
Open Document Format for Office
Applications (OpenDocument)
Version 1.2

Part 2: Recalculated Formula (OpenFormula)
Format

Committee Specification Draft 06 /
Public Review Draft 02

2 December 2010

Specification URIs:

This Version:
http://docs.oasis-open.org/office/v1.2/csprd02/OpenDocument-v1.2-csprd02-part2.odt
(Authoritative)
http://docs.oasis-open.org/office/v1.2/csprd02/OpenDocument-v1.2-csprd02-part2.pdf
http://docs.oasis-open.org/office/v1.2/csprd02/OpenDocument-v1.2-csprd02-part2.html

Previous Version:
http://docs.oasis-open.org/office/v1.2/cd05/OpenDocument-v1.2-cd05-part2.odt
(Authoritative)
http://docs.oasis-open.org/office/v1.2/cd05/OpenDocument-v1.2-cd05-part2.pdf
http://docs.oasis-open.org/office/v1.2/cd05/OpenDocument-v1.2-cd05-part2.html

Latest Version:
http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2-part2.odt
http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2-part2.pdf
http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2-part2.html

Technical Committee:
OASIS Open Document Format for Office Applications (OpenDocument) TC

Chairs:
Robert Weir, IBM
Michael Brauer, Oracle Corporation

Editors:
David A. Wheeler <dwheeler@dwheeler.com>,

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 1 of 254

mailto:dwheeler@dwheeler.com
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2-part2.html
http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2-part2.pdf
http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2-part2.odt
http://docs.oasis-open.org/office/v1.2/cd05/OpenDocument-v1.2-cd05-part2.html
http://docs.oasis-open.org/office/v1.2/cd05/OpenDocument-v1.2-cd05-part2.pdf
http://docs.oasis-open.org/office/v1.2/cd05/OpenDocument-v1.2-cd05-part2.odt
http://docs.oasis-open.org/office/v1.2/csprd02/OpenDocument-v1.2-csprd02-part2.html
http://docs.oasis-open.org/office/v1.2/csprd02/OpenDocument-v1.2-csprd02-part2.pdf
http://docs.oasis-open.org/office/v1.2/csprd02/OpenDocument-v1.2-csprd02-part2.odt

Patrick Durusau <patrick@durusau.net>
Eike Rathke, Oracle Corporation <erack@sun.com>
Robert Weir, IBM <robert_weir@us.ibm.com>

Related Work:
This document is part of the OASIS Open Document Format for Office Applications
(OpenDocument) Version 1.2 specification.

The OpenDocument v1.2 specification has these parts:

OpenDocument v1.2 part 1: OpenDocument Schema
OpenDocument v1.2 part 2 (this part): Recalculated Formula (OpenFormula) Format
OpenDocument v1.2 part 3: Packages

Declared XML Namespaces:
None.

Abstract:
This document is part of the Open Document Format for Office Applications
(OpenDocument) Version 1.2 specification.

It defines a formula language to be used in OpenDocument documents.

Status:
This document was last revised or approved by the OASIS Open Document Format for
Office Applications (OpenDocument) Technical Committee on the above date. The level
of approval is also listed above. Check the current location noted above for possible later
revisions of this document. This document is updated periodically on no particular
schedule.

Technical Committee members should send comments on this specification to the
Technical Committee's email list. Others should send comments to the Technical
Committee by using the "Send A Comment" button on the Technical Committee's web
page at www.oasis-open.org/committees/office.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to
the Intellectual Property Rights section of the Technical Committee web page
(www.oasis-open.org/committees/office/ipr.php).

Notices

Copyright © OASIS® 2002–2010. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS
Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the
OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published, and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this section are included on all such copies and derivative works.
However, this document itself may not be modified in any way, including by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing any
document or deliverable produced by an OASIS Technical Committee (in which case the rules
applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to
translate it into languages other than English.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 2 of 254

http://docs.oasis-open.org/office/v1.2/csd06/OpenDocument-v1.2-csd06-part1.odt
http://www.oasis-open.org/committees/office/ipr.php
http://www.oasis-open.org/committees/office
http://docs.oasis-open.org/office/v1.2/csd06/OpenDocument-v1.2-csd06-part3.odt
http://docs.oasis-open.org/office/v1.2/csd06/OpenDocument-v1.2-csd06-part2.odt
http://docs.oasis-open.org/office/v1.2/csd06/OpenDocument-v1.2-csd06-part1.odt
http://docs.oasis-open.org/office/v1.2/csd06/OpenDocument-v1.2-csd06.odt
http://docs.oasis-open.org/office/v1.2/csd06/OpenDocument-v1.2-csd06.odt
mailto:robert_weir@us.ibm.com
mailto:erack@sun.com
mailto:patrick@durusau.net

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that
would necessarily be infringed by implementations of this OASIS Committee Specification or
OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to
grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the
OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of
ownership of any patent claims that would necessarily be infringed by implementations of this
specification by a patent holder that is not willing to provide a license to such patent claims in a
manner consistent with the IPR Mode of the OASIS Technical Committee that produced this
specification. OASIS may include such claims on its website, but disclaims any obligation to do
so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Information on
OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS
Technical Committee can be found on the OASIS website. Copies of claims of rights made
available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by
implementers or users of this OASIS Committee Specification or OASIS Standard, can be
obtained from the OASIS TC Administrator. OASIS makes no representation that any information
or list of intellectual property rights will at any time be complete, or that any claims in such list are,
in fact, Essential Claims.

The names "OASIS", “OpenDocument”, “Open Document Format” and “ODF” are trademarks of
OASIS, the owner and developer of this specification, and should be used only to refer to the
organization and its official outputs. OASIS welcomes reference to, and implementation and use
of, specifications, while reserving the right to enforce its marks against misleading uses. Please
see http://www.oasis-open.org/who/trademark.php for above guidance.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 3 of 254

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/

Table of Contents

1 Introduction.. 20

1.1 Introduction... 20

1.2 Terminology.. 20

1.3 Purpose.. 20

1.4 Normative References.. 20

1.5 Non-Normative References.. 21

2 Expressions and Evaluators... 22

2.1 Introduction... 22

2.2 OpenDocument Formula Expression.. 22

2.3 Evaluators... 22

2.3.1 OpenDocument Formula Evaluator... 22

2.3.2 OpenDocument Formula Small Group Evaluator.. 22

2.3.3 OpenDocument Formula Medium Group Evaluator...23

2.3.4 OpenDocument Formula Large Group Evaluator.. 24

2.4 Variances (Implementation-defined, Unspecified, and Behavioral Changes).....................25

3 Formula Processing Model.. 26

3.1 General... 26

3.2 Expression Evaluation.. 26

3.2.1 General.. 26

3.2.2 Expression Calculation ... 26

3.2.3 Operator and Function Evaluation... 26

3.3 Non-Scalar Evaluation (aka 'Array expressions').. 27

3.4 Host-Defined Behaviors.. 29

3.5 When recalculation occurs.. 30

3.6 Numerical Models... 30

3.7 Basic Limits.. 30

4 Types... 32

4.1 General... 32

4.2 Text (String).. 32

4.3 Number... 32

4.3.1 General.. 32

4.3.2 Time... 33

4.3.3 Date... 33

4.3.4 DateTime... 33

4.3.5 Percentage.. 33

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 4 of 254

4.3.6 Currency.. 33

4.3.7 Logical (Number)... 33

4.4 Complex Number.. 34

4.5 Logical (Boolean).. 34

4.6 Error.. 34

4.7 Empty Cell.. 34

4.8 Reference... 35

4.9 ReferenceList.. 35

4.10 Array... 35

4.11 Pseudotypes... 35

4.11.1 General.. 35

4.11.2 Scalar.. 36

4.11.3 DateParam... 36

4.11.4 TimeParam.. 36

4.11.5 Integer... 36

4.11.6 TextOrNumber.. 36

4.11.7 Basis.. 36

4.11.8 Criterion... 38

4.11.9 Database... 39

4.11.10 Field... 39

4.11.11 Criteria... 39

4.11.12 Sequences (NumberSequence, NumberSequenceList, DateSequence,
LogicalSequence, and ComplexSequence)..39

4.11.13 Any... 40

5 Expression Syntax... 41

5.1 General... 41

5.2 Basic Expressions.. 41

5.3 Constant Numbers.. 42

5.4 Constant Strings... 42

5.5 Operators.. 42

5.6 Functions and Function Parameters... 43

5.7 Nonstandard Function Names.. 44

5.8 References... 44

5.9 Reference List... 45

5.10 Quoted Label.. 46

5.10.1 General.. 46

5.10.2 Lookup of Defined Labels.. 46

5.10.3 Automatic Lookup of Labels.. 46

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 5 of 254

5.10.4 Implicit Intersection.. 47

5.10.5 Automatic Range... 47

5.10.6 Automatic Intersection... 48

5.11 Named Expressions.. 48

5.12 Constant Errors... 49

5.13 Inline Arrays.. 50

5.14 Whitespace... 50

6 Standard Operators and Functions.. 51

6.1 General... 51

6.2 Common Template for Functions and Operators.. 51

6.3 Implicit Conversion Operators...52

6.3.1 General.. 52

6.3.2 Conversion to Scalar... 52

6.3.3 Implied intersection.. 52

6.3.4 Force to array context (ForceArray)...52

6.3.5 Conversion to Number... 53

6.3.6 Conversion to Integer.. 53

6.3.7 Conversion to NumberSequence.. 53

6.3.8 Conversion to NumberSequenceList... 54

6.3.9 Conversion to DateSequence.. 54

6.3.10 Conversion to Complex Number... 54

6.3.11 Conversion to ComplexSequence... 54

6.3.12 Conversion to Logical.. 55

6.3.13 Conversion to LogicalSequence.. 55

6.3.14 Conversion to Text... 55

6.3.15 Conversion to DateParam... 55

6.3.16 Conversion to TimeParam... 55

6.4 Standard Operators.. 56

6.4.1 General.. 56

6.4.2 Infix Operator "+"... 56

6.4.3 Infix Operator "-".. 56

6.4.4 Infix Operator "*".. 56

6.4.5 Infix Operator "/".. 57

6.4.6 Infix Operator "^"... 57

6.4.7 Infix Operator "="... 57

6.4.8 Infix Operator "<>"... 57

6.4.9 Infix Operator Ordered Comparison ("<", "<=", ">", ">=")..58

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 6 of 254

6.4.10 Infix Operator "&"... 58

6.4.11 Infix Operator Reference Range (":")... 58

6.4.12 Infix Operator Reference Intersection ("!")... 59

6.4.13 Infix Operator Reference Concatenation ("~") (aka Union)..59

6.4.14 Postfix Operator "%".. 60

6.4.15 Prefix Operator "+".. 60

6.4.16 Prefix Operator "-"... 60

6.5 Matrix Functions... 61

6.5.1 General.. 61

6.5.2 MDETERM.. 61

6.5.3 MINVERSE.. 61

6.5.4 MMULT.. 62

6.5.5 MUNIT... 62

6.5.6 TRANSPOSE.. 62

6.6 Bit operation functions.. 63

6.6.1 General.. 63

6.6.2 BITAND... 63

6.6.3 BITLSHIFT.. 63

6.6.4 BITOR... 63

6.6.5 BITRSHIFT.. 64

6.6.6 BITXOR... 64

6.7 Byte-position text functions... 64

6.7.1 General.. 64

6.7.2 FINDB.. 64

6.7.3 LEFTB... 65

6.7.4 LENB... 65

6.7.5 MIDB... 65

6.7.6 REPLACEB... 65

6.7.7 RIGHTB... 66

6.7.8 SEARCHB... 66

6.8 Complex Number Functions... 66

6.8.1 General.. 66

6.8.2 COMPLEX... 66

6.8.3 IMABS... 66

6.8.4 IMAGINARY.. 67

6.8.5 IMARGUMENT.. 67

6.8.6 IMCONJUGATE... 67

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 7 of 254

6.8.7 IMCOS... 67

6.8.8 IMCOSH ... 67

6.8.9 IMCOT... 68

6.8.10 IMCSC... 68

6.8.11 IMCSCH... 68

6.8.12 IMDIV.. 68

6.8.13 IMEXP... 69

6.8.14 IMLN.. 69

6.8.15 IMLOG10... 69

6.8.16 IMLOG2... 69

6.8.17 IMPOWER... 70

6.8.18 IMPRODUCT... 70

6.8.19 IMREAL... 70

6.8.20 IMSIN.. 70

6.8.21 IMSINH.. 71

6.8.22 IMSEC... 71

6.8.23 IMSECH.. 71

6.8.24 IMSQRT... 71

6.8.25 IMSUB... 72

6.8.26 IMSUM.. 72

6.8.27 IMTAN... 72

6.9 Database Functions.. 72

6.9.1 General.. 72

6.9.2 DAVERAGE... 73

6.9.3 DCOUNT... 73

6.9.4 DCOUNTA... 73

6.9.5 DGET.. 73

6.9.6 DMAX.. 74

6.9.7 DMIN... 74

6.9.8 DPRODUCT.. 74

6.9.9 DSTDEV.. 74

6.9.10 DSTDEVP... 75

6.9.11 DSUM.. 75

6.9.12 DVAR... 75

6.9.13 DVARP.. 75

6.10 Date and Time Functions.. 76

6.10.1 General.. 76

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 8 of 254

6.10.2 DATE... 76

6.10.3 DATEDIF... 76

6.10.4 DATEVALUE.. 77

6.10.5 DAY... 77

6.10.6 DAYS... 77

6.10.7 DAYS360... 77

6.10.8 EDATE... 78

6.10.9 EOMONTH.. 79

6.10.10 HOUR.. 79

6.10.11 ISOWEEKNUM.. 79

6.10.12 MINUTE... 79

6.10.13 MONTH... 80

6.10.14 NETWORKDAYS... 80

6.10.15 NOW.. 80

6.10.16 SECOND... 81

6.10.17 TIME.. 81

6.10.18 TIMEVALUE.. 81

6.10.19 TODAY.. 82

6.10.20 WEEKDAY... 82

6.10.21 WEEKNUM.. 83

6.10.22 WORKDAY.. 83

6.10.23 YEAR... 83

6.10.24 YEARFRAC... 84

6.11 External Access Functions.. 84

6.11.1 General.. 84

6.11.2 DDE... 84

6.11.3 HYPERLINK.. 85

6.12 Financial Functions... 85

6.12.1 General.. 85

6.12.2 ACCRINT... 85

6.12.3 ACCRINTM.. 86

6.12.4 AMORLINC.. 87

6.12.5 COUPDAYBS.. 87

6.12.6 COUPDAYS... 88

6.12.7 COUPDAYSNC... 89

6.12.8 COUPNCD.. 89

6.12.9 COUPNUM.. 90

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 9 of 254

6.12.10 COUPPCD.. 90

6.12.11 CUMIPMT.. 91

6.12.12 CUMPRINC... 91

6.12.13 DB... 92

6.12.14 DDB... 93

6.12.15 DISC.. 94

6.12.16 DOLLARDE... 95

6.12.17 DOLLARFR... 95

6.12.18 DURATION.. 96

6.12.19 EFFECT.. 96

6.12.20 FV.. 96

6.12.21 FVSCHEDULE.. 97

6.12.22 INTRATE... 97

6.12.23 IPMT.. 98

6.12.24 IRR.. 98

6.12.25 ISPMT... 99

6.12.26 MDURATION... 99

6.12.27 MIRR... 99

6.12.28 NOMINAL.. 100

6.12.29 NPER.. 100

6.12.30 NPV... 101

6.12.31 ODDFPRICE... 101

6.12.32 ODDFYIELD.. 102

6.12.33 ODDLPRICE..103

6.12.34 ODDLYIELD.. 103

6.12.35 PDURATION.. 104

6.12.36 PMT... 104

6.12.37 PPMT.. 105

6.12.38 PRICE... 105

6.12.39 PRICEDISC... 106

6.12.40 PRICEMAT.. 106

6.12.41 PV.. 107

6.12.42 RATE... 107

6.12.43 RECEIVED.. 108

6.12.44 RRI.. 108

6.12.45 SLN... 109

6.12.46 SYD... 109

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 10 of 254

6.12.47 TBILLEQ.. 110

6.12.48 TBILLPRICE.. 110

6.12.49 TBILLYIELD... 110

6.12.50 VDB.. 111

6.12.51 XIRR.. 112

6.12.52 XNPV... 112

6.12.53 YIELD.. 113

6.12.54 YIELDDISC.. 113

6.12.55 YIELDMAT... 114

6.13 Information Functions..114

6.13.1 General.. 114

6.13.2 AREAS... 114

6.13.3 CELL.. 114

6.13.4 COLUMN... 116

6.13.5 COLUMNS... 117

6.13.6 COUNT.. 117

6.13.7 COUNTA.. 117

6.13.8 COUNTBLANK.. 117

6.13.9 COUNTIF... 118

6.13.10 COUNTIFS.. 118

6.13.11 ERROR.TYPE.. 119

6.13.12 FORMULA... 119

6.13.13 INFO.. 119

6.13.14 ISBLANK... 120

6.13.15 ISERR... 120

6.13.16 ISERROR.. 121

6.13.17 ISEVEN... 121

6.13.18 ISFORMULA..121

6.13.19 ISLOGICAL..121

6.13.20 ISNA.. 122

6.13.21 ISNONTEXT.. 122

6.13.22 ISNUMBER..122

6.13.23 ISODD... 123

6.13.24 ISREF.. 123

6.13.25 ISTEXT.. 123

6.13.26 N.. 123

6.13.27 NA... 124

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 11 of 254

6.13.28 NUMBERVALUE... 124

6.13.29 ROW.. 125

6.13.30 ROWS... 125

6.13.31 SHEET.. 125

6.13.32 SHEETS.. 126

6.13.33 TYPE... 126

6.13.34 VALUE... 126

6.14 Lookup Functions... 128

6.14.1 General.. 128

6.14.2 ADDRESS... 128

6.14.3 CHOOSE... 129

6.14.4 GETPIVOTDATA... 129

6.14.5 HLOOKUP... 130

6.14.6 INDEX... 131

6.14.7 INDIRECT... 131

6.14.8 LOOKUP... 132

6.14.9 MATCH.. 133

6.14.10 MULTIPLE.OPERATIONS... 133

6.14.11 OFFSET... 135

6.14.12 VLOOKUP... 135

6.15 Logical Functions.. 136

6.15.1 General.. 136

6.15.2 AND... 136

6.15.3 FALSE... 136

6.15.4 IF... 137

6.15.5 IFERROR.. 137

6.15.6 IFNA.. 137

6.15.7 NOT... 138

6.15.8 OR... 138

6.15.9 TRUE... 138

6.15.10 XOR... 138

6.16 Mathematical Functions.. 139

6.16.1 General.. 139

6.16.2 ABS... 139

6.16.3 ACOS.. 139

6.16.4 ACOSH.. 139

6.16.5 ACOT... 140

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 12 of 254

6.16.6 ACOTH.. 140

6.16.7 ASIN.. 140

6.16.8 ASINH.. 141

6.16.9 ATAN.. 141

6.16.10 ATAN2.. 141

6.16.11 ATANH... 141

6.16.12 BESSELI... 142

6.16.13 BESSELJ... 142

6.16.14 BESSELK.. 142

6.16.15 BESSELY.. 143

6.16.16 COMBIN.. 143

6.16.17 COMBINA.. 143

6.16.18 CONVERT... 144

6.16.19 COS... 152

6.16.20 COSH.. 152

6.16.21 COT... 153

6.16.22 COTH.. 153

6.16.23 CSC... 153

6.16.24 CSCH.. 154

6.16.25 DEGREES... 154

6.16.26 DELTA... 154

6.16.27 ERF... 154

6.16.28 ERFC... 155

6.16.29 EUROCONVERT... 155

6.16.30 EVEN... 156

6.16.31 EXP... 157

6.16.32 FACT... 157

6.16.33 FACTDOUBLE...157

6.16.34 GAMMA... 157

6.16.35 GAMMALN.. 158

6.16.36 GCD.. 158

6.16.37 GESTEP.. 158

6.16.38 LCM... 159

6.16.39 LN.. 159

6.16.40 LOG... 159

6.16.41 LOG10... 159

6.16.42 MOD.. 160

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 13 of 254

6.16.43 MULTINOMIAL.. 160

6.16.44 ODD.. 160

6.16.45 PI... 160

6.16.46 POWER... 161

6.16.47 PRODUCT... 161

6.16.48 QUOTIENT.. 161

6.16.49 RADIANS.. 161

6.16.50 RAND.. 162

6.16.51 RANDBETWEEN... 162

6.16.52 SEC... 162

6.16.53 SERIESSUM... 162

6.16.54 SIGN.. 163

6.16.55 SIN.. 163

6.16.56 SINH.. 163

6.16.57 SECH.. 164

6.16.58 SQRT... 164

6.16.59 SQRTPI... 164

6.16.60 SUBTOTAL.. 165

6.16.61 SUM.. 165

6.16.62 SUMIF... 166

6.16.63 SUMIFS... 166

6.16.64 SUMPRODUCT... 166

6.16.65 SUMSQ... 167

6.16.66 SUMX2MY2... 167

6.16.67 SUMX2PY2... 167

6.16.68 SUMXMY2... 168

6.16.69 TAN.. 168

6.16.70 TANH... 168

6.17 Rounding Functions.. 168

6.17.1 CEILING.. 168

6.17.2 INT... 169

6.17.3 FLOOR.. 169

6.17.4 MROUND.. 170

6.17.5 ROUND... 170

6.17.6 ROUNDDOWN.. 170

6.17.7 ROUNDUP.. 171

6.17.8 TRUNC.. 171

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 14 of 254

6.18 Statistical Functions.. 171

6.18.1 General.. 171

6.18.2 AVEDEV.. 171

6.18.3 AVERAGE..172

6.18.4 AVERAGEA... 172

6.18.5 AVERAGEIF.. 172

6.18.6 AVERAGEIFS.. 172

6.18.7 BETADIST... 173

6.18.8 BETAINV... 174

6.18.9 BINOM.DIST.RANGE.. 174

6.18.10 BINOMDIST...174

6.18.11 LEGACY.CHIDIST... 174

6.18.12 CHISQDIST... 175

6.18.13 LEGACY.CHIINV... 175

6.18.14 CHISQINV... 176

6.18.15 LEGACY.CHITEST.. 176

6.18.16 CONFIDENCE... 177

6.18.17 CORREL... 177

6.18.18 COVAR.. 178

6.18.19 CRITBINOM.. 178

6.18.20 DEVSQ.. 178

6.18.21 EXPONDIST.. 178

6.18.22 FDIST.. 179

6.18.23 LEGACY.FDIST... 180

6.18.24 FINV.. 180

6.18.25 LEGACY.FINV... 180

6.18.26 FISHER... 181

6.18.27 FISHERINV... 181

6.18.28 FORECAST... 181

6.18.29 FREQUENCY.. 182

6.18.30 FTEST... 182

6.18.31 GAMMADIST... 182

6.18.32 GAMMAINV... 183

6.18.33 GAUSS.. 183

6.18.34 GEOMEAN.. 183

6.18.35 GROWTH.. 183

6.18.36 HARMEAN.. 184

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 15 of 254

6.18.37 HYPGEOMDIST.. 185

6.18.38 INTERCEPT.. 185

6.18.39 KURT... 186

6.18.40 LARGE.. 186

6.18.41 LINEST.. 186

6.18.42 LOGEST.. 189

6.18.43 LOGINV... 191

6.18.44 LOGNORMDIST.. 191

6.18.45 MAX... 192

6.18.46 MAXA.. 192

6.18.47 MEDIAN.. 192

6.18.48 MIN.. 193

6.18.49 MINA... 193

6.18.50 MODE.. 193

6.18.51 NEGBINOMDIST... 194

6.18.52 NORMDIST... 194

6.18.53 NORMINV... 195

6.18.54 LEGACY.NORMSDIST.. 195

6.18.55 LEGACY.NORMSINV.. 195

6.18.56 PEARSON... 196

6.18.57 PERCENTILE.. 196

6.18.58 PERCENTRANK... 197

6.18.59 PERMUT... 198

6.18.60 PERMUTATIONA...198

6.18.61 PHI.. 198

6.18.62 POISSON.. 199

6.18.63 PROB.. 199

6.18.64 QUARTILE... 200

6.18.65 RANK.. 200

6.18.66 RSQ... 201

6.18.67 SKEW.. 202

6.18.68 SKEWP... 202

6.18.69 SLOPE.. 203

6.18.70 SMALL... 203

6.18.71 STANDARDIZE... 203

6.18.72 STDEV.. 204

6.18.73 STDEVA.. 204

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 16 of 254

6.18.74 STDEVP.. 205

6.18.75 STDEVPA.. 205

6.18.76 STEYX... 206

6.18.77 LEGACY.TDIST... 206

6.18.78 TINV.. 207

6.18.79 TREND.. 207

6.18.80 TRIMMEAN... 208

6.18.81 TTEST... 208

6.18.82 VAR... 210

6.18.83 VARA... 210

6.18.84 VARP... 211

6.18.85 VARPA... 211

6.18.86 WEIBULL... 212

6.18.87 ZTEST... 212

6.19 Number Representation Conversion Functions.. 213

6.19.1 General.. 213

6.19.2 ARABIC... 213

6.19.3 BASE... 214

6.19.4 BIN2DEC... 214

6.19.5 BIN2HEX... 214

6.19.6 BIN2OCT... 215

6.19.7 DEC2BIN... 215

6.19.8 DEC2HEX... 216

6.19.9 DEC2OCT... 216

6.19.10 DECIMAL.. 217

6.19.11 HEX2BIN... 217

6.19.12 HEX2DEC... 217

6.19.13 HEX2OCT... 218

6.19.14 OCT2BIN... 218

6.19.15 OCT2DEC... 219

6.19.16 OCT2HEX... 219

6.19.17 ROMAN... 219

6.20 Text Functions... 221

6.20.1 General.. 221

6.20.2 ASC... 221

6.20.3 CHAR.. 223

6.20.4 CLEAN.. 223

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 17 of 254

6.20.5 CODE.. 224

6.20.6 CONCATENATE.. 224

6.20.7 DOLLAR.. 224

6.20.8 EXACT.. 224

6.20.9 FIND.. 225

6.20.10 FIXED.. 225

6.20.11 JIS... 225

6.20.12 LEFT.. 227

6.20.13 LEN... 228

6.20.14 LOWER... 228

6.20.15 MID.. 228

6.20.16 PROPER... 229

6.20.17 REPLACE.. 229

6.20.18 REPT... 229

6.20.19 RIGHT... 230

6.20.20 SEARCH... 230

6.20.21 SUBSTITUTE.. 230

6.20.22 T.. 231

6.20.23 TEXT... 231

6.20.24 TRIM.. 231

6.20.25 UNICHAR.. 232

6.20.26 UNICODE.. 232

6.20.27 UPPER.. 232

7 Other Capabilities.. 233

7.1 General... 233

7.2 Inline constant arrays.. 233

7.3 Inline non-constant arrays.. 233

7.4 Year 1583.. 233

8 Non-portable Features... 234

8.1 General... 234

8.2 Distinct Logical.. 234

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 18 of 254

1 Introduction

1.1 Introduction

This document is part of the Open Document Format for Office Applications (OpenDocument)
Version 1.2 specification. It defines a formula language for OpenDocument documents, which is
also called OpenFormula.

