of that type.

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 117 of 132

[ASM50028] If the value subelement of a component property is specified, the
type of the property MUST be an XML Schema simple type or an
XML schema complex type.

[ASM50029] If a component property value is declared using a child element of
the <property/> element, the type of the property MUST be an
XML Schema global element and the declared child element
MUST be an instance of that global element.

[ASM50030] A <component/> element MUST NOT contain two <property/>
subelements with the same value of the @name attribute.

[ASM50031] The @name attribute of a property element of a <component/>
MUST be unique amongst the property elements of that
<component/>.

[ASM50032 If a property is single-valued, the <value/> subelement MUST
NOT occur more than once.

[ASM50033] A property <value/> subelement MUST NOT be used when the
@value attribute is used to specify the value for that property.

[ASM50034] If any <wire/> element with its @replace attribute set to "true" has
a particular reference specified in its @source attribute, the value
of the @target attribute for that reference MUST be ignored and
MUST NOT be used to define target services for that reference.

[ASM50035] A single property element MUST NOT contain both a @type
attribute and an @element attribute.

[ASM50036] The property type specified for the property element of a
component MUST be compatible with the type of the property
with the same @name declared in the component type of the
implementation used by the component. If no type is declared in
the component property element, the type of the property
declared in the componentType of the implementation MUST be
used.

[ASM50037] The @name attribute of a property element of a <component/>
MUST match the @name attribute of a property element of the
componentType of the <implementation/> child element of the
component.

[ASM60001] A composite @name attribute value MUST be unique within the
namespace of the composite.

[ASM60002] @local="true" for a composite means that all the components
within the composite MUST run in the same operating system
process.

[ASM60003] The name of a composite <service/> element MUST be unique
across all the composite services in the composite.

[ASM60004] A composite <service/> element's @promote attribute MUST
identify one of the component services within that composite.

[ASM60005] If a composite service interface is specified it MUST be the same
or a compatible subset of the interface provided by the promoted
component service, i.e. provide a subset of the operations defined
by the component service.

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 118 of 132

[ASM60006] The name of a composite <reference/> element MUST be unique
across all the composite references in the composite.

[ASM60007] Each of the URIs declared by a composite reference's @promote
attribute MUST identify a component reference within the
composite.

[ASM60008] the interfaces of the component references promoted by a
composite reference MUST be the same, or if the composite
reference itself declares an interface then all the component
reference interfaces MUST be compatible with the composite
reference interface. Compatible means that the component
reference interface is the same or is a strict subset of the
composite reference interface.

[ASM60009] the intents declared on a composite reference and on the
component references which it promoites MUST NOT be mutually
exclusive.

[ASM60010] If any intents in the set which apply to a composite reference are
mutually exclusive then the SCA runtime MUST raise an error.

[ASM60011] The value specified for the @multiplicity attribute of a composite
reference MUST be compatible with the multiplicity specified on
each of the promoted component references, i.e. the multiplicity
has to be equal or further restrict. So multiplicity 0..1 can be used
where the promoted component reference has multiplicity 0..n,
multiplicity 1..1 can be used where the promoted component
reference has multiplicity 0..n or 1..n and multiplicity 1..n can be
used where the promoted component reference has multiplicity
0..n., However, a composite reference of multiplicity 0..n or 1..n
cannot be used to promote a component reference of multiplicity
0..1 or 1..1 respectively.

[ASM60012] If a composite reference has an interface specified, it MUST
provide an interface which is the same or which is a compatible
superset of the interface(s) declared by the promoted component
reference(s), i.e. provide a superset of the operations in the
interface defined by the component for the reference.

[ASM60013] If no interface is declared on a composite reference, the interface
from one of its promoted component references is used, which
MUST be the same as or a compatible superset of the
interface(s) declared by the promoted component reference(s).

[ASM60014] The @name attribute of a composite property MUST be unique
amongst the properties of the same composite.

[ASM60015] the source interface and the target interface of a wire MUST
either both be remotable or else both be local

[ASM60016] the operations on the target interface of a wire MUST be the
same as or be a superset of the operations in the interface
specified on the source

[ASM60017] compatibility between the source interface and the target interface
for a wire for the individual operations is defined as compatibility
of the signature, that is operation name, input types, and output
types MUST be the same.

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 119 of 132

[ASM60018] the order of the input and output types for operations in the
source interface and the target interface of a wire also MUST be
the same.

[ASM60019] the set of Faults and Exceptions expected by each operation in
the source interface MUST be the same or be a superset of those
specified by the target interface.

[ASM60020] If either the source interface of a wire or the target interface of a
wire declares a callback interface then both the source interface
and the target interface MUST declare a callback interface and
the callback interface declared on the target MUST be a
compatible superset of the callback interface declared on the
source.

