
Implementation Type Documentation
Requirements for SCA Assembly Model
Version 1.1 Specification
Committee Draft 01 / Public Review 01

20 July 2010

Specification URIs:

This Version:
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-
cd01.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-
cd01.odt
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-
cd01.pdf (Authoritative)

Previous Version:
N/A

Latest Version:
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-
documentation.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation.odt
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation.pdf
(Authoritative)

Technical Committee:
OASIS Service Component Architecture / Assembly (SCA-Assembly) TC
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-assembly

Chair(s):
Martin Chapman, Oracle
Mike Edwards, IBM

Editor(s):
Dave Booz, IBM
Mike Edwards, IBM
Jeff Estefan, Jet Propulsion Laboratory

Related Work:
This document is related to:

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 1 of 21

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-cd01.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-assembly
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation.odt
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-cd01.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-cd01.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-cd01.odt
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-cd01.odt
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-cd01.odt
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-cd01.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-impl-type-documentation-cd01.html

• Service Component Architecture Assembly Specification Version 1.1
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd05.pdf

Declared XML Namespace(s):
none

Abstract:
This document defines the requirements for the documentation of an SCA implementation type
that is used by a conforming SCA Runtime. The documentation describes how implementation
artifacts of that implementation type relate to SCA components declared within SCA composites,
as described by the SCA Assembly specification

Status:
This document was last revised or approved by the OASIS Service Component Architecture /
Assembly (SCA-Assembly) TC on the above date. The level of approval is also listed above.
Check the “Latest Version” or “Latest Approved Version” location noted above for possible later
revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-assembly/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-assembly/ipr.php.

The non-normative errata page for this specification is located at
http://www.oasis-open.org/committees/sca-assembly/

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 2 of 21

http://www.oasis-open.org/committees/sca-assembly/
http://www.oasis-open.org/committees/sca-assembly/ipr.php
http://www.oasis-open.org/committees/sca-assembly/ipr.php
http://www.oasis-open.org/committees/sca-assembly/
http://www.oasis-open.org/committees/sca-assembly/
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd05.pdf

Notices
Copyright © OASIS® 2010. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be
followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to
notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such
patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced
this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any
patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it represent
that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to
rights in any document or deliverable produced by an OASIS Technical Committee can be found on the
OASIS website. Copies of claims of rights made available for publication and any assurances of licenses
to be made available, or the result of an attempt made to obtain a general license or permission for the
use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS
Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any
information or list of intellectual property rights will at any time be complete, or that any claims in such list
are, in fact, Essential Claims.

The names "OASIS", "Service Component Architecture" are trademarks of OASIS, the owner and
developer of this specification, and should be used only to refer to the organization and its official outputs.
OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to
enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for
above guidance.

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 3 of 21

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/

Table of Contents

1 Introduction... 5
1.1 Terminology... 5
1.2 Normative References... 5
1.3 Non-normative References..6

2 Describing an SCA Implementation Type..7
2.0.1 What is an Implementation Type?..7
2.0.2 How an Implementation is used in SCA..7

2.1 Describing the Implementation extension element..8
2.2 The ComponentType of an Implementation Artifact...9

2.2.1 Support for Bidirectional Interfaces and for Long Running Request/Response operations.......10
2.3 SCA Extensions and Customizations for Implementation Artifacts..10
2.4 Describing the Runtime Behaviour of an Implementation Artifact..11
2.5 Describing an Interface Type associated with an Implementation Type...11

2.5.1 Support of Local and Remotable Interfaces..12
2.5.2 Interface Compatibility rules...13

2.6 Describing the behavior of Implementation artifacts within Contributions..13
2.6.1 Implementation-Type specific forms of Import and Export..13
2.6.2 Implementation-Type specific forms of Contribution...14

2.7 Policy Related Considerations...14
2.8 Describing the Handling of Artifacts containing Errors...14

3 Conformance.. 16
A.Conformance Items.. 17

A.1.Mandatory Items.. 17
B.Acknowledgments.. 20
C.Revision History.. 21

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 4 of 21

1 Introduction
[All text is normative unless otherwise indicated.]

This document defines the content of the documentation that is required to describe an SCA
implementation type [SCA-Assembly], where that implementation type is supported by an SCA Runtime
that claims to be conforming with the SCA Assembly specification.

The SCA Assembly specification defines an application in terms of service components that use and
configure a particular implementation artifact. In order to fully define how a particular service component
operates, it is necessary to describe the relationship between the configuration of the SCA component and
the implementation technology used by the service component. It is the role of the Implementation Type
Documentation to describe this relationship.

Some implementation types are described by formal specifications that have been created by OASIS SCA
technical committees. Examples include:

• SCA WS-BPEL Client and Implementation V1.1 [SCA-BPEL]

• SCA POJO Component Implementation V1.1 [SCA-POJO]

1.1 Terminology
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as
described in IETF RFC 2119 [RFC2119].

1.2 Normative References
[RFC 2119] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. IETF

RFC 2119, March 1997.
http://www.ietf.org/rfc/rfc2119.txt.

