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Abstract:
This document defines the requirements for the documentation of an SCA implementation type 
that is used by a conforming SCA Runtime.  The documentation describes how implementation 
artifacts of that implementation type relate to SCA components declared within SCA composites, 
as described by the SCA Assembly specification
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1 Introduction
[All text is normative unless otherwise indicated.]

This document defines the content of the documentation that is required to describe an SCA 
implementation type [SCA-Assembly], where that implementation type is supported by an SCA Runtime 
that claims to be conforming with the SCA Assembly specification.

The SCA Assembly specification defines an application in terms of service components that  use and 
configure a particular implementation artifact.  In order to fully define how a particular service component 
operates, it is necessary to describe the relationship between the configuration of the SCA component and 
the implementation technology used by the service component.  It is the role of the Implementation Type 
Documentation to describe this relationship.

Some implementation types are described by formal specifications that have been created by OASIS SCA 
technical committees.  Examples include:

• SCA WS-BPEL Client and Implementation V1.1 [SCA-BPEL]

• SCA POJO Component Implementation V1.1 [SCA-POJO]

1.1 Terminology
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD 
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as 
described in IETF RFC 2119 [RFC2119].

1.2 Normative References
[RFC 2119] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. IETF 

RFC 2119, March 1997. 
http://www.ietf.org/rfc/rfc2119.txt.

[SCA-Assembly] OASIS Committee Draft 05, Service Component Architecture Assembly Model 
Specification Version 1.1, January 2010. 
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-
cd05.pdf 

[SCA-POLICY] OASIS, Committee Draft 02, “SCA Policy Framework Specification Version 1.1”, 
February 2009.
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd02.pdf

[SCA-BPEL] OASIS Committee Draft 02, Service Component Architecture WS-BPEL Client 
and Implementation Specification Version 1.1, March 2009. 
http://docs.oasis-open.org/opencsa/sca-bpel/sca-bpel-1.1-spec-cd02.pdf

[SCA-POJO] OASIS Committee Draft 02, Service Component Architecture POJO Component 
Implementation Specification Version 1.1, February 2010. 
http://docs.oasis-open.org/opencsa/sca-j/sca-javaci-1.1-spec-cd02.pdf 

[SCA-CPP] OASIS Committee Draft 05, Service Component Architecture Client and 
Implementation Model for C++ Specification Version 1.1, March 2010. 
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-spec-cd05.pdf 

[SCA-JAVACAA] OASIS Committee Draft 04, Service Component Architecture SCA-J Common 
Annotations and APIs Specification 1.1, February 2010. 
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-cd04.pdf
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[XML-Schema] W3C Recommendation, XMLSchema Part 1, XML Schema Part 2, October 2004:
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/ 

[XML-Namespaces] W3C Recommendation, Namespaces in XML1.0 (Third Edition], December 
2009:
http://www.w3.org/TR/REC-xml-names/ 

1.3 Non-normative References
[SCA-Spring] OASIS Working Draft 05, Service Component Architecture SCA Spring 

Component Implementation Specification 1.1, August 2008
http://www.oasis-open.org/committees/download.php/34930/sca-springci-1.1-
spec-WD05.pdf 

[SCA-JEE] OASIS Working Draft 6, Service Component Architecture Java EE Integration 
Specification 1.1, September 2009
http://www.oasis-open.org/committees/download.php/34200/sca-jee-1.1-spec-
wd06.pdf 
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2 Describing an SCA Implementation Type
This document defines the information that is needed for a particular implementation type to be used as a 
service component implementation within an SCA assembly.  The information covers static configuration 
information required in order to use an implementation type and it's associated artifacts in an SCA 
assembly and it also covers the dynamic runtime behaviour of instances of the implementation type when 
the SCA assembly is executed by an SCA Runtime.

