

Specification for Transfer of OpenC2 Messages via MQTT Version 1.0

Committee Specification Draft 0401

18 August19 November 2021

This stage:

https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-
cs01.md (Authoritative)
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-
cs01.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-
cs01.pdf

Previous stage:

https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd04/transf-mqtt-
v1.0-csd04.md (Authoritative)
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd04/transf-mqtt-
v1.0-csd04.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd04/transf-mqtt-
v1.0-csd04.pdf

Previous stage:

 (Authoritative)
Latest stage:

https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.md
(Authoritative)
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.pdf

Technical Committee:

OASIS Open Command and Control (OpenC2) TC

Chair:

https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-cs01.md
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-cs01.md
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-cs01.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-cs01.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-cs01.pdf
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-cs01.pdf
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd04/transf-mqtt-v1.0-csd04.md
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd04/transf-mqtt-v1.0-csd04.md
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd04/transf-mqtt-v1.0-csd04.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd04/transf-mqtt-v1.0-csd04.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd04/transf-mqtt-v1.0-csd04.pdf
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd04/transf-mqtt-v1.0-csd04.pdf
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.md
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.pdf
https://www.oasis-open.org/committees/openc2/

Duncan Sparrell (duncan@sfractal.com), sFractal Consulting

Editor:

David Lemire (david.lemire@hii-tsd.com), National Security Agency

Related work:

This specification is related to:

• Open Command and Control (OpenC2) Language Specification
Version 1.0. Edited by Jason Romano and Duncan Sparrell. Latest
stage: https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-
v1.0.html.

• Open Command and Control (OpenC2) Specification for Transfer of
OpenC2 Messages via HTTPS Version 1.0. Edited by David
Lemire. Latest stage: https://docs.oasis-open.org/openc2/open-
impl-https/v1.0/open-impl-https-v1.0.html.

Abstract:

Open Command and Control (OpenC2) is a concise and extensible
language to enable the command and control of cyber defense
components, subsystems and/or systems in a manner that is agnostic of
the underlying products, technologies, transport mechanisms or other
aspects of the implementation. Message Queuing Telemetry Transport
(MQTT) is a widely-used publish / subscribe (pub/sub) transfer protocol.
This specification describes the use of MQTT Version 5.0 as a transfer
mechanism for OpenC2 messages.

Status:

This document was last revised or approved by the OASIS Open
Command and Control (OpenC2) TC on the above date. The level of
approval is also listed above. Check the "Latest stage" location noted
above for possible later revisions of this document. Any other numbered
Versions and other technical work produced by the Technical Committee
(TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=openc2#technical.

TC members should send comments on this specification to the TC's
email list. Others should send comments to the TC's public comment list,
after subscribing to it by following the instructions at the "Send A
Comment" button on the TC's web page at https://www.oasis-
open.org/committees/openc2/.

mailto:duncan@sfractal.com
http://www.sfractal.com/
mailto:david.lemire@hii-tsd.com
https://www.nsa.gov/
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html
https://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html
https://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2#technical
https://www.oasis-open.org/committees/openc2/
https://www.oasis-open.org/committees/openc2/

This specification is provided under the Non-Assertion Mode of the OASIS
IPR Policy, the mode chosen when the Technical Committee was
established. For information on whether any patents have been disclosed
that may be essential to implementing this specification, and any offers of
patent licensing terms, please refer to the Intellectual Property Rights
section of the TC's web page (https://www.oasis-
open.org/committees/openc2/ipr.php).

Note that any machine-readable content (Computer Language Definitions)
declared Normative for this Work Product is provided in separate plain text
files. In the event of a discrepancy between any such plain text file and
display content in the Work Product's prose narrative document(s), the
content in the separate plain text file prevails.

Key words:

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in BCP 14 [RFC2119] and [RFC8174] when, and
only when, they appear in all capitals, as shown here.

Citation format:

When referencing this specification the following citation format should be
used:

[OpenC2-MQTT-v1.0]

Specification for Transfer of OpenC2 Messages via MQTT Version 1.0.
Edited by David Lemire. 18 August19 November 2021. OASIS Committee
Specification Draft 0401. https://docs.oasis-open.org/openc2/transf-
mqtt/v1.0/cs01/transf-mqtt-v1.0-cs01.html. Latest stage:
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.html.

Notices:

Copyright © OASIS Open 2021. All Rights Reserved.

Distributed under the terms of the OASIS IPR Policy.

The name "OASIS" is a trademark of OASIS, the owner and developer of
this specification, and should be used only to refer to the organization and
its official outputs.

https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/committees/openc2/ipr.php
https://www.oasis-open.org/committees/openc2/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-cs01.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-cs01.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.html
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/

For complete copyright information please see the Notices section in
thean Appendix below.

Table of Contents

• 1 Introduction
o 1.1 Changes from Earlier Versions
o 1.2 Glossary

▪ 1.2.1 Definitions of terms
▪ 1.2.2 Acronyms and abbreviations
▪ 1.2.3 Document conventions

▪ 1.2.3.1 Naming Conventions
▪ 1.2.3.2 Font Colors and Style
▪ 1.2.3.3 MQTT Data Representation

• 2 Operating Model
o 2.1 Publishers, Subscribers, and Brokers
o 2.2 Default Topic Structure

▪ Table 2-1: Default Topic Structure
o 2.3 Subscriptions Options
o 2.4 OpenC2 Message Format

▪ 2.4.1 Content Type and Serialization
▪ 2.4.2 OpenC2 Message Structure

o 2.5 Quality of Service
o 2.6 MQTT Client Identifier
o 2.7 Keep-Alive Interval
o 2.8 Will Message
o 2.9 Clean Start Flag

▪ Table 2-2: Clean Start and Session Expiry
o 2.10 Session Expiry and Message Expiry Intervals

• 3 Protocol Mapping
o 3.1 CONNECT Control Packet
o 3.2 PUBLISH Control Packet
o 3.3 SUBSCRIBE Control Packet
o 3.4 PINGREQ Control Packet
o 3.5 Other Control Packets

• 4 Conformance
• Appendix A: References

o A.1 Normative References
o A.2 Informative References

• Appendix B. Safety, Security and Privacy Considerations
• Appendix C: Acknowledgments

o C.1 Special Thanks
o C.2 Participants

• Appendix D: Revision History

• Appendix E: Examples
o Figure E-1: Color Code for Packet Examples
o E.1 Example 1: Connect and Subscribe

▪ Figure E-2: Connect and Subscribe
o E.2 Example 2: Command / Response Exchange

▪ Figure E-3: Publish Request and Response
o E.3 Example 3: Query Consumer Actuator Profiles
o E.4 OpenC2 Deny Example
o E.5 Paho Python Client Examples

• Appendix F: Notices

1 Introduction

This section is non-normative.

OpenC2 is a suite of specifications that enables command and control of
cyber defense systems and components. OpenC2 typically uses a
request-response paradigm where a request (i.e., command) is encoded
by an OpenC2 Producer (managing application) and transferred to one or
more OpenC2 Consumers (managed devices or virtualized functions)
using a secure transfer protocol. The Consumers act on the request and
respond with status and any other requested information.

This specification describes OpenC2's use of the MQTT publish /
subscribe messaging protocol to exchange OpenC2 messages between
Producers and Consumers. Version 5 of the MQTT Specification [MQTT-
v5.0] is used as it includes features useful for OpenC2 that are not
available in the previous version [MQTT v3.1.1].

