

Specification for Transfer of OpenC2
Messages via HTTPS Version 1.0
Committee Specification Draft 0405 /
Public Review Draft 0203

04 April21 May 2019

Specification URIs

This Version:

https://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd02/open-impl-https-v1.0-
csprd02.md (Authoritative)
https://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd02/open-impl-https-v1.0-
csprd02.html
https://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd02/open-impl-https-v1.0-
csprd02.pdf

• http://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd03/open-impl-https-v1.0-
csprd03.md (Authoritative)

• http://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd03/open-impl-https-v1.0-
csprd03.html

• http://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd03/open-impl-https-v1.0-
csprd03.pdf

Previous Version:

http://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd01/open-impl-https-v1.0-
csprd01.md (Authoritative)
http://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd01/open-impl-https-v1.0-
csprd01.html

http://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd01/open-impl-https-v1.0-
csprd01.pdf

• http://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd02/open-impl-https-v1.0-
csprd02.md (Authoritative)

• http://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd02/open-impl-https-v1.0-
csprd02.html

• http://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd02/open-impl-https-v1.0-
csprd02.pdf

Latest Version:

https://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.md
(Authoritative)
https://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html
https://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.pdf

• http://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.md
(Authoritative)

• http://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html
• http://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.pdf

Technical Committee:

OASIS Open Command and Control (OpenC2) TC

Chairs:

• Joe Brule (jmbrule@nsa.gov), National Security Agency
Sounil Yu (sounil.yu@bankofamerica.com), Bank of America

• Duncan Sparrell (duncan@sfractal.com), sFractal Consulting LLC

Editor:

• David Lemire (dave.lemire@g2-inc.com), G2, Inc.

Related work:

This specification is related to:

• Open Command and Control (OpenC2) Language Specification Version 1.0. Edited by
Jason Romano and Duncan Sparrell. Latest version: httpshttp://docs.oasis-
open.org/openc2/oc2slpfoc2ls/v1.0/oc2slpfoc2ls-v1.0.html.

• Open Command and Control (OpenC2) Profile for Stateless Packet Filtering Version 1.0.
Edited by Joe Brule, Duncan Sparrell and Alex Everett. Latest version: https://docs.oasis-

open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.htmlhttp://docs.oasis-
open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html.

Abstract:

Open Command and Control (OpenC2) is a concise and extensible language to enable the
command and control of cyber defense components, subsystems and/or systems in a manner that
is agnostic of the underlying products, technologies, transport mechanisms or other aspects of the
implementation. HTTP over TLS is a widely deployed transfer protocol that provides an
authenticated, ordered, lossless delivery of uniquely-identified messages. This document
specifies the use of HTTP over TLS as a transfer mechanism for OpenC2 Messages.

Status:

This document was last revised or approved by the OASIS Open Command and Control
(OpenC2) TC on the above date. The level of approval is also listed above. Check the "Latest
version" location noted above for possible later revisions of this document. Any other numbered
Versions and other technical work produced by the Technical Committee (TC) are listed at
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2#technical.

TC members should send comments on this specification to the TC's email list. Others should
send comments to the TC's public comment list, after subscribing to it by following the
instructions at the "Send A Comment""Send A Comment" button on the TC's web page at
https://www.oasis-open.org/committees/openc2/.

This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the
mode chosen when the Technical Committee was established. For information on whether any
patents have been disclosed that may be essential to implementing this specification, and any
offers of patent licensing terms, please refer to the Intellectual Property Rights section of the
TC's web page (https://www.oasis-open.org/committees/openc2/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative
for this Work Product is provided in separate plain text files. In the event of a discrepancy
between any such plain text file and display content in the Work Product's prose narrative
document(s), the content in the separate plain text file prevails.

Citation format:

When referencing this specification the following citation format should be used:

[OpenC2-HTTPS-v1.0]

Specification for Transfer of OpenC2 Messages via HTTPS Version 1.0. Edited by David
Lemire. 04 April21 May 2019. OASIS Committee Specification Draft 0405 / Public Review
Draft 0203. https://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd02/open-impl-https-
v1.0-csprd02.html.http://docs.oasis-open.org/openc2/open-impl-https/v1.0/csprd03/open-impl-

https-v1.0-csprd03.html. Latest version: httpshttp://docs.oasis-open.org/openc2/open-impl-
https/v1.0/open-impl-https-v1.0.html.

Notices
Copyright © OASIS Open 2019. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS
Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at
the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published, and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this section are included on all such copies and derivative works.
However, this document itself may not be modified in any way, including by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing any
document or deliverable produced by an OASIS Technical Committee (in which case the rules
applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required
to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that
would necessarily be infringed by implementations of this OASIS Committee Specification or
OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness
to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the
OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of
ownership of any patent claims that would necessarily be infringed by implementations of this
specification by a patent holder that is not willing to provide a license to such patent claims in a
manner consistent with the IPR Mode of the OASIS Technical Committee that produced this
specification. OASIS may include such claims on its website, but disclaims any obligation to do
so.