While this document gives a general description of the information that needs to be provided for an 
implementation type, the OASIS SCA technical committees have also produced examples of 
specifications that provide this same level of information for a variety of implementation technologies. 
These specifications can provide guidance in creating a document with the appropriate level of information 
for a new implementation type:

• SCA WS-BPEL Client and Implementation V1.1 [SCA-BPEL], which describes implementations 
built as WS-BPEL scripts

• SCA POJO Component Implementation V1.1 [SCA-POJO], which describes implementations 
based on simple Java classes.

2.0.1 What is an Implementation Type?
An implementation type describes how the artifacts of a concrete implementation technology are used to 
implement SCA components.  Implementation types also describe the relationship between a technology 
specific implementation and the foundational aspects of SCA components, namely services, references, 
and properties.

Often an implementation type is defined such that it describes all SCA component implementations that 
use a particular implementation language, such as C++ [SCA-CPP] or BPEL [SCA-BPEL].  However, SCA 
is flexible and allows multiple implementation types to use the same implementation language.  Examples 
of this occur with the Java language, where implementation types exist for POJO classes [SCA-POJO], for 
EJBs [SCA-JEE] and for Spring classes [SCA-SPRING].  As a result, the implementation type can 
represent a specialized form of an implementation technology, where the specialization may involve the 
use of specific APIs, frameworks or specific language extensions.

2.0.2 How an Implementation is used in SCA
SCA describes applications in terms of assemblies of service components.  Service components are 
declared within SCA composites.  Every component uses an implementation - which is expressed as a 
reference to an artifact that provides a runtime implementation of the service component contract.

A typical SCA component is shown in Listing 1:
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
           targetNamespace=
              "http://docs.oasis-open.org/ns/opencsa/scatests/200903"
           name="TestComposite4">
           
    <component name="ComponentA">

<implementation.java class="org.oasisopen.sca.Service1Impl"/>
        <service name="Service1">
        <interface.java interface="org.oasisopen.sca.Service1"/>
        </service>
        <property name="serviceName" value="AService"/>
        <reference name="reference1"/>
    </component>
        
</composite>
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Listing 1: Example SCA component

The component "ComponentA" has an implementation, which in this example is a Java POJO 
implementation, declared using the <implementation.java/> element.  The implementation.java element 
contains a reference to the implementation artifact, which in this example is a Java class with the name 
"Service1Impl" in the package "org.oasisopen.sca".

The remainder of the contents of the component declaration is configuration that is applied to the 
implementation at runtime. The component can declare all the services, references and properties of the 
implementation and apply configuration information to each of them.  This can include things such as 
bindings for services and references and property values for properties.

Note that the configurable aspects of an SCA component implementation are called the componentType 
of the implementation - basically, it is the set of services, references and properties that the 
implementation has - for details of the componentType see the section "The ComponentType of an 
Implementation Artifact"

2.1 Describing the Implementation extension element
The implementation type documentation MUST describe the XML element that is used when declaring
implementations of that type in an SCA component. [IMP10001] It is highly recommended that the element 
is defined in an XML namespace [XML-Namespaces] that is owned by the same entity that owns the 
definition of the implementation type. The formal name of of the implementation type is the Qualified 
Name of the XML element.

The name used for the implementation element MUST to be unique - it MUST NOT use the same name
as any other implementation type. [IMP10002]  The name can be derived from the programming language 
used for the implementation type (e.g. "python" or "ruby") or it can be derived from the technology used in 
the implementation (e.g. "spring").  By convention, the OASIS SCA technical committees have adopted a 
naming convention that forms an implementation extension element name by concatenating the string 
“implementation.” with the informal name of the implementation type.  For example, 
<implementation.java/> represents the SCA POJO [SCA-POJO] implementation type. It is highly 
recommended that the name used for the element follows this convention.