[ASM60021] For the case of an un-wired reference with multiplicity 1..1 or 1..n
the deployment process provided by an SCA runtime SHOULD
issue a warning.

[ASM60022] For each component reference for which autowire is enabled, the
SCA runtime MUST search within the composite for target
services which are compatible with the reference.

[ASM60023] the target service interface MUST be a compatible superset of the
reference interface when using autowire to wire a reference (as
defined in the section on Wires)

[ASM60024] the intents, and policies applied to the service MUST be
compatible with those on the reference when using autowire to
wire a reference – so that wiring the reference to the service will
not cause an error due to policy mismatch

[ASM60025] for an autowire reference with multiplicity 0..1 or 1..1, the SCA
runtime MUST wire the reference to one of the set of valid target
services chosen from the set in a runtime-dependent fashion

[ASM60026] for an autowire reference with multiplicity 0..n or 1..n, the
reference MUST be wired to all of the set of valid target services

[ASM60027] for an autowire reference with multiplicity 0..1 or 0..n, if the SCA
runtime finds no valid target service, there is no problem – no
services are wired and the SCA runtime MUST NOT raise an
error

[ASM60028] for an autowire reference with multiplicity 1..1 or 1..n, if the SCA
runtime finds no valid target services an error MUST be raised by
the SCA runtime since the reference is intended to be wired

[ASM60030] The @name attribute of an <implementation.composite/> element
MUST contain the QName of a composite in the SCA Domain.

[ASM60031] The SCA runtime MUST raise an error if the composite resulting
from the inclusion of one composite into another is invalid.

[ASM60032] For a composite used as a component implementation, each

composite service offered by the composite MUST promote a

component service of a component that is within the composite.

[ASM60033] For a composite used as a component implementation, every

component reference of components within the composite with
a multiplicity of 1..1 or 1..n MUST be wired or promoted.

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 120 of 132

[ASM60034] For a composite used as a component implementation, all
properties of components within the composite, where the
underlying component implementation specifies
"mustSupply=true" for the property, MUST either specify a value
for the property or source the value from a composite property.

[ASM60035] All the component references promoted by a single composite
reference MUST have the same value for @wiredByImpl.

[ASM60036] If the @wiredByImpl attribute is not specified on the composite
reference, the default value is "true" if all of the promoted
component references have a wiredByImpl value of "true", and
the default value is "false" if all the promoted component
references have a wiredByImpl value of "false". If the
@wiredByImpl attribute is specified, its value MUST be "true" if all
of the promoted component references have a wiredByImpl value
of "true", and its value MUST be "false" if all the promoted
component references have a wiredByImpl value of "false".

[ASM60037] <include/> processing MUST take place before the processing of
the @promote attribute of a composite reference is performed.

[ASM60038] <include/> processing MUST take place before the processing of
the @promote attribute of a composite service is performed.

[ASM60039] <include/> processing MUST take place before the @source and
@target attributes of a wire are resolved.

[ASM60040] A single property element MUST NOT contain both a @type
attribute and an @element attribute.

[ASM60041] If the included composite has the value true for the attribute
@local then the including composite MUST have the same value
for the @local attribute, else it is an error.

[ASM60042] The @name attribute of an include element MUST be the QName
of a composite in the SCA Domain.

[ASM70001] The constrainingType specifies the services, references and
properties that MUST be provided by the implementation of the
component to which the constrainingType is attached.

[ASM70002] If the configuration of the component or its implementation does
not conform to the constrainingType specified on the component
element, the SCA runtime MUST raise an error.

[ASM70003] The @name attribute of the constraining type MUST be unique in
the SCA Domain.

[ASM70004] When an implementation is constrained by a constrainingType its
component type MUST contain all the services, references and
properties specified in the constrainingType.

[ASM70005] An implementation MAY contain additional services, additional
references with @multiplicity=0..1 or @multiplicity=0..n and
additional properties with @mustSupply=false beyond those
declared in the constraining type, but MUST NOT contain
additional references with @multiplicity=1..1 or @multiplicity=1..n
or additional properties with @mustSupply=true

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 121 of 132

[ASM70006] Additional services, references and properties provided by the
implementation which are not declared in the constrainingType
associated with a component MUST NOT be configured in any
way by the containing composite.

[ASM80001] The interface.wsdl @interface attribute MUST reference a
portType of a WSDL 1.1 document.

[ASM80002] Remotable service Interfaces MUST NOT make use of method
or operation overloading.

[ASM80003] If a remotable service is called locally or remotely, the SCA
container MUST ensure sure that no modification of input
messages by the service or post-invocation modifications to
return messages are seen by the caller.