OASIS takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights.
Information on OASIS' procedures with respect to rights in any document or deliverable
produced by an OASIS Technical Committee can be found on the OASIS website. Copies of
claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this OASIS Committee Specification or
OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be
complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and
should be used only to refer to the organization and its official outputs. OASIS welcomes
reference to, and implementation and use of, specifications, while reserving the right to enforce
its marks against misleading uses. Please see https://www.oasis-open.org/policies-
guidelines/trademark for above guidance.

Table of Contents
• 1 Introduction

o 1.1 IPR Policy
o 1.2 Terminology
o 1.3 Normative References
o 1.4 Non-Normative References
o 1.5 Document Conventions

§ 1.5.1 Naming Conventions
§ 1.5.2 Font Colors and Style

o 1.6 Overview
o 1.7 Goal
o 1.8 Suitability

• 2 Operating Model
• 3 Protocol Mappings

o 3.1 Layering Overview
o 3.2 General Requirements

§ 3.2.1 Serialization and Content Types
§ 3.2.2 HTTP Usage
§ 3.2.3 TLS Usage
§ 3.2.4 Authentication

o 3.3 OpenC2 Consumer as HTTP/TLS Server
• 4 Conformance
• Annex A. Acronyms
• Annex B. Examples

o B.1 HTTP Request / Response Examples: Consumer as HTTP Server
§ B.1.1 Producer HTTP POST with OpenC2 Command
§ B.1.2 Consumer HTTP Response with OpenC2 Response

• Annex C. Acknowledgments
• Annex D. Revision History

1 Introduction
The content in this section is non-normative, except where it is marked normative.

OpenC2 is a suite of specifications that enables command and control of cyber defense systems
and components. OpenC2 typically uses a request-response paradigm where a Command is
encoded by an OpenC2a Producer (managing application) and transferred to an OpenC2a
Consumer (managed device or virtualized function) using a secure transporttransfer protocol, and
the Consumer can respond with status and any requested information.

OpenC2 allows the application producing the commands to discover the set of capabilities
supported by the managed devices. These capabilities permit the managing application to adjust
its behavior to take advantage of the features exposed by the managed device. The capability
definitions can be easily extended in a noncentralized manner, allowing standard and non-
standard capabilities to be defined with semantic and syntactic rigor.

1.1 IPR Policy
This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy,OASIS
IPR Policy, the mode chosen when the Technical Committee was established. For information on
whether any patents have been disclosed that may be essential to implementing this specification,
and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of
the TC's web page (https://www.oasis-open.org/committees/openc2/ipr.php).

1.2 Terminology
This section is normative.

• Action: The task or activity to be performed (e.g., 'deny').
• Actuator: The function performed by the Consumer that executes the Command (e.g.,

'Stateless Packet Filtering').
• Argument: A property of a Command that provides additional information on how to

perform the Command, such as date/time, periodicity, duration, etc.
• Command: A Message defined by an action-targetAction-Target pair that is sent from a

Producer and received by a Consumer.

• Consumer: A managed device / application that receives Commands. Note that a single
device / application can have both Consumer and Producer capabilities.

• Message: A content- and transport-independent set of elements conveyed between
Consumers and Producers.

• Producer: A manager application that sends Commands.
• Response: A Message from a Consumer to a Producer acknowledging a Command or

returning the requested resources or status to a previously received requestCommand.
• Specifier: A property or field that identifies a Target or Actuator to some level of

precision.
• Target: The object of the actionAction, i.e., the actionAction is performed on the

targetTarget (e.g., IP Address).

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in [BCP 14, RFC2119] and
[RFC8174] when, and only when, they appear in all capitals, as shown here.

A list of acronyms is provided in Annex A.

1.3 Normative References
[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.

[RFC2818]

Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/RFC2818, May 2000,
<https://www.rfc-editor.org/info/rfc2818>.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC
5246, DOI 10.17487/RFC5246, August 2008, <https://www.rfc-editor.org/info/rfc5246>.

[RFC7230]

Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014, https://www.rfc-
editor.org/info/rfc7230.

[RFC7231]

Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Semantics and
Content", RFC 7231, DOI 10.17487/RFC7231, June 2014, https://www.rfc-
editor.org/info/rfc7231.

[RFC7235]

Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1):
Authentication", RFC 7235, DOI 10.17487/RFC7235, June 2014, https://www.rfc-
editor.org/info/rfc7235.

[RFC7540]

Belshe, M., Peon, R., and Thompson, M., "Hypertext Transfer Protocol Version 2 (HTTP/2)",
RFC 7540, DOI 10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/info/rfc7540>.

[RFC8174]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC
8174, DOI 10.17487/RFC8174, May 2017, <http://www.rfc-editor.org/info/rfc8174>.