1.1 Changes from Earlier Versions

The following changes have been implemented since WD08:

• Simplified presentation of protocol requirements in Section 3
• Added example illustrating use of paho python MQTT client
• Enhanced example graphics to highlight requirements from this

specification
• Added conformance section
• Added prohibition against use of MQTT Response Topic feature

• Updated message format to align with current OpenC2 Language
Specification

1.2 Glossary

1.2.1 Definitions of terms

The terms defined in Section 1.2, Terminology, of the MQTT v5.0
specification [MQTT-v5.0] are applicable to this specification.

The following terms defined in Section 1.2, Terminology, of the OpenC2
Language Specification [OpenC2-Lang-v1.0] are applicable to this
specification:

• Command: A message defined by an action-target pair that is sent
from a Producer and received by a Consumer.

• Consumer: A managed device / application that receives
Commands. Note that a single device / application can have both
Consumer and Producer capabilities.

• Message: A content- and transport-independent set of elements
conveyed between Consumers and Producers.

• Producer: A manager application that sends Commands.
• Response: A message from a Consumer to a Producer

acknowledging a command or returning the requested resources or
status to a previously received request.

1.2.2 Acronyms and abbreviations

Acronym Meaning

AKA Also Known As

AP Actuator Profile

JSON JavaScript Object Notation

MQTT Message Queuing Telemetry Transport

RFC Request For Comment

1.2.3 Document conventions

1.2.3.1 Naming Conventions

• All MQTT control packet names are in ALL CAPS (e.g., CONNECT,
PINGREQ)

• All MQTT property names are in Initial Cap and use a fixed-width
font (e.g., User Property).

1.2.3.2 Font Colors and Style

The following color, font and font style conventions are used in this
document:

• A fixed-width font is used for all type names, property names,

and literals.

1.2.3.3 MQTT Data Representation

Section 1.5 of the MQTT v5.0 specification [MQTT-v5.0] defines data
types relevant to the protocol. Implementations of this specification are
assumed to encode and decode those data types as defined in the MQTT
specification.

In this specification, the UTF-8 String Pair data type ([MQTT-v5.0], section
1.5.7) is of particular interest, as MQTT v5.0 User Properties are utilized.
Within this document, the representation for a UTF-8 String Pair User
Property is "key":"value".

Per the MQTT specification sections 1.5.4 and 1.5.7 each string is
encoded with a 2-byte length followed by the UTF-8 encoding of the string,
so the general form of a User Property as a UTF-8 String Pair is:

• 1-byte identifier for User Property [0x26]

• 2-byte length of first string
• UTF-8 encoding of first string
• 2-byte length of second string
• UTF-8 encoding of second string

For the "key:value" example above, the encoding would be:

[0x26][0x00][0x03]key[0x00][0x05]value

2 Operating Model

This section is non-normative in its entirety.

This section provides an overview of the approach to employing MQTT as
a message transfer protocol for OpenC2 messages.

2.1 Publishers, Subscribers, and Brokers

When transferring OpenC2 Request (AKA command) and Response
messages via MQTT, both Producers and Consumers act as both
publishers and subscribers:

• Producers publish Requests and subscribe to receive Responses
• Consumers subscribe to receive Requests and publish Responses

The MQTT client software used by Producers and Consumers and all
MQTT brokers used for OpenC2 message transfer are beyond the scope
of this specification, but are assumed to be conformant with the MQTT
v5.0 specification [MQTT-v5.0]. In the context of OpenC2, and in
accordance with the Terminology section (1.2) of [MQTT-V5.0]:

• MQTT Brokers are Servers
• OpenC2 Producers and Consumer are Clients

Brokers facilitate the transfer of OpenC2 messages but in their role as
Brokers do not act in any OpenC2 role.

2.2 Default Topic Structure

The MQTT topic structure described in Table 2-1 is used to exchange
OpenC2 messages. The "oc2" prefix on the topic names segregates
OpenC2-related topics from other topics that might exist on the same
broker. Topic name components in brackets (e.g.,
[actuator_profile]) are placeholders for specific values that would

be used in implementation. For example, a device that implements the
Stateless Packeting Filter AP would subscribe to oc2/cmd/ap/slpf. In

addition, each Consumer subscribes to its own device-specific topic using
a device identifier (annotated as [device_id]) that is assumed to be

known to the OpenC2 Producer(s) that can command that Consumer. The
determination of device identifiers is beyond the scope of this
specification.

Table 2-1: Default Topic Structure

Topic Purpose Producer Consumer

oc2/cmd/all Used to send
OpenC2
commands to

Pub Sub

Topic Purpose Producer Consumer

all devices
connected to
this MQTT
fabric.

oc2/cmd/ap/[actuator_profile] Used to send
OpenC2
commands to
all instances of
specified
Actuator
Profile.

Pub Sub

oc2/cmd/device/[device_id] Used to send
OpenC2
commands to a
specific device.
Routing to APs
within the
device is a
local matter.

Pub Sub

oc2/rsp Used to return
OpenC2
response
messages.

Sub Pub

oc2/rsp/[producer_id] Used to return
OpenC2
response
messages to a
specific
producer.

Sub Pub

In order to receive commands intended for its security functions, a
Consumer device connected to the broker would subscribe using the
following topic filters:

• oc2/cmd/all to receive commands intended for all devices

• oc2/cmd/ap/[acutator_profile] for all actuator profiles the

device implements
• oc2/cmd/device/[device_id] for that device's ID

In order to receive responses to the commands it sends, a Producer
connected to the broker would subscribe using the following topic filters:

• oc2/rsp
• oc2/rsp/[producer_id]

A Producer subscribing to oc2/rsp/# would receive all response

messages published through the broker to any specific [producer-id],

regardless of whether the response was to a command originated by the
subscribing producer.

The inclusion of predefined response topics in the default topic scheme
eliminates any need for an OpenC2 Producer to use the PUBLISH control
packet's Response Topic header (described in MQTTv5 sections

3.3.2.3.5 and 4.10) to inform Consumers where to direct reply messages.
The Response Topic field is not used for OpenC2 messaging over

MQTT.

Topic wildcards are not normally utilized for OpenC2 but their use is not
precluded. For example, implementers of OpenC2 Consumers might elect
to use a wildcard to subscribe to the command topics for all actuator
profiles (oc2/cmd/ap/#) and filter received messages at the Consumer

to identify relevant messages. An OpenC2 traffic logger might subscribe to
oc2/#.

Non-normative Subscription Example

A notional OpenC2 Consumer that implements actuator profiles alpha

and iota and has a device identifier of zulu would subscribe using the

following topic filters:

• oc2/cmd/all
• oc2/cmd/ap/alpha
• oc2/cmd/ap/iota
• oc2/cmd/device/zulu

A notional OpenC2 Producer with a device identifier of omega would

subscribe using the following topic filters:

• oc2/rsp

• oc2/rsp/omega

Non-normative Publishing Examples

Under typical circumstances, the publishing of OpenC2 commands is
either a 1:n situation (one Producer commanding multiple Consumers) or
a 1:1 situation (one Producer commands a specific Consumer). The
publishing of responses represents the reverse situation, where responses
published by potentially numerous Consumers are all directed to a single
Producer.

A notional OpenC2 Producer wishing to command all Consumers that
implement actuator profile iota would publish the command to:

• oc2/cmd/ap/iota

A notional OpenC2 Producer wishing to command the individual
Consumer with identity zulu would publish the command to:

• oc2/cmd/device/zulu

Additional examples of publishing exchanges can be found in Appendix E.