[ASM80004] If a reference is defined using a bidirectional interface element,
the client component implementation using the reference calls the
referenced service using the interface. The client MUST provide
an implementation of the callback interface.

[ASM80005] Either both interfaces of a bidirectional service MUST be
remotable, or both MUST be local. A bidirectional service MUST
NOT mix local and remote services.

[ASM80008] Any service or reference that uses an interface marked with
intents MUST implicitly add those intents to its own @requires list.

[ASM80009] In a bidirectional interface, the service interface can have more
than one operation defined, and the callback interface can also
have more than one operation defined. SCA runtimes MUST
allow an invocation of any operation on the service interface to be
followed by zero, one or many invocations of any of the
operations on the callback interface.

[ASM80010] Whenever an interface document declaring a callback interface is
used in the declaration of an <interface/> element in SCA, it
MUST be treated as being bidirectional with the declared callback
interface.

[ASM80011] If an <interface/> element references an interface document
which declares a callback interface and also itself contains a
declaration of a callback interface, the two callback interfaces
MUST be compatible.

[ASM80012] Where a component uses an implementation and the component
configuration explicitly declares an interface for a service or a
reference, if the matching service or reference declaration in the
component type declares an interface which has a callback
interface, then the component interface declaration MUST also
declare a compatible interface with a compatible callback
interface.

[ASM80013] If the service or reference declaration in the component type
declares an interface without a callback interface, then the
component configuration for the corresponding service or
reference MUST NOT declare an interface with a callback
interface.

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 122 of 132

[ASM80014] Where a composite declares an interface for a composite service
or a composite reference, if the promoted service or promoted
reference has an interface which has a callback interface, then
the interface declaration for the composite service or the
composite reference MUST also declare a compatible interface
with a compatible callback interface.

[ASM80015] If the promoted service or promoted reference has an interface
without a callback interface, then the interface declaration for the
composite service or composite reference MUST NOT declare a
callback interface.

[ASM80016] The interface.wsdl @callbackInterface attribute, if present, MUST
reference a portType of a WSDL 1.1 document.

[ASM80017] WSDL interfaces are always remotable and therefore an
<interface.wsdl/> element MUST NOT contain remotable=”false”.

[ASM90001] For a binding of a reference the @uri attribute defines the target
URI of the reference. This MUST be either the
componentName/serviceName for a wire to an endpoint within
the SCA Domain, or the accessible address of some service
endpoint either inside or outside the SCA Domain (where the
addressing scheme is defined by the type of the binding).

[ASM90002] When a service or reference has multiple bindings, only one
binding can have the default @name value; all others MUST have
a @name value specified that is unique within the service or
reference.

[ASM90003] If a reference has any bindings, they MUST be resolved, which
means that each binding MUST include a value for the @uri
attribute or MUST otherwise specify an endpoint. The reference
MUST NOT be wired using other SCA mechanisms.

 [ASM90004] a wire target MAY be specified with a syntax of
"componentName/serviceName/bindingName".

[ASM10001] all of the QNames for the definitions contained in definitions.xml
files MUST be unique within the Domain.

[ASM10002] An SCA runtime MUST make available to the Domain all the
artifacts contained within the definitions.xml files in the Domain.

[ASM10003] An SCA runtime MUST reject a definitions.xml file that does not
conform to the sca-definitions.xsd schema.

[ASM12001] For any contribution packaging it MUST be possible to present
the artifacts of the packaging to SCA as a hierarchy of resources
based off of a single root

[ASM12002] Within any contribution packaging A directory resource SHOULD
exist at the root of the hierarchy named META-INF

[ASM12003] Within any contribution packaging a document SHOULD exist
directly under the META-INF directory named sca-
contribution.xml which lists the SCA Composites within the
contribution that are runnable.

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 123 of 132

[ASM12005] Where present, artifact-related or packaging-related artifact
resolution mechanisms MUST be used by the SCA runtime to
resolve artifact dependencies.

[ASM12006] SCA requires that all runtimes MUST support the ZIP packaging
format for contributions.

[ASM12007] Implementations of SCA MAY also raise an error if there are
conflicting names exported from multiple contributions.

[ASM12008] An SCA runtime MAY provide the contribution operation functions
(install Contribution, update Contribution, add Deployment
Composite, update Deployment Composite, remove
Contribution).

[ASM12009] if there is ever a conflict between two indirect dependent
contributions, then the conflict MUST be resolved by an explicit
entry in the dependent contribution list.

[ASM12010] Where present, non-SCA artifact resolution mechanisms MUST
be used by the SCA runtime in precendence to the SCA
mechanisms.