Formally, the XML Schema definition of the implementation extension belongs to the substitution group of 
the <sca:implementation/> element defined in the sca-core.xsd defined by the SCA Assembly 
specification [SCA-Assembly].   The declaration of the sca:implementation element is shown in Listing 2:

   <!-- Implementation -->
   <element name="implementation" type="sca:Implementation" abstract="true"/>
   <complexType name="Implementation" abstract="true">
      <complexContent>
         <extension base="sca:CommonExtensionBase">

        <choice minOccurs="0" maxOccurs="unbounded">
           <element ref="sca:requires"/>
           <element ref="sca:policySetAttachment"/>
        </choice>     

            <attribute name="requires" type="sca:listOfQNames" 
                       use="optional"/>
            <attribute name="policySets" type="sca:listOfQNames" 
                       use="optional"/>
         </extension>
      </complexContent>
   </complexType>

Listing 2: Declaration of base <implementation/> element and Implementation type.

The implementation extension element MUST be declared as an element in the substitution group of the
sca:implementation element. [IMP10003] The implementation extension element MUST be declared to be
of a type which is an extension of the sca:Implementation type. [IMP10004]
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The <implementation.java/> element declaration can serve as a useful model, as shown in Listing 3:
   <!-- Java Implementation -->
   <element name="implementation.java" type="sca:JavaImplementation" 
            substitutionGroup="sca:implementation"/>
   <complexType name="JavaImplementation">
      <complexContent>
         <extension base="sca:Implementation">
            <sequence>
               <any namespace="##other" processContents="lax"
                    minOccurs="0" maxOccurs="unbounded"/>
            </sequence>
            <attribute name="class" type="NCName" use="required"/>            
         </extension>
      </complexContent>
   </complexType>

Listing 3: Declaration of <implementation.java/> element

It is recommended that the implementation extension element element allows for attributes and/or 
subelements which describe the implementation artifact to be used as the SCA component 
implementation, such as the @class attribute of <implementation.java/>. If necessary, one or more 
attributes and subelements can be used to describe the implementation artifact (other than the 
configuration of services, references and properties supplied by the component). 

Regarding the location of the implementation artifact, the location SHOULD always be taken as relative to
the SCA contribution which contains the composite holding the component declaration. [IMP10005]

Implementation type elements SHOULD allow for extension via the XML Schema "any" and "anyAttribute"
constructs. [IMP10032]

2.2 The ComponentType of an Implementation Artifact
For a implementation of any type, its features that relate to SCA component concepts are declared in the 
implementation artifact's componentType  [SCA-Assembly].

The implementation type documentation MUST define how the componentType is defined for any given
 implementation artifact that is used with the implementation type. [IMP10006]

There are two general approaches to defining the componentType:

1. calculate the componentType by introspecting the implementation artifact itself

2. provide a separate componentType file which contains a full declaration of the 
componentType for the given implementation artifact

An example of the introspection approach is shown in the componentType section of the Java POJO 
implementation type specification [SCA-POJO].  An example of the approach using a separate 
componentType file is shown in the SCA Client and Implementation Model for C++ [SCA-CPP].

In either case, the implementation type documentation MUST describe how the componentType is related
to the content of the implementation artifact itself, both in terms of the base content of the artifact and also
the impact of any SCA-specific language extensions and customizations that are available for use with an
implementation of this type. [IMP10007]

The <sca:componentType/> element is declaration is shown in Listing 4:
   <!-- Component Type -->
   <element name="componentType" type="sca:ComponentType"/>
   <complexType name="ComponentType">
      <complexContent>
         <extension base="sca:CommonExtensionBase">
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            <sequence>
               <element ref="sca:implementation" minOccurs="0"/>
               <choice minOccurs="0" maxOccurs="unbounded">
                  <element name="service" type="sca:ComponentService"/>
                  <element name="reference" 
                     type="sca:ComponentTypeReference"/>
                  <element name="property" type="sca:Property"/>
               </choice>
               <any namespace="##other" processContents="lax" minOccurs="0" 
                    maxOccurs="unbounded"/>
            </sequence>
         </extension>
      </complexContent>
   </complexType>

Listing 4: ComponentType declaration.

In essence, the componentType of an implementation declares the services, the references and the 
properties of the implementation artifact, which are customized by a component that uses the 
implementation.