2.3 Subscriptions Options

For each Topic Filter in the SUBSCRIBE control packet the Client

specifies a set of Subscription Options (MQTT-V5.0 specification

section 3.8.3.1). The available options are:

• Maximum QoS: the maximum QoS level at which the Server can

send Application Messages to the Client
• No Local: controls whether messages the Client publishes to this

topic are published back to them
• Retain as Published: Controls the setting of the retain flag

in messages forwarded under this subscription
• Retain Handling: Specifies how retained messages present on

the Broker when the subscription is established are handled

The following values are recommended for Subscription Options for

OpenC2 applications:

• Maximum QoS: 2 -- allow the publisher to set the QoS level of the

message
• No Local: 1 -- do not receive back messages published by this

Client on this topic

• Retain as Published: 1 -- respect the publisher's retain setting

value when forwarding messages
• Retain Handling: 0 -- broker should send any retained

messages when the subscription is established

2.4 OpenC2 Message Format

This section describes how OpenC2 messages are represented in MQTT
PUBLISH control packets.

2.4.1 Content Type and Serialization

OpenC2 messages are conveyed in the payload of MQTT PUBLISH
control packets. As described in the MQTT-V5.0 specification section
3.3.3: "the content and format of the data is application specific" and
therefore meaningless to the Broker. OpenC2 uses the following MQTT
PUBLISH control packet properties to convey essential information about
the message to the recipient:

• Payload Format Indicator [Property 0x01]: This

property is used to distinguish binary vs. UTF-8 encoded strings for
the payload format, as specified in section 3.3.2.3.2 of the MQTT
specification, and should be set as appropriate for the message
serialization used.

• Content Type [Property 0x03]: a UTF-8 Encoded String

describing the content of the Application Message. For OpenC2
messages, the string "application/openc2" is used.

• User Property [Property 0x26]: two User Properties (UTF-

8 string pairs) are defined to further specify the message format:
o Key: "msgType": a UTF-8 string used to identify the type of

OpenC2 message, as described in section 3.2 of the
OpenC2 Language Specification. Legal values are:

▪ "req" (request),

▪ "rsp" (response), or

▪ "ntf" (notification)

o Key: "encoding": a UTF-8 string used to identify the

specific text or binary encoding of the message. Legal
values are:

▪ "json", and
▪ "cbor"

The specifics of serializing OpenC2 messages are defined in other
OpenC2 specifications.

2.4.2 OpenC2 Message Structure

OpenC2 messages transferred using MQTT utilize the OpcenC2-

Message structure defined in Section 3.2 of OpenC2-Lang-v1.0.

Message = Record

 1 headers Headers optional

 2 body Body

 3 signature String optional

Headers = Map{1..*}

 1 request_id String optional

 2 created ls:Date-Time optional

 3 from String optional

 4 to String [0..*]

Body = Choice

 1 openc2 OpenC2-Content

OpenC2-Content = Choice

 1 request OpenC2-Command

 2 response OpenC2-Response

 3 notification OpenC2-Event

A Producer sending an OpenC2 request always includes its identifier in
the message headers from field, allowing receiving Consumers to know

the origin of the request. A Consumer sending a response to an OpenC2
request always includes its identifier in the message headers from field,

allowing responses to the same request from different Consumers to be
identified by the Producer receiving the responses.

When publishing an OpenC2 request, the Producer can use the message
headers to field as a filter to provide finer-grained control over which

Consumers should process any particular message than is provided by
the MQTT Topic Structure and Client topic subscriptions. Consumers have
no requirement to populate the message headers to field.

2.5 Quality of Service

MQTT-v5.0 Section 4.3, Quality of Service Levels and Protocol Flows,
defines three quality of service (QoS) levels:

• QoS 0: "At most once", where messages are delivered according
to the best efforts of the operating environment. Message loss can
occur.

• QoS 1: "At least once", where messages are assured to arrive but
duplicates can occur.

• QoS 2: "Exactly once", where message are assured to arrive
exactly once.

QoS 1 is appropriate for most OpenC2 applications and should be
specified as the default. Implementers have the option of electing to use
QoS 2 where the additional overhead is justified by application
requirements. QoS 0 is not recommended for use in OpenC2 messaging.

In accordance with the above, the requirements of MQTT-v5.0 Section
4.3.2, QoS 1: At least once delivery, apply to OpenC2 Producers and
Consumers when publishing messages to the MQTT broker.

As described in MQTT-v5.0 Section 4.6, Message Ordering, the use of
QoS 1 assures that "the final copy of each message received by the
subscribers will be in the order that they were published" but does not
preclude the possibility of duplicate message delivery. OpenC2 Producers
and Consumers implementations should be prepared to respond sensibly
if duplicate requests or responses are received.

2.6 MQTT Client Identifier

As described in MQTT-v5.0, Section 3.1, CONNECT – Connection
Request, the Client Identifier (ClientID) is a required field in the

CONNECT control packet. Further requirements are contained in Section
3.1.3.1, Client Identifier (ClientID), which defines the ClientID as a UTF-

8 string between 1 and 23 bytes long containing only letters and numbers
(MQTT servers may accept longer ClientIDs). The MQTT specification

also permits brokers to accept CONNECT control packets without a
ClientID, in which case the broker assigns its own ClientID to the

connection, which the client is obligated to use. MQTT-v5.0 provides no
further definition regarding the format or assignment of ClientIDs.

The ClientID serves to identify the client to the broker so that the broker

can maintain state information about the client. The ClientID has no

meaning in the context of OpenC2, it is only meaningful to the MQTT
client and broker involved in the connection.

OpenC2 Producers and Consumers using MQTT for message transfer
should generate and store a random ClientID value that meets the

constraints specified in MQTT-v5.0 Section 3.1.3.1, and retain that value
for use when establishing connections to a broker. This ClientID should

be generated prior to any connection to an MQTT broker, potentially as
part of an initialization process. The ClientID for an OpenC2 Consumer

is not required to have any meaningful relationship to any identity by which
a Producer identifies that Consumer in OpenC2 messages.

As described in MQTT-v5.0 Section 3.1.3.1, if a broker receives a
CONNECT control packet with a zero-byte-length ClientID, the broker
must generate a ClientID and return it to the connecting client in the
associated CONNACK packet for the client's use. When using MQTT to
transfer OpenC2 messages, the preferred behavior is for the client
supporting the OpenC2 Producer or Consumer to generate its own
ClientID.

2.7 Keep-Alive Interval

The MQTT CONNECT control packet includes a Keep Alive property

(MQTT-v5.0 section 3.1.2.10) that defines a time interval within which a
Client connected to a Broker is expected to send a control packet of any
type to the Broker to prevent the Broker from disconnecting from the
Client. The PINGREQ control packet can be sent if the Client has no other
traffic to process. The MQTT specification notes that "The actual value of
the Keep Alive is application specific; typically this is a few minutes. The
maximum value is 18 hours 12 minutes and 15 seconds." Per the MQTT
specification the Broker will close the network connection if 1.5 times the
Keep Alive interval has passed without receiving a control packet from

the Client.

This transfer specification leaves the selection of a Keep Alive interval

to the implementer but defines a value of 5 minutes (300 seconds) as the
maximum value for conformant implementations. For reliability, it is
recommended that an OpenC2 client send an MQTT PINGREQ when
95% of the Keep Alive interval has expired without any other control

packets being exchanged.

2.8 Will Message

The CONNECT control packet, described in MQTT-v5.0, Section 3.1,
provides a Will Message feature that enables connected clients to store

a message on the broker to be published to a client-specified topic when
the client's network connection is closed. OpenC2 does not use the MQTT
Will Message feature.