 [ASM12011] If one of the non-SCA artifact resolution mechanisms is present,
but there is a failure to find the resource indicated when using the
mechanism (e.g. the URI is incorrect or invalid, say) the SCA
runtime MUST raise an error and MUST NOT attempt to use SCA
resolution mechanisms as an alternative.

[ASM12012] The value of @autowire for the logical Domain composite MUST
be autowire="false".

[ASM12013] For components at the Domain level, with References for which
@autowire="true" applies, the behaviour of the SCA runtime for a
given Domain MUST take ONE of the 3 following forms:

1) The SCA runtime MAY disallow deployment of any
components with autowire References. In this case, the SCA
runtime MUST raise an exception at the point where the
component is deployed.

2) The SCA runtime MAY evaluate the target(s) for the reference
at the time that the component is deployed and not update those
targets when later deployment actions occur.

3) The SCA runtime MAY re-evaluate the target(s) for the
reference dynamically as later deployment actions occur resulting
in updated reference targets which match the new Domain
configuration. How the new configuration of the reference takes
place is described by the relevant client and implementation
specifications.

[ASM12014] Where <wire/> elements are added, removed or replaced by
deployment actions, the components whose references are
affected by those deployment actions MAY have their references
updated by the SCA runtime dynamically without the need to stop
and start those components.

[ASM12015] Where components are updated by deployment actions (their
configuration is changed in some way, which includes changing
the wires of component references), the new configuration MUST

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 124 of 132

apply to all new instances of those components once the update
is complete.

[ASM12016] An SCA runtime MAY choose to maintain existing instances with
the old configuration of components updated by deployment
actions, but an SCA runtime MAY choose to stop and discard
existing instances of those components.

[ASM12017] Where a component that is the target of a wire is removed,
without the wire being changed, then future invocations of the
reference that use that wire SHOULD fail with a
ServiceUnavailable fault. If the wire is the result of the autowire
process, the SCA runtime MUST:

 either cause future invocation of the target
component's services to fail with a
ServiceUnavailable fault

 or alternatively, if an alternative target component is
available that satisfies the autowire process, update
the reference of the source component

[ASM12018] Where a component that is the target of a wire is updated, future
invocations of that reference SHOULD use the updated
component.

[ASM12020] Where a component is added to the Domain that is a potential
target for a domain level component reference where that
reference is marked as @autowire=true, the SCA runtime MUST:

- either update the references for the source component
once the new component is running.

- or alternatively, defer the updating of the references of
the source component until the source component is
stopped and restarted.

[ASM12021] The SCA runtime MUST raise an error if an artifact cannot be
resolved using these mechanisms, if present.

[ASM12022] There can be multiple import declarations for a given namespace.
Where multiple import declarations are made for the same
namespace, all the locations specified MUST be searched in
lexical order.

[ASM12023] When a contribution contains a reference to an artifact from a
namespace that is declared in an import statement of the
contribution, if the SCA artifact resolution mechanism is used to
resolve the artifact, the SCA runtime MUST resolve artifacts in the
following order:

1. from the locations identified by the import statement(s) for
the namespace. Locations MUST NOT be searched recursively in
order to locate artifacts (i.e. only a one-level search is performed).

2. from the contents of the contribution itself.

[ASM12024] The SCA runtime MUST ignore local definitions of an artifact if the
artifact is found through resolving an import statement.

[ASM12025] The SCA runtime MUST raise an error if an artifact cannot be
resolved by using artifact-related or packaging-related artifact
resolution mechanisms, if present, by searching locations

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 125 of 132

identified by the import statements of the contribution, if present,
and by searching the contents of the contribution.

[ASM12026] An SCA runtime MUST make the <import/> and <export/>
elements found in the META-INF/sca-contribution.xml and META-
INF/sca-contribution-generated.xml files available for the SCA
artifact resolution process.

[ASM12027] An SCA runtime MUST reject files that do not conform to the
schema declared in sca-contribution.xsd.

[ASM12028] An SCA runtime MUST merge the contents of sca-contribution-
generated.xml into the contents of sca-contribution.xml, with the
entries in sca-contribution.xml taking priority if there are any
conflicting declarations.

[ASM12029] An SCA runtime MAY deploy the composites in <deployable/>
elements found in the META-INF/sca-contribution.xml and META-
INF/sca-contribution-generated.xml files.

[ASM12030] For XML definitions, which are identified by QNames, the
@namespace attribute of the export element SHOULD be the
namespace URI for the exported definitions.

[ASM12031] When a contribution uses an artifact contained in another
contribution through SCA artifact resolution, if that artifact itself
has dependencies on other artifacts, the SCA runtime MUST
resolve these dependencies in the context of the contribution
containing the artifact, not in the context of the original
contribution.