OpenFormula is a specification of an open format for exchanging recalculated formulas between
office applications, in particular, formulas in spreadsheet documents. OpenFormula defines data
types, syntax, and semantics for recalculated formulas, including predefined functions and
operations.

Using OpenFormula allows document creators to change the office application they use,
exchange formulas with others (who may use a different application), and access formulas far in
the future, with confidence that the recalculated formulas in their documents will produce
equivalent results if given equivalent inputs.

OpenFormula is intended to be a supporting document to the Open Document Format for Office
Applications (OpenDocument) format, particularly for defining its attributes table:formula and
text:formula. It can also be used in other circumstances where a simple, easy-to-read infix
text notation is desired for exchanging recalculated formulas.

Terminology

All text is normative unless otherwise labeled.

Within the normative text of this specification, the terms "shall", "shall not", "should", "should not",
"may" and “need not” are to be interpreted as described in Annex H of [ISO/IEC Directives].

1.2 Purpose

OpenFormula defines:

1. data types

2. syntax

3. semantics

for recalculated formulas.

OpenFormula also defines functions.

OpenFormula does not define:

1. a user interface

2. a general notation for mathematical expressions

Normative References

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 19 of 254

[CharModel] Martin J. Dürst, et. al., Character Model for the World Wide Web 1.0:
Fundamentals, http://www.w3.org/TR/2005/REC-charmod-20050215/, W3C, 2005.

[ISO/IEC Directives] ISO/IEC Directives, Part 2 (Fifth Edition) Rules for the structure and
drafting of International Standards, International Organization for Standardization and
International Electrotechnical Commission, 2004.

[ISO4217] ISO 4217:2008 Codes for the representation of currencies and funds,
International Organization for Standardization and International Electrotechnical Commission,
2008.

[ISO8601] ISO 8601:2004 Data elements and interchange formats -- Information
interchange -- Representation of dates and times, International Organization for Standardization
and International Electrotechnical Commission, 2004.

[RFC3987] M. Duerst, M. Suignard, Internationalized Resource Identifiers (IRIs),
http://www.ietf.org/rfc/rfc3987.txt, IETF, 2005.

[UNICODE] The Unicode Consortium. The Unicode Standard, Version 5.2.0, defined by: The
Unicode Standard, Version 5.2 (Mountain View, CA, The Unicode Consortium, 2009. ISBN 978-1-
936213-00-9). (http://www.unicode.org/versions/Unicode5.2.0/).

[UTR15] Mark Davis, Martin Dürst, Unicode Normalization Forms, Unicode Technical
Report #15, http://www.unicode.org/reports/tr15/tr15-25.html, 2005.

[XML1.0] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau ,
Extensible Markup Language (XML) 1.0 (Fourth Edition), http://www.w3.org/TR/2006/REC-xml-
20060816/, W3C, 2006.

1.3 Non-Normative References

[JISX0201] The Unicode Consortium., JIS X 0201 (1976) to Unicode 1.1 Table, 1994,
http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/JIS/JIS0201.TXT.

[JISX0208] The Unicode Consortium., JIS X 0208 (1990) to Unicode, 1994,
http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/JIS/JIS0208.TXT.

[UAX11] Asmus Freytag, East Asian Width, Unicode Standard Annex #11,
http://www.unicode.org/reports/tr11/tr11-19.html, 2009.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 20 of 254

http://www.unicode.org/reports/tr11/tr11-19.html
http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/JIS/JIS0208.TXT
http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/JIS/JIS0201.TXT
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.unicode.org/reports/tr15/tr15-25.html
http://www.unicode.org/versions/Unicode5.2.0/)
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/2005/REC-charmod-20050215/

2 Expressions and Evaluators

2.1 Introduction

The OpenDocument specification defines conformance for formula expressions and evaluators.
For evaluators, there are three groups of features that an evaluator may support. This chapter
defines the basic requirements for the individual conformance targets.

2.2 OpenDocument Formula Expression

An OpenDocument formula expression shall adhere to the expression syntax defined in chapter
4. It may use subsets or supersets of OpenFormula.

2.3 Evaluators

2.3.1 OpenDocument Formula Evaluator

An OpenDocument Formula Evaluator is a program that can parse and recalculate
OpenDocument formula expressions, and that meets the following additional requirements:

A) It may implement subsets or supersets of this specification.

B) It shall conform to one of: (C16) OpenDocument Formula Small Group Evaluator, (C17)
OpenDocument Formula Medium Group Evaluator or (C18) OpenDocument Formula Large
Group Evaluator

C) It may implement additional functions beyond those defined in this specification. It may further
implement additional formula syntax, additional operations, additional optional parameters for
functions, or may consider function parameters to be optional when they are required by this
specification.

D) Applications should clearly document their extensions in their user documentation, both online
and paper, in a manner so users would be likely to be aware when they are using a non-standard
extension.

Note 1: An expression may reference a nonstandard function by name, or depend on
implementation-defined behavior, or on semantics not guaranteed by this specification.: An
expression may reference a nonstandard function by name, or depend on implementation-defined
behavior, or on semantics not guaranteed by this specification. Reference to or dependence
upon functions or behavior not defined by this standard may impair the interoperability of the
resulting expression(s).

Note 2: This specification defines formulas in terms of a canonical text representation used for
exchange. If formulas are contained in XML attributes some characters shall be escaped as
required by the XML specification (e.g., the character & shall be escaped in XML attributes using
notations such as &). All string and character literals references by this specification are in
the value space defined by [UNICODE] thus, “A” is U+0041, “Z” is U+005A, and the range of
characters “A-Z” is the range U+0041 through U+005A inclusive.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 21 of 254

2.3.2 OpenDocument Formula Small Group Evaluator

An OpenDocument Formula Small Group Evaluator is an OpenDocument Formula Evaluator that
meets the following additional requirements:

A) It shall implement at least the limits defined in the “Basic Limits” section.

B) It shall implement the syntax defined in these sections on syntax: Criteria; Basic Expressions;
Constant Numbers; Constant Strings; Operators; Functions and Function Parameters;
Nonstandard Function Names; References; Simple Named Expressions; Errors; Whitespace.

C) It shall implement all implicit conversions for the types it implements, at least Text, Conversion
to Number, Reference, Conversion to Logical, and Error.

D) It shall implement the following operators (which are all the operators except reference union
(~)): Infix Operator Ordered Comparison ("<", "<=", ">", ">="); Infix Operator "&”; Infix Operator
"+”; Infix Operator "-”; Infix Operator "*”; Infix Operator "/”; Infix Operator "^”; Infix Operator "=”;
Infix Operator "<>”; Postfix Operator “%”; Prefix Operator “+”; Prefix Operator “-”; Infix Operator
Reference Intersection ("!"); Infix Operator Range (":").

E) It shall implement at least the following functions as defined in this specification: ABS 8.16.2 ;
ACOS 8.16.3 ; AND 8.15.2 ; ASIN 8.16.7 ; ATAN 8.16.9 ; ATAN2 8.16.10 ; AVERAGE 8.18.3 ;
AVERAGEIF 8.18.5 ; CHOOSE 8.14.3 ; COLUMNS 8.13.5 ; COS 8.16.19 ; COUNT 8.13.6 ;
COUNTA 8.13.7 ; COUNTBLANK 8.13.8 ; COUNTIF 8.13.9 ; DATE 8.10.2 ; DAVERAGE 8.9.2 ;
DAY 8.10.5 ; DCOUNT 8.9.3 ; DCOUNTA 8.9.4 ; DDB 8.12.15 ; DEGREES 8.16.25 ; DGET 8.9.5
; DMAX 8.9.6 ; DMIN 8.9.7 ; DPRODUCT 8.9.8 ; DSTDEV 8.9.9 ; DSTDEVP 8.9.10 ; DSUM
8.9.11 ; DVAR 8.9.12 ; DVARP 8.9.13 ; EVEN 8.16.30 ; EXACT 8.20.8 ; EXP 8.16.31 ; FACT
8.16.32 ; FALSE 8.15.3 ; FIND 8.20.9 ; FV 8.12.21 ; HLOOKUP 8.14.5 ; HOUR 8.10.10 ; IF 8.15.4
; INDEX 8.14.6 ; INT 8.17.3 ; IRR 8.12.25 ; ISBLANK 8.13.14 ; ISERR 8.13.15 ; ISERROR
8.13.16 ; ISLOGICAL 8.13.19 ; ISNA 8.13.20 ; ISNONTEXT 8.13.21 ; ISNUMBER 8.13.22 ;
ISTEXT 8.13.25 ; LEFT 8.20.12 ; LEN 8.20.13 ; LN 8.16.39 ; LOG 8.16.40 ; LOG10 8.16.41 ;
LOWER 8.20.14 ; MATCH 8.14.9 ; MAX 8.18.45 ; MID 8.20.15 ; MIN 8.18.48 ; MINUTE 8.10.12 ;
MOD 8.16.42 ; MONTH 8.10.13 ; N 8.13.26 ; NA 8.13.27 ; NOT 8.15.7 ; NOW 8.10.15 ; NPER
8.12.30 ; NPV 8.12.31 ; ODD 8.16.44 ; OR 8.15.8 ; PI 8.16.45 ; PMT 8.12.37 ; POWER 8.16.46 ;
PRODUCT 8.16.47 ; PROPER 8.20.16 ; PV 8.12.42 ; RADIANS 8.16.49 ; RATE 8.12.43 ;
REPLACE 8.20.17 ; REPT 8.20.18 ; RIGHT 8.20.19 ; ROUND 8.17.6 ; ROWS 8.13.30 ; SECOND
8.10.16 ; SIN 8.16.55 ; SLN 8.12.46 ; SQRT 8.16.58 ; STDEV 8.18.72 ; STDEVP 8.18.74 ;
SUBSTITUTE 8.20.21 ; SUM 8.16.61 ; SUMIF 8.16.62 ; SYD 8.12.47 ; T 8.20.22 ; TAN 8.16.69 ;
TIME 8.10.17 ; TODAY 8.10.19 ; TRIM 8.20.24 ; TRUE 8.15.9 ; TRUNC 8.17.9 ; UPPER 8.20.27 ;
VALUE 8.13.34 ; VAR 8.18.82 ; VARP 8.18.84 ; VLOOKUP 8.14.12 ; WEEKDAY 8.10.20 ; YEAR
8.10.23

F) It need not evaluate references that contain more than one area.

G) It need not implement inline arrays, complex numbers, and the reference union operator.

H) For expressions embedded in an OpenDocument document, it shall consider the values of the
following host-defined properties: HOST-CASE-SENSITIVE, HOST-PRECISION-AS-SHOWN,
HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL, HOST-AUTOMATIC-FIND-
LABELS, HOST-USE-REGULAR-EXPRESSIONS, HOST-USE-WILDCARDS, HOST-NULL-
YEAR, HOST-NULL-DATE.

I) It shall support international characters for named expression identifiers.

J) Note: This specification does not mandate a user interface for international characters, so a
resource-constrained application may choose to not show the traditional glyph (e.g., it may show
the [UNICODE] numeric code instead).

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 22 of 254

2.3.3 OpenDocument Formula Medium Group Evaluator

An OpenDocument Formula Medium Group Evaluator is an OpenDocument Small Group
Formula Evaluator that meets the following additional requirements:

A) It shall implement the following functions as defined in this specification: ACCRINT 8.12.2 ;
ACCRINTM 8.12.3 ; ACOSH 8.16.4 ; ACOT 8.16.5 ; ACOTH 8.16.6 ; ADDRESS 8.14.2 ; ASINH
8.16.8 ; ATANH 8.16.11 ; AVEDEV 8.18.2 ; BESSELI 8.16.12 ; BESSELJ 8.16.13 ; BESSELK
8.16.14 ; BESSELY 8.16.15 ; BETADIST 8.18.7 ; BETAINV 8.18.8 ; BINOMDIST 8.18.10 ;
CEILING 8.17.2 ; CHAR 8.20.3 ; CLEAN 8.20.4 ; CODE 8.20.5 ; COLUMN 8.13.4 ; COMBIN
8.16.16 ; CONCATENATE 8.20.6 ; CONFIDENCE 8.18.16 ; CONVERT 8.16.18 ; CORREL
8.18.17 ; COSH 8.16.20 ; COT 8.16.21 ; COTH 8.16.22 ; COUPDAYBS 8.12.6 ; COUPDAYS
8.12.7 ; COUPDAYSNC 8.12.8 ; COUPNCD 8.12.8 ; COUPNUM 8.12.10 ; COUPPCD 8.12.11 ;
COVAR 8.18.18 ; CRITBINOM 8.18.19 ; CUMIPMT 8.12.12 ; CUMPRINC 8.12.13 ; DATEVALUE
8.10.4 ; DAYS360 8.10.7 ; DB 8.12.14 ; DEVSQ 8.18.20 ; DISC 8.12.16 ; DOLLARDE 8.12.17 ;
DOLLARFR 8.12.18 ; DURATION 8.12.19 ; EFFECT 8.12.20 ; EOMONTH 8.10.9 ; ERF 8.16.27 ;
ERFC 8.16.28 ; EXPONDIST 8.18.21 ; FISHER 8.18.26 ; FISHERINV 8.18.27 ; FIXED 8.20.10 ;
FLOOR 8.17.4 ; FORECAST 8.18.28 ; FTEST 8.18.30 ; GAMMADIST 8.18.31 ; GAMMAINV
8.18.32 ; GAMMALN 8.16.35 ; GCD 8.16.36 ; GEOMEAN 8.18.34 ; HARMEAN 8.18.36 ;
HYPGEOMDIST 8.18.37 ; INTERCEPT 8.18.38 ; INTRATE 8.12.23 ; ISEVEN 8.13.17 ; ISODD
8.13.23 ; ISOWEEKNUM 8.10.11 ; KURT 8.18.39 ; LARGE 8.18.40 ; LCM 8.16.38 ;
LEGACY.CHIDIST 8.18.11 ; LEGACY.CHIINV 8.18.13 ; LEGACY.CHITEST 8.18.15 ;
LEGACY.FDIST 8.18.23 ; LEGACY.FINV 8.18.25 ; LEGACY.NORMSDIST 8.18.54 ;
LEGACY.NORMSINV 8.18.55 ; LEGACY.TDIST 8.18.77 ; LINEST 8.18.41 ; LOGEST 8.18.42 ;
LOGINV 8.18.43 ; LOGNORMDIST 8.18.44 ; LOOKUP 8.14.8 ; MDURATION 8.12.27 ; MEDIAN
8.18.47 ; MINVERSE 8.5.3 ; MIRR 8.12.28 ; MMULT 8.5.4 ; MODE 8.18.50 ; MROUND 8.17.5 ;
MULTINOMIAL 8.16.43 ; NEGBINOMDIST 8.18.51 ; NETWORKDAYS 8.10.14 ; NOMINAL
8.12.29 ; ODDFPRICE 8.12.32 ; ODDFYIELD 8.12.33 ; ODDLPRICE 8.12.34 ; ODDLYIELD
8.12.35 ; OFFSET 8.14.11 ; PEARSON 8.18.56 ; PERCENTILE 8.18.57 ; PERCENTRANK
8.18.58 ; PERMUT 8.18.59 ; POISSON 8.18.62 ; PRICE 8.12.39 ; PRICEMAT 8.12.41 ; PROB
8.18.63 ; QUARTILE 8.18.64 ; QUOTIENT 8.16.48 ; RAND 8.16.50 ; RANDBETWEEN 8.16.51 ;
RANK 8.18.65 ; RECEIVED 8.12.44 ; ROMAN 8.19.17 ; ROUNDDOWN 8.17.7 ; ROUNDUP
8.17.8 ; ROW 8.13.29 ; RSQ 8.18.66 ; SERIESSUM 8.16.53 ; SIGN 8.16.54 ; SINH 8.16.56 ;
SKEW 8.18.67 ; SKEWP 8.18.68 ; SLOPE 8.18.69 ; SMALL 8.18.70 ; SQRTPI 8.16.59 ;
STANDARDIZE 8.18.71 ; STDEVA 8.18.73 ; STDEVPA 8.18.75 ; STEYX 8.18.76 ; SUBTOTAL
8.16.60 ; SUMPRODUCT 8.16.64 ; SUMSQ 8.16.65 ; SUMX2MY2 8.16.66 ; SUMX2PY2 8.16.67
; SUMXMY2 8.16.68 ; TANH 8.16.70 ; TBILLEQ 8.12.48 ; TBILLPRICE 8.12.49 ; TBILLYIELD
8.12.50 ; TIMEVALUE 8.10.18 ; TINV 8.18.78 ; TRANSPOSE 8.5.6 ; TREND 8.18.79 ;
TRIMMEAN 8.18.80 ; TTEST 8.18.81 ; TYPE 8.13.33 ; VARA 8.18.83 ; VDB 8.12.51 ; WEEKNUM
8.10.21 ; WEIBULL 8.18.86 ; WORKDAY 8.10.22 ; XIRR 8.12.52 ; XNPV 8.12.53 ; YEARFRAC
8.10.24 ; YIELD 8.12.54 ; YIELDDISC 8.12.55 ; YIELDMAT 8.12.56 ; ZTEST 8.18.87

B) It shall implement the Infix Operator Reference Union ("~") 8.4.13

C) It shall evaluate references with more than one area.

2.3.4 OpenDocument Formula Large Group Evaluator

An OpenDocument Formula Large Group Evaluator is an OpenDocument Medium Group
Formula Evaluator that meets the following additional requirements:

A) It shall implement the syntax defined in these sections on syntax: Inline Arrays; Automatic
Intersection; External Named Expressions.

B) It shall implement the complex number type as discussed in the section on Complex Number,
array formulas, and Sheet-local Named Expressions.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 23 of 254

It shall implement the following functions as defined in this specification: AMORLINC 8.12.5 ;
ARABIC 8.19.2 ; AREAS 8.13.2 ; ASC 8.20.2 ; AVERAGEA 8.18.4 ; AVERAGEIFS 8.18.6 ; BASE
8.19.3 ; BIN2DEC 8.19.4 ; BIN2HEX 8.19.5 ; BIN2OCT 8.19.6 ; BINOM.DIST.RANGE 8.18.9 ;
BITAND 8.6.2 ; BITLSHIFT 8.6.3 ; BITOR 8.6.4 ; BITRSHIFT 8.6.5 ; BITXOR 8.6.6 ; CHISQDIST
8.18.12 ; CHISQINV 8.18.14 ; COMBINA 8.16.17 ; COMPLEX 8.8.2 ; COUNTIFS 8.13.10 ; CSC
8.16.23 ; 8.16.23CSCH 8.16.24 ; DATEDIF 8.10.3 ; DAYS 8.10.6 ; DDE 8.11.2 ; DEC2BIN 8.19.7
; DEC2HEX 8.19.8 ; DEC2OCT 8.19.9 ; DECIMAL 8.19.10 ; DELTA 8.16.26 ; EDATE 8.10.8 ;
ERROR.TYPE 8.13.11; EUROCONVERT 8.16.29 ; FACTDOUBLE 8.16.33 ; FDIST 8.18.22 ;
FINDB 8.7.2 ; FINV 8.18.24 ; FORMULA 8.13.12 ; FREQUENCY 8.18.29 ; FVSCHEDULE
8.12.22 ; GAMMA 8.16.34 ; GAUSS 8.18.33 ; GESTEP 8.16.37 ; GETPIVOTDATA 8.14.4 ;
GROWTH 8.18.35 ; HEX2BIN 8.19.11 ; HEX2DEC 8.19.12 ; HEX2OCT 8.19.13 ; HYPERLINK
8.11.3 ; IFERROR 8.15.5 ; IFNA 8.15.6 ; IMABS 8.8.3 ; IMAGINARY 8.8.4 ; IMARGUMENT 8.8.5
; IMCONJUGATE 8.8.6 ; IMCOS 8.8.7 ; IMCOT 8.8.9 ; IMCSC 8.8.10 ; IMCSCH 8.8.11 ; IMDIV
8.8.12 ; IMEXP 8.8.13 ; IMLN 8.8.14 ; IMLOG10 8.8.15 ; IMLOG2 8.8.16 ; IMPOWER 8.8.17 ;
IMPRODUCT 8.8.18 ; IMREAL 8.8.19 ; IMSEC 8.8.22 ; IMSECH 8.8.23 ; IMSIN 8.8.20 ; IMSQRT
8.8.24 ; IMSUB 8.8.25 ; IMSUM 8.8.26 ; IMTAN 8.8.27AMORDEGRC 8.12.4 ; AMORLINC 8.12.5
; ARABIC 8.19.2 ; AREAS 8.13.2 ; ASC 8.20.2 ; AVERAGEA 8.18.4 ; AVERAGEIFS 8.18.6 ;
BASE 8.19.3 ; BIN2DEC 8.19.4 ; BIN2HEX 8.19.5 ; BIN2OCT 8.19.6 ; BINOM.DIST.RANGE
8.18.9 ; BITAND 8.6.2 ; BITLSHIFT 8.6.3 ; BITOR 8.6.4 ; BITRSHIFT 8.6.5 ; BITXOR 8.6.6 ;
CHISQDIST 8.18.12 ; CHISQINV 8.18.14 ; COMBINA 8.16.17 ; COMPLEX 8.8.2 ; COUNTIFS
8.13.10 ; CSC 8.16.23 ; 8.16.23CSCH 8.16.24 ; DATEDIF 8.10.3 ; DAYS 8.10.6 ; DDE 8.11.2 ;
DEC2BIN 8.19.7 ; DEC2HEX 8.19.8 ; DEC2OCT 8.19.9 ; DECIMAL 8.19.10 ; DELTA 8.16.26 ;
EDATE 8.10.8 ; ERROR.TYPE 8.13.11; EUROCONVERT 8.16.29 ; FACTDOUBLE 8.16.33 ;
FDIST 8.18.22 ; FINDB 8.7.2 ; FINV 8.18.24 ; FORMULA 8.13.12 ; FREQUENCY 8.18.29 ;
FVSCHEDULE 8.12.22 ; GAMMA 8.16.34 ; GAUSS 8.18.33 ; GESTEP 8.16.37 ;
GETPIVOTDATA 8.14.4 ; GROWTH 8.18.35 ; HEX2BIN 8.19.11 ; HEX2DEC 8.19.12 ; HEX2OCT
8.19.13 ; HYPERLINK 8.11.3 ; IFERROR 8.15.5 ; IFNA 8.15.6 ; IMABS 8.8.3 ; IMAGINARY 8.8.4
; IMARGUMENT 8.8.5 ; IMCONJUGATE 8.8.6 ; IMCOS 8.8.7 ; IMCOT 8.8.9 ; IMCSC 8.8.10 ;
IMCSCH 8.8.11 ; IMDIV 8.8.12 ; IMEXP 8.8.13 ; IMLN 8.8.14 ; IMLOG10 8.8.15 ; IMLOG2 8.8.16
; IMPOWER 8.8.17 ; IMPRODUCT 8.8.18 ; IMREAL 8.8.19 ; IMSEC 8.8.22 ; IMSECH 8.8.22 ;
IMSIN 8.8.20 ; IMSQRT 8.8.24 ; IMSUB 8.8.25 ; IMSUM 8.8.26 ; IMTAN 8.8.27 ; INDIRECT
8.14.7 ; INFO 8.13.13 ; IPMT 8.12.24 ; ISFORMULA 8.13.18 ; ISPMT 8.12.26 ; ISREF 8.13.24 ;
JIS 8.20.11 ; LEFTB 8.7.3 ; LENB 8.7.4 ; MAXA 8.18.46 ; MDETERM 8.5.2 ;
MULTIPLE.OPERATIONS 8.14.10 ; MUNIT 8.5.5 ; MIDB 8.7.5 ; MINA 8.18.49 ; NORMDIST
8.18.52 ; NORMINV 8.18.53 ; NUMBERVALUE 8.13.28 ; OCT2BIN 8.19.14 ; OCT2DEC 8.19.15 ;
OCT2HEX 8.19.16 ; PDURATION 8.12.36 ; PERMUTATIONA 8.18.60 ; PHI 8.18.61 ; PPMT
8.12.38 ; PRICEDISC 8.12.40 ; REPLACEB 8.7.6 ; RIGHTB 8.7.7 ; RRI 8.12.45 ; SEARCH
8.20.20 ; SEARCHB 8.7.8 ; SEC 8.16.52 ; SECH 8.16.57 ; SHEET 8.13.31 ; SHEETS 8.13.32 ;
SUMIFS 8.16.63 ; TEXT 8.20.23 ; UNICHAR 8.20.25 ; UNICODE 8.20.26 ; VARPA 8.18.85 ; XOR
8.15.10

Note: The following functions are documented by this specification, but not included even in the
Large group:CELL 8.13.3 ; DOLLAR 8.20.7

2.4 Variances (Implementation-defined, Unspecified, and
Behavioral Changes)

Applications should document all implementation-defined and variances from this standard in a
manner that the application users can obtain the information (e.g., in the application help for the
relevant function).

In a few cases a specific approach is required (e.g., string indexes begin at one), which may be
different than the user interface of some implementations.

In practice, for nearly all documents the differences are irrelevant. The primary variances and
differences from OpenFormula and some existing applications are:

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 24 of 254

● Some conversions between types are not required to be automatic. In particular, applications
may, but need not,, perform automatic conversion of text in a cell when it is to be used as a
number (see Auto Text to Number).