2.9 Clean Start Flag

As described in MQTT-v5.0, section 3.1.2.4, Clean Start, the MQTT
CONNECT control packet includes a flag, Clean Start, that tells the

broker whether the client, identified by its ClientID as described in Section
2.6, desires a new session (Clean Start equals 1 [true]). In MQTT the

setting of the Clean Start flag and the value of the Session Expiry

Interval from the most recent CONNECT packet are relevant to how

the broker handles client state. The behavior is summarized in Table 2-2.

Table 2-2: Clean Start and Session Expiry

Session Expiry Interval Exceeded

Yes No

Clean
Start
Flag

True
(1)

• No prior state to
discard

• New subscriptions
required

• Prior state discarded
• New subscriptions

required

False
(0)

• No prior state to
discard

• New subscriptions
required

• Prior state retained
• Previous subscriptions

retained
• Buffered messages

delivered

OpenC2 clients should not request a clean start when connecting to the
broker. The use of Clean Start = false allows the broker to retain the

client's subscriptions, and deliver buffered messages that have
accumulated while the client was disconnected. However, OpenC2
implementers using MQTT should be aware that MQTT broker resource
constraints and Message Expiry Interval settings from Producers

may cause older traffic to be discarded if clients are disconnected for
extended periods.

2.10 Session Expiry and Message Expiry Intervals

The MQTT v5.0 CONNECT control packet includes a Session Expiry

Interval property that informs the broker how long the Client's session

state is to be retained when the session is disconnected. The MQTT v5.0
PUBLISH control packet includes a Message Expiry Interval

property that specifies the lifetime of the Application Message in seconds.
This transfer specification makes no recommendations regarding
appropriate values for either expiry interval. Implementers are encouraged
to evaluate their use cases to define reasonable values for these
properties.

3 Protocol Mapping

This section defines specific requirements for populating MQTT control
packets. Values for fields and properties not specified herein are to be
populated as defined in the MQTT v5.0 specification, or as determined by
the implementer where applicable.

3.1 CONNECT Control Packet

OpenC2 Producers and Consumers MUST create and transmit the
CONNECT control packet, as specified in the MQTT v5.0 specification
section 3.1, to establish a connection to the MQTT Broker.

OpenC2 Producers and Consumers MUST populate the following
CONNECT control packet fields as specified:

• Clean Start = FALSE

• Will Flag = FALSE

• Will QoS = 0 (zero)

• Will Retain = FALSE

• Keep Alive = Number <= 300 (seconds)

• Client Identifier = client-generated identifier string

OpenC2 Producers and Consumers MUST NOT populate any of the
CONNECT payload fields related to the MQTT Will Message.

This specification makes no recommendations regarding values for the
following CONNECT properties:

• Authentication Method
• Authentication Data
• Request Problem Information
• Receive Maximum
• Session Expiry
• Topic Alias Maximum
• Maximum Packet Size
• Username flag
• Password flag

3.2 PUBLISH Control Packet

OpenC2 Producers and Consumers MUST create and transmit the
PUBLISH control packet, as specified in the MQTT v5.0 specification
section 3.3, to publish messages using the MQTT broker.

Topic selection for publishing OpenC2 request and response messages
MUST apply the default topic structure principles described in Section 2.2
of this specification.

OpenC2 Producers and Consumers MUST populate the following
PUBLISH control packet fields as specified:

• QoS = 1 (minimum, 2 of so determined by the implementer)

• Retain = 0 (FALSE)
• Payload Format Indicator

o for binary message encodings = 0

o for UTF-8 message encodings = 1

• Content Type = "application/openc2"

• User Property for message type = "msgType":[type] where

o [type] = "req" when publishing OpenC2 requests

o [type] = "rsp" when publishing OpenC2 responses

o [type] = "ntf" when publishing OpenC2 notifications

• User Property for message encoding =
"encoding":[encoding] where

o [encoding] = "json" for JSON-encoded messages using

UTF-8
o [encoding] = "cbor" for CBOR-encoded binary

messages

OpenC2 Producers and Consumers MUST populate the PUBLISH control
packet payload with an OpenC2 message of type specified by the
"msgType":[type] User Property, encoded as specified by the

"encoding":[encoding] User Property.

OpenC2 Producers and Consumers MUST populate the from: field of the

OpenC2 message with the identity of the publisher of the message, as
described in Section 2.4.2.

OpenC2 Producers MUST NOT use the MQTT PUBLISH control packet's
Response Topic header when publishing OpenC2 request messages.

OpenC2 Consumers MUST publish responses to the defined response
topics described in Section 2.2.

NOTE: the preceding prohibition applies only to the use of
Response Topic in OpenC2 messaging and does not

apply to other MQTT messaging by clients associated with
OpenC2 Producers and Consumers.

This specification makes no recommendations regarding values for the
following PUBLISH control packet properties:

• Message Expiry Interval
• Correlation Data
• Subscription Identifier
• Topic Alias

3.3 SUBSCRIBE Control Packet

Producers and Consumers MUST use the SUBSCRIBE control packet, as
specified in the MQTT v5.0 specification section 3.8 to subscribe to a set
of topics consistent with the default topic structure defined in Section 2.2
of this specification. This means that:

• Consumers SHALL subscribe to
o topics for all actuator profiles the Consumer implements,
o the all-commands topic (oc2/cmd/all), and

o an individual topic for that Consumer device
(oc2/cmd/device/[device_id]).

• Producers SHALL subscribe to the general response topic
(oc2/rsp).

• Producers SHOULD subscribe to their individual response topic
(oc2/rsp/[producer_id])

When subscribing to topics OpenC2 Producers and Consumers SHOULD
populate subscription options for each topic as follows:

• Maximum QoS: 2
• No Local: 1 (true)
• Retain as Published: 1
• Retain Handling: 0

As defined in Section 2.5 of this specification, subscribers MUST specify a
Maximum QoS level of at least 1 when subscribing to topics.

Implementers SHOULD allow for a Maximum QoS of 2 if supported by

their implementation. As noted in Section 2.5, when messages are
published with a QoS of 1 receiving clients should be prepared to handle

the possibility of receiving duplicate messages.

This specification makes no recommendations regarding values for the
following SUBSCRIBE properties:

• Subscription Identifier

3.4 PINGREQ Control Packet

OpenC2 Producers and Consumers MUST send a PINGREQ control
packet to all MQTT brokers with which they are connected if they have not
processed any other control packets with 95% of the keep-alive interval
defined by the implementer. If the implementer has not otherwise specified
a keep-alive interval, 95% of the value specified in Section 2.7 of this
specification shall be used.

3.5 Other Control Packets

This specification makes no requirements or recommendations regarding
the use of the following MQTT control packets:

• CONNACK
• PUBACK
• PUBREC
• PUBREL
• PUBCOMP
• SUBACK
• UNSUBSCRIBE
• UNSUBACK
• PINGRESP
• DISCONNECT
• AUTH

As required OpenC2 Producers and Consumers MUST create and
transmit or receive and process these control packets as specified in their
respective sections of the MQTTv5.0 specification.

4 Conformance

An OpenC2 MQTT client conforms to this specification only if it satisfies all
of the statements below:

1. Satisfies the conformance requirements for an MQTT Client as
defined in Section 7.1.2, MQTT Client Conformance Clause, of the
MQTTv5.0 specification.