[ASM14001] An SCA runtime SHOULD detect errors at deployment time
where those errors can be found through static analysis.

[ASM14002] The SCA runtime SHOULD prevent deployment of contributions
that are in error, and raise the error to the process performing the
deployment (e.g. write a message to an interactive console or
write a message to a log file).

[ASM14003] Where errors are only detected at runtime, when the error is
detected an error MUST be raised to the component that is
attempting the activity concerned with the error.

[ASM14004] When an error that could have been detected through static
analysis is detected and raised at runtime for a component, the
component SHOULD NOT be run until the error is fixed.

 4790

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 126 of 132

D. Acknowledgements 4791

The following individuals have participated in the creation of this specification and are gratefully 4792
acknowledged: 4793

Participants: 4794
 4795

Participant Name Affiliation

Bryan Aupperle IBM

Ron Barack SAP AG

Michael Beisiegel IBM

Megan Beynon IBM

Vladislav Bezrukov SAP AG

Henning Blohm SAP AG

Fraser Bohm IBM

David Booz IBM

Fred Carter AmberPoint

Martin Chapman Oracle Corporation

Graham Charters IBM

Shih-Chang Chen Oracle Corporation

Chris Cheng Primeton Technologies, Inc.

Vamsavardhana Reddy Chillakuru IBM

Mark Combellack Avaya, Inc.

Jean-Sebastien Delfino IBM

David DiFranco Oracle Corporation

Mike Edwards IBM

Jeff Estefan Jet Propulsion Laboratory

Raymond Feng IBM

Billy Feng Primeton Technologies, Inc.

Paul Fremantle WSO2

Robert Freund Hitachi, Ltd.

Peter Furniss Iris Financial Solutions Ltd.

Genadi Genov SAP AG

Mark Hapner Sun Microsystems

Zahir HEZOUAT IBM

Simon Holdsworth IBM

Sabin Ielceanu TIBCO Software Inc.

Bo Ji Primeton Technologies, Inc.

Uday Joshi Oracle Corporation

Mike Kaiser IBM

Khanderao Kand Oracle Corporation

Anish Karmarkar Oracle Corporation

Nickolaos Kavantzas Oracle Corporation

Rainer Kerth SAP AG

Dieter Koenig IBM

Meeraj Kunnumpurath Individual

Jean Baptiste Laviron Axway Software

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 127 of 132

Simon Laws IBM

Rich Levinson Oracle Corporation

Mark Little Red Hat

Ashok Malhotra Oracle Corporation

Jim Marino Individual

Carl Mattocks CheckMi*

Jeff Mischkinsky Oracle Corporation

Ian Mitchell IBM

Dale Moberg Axway Software

Simon Moser IBM

Simon Nash Individual

Peter Niblett IBM

Duane Nickull Adobe Systems

Eisaku Nishiyama Hitachi, Ltd.

Sanjay Patil SAP AG

Plamen Pavlov SAP AG

Peter Peshev SAP AG

Gilbert Pilz Oracle Corporation

Nilesh Rade Deloitte Consulting LLP

Martin Raepple SAP AG

Luciano Resende IBM

Michael Rowley Active Endpoints, Inc.

Vicki Shipkowitz SAP AG

Ivana Trickovic SAP AG

Clemens Utschig - Utschig Oracle Corporation

Scott Vorthmann TIBCO Software Inc.

Feng Wang Primeton Technologies, Inc.

Tim Watson Oracle Corporation

Eric Wells Hitachi, Ltd.

Robin Yang Primeton Technologies, Inc.

Prasad Yendluri Software AG, Inc.
 4796

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 128 of 132

E. Non-Normative Text 4797

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 129 of 132

F. Revision History 4798

[optional; should not be included in OASIS Standards] 4799

 4800

Revision Date Editor Changes Made

1 2007-09-24 Anish Karmarkar Applied the OASIS template + related changes
to the Submission

2 2008-01-04 Michael Beisiegel composite section
- changed order of subsections from property,
reference, service to service, reference,
property
- progressive disclosure of pseudo schemas,
each section only shows what is described
- attributes description now starts with name :
type (cardinality)
- child element description as list, each item
starting with name : type (cardinality)
- added section in appendix to contain
complete pseudo schema of composite

- moved component section after
implementation section
- made the ConstrainingType section a top
level section
- moved interface section to after constraining
type section

component section
- added subheadings for Implementation,
Service, Reference, Property
- progressive disclosure of pseudo schemas,
each section only shows what is described
- attributes description now starts with name :
type (cardinality)
- child element description as list, each item
starting with name : type (cardinality)

implementation section
- changed title to “Implementation and
ComponentType”
- moved implementation instance related stuff
from implementation section to component
implementation section
- added subheadings for Service, Reference,
Property, Implementation
- progressive disclosure of pseudo schemas,
each section only shows what is described
- attributes description now starts with name :
type (cardinality)
- child element description as list, each item
starting with name : type (cardinality)
- attribute and element description still needs to
be completed, all implementation statements