2.2.1 Support for Bidirectional Interfaces and for Long Running 
Request/Response operations

An important feature of the SCA model is its capability of defining service interactions between 
components that are asynchronous in nature - where the timing and/or the type of a response to a request 
can vary.  There are two main aspects of SCA which support this

• Bidirectional interfaces

• Long-Running Request/Response operations

The implementation type documentation MUST describe how the SCA Aspects of Bidirectional Interfaces
and Long Running Request/Response Operations are handled both for a component which is a service
client and also for a component which is a service provider. [IMP10008]

If an implementation type is not capable of supporting Bidirectional Interfaces or is not capable of
supporting Long-Running Request/Response operations, the implementation type documentation MUST
state each limitation. [IMP10033]  It is strongly recommended that an implementation type attempts to 
support these features of SCA to avoid limiting the ability to compose that implementation type with 
components which do support these features.

2.3 SCA Extensions and Customizations for Implementation Artifacts
An implementation type can either simply use the existing features, libraries (and so on) of a particular 
implementation language (e.g. the Java language, the C++ language), or the implementation type may 
provide some SCA-specific extensions or customizations that can be useful to the programmer when 
creating implementation artifacts that are designed for use with SCA. These extensions and 
customizations might affect the componentType of an implementation artifact and/or affect the runtime 
behavior of the artifact. Examples of extensions and customizations include SCA-specific annotations and 
SCA-related APIs.

If SCA-specific extensions or customizations are available for an implementation type, the implementation
type documentation MUST describe all of the available extensions and customizations. [IMP10009] The
implementation type documentation MUST describe the impact of any extensions and customizations on
the componentType of the implementation artifact. [IMP10010]  The implementation type documentation
MUST  describe the impact of any extensions and customizations on the runtime behaviour of the
implementation artifact.[IMP10011]
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An example of an extension can be seen in the Java POJO specification [SCA-POJO] with the 
@Reference annotation, which allows a programmer to mark a field, a constructor parameter or a setter 
method as an SCA reference.

2.4 Describing the Runtime Behaviour of an Implementation Artifact
The implementation type documentation MUST describe the runtime behaviour of instances of SCA
components which use implementation artifacts of the kind described by the implementation type
documentation. [IMP10012]

In particular, the documentation MUST describe how the SCA component configuration affects the
configuration of a component instance at runtime - how services are invoked, how references are obtained
 and how they are invoked, how property values are mapped to types in the implementation's instance and
how the values are obtained by the component implementation. [IMP10013]

The lifecycle of runtime instances MUST be described - when implementation instances are created, how
long they live and when they are destroyed, in relation to the containing SCA component and in relation to
service invocations related to the component. [IMP10014] The number of instances belonging to a single
component MUST be described along with any serialization and multi-threading considerations. [IMP1001
5]

If there are runtime exceptions or faults that apply to implementation type artifacts, these MUST be
described by the implementation type documentation. [IMP10016]

2.5 Describing an Interface Type associated with an Implementation 
Type

An implementation type might have an associated interface type which it uses when describing the 
interfaces of services and references.  If the implementation type is able to use an existing interface type, 
e.g., interface.wsdl or interface.java, then the implementation type documentation can simply reference 
the documentation for that interface type.

if the implementation type uses an interface type that is not described in the documentation for some
existing implementation type, then the implementation type documentation MUST describe the interface
type. [IMP10017]

For some new interface type, there are at minimum two pieces of information to provide:

• a definition of the interface extension element

• a definition of the mapping of the interface type to interface.wsdl. 

All remotable interfaces MUST be mappable to interface.wsdl. [IMP10030]

It is highly recommended that the interface extension element is defined in a namespace that is owned by 
the same entity that owns the definition of the interface type.

The name used for the interface extension element needs to be unique - it MUST NOTuse the same
name as any other interface type. [IMP10031]  The name can be derived from the programming language 
used for the interface type (e.g. "java") or it can be derived by any other means that makes sense in the 
context of the interface type.