2. Satisfies all of the MUST / SHALL requirements in Section 3,
Protocol Mapping of this specification.

3. Satisfies all of the MUST / SHALL requirements in Appendix B.
Safety, Security and Privacy Considerations of this specification.

Appendix A.: References

This appendix contains the normative and informative references that are
used in this document. Normative references are specific (identified by
date of publication and/or edition number or version number) and
Informative references are either specific or non-specific.

While any hyperlinks included in this appendix were valid at the time of
publication, OASIS cannot guarantee their long-term validity.

A.1 Normative References

The following documents are referenced in such a way that some or all of
their content constitutes requirements of this document.

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels",
BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, http://www.rfc-
editor.org/info/rfc2119.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol
Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008,
<https://www.rfc-editor.org/info/rfc5246>.

[RFC7525]

Sheffer, Y., Holz, R., and P. Saint-Andre, "Recommendations for Secure
Use of Transport Layer Security (TLS) and Datagram Transport Layer
Security (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
2015, https://www.rfc-editor.org/info/rfc7525.

[RFC7540]

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext Transfer Protocol
Version 2 (HTTP/2)", RFC 7540, DOI 10.17487/RFC7540, May 2015,
https://www.rfc-editor.org/info/rfc7540.

[RFC8174]

http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7540

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key
Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017,
http://www.rfc-editor.org/info/rfc8174.

[RFC8259]

Bray, T., ed., "The JavaScript Object Notation (JSON) Data Interchange
Format", STD 90, RFC 8259, DOI 10.17487/RFC8259, December 2017,
http://www.rfc-editor.org/info/rfc8259

[RFC8446]

Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3",
RFC 8446, DOI 10.17487/RFC8446, August 2018, <http://www.rfc-
editor.org/info/rfc8446>

[OpenC2-Lang-v1.0]

Open Command and Control (OpenC2) Language Specification Version
1.0. Edited by Jason Romano and Duncan Sparrell. Latest version:
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html.

[mqtt-v5.0]

MQTT Version 5.0. Edited by Andrew Banks, Ed Briggs, Ken Borgendale,
and Rahul Gupta. 07 March 2019. OASIS Standard. https://docs.oasis-
open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html. Latest version:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

A.2 Informative References

[RFC3552]

Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security
Considerations", BCP 72, RFC 3552, DOI 10.17487/RFC3552, July 2003,
https://www.rfc-editor.org/info/rfc3552.

[IACD]

M. J. Herring, K. D. Willett, "Active Cyber Defense: A Vision for Real-Time
Cyber Defense," Journal of Information Warfare, vol. 13, Issue 2, p. 80,
April 2014.
Willett, Keith D., "Integrated Adaptive Cyberspace Defense: Secure
Orchestration", International Command and Control Research and
Technology Symposium, June 2015.

http://www.rfc-editor.org/info/rfc8174
http://www.rfc-editor.org/info/rfc8259
http://www.rfc-editor.org/info/rfc8446
http://www.rfc-editor.org/info/rfc8446
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.rfc-editor.org/info/rfc3552

[mqtt-v3.1.1]

MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 29
October 2014. OASIS Standard. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. Latest version:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

[OpenC2-SLPF-v1.0]

Open Command and Control (OpenC2) Profile for Stateless Packet
Filtering Version 1.0. Edited by Joe Brule, Duncan Sparrell and Alex
Everett. 11 July 2019. Committee Specification 01. https://docs.oasis-
open.org/openc2/oc2slpf/v1.0/cs01/oc2slpf-v1.0-cs01.html. Latest version:
https://docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html.

[Sparkplug-B]

Eclipse Foundation, "Sparkplug (TM) MQTT Topic & Payload Definition",
Version 2.2, October 2019,
https://www.eclipse.org/tahu/spec/Sparkplug%20Topic%20Namespace%2
0and%20State%20ManagementV2.2-
with%20appendix%20B%20format%20-%20Eclipse.pdf

[Paho]

Eclipse Foundation Paho MQTT Client Library,
https://www.eclipse.org/paho/

Appendix B. Safety, Security and Privacy
Considerations

For operational use transferring OpenC2 messages, all connections
between OpenC2 endpoint (i.e., Producer and Consumer) MQTT clients
and brokers MUST use Transport Layer Security (TLS). Endpoint MQTT
clients and MQTT brokers used for OpenC2 messaging MUST support
TLS version 1.2 [RFC5246] connections or higher for confidentiality,
integrity, and authentication when sending OpenC2 Messages over
MQTT, and SHOULD support TLS Version 1.3 [RFC8446] or higher
connections.

OpenC2 endpoint MQTT clients and MQTT brokers MUST NOT support
any version of TLS prior to v1.2 and MUST NOT support any version of
Secure Sockets Layer (SSL).

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/openc2/oc2slpf/v1.0/cs01/oc2slpf-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2slpf/v1.0/cs01/oc2slpf-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html
https://www.eclipse.org/tahu/spec/Sparkplug%20Topic%20Namespace%20and%20State%20ManagementV2.2-with%20appendix%20B%20format%20-%20Eclipse.pdf
https://www.eclipse.org/tahu/spec/Sparkplug%20Topic%20Namespace%20and%20State%20ManagementV2.2-with%20appendix%20B%20format%20-%20Eclipse.pdf
https://www.eclipse.org/tahu/spec/Sparkplug%20Topic%20Namespace%20and%20State%20ManagementV2.2-with%20appendix%20B%20format%20-%20Eclipse.pdf
https://www.eclipse.org/paho/

The implementation and use of TLS SHOULD align with the best currently
available security guidance, such as that provided in [RFC7525]/BCP 195.

The TLS session MUST use non-NULL ciphersuites for authentication,
integrity, and confidentiality. Sessions MAY be renegotiated within these
constraints.

OpenC2 endpoint MQTT clients supporting TLS v1.2 MUST NOT use any
of the blacklisted ciphersuites identified in Appendix A of [RFC7540].

OpenC2 endpoint MQTT clients supporting TLS 1.3 MUST NOT
implement zero round trip time resumption (0-RTT).

This specification recommends that the mechanisms available in MQTT
v5.0 be given preference for implementing enhanced authentication of
OpenC2 endpoints.

OpenC2 messaging over unsecured MQTT connections SHOULD be
restricted to non-operational testing purposes.

Appendix C.: Acknowledgments

C.1 Special Thanks

The editor thanks the members of the Huntington-Ingalls Industries
OpenC2 software team for their assistance with prototyping the
capabilities defined in this specification:

• Jerome Czachor, Huntington-Ingalls Industries
• Ha Ram Yoon, Huntington-Ingalls Industries
• Mason Mirarchi, Praxis Engineering
• Patrick Connole, Praxis Engineering

C.2 Participants

The following OpenC2 TC members are acknowledged for providing
comments, suggested text, and/or participation in CSD ballots or face-to-
face meetings during the development of this specification:

• Michelle Barry, AT&T
• Joe Brule, National Security Agency
• Marco Caselli, Siemens AG
• Toby Considine, University of North Carolina at Chapel Hill

• Martin Evandt, University of Oslo
• Alex Everett, University of North Carolina at Chapel Hill
• David Girard, Trend Micro
• John-Mark Gurney, Copado
• Stephanie Hazlewood, IBM
• Christian Hunt, Copado
• Dan Johnson, sFractal Consulting LLC
• David Kemp, National Security Agency
• Anthony Librera, AT&T
• Patrick Maroney, AT&T
• Daniel Martinez, Huntington Ingalls Industries
• Vasileios Mavroeidis, University of Oslo
• Chris Ricard, Financial Services Information Sharing and Analysis

Center (FS-ISAC)
• Daniel Riedel, Copado
• Michael Rosa, National Security Agency
• Duane Skeen, Northrop Grumman
• Calvin Smith, Northrop Grumman
• Duncan Sparrell, sFractal Consulting LLC
• Michael Stair, AT&T
• Andrew Storms, Copado
• Gerald Stueve, Fornetix
• Bill Trost, AT&T
• Drew Varner, NineFX, Inc.