Note: Interoperability is improved by the use of the DATE and TIME functions or the textual ISO
8601 date representation because dates in that format do not rely upon epoch or locale-specific
settings.

There need not be a distinguishable Logical type. Applications may have a Logical type distinct
from Number (see Distinct Logical), but Logical values may also be represented by the Number
type using the values 1 (True) and 0 (False). This means that functions that take number
sequences (such as SUM) may or may not include true and false values in the sequence.

● Applications vary on the set of Errors they support. In this specification. The only
distinguished Error is #N/A; all other errors are simply errors, allowing applications to choose
the Error set that best meets their needs.

● In this specification, string index positions start from 1. Users of applications with string index
positions starting from 0 shall add and subtract 1 on import/export of this format, as
appropriate.

● Database criteria match patterns (such as the pattern matching language for text) have
historically varied: Some support glob syntax (e.g., a*b is a, followed by 0 or more characters,
followed by b), while others support traditional regular expression syntax (e.g., a*b is zero or
more a’s, followed by b). This specification supports both pattern languages.

Note: Interoperability is improved by the use of the DATE and TIME functions or the textual
[ISO8601] date representation because dates in that format do not rely upon epoch or locale-
specific settings.

In an OpenDocument file, calculation settings impact formula recalculation, which can be the
same or different from a particular application's defaults. These include whether or not text
comparisons are case-sensitive, or if search criteria shall apply to the whole cell.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 25 of 254

3 Formula Processing Model

3.1 General

This section describes the basic formula processing model: how expressions are calculated,
when recalculation occurs, and limits on formulas.

3.2 Expression EvaluCalculation

3.2.1 General

OpenFormula defines rules for the evaluation of expressions as well as the functions and
operators that appear in expressions.

3.2.2 Expression Calculation

Expressions in OpenFormula shall be evaluated by application of the following rules:

1) If an expression consists of a constant Number (7.2), a constant String (7.3), a Reference
(7.7), constant Error (per section 5.12), the value of that type is returned.

2) If an expression consists of one or more operations, apply the operators in order of
precedence and associativity as defined by Table 1 in 7.4 (Operators). Precedence of
operators may be altered by the use of "(" (LEFT PARENTHESES, U+0028) and ")"
(RIGHT PARENTHESES, U+0029) to group operators. Evaluate the operator as
described in Operator and Function Evaluation, 3.2.3.

3) If an expression consists of a function call (7.5 , 7.6), evaluate the function as described in
Operator and Function Evaluation, 3.2.3.

4) If an expression consists of a named expression (7.10), the result of evaluating the named
expression is returned.

5) If an expression consists of a QuotedLabel (7.9), AutomaticIntersection (7.9.6), or Array
(7.14), its value is returned. Expression Syntax 5

Once evaluation has completed:

1) If the result is a Reference and a single non-reference value is needed, it is converted to
the referenced value, using the rules of Non-Scalar Evaluation, 3.3, 1.2.

2) If the result an Array, for the display area, apply the rules of Non-Scalar Evaluation, 3.3 ,
1.1.

3.2.3 Operator and Function Evaluation

Operators and functions in OpenFormula shall be evaluated according to their definitions by
applying the following rules:

1) The value of all expression arguments are c omputed. Exceptions to computation of all
arguments are noted in a function's specification.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 26 of 254

Note: The practice of computing all argument expressions is known as "eager" evaluation.
The IF function is an example of a function that does not require computation of all
arguments.

2) If an argument expression evaluates to Error, calculation of the operator or function may
short-circuit and return the Error if the function does not suppress error propagation as
noted in the function's specification.

3) If an operator or function is passed a value of incorrect type, call the appropriate implicit
conversion function to convert the value to the correct type. If conversion is not possible,
generate an Error.

4) The function or operation is called with its argument expressions' results, and the result of
the function or operation is the evaluation of the expression.

3.3 Non-Scalar Evaluation (aka 'Array expressions')

Conceptually, formulas are recalculated from the “outside in”. Any formula is an expression that
produces a result. An expression is calculated as follows:

1. If an expression is a constant number or string, that constant is returned

2. If it is a reference, the reference is returned. If a reference is to be displayed, the value of
the reference is displayed, not the reference itself.

3. Otherwise, it is one or more operations or functions; in the case of operations, the
highest-precedence operation not processed is processed first.

a) The values of all argument expressions are computed, that is, formulas are normally
“eagerly” evaluated. Exceptions to eager evaluation are noted in the function or
operation's specification; in particular, the IF() function does not calculate the “else”
parameter if the the condition is true, and does not calculate the “then” parameter if
the condition is false. The CHOOSE() function does not calculate parameters other
than the chosen. Function parameters shall act as if they had been computed in left-
to-right order. Operators should act as if they had been computed in the order of
precedence and associativity (so they are computed left-to-right for +, *, and so on,
but right-to-left for the exponentiation operator ^).

b) If any of the arguments of the function/operation are not of the correct type, the
appropriate implicit conversion function is called to convert it to the correct type for
the operator or function.

c) The operation or function is then called with the resulting values of its arguments.

The above model only describes how recalculation appears to the end-user. Applications may,
and typically do, optimize this process as long as the final results produce the same answer. For
example, applications may parse a formula and translate it into some intermediate form (such as
a byte code), which immediately descends to the “innermost” computation that needs to be
calculated and then works out to the final result.

When a formula is computed, it is notionally provided a "context" as input. The context may
include formula variables (including named ranges, document variables, fields, and so on), and/or
additional function definitions that the formula can call. A formula may also be provided as input
an ordered list of zero or more parameters (though the syntax for parameters is not given in this
version of the specification). In an OpenDocument formula, this context also includes calculation
settings (such as whether or not text comparisons are case-sensitive).

A formula may include calls to functions, which are normally provided the same context but with
their own set of ordered parameters.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 27 of 254

Any formula computes a single result, though that single result may actually be a set of values.

3.4 Non-Scalar Evaluation (aka 'Array expressions')

Non-scalar values passed as arguments to functions are evaluated by intersection or iteration.

1) Evaluation as an implicit intersection of the argument with the expression's evaluation
position.

1.1) Inline Arrays
Element (0;0) of the array is used in place of the array.

Note 1:
=ABS({-3;-4}) => ABS(-3) // row vector
=ABS({-3|-4}) => ABS(-3) // column vector
=ABS({-3;-4|-6;-8}) => ABS(-3) // matrix
={1;2;3|4;5;6} => 1 // simple display

1.2) References

1.2.1) If the target reference is a row-vector (Nx1) use the value at the intersection of
the evaluation position's column and the reference's row.

Note 2:
in cell B2 : =ABS(A1:C1) => ABS(B1)
If there is no intersection the result is #VALUE!

Note 3: in cell D4 : =ABS(A1:C1) => #VALUE!

1.2.2) If the target reference is a column-vector (1xM) the value at the intersection of
the evaluation position's row and the reference's column.

Note 4:
in cell B2 : =ABS(A1:A3) => ABS(A2)
in cell D4 : =ABS(A1:A3) => #VALUE!

2) Matrix evaluation.

If an expression is being evaluated in a cell flagged as a being part of a 'Matrix'
(OpenDocument 8.1.3 table:number-matrix-columns-spanned):

2.1) The portion of a non-scalar result to be displayed may not be co-extensive with a
specified display area. The portion of the non-scalar result to be displayed is
determined by:

2.1.1) If the position to be displayed exists in the result, display that position.

2.1.2) If the non-scalar result is 1 column wide, subsequent columns in the display
area display the value in the first column. This applies to
- scalars '3'
- singletons '{3}'
- column vectors '{1|2|3}'

2.1.3) If the non-scalar result is 1 row high, subsequent rows in the display area use
the value of the first row. This applies to
- scalars '3'
- singletons '{3}'
- row vectors '{1;2;3}'

2.1.4) If none of the other rules apply #N/A

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 28 of 254

Note 5:
in matrix A1:B3 with ={1;2|3;4|5;6} : cell B2 contains 4. [Rule 2.1.1]
in matrix A1:B3 with ={1|3|5} : cell B2 contains 3. [Rule 2.1.1 for
row, and Rule 2.1.2 column]
in matrix A1:B3 with ={2;4} : cell B2 contains 4. [Rule 2.1.3 for
row, and Rule 2.1.1 column]
in matrix A1:C4 with ={1;2|3;4|5;6} : cell C1,A4 contain #N/A. [Rule 2.1.4]

Note 6:
in matrix A1:B3 with ={1;2|3;4|5;6} : cell B2 contains 4. [Rule 2.1.1]
in matrix A1:B3 with ={1|3|5} : cell B2 contains 3. [Rule 2.1.1 for
row, and Rule 2.1.2 column]
in matrix A1:B3 with ={2;4} : cell B2 contains 4. [Rule 2.1.3 for
row, and Rule 2.1.1 column]
in matrix A1:C4 with ={1;2|3;4|5;6} : cell C1,A4 contain #N/A. [Rule 2.1.4]

NOTE : if a value is not requested it is not displayed
in matrix A1:B2 with ={1;2|3;4|5;6} : the value '6' is not displayed because
B3 is not part of the display matrix.

2.2) Calculations with non-scalar inputs are a generalization of (2.1).

When evaluating a formula in 'matrix' mode, and a non-scalar value is passed to a
function argument that expects a scalar, the function is evaluated multiple times,
iterating over the non-scalar input(s) and putting the function result into a matrix at
the position corresponding to the input. Unary/Binary operators, other than range and
union, follow the rules for scalar functions when passed non-scalar values.

Inline arrays and references are interchangeable.

2.2.1) Functions returning arrays are not eligible for implicit iteration. When evaluated
in 'matrix' mode the {0;0}th element is used.

Note 7:
e.g. =SUM(INDIRECT({"A1";"A2")) would produce the value in A1 when
evaluated in array mode.

2.2.2) The result matrix is rectangular, sized with the maximum number of rows and
columns from all non-scalar arguments.

Note 8:
={1;2}+{3;4;5} => {4;6;#N/A}
={1}+{1;2} => {2;3}

2.2.3) The result matrix is populated by extracting the corresponding value from each
of the non-scalar arguments based on the following rules, and evaluating the
function with that set of arguments.

2.2.3.1) If the argument data is a singleton array or a scalar the value is repeated
for each evaluation.

Note 9:
= 1 + {1;2;3|4;5;6} => {2;3;4|5;6;7}
= {1} + {1;2;3|4;5;6}=> {2;3;4|5;6;7}

2.2.3.2) If the argument data is 1 column wide the value in the corresponding row
is used to evaluate all columns in the result matrix.

Note 10:
= {1|2} + {10;20|30;40} => {11;21|32;42}

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 29 of 254

2.2.3.3) If the argument data is 1 row height the value in the corresponding
column is used to evaluate all rows in the result matrix.

Note 11:
= {1;2} + {10;20|30;40} => {11;22|31;42}

2.2.3.4) If one argument data is 1 column wide and another argument data is 1
row height the value of the corresponding row respectively column is used to
evaluate all elements in the result matrix.

Note 12:
={1;2} + {10|20} => {11;12|21;22}

2.2.3.5) If an argument is a 2d matrix the argument value in the position
corresponding to the current output position is used if it is within range of the
supplied argument, otherwise #N/A is used in the calculation.

Note 13:
=MID("abcd";{1;2};{1;2;3}) => {"a";"bc";#VALUE!}

3.5 Host-Defined Behaviors

A Formula Evaluator operates in an execution environment (a "host"). The behavior of the
Formula Evaluator is parametrized by host-defined properties and functions.

The following properties are host-defined:

1) HOST-CASE-SENSITIVE: if true, text comparisons are case-sensitive. This influences the
operators =, <>, <, <=, >, and >=, as well as database query functions that use them. Note
that the EXACT function is always case-sensitive, regardless of this calculation setting.

2) HOST-PRECISION-AS-SHOWN: If true, calculations are performed using rounded values
of those displayed; otherwise, calculations are performed using the precision of the
underlying numeric representation. Note: This does not impose a particular numeric
model. Since implementations may use binary representations, this rounding may be
inexact for decimal value.

Note: This does not impose a particular numeric model. Since implementations may use
binary representations, this rounding may be inexact for decimal valueHOST-SEARCH-
CRITERIA-MUST-APPLY-TO-WHOLE-CELL If true, the specified search criteria shall
apply to the entire cell contents if it is a text match using = or <>; if not, only the initial text
needs to match.

3) HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL If true, the specified search
criteria shall apply to the entire cell contents if it is a text match using = or <>; if not, only a
subpart of the cell content needs to match the text.

4) HOST-AUTOMATIC-FIND-LABELS: if true, row and column labels are automatically
found.

5) HOST-USE-REGULAR-EXPRESSIONS: If true, regular expressions are used for
character string comparisons and when searching.

6) HOST-USE-WILDCARDS: If true, wildcards question mark '?' and asterisk '*' are used for
character string comparisons and when searching. Wildcards may be escaped with a tilde
'~' character.

7) HOST-NULL-YEAR: This defines how to convert a two-digit year into a four-digit year. All
two-digit year values are interpreted as a year that equals or follows this year.

8) HOST-NULL-DATE: Defines the beginning of the epoch; a numeric date of 0 equals this
date.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 30 of 254

9) HOST-LOCALE: The locale to be used for locale-dependent operations, such as
conversion of text to dates, or text to numbers.

10) HOST-ITERATION-STATUS: If enabled, iterative calculations of cyclic references are
performed.

11) HOST-ITERATION-MAXIMUM-DIFFERENCE: If iterative calculations of cyclic references
are enabled, the maximum absolute difference between calculation steps that all involved
formula cells must yield for the iteration to end and yield a result.

12) HOST-ITERATION-STEPS: If iterative calculations of cyclic references are enabled, the
maximum number of steps iterations are performed if the results are not within HOST-
ITERATION-MAXIMUM-DIFFERENCE.

The function HOST-REFERENCE-RESOLVER(Reference) is implementation defined. This
function takes as input a Unicode string containing a Reference according to section 4.8 and
returns a resolved value.

3.6 When recalculation occurs

Implementations of OpenFormula typically recalculate formulas when its information is needed.
Typical implementations will note what values a formula depends on, and when those dependent
values are changed and the formula's results are displayed, it will re-execute the formulas that
depend on them to produce the new results (choosing the formulas in the right order based on
their dependencies). Implementations may recalculate when a value changes (this is termed
automatic recalculation) or on user command (this is termed manual recalculation).

Some functions' dependencies are difficult to determine and/or should be recalculated more
frequently. These include functions that return today's date or time, random number generator
functions (such as RAND 8.16.50), or ones that indirectly determine the cells to act on. Many
implementations always recalculate formulas including such functions whenever a recalculation
occurs. Functions that are always recalculated whenever a recalculation occurs are termed
volatile functions. Functions that are often volatile functions include CELL 8.13.3, HYPERLINK
8.11.3, INDIRECT 8.14.7, INFO 8.13.13, NOW 8.10.15, OFFSET 8.14.11, RAND 8.16.50 and
TODAY 8.10.19. Functions that depend on the cell position of the formula they are contained in or
the position of a cell they reference need to be recalculated whenever that cell is moved, such
functions are COLUMN 8.13.4, ROW 8.13.29 and SHEET 8.13.31. In addition, formulas may
indicate that they should always be recalculated during a recalculation process by including a
forced recalculation marker, as described in the syntax below.

3.7 Numerical Models

This specification does not, by itself, specify a numerical implementation model, though it does
imply some minimal levels of accuracy for most functions. For example, an application cannot say
that it implements the infix operator “/” as specified in this document if it implements integer-only
arithmetic.

In practice, applications tend to use at least one IEEE 754-1985 binary floating-point
representation, using at least the 64-bit representation and possibly larger widths for intermediate
results. When IEEE 754 representations are used, results such as Inf (infinity) and Nan (not a
number) are considered an Error value. Applications may use IEEE 854-1987 (which covers
decimal arithmetic). In general, applications are encouraged to use appropriate standards for their
numerical models. This means that applications will often not produce “exact” results, but only
approximate results for a large number of places.

Basic Limits

Evaluators which claim to support “basic limits” shall support at least the following limits:

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 31 of 254

1. formulas up to at least 1024 characters long, as measured when in OpenDocument
interchange format not counting the square brackets around cell addresses, or the “.” in a
cell address when the sheet name is omitted.

2. at least 30 parameters per function when the function prototype permits a list of
parameters.

3. permit strings of ASCII characters of up to 32,767 (2^15-1) characters.

4. support at least 7 nesting levels of functions.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 32 of 254

4 Types

4.1 General

All values defined by OpenFormula have a type. OpenFormula defines Text, Number, Complex
Number, Logical, Error, Reference, ReferenceList and Array types.

4.2 Text (String)

A Text value (also called a string value) is a Character string" per [CharModel]sequence of zero or
more characters.

Evaluators should accept [UNICODE] strings, but shall accept strings of ASCII (Unicode U+0020
through U+007F, inclusive) characters.

A text value of length zero is termed the empty string.

Index positions in a text value begin at 1.

Whether or not Unicode Normalization [UTR15] is performed on formulas, formula results or user
inputs is implementation-defined. Some functions defined in this Part are labeled as
"normalization-sensitive", meaning that the results of the formula evaluation may differ depending
on whether normalization occurs, and which normalization form is used. Mixing operands of
different normalization forms in the same calculation is undefined.

4.3 Number

4.3.1 General

A number is a numeric value.

Numbers shall be able to represent fractional values (they shall not be limited to only integers).
Evaluators may implement Number with an arbitrary fixed or with a variable bit length. A cell with
a constant numeric value has the Number type.

Note: Many evaluators implement numbers as 64-bit IEEE floating point values and use the
CPU's floating-point instructions where available (so intermediate values may be represented
using more than 64 bits).

Implementations typically support many subtypes of Number, including Date, Time, DateTime,
Percentage, fixed-point arithmetic, and arithmetic supporting arbitrarily long integers, and
determine the display format from this. All such Number subtypes shall yield True for the
ISNUMBER 8.13.22 function. This specification does not require that specific subtypes be
distinguishable from each other, or that the subtype be tracked, but in practice most
implementations do such tracking because requiring users to manually format every cell
appropriately becomes tedious very quickly. Automatically determining the most likely subtype is
especially important for a good user interface when generating OpenDocument format, since
some subtypes (such as date, time, and currency) are stored in a different manner depending on
their subtype. Thus, this specification identifies some common subtypes and identifies those
subtypes where relevant in some function definitions, as an aid to implementing good user
interfaces. Many applications vary in the subtype produced when combining subtypes (e.g., what
is the result when percentages are multiplied together), so unless otherwise noted these are

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 33 of 254

unspecified. Typical implementations try to heuristically determine the "right" format for a cell
when a formula is first created, based on the operations in the formula. Users can then override
this format, so as a result the heuristics are not important for data exchange (and thus outside the
scope of this specification).

All Number subtypes shall yield True for the ISNUMBER function.

Note: This specification does not require that specific subtypes be distinguishable from each
other, or that the subtype be tracked, but in practice most evaluators do such tracking.
Automatically determining the most likely subtype is important for a good user interface and when
generating OpenDocument format, since some subtypes (such as date, time, and currency) are
stored in a different manner depending on their subtype. Typical implementations try to
heuristically determine the "right" format for a cell when a formula is first created, based on the
operations in the formula. Expression authors can then override this display format, so as a result
the heuristics are not important for data exchange (and thus outside the scope of this
specification).

4.3.2 Time

Time is a subtype of Number.

Time is represented as a fraction of a day.

4.3.3 Date

Date is a subtype of Number.

Date is represented by an integer value.

A serial date is the expression of a date as the number of days elapsed from a start date called
the epoch.

Evaluators shall support all dates from 1904-01-01 through 9999-12-31 (inclusive) in calculations,
should support dates from 1899-12-30 through 9999-12-31 (inclusive) and may support a wider
date range.

Note 1: Using expressions that assume serial numbers are based on a particular epoch may
cause interoperability issues.

Evaluators shall support positive serial numbers. Evaluators may support negative serial numbers
to represent dates before an epoch.

Note 2: It is implementation-defined if the year 1900 is treated as a leap year.

Note 3: Evaluators that treat 1900 as a non-leap year can use the epoch date 1899-12-30 to
compensate for serial numbers that originate from evaluators that treat 1900 as a leap year and
use 1899-12-31 as an epoch date.

4.3.4 DateTime

DateTime is a subtype of Number. It is a Date plus Time.

4.3.5 Percentage

A percentage is a subtype of Number that may be displayed by multiplying the number by 100
and adding the sign “%” or with other formatting depending upon the number format assigned to
the cell where it appears.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 34 of 254

4.3.6 Currency

A currency is a subtype of Number that may appear with or without a currency symbol or with
other formatting depending upon the number format assigned to the cell where it appears.

4.3.7 Logical (Number)

A Logical value is a subtype of Number where TRUE() returns 1 and FALSE() returns 0.

The implicit conversion operator “Convert to Logical” 8.3.12, when a Number is passed as a
condition, 0 is considered False and all other numeric values are considered True.

Note: Logical values can be a distinct type from Number. 4.5

4.4 Complex Number

A complex number (sometimes also called an imaginary number) is a pair of real numbers
including a real part and an imaginary part. In mathematics, complex numbers are often written

as x + iy, where x (the real part) and y (the imaginary part) are real numbers and i is −1 . A
complex number can also be written as reiθ = rcos(θ) + irsin(θ), where r is the modulus of the
complex number (a real number) and θ is the argument or phase (a real number representing an
angle in radians).

A complex number may, but need not be, represented as a Number or Text. The results of the
functions ISNUMBER() and ISTEXT() are implementation-defined when applied to a complex
number.

Functions and operators that accept complex numbers shall accept Text values as complex
numbers (8.3.10 Conversion to Complex Number, as well as Numbers that are not complex
numbers.

Note 1: IMSUM("3i";4) will produce the same result as COMPLEX(4;3).

Note 2: Expression authors should be aware that use of functions that are not defined by
OpenFormula as accepting complex numbers as input may impair interoperability.

Equality can be tested using IMSUB to compute the difference, use IMABS to find the absolute
difference, and then ensure the absolute difference is smaller than or equal to some nonnegative
value (for exact equality, compare for equality with 0).

4.5 Logical (Boolean)

A Logical value (also called a Boolean value) is a value with one of two values: TRUE() and
FALSE().

Note: Logical values can be represented as a subtype of Number. 4.3.7

4.6 Error

An Error is one of a set of possible error values. Implementations may have many different error
values, but one error value in particular is distinct: #N/A, the result of the NA() function. Users

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 35 of 254

may choose to enter some data values as #N/A, so that this error value propagates to any other
formula that uses it, and may test for this using the function ISNA().

Functions and operators that receive one or more error values as an input shall produce one of
those input error values as their result, except when the formula or operator is specifically defined
to do otherwise.

In an OpenDocument document, if an error value is the result of a cell computation it shall be
stored as if it was a string. That is, the office:value-type of an error value is string; if the
computed value is stored, it is stored in the attribute office:string-value.

Note: This does not change an Error into a string type (since the Error will be restored on
recalculation); this enables applications which cannot recalculate values to display the error
information.

4.7 Empty Cell

An empty cell is neither zero nor the empty string, and an empty cell can be distinguished from
cells containing values (including zero and the empty string). An empty cell is not the same as an
Error, in particular, it is distinguishable from the Error #N/A (not available).

4.8 Reference

A cell strip consists of cell positions in the same row and in one or more contiguous columns.

A cell rectangle consists of cell positions in the same cell strips of one or more contiguous rows.

A cell cuboid consists of cell positions in the same cell rectangles of one or more contiguous
sheets.

A reference is the smallest cuboid that (1) contains specifically-identified cell positions and/or
specifically-identified complete columns/rows such that (2) removal of any cell positions either
violates condition (1) or does not leave a cuboid.

Cell positions in a cell cuboid/rectangle/strip can resolve to empty cells (section 3.7).

The definitions of specific operations and functions that allow references as operands and
parameters stipulate any particular limitations there are on forms of references and how empty
cells, when permitted, are interpreted.

4.9 ReferenceList

A reference list contains 1 or more references, in order. A reference list can be passed as an
argument to functions where passing one reference results in an identical computation as an
arbitrary sequence of single references occupying the identical cell range.

Note 1: For example, SUM([.A1:.B2]) is identical to SUM([.A1]~[.B2]~[.A2]~[.B1]), but
COLUMNS([.A1:.B2]), resulting in 2 columns, is not identical to
COLUMNS([.A1]~[.B2]~[.A2]~[.B1]), where iterating over the reference list would result in 4
columns.

A reference list cannot be converted to an array.

Note 2: For example, in array context {ABS([.A1]~[.B2]~[.A2]~[.B1])} is an invalid expression,
whereas {ABS([.A1:.B2])} is not.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 36 of 254

Passing a reference list where a function does not expect one shall generate an Error. Passing a
reference list in array iteration context to a function expecting a scalar value shall generate an
Error.

4.10 Array

An array is a set of rows each with the same number of columns that contain one or more values.
There is a maximum of one value per intersection of row and column. The intersection of a row
and column may contain no value.

4.11 Pseudotypes

4.11.1 General

Many functions require a type or a set of types with special properties, and/or process them
specially. For example, a "Database" requires headers that are the field names. These
specialized types are called pseudotypes.

4.11.2 Scalar

A Scalar value is a value that has a single value. A reference to more than one cell is not a scalar
(by itself), and shall be converted to one as described below. An array with more than one
element is not a scalar. The types Number (including a complex number), Logical, and Text are
scalars.

4.11.3 DateParam

A DateParam is a value that is either a Number (interpreted as a serial number; 4.3.3) or Text;
text is automatically converted to a date value. 8.3.15

4.11.4 TimeParam

A TimeParam is a value that is either a Number (interpreted as a serial number; 4.3.2) or Text;
text is automatically converted to a time value (fraction of a day). 8.3.16

4.11.5 Integer

An integer is a subtype of Number that has no fractional value. An integer X is equal to INT(X).
Division of one integer by another integer may produce a non-integer.

4.11.6 TextOrNumber

TextOrNumber is a value that is either a Number or Text.

4.11.7 Basis

4.11.7.1 General

A basis is a subtype of Integer that specifies the day-count convention to be used in a calculation.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 37 of 254

This standard defines five day-count conventions, corresponding to widely used current and
historical accounting conventions. Each of these five bases defines two things:

1. How to calculate the number of days between two dates, date1 and date2.

2. How to calculate the number of days in each year between two dates, date1 and date2.

Historically day-count bases used the naming convention x/y, which indicated that the convention
assumed x days per month and y days per year. These names are given for reference purposes.