Describing the interface extension element is similar in nature to describing an implementation extension 
element. The interface extension element must be declared as an element in the substitution group of the
<sca:interface/> element. [IMP10018]  The interface extension element must be declared to be of a type
which is an extension of the sca:Interface type. [IMP10019] The base <sca:interface/> element and 
sca:Interface type are defined in sca-core.xsd by the SCA Assembly specification [SCA-Assembly] and 
are shown in Listing 5:
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   <!-- Interface -->
   <element name="interface" type="sca:Interface" abstract="true"/>
   <complexType name="Interface" abstract="true">
      <complexContent>
         <extension base="sca:CommonExtensionBase">
            <choice minOccurs="0" maxOccurs="unbounded">
               <element ref="sca:requires"/>
               <element ref="sca:policySetAttachment"/>
            </choice>
            <attribute name="remotable" type="boolean" use="optional"/>

        <attribute name="requires" type="sca:listOfQNames" 
               use="optional"/>

        <attribute name="policySets" type="sca:listOfQNames" 
               use="optional"/>
         </extension>
      </complexContent>
   </complexType>

Listing 5: Declaration of base interface element and Interface type.

By convention, the OASIS SCA technical committees have adopted a naming convention that forms an 
interface extension element name by concatenating the string “interface.” with the informal name of the 
interface type. For example, the <interface.java/> element declaration from the SCA Common Annotations 
and APIs specification [SCA-JAVACAA] can serve as a useful model, as shown in Listing 6:

   <!-- Java Interface -->
   <element name="interface.java" type="sca:JavaInterface" 
            substitutionGroup="sca:interface"/>
   <complexType name="JavaInterface">
      <complexContent>
         <extension base="sca:Interface">
            <sequence>
               <any namespace="##other" processContents="lax" minOccurs="0" 
                    maxOccurs="unbounded"/>
            </sequence>
            <attribute name="interface" type="NCName" use="required"/>
            <attribute name="callbackInterface" type="NCName" 
                       use="optional"/>            
         </extension>
      </complexContent>
   </complexType>

Listing 6: Declaration of the interface.java element.

Note that the <interface.java/> element is in the substitution group of <sca:interface/> and its type is an 
extension of the sca:Interface type.

The interface extension element MUST allow for attributes and/or subelements which describe the
interface artifact. [IMP10020]  Examples of interface extension attributes include the @interface and 
@callbackInterface attributes of <interface.java/>. If necessary, one or more attributes and subelements 
can be used to configure the interface artifact. Implementation type elements SHOULD allow for extension
via the XML Schema "any" and "anyAttribute" constructs. [IMP10034]

Regarding the location of the interface artifact, the location SHOULD always be taken as relative to the
SCA contribution which contains the composite holding the component declaration. [IMP10021]

2.5.1 Support of Local and Remotable Interfaces
The SCA Assembly specification [SCA-Assembly] defines the concepts of local and remotable 
interfaces. Where a new interface type is defined, the implementation type documentation MUST define
how the concepts of local and remotable interfaces apply to the interface type. [IMP10022]
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2.5.2 Interface Compatibility rules
The compatibility of two interface declarations is an important part of the SCA model.  This is discussed in 
detail in the SCA Assembly specification [SCA-Assembly]. Where a new interface type is defined, the
implementation type documentation MUST define the compatibility rules for the interface type, including
superset interfaces, subset interfaces and equal interfaces.  [IMP10023]

2.6 Describing the behavior of Implementation artifacts within 
Contributions

Artifacts of all types are made available for use in an SCA application by means of contributions which 
are deployed into the SCA Domain used by the SCA Runtime,  Contributions are defined in the SCA 
Assembly specification [SCA-Assembly]. Essentially, a contribution is a collection of artifacts that are 
organized into a hierarchy based off a single root.