Appendix D.: Revision History

Revision Date Editor Changes Made

WD01 2020-
05-14

David
Lemire

Initial working draft

WD02 2020-
06-02

David
Lemire

Updates Operating Model section (2.0) and list of
questions to be resolved.

WD03 2020-
06-15

David
Lemire

Further updates Operating Model section (2.0) and
list of questions to be resolved. Initial presentation
of example operating sequences and message.
Presented as a CSD candidate at the 17 June 2020
TC meeting.

Revision Date Editor Changes Made

WD03 /
CSD01

2020-
07-07

David
Lemire

WD03 approved by OpenC2 TC as CSD01

WD04 2020-
09-15

David
Lemire

Further updates Operating Model section (2.0) and
list of questions to be resolved. Updated
presentation of example operating sequences and
messages. Initial presentation of specifics for
MQTT control packet types. Presented as a CSD
candidate at the 16 September 2020 TC meeting.

WD04 /
CSD02

2020-
09-24

David
Lemire

WD04 approved as CSD02 by electronic ballot

WD05 2021-
01-19

David
Lemire

Specification updated to use MQTT v5.0 in place of
MQTT v3.1.1.

WD06 2021-
02-08

David
Lemire

Refinements from WD05. Candidate for CSD at
February 2021 TC meeting. Was uploaded without
updating revision history

WD07 2021-
02-08

David
Lemire

Revision History table and WD number updated.

CSD03 2021-
02-25

David
Lemire

Publication of CSD03 based on WD07.

WD08 2021-
04-15

David
Lemire

Restructured to new OASIS template;
Added "DENY" example;
Remove unncessary level of indenture in Section 3;
Move topic wildcard discussion to Section 2.2;
Numerous small edits

WD09 2021-
08-13

David
Lemire

Simplified presentation of protocol requirements in
Section 3;
Added paho python client example;
Removed operating model working questions;
Enhanced example graphics to highlight
requirements from this specification;

Revision Date Editor Changes Made

Added conformance section;
Added prohibition against use of MQTT Response

Topic feature;

Populated Appendix C: Acknowledgements;
Numerous small edits and corrections

WD10 2021-
10-13

David
Lemire

Incorporates non-material changes based on public
review comments for CSD04 (based on WD09).

Appendix E.: Examples

This appendix is non-normative in its entirety.

MQTT control packet examples in this appendix present packet contents
relevant to the function(s) being illustrated but do not include all required
control packet contents (e.g., computed length fields are not listed,
bitmapped flags are written out to convey intent rather than presented as
bitmaps). Packet examples use a color code to distinguish fields
populated based on requirements contained in this specification from
fields left to the implementer's discretion or based on requirements from
the MQTTv5.0 specification, as follows:

• Green background and (r) appended to the field name in control

packet illustrations indicates the value for that field is required,
based on MUST/SHALL requirements contained in this
specification.

• Yellow background and (s) appended to the field name in control

packet illustrations indicates the value for that field is suggested,
based on MAY/SHOULD requirements contained in this
specification.

• White background in control packet illustrations indicates that the
value should be determined by the implementor, guided by the
MQTTv5.0 specification.

This notation is illustrated in Figure E-1.

Figure E-1: Color Code for Packet Examples

The OpenC2 Language Specification defines the from and to fields in

OpenC2 messages as strings containing "Authenticated identifier of the
creator of or authority for execution of a message." No further definition is
provided regarding the content of the from and to strings. The examples

in this Appendix populate these fields with notional Producer and
Consumer email addresses for convenience and readability.

The message format in the OpenC2 Language Specification includes a
request_id used to distinguish messages, and the recommended

content for the request_id is a UUID v4. The examples in this appendix

use uuid_x, where x is a number, as a shorthand for actual UUIDs,

which should be used in operation.

E.1 Example 1: Connect and Subscribe

This example illustrates the message flows involved in the process of a
Producer (i.e., an Orchestrator) and a Consumer each connecting to the
MQTT broker as clients and subscribing to the appropriate channels for
each, in accordance with the default topic model. The message flows are
depicted in Figure E-2. The Producer is assigned the username orch01.

The Consumer is assigned the username zulu01 and supports the

notional actuator profiles alpha and iota. No OpenC2-specific content

appears in any of the messages required for this example.

This example illustrates the following aspects of the operating model:

• Client and broker roles, Section 2.1
• Default topic structure, Section 2.2
• Subscription options settings, Section 2.3
• Randomly generated MQTT ClientID, Section 2.6
• Recommended 5 minute keep-alive interval, Section 2.7
• No use of MQTT "will" messages, Section 2.8
• Clean Start flag set to false, Section 2.9
• Optional use of username and password, Section 3.1

Figure E-2: Connect and Subscribe

The Producer and Consumer CONNECT packets for this example are as
follows; the optional username and password fields of the CONNECT
packets are populated in this example:

The Consumer SUBSCRIBE and Broker SUBACK packets for this
example are shown below; Subscription Options are populated as

specified in section 3.83 of this specification:

E.2 Example 2: Command / Response Exchange

This example illustrates the message flows that occur for a notional but
common process of an OpenC2 Producer publishing an OpenC2 request
to multiple Consumers. The focus of this example is the use of MQTT
PUBLISH and PUBACK control packets for the message flows. No
meaningful OpenC2 content appears in any of the messages in this
example.

In the example an OpenC2 Producer publishes a command to the channel
for a notional actuator profile, iota. The example assumes the existence

of two notional Consumers identified as Xray and Zulu that both

implement the iota AP, and that both Consumers are subscribed to the

corresponding command topic oc2/cmd/ap/iota. The example

messages first show the exchange between the Producer publishing the
Openc2 request and the MQTT broker. A similar exchange then occurs
between the broker and every Consumer device subscribed to the

oc2/cmd/ap/iota topic to distribute the command to the intended

recipients. While the OpenC2 request in this example is only notional, the
example assumes the response_requested argument is omitted from

the request message so the consumers exhibit the OpenC2 default
behavior of sending a complete response.

The command and response messages in the sequence diagram shown
in Figure E-3 are published with a QoS of 1, which requires the recipient to
respond to the PUBLISH packet with a PUBACK packet.

This example illustrates the following aspects of the operating model:

• Default topic structure, Section 2.2
• Recommended use of QoS 1, Section 2.5
• Properties to convey OpenC2 message type and serialization,

Section 2.4
• Recommended use of QoS 1, Section 2.5
• PUBLISH control packet flags, Section 3.3

Figure E-3: Publish Request and Response

The PUBLISH and PUBACK control packets for the command portion of
this example are illustrated below. The packet contents between the
Producer and the Broker, and between the Broker and the Consumers are
the same in each PUBLISH / PUBACK exchange, with the exception that
the packetId field will differ for each of the three publishing exchanges in

Figure E-3, as that value is assigned by the initiator of each exchange.
The payload of "(JSON-encoded openc2 request)" is a placeholder

for a meaningful OpenC2 request message.