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 130 of 132

on services, references, and properties should
go here
- added complete pseudo schema of
componentType in appendix

- added “Quick Tour by Sample” section, no
content yet
- added comment to introduction section that
the following text needs to be added

 "This specification is efined
in terms of infoset and not XML

1.0, even though the spec uses XML

1.0/1.1 terminology. A mapping from

XML to infoset (... link to infoset

specification ...) is trivial and

should be used for non-XML

serializations."

3 2008-02-15 Anish Karmarkar

Michael Beisiegel

Incorporated resolutions from 2008 Jan f2f.
- issue 9
- issue 19
- issue 21
- issue 4
- issue 1A
- issue 27

- in Implementation and ComponentType
 section added attribute and element
 description for service, reference, and
 property
- removed comments that helped understand
 the initial restructuring for WD02
- added changes for issue 43
- added changes for issue 45, except the
 changes for policySet and requires attribute
 on property elements
- used the NS http://docs.oasis-
open.org/ns/opencsa/sca/200712
- updated copyright stmt
- added wordings to make PDF normative and
xml schema at the NS uri autoritative

4 2008-04-22 Mike Edwards Editorial tweaks for CD01 publication:
- updated URL for spec documents
- removed comments from published CD01
version
- removed blank pages from body of spec

5 2008-06-30 Anish Karmarkar

Michael Beisiegel

Incorporated resolutions of issues: 3, 6, 14
(only as it applies to the component property
element), 23, 25, 28, 25, 38, 39, 40, 42, 45
(except for adding @requires and @policySets
to property elements), 57, 67, 68, 69

6 2008-09-23 Mike Edwards Editorial fixes in response to Mark
Combellack's review contained in email:
http://lists.oasis-open.org/archives/sca-
assembly/200804/msg00089.html

http://docs.oasis-open.org/ns/opencsa/sca/200712
http://docs.oasis-open.org/ns/opencsa/sca/200712

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 131 of 132

7 CD01 - Rev3 2008-11-18 Mike Edwards Specification marked for conformance
statements. New Appendix (D) added
containing a table of all conformance
statements. Mass of related minor editorial
changes to remove the use of RFC2119
words where not appropriate.

8 CD01 - Rev4 2008-12-11 Mike Edwards - Fix problems of misplaced statements in
Appendix D
- Fixed problems in the application of Issue 57 -
section 5.3.1 & Appendix D as defined in email:
http://lists.oasis-open.org/archives/sca-
assembly/200811/msg00045.html
- Added Conventions section, 1.3, as required
by resolution of Issue 96.
- Issue 32 applied - section B2
- Editorial addition to section 8.1 relating to no
operation overloading for remotable interfaces,
as agreed at TC meeting of 16/09/2008.

9 CD01 - Rev5 2008-12-22 Mike Edwards - Schemas in Appendix B updated with
resolutions of Issues 32 and 60
- Schema for contributions - Appendix B12 -
updated with resolutions of Issues 53 and 74.
- Issues 53 and 74 incorporated - Sections
11.4, 11.5

10 CD01-Rev6 2008-12-23 Mike Edwards - Issues 5, 71, 92
- Issue 14 - remaining updates applied to
ComponentType (section 4.1.3) and to
Composite Property (section 6.3)

11 CD01-Rev7 2008-12-23 Mike Edwards All changes accepted before revision from
Rev6 started - due to changes being applied to
previously changed sections in the Schemas
Issues 12 & 18 - Section B2
Issue 63 - Section C3
Issue 75 - Section C12
Issue 65 - Section 7.0
Issue 77 - Section 8 + Appendix D
Issue 69 - Sections 5.1, 8
Issue 45 - Sections 4.1.3, 5.4, 6.3, B2.
Issue 56 - Section 8.2, Appendix D
Issue 41 - Sections 5.3.1, 6.4, 12.7, 12.8,
Appendix D