Whenever a reference is made to an artifact of a particular implementation type, for example a reference
within an implementation type element, that artifact MUST be found within the contributions deployed into
the domain. [IMP10024]

The default location for an artifact is within the SCA contribution where the reference is made - i.e. where 
the implementation type element appears in a composite file within a particular contribution, that same 
contribution is searched. It is expected that the implementation type element contains configuration that 
identifies the artifact.  This identification can take the form of a filename or package name, which can 
include the hierarchy path for the artifact (eg directory path or Java package name).  Alternatively, the 
identification may involve a namespace, where the assumption is that all artifacts of a given type are 
searched to find a matching namespace and element name, as occurs for XML artifacts (e.g. BPEL 
processes).

The implementation type documentation MUST describe the way in which the artifact reference
 information is used to locate a specific artifact. [IMP10025] The implementation type documentation must
describe the permitted organization of the implementation type artifacts within a contribution. [IMP10026]

An implementation type can allow for implementation artifacts to be imported into one contribution from a
second (exporting) contribution, as described in the "SCA Artifact Resolution" section of the SCA
Assembly specification [SCA-Assembly]. Where import and export of artifacts is supported, the
implementation type documentation MUST describe how the import and export of artifacts works. [IMP100
27] Import and Export of artifacts can either follow the base mechanism described in the SCA Assembly 
specification, which is based on the use of namespaces, or it may follow an implementation-type specific 
mechanism.

The base mechanism involves the declaration of <sca:export/> and <sca:import/> elements with an sca-
contribution.xml file that is in the META-INF directory of the contribution. It is recommended that an 
extension of the base mechanism is used, using <import.xxx/> and <export.xxx/> elements A good 
example of such an extension is described in the Java POJO Component Implementation Specification 
[SCA-POJO] in the section "Contribution Metadata Extensions".

2.6.1 Implementation-Type specific forms of Import and Export
Where an implementation type requires the use of a specific form of import and export mechanism for the 
resolution of artifacts between contributions, the implementation type documentation is required to define 
how this works.  

An example of such a mechanism exists for the Java POJO implementation type [SCA-POJO].There are 
base importBase and exportBase elements and types defined in the SCA Assembly specification [SCA-
Assembly].  For the Java POJO implementation, <import.java/> and <export.java/> elements are defined 
as shown in Listing 7:
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   <!-- Import.java -->   
<element name="import.java" type="sca:JavaImportType"  
substitutionGroup="sca:importBase" />
   <complexType name="JavaImportType">
      <complexContent>
         <extension base="sca:Import">
            <attribute name="package" type="string" use="required"/>
            <attribute name="location" type="anyURI" use="optional"/>
         </extension>
      </complexContent>
   </complexType>
   
   <!-- Export.java -->
   <element name="export.java" type="sca:JavaExportType" 

substitutionGroup="sca:exportBase" />
   <complexType name="JavaExportType">
      <complexContent>
         <extension base="sca:Export">
            <attribute name="package" type="string" use="required"/>
         </extension>
      </complexContent>
   </complexType>

Listing 7: Definition of the <import.java/> and <export.java/> elements

If using an extension of the base SCA mechanism for imports and exports, the implementation type
documentation must define import and export elements that extend the base Import and Export types. [IM
P10028] 

By convention, the OASIS SCA technical committees have adopted a naming convention that forms 
import and export extension element names by concatenating the strings “import.” and "export." with the 
informal name of the implementation type. 

2.6.2 Implementation-Type specific forms of Contribution
One format of contribution packaging is mandatory - the ZIP file contribution format.  However, SCA 
allows for many other contribution formats.  If an implementation type has a specialized contribution
format, then the implementation type documentation MUST provide a definition of that format. [IMP10029]

2.7 Policy Related Considerations
The SCA Policy Framework Specification [SCA-POLICY] describes the handling of Policy related aspects 
of components and implementations and also defines a specific set of policy related intents which cover 
aspects including Security, Reliability and Transactions.  Where an implementation type has policy related 
aspects, these need to be described in the terms that are defined by the Policy Framework Specification.