[SCA-Assembly] OASIS Committee Draft 05, Service Component Architecture Assembly Model
Specification Version 1.1, January 2010.
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-
cd05.pdf

[SCA-POLICY] OASIS, Committee Draft 02, “SCA Policy Framework Specification Version 1.1”,
February 2009.
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd02.pdf

[SCA-BPEL] OASIS Committee Draft 02, Service Component Architecture WS-BPEL Client
and Implementation Specification Version 1.1, March 2009.
http://docs.oasis-open.org/opencsa/sca-bpel/sca-bpel-1.1-spec-cd02.pdf

[SCA-POJO] OASIS Committee Draft 02, Service Component Architecture POJO Component
Implementation Specification Version 1.1, February 2010.
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-cd02.pdf

[SCA-CPP] OASIS Committee Draft 05, Service Component Architecture Client and
Implementation Model for C++ Specification Version 1.1, March 2010.
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec-cd05.pdf

[SCA-JAVACAA] OASIS Committee Draft 04, Service Component Architecture SCA-J Common
Annotations and APIs Specification 1.1, February 2010.
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-cd04.pdf

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 5 of 21

1

2

3
4
5

6
7
8
9

10

11
12

13

14

15

16

17
18
19

20

21
22
23

24
25
26
27

28
29
30

31
32
33

34
35
36

37
38
39

40
41
42

http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-cd04.pdf
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec-cd05.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-cd02.pdf
http://docs.oasis-open.org/opencsa/sca-bpel/sca-bpel-1.1-spec-cd02.pdf
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd02.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd05.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd05.pdf
http://www.ietf.org/rfc/rfc2119.txt

[XML-Schema] W3C Recommendation, XMLSchema Part 1, XML Schema Part 2, October 2004:
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

[XML-Namespaces] W3C Recommendation, Namespaces in XML1.0 (Third Edition], December
2009:
http://www.w3.org/TR/REC-xml-names/

1.3 Non-normative References
[SCA-Spring] OASIS Working Draft 05, Service Component Architecture SCA Spring

Component Implementation Specification 1.1, August 2008
http://www.oasis-open.org/committees/download.php/34930/sca-springci-1.1-
spec-WD05.pdf

[SCA-JEE] OASIS Working Draft 6, Service Component Architecture Java EE Integration
Specification 1.1, September 2009
http://www.oasis-open.org/committees/download.php/34200/sca-jee-1.1-spec-
wd06.pdf

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 6 of 21

43
44
45

46
47
48

49

50

51
52
53
54

55
56
57
58

http://www.oasis-open.org/committees/download.php/34930/sca-springci-1.1-spec-WD05.pdf
http://www.oasis-open.org/committees/download.php/34930/sca-springci-1.1-spec-WD05.pdf
http://www.oasis-open.org/committees/download.php/34200/sca-jee-1.1-spec-wd06.pdf
http://www.oasis-open.org/committees/download.php/34200/sca-jee-1.1-spec-wd06.pdf
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-1/

2 Describing an SCA Implementation Type
This document defines the information that is needed for a particular implementation type to be used as a
service component implementation within an SCA assembly. The information covers static configuration
information required in order to use an implementation type and it's associated artifacts in an SCA
assembly and it also covers the dynamic runtime behaviour of instances of the implementation type when
the SCA assembly is executed by an SCA Runtime.

While this document gives a general description of the information that needs to be provided for an
implementation type, the OASIS SCA technical committees have also produced examples of
specifications that provide this same level of information for a variety of implementation technologies.
These specifications can provide guidance in creating a document with the appropriate level of information
for a new implementation type:

• SCA WS-BPEL Client and Implementation V1.1 [SCA-BPEL], which describes implementations
built as WS-BPEL scripts

• SCA POJO Component Implementation V1.1 [SCA-POJO], which describes implementations
based on simple Java classes.

2.0.1 What is an Implementation Type?
An implementation type describes how the artifacts of a concrete implementation technology are used to
implement SCA components. Implementation types also describe the relationship between a technology
specific implementation and the foundational aspects of SCA components, namely services, references,
and properties.

Often an implementation type is defined such that it describes all SCA component implementations that
use a particular implementation language, such as C++ [SCA-CPP] or BPEL [SCA-BPEL]. However, SCA
is flexible and allows multiple implementation types to use the same implementation language. Examples
of this occur with the Java language, where implementation types exist for POJO classes [SCA-POJO], for
EJBs [SCA-JEE] and for Spring classes [SCA-SPRING]. As a result, the implementation type can
represent a specialized form of an implementation technology, where the specialization may involve the
use of specific APIs, frameworks or specific language extensions.