Date Basis Historical Name Day Count Days in Year

0 US (NASD) 30/360 Procedure A, 4.11.7.3 Procedure D, 4.11.7.6

1 Actual/Actual Procedure B, 4.11.7.4 Procedure E, 4.11.7.7

2 Actual/360 Procedure B, 4.11.7.4 Procedure D, 4.11.7.6

3 Actual/365 Procedure B, 4.11.7.4 Procedure F, 4.11.7.8

4 European 30/360 Procedure C, 4.11.7.5 Procedure D, 4.11.7.6

4.11.7.2 Procedural Notation

The day-count procedures are expressed using notations defined as:

• day(date) returns the day of the month for the given date value, an integer from 1 to 31

• month(date) returns the month of a given date value, an integer from 1-12

• year(date) returns the year of the given date value

• truncate(date) truncates any fractional (hours, minutes, seconds) of a date value and
returns the whole date portion.

• Binary comparison operators date1>date2 and date1 == date2

• is-leap-year(year) returns true if year is a leap year, otherwise false.

Note: Some of the day count procedures use intermediate results that contain counter-factual
dates, such as February 30th . This is not an error. The above functions work on such dates as
well, e.g., day(February 30th) = = 30.

4.11.7.3 Procedure A

1. truncate(date1), truncate(date2)

2. If date1==date2 return 0

3. If date1> date2, then swap the values of date1 and date2.

4. If day(date1)==31 then subtract 1 day from date1

5. If day(date1)==30 and day(date2)==31 then subtract 1 day from date2

6. If both date1 and date2 are the last day of February, change date2 to the 30th of the month.

7. If date1 is the last day of February, change it to the 30th of the month.

8. Return (year(date2)*360 + month(date2)*30 + day(date2)) - (year(date1)*360 +
month(date1)*30 + day(date1)).

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 38 of 254

4.11.7.4 Procedure B

1. truncate(date1), truncate(date2)

2. If date1> date2, then swap the values of date1 and date2.

3. Return the actual numbers of days between date1 and date2, inclusive of date1, but not
inclusive of date2.

4.11.7.5 Procedure C

1. truncate(date1), truncate(date2)

2. If date1==date2 return 0

3. If date1> date2, then swap the values of date1 and date2.

4. If day(date1)==31 then subtract 1 from date1

5. If day(date2)==31 then subtract 1 from date 2

6. Return (year(date2)*360 + month(date2)*30 + day(date2)) - (year(date1)*360 +
month(date1)*30 + day(date1)).

4.11.7.6 Procedure D

1. Return 360

4.11.7.7 Procedure E

1. Evaluate A: year(date1) != year(date2)

2. Evaluate B: year(date2)!=year(date1)+1

3. Evaluate C: month(date1) < month(date2)

4. Evaluate D: month(date1) == month(date2)

5. Evaluate E: day(date1) < day(date2)

6. Evaluate F: (A and B) or (A and C) or (A and D and E)

7. If F is true then return the average of the number of days in each year between date1 and
date2, inclusive.

8. Otherwise, if A and is-leap-year(year(date1)) then return 366

9. Otherwise, if a February 29 occurs between date1 and date2 then return 366

10. Otherwise, if date2 is a February 29, then return 366

11. Otherwise return 365

4.11.7.8 Procedure F

1. Return 365

A basis is a subtype of Integer (and thus of Number) that indicates the calendar system
conventions to be used. If basis is omitted from a financial function, the default is basis 0.

Basis values are defined as follows (where x/y indicates x days per month and y days per year):

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 39 of 254

● Basis 0 or omitted (30/360): Truncates date values and swaps them if date1 is after
date2. If the dates are equal, the difference of days is 0. Assumes that each month has
30 days and the total number of days in the year is 360 by making the following
adjustments:

○ If both day-of-months are 31, they are changed to 30

○ Otherwise, if date1’s day-of-month is 31, it is changed to 30

○ Otherwise, if date1’s day-of-month is 30 and date2’s day-of-month is 31, date2’s day-
of-month is changed to 30 (note that date2’s day-of-month will stay 31 if date1’s day
< 30)

○ Otherwise, if both dates are the last day of February in their respective years, both
day-of-month is changed to 30

○ Otherwise, if date1 is the last day of February, its day-of-month is changed to 30

Then computes the difference as
(date2.year*360 + date2.month*30 + date2.day) - (date1.year*360 + date1.month*30 +
date1.day).

● Basis 1 (Actual/actual): Truncates date values and swaps them if date1 is after date2. If
the dates are equal, the difference in days is 0. If date1 and date2 not “less than or equal
to a year apart” (as defined below), then the days in the years between the dates is the
average number of days in the years between date1 and date2, inclusive. Otherwise, the
days in the years between the dates is 365, except for these cases (where it is 366): the
dates are in the same year and it is a leap-year, a February 29 occurs between the two
dates, or date2 is February 29.

To determine if date1 and date2 are “less than or equal to a year apart” for purposes of
this algorithm, one of these conditions much be true:

○ The two dates have the same year

○ Date2’s year is exactly one more than date1’s year, and ((date1.month >
date2.month) or ((date1.month == date2.month) and (date1.day >= date2.day)))

● Basis 2 (Actual/360): Truncates date values and swaps them if date1 is after date2. If the
dates are equal, the difference of days is 0. Computes the actual difference in days, and
presumes there are always 360 days per year.

● Basis 3 (Actual/365): Truncates date values and swaps them if date1 is after date2. If the
dates are equal, the difference of days is 0. Computes the actual difference in days, and
presumes there are always 365 days per year.

● Basis 4 (30/360): Truncates date values and swaps them if date1 is after date2. If the
dates are equal, the difference of days is 0. Assumes that each month has 30 days and
the total number of days in the year is 360; any day-of-month (in date1, date2, or both)
with a value of 31 is changed to 30. February dates are never changed, because there is
no February 31.

Then computes the difference as
(date2.year*360 + date2.month*30 + date2.day) - (date1.year*360 + date1.month*30 +
date1.day).

Criterion

A criterion is a single cell Reference, Number or Text. It is used in comparisons with cell contents.

A reference to an empty cell is interpreted as the numeric value 0.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 40 of 254

A matching expression can be:

● A Number or Logical value. A matching cell content equals the Number or Logical value.

● A value beginning with a comparator (<, <=, =, >, >=, <>). 8.4.9

For =, if the value is empty it matches empty cells. 4.7

For <>, if the value is empty it matches non-empty cells.

For <>, if the value is not empty it matches any cell content except the value, including empty
cells.

Note: "=0" does not match empty cells.

For = and <>, if the value is not empty and can not be interpreted as a Number type or one of
its subtypes and the host-defined property HOST-SEARCH-CRITERIA-MUST-APPLY-TO-
WHOLE-CELLcalculation setting “search-criteria-must-apply-to-whole-cell” is true,
comparison is against the entire cell contents, if false, comparison is against any subpart of
the field that matches the criteria. For = and <>, if the value is not empty and can not be
interpreted as a Number type or one of its subtypes 3.5 applies.

● Other Text value. If the host-defined property HOST-SEARCH-CRITERIA-MUST-APPLY-TO-
WHOLE-CELLcalculation setting “search-criteria-must-apply-to-whole-cell” is true, the
comparison is against the entire cell contents, if false, comparison is against any subpart of
the field that matches the criteria.

4.11.8 Database

A database is a rectangular organized set of data. Any database has a set of one or more fields
that determine the structure of the database. A database has a set of zero or more records with
data, and each record contains data for every field (though that field may be empty).

Evaluators shall support the use of ranges as databases if they support any database functions.
The first row of a range is interpreted as a set of field names.

Note: Field names of type Text and unique without regard to case enhance the interoperability of
data. It is also a common expectation that rows following the first row of data are data records
that correspond to field names in the first row.

A single cell containing text can be used as a database; if it is, it is a database with a single field
and no data records.

Evaluators supporting databases and named ranges shall support the use of named ranges as a
range, and the use of a Text value as a database (which, if it matches the name of a named
range, will be considered the named range).

Note: It is considered good practice to define a named range for a database because it eases
maintenance (the range can be changed for all functions by changing just one definition).
However, the use of named ranges for a database is not required by this specification.

4.11.9 Field

A field is a value that selects a field in a database; it is also called a field selector. If the field
selector is Text, it selects the field in the database with the same name.

Evaluators should match the database field name case insensitive.

If a field selector is a Number, it is a positive integer and used to select the fields. Fields are
numbered from left to right beginning with the number 1.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 41 of 254

All functions that accept a field parameter shall, when evaluated, return an Error if the selected
field does not exist.

4.11.10 Criteria

A criteria is a rectangular set of values, with at least one column and two rows, that selects
matching records from a database. The first row lists fields against which expressions will be
matched. 4.11.9 Rows after the first row contain fields with expressions for matching against
database records.

For a record to be selected from a database, all of the expressions in a row of criteria shall match.

A reference to an empty cell is interpreted as the numeric value 0.

● Expressions are matched as per 4.11.7.8 Criterion.

4.11.11 Sequences (NumberSequence, NumberSequenceList,
DateSequence, LogicalSequence, and ComplexSequence)

Some functions accept a sequence, i.e., a value that is to be treated as a sequential series of
values. The following are sequences: NumberSequence, NumberSequenceList, DateSequence,
LogicalSequence, and ComplexSequence.

When evaluating a function that accepts a sequence, the evaluator shall follow the rules for that
sequence as defined in section 8.35.3. When processing a ReferenceList, the references are
processed in order (first, second if any, and so on). In a cuboid, the first sheet is first processed,
followed by later sheets (if any) in order. Inside a sheet, it is implementation-defined as to whether
the values are processed row-at-a-time or column-at-a-time, but it must be one of these two
processing orders. If processing row-at-a-time, the sequence must be produced by processing
each row in turn, from smallest to largest column value (e.g., A1, B1, C1). If processing column-
at-a-time, the sequence must be produced by processing each column at a time, from the
smallest to the largest row value (e.g., A1, A2, A3).

4.11.12 Any

Any represents a value of any type defined in this standard, including Error values.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 42 of 254

5 Expression Syntax

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 43 of 254

6 Expression Syntax

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 44 of 254

7 General
The OpenFormula syntax is defined using the BNF notation of the XML specification, chapter 6
[XML1.0]. Each syntax rule is defined using "::=".

Note: Formulas are typically embedded inside an XML document. When this occurs, characters
(such as "<", ">", '"', and "&") shall be escaped, as described in section 2.4 of the XML
specification [XML1.0]. In particular, the less-than symbol "<" is typically represented as “<”, the
double-quote symbol as “"”, and the ampersand symbol as “&” (alternatively, a numeric
character reference can be used).

7.1 Basic Expressions

Formulas may start with a '=' (EQUALS SIGN, U+003D), which if present may be followed by a
“forced recalculate” marker '=' (EQUALS SIGN, U+003D), followed by an expression. If the
second '=' (EQUALS SIGN, U+003D) is present, this formula is a "forced recalculation" formula.
If a formula is marked as a "forced recalculation" formula, then it should be recalculated
whenever one of its predecessors it depends on changes.

Expressed in BNF grammar, a formula is specified:

Formula ::= Intro? Expression

Intro ::= '=' ForceRecalc?

ForceRecalc ::= '='

The primary component of a formula is an Expression . Formulas are composed of
Expression s, which may in turn be composed from other Expression s.

Expression ::=

Whitespace* (

Number |

String |

Array |

PrefixOp Expression |

 Expression PostfixOp |

 Expression InfixOp Expression |

 '(' Expression ')' |

 FunctionName Whitespace* '(' ParameterList ')' |

Reference |

QuotedLabel |

AutomaticIntersection |

NamedExpression |

 Error

) Whitespace*

SingleQuoted ::= "'" ([^'] | "''")+ "'"

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 45 of 254

7.2 Constant Numbers

Constant numbers are written using '.' (FULL STOP, U+002E) dot as the decimal separator.
Optional "E" or "e" denotes scientific notation. Syntactically, negative numbers are positive
numbers with a prefix "-" (HYPHEN-MINUS, U+002D) operator. A constant number is of type
Number.Numbers

Constant numbers are written using '.' (FULL STOP, U+002E) dot as the decimal separator.
Optional "E" or "e" denotes scientific notation. Syntactically, negative numbers are positive
numbers with a prefix "-" (HYPHEN-MINUS, U+002D) operator. A constant number is of type
Number.

Number ::= StandardNumber |

 '.' [0-9]+ ([eE] [-+]? [0-9]+)?

StandardNumber ::= [0-9]+ ('.' [0-9]+)? ([eE] [-+]? [0-9]+)?

Evaluators should be able to read the Number format, which accepts a decimal fraction that
starts with decimal point '.' (FULL STOP, U+002E), without a leading zero. Evaluators shall write
numbers only using the StandardNumber format, which requires a leading digit, and shall not
write numbers with a leading '.' (FULL STOP, U+002E).

7.3 Constant Strings

Constant strings are surrounded by double-quote characters (QUOTATION MARK, U+0022); a
literal double-quote character '"' (QUOTATION MARK, U+0022) as string content is escaped by
duplicating it. When a formula is stored in an XML attribute, XML escaping rules apply: thus inside
an XML attribute double-quote characters shall be escaped (e.g., as ") and carriage return
characters in a String (e.g., as ) . A constant string is of type Text.

String ::= '"' ([^"#x00] | '""')* '"'

7.4 Operators

Operators are functions with one or more parameters.

PrefixOp ::= '+' | '-'

PostfixOp ::= '%'

InfixOp ::= ArithmeticOp | ComparisonOp | StringOp | ReferenceOp

ArithmeticOp ::= '+' | '-' | '*' | '/' | '^'

ComparisonOp ::= '=' | '<>' | '<' | '>' | '<=' | '>='

StringOp ::= '&'

There are three predefined reference operators: reference intersection , reference concatenation ,
and range. The result of these operators may be a 3 dimensional range, with front-upper-left and
back-lower-right corners, or even a list of such ranges in the case of cell concatenation.

ReferenceOp ::= IntersectionOp | ReferenceConcatenationOp | RangeOp

IntersectionOp ::= '!'

ReferenceConcatenationOp ::= '~'

RangeOp ::= ':'

Table 1 - Operators defines the associativity and precedence of operators, from hightest to lowest
precedence.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 46 of 254

Table 1 - Operators

Associativity Operator(s) Comments

left : Range.

left ! Reference intersection ([.A1:.C4]![.B1:.B5] is [.B1:.B4]).
Displayed as the space character in some implementations.

left ~
Reference union. Displayed as the function parameter separator
in some implementations.

right +,- Prefix unary operators, e.g., -5 or -[.A1]. Note that these have a
different precedence than add and subtract.

left %
Postfix unary operator % (divide by 100). Note that this is legal
with expressions (e.g., [.B1]%).

left ^ Power (2 ^ 3 is 8).

left *,/ Multiply, divide.

left +,-
Binary operations add, subtract. Note that unary (prefix) + and -
have a different precedence.

left &
Binary operation string concatenation. Note that unary (prefix) +
and - has a different precedence. Note that "&" shall be escaped
when included in an XML document

left =, <>, <, <=,
>, >=

Comparison operators equal to, not equal to, less than, less than
or equal to, greater than, greater than or equal to

Note 1: Prefix “-” has a higher precedence than “^”, that “^” is left-associative, and that reference
intersection has a higher precedence than reference union.

Note 2: Prefix “+” and “–“ are defined to be right-associative. However, note that typical
applications which implement at most the operators defined in this specification (as specified)
may implement them as left-associative, because the calculated results will be identical.

Note 3: Precedence can be overridden by using parentheses, so "=2+3*4" computes to 14 but
"=(2+3)*4" computes 20. Implementations should retain "unnecessary" parentheses and white
space, since these are added by people to improve readability.

7.5 Functions and Function Parameters

Functions are called by name, followed by parentheses surrounding a list of parameters.
Parameters are separated using the semicolon ';' (SEMICOLON, U+003B) character:

FunctionName ::= LetterXML (LetterXML | DigitXML |Identifier

Identifier ::= LetterXML (LetterXML | DigitXML |

 '_' | '.' | CombiningCharXML)*

Where LetterXML, DigitXML, and CombiningCharXML are Letter, Digit, and CombiningChar as
they are defined in [XML1.0].

Function names are case-insensitive.

Function calls shall be given a parameter list, though it may be empty. An empty list of
parameters is considered a call with 0 parameters, not a call with one parameter that happens to

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 47 of 254

be empty. TRUE() is syntactically a function call with 0 parameters. It is syntactically legitimate to
provide empty parameters, though functions may not accept empty parameters unless otherwise
noted:

ParameterList ::= /* empty */ |

 Parameter (Separator EmptyOrParameter)* |

 Separator EmptyOrParameter /* First param empty */

 (Separator EmptyOrParameter)*

EmptyOrParameter ::= /* empty */ Whitespace* | Parameter

Parameter ::= Expression

Separator ::= ';'

7.6 Nonstandard Function Names

When writing a document using function(s) not defined in this specification, an evaluator shall
include a prefix in such function names to identify the original definer of the function's semantics.
When the origin of a function cannot be determined, producers may omit a prefix. Producers may
use the prefix to differentiate between different definition types. Evaluators that do not support a
function should compute its result as some Error value other than NA(). ould include a prefix in
such function names to identify the original definer of the function's semantics.

Note: Examples of implementation-defined functions include extension functions included with an
implementation, user-defined functions written by users, and 3rd party functions distributed in
libraries.

The prefix should begin with a domain name owned by the definer, in reverse order, and should
be in uppercase letters (where lower/uppercase letters apply). This prefix should be the shortest
prefix sufficient to identify the application company/project, followed by a period, optionally
followed by version information or more specific product identification and a period, followed by
the original function name itself. The version information should be included if an application
substantially changes the semantics of a function (as viewed by users of that function) and one of
those later versions of the function is intended. Evaluators may implement functions originally
defined by another evaluator, and thus may read and/or write function names that use another
evaluator's prefix.

Note: Examples of such names include COM.MICROSOFT.CUBEMEMBER,
ORG.OPENOFFICE.STYLE, ORG.GNUMERIC.RANDRAYLEIGH, and COM.LOTUS.V98.FOO.

Evaluators should avoid defining evaluator-unique functions beginning with a top-level domain
name followed by a period. Evaluators should avoid defining application functions beginning with
“NET.”, “COM.”, “ORG.”, or a country code followed by a period.

Evaluators that do not support a function should compute its result as some Error value other
than NA().

7.7 References

References refer to a specific cell or set of cells. The syntax for a constant reference:

Reference ::= '[' (Source? RangeAddress) | ReferenceErrorSource?
RangeAddress ']'

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 48 of 254

RangeAddress ::=
 SheetLocatorOrEmpty '.' Column Row (':' '.' Column Row)? |
 SheetLocatorOrEmpty '.' Column ':' '.' Column |
 SheetLocatorOrEmpty '.' Row ':' '.' Row |
 SheetLocator '.' Column Row ':' SheetLocator '.' Column Row |
 SheetLocator '.' Column ':' SheetLocator '.' Column |
 SheetLocator '.' Row ':' SheetLocator '.' Row

SheetLocatorOrEmpty ::= SheetLocator | /* empty */

SheetLocator ::= SheetName ('.' SubtableCell)*

SheetName ::= QuotedSheetName | '$'? [^\]\. #$']+

QuotedSheetName ::= '$'? SingleQuoted | Error

SubtableCell ::= (Column Row) | QuotedSheetName

ReferenceError ::= "#REF!"

Column ::= '$'? [A-Z]+

Row ::= '$'? [1-9] [0-9]*

Source ::= "'" IRI "'" "#"

CellAddress ::= SheetLocatorOrEmpty '.' Column Row /* Not used
directly */

References always begin with '[' (LEFT SQUARE BRACKET, U+005B); this disambiguates cell
addresses from function names and named expressions. SheetNames include single-quote“'”
(APOSTROPHE, U+0027) characters by doubling them and having the entire name surrounded
by single-quotes. Column labels shall be in uppercase. The syntax supports whole-row and
whole-column references. A reference is of type Reference.

A ReferenceError provides information that a formula evaluates to an Error because of a
particular reference having been invalidated by actions that occurred after the formula was validly
created.

Columns are named by a sequence of one or more uppercase letters A-Z (U+0041 through
U+005A). Columns are named A, B, C, ... X, Y, Z, AA, AB, AC, ... AY, AZ, BA, BB, BC, ... ZX, ZY,
ZZ, AAA, AAB, AAC, AAZ, ABA, ABB, and so on.

If a RangeAddress does not contain a Column element or does not contain a Row element, it
specifies a cell rectangle (4.8 Reference). If it contains Row elements, the cell rectangle starts on
the first column and ends on the last column the evaluator supports. If it contains Column
elements, the cell rectangle starts on the first row and ends on the last row the evaluator
supports.

If in a RangeAddress the first part (left of ':' colon) contains a SheetLocator and the second
part (right of ':' colon) does not contain a SheetLocator, the second part inherits the
SheetLocator from the first part.

If a RangeAddress contains two different SheetLocators, it specifies a cell cuboid (4.8
Reference).

If a RangeAddress contains no SheetLocator, the current sheet local to the position where the
expression is evaluated is referred.

A reference with an explicit row or column value beyond the capabilities of an evaluator shall be
computed as an Error, and not as a reference.

Note that references can include a single embedded “:” separator. Evaluators should use
references with embedded “:” separators inside the [..] markers, instead of the general-purpose “:”
operator, when saving files, and where there is a choice of cells to join, and evaluators should
choose the leftmost pair.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 49 of 254

The optional Source expresses that the reference is to sheets and/or cells in a different location
(possibly in a same-document fragment) than that for the formula in which the reference occurs.
The optional Source is also used for locating Named Expressions (section 5.11Source location's
IRI is described in [RFC3987], Internationalized Resource Identifiers (IRIs), based on [RFC3986],
Uniform Resource Identifier (URI): General Syntax. Evaluators should support absolute IRIs
(URLs are IRIs too). Evaluators should support relative IRIs, which can be distinguished because
they do not begin with [A-Za-z]+ ":". Relative IRIs are formed according to section 6.5 of
RFC3987, respectively section 4.2 of RFC3986. Evaluators should always use a “./” prefix when
writing a relative IRI, since this is unambiguous. Evaluators should support the file scheme (file://
prefix).

The IRI portion of Source shall be an IRI reference [RFC3987] conforming to the general syntax
IRI-reference rule (section 2.2 of [RFC3987]) after each pair of consecutive single-quote
characters (APOSTROPHE, U+0027) is replaced by one single single-quote character.

Note: The escaping of single-quotes as paired single-quotes is because the IRI is enclosed in
single quote characters of the Source.

Resolution of the [RFC3987] IRI reference is host-defined behavior. 3.5

Evaluators may support a variety of IRI/URI/URL schemes (such as “http:”).

7.8 Reference List

A reference list is the result of the Infix Operator Reference Concatenation 8.4.13 '~', the syntax
is:

ReferenceList ::= Reference (Whitespace* ReferenceConcatenationOp
Whitespace* Reference)*

A reference list can be passed as an argument to functions expecting a reference parameter
where passing one reference results in an identical computation as an arbitrary sequence of
single references occupying the identical cell range. A reference list cannot be converted to an
array.

7.9 Quoted Label

7.9.1 General

A quoted label is Text contained in a table as cell content, either literally or as a formula result.

QuotedLabel ::= SingleQuoted

A quoted label identifies a column or a row, depending on the label range in which its text
appears.

7.9.2 Lookup of Defined Labels

For a QuotedLabel, first the cells defined in column label ranges (cell ranges of the
table:label-cell-range-address attribute in the elements <table:label-range> with
attribute table:orientation set to column) are searched for the string content of
QuotedLabel (without the quotes). If found, the corresponding column's range of the data cell
range of the table:data-cell-range-address attribute is taken as a reference. If not found,
the cells defined in row label ranges (attribute table:orientation set to row) are searched
and if found the corresponding row's range of the data cell range is taken. Label ranges of the

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 50 of 254

http://www.ietf.org/rfc/rfc3986.txt

current formula's sheet take precedence over label ranges of other sheets if a name occurs in
both.

7.9.3 Automatic Lookup of Labels

For a QuotedLabel where no defined label is found, an automatic lookup is performed on the
sheet where the formula cell resides, if that document setting is enabled (HOST-AUTOMATIC-
FIND-LABELS value true).

Matches to the upper left of the formula cell are preferred over other matches, followed by
matches with a smaller distance. The following algorithm is used:

Cells on the same sheet as the formula cell are examined column-wise from left to right whether
they contain the text of QuotedLabel (without the quotes). If more than one cell match, the
distance and direction from the formula cell's position is taken into account. The distance is
calculated by Distance= ColumnDifference*ColumnDifference+
RowDifference*Row Difference using an idealized layout of quadratic cells. For the
direction, during the run two independent match positions are remembered each time Distance is
smaller than a previous Distance: Match2 for positions right of and/or below the formula position
(FormulaColumn < MatchColumn || FormulaRow < MatchRow), Match1 for all others (not right of
and not below). Match1 also holds the very first match, in case there is only one match or all
matches are somewhere below or right of the formula cell. After having found the smallest
distances the conditions are:

1. If Match1 has the smallest distance, that match is taken.

2. Else, Match2 (right and/or below) has the smallest or an equal distance:

 2.1 A match to the upper left (FormulaColumn >= Match1Column && FormulaRow >=
Match1Row) takes precedence over matches to other directions.

 2.2 Else, if there is no match to the upper left:

 2.2.1 If Match1 is somewhere right of the formula cell (FormulaColumn <
Match1Column) it was the first match found in column-wise lookup.

 2.2.1.1 If Match2 is above the formula cell (FormulaRow >= Match2Row) it is to
the upper right of the formula cell and either nearer than Match1 or Match1 is
below. Match2 is taken.

 2.2.1.2 Else Match2 is below the formula cell and Match1 is taken.

 2.2.2 Else (Match1 not right of the formula cell => two matches below or below and
right) the match with the smallest distance is taken.

If the resulting cell is below or above another cell containing Text a row lable is assumed, else a
column label is assumed.

Note: Use of automatically looked up column or row labels in expressions impairs interoperability.