[RFC8446]

Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI
10.17487/RFC8446, August 2018, <http://www.rfc-editor.org/info/rfc8446>

[OpenC2-Lang-v1.0]

Open Command and Control (OpenC2) Language Specification Version 1.0. Edited by Jason
Romano and Duncan Sparrell. Latest version: http://docs.oasis-
open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html.

1.4 Non-Normative References
[RFC3205]

Moore, K., "On the use of HTTP as a Substrate", BCP 56, RFC 3205, DOI 10.17487/RFC3205,
February 2002, https://www.rfc-editor.org/info/rfc3205.

[RFC7525]

Sheffer, Y., Holz, R., and P. Saint-Andre, "Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security (DTLS)", BCP 195, RFC 7525, DOI
10.17487/RFC7525, May 2015, https://www.rfc-editor.org/info/rfc7525.

[RFC8259]

Bray, T., ed., "The JavaScript Object Notation (JSON) Data Interchange Format", STD 90, RFC
8259, DOI 10.17487/RFC8259, December 2017, http://www.rfc-editor.org/info/rfc8259

[SLPF]

Open Command and Control (OpenC2) Profile for Stateless Packet Filtering Version 1.0. Edited
by Joe Brule, Duncan Sparrell and Alex Everett. Latest version: http://docs.oasis-
open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html

[IACD]

M. J. Herring, K. D. Willett, "Active Cyber Defense: A Vision for Real-Time Cyber Defense,"
Journal of Information Warfare, vol. 13, Issue 2, p. 80, April
2014..https://www.semanticscholar.org/paper/Active-Cyber-Defense-%3A-A-Vision-for-Real-
Time-Cyber-Herring-Willett/7c128468ae42584f282578b86439dbe9e8c904a8.

Willett, Keith D., "Integrated Adaptive Cyberspace Defense: Secure Orchestration", International
Command and Control Research and Technology Symposium, June 2015.
https://www.semanticscholar.org/paper/Integrated-Adaptive-Cyberspace-Defense-%3A-Secure-
by-Willett/a22881b8a046e7eab11acf647d530c2a3b03b762.

1.5 Document Conventions

1.5.1 Naming Conventions

• RFC2119/RFC8174[RFC2119]/[RFC8174] key words (see section 1.2)Section 1.2) are in
all uppercase.

• All property names and literals are in lowercase, except when referencing canonical
names defined in another standard (e.g., literal values from an IANA registry).

• Words in property names are separated with an underscore (_), while words in string
enumerations and type names are separated with a hyphen (-).

• The term "hyphen" used here refers to the ASCII hyphen or minus character, which in
Unicode is "hyphen-minus", U+002D.

• All type names, property names, object names, and vocabulary terms are between three
and 40 characters long.

1.5.2 Font Colors and Style

The following color, font and font style conventions are used in this document:

• A fixed width font is used for all type names, property names, and literals.
• Property names are in bold style – 'created_at'.
• All examples in this document are expressed in JSON. They are in fixed width font, with

straight quotes, black text and a light shaded background, and 4-space indentation. JSON
examples in this document are representations of JSON Objects. They should not be
interpreted as string literals. The ordering of object keys is insignificant. Whitespace
before or after JSON structural characters in the examples are insignificant [[RFC8259]]..

• Parts of the example may be omitted for conciseness and clarity. These omitted parts are
denoted with the ellipses (...).

Example:

HTTP/1.1 200 OK
Date: Wed, 19 Dec 2018 22:15:00 GMT
Content-type: application/openc2-cmd+json;version=1.0
X-Request-ID: id_12340e3d8fa8-0bae-4055-a341-9c97b4f328f7
{
 "action": "containdeny",
 "target": {
 "user_account"file": {
 "user_id": "fjbloggs","hashes": {
 "account_type": "windows-local"
 }
 "sha256":
"22fe72a34f006ea67d26bb7004e2b6941b5c3953d43ae7ec24d41b1a928a6973"
 }
 }
 }
}

1.6 Overview
In general, there are two types of participants involved in the exchange of OpenC2 Messages, as
depicted in Figure 1-1:

1. Producers: A Producer is an entity that creates Commands to provide instruction to one
or more systems to act in accordance with the content of the Command. A Producer may
receive and process Responses in conjunction with a Command.

2. Consumers: A Consumer is an entity that receives and may act upon a Command. A
Consumer may create Responses that provide any information captured or necessary to
send back to the Producer.

Figure 1-1. OpenC2 Message Exchange

OpenC2 is a suite of specifications for Producers and Consumers to command actuators thatand
execute cyber defense functions. These specifications include the OpenC2 Language
Specification, Actuator Profiles, and Transfer Specifications. The OpenC2 Language
Specification and Actuator Profile specifications focus on the language content and meaning at
the producerProducer and consumerConsumer of the Command and Response while the transfer
specifications focus on the protocols for their exchange.
In general, there are two types of participants involved in the exchange of OpenC2 Messages, as
depicted in Figure 1-1:

1. OpenC2 Producers: An OpenC2 Producer is an entity that creates Commands to provide
instruction to one or more systems to act in accordance with the content of the Command.
An OpenC2 Producer may receive and process Responses in conjunction with a
Command.