2.0.2 How an Implementation is used in SCA
SCA describes applications in terms of assemblies of service components. Service components are
declared within SCA composites. Every component uses an implementation - which is expressed as a
reference to an artifact that provides a runtime implementation of the service component contract.

A typical SCA component is shown in Listing 1:
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 targetNamespace=
 "http://docs.oasis-open.org/ns/opencsa/scatests/200903"
 name="TestComposite4">

 <component name="ComponentA">

<implementation.java class="org.oasisopen.sca.Service1Impl"/>
 <service name="Service1">
 <interface.java interface="org.oasisopen.sca.Service1"/>
 </service>
 <property name="serviceName" value="AService"/>
 <reference name="reference1"/>
 </component>

</composite>

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 7 of 21

59

60
61
62
63
64

65
66
67
68
69

70
71

72
73

74

75
76
77
78

79
80
81
82
83
84
85

86

87
88
89

90

91
92
93
94
95
96
97
98
99

100
101
102
103
104
105

Listing 1: Example SCA component

The component "ComponentA" has an implementation, which in this example is a Java POJO
implementation, declared using the <implementation.java/> element. The implementation.java element
contains a reference to the implementation artifact, which in this example is a Java class with the name
"Service1Impl" in the package "org.oasisopen.sca".

The remainder of the contents of the component declaration is configuration that is applied to the
implementation at runtime. The component can declare all the services, references and properties of the
implementation and apply configuration information to each of them. This can include things such as
bindings for services and references and property values for properties.

Note that the configurable aspects of an SCA component implementation are called the componentType
of the implementation - basically, it is the set of services, references and properties that the
implementation has - for details of the componentType see the section "The ComponentType of an
Implementation Artifact"

2.1 Describing the Implementation extension element
The implementation type documentation MUST describe the XML element that is used when declaring
implementations of that type in an SCA component. [IMP10001] It is highly recommended that the element
is defined in an XML namespace [XML-Namespaces] that is owned by the same entity that owns the
definition of the implementation type. The formal name of of the implementation type is the Qualified
Name of the XML element.

The name used for the implementation element MUST to be unique - it MUST NOT use the same name
as any other implementation type. [IMP10002] The name can be derived from the programming language
used for the implementation type (e.g. "python" or "ruby") or it can be derived from the technology used in
the implementation (e.g. "spring"). By convention, the OASIS SCA technical committees have adopted a
naming convention that forms an implementation extension element name by concatenating the string
“implementation.” with the informal name of the implementation type. For example,
<implementation.java/> represents the SCA POJO [SCA-POJO] implementation type. It is highly
recommended that the name used for the element follows this convention.

Formally, the XML Schema definition of the implementation extension belongs to the substitution group of
the <sca:implementation/> element defined in the sca-core.xsd defined by the SCA Assembly
specification [SCA-Assembly]. The declaration of the sca:implementation element is shown in Listing 2:

 <!-- Implementation -->
 <element name="implementation" type="sca:Implementation" abstract="true"/>
 <complexType name="Implementation" abstract="true">
 <complexContent>
 <extension base="sca:CommonExtensionBase">

 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="sca:requires"/>
 <element ref="sca:policySetAttachment"/>
 </choice>

 <attribute name="requires" type="sca:listOfQNames"
 use="optional"/>
 <attribute name="policySets" type="sca:listOfQNames"
 use="optional"/>
 </extension>
 </complexContent>
 </complexType>

Listing 2: Declaration of base <implementation/> element and Implementation type.

The implementation extension element MUST be declared as an element in the substitution group of the
sca:implementation element. [IMP10003] The implementation extension element MUST be declared to be
of a type which is an extension of the sca:Implementation type. [IMP10004]

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 8 of 21

106

107
108
109
110

111
112
113
114

115
116
117
118

119

120
121
122
123
124

125
126
127
128
129
130
131
132

133
134
135

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152

153
154
155

The <implementation.java/> element declaration can serve as a useful model, as shown in Listing 3:
 <!-- Java Implementation -->
 <element name="implementation.java" type="sca:JavaImplementation"
 substitutionGroup="sca:implementation"/>
 <complexType name="JavaImplementation">
 <complexContent>
 <extension base="sca:Implementation">
 <sequence>
 <any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="class" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

Listing 3: Declaration of <implementation.java/> element

It is recommended that the implementation extension element element allows for attributes and/or
subelements which describe the implementation artifact to be used as the SCA component
implementation, such as the @class attribute of <implementation.java/>. If necessary, one or more
attributes and subelements can be used to describe the implementation artifact (other than the
configuration of services, references and properties supplied by the component).

Regarding the location of the implementation artifact, the location SHOULD always be taken as relative to
the SCA contribution which contains the composite holding the component declaration. [IMP10005]

Implementation type elements SHOULD allow for extension via the XML Schema "any" and "anyAttribute"
constructs. [IMP10032]

2.2 The ComponentType of an Implementation Artifact
For a implementation of any type, its features that relate to SCA component concepts are declared in the
implementation artifact's componentType [SCA-Assembly].