7.9.4 Implicit Intersection

For the reference resulting from a single QuotedLabel an implicit intersection is generated if the
operator or function where it is used with expects a scalar value. The intersection is generated
with the current formula's cell position, thus for a column label an intersection is generated with
the formula cell's row, for a row label with the formula cell's column.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 51 of 254

7.9.5 Automatic Range

When passed as a non-scalar argument (e.g. Array or NumberSequence) to a function, an
automatically looked up column or row label (not defined label range) is converted to an
automatic range reference that is adjusted each time the formula is interpreted. The range is
generated from the column below a column label, or the row right of a row label, constructed by
encompassing contiguous non-empty cells. An empty cell interrupts contiguousness, one empty
cell directly below a column label cell or right of a row label cell is ignored. column or row label is
converted to an automatic range reference that is adjusted each time the formula is interpreted.
The range is generated from the corresponding column respectively row intersecting an area
directly below respectively right of the label cell that is constructed by encompassing contiguous
cells. A blank cell interrupts contiguousness, one blank cell directly below respectively right of the
label cell is ignored.

Example:

Table 2 - Automatic Range

Row Data Expression Result Comment

1 Label

2

3 1

4 2

5

6 8

7

8 32

=SUM('Label') 3 Empty cell in row 2 is
skipped (two empty cells in
row 2 and 3 would not and
stop), empty cell in row 5
stops the automatic range.

If any cell content is entered in row 5 the range is regenerated as follows:

Table 3 - Automatic Range

Row Data Expression Result Comment

1 Label

2

3 1

4 2

5 4

6 8

7

8 32

=SUM('Label') 15 Empty cell in row 2 is
skipped, empty cell in row 7
stops the automatic range.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 52 of 254

7.9.6 Automatic Intersection

An automatic intersection may be used to identify the intersection of two quoted labels. Note that
this is different from the IntersectionOp, which takes two references instead of two labels:

AutomaticIntersection ::= QuotedLabel Whitespace* '!!' Whitespace*
QuotedLabel

In an automatic intersection, one of the labels identifies a row, the other a column; they may be in
either order. Each QuotedLabel is looked up as defined above under "Lookup of Defined
Lables" and "Automatic Lookup of Labels". If two data cell ranges are found, the intersection of
the column's data cell range and the row's data cell range is generated. If the intersection result is
not exactly one cell, an Error is generated.

7.10 Named Expressions

A NamedExpression references another expression, possibly in a completely different
spreadsheet or any other document type that can be imported into a spreadsheet.

NamedExpression ::= SimpleNamedExpression |
SheetLocalNamedExpression | ExternalNamedExpression

SimpleNamedExpression ::= Identifier |
'$$' (Identifier | SingleQuoted)

SheetLocalNamedExpression ::=
QuotedSheetName '.' SimpleNamedExpression

ExternalNamedExpression ::=
Source '#' (SimpleNamedExpression | SheetLocalNamedExpression)

Evaluators supporting named expressions shall support Simple Named Expressions that are
global to all the sheets in a (spreadsheet) document in the current document. This is a named
expression without a Source, QuotedSheetName, or SubtableCell. The type of a named
expression is the type of the value that the named expression returns.

Named expressions are case-consistent, meaning that matching is done case-insensitive and
identifiers can not differ ONLY in their case. Evaluators should write identifiers with identical case
in all locations.

Evaluators may support Sheet-local Named Expressions that are local (attached) to individual
sheets. In that case, a non-empty QuotedSheetName can be used to reference a sheet-specific
named expression. The most specific named expression for a given expression is used. If the
QuotedSheetName is empty, the search for the named expression begins with the current sheet,
then up through the container(s) of the sheet (the same is true if the QuotedSheetName rule
fragment is not included at all). If there is a non-empty QuotedSheetName, search begins with
that named sheet, then up through its container(s) for the given name.

Note: There is no syntax for referencing a named expression without first looking at the current
sheet's named expressions; where this is a problem, a user can define a blank sheet and
reference that sheet as the starting location for finding the named expression.

If a sheetname is not empty, it shall be quoted using “'” (APOSTROPHE, U+0027). While both
Source and QuotedSheetName can begin with the single-quote character “'” (APOSTROPHE,
U+0027), they are distinguished: after the closing single-quote character, a non-empty source
shall have the '#' (NUMBER SIGN, U+0023) character as the next non-whitespace; a non-empty
sheetname shall be followed by the '.' (FULL STOP, U+002E) character as the next non-
whitespace.

Expressions should limit the names of their identifiers to only ([UNICODE]) letters, underscores,
and digits, not including patterns that look like cell references or the words True or False.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 53 of 254

Note: Some evaluators do not support the use of Unicode for identifiers.

Identifier ::= (LetterXML

 (LetterXML | DigitXML | '_' | CombiningCharXML)*)

- ([A-Za-z]+[0-9]+)

- ([Tt][Rr][Uu][Ee]) - ([Ff][Aa][Ll][Ss][Ee])

7.11 Constant Errors

7.12 Constant Errors

7.13 Evaluators shall support the Error value #N/A. Evaluators
may support other Error values. Evaluators may allow entry of
errors directly, parse them and recognize them as Errors.
Functions shall propagate Errors unless stated otherwise.

Inline Error constants shall have the following syntax:

Error ::= '#' [A-Z0-9]+ ([!?] | ('/' ([A-Z] | ([0-9] [!?]))))

Specific Error values are indicated by an identifier.

Table 4 is a list of constant error names that are used by several existing implementations.
Evaluators may implement other constant Error values.

Table 4 - Possible Other Constant Error Values

Name Comments

#DIV/0! Attempt to divide by zero, including division by an empty cell. ERROR.TYPE of 2

#NAME? Unrecognized/deleted name. ERROR.TYPE of 5.

#N/A Not available. ISNA() applied to this value will return True. Lookup functions which
failed, and NA(), return this value. ERROR.TYPE of 7.

#NULL! Intersection of ranges produced zero cells. ERROR.TYPE of 1.

#NUM!
Failed to meet domain constraints (e.g., input was too large or too small).
ERROR.TYPE of 6.

#REF! Reference to invalid cell (e.g., beyond the application’s abilities). ERROR.TYPE of 4.

#VALUE! Parameter is wrong type. ERROR.TYPE of 3.

An unknown constant Error value shall be mapped into an Error value supported by the evaluator
when read (e.g., the application's equivalent of #NAME?), though an evaluator may warn the user
if this has or will take place. It is desirable to preserve the original specific Error name when
writing an Error constant back out, where possible, but evaluators may write a different Error
value for a formula than they did when reading it for Errors other than #N/A. Whitespace shall not
be included in an Error name.

Evaluators should use a human-comprehensible name, not a numeric id, for constant Error
values they write.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 54 of 254

7.14 Inline Arrays

Inline arrays are enclosed with curly braces. Inside, they contain one or more rows, with each row
separated by a row separator:

Array ::= '{' MatrixRow (RowSeparator MatrixRow)* '}'

MatrixRow ::= Expression (';' Expression)*

RowSeparator ::= '|'

Evaluators that support inline arrays shall accept a matrix with one or more rows, each with one
or more columns, with the same number of columns in each row, with constant values for each
expression. Evaluators that do not support inline arrays, or cannot support a particular use
permitted by this syntax, should compute an Error value for such arrays. An inline array is of type
Array.

Note: Expression authors should be aware that use of Expression other than constant Number
or constant String may impair interoperability.

7.15 Whitespace

Whitespace ::= #x20 | #x09 | #x0a | #x0d

For calculation purposes, whitespace is ignored unless it is inside the contents of string constants
or text surrounded by single quotes. Evaluators shall ignore any whitespace characters before
and/or after any operators, constant numbers, constant strings, constant errors, inline arrays,
parentheses used for controlling precedence, and the closing parenthesis of a function call.
Whitespace shall be ignored following the initial equal sign(s). Whitespace shall be ignored just
before a function name, but whitespace shall not separate a function name from its initial opening
parentheses. Whitespace shall not be used in the interior of a terminating grammar rule (a rule
that references no other rule other than character sets, internally or externally-defined), unless
specifically permitted by the terminating grammar rule, since these rules define the lexical
properties of a component. Evaluators shall not write formulas with whitespace embedded in any
unquoted identifier, constant Number, or constant Error. Evaluators shall treat SPACE (U+0020),
CHARACTER TABULATION (U+0009), LINE FEED (U+000A), and CARRIAGE RETURN
(U+000D) as whitespace characters.

An embedded line break shall be represented by a single LINE FEED character (U+000A), not by
a carriage return-linefeed pair. When embedded in an XML attribute the linefeed character is
represented as “
”.

Evaluators should retain whitespace entered by the original formula creator and use it when
saving or presenting the formula, and should not add additional whitespace unless directed to do
so during the process of editing a formula.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 55 of 254

8 Standard Operators and Functions

8.1 General

OpenFormula defines commonly used operators and functions.

Function names ignore case. Evaluators should write function names in all uppercase letters
when writing OpenFormula formulas.

Unless otherwise noted, if any value being provided is an Error, the result is an Error; if more than
one Error is provided, one of them is returned (evaluators should return the leftmost Error result).

8.2 Common Template for Functions and Operators

For every function or operator, the following are defined in this specification:

● Name: The function/operator name.,

● Summary: One sentence briefly describing the function or operator.

● Syntax:

● Parameter names are shown in order, with each parameter prefixed by the type or
pseudo-type of that parameter. If the type has multiple names separated by “|”, then any
of those types are permitted.

● A { ... } indicates a list of zero or more parameters, separated by the function parameter
separator character.

● A { ... } followed by a superscripted + indicates a list of one or more parameters,
separated by the function parameter separator character.

● Components surrounded by [...] are optional. Optional components may be omitted.

● An optional parameter followed by the = symbol has the default value given after the
equal sign.

● Parameters are separated with a semicolon (";"), as per the OpenFormula syntax.

When a function is given a value of a different type, the parameters are first converted
using the implicit conversion rules before the function operates on its parameters.

Evaluators may extend functions by permitting fewer or additional parameters, which documents
may use. Extended functions may result in a lack of interoperability.

● Returns: Return type (e.g., Number, Text, Logical, Reference).

● Constraints: A description of constraints, in addition to the constraints imposed by the
parameter types. If there are no additional constraints beyond those imposed by the
parameter types, this is "None". If a constraint is not met, the function/operator shall return an
Error unless otherwise noted.

● Semantics: This text describes what the function/operator does.

If a parameter is a pseudotype, but the provided value fails to meet the requirements for that
type, the behavior is implementation-defined.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 56 of 254

Note: Functions and operators are defined by mathematical formulas or by an OpenFormula
formula. Formulas define the correct result, and not the algorithm for calculation. Since
computing systems have limited precision and range of numbers, some functions cannot or
should not be naively implemented as their formulas suggest. This specification defines the
mathematically correct answer, and allows implementors to choose the best algorithm that
will meet that definition.

● Comment: Explanatory comment.

● See also A list of related operators and functions.

The implicit conversion operators omit many of these items, e.g., the syntax (since there is none).

8.3 Implicit Conversion Operators

8.3.1 General

Any given function or operand takes 0 or more parameters, and each of those parameters has an
expected type. The expected type can be one of the base types, identified above. It can also be
of some conversion type that controls conversion, e.g., Any means that no conversion is done (it
can be of any type); NumberSequence causes a conversion to an ordered sequence of zero or
more numbers. If the passed-in type does not match the expected type, an attempt is made to
automatically convert the value to the expected type. An Error is returned if the type cannot be
converted (this can never happen if the expected type is Any). Unless otherwise noted, any
conversion operation applied to a value of type Error returns the same value.

8.3.2 Conversion to Scalar

To convert to a scalar, if the value is of type:

● Number, Logical, or Text, return the value.

● reference to a single cell: obtain the value of the referenced cell, and return that value.

● reference to more than one cell: do an implied intersection, 8.3.3, to determine which single
cell to use, then handle as a reference to a single cell.

8.3.3 Implied intersection

In some cases a reference to a single cell is needed, but a reference to multiple cells is provided.
In this case an "implied intersection" is performed. To perform an implied intersection:

● Compute the union of cells contained in the current row and current column of the formula
being computed.

● Intersect this with the provided reference to multiple cells

● If a single cell is referenced; return it; otherwise, return an Error.

8.3.4 Force to array context (ForceArray)

A ForceArray attribute forces calculation of the argument's expression into non-scalar array
mode. This means that no implied intersection is performed, instead where a reference to a single
cell is expected and multiple cells are provided, iteration over the multiple cells is performed and
results are stored in an array that is passed on.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 57 of 254

See also Non-Scalar Evaluation 3.3

8.3.5 Conversion to Number

If the expected type is Number, then if value is of type:

● Number, return it.

● Logical, return 0 if FALSE, 1 if TRUE.

● Text: The specific conversion is implementation-defined; an evaluator may return 0, an Error
value, or the results of its attempt to convert the Text value to a Number (and fall back to 0 or
Error if it fails to do so). Evaluators may apply VALUE() or some other function to do this
conversion, should they choose to do so. Conversion depends on the actual locale the
application runs in, especially if group or decimal separators are involved.

● Reference: If the reference covers more than one cell, do an implied intersection to determine
which cell to use. Then obtain the value of the single cell and perform the rules as above. If
the calculation setting “precision-as-shown” is true, then convert the number to the closest
possible representation of the displayed number. If the cell is empty (blank), use 0 (zero) as
the value. Evaluators may choose to convert references to Text in a different manner than
they handle converting embedded Text to a Number.

8.3.6 Conversion to Integer

If the expected type is Integer for a function or operator, apply the “Conversion to Number”
operation. 8.3.5 Then, if the result is a Number but not an integer, apply the specific conversion
from Number to integer specified by that particular function/operator. If the function or operator
does not specify any particular conversion operation, then the conversion from a non-integer
Number into an integer is implementation-defined.

Many different conversions from a non-integer number into an integer are possible. The
conversion direction may be towards negative infinity, towards positive infinity, towards zero,
away from zero, towards the nearest even number, or towards the nearest odd number. A
conversion can select the nearest integer, the nearest even or odd integer, or the “next” integer in
the given direction if it is not already an integer. If a conversion selects the nearest integer, a
direction is still needed (for when a value is halfway between two integers). In this specification,
this conversion is referred to as “rounding” or “truncation”; these terms by themselves do not
specify any specific operation.

If a function specifies its rounding operation using a series of capital letters, the function defined
in this specification for that function is used to do the conversion to integer. Common such
functions are:

● INT, which if given non-integer rounds down to the next integer towards negative infinity,
regardless of whether or not it is the closest integer.

● ROUND, which if given non-integer rounds to the nearest integer. If the input number is
halfway between integers, it rounds away from zero.

● TRUNC, which if given non-integer rounds towards zero, regardless of whether or not that
integer is the closest integer.

8.3.7 Conversion to NumberSequence

If the expected type is NumberSequence, then if value is of type:

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 58 of 254

● Number, Text, or Logical, handle as Conversion to Number 8.3.5 (creating a sequence of
length 1).

● reference, create a sequence of numbers from the values of the referenced cells that only
includes the values of type Number or Error. Thus, Empty cells and Text that could be
converted into a value is not included in a number sequence. If the Logical type is a
distinguished type from the Number type, it should not be included in the sequence of
numbers; if the Logical type is not a distinguished type, then such values will (of course) be
included in the number sequence.

8.3.8 Conversion to NumberSequenceList

Identical to Conversion to NumberSequence 8.3.7 , with the addition that instead of a Reference
also a ReferenceList is accepted as argument. Each Reference in the list is converted to a
NumberSequence in the order of occurrence.

8.3.9 Conversion to DateSequence

Identical to Conversion to NumberSequence 8.3.7 except that each element in the list represents
a serial date value of subtype Date.

8.3.10 Conversion to Complex Number

An evaluator may accept complex numbers as Text, Number, or a different distinguishable type.

If the value is:

● Number that is not complex, use the Number with 0 as the imaginary part.

● Text, attempt to convert to complex number using VALUE(). If it is a number that is not
complex, use it. If the text matches one of these patterns, accept it:

([+-]?Number [+-])?Number[ij]

[+-]?Number[ij]

● Logical, convert to Number and then handle as Number.

● reference: Convert to Scalar, then use the rules above. If the reference is to an empty cell,
consider it equal to 0.

8.3.11 Conversion to ComplexSequence

If the expected type is ComplexSequence, then if value is of type:

● Number, Text, or Logical, handle as Conversion to Complex Number (creating a sequence of
length 1).

● Reference, create a sequence of complex numbers from the values of the referenced cells
that only includes the values of type Number, Text, and Error. Empty cells are not included in
a complex number sequence. If the Logical type is a distinguished type from the Number
type, it should not be included in the sequence of numbers; if the Logical type is not a
distinguished type, then such values will (of course) be included in the number sequence.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 59 of 254

8.3.12 Conversion to Logical

If the expected type is Logical, then if value is of type:

● Number, return TRUE() for nonzero and FALSE() for 0.

● Text: The specific conversion is implementation-defined; an evaluator may return False, an
Error value, or the results of its attempt to convert the Text value (ignoring case) to a Logical
value (and fall back to False or Error if it fails to do so). Conversion depends on the actual
locale the evaluator runs in.

● Logical, return it.

● Reference, convert to scalar and then perform as above. If the reference is to an empty cell,
consider it FALSE().

8.3.13 Conversion to LogicalSequence

If the expected type is LogicalSequence, then if value is of type:

● Number or Logical, handle as Conversion to Logical (creating a sequence of length 1).

● Reference, create a sequence of logical values from the values of the referenced cells that
only includes the values of type Logical and Error. If the Logical type is not a distinguished
type, then include values of type Number, converting each to a Logical value as described in
Conversion to Logical. Empty cells are not included in a LogicalSequence.

8.3.14 Conversion to Text

If the expected type is Text, then if value is of type:

● Number, transform into Text (with no whitespace).

● Text, return it.

● Logical, return "TRUE" if it is TRUE and "FALSE" if it is false.

● Reference: perform conversion to scalar. If the referenced cell is empty, treat as an empty
string (a text value with length 0). Then perform as above.

8.3.15 Conversion to DateParam

If the expected type is the pseudotype DateParam, then if value is of type:

● Number, return it.

● Text, pass to DATEVALUE, and if non-Error, return it. If DATEVALUE would return an Error,
an evaluator may attempt to convert to a Number in other ways (such as by calling VALUE);
this is implementation-defined. If the evaluator cannot convert to Number, it returns an Error.

● Logical, the result is implementation-defined, either a Number or Error

● Reference: perform conversion to scalar, then perform as above. If the cell is empty, return 0.

8.3.16 Conversion to TimeParam

If the expected type is the pseudotype TimeParam, then if value is of type:

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 60 of 254

● Number, return it.

● Text, pass to TIMEVALUE, and if non-Error, return it. If TIMEVALUE would return an Error, an
evaluator may attempt to convert to a Number in other ways (such as by calling VALUE); this
is implementation-defined. If the evaluator cannot convert to Number, it returns an Error.

● Logical, the result is implementation-defined, either a Number or Error

● Reference: perform conversion to scalar, then perform as above. If the cell is empty, return 0.

8.4 Standard Operators

8.4.1 General

The functions defined under standard operators differ from other functions only by on the basis of
their frequency of use. That frequency of use has lead to the colloquial terminology, standard
operators.

8.4.2 Infix Operator "+"

Summary: Add two numbers.

Syntax: Number Left + Number Right

Returns: Number

Constraints: None

Semantics: Adds numbers together.

See also Infix Operator "-" 8.4.3, Prefix Operator "+" 8.4.15

8.4.3 Infix Operator "-"

Summary: Subtract the second number from the first.

Syntax: Number Left - Number Right

Returns: Number

Constraints: None

Semantics: Subtracts one number from another number.

See also Infix Operator "+" 8.4.2, Prefix Operator "-" 8.4.16

8.4.4 Infix Operator "*"

Summary: Multiply two numbers.

Syntax: Number Left * Number Right

Returns: Number

Constraints: None

Semantics: Multiplies numbers together.

See also Infix Operator "+" 8.4.2, Infix Operator "/" 8.4.5

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 61 of 254

8.4.5 Infix Operator "/"

Summary: Divide the second number into the first.

Syntax: Number Left / Number Right

Returns: Number

Constraints: None

Semantics: Divides numbers. Dividing by zero returns an Error.

See also Infix Operator "-" 8.4.3, Infix Operator "*" 8.4.4

8.4.6 Infix Operator "^"

Summary: Exponentiation (Power).

Syntax: Number Left ^ Number Right

Returns: Number

Constraints: NOT(AND(Left=0; Right=0)); Evaluators may evaluate expressions where OR(Left !
= 0; Right != 0) evaluates to a non-Error value.

Semantics: Returns POWER(Left, Right).

See also Infix Operator "*" 8.4.4, POWER 8.16.46

8.4.7 Infix Operator "="

Summary: Report if two values are equal

Syntax: Scalar Left = Scalar Right

Returns: Logical

Constraints: None

Semantics: Returns TRUE if two values are equal. If the values differ in type, return FALSE. If
the values are both Number, return TRUE if they are considered equal, else return FALSE. If they
are both Text, return TRUE if the two values match, else return FALSE. For Text values, if the
calculation setting HOST-CASE-SENSITIVE is false, text is compared but characters
differencing only in case are considered equal. If they are both Logicals, return TRUE if they are
identical, else return FALSE. Error values cannot be compared to a constant Error value to
determine if that is the same Error value.

Evaluators may approximate and test equality of two numeric values with an accuracy of the
magnitude of the given values scaled by the number of available bits in the mantissa, ignoring
some least significant bits and thus providing compensation for not exactly representable values.

The result of “1=TRUE()” is FALSE for evaluators that implement a distinct Logical type and
TRUE if they don't.

See also Infix Operator "<>" 8.4.8

8.4.8 Infix Operator "<>"

Summary: Report if two values are not equal

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 62 of 254

Syntax: Any Left <> Any Right

Returns: Logical

Constraints: None

Semantics: Returns NOT(Left = Right) if Left and Right are not Error. For Text values, if the
calculation setting HOST-CASE-SENSITIVE is false, text is compared but characters
differencing only in case are considered equal.

If either Left and Right are an Error, the result is an Error; this operator cannot be used to
determine if two Errors are the same kind of Error.

Note: In some user interfaces the infix operator “<>” is displayed (or accepted) as “!=” or “≠”.

See also Infix Operator "=" 8.4.7

8.4.9 Infix Operator Ordered Comparison ("<", "<=", ">", ">=")

Summary: Report if two values have the given order

Syntax: Scalar Left op Scalar Right

where op is one of: "<", "<=", ">", or ">="

Returns: Logical

Constraints: None

Semantics: Returns TRUE if the two values are less than, less than or equal, greater than, or
greater than or equal (respectively). If both Left and Right are Numbers, compare them as
numbers. If both Left and Right are Text, compare them as text; if the calculation setting HOST-
CASE-SENSITIVE is false, text is compared but characters are compared ignoring case. If the
values are both Logical, convert both to Number and then compare as Number.

These functions return one of True, False, or an Error if Left and Right have different types, but it
is implementation-defined which of these results will be returned when the types differ.

See also Infix Operator "<>" 8.4.8, Infix Operator "=" 8.4.7

8.4.10 Infix Operator "&"

Summary: Concatenate two strings.

Syntax: Text Left & Text Right

Returns: Text

Constraints: None

Semantics: Concatenates two text (string) values.

Note: The infix operator “&” is equivalent to CONCATENATE(Left,Right).

See also Infix Operator "+" 8.4.2, CONCATENATE 8.20.6

8.4.11 Infix Operator Reference Range (":")

Summary: Computes an inclusive range given two references

Syntax: Reference Left : Reference Right

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 63 of 254

Returns: Reference

Constraints: None

Semantics: Takes two references and computes the range, that is, a reference to the smallest 3-
dimensional cube of cells that include both Left and Right including the cells on sheets positioned
between Left and Right. Left and Right need not be a single cell. For an expression such as
[.B4:.B5]:[.C5] the resulting range is B4:C5. In case Left and/or Right involve a reference list
(result of operator reference union), the range is computed and extended for each element of the
list(s).

Note: For example, (a,b,c,d denoting one reference each)
(a~b):(c~d) computes a:b:c:d
determining the outermost front-top-left and rear-bottom-right corners.

Left and Right may also be defined names or the result of a function returning a reference, such
as INDIRECT.

See also Infix Operator Reference Union 8.4.13, Infix Operator Reference Intersection 8.4.12,
INDIRECT 8.14.7

8.4.12 Infix Operator Reference Intersection ("!")

Summary: Compute the intersection of two references

Syntax: Reference Left ! Reference Right

Returns: Reference

Constraints: None

Semantics: Takes two references and computes the intersection - a reference to the intersection
of cells in both Left and Right. If there are no cells in common, returns an Error.

If Left or Right are not of type Reference or ReferenceList, an Error shall be returned.

If Left and/or Right are reference lists (result of infix operator reference concatenation), the
intersection is computed for each combination of Left and Right, producing a reference list of
intersections.

Note 1: For example (a,b,c,d denoting one reference each):
(a~b)!(c~d) will compute (a!c)~(a!d)~(b!c)~(b!d)

If for a resulting intersection there are no cells in common, the element is ignored and omitted
from the result list. If for all intersections there are no cells in common and the result list is empty,
Error #NULL! is returned.

Note 2: Intersection is notated as "!" in OpenFormula format, but as a space character in some
user interfaces.

See also Infix Operator Reference Union 8.4.13

8.4.13 Infix Operator Reference Concatenation ("~") (aka Union)

Summary: Concatenate two references

Syntax: Reference Left ~ Reference Right

Returns: ReferenceList

Constraints: None

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 64 of 254

Semantics: Takes two references and computes the "cell union", which is a concatenation of the
reference Left followed by the reference Right. This is not the same as a union in set theory;
duplicate references to cells are not removed. The resulting reference will have the number of
areas, as reported by AREAS, as AREAS(Left)+AREAS(Right).

Note: Concatenation is notated as "~" in OpenFormula format, but as a comma or “+” in some
user interfaces.

If Left or Right are not of type Reference or ReferenceList, an Error shall be returned.

Test Cases:

See also Infix Operator Reference Range 8.4.11, Infix Operator Reference Intersection 8.4.12

8.4.14 Postfix Operator "%"

Summary: Divide the operand by 100

Syntax: Number Left %

Returns: Number

Constraints: None

Semantics: Computes Left / 100.