E.3 Example 3: Query Consumer Actuator Profiles

This example illustrates the packaging of OpenC2 requests in MQTT
PUBLISH control packets. The scenario is a request containing an
OpenC2 query action sent over MQTT to retrieve the list of actuator

profiles supported by a set of Consumers. This example includes three
Consumers that implement several different actuator profiles, as follows:

• Consumer #1 implements the stateless packet filtering AP (slpf)

• Consumer #2 implements the stateless packet filtering and
intrusion detection system APs (slpf and ids)

• Consumer #3 implements the endpoint detection and response and
software bill of materials (SBOM) APs (edr and sbom)

NOTES:

1. No sequence diagram is included as the PUBLISH / PUBACK
sequences among Producers, Consumers, and Brokers are similar
to those illustrated in Example 2. This example only includes the
PUBLISH control packets containing the OpenC2 request and
response messages.

2. The response_requested argument is omitted from the query

request message so the Consumers exhibit the default behavior of
sending a complete response.

This example illustrates the following aspects of the operating model:

• Default topic structure, Section 2.2
• Packaging of OpenC2 messages in PUBLISH control packet

payloads, Section 2.4
• Properties to convey OpenC2 message type and serialization,

Section 2.4
• Recommended use of QoS 1, Section 2.5
• PUBLISH control packet flags, Section 3.32

The Producer initiates this process by publishing a query request to

oc2/cmd/all. The OpenC2 request message contents and

corresponding MQTT PUBLISH control packet are shown below, followed
by the Consumer replies. The PUBLISH control packet fields and OpenC2
message content that varies among the packets is shown in red in the
packet examples for clarity, and the JSON nessages in the control packet
payloads use condensed formatting (white space minimized).

Query Action -- Producer to Consumers

The following OpenC2 request message is published by the Producer and
delivered to all Consumers subscribed to oc2/cmd/all.

{

 "headers": {

 "request_id": "uuid_1",

 "created": 1610483630,

 "from": "Producer1@example.com"

 },

 "body": {

 "openc2": {

 "request": {

 "action": "query",

 "target": {

 "features": [

 "profiles"

]

 }

 }

 }

 }

}

Query Response -- Consumers to Producer

The consumer responses are as follows:

Consumer 1:

The following OpenC2 response message is published by Consumer 1
and delivered to the Producer on the oc2/rsp topic.

{

 "headers": {

 "request_id": "uuid_1",

 "created": 1610483633,

 "from": "Consumer1@example.com"

 },

 "body": {

 "openc2": {

 "response": {

 "status": 200,

 "results": {

 "profiles": [

 "slpf"

]

 }

 }

 }

 }

}

Consumer 2:

The following OpenC2 response message is published by Consumer 2
and delivered to the Producer on the oc2/rsp topic.

{

 "headers": {

 "request_id": "uuid_1",

 "created": 1610483632,

 "from": "Consumer2@example.com"

 },

 "body": {

 "openc2": {

 "response": {

 "status": 200,

 "results": {

 "profiles": [

 "slpf",

 "ids"

]

 }

 }

 }

 }

}

Consumer 3:

The following OpenC2 response message is published by Consumer 2
and delivered to the Producer on the oc2/rsp topic.

{

 "headers": {

 "request_id": "uuid_1",

 "created": 1610483632,

 "from": "Consumer3@example.com"

 },

 "body": {

 "openc2": {

 "response": {

 "status": 200,

 "results": {

 "profiles": [

 "edr",

 "sbom"

]

 }

 }

 }

 }

}

E.4 OpenC2 Deny Example

This example illustrates the execution of a common OpenC2 requests
using MQTT PUBLISH control packets. The example is a deny action for

a particular IP connection, as described in the Stateless Packet Filtering
AP, Section A.1.1. This example primarily indicates the content of the
PUBLISH control packets. For simplicity the exchange illustrated only
includes one Producer and one Consumer.

NOTES:

1. No sequence diagram is included as the PUBLISH / PUBACK
sequences among Producer, Consumer, and Broker are similar to
those illustrated in Example 2. This example only includes the
PUBLISH control packets containing the OpenC2 request and
response messages.

2. The response_requested aregument is omitted from the query

request message so the Consumers exhibit the default behavior of
sending a complete response.

This example illustrates the following aspects of the operating model:

• Default topic structure, Section 2.2
• Packaging of OpenC2 messages in PUBLISH control packet

payloads, Section 2.4

• Properties to convey OpenC2 message type and serialization,
Section 2.4

• Recommended use of QoS 1, Section 2.5
• PUBLISH control packet flags, Section 3.32

The Producer initiates this process by publishing a deny request to

oc2/cmd/slpf. The OpenC2 request message contents and

corresponding MQTT PUBLISH control packet are shown below, followed
by the Consumer reply.The JSON nessages in the control packet
payloads use condensed formatting (white space minimized).

Deny Action -- Producer to Consumer

The following OpenC2 request message is published by the Producer and
delivered to all Consumers subscribed to oc2/cmd/slpf.

{

 "headers": {

 "request_id": "uuid_2",

 "created": 1610483630,

 "from": "Producer1@example.com"

 },

 "body": {

 "openc2": {

 "request": {

 "action": "deny",

 "target": {

 "ipv4_connection": {

 "protocol": "tcp",

 "src_addr": "1.2.3.4",

 "src_port": 10996,

 "dst_addr": "198.2.3.4",

 "dst_port": 80

 }

 },

 "args": {

 "start_time": 1534775460000,

 "duration": 500,

 "response_requested": "ack",

 "slpf": {

 "drop_process": "none"

 }

 },

 "actuator": {

 "slpf": {

 "asset_id": "30"

 }

 }

 }

 }

 }

}

Deny Response -- Consumer to Producer

The following OpenC2 response message is published by the Consumer 1
and delivered to the Producer on the oc2/rsp topic.

{

 "headers": {

 "request_id": "uuid_2",

 "created": 1610483633,

 "from": "Consumer1@example.com"

 },

 "body": {

 "openc2": {

 "response": {

 "status": 102

 }

 }

 }

}

E.5 Paho Python Client Examples

This set of examples illustrates the use of the paho python MQTT client to
utilize MQTTv5 as described in this specification. The paho client
documentation [https://pypi.org/project/paho-mqtt/] currently does not

include explanations for how to access MQTTv5 features, so this example
has been constructed based on examination of the client source
[https://github.com/eclipse/paho.mqtt.python/tree/master/src/paho/mqtt].

As described in the client documentation, the basic approach to using the
paho client is:

• Create a client instance
• Connect to a broker using one of the connect*() functions
• Call one of the loop*() functions to maintain network traffic flow with

the broker
• Use subscribe() to subscribe to a topic and receive messages
• Use publish() to publish messages to the broker
• Use disconnect() to disconnect from the broker

The paho client’s MQTTv5 features also depend on the use of the
Properties class to specify properties to include in the PUBLISH

packet, and the SubscribeOptions class to specify the appropriate

options when subscribing to topics.

This example focuses on those aspects of client use that leverage
MQTTv5 features, and does not attempt to illustrate a complete working
solution.

E.5.1 Connecting

This example illustrates the process of connecting to an MQTT broker and
subscribing to topic filters appropriate for a client that implements the
stateless packet filter actuator profile (AP). The example illustrates the
following aspects of the operating model:

• Randomly generated MQTT ClientID, Section 2.6
• Recommended 5 minute keep-alive interval, Section 2.7
• No use of MQTT "will" messages, Section 2.8
• Clean Start flag set to false, Section 2.9

• Optional use of username and password, Section 3.1
• Use of TLS 1.2 or higher, Appendix B

import json

import ssl

from typing import Any, Dict

from paho.mqtt import client as mqtt

from paho.mqtt.properties import Properties

MQTT functions

def mqtt_on_connect(client: mqtt.Client, userdata:

Any, flags: dict, rc: int, properties: Properties =

None) -> None:

 """

 MQTT Callback for when client receives connection-

acknowledgement response from MQTT server.