12 CD01-Rev8 2008-12-30 Mike Edwards Issue 72 - Removed Appendix A
Issue 79 - Sections 9.0, 9.2, 9.3, Appendix A.2
Issue 62 - Sections 4.1.3, 5.4
Issue 26 - Section 6.5
Issue 51 - Section 6.5
Issue 36 - Section 4.1
Issue 44 - Section 10, Appendix C
Issue 89 - Section 8.2, 8.5, Appendix A,
Appendix C
Issue 16 - Section 6.8, 9.4
Issue 8 - Section 11.2.1
Issue 17 - Section 6.6
Issue 30 - Sections 4.1.1, 4.1.2, 5.2, 5.3, 6.1,
6.2, 9
Issue 33 - insert new Section 8.4

http://lists.oasis-open.org/archives/sca-assembly/200811/msg00045.html
http://lists.oasis-open.org/archives/sca-assembly/200811/msg00045.html

sca-assembly-1.1-spec-cd03 10 March 2009
Copyright © OASIS® 2005, 2009. All Rights Reserved. Page 132 of 132

12 CD01-
Rev8a

2009-01-13 Bryan Aupperle

Mike Edwards

Issue 99 - Section 8

13 CD02 2009-01-14 Mike Edwards All changes accepted
All comments removed

14 CD02-Rev2 2009-01-30 Mike Edwards Issue 94 applied (removal of conversations)

15 CD02-Rev3 2009-01-30 Mike Edwards Issue 98 - Section 5.3
Minor editorial cleanup (various locations)
Removal of <operation/> element as decided at
Jan 2009 F2F - various sections
Issue 95 - Section 6.2
Issue 2 - Section 2.1
Issue 37 - Sections 2.1, 6, 12.6.1, B10
Issue 48 - Sections 5.3, A2
Issue 90 - Sections 6.1, 6.2, 6.4
Issue 64 - Sections 7, A2
Issue 100 - Section 6.2
Issue 103 - Sections 10, 12.2.2, A.13
Issue 104 - Sections 4.1.3, 5.4, 6.3
Section 3 (Quick Tour By Sample) removed by
decision of Jan 2009 Assembly F2F meeting

16 CD02-Rev4 2009-02-06 Mike Edwards All changes accepted
Major Editorial work to clean out all RFC2119
wording and to ensure that no normative
statements have been missed.

16 CD02-Rev6 2009-02-24 Mike Edwards Issue 107 - sections 4, 5, 11, Appendix C
Editorial updates resulting from Review
Issue 34 - new section 12 inserted, + minor
editorial changes in sections 4, 11
Issue 110 - Section 8.0
Issue 111 - Section 4.4, Appendix C
Issue 112 - Section 4.5
Issue 113 - Section 3.3
Issue 108 - Section 13, Appendix C
Minor editorial changes to the example in
section 3.3

17 CD02-Rev7 2009-03-02 Mike Edwards Editorial changes resulting from Vamsi's review
of CD02 Rev6
Issue 109 - Section 8, Appendix A.2, Appendix
B.3.1, Appendix C
Added back @requires and @policySets to
<interface/> as editorial correction since they
were lost by accident in earlier revision
Issue 101 - Section 13
Issue 120 - Section

18 CD02-Rev
8

2009-03-05 Mike Edwards XSDs corrected and given new namespace.
Namespace updated throughout document.