See also Prefix Operator "-" 8.4.16, Prefix Operator "+" 8.4.15

8.4.15 Prefix Operator "+"

Summary: No operation; returns its one argument.

Syntax: + Any Right

Returns: Any

Constraints: None

Semantics: Returns the value given to it. Note that this does not convert a value to the Number
type. In fact, it does no conversion at all of a Number, Logical, or Text value - it returns the same
Number, Logical, or Text value (respectively). The "+" applied to a reference may return the
reference, or an Error.

See also Infix Operator "+" 8.4.2

8.4.16 Prefix Operator "-"

Summary: Negate its one argument.

Syntax: - Number Right

Returns: Number

Constraints: None

Semantics: Computes 0 - Right.

See also Infix Operator "-" 8.4.3

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 65 of 254

8.5 Matrix Functions

8.5.1 General

Matrix functions operate on matrices.

A matrix with M rows and N columncolumns and N rows is defined by

AM×N=(
a1 1 a2 1 … a N 1

a1 2 a2 2 … aN 2

⋮ ⋮ ⋱ ⋮
a1 M a2M … aM N

)
The dimension subscript may be omitted, if the context allows it, i.e. AM×N=A . Matrices are
represented by upper case letters. The elements of a matrix are denoted by the corresponding
lower case letter and subscripts, which defines the row and column number.
Square matrices have the same amount of rows and columna subscript, which defines the
column and the row.

Square matrices have the same amount of columns and rows, i.e. M=N .

8.5.2 MDETERM

Summary: Calculates the determinant of a matrix.

Syntax: MDETERM(ForceArray Array matrix)

Returns: Number

Constraints: Only square matrices are allowed.

Semantics: Returns the determinant of the matrix. The determinant is defined by

det  AN×N  =∑
P

sgn P∏
i=1

N

a ip i

where P denotes a permutation of the numbers 1, 2, ..., n and sgn P  is the sign of the
permutation, which is +1 for an even amount of permutations (i.e., permutations that can be
written as the composition of an even number of transpositions), -1 otherwise. A transposition on
1, ..., n is a permutation of 1, ..., n with exactly (n-2) numbers fixedand -1 for an odd amount.
Matrices with a non-zero determinant are invertible.

See also MINVERSE 8.5.3

8.5.3 MINVERSE

Summary: Returns the inverse of a matrix.

Syntax: MINVERSE(ForceArray Array matrix)

Returns: Array

Constraints: Only square matrices are allowed.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 66 of 254

Semantics: Calculates the inverse A
−1

 of matrix A. The matrix A multiplied with its inverse

A−1
results in the unity matrix of the same dimension as A:

AN×N AN×N
−1 =AN×N

−1 AN×N=1N×N
Invertible matrices have a non-zero determinant. If the matrix is not invertible, this function should
return an Error value.

See also MDETERM 8.5.2

8.5.4 MMULT

Summary: Multiplies the matrices A and B.

Syntax: MMULT(ForceArray Array A ; ForceArray Array B)

Returns: Array

Constraints: COLUMNS(A)=ROWS(B)

Semantics: Returns the matrix product of the two matrices. The elements cmn of the resulting

matrix CM×N=AM×K BK×N , are defined by:

cmn=∑
k=1

K

amk bk n

8.5.5 MUNIT

Summary: Creates a unit matrix of a specified dimension N.

Syntax: MUNIT(Integer N)

Returns: Array

Constraints: The dimension has to be greater than zero.

Semantics: Creates the unit matrix (identity matrix) of dimension N.

1N×N= 1 0  0
0 1  0
⋮ ⋮ ⋱ ⋮
0 0  1


8.5.6 TRANSPOSE

Summary: Returns the transpose of a matrix.

Syntax: TRANSPOSE(Array A)

Returns: Array

Constraints: None

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 67 of 254

Semantics: Returns the transpose AT of a matrix A, i.e. rows and columns of the matrix are
exchanged.

AM×N
T =(

a11 a21 … aM1

a12 a22 … aM 2

⋮ ⋮ ⋱ ⋮
a1N a2N … aMN

)
N×M

8.6 Bit operation functions

8.6.1 General

Evaluators shall support unsigned integer values and results of at least 48 bits (values from 0 to
2^48-1 inclusive). Operations that receive or result in a value that cannot be represented within
48 bits are implementation-defined.

8.6.2 BITAND

Summary: Returns bitwise “and” of its parameters

Syntax: BITAND(Integer X ; Integer Y)

Returns: Number

Constraints: X ≥ 0, Y ≥ 0

Semantics: Returns bitwise “and” of its parameters. In the result, each bit position is 1 if and only
if all parameters' bits at that position are also 1; else it is 0.

See also BITOR 8.6.4, BITXOR 8.6.6, AND 8.15.2

8.6.3 BITLSHIFT

Summary: Returns left shift of value x by n bits (“<<”)

Syntax: BITLSHIFT(Integer x ; Integer n)

Returns: Number

Constraints: x ≥ 0

Semantics: Returns left shift of value x by n bit positions:

● If n<0, return BITRSHIFT(x,-n)

● if n=0, return x

● if n>0, return x*2^n

See also BITAND 8.6.2, BITXOR 8.6.6, BITRSHIFT 8.6.5

8.6.4 BITOR

Summary: Returns bitwise “or” of its parameters

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 68 of 254

Syntax: BITOR(Integer X ; Integer Y)

Returns: Number

Constraints: X ≥ 0, Y ≥ 0

Semantics: Returns bitwise “or” of its parameters. In the result, each bit position is 1 if any of its
parameters' bits at that position are also 1; else it is 0.

See also BITAND 8.6.2, BITXOR 8.6.6, AND 8.15.2

8.6.5 BITRSHIFT

Summary: Returns right shift of value x by n bits (“>>”)

Syntax: BITRSHIFT(Integer x ; Integer n)

Returns: Number

Constraints: x ≥ 0

Semantics: Returns right shift of value x by n bit positions:

● If n<0, return BITLSHIFT(x,-n)

● if n=0, return x

● if n>0, return INT(x/2^n)

See also BITAND 8.6.2, BITXOR 8.6.6, BITLSHIFT 8.6.3

8.6.6 BITXOR

Summary: Returns bitwise “exclusive or” of its parameters

Syntax: BITXOR(Integer X ; Integer Y)

Returns: Number

Constraints: X ≥ 0, Y ≥ 0

Semantics: Returns bitwise “exclusive or” (xor) of its parameters. In the result, each bit position
is 1 if one or the other parameters' bits at that position are 1; else it is 0.

See also BITAND 8.6.2, BITOR 8.6.4, OR 8.15.8

8.7 Byte-position text functions

8.7.1 General

Byte-position text functions are like their equivalent ordinary text functions, but manipulate byte
positions rather than a count of the number of characters. Byte positions are integers that may
depend on the specific text representation used by the implementation. Byte positions are by
definition implementation-dependent and reliance upon them reduces interoperability.

The pseudotypes ByteLength and BytePosition are Integers, but their exact meanings and values
are not further defined by this specification.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 69 of 254

8.7.2 FINDB

Summary: Returns the starting position of a given text, using byte positions.

Syntax: FINDB(Text Search ; Text T [; BytePosition Start])

Returns: BytePosition

Semantics: The same as FIND, but using byte positions.

See also FIND 8.20.9 , LEFTB 8.7.3 , RIGHTB 8.7.7

8.7.3 LEFTB

Summary: Returns a selected number of text characters from the left, using a byte position.

Syntax: LEFTB(Text T [; ByteLength Length])

Returns: Text

Semantics: As LEFT, but using a byte position.

See also LEFT 8.20.12, RIGHT 8.20.19, RIGHTB 8.7.7

8.7.4 LENB

Summary: Returns the length of given text in units compatible with byte positions

Syntax: LENB(Text T)

Returns: ByteLength

Constraints: None.

Semantics: As LEN, but compatible with byte position values.

See also LEN 8.20.13, LEFTB 8.7.3, RIGHTB 8.7.7

8.7.5 MIDB

Summary: Returns extracted text, given an original text, starting position using a byte position,
and length.

Syntax: MIDB(Text T ; BytePosition Start ; ByteLength Length)

Returns: Text

Constraints: Length >= 0.

Semantics: As MID, but using byte positions.

See also MID 8.20.15, LEFTB 8.7.3, RIGHTB 8.7.7, REPLACEB 8.7.6

8.7.6 REPLACEB

Summary: Returns text where an old text is replaced with a new text, using byte positions.

Syntax: REPLACEB(Text T ; BytePosition Start ; ByteLength Len ; Text New)

Returns: Text

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 70 of 254

Semantics: As REPLACE, but using byte positions.

See also REPLACE 8.20.17, LEFTB 8.7.3, RIGHTB 8.7.7, MIDB 8.7.5, SUBSTITUTE 8.20.21

8.7.7 RIGHTB

Summary: Returns a selected number of text characters from the right, using byte position.

Syntax: RIGHTB(Text T [; ByteLength Length])

Returns: Text

Semantics: As RIGHT, but using byte positions.

See also RIGHT 8.20.19, LEFTB 8.7.3

8.7.8 SEARCHB

Summary: Returns the starting position of a given text, using byte positions.

Syntax: SEARCHB(Text Search ; Text T [; BytePosition Start])

Returns: BytePosition

Semantics: As SEARCH, but using byte positions.

See also SEARCH 8.20.20, EXACT 8.20.8, FIND 8.20.9, FINDB 8.7.2

8.8 Complex Number Functions

8.8.1 General

Functions for complex numbers.

8.8.2 COMPLEX

Summary: Creates a complex number from a given real coefficient and imaginary coefficient.

Syntax: COMPLEX(Number Real ; Number Imaginary [; Text Suffix])

Returns: Complex

Constraints: None

Semantics: Constructs a complex number by the given coefficients. The third parameter Suffix is
optional, and should be either “i” or “j”. Upper case “I” or “J” are not accepted for the suffix
parameter.

8.8.3 IMABS

Summary: Returns the absolute value of a complex number

Syntax: IMABS(Complex X)

Returns: Number

Constraints: None

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 71 of 254

Semantics: If X=a+bi or X=a+bj, the absolute value =  a2b2
 ; if N=r(cosφ + isinφ), the

absolute value = r.

See also IMARGUMENT 8.8.5

8.8.4 IMAGINARY

Summary: Returns the imaginary coefficient of a complex number

Syntax: IMAGINARY(Complex X)

Returns: Number

Constraints: None

Semantics: If X=a+bi or X=a+bj, then the imaginary coefficient is b.

See also IMREAL 8.8.19

8.8.5 IMARGUMENT

Summary: Returns the complex argument of a complex number

Syntax: IMARGUMENT(Complex X)

Returns: Number

Constraints: None

Semantics: If X=a+bi=r(cosφ + isinφ), a or b is not 0 and -π < φ ≤ π, then the complex argument
is φ. φ is expressed by radians. If X=0, then IMARGUMENT(X) is implementation-defined and
either 0 or an error.

See also IMABS 8.8.3

8.8.6 IMCONJUGATE

Summary: Returns the complex conjugate of a complex number

Syntax: IMCONJUGATE(Complex X)

Returns: Complex

Constraints: None

Semantics: If X=a+bi, then the complex conjugate is a-bi.

8.8.7 IMCOS

Summary: Returns the cosine of a complex number

Syntax: IMCOS(Complex X)

Returns: Complex

Constraints: None

Semantics: If X=a+bi, then cos(X)=cos(a)cosh(b)-sin(a)sinh(b)i.

See also IMSIN 8.8.20

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 72 of 254

8.8.8 IMCOSH

Summary: Returns the hyperbolic cosine of a complex number

Syntax: IMCOSH(Complex N)

Returns: Complex

Constraints: None

Semantics: If N=a+bi, then cosh(N)=cosh(a)cos(b)+sinh(a)sin(b)i.

8.8.9 IMCOT

Summary: Returns the cotangent of a complex number

Syntax: IMCOT(Complex N)

Returns: Complex

Constraints: None

Semantics: Equivalent to the following (except N is computed only once):

IMDIV(IMCOS(N);IMSIN(N))

See also IMTAN 8.8.20

8.8.10 IMCSC

Summary: Returns the cosecant of a complex number

Syntax: IMCSC(Complex N)

Returns: Complex

Constraints: None

Semantics: Equivalent to the following:

IMDIV(1;IMSIN(N))

See also IMSIN 8.8.20

8.8.11 IMCSCH

Summary: Returns the hyperbolic cosecant of a complex number

Syntax: IMCSCH(Complex N)

Returns: Number

Constraints: None

Semantics: Computes the hyperbolic cosecant. This is equivalent to:

IMDIV(1;IMSINH(N))

See also IMSINH, CSCH

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 73 of 254

8.8.12 IMDIV

Summary: Divides the second number into the first.

Syntax: IMDIV(Complex X ; Complex Y)

Returns: Complex

Constraints: None

Semantics: Given X=a+bi and Y=c+di, return the quotient

acbd bc−ad i
c2d 2

Division by zero returns an Error.

See also IMDIV 8.8.12

8.8.13 IMEXP

Summary: Returns the exponent of e and a complex number.

Syntax: IMEXP(Complex X)

Returns: Complex

Constraints: None

Semantics: If X=a+bi, the result is eacosbisin b .

See also IMLN 8.8.14

8.8.14 IMLN

Summary: Returns the natural logarithm of a complex number.

Syntax: IMLN(Complex X)

Returns: Complex

Constraints: X ≠ 0None

Semantics: COMPLEX(LN(IMABS(X)); IMARGUMENT(X)) If X=r(cos φ + isin φ) , φ is expressed
by radians, then the natural logarithm is returned.

See also IMEXP 8.8.13 , IMLOG10 8.8.15

8.8.15 IMLOG10

Summary: Returns the common logarithm of a complex number.

Syntax: IMLOG10(Complex X)

Returns: Complex

Constraints: X ≠ 0None

Semantics: IMLOG10(X) is IMDIV(IMLN(X);COMPLEX(LN(10);0)) f X=r(cos φ + isin φ) , φ is
expressed by radians, then the common logarithm is returned.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 74 of 254

See also IMLN 8.8.14 , IMPOWER 8.8.17

8.8.16 IMLOG2

Summary: Returns the binary logarithm of a complex number.

Syntax: IMLOG2(Complex X)

Returns: Complex

Constraints: X ≠ 0None

Semantics: IMLOG2(X) is IMDIV(IMLN(X);COMPLEX(LN(2);0)) f X=r(cos φ + isin φ) , φ is
expressed by radians, then the binary logarithm is returned.

See also IMLN 8.8.14 , IMPOWER 8.8.17

8.8.17 IMPOWER

Summary: Returns the complex number X raised to the Yth powpower of N and a complex
number.

Syntax: IMPOWER(Complex X ; Complex Y) or IMPOWER(Complex X ; Number YNumber n)

Returns: Complex

Constraints: X ≠ 0None

Semantics: IMPOWER(X;Y) is IMEXP(IMPRODUCT(Y; IMLN(X)))f X=a+bi=r(cos φ + isin φ) , the

result is Object 381 .

An evaluator implementing this function shall permit any Number Y but may also allow any
Complex Y.

See also IMEXP 8.8.13

See also IMEXP 8.8.13

8.8.18 IMPRODUCT

Summary: Returns the product of complex numbers.

Syntax: IMPRODUCT({ ComplexSequence N }+)

Returns: Complex

Constraints: None

Semantics: Multiply the complex numbers together. Given two complex numbers X=a+bi and
Y=c+di, the product X*Y = (ac-bd) + (ad+bc)i

See also IMDIV 8.8.12

8.8.19 IMREAL

Summary: Returns the real coefficient of a complex number

Syntax: IMREAL(Complex N)

Returns: Number

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 75 of 254

Constraints: None

Semantics: If N=a+bi or N=a+bj, then the real coefficient is a.

See also IMAGINARY 8.8.4

8.8.20 IMSIN

Summary: Returns the sine of a complex number

Syntax: IMSIN(Complex N)

Returns: Complex

Constraints: None

Semantics: If N=a+bi, then sin(N)=sin(a)cosh(b)+-cos(a)sinh(b)i.

See also IMCOS 8.8.7

8.8.21 IMSINH

Summary: Returns the hyperbolic sine of a complex number

Syntax: IMSINH(Complex N)

Returns: Complex

Constraints: None

Semantics: If N=a+bi, then sinh(N)=sinh(a)cos(b)+cosh(a)sin(b)i.

8.8.22 IMSEC

Summary: Returns the secant of a complex number

Syntax: IMSEC(Complex N)

Returns: Complex

Constraints: None

Semantics: Equivalent to the following:

IMDIV(1;IMCOS(N))

See also IMCOS 8.8.7

8.8.23 IMSECH

Summary: Returns the hyperbolic secant of a complex number

Syntax: IMSECH(Complex N)

Returns: Number

Constraints: None

Semantics: Computes the hyperbolic secant. This is equivalent to:

IMDIV(1;IMCOSH(N))

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 76 of 254

See also IMCOSH, SECH

8.8.24 IMSQRT

Summary: Returns the square root of a complex number

Syntax: IMSQRT(Complex N)

Returns: Complex

Constraints: None

Semantics: If N= 0+0i, then IMSQRT(N)=0. Otherwise IMSQRT(N) is SQRT(IMABS(N)) *
sin(IMARGUMENT(N)/2) + SQRT(IMABS(N)) * cos(IMARGUMENT(N)/2)i. r(cosφ + isinφ), φ is
expressed by radians, then the square root of N is returned.

See also IMPOWER 8.8.17

8.8.25 IMSUB

Summary: Subtracts the second complex number from the first.

Syntax: IMSUB(Complex X ; Complex Y)

Returns: Complex

Constraints: None

Semantics: Subtract complex number Y from X.

See also IMSUM 8.8.26

8.8.26 IMSUM

Summary: Sums (add) a set of complex numbers, including all numbers in ranges

Syntax: IMSUM({ ComplexSequence N }+)

Returns: Complex Number

Constraints: None

Semantics: Adds complex numbers together. Text that cannot be converted to a complex number
is ignored.

It is implementation-defined what happens if this function is given zero parameters; an evaluator
may either produce an Error or the Number 0 if it is given zero parameters.

See also IMSUB 8.8.25

8.8.27 IMTAN

Summary: Returns the tangent of a complex number

Syntax: IMTAN(Complex N)

Returns: Complex

Constraints: None

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 77 of 254

Semantics: Equivalent to the following (except N is computed only once):

IMDIV(IMSIN(N);IMCOS(N))

See also IMSIN, IMCOS, IMCOT 8.8.25

8.9 Database Functions

8.9.1 General

Database functions use the variables, Database 4.11.8, Field 4.11.9, and Criteria 4.11.10.

The results of database functions may change when the values of the HOST-USE-REGULAR-
EXPRESSIONS or HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-
WHOLE-CELL properties change. 3.5

8.9.2 DAVERAGE

Summary: Finds the average of values in a given field from the records (rows) in a database that
match a search criteria.

Syntax: DAVERAGE(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: Nonef

Semantics: Perform AVERAGE on data records in database D field F that match criteria C.

See also AVERAGE 8.18.3, COUNT 8.13.6, DSUM 8.9.11, DCOUNT 8.9.3, SUM 8.16.61

8.9.3 DCOUNT

Summary: Counts the number of records (rows) in a database that match a search criteria and
contain numerical values.

Syntax: DCOUNT(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform COUNT on data records in database D field F that match criteria C.

See also COUNT 8.13.6, COUNTA 8.13.7, DCOUNTA 8.9.4, DSUM 8.9.11

8.9.4 DCOUNTA

Summary: Counts the number of records (rows) in a database that match a search criteria and
contain values (as COUNTA).

Syntax: DCOUNTA(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform COUNTA on data records in database D field F that match criteria C.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 78 of 254

See also COUNT 8.13.6, COUNTA 8.13.7, DCOUNT 8.9.3, DSUM 8.9.11

8.9.5 DGET

Summary: Gets the single value in the field from the single record (row) in a database that
matches a search criteria.

Syntax: DGET(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Extracts the value in field F of the one data record in database D that matches
criteria C. If no records match, or more than one matches, it returns an Error.

See also DMAX 8.9.6, DMIN 8.9.7, DSUM 8.9.11

8.9.6 DMAX

Summary: Finds the maximum value in a given field from the records (rows) in a database that
match a search criteria.

Syntax: DMAX(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform MAX on only the data records in database D field F that match criteria C.

See also MAX 8.18.45, DMIN 8.9.7, MIN 8.18.48

8.9.7 DMIN

Summary: Finds the minimum value in a given field from the records (rows) in a database that
match a search criteria.

Syntax: DMIN(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform MIN on only the data records in database D field F that match criteria C.

See also MIN 8.18.48, DMAX 8.9.6, MAX 8.18.45

8.9.8 DPRODUCT

Summary: Finds the product of values in a given field from the records (rows) in a database that
match a search criteria.

Syntax: DPRODUCT(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Multiply together only the data records in database D field F that match criteria C.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 79 of 254

See also SUM 8.16.61, DSUM 8.9.11

8.9.9 DSTDEV

Summary: Finds the sample standard deviation in a given field from the records (rows) in a
database that match a search criteria.

Syntax: DSTDEV(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform STDEV on only the data records in database D field F that match criteria C.

See also STDEV 8.18.72, DSTDEVP 8.9.10

8.9.10 DSTDEVP

Summary: Finds the population standard deviation in a given field from the records (rows) in a
database that match a search criteria.

Syntax: DSTDEVP(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform STDEVP on only the data records in database D field F that match criteria
C.

See also STDEVP 8.18.74, DSTDEV 8.9.9

8.9.11 DSUM

Summary: Finds the sum of values in a given field from the records (rows) in a database that
match a search criteria.

Syntax: DSUM(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform SUM on only the data records in database D field F that match criteria C.

See also SUM 8.16.61, DMIN 8.9.7, DMAX 8.9.6

8.9.12 DVAR

Summary: Finds the sample variance in a given field from the records (rows) in a database that
match a search criteria.

Syntax: DVAR(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform VAR on only the data records in database D field F that match criteria C.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 80 of 254

See also VAR 8.18.82, DVARP 8.9.13

8.9.13 DVARP

Summary: Finds the population variance in a given field from the records (rows) in a database
that match a search criteria.

Syntax: DVARP(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform VARP on only the data records in database D field F that match criteria C.

See also VARP 8.18.84, DVAR 8.9.12

8.10 Date and Time Functions

8.10.1 General

8.10.2 DATE

Summary: Constructs a date from year, month, and day of month.

Syntax: DATE(Integer Year ; Integer Month ; Integer Day)

Returns: Date

Constraints: 1904 <= Year <= 9956; 1 <= Month <= 12; 1 <= Day <= 31; Evaluators may
evaluate expressions that do no meet this constraint.

Semantics: This computes the date's serial number given Year, Month, and Day of the Gregorian
calendar. Fractional values are truncated. Month > 12 and Day > days of Month will roll over the
date, computing the result by adding months and days as necessary. The value of the serial
number depends on the current epoch.

See also TIME 8.10.17, DATEVALUE 8.10.4

8.10.3 DATEDIF

Summary: Returns the difference in years, months, or days of two date numbers.

Syntax: DATEDIF(DateParam StartDate ; DateParam EndDate ; Text Format)

Returns: Number

Constraints: None

Semantics: Compute difference of StartDate and EndDate, in the units given by Format.

The Format is a code from the following table, entered as text, that specifies the format you want
the result of DATEDIF to have.

Table 5 - DATEDIF

format Returns the number of

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 81 of 254

y Years

m Months. If there is not a complete
month between the dates, 0 will be
returned.

d Days

md Days, ignoring months and years

ym Months, ignoring years

yd Days, ignoring years

See also DAYS360 8.10.7, DAYS 8.10.6, Infix Operator “-” 8.4.3

8.10.4 DATEVALUE

Summary: Returns the date serial number from given text.

Syntax: DATEVALUE(Text D)

Returns: Date

Constraints: None

Semantics: This computes the serial number of the text string D, using the current locale. This
function shall accept ISO date format (YYYY-MM-DD), which is locale-independent. It is
semantically equal VALUE(Date) if Date has a date format, since text matching a date format is
automatically converted to a serial number when used as a Number. If the text of D has a
combined date and time format, e.g. YYYY-MM-DD HH:MM:SS, the integer part of the date serial
number is returned. If the text of Date does not have a date or time format, an evaluator may
return an Error. See VALUE for more information on date formats. The value of the serial number
depends on the current epoch.

See also TIME 8.10.17, DATE 8.10.2, TIMEVALUE 8.10.18, VALUE 8.13.34

8.10.5 DAY

Summary: Returns the day from a date.

Syntax: DAY(DateParam Date)

Returns: Number

Constraints: None

Semantics: Returns the day portion of a date.

See also MONTH 8.10.13, YEAR 8.10.23

8.10.6 DAYS

Summary: Returns the number of days between two dates

Syntax: DAYS(DateParam EndDate ; DateParam StartDate)

Returns: Number

Constraints: None

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 82 of 254

Semantics: Returns the number of days between two dates. If StartDate and EndDate are
Numbers, this is EndDate – StartDate. If they are both Text, this is DATEVALUE(StartDate) –
DATEVALUE(EndDate).

See also DATEDIF 8.10.3, DAYS360 8.10.7, MONTH 8.10.13, YEAR 8.10.23, Infix Operator “-”
8.4.3

8.10.7 DAYS360

Summary: Returns the number of days between two dates using the 360-day year

Syntax: DAYS360(DateParam StartDate ; DateParam EndDate [; Integer Method = 0])

Returns: Number

Constraints: 0 <= Method <= 1

Semantics: Returns the number of days between two dates, using the 360-day year system (12
30-month days). In this system, February always has 30 days and there are no leap years.

If method is 0, it uses the National Association of Securities Dealers (NASD) method, also known
as the U.S. method. If the method is 1, the European method is used.

The US/NASD Method (30US/360):

1. Truncate date values, set sign=1.

2. If StartDate's day-of-month is 31, it is changed to 30.

3. Otherwise, if StartDate's day-of-month is the last day of February, it is changed to 30.

4. If EndDate's day-of-month is 31 and StartDate's day-of-month is 30 (after having applied
a change for #2 or #3, if necessary), EndDate's day-of-month is changed to 30.

Note 1: This calculation is slightly different from Basis 0 (4.11.7 Basis). Dates are never
swapped.