2. OpenC2 Consumers: An OpenC2 Consumer is an entity that receives and may act upon
an OpenC2 Command. An OpenC2 Consumer may create Responses that provide any
information captured or necessary to send back to the OpenC2 Producer.

• The OpenC2 Language Specification [OpenC2-Lang-v1.0] provides the semantics for the
essential elements of the language, the structure for Commands and Responses, and the
schema that defines the proper syntax for the language elements that represents the
Command or Response.

• OpenC2 Actuator Profiles specify the subset of the OpenC2 language relevant in the
context of specific actuatorActuator functions. Cyber defense components, devices,
systems and/or instances may (in fact are likely) to) implement multiple actuatorActuator

profiles. Actuator profiles extend the language by defining specifiersSpecifiers that
identify the actuatorActuator to the required level of precision. Actuator Profiles may
define command argumentsCommand Arguments and targetsTargets that are relevant
and/or unique to those actuatorActuator functions.

• OpenC2 Transfer Specifications utilize existing protocols and standards to implement
OpenC2 in specific environments. These standards are used for communications and
security functions beyond the scope of the language, such as message transfer encoding,
authentication, and end-to-end transport of OpenC2 Messages.

The OpenC2 Language Specification defines a language used to compose Messages for
command and control of cyber defense systems and components. A Message consists of a header
and a payload (defined as a Message body in the OpenC2 Language Specification Version 1.0
and specified in one or more actuatorActuator profiles).

The language defines two payload structures:

1. Command: An instruction from one system known as the OpenC2 "Producer",, to one or
more systems, the OpenC2 "Consumer(s)",), to act on the content of the Command.

2. Response: Any information sent back to the OpenC2 Producer as a result of the
Command.

Figure 1-1. OpenC2 Message Exchange

OpenC2 implementations integrate the related OpenC2 specifications described above with
related industry specifications, protocols, and standards. Figure 1-2 depicts the relationships
among OpenC2 specifications, and their relationships to other industry standards and

environment-specific implementations of OpenC2. Note that the layering of implementation
aspects in the diagram is notional, and not intended to preclude any particular approach to
implementing the needed functionality (for example, the use of an application-layer message
signature function to provide message source authentication and integrity).

Figure 1-2. OpenC2 Documentation and Layering Model

OpenC2 is conceptually partitioned into four layers as shown in Table 1-1.

Table 1-1. OpenC2 Protocol Layers

Layer Examples
Function-Specific
Content

Actuator Profiles
(standard and extensions)([OpenC2-SLPF-v1.0], ...)

Common Content OpenC2 Language SpecificationOpenC2 Language Specification
([OpenC2-Lang-v1.0])

Message
Transfer Specifications
(OpenC2-over-HTTPS,([OpenC2-HTTPS-v1.0], OpenC2-over-CoAP,
…)...)

Secure Transport HTTPS, CoAP, MQTT, OpenDXL, ...

• The Secure Transport layer provides a communication path between the
producerProducer and the consumerConsumer. OpenC2 can be layered over any standard
transporttransfer protocol.

• The Message layer provides a transporttransfer- and content-independent mechanism for
conveying requests, responses, and notifications.Messages. A transfer specification maps
transporttransfer-specific protocol elements to a transporttransfer-independent set of
Messagemessage elements consisting of content and associated metadata.

• The Common Content layer defines the structure of OpenC2 Commands and Responses
and a set of common language elements used to construct them.

• The Function-specific Content layer defines the language elements used to support a
particular cyber defense function. An actuatorActuator profile defines the implementation
conformance requirements for that function. OpenC2 Producers and Consumers will
support one or more profiles.

The components of an OpenC2a Command are an actionAction (what is to be done), a
targetTarget (what is being acted upon), an optional actuatorActuator (what is performing the
command), and command argumentsCommand Arguments, which influence how the
commandCommand is to be performed. An actionAction coupled with a targetTarget is
sufficient to describe a complete OpenC2 Command. Though optional, the inclusion of an
actuatorActuator and/or command argumentsCommand Arguments provides additional precision
to a command, when neededCommand.

The components of an OpenC2a Response are a numerical status code, an optional status text
string, and optional results. The format of the results, if included, depend on the type of
responseResponse being transferred.

1.7 Goal

The goal of the OpenC2 Language Specification is to provide a language for interoperating
between functional elements of cyber defense systems. This language used in conjunction with
OpenC2 Actuator Profiles and OpenC2 Transfer Specifications allows for vendor-agnostic
cybertime response to attacks.