19 CD03 2009-03-05 Mike Edwards All Changes Accepted

20 CD03 2009-03-17 Anish Karmarkar Changed CD03 per TC’s CD03/PR01
resolution. Fixed the footer, front page.

 4801

	rfc2119
	Ref1
	SCA_Java
	SCA_Common_Java
	Ref2
	Ref3
	Ref4
	Ref5
	Ref6
	Ref7
	Ref8
	Ref9
	Ref10
	Ref11
	Ref12
	R_ASM40001
	R_ASM40002
	R_ASM40003
	R_ASM40004
	R_ASM40006
	R_ASM40005
	R_ASM40007
	R_ASM40008
	R_ASM40010
	R_ASM40011
	R_ASM40009
	action_10556
	R_ASM50001
	R_ASM50002
	R_ASM50003
	R_ASM50004
	R_ASM50005
	R_ASM50006
	R_ASM50007
	R_ASM50008
	R_ASM50009
	R_ASM50010
	R_ASM50011
	R_ASM50012
	R_ASM50013
	R_ASM50014
	R_ASM50026
	R_ASM50015
	R_ASM50016
	R_ASM50034
	R_ASM50018
	R_ASM50019
	R_ASM50020
	R_ASM50021
	R_ASM50022
	R_ASM50025
	R_ASM50027
	R_ASM50028
	R_ASM50029
	R_ASM50030
	R_ASM50036
	R_ASM50031
	R_ASM50037
	R_ASM50035
	R_ASM50032
	R_ASM50033
	R_ASM60001
	R_ASM60002
	R_ASM60003
	R_ASM60004
	R_ASM60038
	R_ASM60005
	R_ASM60006
	R_ASM60007
	R_ASM60037
	R_ASM60008
	R_ASM60009
	R_ASM60010
	R_ASM60011
	R_ASM60035
	R_ASM60036
	R_ASM60012
	R_ASM60013
	R_ASM60014
	R_ASM60040
	R_ASM60039
	R_ASM60015
	R_ASM60016
	R_ASM60017
	R_ASM60018
	R_ASM60019
	R_ASM60020
	R_ASM60021
	R_ASM60022
	R_ASM60023
	R_ASM60024
	R_ASM60025
	R_ASM60026
	R_ASM60027
	R_ASM60028
	R_ASM60032
	R_ASM60033
	R_ASM60034
	R_ASM60030
	R_ASM60041
	R_ASM60031
	R_ASM60042
	R_ASM70001
	R_ASM70002
	R_ASM70003
	R_ASM70004
	R_ASM70005
	R_ASM70006
	R_ASM80002
	R_ASM80003
	R_ASM80004
	R_ASM80005
	R_ASM80010
	R_ASM80011
	R_ASM80012
	R_ASM80013
	R_ASM80014
	R_ASM80015
	R_ASM80009
	R_ASM80008
	R_ASM80001
	R_ASM80016
	R_ASM80017
	R_ASM90001
	R_ASM90002
	R_ASM90003
	R_ASM90004
	R_ASM10002
	R_ASM10003
	R_ASM10001
	R_ASM12001
	R_ASM12002
	R_ASM12003
	R_ASM12004
	R_ASM12005
	R_ASM12021
	R_ASM12022
	R_ASM12023
	R_ASM12031
	R_ASM12024
	R_ASM12025
	R_ASM12026
	R_ASM12027
	R_ASM12028
	R_ASM12029
	R_ASM12030
	R_ASM12006
	R_ASM12007
	R_ASM12008
	R_ASM12009
	R_ASM12010
	R_ASM12011
	R_ASM12012
	R_ASM12013
	R_ASM12014
	R_ASM12015
	R_ASM12016
	R_ASM12017
	R_ASM12018
	R_ASM12020
	R_ASM14001
	R_ASM14002
	R_ASM14003
	R_ASM14004
	R_ASM13001
	R_ASM13002
	R_ASM13003
	ASM13001
	ASM13002
	ASM13003
	ASM40001
	ASM40002
	ASM40003
	ASM40004
	ASM40005
	ASM40006
	ASM40007
	ASM40008
	ASM40009
	ASM40010
	ASM40011
	ASM50001
	ASM50002
	ASM50003
	ASM50004
	ASM50005
	ASM50006
	ASM50007
	ASM50008
	ASM50009
	ASM50010
	ASM50011
	ASM50012
	ASM50013
	ASM50014
	ASM50015
	ASM50016
	ASM50018
	ASM50019
	ASM50020
	ASM50021
	ASM50022
	ASM50025
	ASM50026
	ASM50027
	ASM50028
	ASM50029
	ASM50030
	ASM50031
	ASM50032
	ASM50033
	ASM50034
	ASM50035
	ASM50036
	ASM50037
	ASM60001
	ASM60002
	ASM60003
	ASM60004
	ASM60005
	ASM60006
	ASM60007
	ASM60008
	ASM60009
	ASM60010
	ASM60011
	ASM60012
	ASM60013
	ASM60014
	ASM60015
	ASM60016
	ASM60017
	ASM60018
	ASM60019
	ASM60020
	ASM60021
	ASM60022
	ASM60023
	ASM60024
	ASM60025
	ASM60026
	ASM60027
	ASM60028
	ASM60030
	ASM60031
	ASM60032
	ASM60033
	ASM60034
	ASM60035
	ASM60036
	ASM60037
	ASM60038
	ASM60039
	ASM60040
	ASM60041
	ASM60042
	ASM70001
	ASM70002
	ASM70003
	ASM70004
	ASM70005
	ASM70006
	ASM80001
	ASM80002
	ASM80003
	ASM80004
	ASM80005
	ASM80008
	ASM80009
	ASM80010
	ASM80011
	ASM80012
	ASM80013
	ASM80014
	ASM80015
	ASM80016
	ASM80017
	ASM90001
	ASM90002
	ASM90003
	ASM90004
	ASM10001
	ASM10002
	ASM10003
	ASM12001
	ASM12002
	ASM12003
	ASM12005
	ASM12006
	ASM12007
	ASM12008
	ASM12009
	ASM12010
	ASM12011
	ASM12012
	ASM12013
	ASM12014
	ASM12015
	ASM12016
	ASM12017
	ASM12018
	ASM12020
	ASM12021
	ASM12022
	ASM12023
	ASM12024
	ASM12025
	ASM12026
	ASM12027
	ASM12028
	ASM12029
	ASM12030
	ASM12031
	ASM14001
	ASM14002
	ASM14003
	ASM14004