The European Method (30E/360):

1. Truncate date values, set sign=1.

2. If StartDate is after EndDate then swap dates and set sign=-1.

3. If StartDate's day-of-month is 31, it is changed to 30.

4. If EndDate's day-of-month is 31, it is changed to 30.

Note 2: Days in February are never changed.

Note 3: This calculation is identical to Basis 4 (4.11.7 Basis)

For both methods the value then returned is
sign * ((EndDate.year*360 + EndDate.month*30 + EndDate.day) - (StartDate.year*360 +
StartDate.month*30 + StartDate.day))

See also DAYS 8.10.6, DATEDIF 8.10.3

8.10.8 EDATE

Summary: Returns the serial number of a given date when MonthAdd months is added

Syntax: EDATE(DateParam StartDate ; Number MonthAdd)

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 83 of 254

Returns: Number

Constraints: None

Semantics: First truncate StartDate and MonthAdd, then add MonthAdd number of months.
MonthAdd can be positive, negative, or 0; if zero, the number representing StartDate (in the
current epoch) is returned.

If after adding the given number of months, the day of month in the new month is larger than the
number of days in the given month, the day of month is adjusted to the last day of the new month.
Then the serial number of that date is returned.

See also DAYS 8.10.6, DATEDIF 8.10.3, EOMONTH 8.10.9

8.10.9 EOMONTH

Summary: Returns the serial number of the end of a month, given date plus MonthAdd months

Syntax: EOMONTH(DateParam StartDate ; Integer MonthAdd)

Returns: Number

Constraints: None

Semantics: First truncate StartDate and MonthAdd, then add MonthAdd number of months.
MonthAdd can be positive, negative, or 0. Then return the serial number representing the end of
that month. Due to the semantics of this function, the value of DAY(StartDate) is irrelevant.

See also EDATE 8.10.8

8.10.10 HOUR

Summary: Extracts the hour (0 through 23) from a time.

Syntax: HOUR(TimeParam T)

Returns: Number

Constraints: None

Semantics: Extract from T the hour value, 0 through 23, as per a 24-hour clock. This is equal to:

DayFraction=(T-INT(T))

Hour=INT(DayFraction*24)

See also MONTH 8.10.13, DAY 8.10.5, MINUTE 8.10.12, SECOND 8.10.16

8.10.11 ISOWEEKNUM

Summary: Determines the ISO week number of the year for a given date.

Syntax: ISOWEEKNUM(DateParam Date [; Integer Mode = 2])

Returns: Number

Constraints: None

Semantics: Returns the ordinal number of the [ISO8601] calendar week in the year for the given
date. ISO 8601 defines the calendar week as a time interval of seven calendar days starting with
a Monday, and the first calendar week of a year as the one that includes the first Thursday of that

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 84 of 254

yearnumber of the ISO 8601 week in the year for the given date. Note that this is not the
“conventional” week number used by some applications (for that, see WEEKNUM). In this
system, week number 1 of any year is the week that contains January 4, because (1) Monday is
considered the first day of the week, and (2) a week that lies partly in one year and partly in
another is assigned a number in the year in which most of its days lie.

Mode determines the starting day of the week:

Table 6 - ISOWEEKNUM

Mode Week starts on

1 Sunday

2 Monday

See also DAY 8.10.5, MONTH 8.10.13, YEAR 8.10.23, WEEKDAY 8.10.20, WEEKNUM 8.10.21

8.10.12 MINUTE

Summary: Extracts the minute (0 through 59) from a time.

Syntax: MINUTE(TimeParam T)

Returns: Number

Constraints: None

Semantics: Extract from T the minute value, 0 through 59, as per a clock. This is equal to:

DayFraction=(T-INT(T))

HourFraction=(DayFraction*24-INT(DayFraction*24))

Minute=INT(HourFraction*60)

See also MONTH 8.10.13, DAY 8.10.5, HOUR 8.10.10, SECOND 8.10.16

8.10.13 MONTH

Summary: Extracts the month from a date.

Syntax: MONTH(DateParam Date)

Returns: Number

Constraints: None

Semantics: Takes a date and returns the month portion.

See also YEAR 8.10.23, DAY 8.10.5

8.10.14 NETWORKDAYS

Summary: Returns the whole number of work days between two dates.

Syntax: NETWORKDAYS(DateParam Date1 ; DateParam Date2 [; [DateSequence holidays]
[; LogicalSequence workdays]])

Returns: Number

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 85 of 254

Constraints: None

Semantics: Returns the whole number of work days between two datedays between two dates,
ignoring weekends.

Work days are defined as non-weekend, non-holiday days. By default, weekends are Saturdays
and Sundays and there are no holidays.

The optional 3rd parameter Holidays can be used to specify a list of dates to be treated as
holidays. Note that this parameter can be omitted as an empty parameter (two consecutive ;;
semicolons) to be able to pass the set of Workdays without Holidays.

The optional 4th parameter Workdays can be used to specify a different definition for the
standard work week by passing in a list of numbers which define which days of the week are
workdays (indicated by 0) or not (indicated by non-zero) in order Sunday, Monday,...,Saturday.
So, the default definition of the work week excludes Saturday and Sunday and is: {1;0;0;0;0;0;1}.
To define the work Logical values which define which days of the week are workdays. So, the
default definition of the work week excludes Saturday and Sunday and is: {1;0;0;0;0;0;1}. To
define the workweek as excluding Friday and Saturday, the third parameter would be:
{0;0;0;0;0;1;1}.

8.10.15 NOW

Summary: Returns the serial number of the current date and time.

Syntax: NOW()

Returns: DateTime

Constraints: None

Semantics: This returns the current day and time serial number, using the current locale. If you
want only the serial number of the current day, use TODAY 8.10.19.

See also DATE 8.10.2, TIME 8.10.17, TODAY 8.10.19

8.10.16 SECOND

Summary: Extracts the second (the integer 0 through 59) from a time. This function presumes
that leap seconds never exist.

Syntax: SECOND(TimeParam T)

Returns: Number

Constraints: None

Semantics: Extract from T the second value, 0 through 59, as per a clock. Note that this returns
an integer, without a fractional part. Note also that this rounds to the nearest second, instead of
returning the integer part of the seconds. This is equal to:

DayFraction=(T-INT(T))

HourFraction=(DayFraction*24-INT(DayFraction*24))

MinuteFraction=(HourFraction*60-INT(HourFraction*60))

Second=ROUND(MinuteFraction*60)

See also MONTH 8.10.13, DAY 8.10.5, HOUR 8.10.10, MINUTE 8.10.12

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 86 of 254

8.10.17 TIME

Summary: Constructs a time value from hours, minutes, and seconds.

Syntax: TIME(Number hours ; Number minutes ; Number seconds)

Returns: Time

Constraints: None. Evaluators may first perform INT() on the hour, minute, and second before
doing the calculation.

Semantics: Returns the fraction of the day consumed by the given time, i.e.:

((hours*60*60)+(minutes*60)+seconds)/(24*60*60)

Time is a subtype of number, where a time value of 1 = 1 day = 24 hours.

Hours, minutes, and seconds may be any numberrbitrary numbers (they shall not be limited to the
ranges 0..24, 0..59, or 0..60 respectively).

See also DATE 8.10.2

8.10.18 TIMEVALUE

Summary: Returns a time serial number from given text.

Syntax: TIMEVALUE(Text T)

Returns: Time

Constraints: None

Semantics: This computes the serial number of the text string T, which is a time, using the
current locale. This function shall accept ISO time format (HH:MM:SS), which is locale-
independent. If the text of T has a combined date and time format, e.g. YYYY-MM-DD
HH:MM:SS, the fractional part of the date serial number is returned. If the text of T does not have
a time format, an evaluator may attempt to convert the number another way (e.g., using VALUE),
or it may return an Error (this is implementation-dependent).

See also TIME 8.10.17, DATE 8.10.2, DATEVALUE 8.10.4, VALUE 8.13.34

8.10.19 TODAY

Summary: Returns the serial number of today.

Syntax: TODAY()

Returns: Date

Constraints: None

Semantics: This returns the current day's serial number, using current locale. This only returns
the date, not the datetime value. For the specific time of day as well, use NOW 8.10.15.

See also TIME 8.10.17, NOW 8.10.15

8.10.20 WEEKDAY

Summary: Extracts the day of the week from a date; if text, uses current locale to convert to a
date.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 87 of 254

Syntax: WEEKDAY(DateParam Date [; Integer Type = 1])

Returns: Number

Constraints: None

Semantics: Returns the day of the week from a date, as a number from 0 through 7. The exact
meaning depends on the value of Type:

1. When Type is 1, Sunday is the first day of the week, with value 1; Saturday has value 7.

2. When Type is 2, Monday is the first day of the week, with value 1; Sunday has value 7.

3. When Type is 3, Monday is the first day of the week, with value 0; Sunday has value 6.

Table 7 - WEEKDAY

Day of Week Type=1 Result Type=2 Result Type=3 Result

Sunday 1 7 6

Monday 2 1 0

Tuesday 3 2 1

Wednesday 4 3 2

Thursday 5 4 3

Friday 6 5 4

Saturday 7 6 5

See also DAY 8.10.5, MONTH 8.10.13, YEAR 8.10.23

8.10.21 WEEKNUM

Summary: Determines the week number of the year for a given date.

Syntax: WEEKNUM(DateParam Date [; Number Mode = 1])

Returns: Number

Constraints: 1 ≤ Mode ≤ 2, or 11 ≤ Mode ≤ 17, or Mode = 21, or Mode = 150

Semantics: Returns the number of the week in the year for the given date.

For Mode={1, 2, 11, 12, ..., 17} the week containing January 1 is the first week of the year, and is
numbered week 1. The week starts on {Sunday, Monday, Monday, Tuesday, ..., Sunday}.

Mode 21 or 150 are both [ISO8601]ISO 8601, the week starts on Monday and the week
containing the first Thursday of the year is the first week of the year, and is numbered week 1.

See also DAY 8.10.5, MONTH 8.10.13, YEAR 8.10.23, WEEKDAY 8.10.20, ISOWEEKNUM
8.10.11

8.10.22 WORKDAY

Summary: Returns the date serial number which is a specified number of work days before or
after an input date.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 88 of 254

Syntax: WORKDAY(DateParam Date ; Number Offset [; [DateSequence Holidays] [;
LogicalSequence Workdays]])

Returns: DateTime

Constraints: None

Semantics: Returns the date serial number for the day that is offset from the input Date
parameter by the number of work days specified in the Offset pared in the Offset parmameter. If
Offset is negative, the offset will return a date prior to Date. If Offset is positive, a date later Date
is returned. If Offset is zero, then Date is returned.

Work days are defined as non-weekend, non-holiday days. By default, weekends are Saturdays
and Sundays and there are no holidays.

The optional 3rd parameter Holidays can be used to specify a list of dates to be treated as
holidays. Note that this parameter can be omitted as an empty parameter (two consecutive ;;
semicolons) to be able to pass the set of Workdays without Holidays.

The optional 4th parameter Workdays can be used to specify a different definition for the
standard work week by passing in a list of numbers which define which days of the week are
workdays (indicated by 0) or not (indicated by non-zero) in order Sunday, Monday,...,Saturday. If
all seven numbers in Workdays are non-zero and Offset is also non-zero, WORKDAY returns an
errorLogical values which define which days of the week are workdays.

Note: The default definition of the work week that excludes Saturday and Sunday and is:
{1;0;0;0;0;0;1}. To define the workweek as excluding Friday and Saturday, the third parameter
would be: {0;0;0;0;0;1;1}.

8.10.23 YEAR

Summary: Extracts the year from a date given in the current locale of the evaluator.

Syntax: YEAR(DateParam D)

Returns: Number

Constraints: None

Semantics: Parses a date-formatted string in the current locale's format and returns the year
portion.

If a year is given as a two-digit number, as in "05-21-15", then the year returned is either 1915 or
2015, depending upon the break point in the calculation context. In an OpenDocument
document, this break point is determined by HOST-NULL-YEAR.

Evaluators shall support extracting the year from a date beginning in 1900. Three-digit year
numbers precede adoption of the Gregorian calendar, and may return either an Error or the year
number. Four-digit year numbers preceding 1582 (inception of the Gregorian Calendar) may
return either an Error or the year number. Four-digit year numbers following 1582 should return
the year number.

See also MONTH 8.10.13, DAY 8.10.5, VALUE 8.13.34

8.10.24 YEARFRAC

Summary: Extracts the number of years (including fractional part) between two dates

Syntax: YEARFRAC(DateParam StartDate ; DateParam EndDate [; Basis Basis = 0])

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 89 of 254

Returns: Number

Constraints: None

Semantics: Computes the fraction of the number of years between a StartDate and EndDate.
Basis is the system for determining how many days are in a month or year.

Basis indicates the day-count convention to use in the calculation.Note: The Basis default is not
the actual number of days in a month or year. 4.11.7

See also DATEDIF 8.10.3

8.11 External Access Functions

8.11.1 General

OpenFormula defines two functions, DDE and HYPERLINK, for accessing external data.

8.11.2 DDE

Summary: Returns data from a DDE request

Syntax: DDE(Text server ; Text topic ; Text item [; Integer Mode = 0])

Returns: Number|Text

Constraints: None

Semantics: Performs a DDE request and returns its result. The request invokes the service
server on the topic named as topic, requesting that it reply with the information on item.

Evaluators may choose to not perform this function on every recalculation, but instead cache an
answer and require a separate action to re-perform these requests. Evaluators shall perform this
request on initial load when their security policies permit it.

Mode is an optional parameter that determines how the results are returned:

Table 8 - DDE

Mode Effect

0 or missing Data converted to number using VALUE in the number style's locale of the
default table cell style

1 Data converted to number using VALUE in the English-US (en_US) locale

2 Data retrieved as text (not converted to number)

In an OpenDocument spreadsheet document the default table cell style is specified with
table:default-cell-style-name. Its number:number-style specified by style:data-
style-name specifies the locale to use in the conversion.

The DDE function is non-portable because it depends on availability of external programs (server
parameter) and their interpretation of the topic and item parameters.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 90 of 254

8.11.3 HYPERLINK

Summary: Creation of a hyperlink involving an evaluated expressionReturns a Text or Number
result and adds a string to the IRI part of a hyperlink cell.

Syntax: HYPERLINK(Text IRI [; Text|Number FunctionResult])

Returns: Text or Number

Constraints: None

Semantics: The default for the second argument is the value of the first argument. The second
argument value is returned. IRI parameter specifies the link target added to the hyperlink cell,
while the FunctionResult parameter is shown as part of the formula result in the cell. If
FunctionResult is omitted, the IRI will be used for both the IRI and the cell result. If
FunctionResult is Text, a Text result is returned. If FunctionResult is Number, a Number result is
returned.

In addition, hosting environments may interpret expressions containing HYPERLINK function
calls as calling for an implementation-dependent creation of a hypertext link based on the
expression containing the HYPERLINK function callsf a formula contains a HYPERLINK function,
the cell becomes a "hyperlink cell". Clicking on this cell will execute the contained hyperlink.
Therefore it is irrelevant if the HYPERLINK function is really evaluated (it may i.e. be located in a
non-executed part of an IF function) – the cell will always be a hyperlink cell, even if the formula
evaluates to a number or a Boolean value. The only exception to this rule is if an Error code
would be part of the IRI. In this case no hyperlink cell will be created.

In a hyperlink cell, all other functions affect both the current IRI and the cell text. Therefore the
formula has to be evaluated twice. In the first run using the IRI part of all hyperlink functions, and
in the second run using the FunctionResult part.

8.12 Financial Functions

8.12.1 General

The financial functions are defined for use in financial calculations.

An annuity is a recurring series of payments. A "simple annuity" is one where equal payments
are made at equal intervals, and the compounding of interest occurs at those same intervals.
The time between payments is called the "payment interval". Where payments are made at the
end of the payment interval, it is called an "ordinary annuity". Where payments are made at the
beginning of the payment interval, it is called an "annuity due". Periods are numbered starting at
1.

Financial functions defined in this standard use a cash flow sign convention where outgoing cash
flows are negative and incoming cash flows are positive.

8.12.2 ACCRINT

Summary: Calculates the accrued interest for securities with periodic interest payments.

Syntax: ACCRINT(DateParam issue ; DateParam first ; DateParam settlement ; Number
coupon ; Number par ; Integer frequency [; Basis basis = 0 [; Logical calc_method = TRUE()]])

Returns: Currency

Constraints: issue < first < settlement ; coupon > 0; par > 0

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 91 of 254

frequency is one of the following values:

Table 9 - ACCRINT

frequency Frequency of coupon payments

1 Annual

2 Semiannual

4 Quarterly

12 Monthly

Semantics: Calculates the accrued interest for securities with periodic interest payments.
ACCRINT supports short, standard, and long coupon periods.

If calc_method is TRUE (the default) then ACCRINT returns the sum of the accrued interest in
each coupon period from issue date until settlement date. If calc_method is FALSE then
ACCRINT returns the sum of the accrued interest in each coupon period from first date until
settlement date. For each coupon period, the interest is par*coupon*YEARFRAC(start-of-
period;end-of-period; basis)

issue The security's issue or dated date.
first The security's first interest date.
settlement The security's settlement date.
coupon The security's annual coupon rate.
par The security's par value, that is, the principal to be paid at maturity.
frequency The number of coupon payments per year.
basis Basis indicates the day-count convention to use in the calculation. The type of
day-count basis to use; see section 4.11.7
calc_method A logical value that specifies how to treat the case where settlement>first.

See also ACCRINTM 8.12.3

8.12.3 ACCRINTM

Summary: Calculates the accrued interest for securities that pay at maturity.

Syntax: ACCRINT(DateParam issue ; DateParam settlement ; Number coupon ; Number par [;
Basis basis = 0])

Returns: Currency

Constraints: coupon > 0; par > 0

Semantics: Calculates the accrued interest for securities that pay at maturity.

issue The security's issue or dated date.
settlement The security's maturity date.
coupon The security's annual coupon rate.
par The security's par value, that is, the principal to be paid at maturity.
basis Basis indicates the day-count convention to use in the calculation. The type of
day-count basis to use; see section 4.11.7

See also ACCRINT 8.12.2

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 92 of 254

8.12.4 AMORDEGRC

Summary: Calculates the amortization value for the French accounting system using degressive
depreciation.

Syntax: AMORDEGRC(Number cost ; DateParam purchaseDate ; DateParam
firstPeriodEndDate ; Number salvage ; Integer period ; Number rate [; Basis basis = 0])

Returns: Currency

Constraints: cost > 0; purchaseDate <= firstPeriodEndDate; salvage >= 0; period >= 0; rate > 0

Semantics: Calculates the amortization value for the French accounting system using degressive
depreciation.

cost The value of the asset at the date of aquisition.
purchaseDate The date of aquisition.
firstPeriodEndDate The end date of the first depreciation period.
salvage The value of the asset at the end of the depreciation life time.
period The period of interest.
rate The rate of depreciation.
basis The type of day-count basis to use; see section 4.11.7

The asset life time is the inverse of the rate, Object 382 . The depreciation factor is denoted by
factor.

Table 10 - AMORDEGRC

Asset life time (Object 383) Depreciation factor (Object 384)

Object 385

1.0

Object 386

1.5

Object 387

2.0

Object 388

2.5

The depreciation allowance for the period Object 389 is denoted by Object 390 and takes the following values:

Object 391

See also AMORLINC 8.12.5 , DB 8.12.14, DDB 8.12.15, YEARFRAC 8.10.24

8.12.5 AMORLINC

Summary: Calculates the amortization value for the French accounting system using linear
depreciation (l'amortissement linéaire comptable) .

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 93 of 254

Syntax: AMORLINC(Number cost ; DateParam purchaseDate ; DateParam firstPeriodEndDate ;
Number salvage ; Integer period ; Number rate [; Basis basis = 0])

Returns: Currency

Constraints: cost > 0; purchaseDate <= firstPeriodEndDate; salvage >= 0; period >= 0; rate > 0

Semantics: Calculates the amortization value for the French accounting system using linear
depreciation.

cost The value of the asset at the date of aquisition.
purchaseDate The date of aquisition.
firstPeriodEndDate The end date of the first depreciation period.
salvage The value of the asset at the end of the depreciation life time.
period Which period the depreciation should be calculated for.
rate The rate of depreciation.
basis Basis indicates the day-count convention to use in the
calculation.Indicates the day count basis to use; see section 4.11.7

When period = 0:

AMORLINC=cost⋅rate⋅YEARFRAC  purchaseDate , firstPeriodEndDate ,basis 

For full periods, where period > 0, the depreciation is cost * rate

t=
cost−salvage
cost⋅rate

For the last period, possibly a partial period, the depreciation = cost-salvage-accumulated-
depreciation, where accumulated-depreciation is the sum of the depreciation in period 0 plus any
full period depreciations.

AMORLINC=cost⋅rate

When period > depreciated life of the asset, i.e., when period > (cost-salvage)/(cost*rate) then the
depreciation is 0.

AMORLINC=0

Note: The behavior of this function is implementation-defined in cases where purchaseDate =
firstPeriodEndDate.

See also AMORDEGRC 8.12.4, DB 8.12.14, DDB 8.12.15, YEARFRAC 8.10.24

8.12.6 COUPDAYBS

Summary: Calculates the number of days between the beginning of the coupon period that
contains the settlement date and the settlement date.

Syntax: COUPDAYBS(DateParam settlement ; DateParam maturity ; Integer frequency [; Basis
basis = 0])

Returns: Number

Constraints: settlement < maturity

frequency is one of the following values:

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 94 of 254

Table 11 - COUPDAYBS

frequency Frequency of coupon payments

1 Annual

2 Semiannual

4 Quarterly

Semantics: Calculate the number of days from the beginning of the coupon period to the
settlement date.

settlement The settlement date.
maturity The maturity date.
frequency The number of coupon payments per year.
basis Basis indicates the day-count convention to use in the calculation. The type of
day-count basis; see section 4.11.7

See also COUPDAYS 8.12.7 , COUPDAYSNC 8.12.8 , COUPNCD 8.12.8 , COUPNUM 8.12.10 ,
COUPPCD 8.12.11

8.12.7 COUPDAYS

Summary: Calculates the number of days in a coupon period that contains thea settlement date.

Syntax: COUPDAYS(DateParam settlement ; DateParam maturity ; Integer frequency [; Basis
basis = 0])

Returns: Number

Constraints: settlement < maturity

frequency is one of the following values:

Table 12 - COUPDAYS

frequency Frequency of coupon payments

1 Annual

2 Semiannual

4 Quarterly

Semantics: Calculates the number of days in the coupon period containing the settlement date.

settlement The settlement date.
maturity The maturity date.
frequency The number of coupon payments per year.
basis Basis indicates the day-count convention to use in the calculation. The type of
day-count basis; see section 4.11.7

See also COUPDAYBS 8.12.6 , COUPDAYSNC 8.12.8 , COUPNCD 8.12.8 , COUPNUM 8.12.10
, COUPPCD 8.12.11

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 95 of 254

8.12.8 COUPDAYSNC

Summary: Calculates the number of days between a settlement date and the next coupon date.

Syntax: COUPDAYNC(DateParam settlement ; DateParam maturity ; Integer frequency [; Basis
basis = 0])

Returns: Number

Constraints: settlement < maturity

frequency is one of the following values:

Table 13 - COUPDAYSNC

frequency Frequency of coupon payments

1 Annual

2 Semiannual

4 Quarterly

Semantics: Calculates the number of days between the settlement date and the next coupon
date.

settlement The settlement date.
maturity The maturity date.
frequency The number of coupon payments per year.
basis Basis indicates the day-count convention to use in the calculation. The type of
day-count basis; see section 4.11.7

See also COUPDAYBS 8.12.6 , COUPDAYS 8.12.7 , COUPNCD 8.12.8 , COUPNUM 8.12.10 ,
COUPPCD 8.12.11

8.12.9 COUPNCD

Summary: Calculates the next coupon date following a settlement.

Syntax: COUPNCD(DateParam settlement ; DateParam maturity ; Integer frequency [; Basis
basis = 0])

Returns: Date

Constraints: settlement < maturity

frequency is the number of coupon payments per year. frequency is one of the following values:

Table 14 - COUPNCD

frequency Frequency of coupon payments

1 Annual

2 Semiannual

4 Quarterly

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 96 of 254

Semantics: Calculates the next coupon date after the settlement date based on the maturity
(expiration) date of the asset, the frequency of coupon payments and the day-count basis.

Basis indicates the day-count convention to use in the calculation. 4.11.7

8.12.10 COUPNUM

Summary: Calculates the number of outstanding coupons between settlement and maturity
dates.

Syntax: COUPNUM(DateParam settlement ; DateParam maturity ; Integer frequency [; Basis
basis = 0])

Returns: Number

Constraints: frequency is the number of coupon payments per year. frequency is one of the
following values:

Table 15 - COUPNUM

frequency Frequency of coupon payments

1 Annual

2 Semiannual

4 Quarterly

Semantics: Calculates the number of coupons in the interval between the settlement and the
maturity (expiration) date of the asset, the frequency of coupon payments and the day-count
basis.

Basis indicates the day-count convention to use in the calculation.See also COUPDAYBS 8.12.6,
COUPDAYS 8.12.7, COUPDAYSNC 8.12.8, COUPNCD 8.12.8, COUPPCD 4.11.7

See also COUPDAYBS 8.12.6, COUPDAYS 8.12.7, COUPDAYSNC 8.12.8, COUPNCD 8.12.8,
COUPPCD 8.12.11

8.12.11 COUPPCD

Summary: Calculates the next coupon date prior a settlement.

Syntax: COUPPCD(DateParam settlement ; DateParam maturity ; Integer frequency [; Basis
basis = 0])

Returns: Date

Constraints: settlement < maturity

frequency is the number of coupon payments per year. frequency is one of the following values:

Table 16 - COUPPCD

frequency Frequency of coupon payments

1 Annual

2 Semiannual

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 97 of 254

frequency Frequency of coupon payments

4 Quarterly

Semantics: Calculates the next coupon date prior to the settlement date based on the maturity
(expiration) date of the asset, the frequency of coupon payments and the day-count basis.