The Integrated Adaptive Cyber Defense (IACD) framework defines a collection of activities,
based on the traditional OODA (Observe–Orient–Decide–Act) Loop [IACD]:[IACD]:

• Sensing: gathering of data regarding system activities
• Sense Making: evaluating data using analytics to understand what's happening
• Decision Making: determining a course-of-action to respond to system events
• Acting: Executing the course-of-action

The goal of OpenC2 is to enable coordinated defense in cyber-relevant time between decoupled
blocks that perform cyber defense functions. OpenC2 focuses on the Acting portion of the IACD
framework; the assumption that underlies the design of OpenC2 is that the sensing/analytics have
been provisioned and the decision to act has been made. This goal and these assumptions
guidesguide the design of OpenC2:

• Technology Agnostic: The OpenC2 language defines a set of abstract atomic cyber
defense actions in a platform and implementation agnostic manner

• Concise: An OpenC2A Command is intended to convey only the essential information
required to describe the action required and can be represented in a very compact form
for communications-constrained environments

• Abstract: OpenC2 Commands and Responses are defined abstractly and can be encoded
and transferred via multiple schemes as dictated by the needs of different implementation
environments

• Extensible: While OpenC2 defines a core set of actionsActions and targetsTargets for
cyber defense, the language is expected to evolve with cyber defense technologies, and
permits extensions to accommodate new cyber defense technologies.

1.8 Suitability
This document specifies the use of Hypertext Transfer Protocol (HTTP) over Transport Layer
Security (TLS) as a transfer mechanism for OpenC2 Messages; this HTTP/TLS layering is
typically referred to as HTTPS [RFC2818]. As described in [RFC3205], HTTP has become a
common "substrate" for information transfer for other application-level protocols. The broad
availability of HTTP makes it a useful option for OpenC2 Message transport in support of
prototyping, interoperability testing, and for operational use in environments where appropriate
security protections can be provided. Similarly, TLS is a mature and widely-used protocol for
securing information transfers in TCP/IP network environments. This specification provides
guidance to the OpenC2 implementation community when utilizing HTTPS for OpenC2
Message transport. It includes guidance for selection of TLS versions and options suitable for
use with OpenC2.

This OpenC2 over HTTPS transfer specification is suitable for operational environments where:

• Connectivity between OpenC2 Producers and OpenC2 Consumers is:
o Highly available, with infrequent network outages
o Of sufficient bandwidth that no appreciable message delays or dropped packets

are experienced
• In-band negotiation of a connection initiated by either Producer or Consumer is possible

without requiring an out-of-band signaling network.
• The overhead of HTTPS is acceptable (e.g., multiple OpenC2 Command / Response

exchanges can be passed through a single HTTPS connection).

An additional application for this transfer specification is interoperability test environments.

2 Operating Model
This section is non-normative.

This section describes the operating model used when transferring OpenC2 Commands and
Responses using HTTPS.

Each endpoint of an OpenC2-over-HTTPS interaction has both an OpenC2 role and an HTTP
function. OpenC2 Consumers will be HTTP listeners so that they can accept connections and
receive unsolicited Commands from OpenC2 Producers. OpenC2 Producers act as 'HTTP clients'
and transmit Commands to Consumers.

Figure 2 illustrates the Producer / Consumer interactions. A Producer that needs to send OpenC2
Commands initiates a TCP connection to the Consumer. Once the TCP connection is created, a
TLS session is initiated to authenticate the endpoints and provide connection confidentiality. The
Producer can then issue OpenC2 Commands by sending HTTP requests using the POST method,
with Consumer OpenC2 Responses returned in the HTTP response.

Figure 2 -- OpenC2 Producer / Consumer Interactions

3 Protocol Mappings
The section defines the requirements for using HTTP and TLS with OpenC2, including general
requirements and protocol mappings for the operating configuration described in Section 2.

3.1 Layering Overview
When using HTTPS for OpenC2 Message transfer, the layering model is:

Layer Description

OpenC2
Content

The OpenC2 Language Specification defines the overall OpenC2 language, and
the Actuator Profile(s) implemented by any particular endpoint scopes the
OpenC2 actions, targets, arguments, and specifiers that apply when commanding
that type of Actuator.

Serialization Serialization converts internal representations of OpenC2 content into a form
that can be transmitted and received. The OpenC2 default serialization is JSON.

Message

The message layer provides a content- and transport-independent mechanism for
conveying requests and responses. A Message consists of content plus a set of
meta items such as content type and version, sender, timestamp, and correlation
id. This layer maps the transport-independent definition of each message
element to its transport-specific on-the-wire representation.

HTTP The HTTP layer is responsible for conveying request and response Messages, as
described in this specification.

TLS The TLS layer is responsible for authentication of connection endpoints and
confidentiality and integrity of transferred Messages.