The implementation type documentation MUST define how the componentType is defined for any given
 implementation artifact that is used with the implementation type. [IMP10006]

There are two general approaches to defining the componentType:

1. calculate the componentType by introspecting the implementation artifact itself

2. provide a separate componentType file which contains a full declaration of the
componentType for the given implementation artifact

An example of the introspection approach is shown in the componentType section of the Java POJO
implementation type specification [SCA-POJO]. An example of the approach using a separate
componentType file is shown in the SCA Client and Implementation Model for C++ [SCA-CPP].

In either case, the implementation type documentation MUST describe how the componentType is related
to the content of the implementation artifact itself, both in terms of the base content of the artifact and also
the impact of any SCA-specific language extensions and customizations that are available for use with an
implementation of this type. [IMP10007]

The <sca:componentType/> element is declaration is shown in Listing 4:
 <!-- Component Type -->
 <element name="componentType" type="sca:ComponentType"/>
 <complexType name="ComponentType">
 <complexContent>
 <extension base="sca:CommonExtensionBase">

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 9 of 21

156

157
158
159
160
161
162
163
164
165
166
167
168
169
170

171

172
173
174
175
176

177
178

179
180

181

182
183

184
185

186

187

188
189

190
191
192

193
194
195
196

197

198
199
200
201
202

 <sequence>
 <element ref="sca:implementation" minOccurs="0"/>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="service" type="sca:ComponentService"/>
 <element name="reference"
 type="sca:ComponentTypeReference"/>
 <element name="property" type="sca:Property"/>
 </choice>
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

Listing 4: ComponentType declaration.

In essence, the componentType of an implementation declares the services, the references and the
properties of the implementation artifact, which are customized by a component that uses the
implementation.

2.2.1 Support for Bidirectional Interfaces and for Long Running
Request/Response operations

An important feature of the SCA model is its capability of defining service interactions between
components that are asynchronous in nature - where the timing and/or the type of a response to a request
can vary. There are two main aspects of SCA which support this

• Bidirectional interfaces

• Long-Running Request/Response operations

The implementation type documentation MUST describe how the SCA Aspects of Bidirectional Interfaces
and Long Running Request/Response Operations are handled both for a component which is a service
client and also for a component which is a service provider. [IMP10008]

If an implementation type is not capable of supporting Bidirectional Interfaces or is not capable of
supporting Long-Running Request/Response operations, the implementation type documentation MUST
state each limitation. [IMP10033] It is strongly recommended that an implementation type attempts to
support these features of SCA to avoid limiting the ability to compose that implementation type with
components which do support these features.

2.3 SCA Extensions and Customizations for Implementation Artifacts
An implementation type can either simply use the existing features, libraries (and so on) of a particular
implementation language (e.g. the Java language, the C++ language), or the implementation type may
provide some SCA-specific extensions or customizations that can be useful to the programmer when
creating implementation artifacts that are designed for use with SCA. These extensions and
customizations might affect the componentType of an implementation artifact and/or affect the runtime
behavior of the artifact. Examples of extensions and customizations include SCA-specific annotations and
SCA-related APIs.

If SCA-specific extensions or customizations are available for an implementation type, the implementation
type documentation MUST describe all of the available extensions and customizations. [IMP10009] The
implementation type documentation MUST describe the impact of any extensions and customizations on
the componentType of the implementation artifact. [IMP10010] The implementation type documentation
MUST describe the impact of any extensions and customizations on the runtime behaviour of the
implementation artifact.[IMP10011]

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 10 of 21

203
204
205
206
207
208
209
210
211
212
213
214
215
216

217

218
219
220

221

222

223
224
225

226

227

228
229
230

231
232
233
234
235

236

237
238
239
240
241
242
243

244
245
246
247
248
249

An example of an extension can be seen in the Java POJO specification [SCA-POJO] with the
@Reference annotation, which allows a programmer to mark a field, a constructor parameter or a setter
method as an SCA reference.

2.4 Describing the Runtime Behaviour of an Implementation Artifact
The implementation type documentation MUST describe the runtime behaviour of instances of SCA
components which use implementation artifacts of the kind described by the implementation type
documentation. [IMP10012]

In particular, the documentation MUST describe how the SCA component configuration affects the
configuration of a component instance at runtime - how services are invoked, how references are obtained
 and how they are invoked, how property values are mapped to types in the implementation's instance and
how the values are obtained by the component implementation. [IMP10013]

The lifecycle of runtime instances MUST be described - when implementation instances are created, how
long they live and when they are destroyed, in relation to the containing SCA component and in relation to
service invocations related to the component. [IMP10014] The number of instances belonging to a single
component MUST be described along with any serialization and multi-threading considerations. [IMP1001
5]