 :param client: Class instance of connection to

server

 :param userdata: User-defined data passed to

callbacks

 :param flags: Response flags sent by broker

 :param rc: Connection result, Successful = 0

 """

 print(f"Connected with result code {rc} ->

{mqtt.connack_string(rc)}, properties: {properties}")

 # Subscribing in on_connect() allows us to renew

subscriptions if disconnected

 if rc == 0 and isinstance(userdata, list):

 if not all(isinstance(t, str) for t in

userdata):

 print("Error in on_connect. Expected topic

to be of type a list of strings.")

 return

 (host, port) = client.socket().getpeername()

 print(f"{host}:{port} listening on `{'`,

`'.join(t.lower() for t in userdata)}`")

 # See E.5.2

 client.subscribe([(t.lower(),

SUBSCRIBE_OPTIONS) for t in userdata])

def mqtt_on_message(client: mqtt.Client, userdata:

Any, msg: mqtt.MQTTMessage) -> None:

 """

 MQTT Callback for when a PUBLISH message is

received from the server.

 :param client: Class instance of connection to

server.

 :param userdata: User-defined data passed to

callbacks

 :param msg: Contains payload, topic, qos, retain

 """

 try:

 # Load message as JSON; EXAMPLE: DO NOT HARD

CODE

 payload = json.loads(msg.payload)

 print(f'Received: {payload}')

 # Process message as needed

 except Exception as e:

 print(f"Received: {msg.payload}")

 print(f"MQTT message error: {e}")

client = mqtt.Client(

 # client_id per section 2.6 of this spec

 client_id=self.client_id,

 # Subscriptions topics, Topics based on SLPF

actuator profile

 userdata=['oc2/cmd/all',

f'oc2/cmd/device/{dev_id}', 'oc2/cmd/ap/slpf'],

 protocol=mqtt.MQTTv5,

 transport='tcp'

)

Auth, if necessary

client.username_pw_set(

 username='USER',

 password='PASSWORD'

)

TLS, if necessary

client.tls_set(

 ca_certs='PATH/TO/CA_CERT',

 certfile='PATH/TO/CERT_FILE',

 keyfile='PATH/TO/KEY_FILE',

 tls_version=ssl.PROTOCOL_TLSv1_2

)

Set callbacks

client.on_connect = mqtt_on_connect

client.on_message = mqtt_on_message

try:

 client.connect(

 host='host',

 port='port',

 keepalive=300,

 clean_start=mqtt.MQTT_CLEAN_START_FIRST_ONLY

)

except Exception as e:

 print(f'MQTT Error: {e}')

print(f'Connect to MQTT broker: host:port')

client.loop_start()

E.5.2 Subscribing

This example provides supporting detail for the E.5.1 example regarding
certain aspects of establishing subscriptions using the paho client. This
code illustrates the following aspects of the operating model:

• Default topic structure, Section2.2
• Subscription options settings, Section 2.3

Addition from E.5.1

from paho.mqtt.subscribeoptions import

SubscribeOptions

SUBSCRIBE_OPTIONS = SubscribeOptions(

 qos=1,

 noLocal=True,

 retainAsPublished=True,

retainHandling=subscribeoptions.SubscribeOptions.RETAI

N_SEND_ON_SUBSCRIBE

)

TOPICS = [

 ('oc2/cmd/all', SUBSCRIBE_OPTIONS),

 (f'oc2/cmd/device/{dev_id}', SUBSCRIBE_OPTIONS),

 ('oc2/cmd/ap/slpf', SUBSCRIBE_OPTIONS)

]

client.subscribe(TOPICS)

E.5.3 Publishing

This example illustrates the creation and publishing of a message using
the paho client once a broker connection has been established as in
E.5.1. This code illustrates the following aspects of the operating model:

• Default topic structure, Section2.2
• Recommended use of QoS 1, Section 2.5
• Properties to convey OpenC2 message type and serialization,

Section 2.4
• PUBLISH control packet flags, Section 3.2

Addition from E.5.1

from paho.mqtt.packettypes import PacketTypes

msg = {

 "headers": {

 "request_id": "uuid_3",

 "created": 1610483630,

 "from": "slpf@example.com"

 },

 "body": {

 "openc2": {

 "response": {

 "status": 200,

 "status_text": "OK - the Command has

succeeded.",

 "results": {

 "profiles": ["slpf", "x-acme"]

 }

 }

 }

 }

}

configure MQTT PUBLISH Packet Properties

in accordance with section 3.3 of this spec

publish_props =

properties.Properties(PacketTypes.PUBLISH)

Format Indicator - Binary=0, UTF-8=1

publish_props.PayloadFormatIndicator = 1

Content-Type

publish_props.ContentType = "application/openc2"

User Property for Message Type

publish_props.UserProperty = ("msgType", "rsp")

User Property for Message Encoding

publish_props.UserProperty = ("encoding", "json")

client.publish(

 "oc2/rsp",

 payload=json.dumps(msg),

 qos=1,

 retain=False,

 properties=publish_props

)

Appendix F.: Notices

Copyright © OASIS Open 2021. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to
them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR
Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published, and
distributed, in whole or in part, without restriction of any kind, provided that
the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified
in any way, including by removing the copyright notice or references to
OASIS, except as needed for the purpose of developing any document or
deliverable produced by an OASIS Technical Committee (in which case
the rules applicable to copyrights, as set forth in the OASIS IPR Policy,
must be followed) or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS
IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

As stated in the OASIS IPR Policy, the following three paragraphs in
brackets apply to OASIS Standards Final Deliverable documents
(Committee Specification, Candidate OASIS Standard, OASIS Standard,
or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it
has patent claims that would necessarily be infringed by implementations
of this OASIS Standards Final Deliverable, to notify OASIS TC
Administrator and provide an indication of its willingness to grant patent
licenses to such patent claims in a manner consistent with the IPR Mode
of the OASIS Technical Committee that produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is
aware of a claim of ownership of any patent claims that would necessarily
be infringed by implementations of this OASIS Standards Final Deliverable
by a patent holder that is not willing to provide a license to such patent
claims in a manner consistent with the IPR Mode of the OASIS Technical
Committee that produced this OASIS Standards Final Deliverable. OASIS

https://www.oasis-open.org/policies-guidelines/ipr/

may include such claims on its website, but disclaims any obligation to do
so.]

[OASIS takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the
implementation or use of the technology described in this OASIS
Standards Final Deliverable or the extent to which any license under such
rights might or might not be available; neither does it represent that it has
made any effort to identify any such rights. Information on OASIS'
procedures with respect to rights in any document or deliverable produced
by an OASIS Technical Committee can be found on the OASIS website.
Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt
made to obtain a general license or permission for the use of such
proprietary rights by implementers or users of this OASIS Standards Final
Deliverable, can be obtained from the OASIS TC Administrator. OASIS
makes no representation that any information or list of intellectual property
rights will at any time be complete, or that any claims in such list are, in
fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of
this specification, and should be used only to refer to the organization and
its official outputs. OASIS welcomes reference to, and implementation and
use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-
guidelines/trademark/ for above guidance.

https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark/
https://www.oasis-open.org/policies-guidelines/trademark/