Lower Layer
Transport

The lower protocol layers are responsible for end-to-end delivery of Messages.
TCP/IP is the most common suite of lower layer protocols used with HTTPS.

3.2 General Requirements
This section defines serialization, HTTP, and TLS requirements.

3.2.1 Serialization and Content Types

While the OpenC2 language is agnostic of serialization, when transferring OpenC2 Messages
over HTTP/TLS as described in this specification, the default JSON serialization described in
[OpenC2-Lang-v1.0] MUST be supported.

As described in [OpenC2-Lang-v1.0], transfer protocols must convey message elements. Two
content types are defined here to support that requirement:

• OpenC2 Command:
o msg_type: "request"
o content_type: application/openc2-cmd+json;version=1.0

• OpenC2 Response:
o msg_type: "response"
o content_type: application/openc2-rsp+json;version=1.0

When OpenC2 Command Messages sent over HTTPS use the default JSON serialization the
message MUST specify the content type "application/openc2-cmd+json;version=1.0".

When OpenC2 Response Messages sent over HTTPS use the default JSON serialization the
message MUST specify the content type "application/openc2-rsp+json;version=1.0".

3.2.2 HTTP Usage

OpenC2 Consumers MUST be HTTP listeners, to implement the operating model described in
Section 2. OpenC2 Consumers acting as HTTP listeners SHOULD listen on port 443, the
registered port for HTTPS.

OpenC2 endpoints MUST implement all HTTP functionality required by this specification in
accordance with HTTP/1.1 ([RFC7230], et. al.). As described in the Table 3-1, the only HTTP
request methodsmethod utilized are GET andis POST.

HTTP MethodUtilized? UtilizedHTTP Methods
GET Yes
HEAD No
YesPOST POSTYes
PUT No
DELETE No
CONNECTNo NoGET, HEAD, PUT, DELETE, CONNECT, OPTIONS, TRACE
OPTIONS No
TRACE No

Table 3-1: HTTP Method Use

Each HTTP message body MUST contain only a single OpenC2 Command or Response
message. This does not preclude a Producer and Consumer exchanging multiple OpenC2
Command and Response Messages over time during a single HTTPS session. Depending on the
set-up, a server and client can have multiple connections, but a sequence of OpenC2 interactions
can spread over multiple connections. In some cases the connection may drop, but the session
remains open (in an idle state).

All HTTP request and response messages containing OpenC2 payloads SHOULD include the
"Cache-control:" header with a value of "no-cache".

The HTTP X-Request-ID header SHALLSHOULD be populated with the request_id string
supplied by the Producer.

3.2.3 TLS Usage

HTTPS, the transmission of HTTP over TLS, is specified in Section 2 of [RFC2818]. OpenC2
endpoints MUST accept TLS version 1.2 [RFC5246] connections or higher for confidentiality,
identification, and authentication when sending OpenC2 Messages over HTTPS, and SHOULD
accept TLS Version 1.3 [RFC8446] or higher connections.

OpenC2 endpoints MUST NOT support any version of TLS prior to v1.2 and MUST NOT
support any version of Secure Sockets Layer (SSL).

The implementation and use of TLS SHOULD align with the best currently available security
guidance, such as that provided in [RFC7525]/BCP 195.

The TLS session MUST use non-NULL ciphersuites for authentication, integrity, and
confidentiality. Sessions MAY be renegotiated within these constraints.

OpenC2 endpoints supporting TLS v1.2 MUST NOT use any of the blacklisted ciphersuites
identified in Appendix A of [RFC7540].

OpenC2 endpoints supporting TLS 1.3 MUST NOT implement zero round trip time resumption
(0-RTT).

3.2.4 Authentication

Each participant in an OpenC2 communication MUST authenticate the other participant.

3.3 OpenC2 Consumer as HTTP/TLS Server
This section defines HTTP requirements that apply when the OpenC2 Consumer is the HTTP
server.

As the OpenC2 Consumer is the HTTP server, the Producer initiates a connection to a specific
Consumer and directly transmits OpenC2 Messages containing Commands; the HTTP POST
method is used, with the OpenC2 Command body contained in the POST body.

The following HTTP request headers MUST be populated when transferring OpenC2
Commands:

• Host: host name of HTTP server:listening port number (if other than port 443)
• Content-type: application/openc2-cmd+json;version=1.0 (when using the default JSON

serialization)
• Accept: application/openc2-rsp+json;version=1.0 (when using the default JSON

serialization)

The following HTTP request header SHOULD be populated when transferring OpenC2
Commands:

• X-Request-ID: contains theif a request_id is supplied by the Producer, the supplied value
SHOULD be placed in the X-Request-ID header

The following HTTP response headers MUST be populated when transferring OpenC2
Responses:

• Content-type: application/openc2-rsp+json;version=1.0 (when using the default JSON
serialization)

• X-Request-ID: containsif the request_id receivedX-Request-ID header was populated in
the HTTP POST containing the OpenC2 Command, if anythe X-Request-ID header in the
Response MUST be populated with the value that was received in the POST

The following HTTP request and response headers SHOULD be populated when transferring
OpenC2 Commands and Responses when the Consumer is the HTTP/TLS server:

• Date: date-time in the preferred IMF-fixdate format as defined by Section 7.1.1.1 of RFC
7231; the conditions for populating the Date: header specified in Section 7.1.1.2 of RFC
7231 SHALL be followed

Example messages can be found in Annex B, section B.1.