If there are runtime exceptions or faults that apply to implementation type artifacts, these MUST be
described by the implementation type documentation. [IMP10016]

2.5 Describing an Interface Type associated with an Implementation
Type

An implementation type might have an associated interface type which it uses when describing the
interfaces of services and references. If the implementation type is able to use an existing interface type,
e.g., interface.wsdl or interface.java, then the implementation type documentation can simply reference
the documentation for that interface type.

if the implementation type uses an interface type that is not described in the documentation for some
existing implementation type, then the implementation type documentation MUST describe the interface
type. [IMP10017]

For some new interface type, there are at minimum two pieces of information to provide:

• a definition of the interface extension element

• a definition of the mapping of the interface type to interface.wsdl.

All remotable interfaces MUST be mappable to interface.wsdl. [IMP10030]

It is highly recommended that the interface extension element is defined in a namespace that is owned by
the same entity that owns the definition of the interface type.

The name used for the interface extension element needs to be unique - it MUST NOTuse the same
name as any other interface type. [IMP10031] The name can be derived from the programming language
used for the interface type (e.g. "java") or it can be derived by any other means that makes sense in the
context of the interface type.

Describing the interface extension element is similar in nature to describing an implementation extension
element. The interface extension element must be declared as an element in the substitution group of the
<sca:interface/> element. [IMP10018] The interface extension element must be declared to be of a type
which is an extension of the sca:Interface type. [IMP10019] The base <sca:interface/> element and
sca:Interface type are defined in sca-core.xsd by the SCA Assembly specification [SCA-Assembly] and
are shown in Listing 5:

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 11 of 21

250
251
252

253

254
255
256

257
258
259
260

261
262
263
264
265

266
267

268

269

270
271
272
273

274
275
276

277

278

279

280

281
282

283
284
285
286

287
288
289
290
291
292

 <!-- Interface -->
 <element name="interface" type="sca:Interface" abstract="true"/>
 <complexType name="Interface" abstract="true">
 <complexContent>
 <extension base="sca:CommonExtensionBase">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="sca:requires"/>
 <element ref="sca:policySetAttachment"/>
 </choice>
 <attribute name="remotable" type="boolean" use="optional"/>

 <attribute name="requires" type="sca:listOfQNames"
 use="optional"/>

 <attribute name="policySets" type="sca:listOfQNames"
 use="optional"/>
 </extension>
 </complexContent>
 </complexType>

Listing 5: Declaration of base interface element and Interface type.

By convention, the OASIS SCA technical committees have adopted a naming convention that forms an
interface extension element name by concatenating the string “interface.” with the informal name of the
interface type. For example, the <interface.java/> element declaration from the SCA Common Annotations
and APIs specification [SCA-JAVACAA] can serve as a useful model, as shown in Listing 6:

 <!-- Java Interface -->
 <element name="interface.java" type="sca:JavaInterface"
 substitutionGroup="sca:interface"/>
 <complexType name="JavaInterface">
 <complexContent>
 <extension base="sca:Interface">
 <sequence>
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="interface" type="NCName" use="required"/>
 <attribute name="callbackInterface" type="NCName"
 use="optional"/>
 </extension>
 </complexContent>
 </complexType>

Listing 6: Declaration of the interface.java element.

Note that the <interface.java/> element is in the substitution group of <sca:interface/> and its type is an
extension of the sca:Interface type.

The interface extension element MUST allow for attributes and/or subelements which describe the
interface artifact. [IMP10020] Examples of interface extension attributes include the @interface and
@callbackInterface attributes of <interface.java/>. If necessary, one or more attributes and subelements
can be used to configure the interface artifact. Implementation type elements SHOULD allow for extension
via the XML Schema "any" and "anyAttribute" constructs. [IMP10034]

Regarding the location of the interface artifact, the location SHOULD always be taken as relative to the
SCA contribution which contains the composite holding the component declaration. [IMP10021]

2.5.1 Support of Local and Remotable Interfaces
The SCA Assembly specification [SCA-Assembly] defines the concepts of local and remotable
interfaces. Where a new interface type is defined, the implementation type documentation MUST define
how the concepts of local and remotable interfaces apply to the interface type. [IMP10022]

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 12 of 21

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

310

311
312
313
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

331

332
333

334
335
336
337
338

339
340

341

342
343
344

2.5.2 Interface Compatibility rules
The compatibility of two interface declarations is an important part of the SCA model. This is discussed in
detail in the SCA Assembly specification [SCA-Assembly]. Where a new interface type is defined, the
implementation type documentation MUST define the compatibility rules for the interface type, including
superset interfaces, subset interfaces and equal interfaces. [IMP10023]

2.6 Describing the behavior of Implementation artifacts within
Contributions

Artifacts of all types are made available for use in an SCA application by means of contributions which
are deployed into the SCA Domain used by the SCA Runtime, Contributions are defined in the SCA
Assembly specification [SCA-Assembly]. Essentially, a contribution is a collection of artifacts that are
organized into a hierarchy based off a single root.