The implementation type documentation MUST describe policy-related aspects of the implementation
artifacts and MUST include policy as part of the definition of the componentType of an implementation
artifact. [IMP10036]  The implementation type documentation SHOULD use the set of policy related
intents defined by the SCA Policy Framework Specification, in cases where an implementation artifact has
policy-related aspects that are covered by that specification. [IMP10037]

2.8 Describing the Handling of Artifacts containing Errors
It is important that the implementation type documentation clearly describes what is valid and what is 
invalid for both the XML artifacts such as the <implementation/> element(s) that the document defines and 
also for the implementation artifacts that are used by implementations.  This information includes both 
static and dynamic (operational) characteristics of the artifacts, and includes both unextended and 
extended forms of the artifacts, if SCA-specific extensions are provided for use within the artifacts.

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 14 of 21

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

412

413
414
415

416
417
418

419

420
421
422

423

424
425
426
427

428
429
430
431
432

433

434
435
436
437
438



The behaviour of the SCA runtime when it encounters artifacts that are in error needs to be described. In 
general, artifacts with statically discoverable errors should cause the SCA runtime to reject the artifacts 
before it attempts to execute them.  Errors that can only be detected when running the artifacts need 
errors to be raised at runtime.  The implementation type documentation needs to deal with both types of 
error.

The implementation type documentation MUST describe what errors are possible for the artifacts
described by the documentation, both the XML artifacts used in SCA composites and related files and
also the implementation artifacts, and the documentation MUST also describe the behaviour of the SCA
runtime when it encounters artifacts that are in error. [IMP10035]
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3 Conformance
Implementation Type Documentation that claims to conform to the requirements of this specification 
MUST meet the following conditions

1. The Implementation Type Documentation MUST comply with all the mandatory statements listed 
in in the table Mandatory Items in the appendix "Conformance Items"
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A. Conformance Items
This section contains a list of conformance items for the SCA Assembly Implementation Type 
Documentation specification.

A.1. Mandatory Items
Conformance ID Description
[IMP10001] The implementation type documentation MUST describe the XML 

element that is used when declaring implementations of that type 
in an SCA component.

[IMP10002] The name used for the implementation element MUST to be 
unique - it MUST NOT use the same name as any other 
implementation type.

[IMP10003] The implementation extension element MUST be declared as an 
element in the substitution group of the sca:implementation 
element.

[IMP10004] The implementation extension element MUST be declared to be 
of a type which is an extension of the sca:Implementation type.

[IMP10005] Regarding the location of the implementation artifact, the location 
SHOULD always be taken as relative to the SCA contribution 
which contains the composite holding the component declaration.

[IMP10006] The implementation type documentation MUST define how the 
componentType is defined for any given  implementation artifact 
that is used with the implementation type.

[IMP10007] the implementation type documentation MUST describe how the 
componentType is related to the content of the implementation 
artifact itself, both in terms of the base content of the artifact and 
also the impact of any SCA-specific language extensions and 
customizations that are available for use with an implementation 
of this type.

[IMP10008] The implementation type documentation MUST describe how the 
SCA Aspects of Bidirectional Interfaces and Long Running 
Request/Response Operations are handled both for a component 
which is a service client and also for a component which is a 
service provider.

[IMP10009] If SCA-specific extensions or customizations are available for an 
implementation type, the implementation type documentation 
MUST describe all of the available extensions and 
customizations.

[IMP10010] The implementation type documentation MUST describe the 
impact of any extensions and customizations on the 
componentType of the implementation artifact.

[IMP10011] The implementation type documentation MUST  describe the 
impact of any extensions and customizations on the runtime 
behaviour of the implementation artifact.

[IMP10012] The implementation type documentation MUST describe the 
runtime behaviour of instances of SCA components which use 
implementation artifacts of the kind described by the 
implementation type documentation.
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[IMP10013] In particular, the documentation MUST describe how the SCA 
component configuration affects the configuration of a component 
instance at runtime - how services are invoked, how references 
are obtained  and how they are invoked, how property values are 
mapped to types in the implementation's instance and how the 
values are obtained by the component implementation.