4 Conformance
A conformant implementation of this transfer specification MUST:

1. Support JSON serialization as specified in Section 3.2.1.
2. Transfer OpenC2 Messages using the content types defined in Section 3.2.1

appropriately, as specified in Section 3.3.
3. Listen for HTTPS connections as specified in Section 3.2.2.
4. Use HTTP GET and POST methodsmethod as specified in Sections 3.2.2, and 3.3, and

no other HTTP methods.
5. Ensure HTTP request and response messages only contain a single OpenC2 message, as

specified in Section 3.2.2.
6. Implement TLS in accordance with the requirements and restrictions specified in

Sections 3.2.3.
7. Employ HTTP methods to send and receive OpenC2 Messages as specified in Section

3.3.
8. Employ only the HTTP response codes as specified in Sections 3.3.[OpenC2-Lang-v1.0],

Section 3.3.2.1.
9. Support authentication of remote parties as specified in Section 3.2.4

10. Instantiate the message elements defined in Table 3-1 of [OpenC2-Lang-v1.0] as follows:

Name HTTPS Implementation

content JSON serialization of OpenC2 Commands and Responses carried in the HTTP
message body

content_type
/
msg_type

Combined and carried in the HTTP Content-type and Accepted headers:
Command: application/openc2-cmd+json;version=1.0
Response: application/openc2-rsp+json;version=1.0

status Numeric status code supplied by OpenC2 Consumers is carried in the HTTP
response start line status code.

request_id String value originally supplied by the OpenC2 Producer is carried in HTTP X-
Request-ID header.

created Carried in the HTTP Date header in the preferred IMF-fixdate format as defined
by Section 7.1.1.1 of RFC 7231.

from Populated with the authenticated identity of the peer entity, consistent with the
configured authentication scheme.

to Carried in the HTTP Host header; this specification assumes that the Provider
will supply a single destination.

Table 4-1 - Message Element Implementation

Annex A. Acronyms
This section is non-normative.

Term Expansion
0-RTT Zero Round Trip Time
API Application Programming Interface
HTTP Hypertext Transfer Protocol
HTTPS HTTP over TLS
IETF Internet Engineering Task Force
IPR Intellectual Property Rights
JSON JavaScript Object Notation
RFC Request For Comment
RID Real-time Inter-network Defense
TC Technical Committee
TCP Transmission Control Protocol
TLS Transport Layer Security

Annex B. Examples
This section is non-normative.

OpenC2 Messages consist of a set of "message elements" defined in Section 3.2 of [OpenC2-
Lang-v1.0]. Table 4-1 of this specification defines how the message elements are handled with
HTTPS transfer. Broadly speaking the message content (i.e., Commands and Responses) is
carried in the HTTP message body while the remaining elments are handled in HTTP headers.
The example Messages below illustrate how this is handled in practice.

A Request-URI ending in /openc2 is used in all example HTTP requests.

B.1 HTTP Request / Response Examples: Consumer as
HTTP Server
This section presents the HTTP message structures used when the OpenC2 Consumer acts as the
HTTP listener.

B.1.1 Producer HTTP POST with OpenC2 Command

Example message:

POST /openc2 HTTP/1.1
Host: oc2consumer.company.net
Content-type: application/openc2-cmd+json;version=1.0
Date: Wed, 19 Dec 2018 22:15:00 GMT
X-Request-ID: id_1234d1ac0489-ed51-4345-9175-f3078f30afe5

{
 "action": ...
 "target": …
 "args": ...
}

B.1.2 Consumer HTTP Response with OpenC2 Response

Example message:

HTTP/1.1 200 OK
Date: Wed, 19 Dec 2018 22:15:10 GMT
Content-type: application/openc2-rsp+json;version=1.0
X-Request-ID: id_1234d1ac0489-ed51-4345-9175-f3078f30afe5

{
 "status": 200

 "status_text": ...
 "results": { ...
}

Annex C. Acknowledgments
The Implementation Considerations Subcommittee was tasked by the OASIS Open Command
and Control Technical Committee (OpenC2 TC) which at the time of this submission, had 132
members. The editor wishes to express their gratitude to the members of the OpenC2 TC.