Whenever a reference is made to an artifact of a particular implementation type, for example a reference
within an implementation type element, that artifact MUST be found within the contributions deployed into
the domain. [IMP10024]

The default location for an artifact is within the SCA contribution where the reference is made - i.e. where
the implementation type element appears in a composite file within a particular contribution, that same
contribution is searched. It is expected that the implementation type element contains configuration that
identifies the artifact. This identification can take the form of a filename or package name, which can
include the hierarchy path for the artifact (eg directory path or Java package name). Alternatively, the
identification may involve a namespace, where the assumption is that all artifacts of a given type are
searched to find a matching namespace and element name, as occurs for XML artifacts (e.g. BPEL
processes).

The implementation type documentation MUST describe the way in which the artifact reference
 information is used to locate a specific artifact. [IMP10025] The implementation type documentation must
describe the permitted organization of the implementation type artifacts within a contribution. [IMP10026]

An implementation type can allow for implementation artifacts to be imported into one contribution from a
second (exporting) contribution, as described in the "SCA Artifact Resolution" section of the SCA
Assembly specification [SCA-Assembly]. Where import and export of artifacts is supported, the
implementation type documentation MUST describe how the import and export of artifacts works. [IMP100
27] Import and Export of artifacts can either follow the base mechanism described in the SCA Assembly
specification, which is based on the use of namespaces, or it may follow an implementation-type specific
mechanism.

The base mechanism involves the declaration of <sca:export/> and <sca:import/> elements with an sca-
contribution.xml file that is in the META-INF directory of the contribution. It is recommended that an
extension of the base mechanism is used, using <import.xxx/> and <export.xxx/> elements A good
example of such an extension is described in the Java POJO Component Implementation Specification
[SCA-POJO] in the section "Contribution Metadata Extensions".

2.6.1 Implementation-Type specific forms of Import and Export
Where an implementation type requires the use of a specific form of import and export mechanism for the
resolution of artifacts between contributions, the implementation type documentation is required to define
how this works.

An example of such a mechanism exists for the Java POJO implementation type [SCA-POJO].There are
base importBase and exportBase elements and types defined in the SCA Assembly specification [SCA-
Assembly]. For the Java POJO implementation, <import.java/> and <export.java/> elements are defined
as shown in Listing 7:

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 13 of 21

345

346
347
348
349

350

351

352
353
354
355

356
357
358

359
360
361
362
363
364
365
366

367
368
369

370
371
372
373
374
375
376

377
378
379
380
381

382

383
384
385

386
387
388
389

 <!-- Import.java -->
<element name="import.java" type="sca:JavaImportType"
substitutionGroup="sca:importBase" />
 <complexType name="JavaImportType">
 <complexContent>
 <extension base="sca:Import">
 <attribute name="package" type="string" use="required"/>
 <attribute name="location" type="anyURI" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <!-- Export.java -->
 <element name="export.java" type="sca:JavaExportType"

substitutionGroup="sca:exportBase" />
 <complexType name="JavaExportType">
 <complexContent>
 <extension base="sca:Export">
 <attribute name="package" type="string" use="required"/>
 </extension>
 </complexContent>
 </complexType>

Listing 7: Definition of the <import.java/> and <export.java/> elements

If using an extension of the base SCA mechanism for imports and exports, the implementation type
documentation must define import and export elements that extend the base Import and Export types. [IM
P10028]

By convention, the OASIS SCA technical committees have adopted a naming convention that forms
import and export extension element names by concatenating the strings “import.” and "export." with the
informal name of the implementation type.

2.6.2 Implementation-Type specific forms of Contribution
One format of contribution packaging is mandatory - the ZIP file contribution format. However, SCA
allows for many other contribution formats. If an implementation type has a specialized contribution
format, then the implementation type documentation MUST provide a definition of that format. [IMP10029]

2.7 Policy Related Considerations
The SCA Policy Framework Specification [SCA-POLICY] describes the handling of Policy related aspects
of components and implementations and also defines a specific set of policy related intents which cover
aspects including Security, Reliability and Transactions. Where an implementation type has policy related
aspects, these need to be described in the terms that are defined by the Policy Framework Specification.

The implementation type documentation MUST describe policy-related aspects of the implementation
artifacts and MUST include policy as part of the definition of the componentType of an implementation
artifact. [IMP10036] The implementation type documentation SHOULD use the set of policy related
intents defined by the SCA Policy Framework Specification, in cases where an implementation artifact has
policy-related aspects that are covered by that specification. [IMP10037]

2.8 Describing the Handling of Artifacts containing Errors
It is important that the implementation type documentation clearly describes what is valid and what is
invalid for both the XML artifacts such as the <implementation/> element(s) that the document defines and
also for the implementation artifacts that are used by implementations. This information includes both
static and dynamic (operational) characteristics of the artifacts, and includes both unextended and
extended forms of the artifacts, if SCA-specific extensions are provided for use within the artifacts.