[IMP10014] The lifecycle of runtime instances MUST be described - when 
implementation instances are created, how long they live and 
when they are destroyed, in relation to the containing SCA 
component and in relation to service invocations related to the 
component.

[IMP10015] The number of instances belonging to a single component MUST 
be described along with any serialization and multi-threading 
considerations.

[IMP10016] If there are runtime exceptions or faults that apply to 
implementation type artifacts, these MUST be described by the 
implementation type documentation.

[IMP10017] if the implementation type uses an interface type that is not 
described in the documentation for some existing implementation 
type, then the implementation type documentation MUST describe 
the interface type.

[IMP10018]  The interface extension element must be declared as an element 
in the substitution group of the <sca:interface/> element.

[IMP10019] The interface extension element must be declared to be of a type 
which is an extension of the sca:Interface type.

[IMP10020] The interface extension element MUST allow for attributes and/or 
subelements which describe the interface artifact.

[IMP10021] Regarding the location of the interface artifact, the location 
SHOULD always be taken as relative to the SCA contribution 
which contains the composite holding the component declaration.

[IMP10022] Where a new interface type is defined, the implementation type 
documentation MUST define how the concepts of local and 
remotable interfaces apply to the interface type.

[IMP10023] Where a new interface type is defined, the implementation type 
documentation MUST define the compatibility rules for the 
interface type, including superset interfaces, subset interfaces 
and equal interfaces.

[IMP10024] Whenever a reference is made to an artifact of a particular 
implementation type, for example a reference within an 
implementation type element, that artifact MUST be found within 
the contributions deployed into the domain.

[IMP10025] The implementation type documentation MUST describe the way 
in which the artifact reference  information is used to locate a 
specific artifact.

[IMP10026] The implementation type documentation must describe the 
permitted organization of the implementation type artifacts within 
a contribution.

sca-assembly-1.1-impl-type-documentation-cd01 20 July 2010
Copyright © OASIS® 2010. All Rights Reserved. Page 18 of 21



[IMP10027] An implementation type can allow for implementation artifacts to 
be imported into one contribution from a second (exporting) 
contribution, as described in the "SCA Artifact Resolution" section 
of the SCA Assembly specification [SCA-Assembly]. Where 
import and export of artifacts is supported, the implementation 
type documentation MUST describe how the import and export of 
artifacts works.

[IMP10028] If using an extension of the base SCA mechanism for imports and 
exports, the implementation type documentation must define 
import and export elements that extend the base Import and 
Export types.

[IMP10029]  If an implementation type has a specialized contribution format, 
then the implementation type documentation MUST provide a 
definition of that format.

[IMP10030] All remotable interfaces MUST be mappable to interface.wsdl

[IMP10031] The name used for the interface extension element needs to be 
unique - it MUST NOTuse the same name as any other interface 
type.

[IMP10032] Implementation type elements SHOULD allow for extension via 
the XML Schema "any" and "anyAttribute" constructs.

[IMP10033] If an implementation type is not capable of supporting 
Bidirectional Interfaces or is not capable of supporting Long-
Running Request/Response operations, the implementation type 
documentation MUST state each limitation.

[IMP10034] Implementation type elements SHOULD allow for extension via 
the XML Schema "any" and "anyAttribute" constructs.

[IMP10035] The implementation type documentation MUST describe what 
errors are possible for the artifacts described by the 
documentation, both the XML artifacts used in SCA composites 
and related files and also the implementation artifacts, and the 
documentation MUST also describe the behaviour of the SCA 
runtime when it encounters artifacts that are in error.

[IMP10036] The implementation type documentation MUST describe policy-
related aspects of the implementation artifacts and MUST include 
policy as part of the definition of the componentType of an 
implementation artifact.

[IMP10037] The implementation type documentation SHOULD use the set of 
policy related intents defined by the SCA Policy Framework 
Specification, in cases where an implementation artifact has 
policy-related aspects that are covered by that specification.
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