The following individuals are acknowledged for providing comments, suggested text, and/or
participation in CSD ballots or face-to-face meetings:

• Michelle Barry, AT&T
• Brian Berliner, Symantec
• Joe Brule, National Security Agency
• Trey Darley, New Context Services, Inc.
• David Darnell, Systrends
• Travis Farral, Anomali
• Andy Gray, ForeScout
• John-Mark Gurney, New Context Services, Inc.
• Pavel Gutin, G2, Inc.
• David Hamilton, AT&T
• April Jackson, Praxis Engineering
• Sridhar Jayanthi, Polylogyx LLC
• Bret Jordan, Symantec
• Takahiro Kakumaru, NEC Corporation
• David Kemp, National Security Agency
• Lauri Korts-Pärn, NECAM
• Anthony Librera, AT&T
• Danny Martinez, G2, Inc.
• Lisa Mathews, National Security Agency
• Jim Meck, Fireeye
• Efrain Ortiz, Symantec Corp.
• Daniel Riedel, New Context Services, Inc.
• Nirmal Rajarathnam, ForeScout
• Chris Ricard, FS-ISAC
• Jason Romano, National Security Agency
• Philip Royer, Splunk Inc.
• Duane Skeen, Northrop Grumman
• Duncan Sparrell, sFractal Consulting LLC
• Michael Stair, AT&T
• Andrew Storms, New Context Services, Inc.
• Gerald Stueve, ForenetixFornetix

• Allan Thomson, LookingGlass Cyber Solutions
• Bill Trost, AT&T
• Ryan Trost, ThreatQuotient
• Drew Varner, NineFX
• Jason Webb, LookingGlass Cyber Solutions
• Sounil Yu, Bank of America
• David Webber, Huawei

Annex D. Revision History
Revision Date Editor Changes Made
v1.0-
wd01-wip 6/15/2018 Lemire Initial working draft

v1.0-
wd01-wip 6/29/2018 Lemire Added Suitability section (1.6), responded to SC member

comments
v1.0-
wd01-wip 7/20/2018 Lemire Additional responses to member comments; formatting clean-up

for easier conversion to Markdown.

v1.0-
wd01-wip 8/9/2018 Lemire

Implementing feedback from the July 2018 face-to-face meeting
and resolving other comments to reach WD01 version to submit
for CSD ballot.

v1.0-
wd02-wip 8/24/2018 Lemire

Various edits to clarify interactions when the producer is HTTP
listener; other edits and cleanup in response to document
comments and Slack forum discussions.

v1.0-
wd02-wip 8/29/2018 Lemire

1) Adjustments to content type definitions to distinguish
commands and responses;
2) Made corresponding adjustments to message flow
descriptions and sample messages.
3) Added acknowledgements.

v1.0-
wd02-wip 8/30/2018 Lemire Inserted proposed replacements for sequence diagrams (Figures

2 and 3).

v1.0-
wd02-wip 8/31/2018 Lemire

1) Inserted initial draft conformance language (section 4).
2) Revised Section 1 content for greater consistency with related
OpenC2 specifications.
3) Revised section 2.1 to merge proposed endpoint role
descriptions
4) General edit for formatting, readability, consistency, etc.

v1.0-
wd02-wip 9/11/2018 Lemire

1) Reviewed and accepted / rejected comments.
2) Added placeholders for addressing use of "From" field.
3) Added statements about using Cache-control

Revision Date Editor Changes Made

v1.0-
wd02-wip 9/17/2018 Lemire

1) Added table to conformance section specifying mapping of
Language Spec message elements.
2) Clarified certificate mutual authentication requirement.
3) Removed language about unsolicited responses from
Consumers
4) Numbered the conformance items

v1.0-
wd02-wip 9/17/2018 Lemire

1) Removed used of the HTTP "From:" field, and mapped the
OpenC2 "from" message element to the authenticated identity of
the peer entity
2) Updated examples to remove HTTP From:

v1.0-
wd02-wip 9/19/2018 Lemire

1) Final clean-up of residual comments and edits to create
WD02 package for CSD ballot.
2) Renamed document to WD03-wip

v1.0-
wd03-wip 10/15/2018 Lemire

1) Reorganized section 1 to align with other OpenC2
specifications
2) Reworded section 3.2.1 to properly use MUST / SHALL
language
3) Clarified requirements wording section 3.2.3 to better
indicate TLS version requirements and preferences, and
authentication requirements.
4) Updated Table 4-1 to align with changes to Language
Specification Table 3-1.

v1.0-
wd03-wip 10/16/2018 Lemire 1) Final clean-up of residual edits to create WD03 package for

CSD approval and release for public review.
v1.0-
wd03-wip 3/27/2019 Lemire Resolution of issues from public review 1.

v1.0-
wd03-wip 3/28/2019 Lemire Incremented WD version number to 05 prior to CSD ballot to

eliminate ambiguity.
v1.0-
wd06-wip 5/14/2019 Lemire Resolution of issues from public review 2 and adjustments for

consistency across the suite of specifications.