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 14 of 21

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

412

413
414
415

416
417
418

419

420
421
422

423

424
425
426
427

428
429
430
431
432

433

434
435
436
437
438

The behaviour of the SCA runtime when it encounters artifacts that are in error needs to be described. In
general, artifacts with statically discoverable errors should cause the SCA runtime to reject the artifacts
before it attempts to execute them. Errors that can only be detected when running the artifacts need
errors to be raised at runtime. The implementation type documentation needs to deal with both types of
error.

The implementation type documentation MUST describe what errors are possible for the artifacts
described by the documentation, both the XML artifacts used in SCA composites and related files and
also the implementation artifacts, and the documentation MUST also describe the behaviour of the SCA
runtime when it encounters artifacts that are in error. [IMP10035]

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 15 of 21

439
440
441
442
443

444
445
446
447

3 Conformance
Implementation Type Documentation that claims to conform to the requirements of this specification
MUST meet the following conditions

1. The Implementation Type Documentation MUST comply with all the mandatory statements listed
in in the table Mandatory Items in the appendix "Conformance Items"

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 16 of 21

448

449
450

451
452

453

454

A. Conformance Items
This section contains a list of conformance items for the SCA Assembly Implementation Type
Documentation specification.

A.1. Mandatory Items
Conformance ID Description
[IMP10001] The implementation type documentation MUST describe the XML

element that is used when declaring implementations of that type
in an SCA component.

[IMP10002] The name used for the implementation element MUST to be
unique - it MUST NOT use the same name as any other
implementation type.

[IMP10003] The implementation extension element MUST be declared as an
element in the substitution group of the sca:implementation
element.

[IMP10004] The implementation extension element MUST be declared to be
of a type which is an extension of the sca:Implementation type.

[IMP10005] Regarding the location of the implementation artifact, the location
SHOULD always be taken as relative to the SCA contribution
which contains the composite holding the component declaration.

[IMP10006] The implementation type documentation MUST define how the
componentType is defined for any given implementation artifact
that is used with the implementation type.

[IMP10007] the implementation type documentation MUST describe how the
componentType is related to the content of the implementation
artifact itself, both in terms of the base content of the artifact and
also the impact of any SCA-specific language extensions and
customizations that are available for use with an implementation
of this type.

[IMP10008] The implementation type documentation MUST describe how the
SCA Aspects of Bidirectional Interfaces and Long Running
Request/Response Operations are handled both for a component
which is a service client and also for a component which is a
service provider.

[IMP10009] If SCA-specific extensions or customizations are available for an
implementation type, the implementation type documentation
MUST describe all of the available extensions and
customizations.

[IMP10010] The implementation type documentation MUST describe the
impact of any extensions and customizations on the
componentType of the implementation artifact.

[IMP10011] The implementation type documentation MUST describe the
impact of any extensions and customizations on the runtime
behaviour of the implementation artifact.

[IMP10012] The implementation type documentation MUST describe the
runtime behaviour of instances of SCA components which use
implementation artifacts of the kind described by the
implementation type documentation.

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 17 of 21

455

456
457

458

[IMP10013] In particular, the documentation MUST describe how the SCA
component configuration affects the configuration of a component
instance at runtime - how services are invoked, how references
are obtained and how they are invoked, how property values are
mapped to types in the implementation's instance and how the
values are obtained by the component implementation.

[IMP10014] The lifecycle of runtime instances MUST be described - when
implementation instances are created, how long they live and
when they are destroyed, in relation to the containing SCA
component and in relation to service invocations related to the
component.

[IMP10015] The number of instances belonging to a single component MUST
be described along with any serialization and multi-threading
considerations.

[IMP10016] If there are runtime exceptions or faults that apply to
implementation type artifacts, these MUST be described by the
implementation type documentation.

[IMP10017] if the implementation type uses an interface type that is not
described in the documentation for some existing implementation
type, then the implementation type documentation MUST describe
the interface type.

[IMP10018] The interface extension element must be declared as an element
in the substitution group of the <sca:interface/> element.

[IMP10019] The interface extension element must be declared to be of a type
which is an extension of the sca:Interface type.

[IMP10020] The interface extension element MUST allow for attributes and/or
subelements which describe the interface artifact.

[IMP10021] Regarding the location of the interface artifact, the location
SHOULD always be taken as relative to the SCA contribution
which contains the composite holding the component declaration.

[IMP10022] Where a new interface type is defined, the implementation type
documentation MUST define how the concepts of local and
remotable interfaces apply to the interface type.

[IMP10023] Where a new interface type is defined, the implementation type
documentation MUST define the compatibility rules for the
interface type, including superset interfaces, subset interfaces
and equal interfaces.

[IMP10024] Whenever a reference is made to an artifact of a particular
implementation type, for example a reference within an
implementation type element, that artifact MUST be found within
the contributions deployed into the domain.

[IMP10025] The implementation type documentation MUST describe the way
in which the artifact reference information is used to locate a
specific artifact.

[IMP10026] The implementation type documentation must describe the
permitted organization of the implementation type artifacts within
a contribution.

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 18 of 21

[IMP10027] An implementation type can allow for implementation artifacts to
be imported into one contribution from a second (exporting)
contribution, as described in the "SCA Artifact Resolution" section
of the SCA Assembly specification [SCA-Assembly]. Where
import and export of artifacts is supported, the implementation
type documentation MUST describe how the import and export of
artifacts works.

[IMP10028] If using an extension of the base SCA mechanism for imports and
exports, the implementation type documentation must define
import and export elements that extend the base Import and
Export types.

[IMP10029] If an implementation type has a specialized contribution format,
then the implementation type documentation MUST provide a
definition of that format.

[IMP10030] All remotable interfaces MUST be mappable to interface.wsdl

[IMP10031] The name used for the interface extension element needs to be
unique - it MUST NOTuse the same name as any other interface
type.

[IMP10032] Implementation type elements SHOULD allow for extension via
the XML Schema "any" and "anyAttribute" constructs.

[IMP10033] If an implementation type is not capable of supporting
Bidirectional Interfaces or is not capable of supporting Long-
Running Request/Response operations, the implementation type
documentation MUST state each limitation.

[IMP10034] Implementation type elements SHOULD allow for extension via
the XML Schema "any" and "anyAttribute" constructs.

[IMP10035] The implementation type documentation MUST describe what
errors are possible for the artifacts described by the
documentation, both the XML artifacts used in SCA composites
and related files and also the implementation artifacts, and the
documentation MUST also describe the behaviour of the SCA
runtime when it encounters artifacts that are in error.

[IMP10036] The implementation type documentation MUST describe policy-
related aspects of the implementation artifacts and MUST include
policy as part of the definition of the componentType of an
implementation artifact.

[IMP10037] The implementation type documentation SHOULD use the set of
policy related intents defined by the SCA Policy Framework
Specification, in cases where an implementation artifact has
policy-related aspects that are covered by that specification.

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 19 of 21

B. Acknowledgments
The following individuals have participated in the creation of this specification and are gratefully
acknowledged

Participants:
• Mike Edwards, IBM
• Dave Booz, IBM
• Jeff Estefan, Jet Propulsion Laboratory

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 20 of 21

459

460
461

462

463

464

465

C. Revision History

Revision Date Editor Changes Made
1 19/04/10 Mike Edwards Initial version created
2 23/04/10 Dave Booz

Mike Edwards

Extensive revisions and updates.

Completion of the section on contributions

Additional sections on Interfaces and
Implementations

3 13/05/10 Jeff Estefan Clean-up and consistency
4 17/05/10 Mike Edwards Formal normative statements.

Added conformance items appendix.
5 15/06/10 Mike Edwards Line numbering

Added more normative statements

RFC2119 language cleanup
6 22/06/10 Mike Edwards Add non-normative references to SCA Spring

Implementation specification and SCA Java EE
Implementation specification

Added normative references to XML Schema,
Namespaces in XML

Numerous editorial fixes

Added new normative statements:
IMP10032
IMP10033
IMP10034
IMP10035
IMP10036
IMP10037

Added sections:

o Policy Related Considerations
o Describing the Handling of Artifacts
containing Errors

cd01 20/07/10 Mike Edwards Accepted all changes

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 21 of 21

466

467

468

	1 Introduction
	1.1 Terminology
	1.2 Normative References
	1.3 Non-normative References

	2 Describing an SCA Implementation Type
	2.0.1 What is an Implementation Type?
	2.0.2 How an Implementation is used in SCA
	2.1 Describing the Implementation extension element
	2.2 The ComponentType of an Implementation Artifact
	2.2.1 Support for Bidirectional Interfaces and for Long Running Request/Response operations

	2.3 SCA Extensions and Customizations for Implementation Artifacts
	2.4 Describing the Runtime Behaviour of an Implementation Artifact
	2.5 Describing an Interface Type associated with an Implementation Type
	2.5.1 Support of Local and Remotable Interfaces
	2.5.2 Interface Compatibility rules

	2.6 Describing the behavior of Implementation artifacts within Contributions
	2.6.1 Implementation-Type specific forms of Import and Export
	2.6.2 Implementation-Type specific forms of Contribution

	2.7 Policy Related Considerations
	2.8 Describing the Handling of Artifacts containing Errors

	3 Conformance
	A. Conformance Items
	A.1. Mandatory Items

	B. Acknowledgments
	C. Revision History