Basis indicates the day-count convention to use in the calculation.See also COUPDAYBS 8.12.6,
COUPDAYS 8.12.7, COUPDAYSNC 8.12.8, COUPNCD 8.12.8, COUPNUM 4.11.7

See also COUPDAYBS 8.12.6, COUPDAYS 8.12.7, COUPDAYSNC 8.12.8, COUPNCD 8.12.8,
COUPNUM 8.12.10

8.12.12 CUMIPMT

Summary: Calculates a cumulative interest payment.

Syntax: CUMIPMT(Number rate ; Number periods ; Number value ; Integer start ; Integer end ;
Integer type)

Returns: Currency

Constraints: rate > 0; value > 0; 1 <= start <= end <= periods

type is one of the following values:

Table 17 - CUMIPMT

type Maturity date

0 due at the end

1 due at the beginning

Semantics: Calculates the cumulative interest payment.

rate The interest rate per period.
periods The number of periods.
value The current value of the loan.
start The starting period.
end The end period.
type The maturity date, the beginning or the end of a period.

CUMIPMT= ∑
p=start

end

IPMT rate , p , periods , value ,0, type

See also IPMT 8.12.24, CUMPRINC 8.12.13

8.12.13 CUMPRINC

Summary: Calculates a cumulative principal payment.

Syntax: CUMPRINC(Number rate ; Number periods ; Number value ; Integer start ; Integer end ;
Integer type)

Returns: Currency

Constraints: type is one of the following values:

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 98 of 254

Table 18 - CUMPRINC

type Maturity date

0 due at the end

1 due at the beginning

Semantics: Calculates the cumulative principal payment.

rate The interest rate per period.
periods The number of periods.
value The current value of the loan.
start The starting period.
end The end period.
type The maturity date, the beginning or the end of a period.

CUMPRINC= ∑
p=start

end

PPMT rate , p , periods , value ,0, type

See also PPMT 8.12.38 , CUMIPMT 8.12.12

8.12.14 DB

Summary: Compute the depreciation allowance of an asset.

Syntax: DB(Number cost ; Number salvage ; Integer lifeTime ; Number period [; Number month
= 12])

Returns: Currency

Constraints: cost > 0, salvage >= 0, lifetime >0; period > 0; 0 < month < 13

Semantics: Calculate the depreciation allowance of an asset with an initial value of cost, an
expected useful lifeTime, and a final salvage value at a specified period of time, using the fixed-
declining balance method. The parameters are:

● cost: the total amount paid for the asset.

● salvage: the salvage value at the end of the lifeTime.

● lifeTime: the number of periods that the depreciation will occur over. A positive integer.

● period: the time period for which you want to find the depreciation allowance, in the same
units as lifeTime.

● month: (optional) the number of months in the first year of depreciation, assumed to be 12, if
not specified. If a value is specified for month, lifeTime and period are assumed to be
measured in years.

The rate is calculated as follows:

rate=1− salvage
cost 

1
lifeTime

and is rounded to 3 decimals.

For the first period the residual value is

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 99 of 254

value 1=cost 1−
month

12
⋅rate

For all periods, where period <= lifeTime, the residual value is calculated by

value period=value period−1⋅1−rate

If month was specified, the residual value for the period after lifeTime becomes

value lifeTime1=value lifeTime⋅ 1− 1−
month

12  ⋅rate
The depreciation allowance for the first period is

DB1=cost−value1

For all other periods the allowance is calculated by

DB period=value period−value period−1

For all periods, where period > lifeTime + 1 – INT(month/12), the depreciation allowance is zero.

See also DDB 8.12.15, SLN 8.12.46

8.12.15 DDB

Summary: Compute the amount of depreciation at a given period of time.

Syntax: DDB(Number cost ; Number salvage ; Number lifeTime ; Number period [; Number
declinationFactor = 2])

Returns: Currency

Constraints: cost >= 0, salvage >= 0, salvage <= cost, 1 <= period <= lifeTime, declinationFactor
> 0

Semantics: Compute the amount of depreciation of an asset at a given period of time. The
parameters are:

● cost: the total amount paid for the asset.

● salvage: the salvage value at the end of the LifeTime

● lifeTime: the number of periods that the depreciation will occur over.

● period: the period for which a depreciation value is specified.

● declinationFactor: the method of calculating depreciation, the rate at which the balance
declines. Defaults to 2. If 2, double-declining balance is used.

To calculate depreciation, DDB uses a fixed rate. When declinationFactor = 2 this is the double-
declining-balance method (because it is double the straight-line rate that would depreciate the
asset to zero). The rate is given by:

rate=
declinationFactor

lifeTime

The depreciation each period is calculated as

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 100 of 254

depreciation_of_period = MIN(book_value_at_start_of_ period * rate; book_value_at_start_of_
period - salvage)

Thus the asset depreciates at rate until the book value is salvage value.

BookValueAtStartOfPeriod p = cost−∑
i=1

p−1

DepreciationOfPeriod i

To allow also non-integer period values this algorithm may be used:

rate=
declinationFactor
lifeTime

if rate≥1 then
{
rate=1
if period=1 then
oldValue=cost

else
oldValue=0

endif
}
else
{
oldValue=cost⋅1−rate period−1

}
endif
newValue=cost⋅1−rateperiod

if newValuesalvage then
DDB=oldValue−salvage

else
DDB=oldValue−newValue

endif
if DDB0 then
DDB=0

endif

If period is an Integer number, the relation between DDB and VDB is:
DDB(cost ; salvage ; lifeTime ; period ; declinationFactor)
equals
VDB(cost ; salvage ; lifeTime ; period - 1 ; period ; declinationFactor ; TRUE())

See also SLN 8.12.46, VDB 8.12.51

8.12.16 DISC

Summary: Returns the discount rate of a security.

Syntax: DISC(DateParam settlement ; DateParam maturity ; Number price ; Number redemption
[; Basis basis = 0])

Returns: Percentage

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 101 of 254

Constraints: settlement < maturity

Semantics: Calculates the discount rate of a security.

settlement The settlement date of the security.
maturity The maturity date.
price The price of the security.
redemption The redemption value of the security.
basis Basis indicates the day-count convention to use in the calculation. The day-count
basis; see section 4.11.7

DISC=

redemption− price

redemption

YEARFRAC settlement , maturity ,basis 

See also YEARFRAC 8.10.24

8.12.17 DOLLARDE

Summary: Converts a fractional dollar representation into a decimal representation.

Syntax: DOLLARDE(Number fractional ; Integer denominator)

Returns: Number

Constraints: denominator > 0

Semantics: Converts a fractional dollar representation into a decimal representation.

fractional Decimal fraction.
denominator Denominator of the fraction.

DOLLARDE=TRUNC  fractional
fractional−TRUNC  fractional 

denominator

See also DOLLARFR 8.12.18 , TRUNC 8.17.9

8.12.18 DOLLARFR

Summary: Converts a decimal dollar representation into a fractional representation.

Syntax: DOLLARFR(Number decimal ; Integer denominator)

Returns: Number

Constraints: denominator > 0

Semantics: Converts a decimal dollar representation into a fractional representation.

decimal Decimal number.
denominator Denominator of the fraction.

DOLLARFR=TRUNC decimal decimal−TRUNC decimal ⋅denominator
See also DOLLARDE 8.12.17, TRUNC 8.17.9

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 102 of 254

8.12.19 DURATION

Summary: Returns the Macaulay duration of a fixed interest security in years

Syntax: DURATION(Date Settlement ; Date Maturity ; Number Coupon ; Number Yield ; Number
Frequency [; Basis Basis = 0])

Returns: Number

Constraints: Yield >=0, Coupon >= 0, Settlement <= Maturity; Frequency = 1, 2, 4

Semantics: Computes the Macaulay duration, given:

Settlement the date of purchase of the securityMaturity the date when the
security matures

● Maturity the date when the security matures

● Coupon the annual nominal rate of interest

Yield the annual yield of the security

Frequency number of interest payments per year

Basis Basis indicates the day-count convention to use in the calculation. Date
calculation basis; see section 4.11.7

See also MDURATION 8.12.27

8.12.20 EFFECT

Summary: Returns the net annual interest rate for a nominal interest rate.

Syntax: EFFECT(Number rate ; Integer payments)

Returns: Number

Constraints: rate >= 0; payments > 0

Semantics: Nominal interest refers to the amount of interest due at the end of a calculation
period. Effective interest increases with the number of payments made. In other words, interest is
often paid in installments (for example, monthly or quarterly) before the end of the calculation
period.

rate The interest rate per period.
payments The number of payments per period.

EFFECT= 1
rate

payments 
payments

−1

See also NOMINAL 8.12.29

8.12.21 FV

Summary: Compute the future value (FV) of an investment.

Syntax: FV(Number Rate ; Number Nper ; Number Payment [; [Number Pv = 0] [; Number
PayType = 0]])

Returns: Currency

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 103 of 254

Constraints: None.

Semantics: Computes the future value of an investment. The parameters are:

● Rate: the interest rate per period.

● Nper: the total number of payment periods.

● Payment: the payment made in each period.

● Pv: the present value; default is 0.

● PayType: the type of payment, defaults to 0. It is 0 if payments are due at the end of the
period; 1 if they are due at the beginning of the period.

See PV 8.12.42 for the equation this solves.

See also PV 8.12.42, NPER 8.12.30, PMT 8.12.37, RATE 8.12.43

8.12.22 FVSCHEDULE

Summary: Returns the accumulated value given starting capital and a series of interest rates.

Syntax: FVSCHEDULE(Number Principal ; NumberSequence Schedule)

Returns: Currency

Constraints: None.

Semantics: Returns the accumulated value given starting capital and a series of interest rates,
as follows:

Principle⋅∏
i=1

N

1Schedule [i]

See also PV 8.12.42, NPER 8.12.30, PMT 8.12.37, RATE 8.12.43

8.12.23 INTRATE

Summary: Computes the interest rate of a fully vested security.

Syntax: INTRATE(Date Settlement ; Date Maturity ; Number Investment ; Number Redemption
[; Basis Basis = 0])

Returns: Number

Constraints: Settlement < Maturity

Semantics: Calculates the annual interest rate that results when an item is purchased at the
investment price and sold at the redemption price. No interest is paid on the investment. The
parameters are:

Settlement: the date of purchase of the security.Maturity: the date on which the security is sold.

Maturity: the date on which the security is sold.

Investment: the purchase price.

 Redemption: the selling price.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 104 of 254

Basis indicates the day-count convention to use in the calculation. 4.11.7: [optional] indicates the
day count basis to use; see section 4.11.7.

The return value for this function is:

INTRATE=

Redemption−Investment
Investment

YEARFRAC Settlement ; Maturity ; Basis

See also RECEIVED 8.12.44, YEARFRAC 8.10.24

8.12.24 IPMT

Summary: Returns the amount of an annuity payment going towards interest.

Syntax: IPMT(Number Rate ; Number Period ; Number Nper ; Number PV [; Number FV = 0 [;
Number Type = 0]])

Returns: Currency

Constraints: None.

Semantics: Computes the interest portion of an amortized payment for a constant interest rate
and regular payments. The interest payment is the interest rate multiplied by the balance at the
beginning of the period. The parameters are:

Rate: The periodic interest rate.

Period: The period for which the interest payment is computed.

Nper: The total number of periods for which the payments are made

PV: The present value (e.g. The initial loan amount).

FV: The future value (optional) at the end of the periods. Zero if omitted.

Type: the due date for the payments (optional). Zero if omitted. If type is 1, then payments
are made at the beginning of each period. If type is 0, then payments are made at the
end of each period.

See also PPMT 8.12.38, PMT 8.12.37

8.12.25 IRR

Summary: Compute the internal rate of return for a series of cash flows.

Syntax: IRR(NumberSequence Values [; Number Guess = 0.1])

Returns: Percentage

Constraints: None.

Semantics: Compute the internal rate of return for a series of cash flows.

If provided, Guess is an estimate of the interest rate to start the iterative computation. If omitted,
the value 0.1 (10%) is assumed.

The result of IRR is the rate at which the NPV() function will return zero with the given values.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 105 of 254

There is no closed form for IRR. Evaluators may return an approximate solution using an iterative
method, in which case the Guess parameter may be used to initialize the iteration. If the evaluator
is unable to converge on a solution given a particular Guess, it may return an Error.

See also NPV 8.12.31, RATE 8.12.43

8.12.26 ISPMT

Summary: Compute the interest payment of an amortized loan for a given period.

Syntax: ISPMT(Number Rate ; Number Period ; Number Nper ; Number Pv)

Returns: Currency

Constraints: None.

Semantics: Computes the interest payment of an amortized loan for a given period. The
parameters are:

● Rate: the interest rate per period.

● Period: the period for which the interest is computed

● Nper: the total number of payment periods.

● Pv: the amount of the investment

See also PV 8.12.42, FV 8.12.21, NPER 8.12.30, PMT 8.12.37, RATE 8.12.43

8.12.27 MDURATION

Summary: Returns the modified Macaulay duration of a fixed interest security in years

Syntax: MDURATION(Date Settlement ; Date Maturity ; Number Coupon ; Number Yield ;
Number Frequency [; Basis Basis = 0])

Returns: Number

Constraints: Yield >= 0, Coupon >= 0, Settlement <= Maturity; Frequency = 1, 2, 4

Semantics: Computes the modified Macaulay duration, given:

● Settlement the date of purchase of the security

● Maturity the date when the security matures

● Coupon the annual nominal rate of interest

● Yield the annual yield of the security

● Frequency number of interest payments per year

● Basis Basis indicates the day-count convention to use in the calculation. Date
calculation basis; see section 4.11.7

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 106 of 254

The modified duration is computed as follows:

duration=DURATION Settlement , Maturity ,Coupon ,Yield , Frequency , Basis 

MDURATION=
duration

1 Yield
Frequency 

See also DURATION 8.12.19

8.12.28 MIRR

Summary: Returns the modified internal rate of return (IRR) of a series of periodic investments

Syntax: MIRR(Array Values ; Number Investment ; Number ReinvestRate)

Returns: Percentage

Constraints: Values shall contain at least one positive value and at least one negative value.

Semantics: Values is a series of periodic income (positive values) and payments (negative
values) at regular intervals (Text and Empty cells are ignored). Investment is the rate of interest of
the payments (negative values); ReinvestRate is the rate of interest of the reinvestment (positive
values).

Computes the modified internal rate of return, which is:

 −NPV ReinvestRate ,Values0∗ 1ReinvestRate  n

NPV  Investment ;Values0∗ 1Investment   
1

n –1
−1

where N is the number of incomes and payments in Values (total).

See also IRR 8.12.25

8.12.29 NOMINAL

Summary: Compute the annual nominal interest rate.

Syntax: NOMINAL(Number EffectiveRate ; Integer CompoundingPeriods)

Returns: Number

Constraints: EffectiveRate >0 , CompoundingPeriods > 0

Semantics: Returns the annual nominal interest rate based on the effective rate and the number
of compounding periods in one year. The parameters are:

● EffectiveRate: effective rate

● CompoundingPeriods: the compounding periods per year

Suppose that P is the present value, m is the compounding periods per year, the future value
after one year is

P∗ 1
NOMINAL

m 
m

The mapping between nominal rate and effective rate is

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 107 of 254

EFFECT= 1
NOMINAL

m 
m

−1

See also EFFECT 8.12.20

8.12.30 NPER

Summary: Compute the number of payment periods for an investment.

Syntax: NPER(Number Rate ; Number Payment ; Number Pv [; [Number Fv] [; Number
PayType]])

Returns: Number

Constraints: None.

Semantics: Computes the number of payment periods for an investment. The parameters are:

● Rate: the constant interest rate.

● Payment: the payment made in each period.

● Pv: the present value of the investment.

● Fv: the future value; default is 0.

● PayType: the type of payment, defaults to 0. It is 0 if payments are due at the end of the
period; 1 if they are due at the beginning of the period.

If Rate is 0, then NPER solves this equation:

Pv =−Fv−Payment∗NPER 

If Rate is non-zero, then NPER solves this equation:

0 = Pv⋅1Rate NPER
Payment⋅1Rate⋅PaymentType ⋅1Rate NPER−1

Rate
Fv

Evaluators claiming to support the “Medium” or “Large” set shall support negative rates;
evaluators only claiming to support the “Small” set need not.

See also FV 8.12.21, RATE 8.12.43, PMT 8.12.37, PV 8.12.42

8.12.31 NPV

Summary: Compute the net present value (NPV) for a series of periodic cash flows.

Syntax: NPV(Number Rate ; { NumberSequenceList Value }+)

Returns: Currency

Constraints: None.

Semantics: Computes the net present value for a series of periodic cash flows with the discount
rate Rate. Values should be positive if they are received as income, and negative if the amounts
are paid as outgo. Because the result is affected by the order of values, evaluators shall evaluate
arguments in the order given and range reference and array arguments row-wise starting from
top left.

If n is the number of values in the Values, the formula for NPV is:

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 108 of 254

NPV=∑
i=1

N Valuesi

1Rate i

See also FV 8.12.21, IRR 8.12.25, NPER 8.12.30, PMT 8.12.37, PV 8.12.42, XNPV 8.12.53

8.12.32 ODDFPRICE

Summary: Compute the value of a security per 100 currency units of face value. The security
has an irregular first interest date.

Syntax: ODDFPRICE(DateParam Settlement ; DateParam Maturity ; DateParam Issue ;
DateParam First ; Number Rate ; Number Yield ; Number Redemption ; Number Frequency [;
Basis Basis = 0])

Returns: Number

Constraints: Rate, Yield, and Redemption should be greater than 0.

Semantics: The parameters are

● Settlement: the settlement/purchase date of the security

● Maturity: the maturity/expire date of the security

● Issue: the issue date of the security

● First: the first coupon date of the security

● Rate: the interest rate of the security

● Yield: the annual yield of the security

● Redemption: the redemption value per 100 currency units face value

● Frequency: the number of interest payments per year. 1=annual; 2=semiannualhalf-yearly;
4=quarterly.

● Basis indicates the day-count convention to use in the calculation. 4.11.7: the type which
indicates how the year is to be calculated by days; see section 4.11.7.

See also ODDLPRICE 8.12.34 , ODDFYIELD 8.12.33

8.12.33 ODDFYIELD

Summary: Compute the yield of a security per 100 currency units of face value. The security has
an irregular first interest date.

Syntax: ODDFYIELD(DateParam Settlement ; DateParam Maturity ; DateParam Issue ;
DateParam First ; Number Rate ; Number Price ; Number Redemption ; Number Frequency [;
Basis Basis = 0])

Returns: Number

Constraints: Rate, Price, and Redemption should be greater than 0. Maturity > First >
Settlement > Issue.

Semantics: The parameters are

● Settlement: the settlement/purchase date of the security

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 109 of 254

● Maturity: the maturity/expire date of the security

● Issue: the issue date of the security

● First: the first coupon date of the security

● Rate: the interest rate of the security

● Price: the price of the security

● Redemption: the redemption value per 100 currency units face value

● Frequency: the number of interest payments per year. 1=annual; 2=semiannualhalf-yearly;
4=quarterly.

● Basis: indicates the day-count convention to use in the calculation. the type which indicates
how the year is to be calculated by days; see section 4.11.7

See also ODDLYIELD 8.12.35 , ODDFPRICE 8.12.32

8.12.34 ODDLPRICE

Summary: Compute the value of a security per 100 currency units of face value. The security
has an irregular last interest date.

Syntax: ODDLPRICE(DateParam Settlement ; DateParam Maturity ; DateParam Last ; Number
Rate ; Number AnnualYield ; Number Redemption ; Number Frequency [; Basis Basis = 0])

Returns: Number

Constraints: Rate, AnnualYield, and Redemption should be greater than 0. The Maturity date
should be greater than the Settlement date, and the Settlement should be greater than the last
interest date.

Semantics: The parameters are

● Settlement: the settlement/purchase date of the security

● Maturity: the maturity/expire date of the security

● Last: the last interest date of the security

● Rate: the interest rate of the security

● AnnualYield: the annual yield of the security

● Redemption: the redemption value per 100 currency units face value

● Frequency: the number of interest payments per year. 1=annual; 2=semiannualhalf-yearly;
4=quarterly

● Basis: indicates the day-count convention to use in the calculation. the type which indicates
how the year is to be calculated by days; see section 4.11.7

See also ODDFPRICE 8.12.32

8.12.35 ODDLYIELD

Summary: Compute the yield of a security which has an irregular last interest date.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 110 of 254

Syntax: ODDLYIELD(DateParam Settlement ; DateParam Maturity ; DateParam Last ; Number
Rate ; Number Price ; Number Redemption ; Number Frequency [; Basis Basis = 0])

Returns: Number

Constraints: Rate, Price, and Redemption should be greater than 0.

Semantics: The parameters are

● Settlement: the settlement/purchase date of the security

● Maturity: the maturity/expire date of the security

● Last: the last interest date of the security

● Rate: the interest rate of the security

● Price: the price of the security

● Redemption: the redemption value per 100 currency units face value

● Frequency: the number of interest payments per year. 1=annual; 2=semiannualhalf-yearly;
4=quarterly.

● Basis: indicates the day-count convention to use in the calculation. 4.11.7the type which
indicates how the year is to be calculated by days; see section 4.11.7.

See also ODDLPRICE 8.12.34 , ODDFYIELD 8.12.33

8.12.36 PDURATION

Summary: Returns the number of periods required by an investment to realize a specified value.

Syntax: PDURATION(Number rate ; Number currentValue ; Number specifiedValue)

Returns: Number

Constraints: rate > 0; currentValue > 0; specifiedValue > 0

Semantics: Calculates the number of periods for attaining a certain value specifiedValue, starting
from currentValue and using the interest rate rate.

● rate The interest rate per period.

● currentValue The current value of the investment.

● specifiedValue The value, that should be reached.

PDURATION=
log specifiedValue−log currentValue

log rate1

See also DURATION 8.12.19

8.12.37 PMT

Summary: Compute the payment made each period for an investment.

Syntax: PMT(Number Rate ; Integer Nper ; Number Pv [; [Number Fv = 0] [; Number PayType
= 0]])

Returns: Currency

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 111 of 254

Constraints: Nper > 0

Semantics: Computes the payment made each period for an investment. The parameters are:

● Rate: the interest rate per period.

● Nper: the total number of payment periods.

● Pv: the present value of the investment.

● Fv: the future value of the investment; default is 0.

● PayType: the type of payment, defaults to 0. It is 0 if payments are due at the end of the
period; 1 if they are due at the beginning of the period. With PayType=1 the first payment is
made on the same day the loan is taken out.

If Rate is 0, the following equation is solved:

Pv =−Fv−PMT∗Nper 

If Rate is nonzero, then PMT solves this equation:

0 = Pv⋅1Rate Nper
PMT⋅1Rate⋅PayType ⋅1Rate Nper−1

Rate
Fv

See also FV 8.12.21, NPER 8.12.30, PV 8.12.42, RATE 8.12.43

8.12.38 PPMT

Summary: Calculate the payment for a given period on the principal for an investment at a given
interest rate and constant payments.

Syntax: PPMT(Number Rate ; Integer Period ; Integer nPer ; Number Present [; Number Future
= 0 [; Number Type = 0]])

Returns: Number

Constraints: Rate and Present should be greater than 0. 0<Period <nPer.

Semantics: The parameters are

● Rate: the interest rate

● Period: the given period that the payment returned is for

● nPer: the total number of periods

● Present: the present value

● Future: optional, the future value specified after nPer periods. The default value is 0.

● Type: optional, 0 or 1, respectively for payment at the end or at the beginning of a period. The
default value is 0.

See also PMT 8.12.37

8.12.39 PRICE

Summary: Calculates a quoted price for an interest paying security, per 100 currency units of
face value.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 112 of 254

Syntax: PRICE(DateParam Settlement ; DateParam Maturity ; Number Rate ; Number
AnnualYield ; Number Redemption ; Number Frequency [; Basis Basis = 0])

Returns: Number

Constraints: Rate, AnnualYield, and Redemption should be greater than 0; Frequency = 1, 2 or
4.

Semantics: If A is the number of days from the Settlement date to next coupon date, B is the
number of days of the coupon period that the Settlement is in, C is the number of coupons
between Settlement date and Redemption date, D is the number of days from beginning of
coupon period to Settlement date, then PRICE is calculated as

PRICE=
Redemption

1
Yield

Frenquency

C−1

A
B

∑
k=1

C
100∗Rate
Frequency

1
Yield

Frequency

k−1

A
B

−100∗
Rate

Frequency
∗
D
B

The parameters are

● Settlement: the settlement/purchase date of the security

● Maturity: the maturity/expire date of the security

● Rate: the interest rate of the security

● AnnualYield: a measure of the annual yield of a security (compounded at each interest
payment)

● Redemption: the redemption value per 100 currency units face value

● Frequency: the number of interest payments per year. 1=annual; 2=semiannualhalf-yearly;
4=quarterly.

● Basis: indicates the day-count convention to use in the calculation. 4.11.7the date system to
be used; see section 4.11.7.

See also PRICEDISC 8.12.40, PRICEMAT 8.12.41

8.12.40 PRICEDISC

Summary: Calculate the price of a security with a discount per 100 currency units of face value.

Syntax: PRICEDISC(DateParam Settlement ; DateParam Maturity ; Number Discount ; Number
Redemption [; Basis Basis = 0])

Returns: Number

Constraints: Discount and Redemption should be greater than 0.

Semantics: The parameters are

● Settlement: the settlement/purchase date of the security

● Maturity: the maturity/expire date of the security

● Discount: the discount rate of the security

● Redemption: the redemption value per 100 currency units face value

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 113 of 254

● Basis: indicates the day-count convention to use in the calculation. 4.11.7the type which
indicates how the year is to be calculated by days; see section 4.11.7.

See also PRICE 8.12.39, PRICEMAT 8.12.41, YIELDDISC 8.12.55

8.12.41 PRICEMAT

Summary: Calculate the price per 100 currency units of face value of the security that pays
interest on the maturity date.

Syntax: PRICEMAT(DateParam Settlement ; DateParam Maturity ; DateParam Issue ; Number
Rate ; Number AnnualYield [; Basis Basis = 0])

Returns: Number

Constraints: Settlement < Maturity, Rate >= 0, AnnualYield >= 0

Semantics: The parameters are

● Settlement: the settlement/purchase date of the security

● Maturity: the maturity/expire date of the security

● Issue: the issue date of the security

● Rate: the interest rate of the security

● AnnualYield: the annual yield of the security

● Basis: indicates the day-count convention to use in the calculation. 4.11.7the type which
indicates how the year is to be calculated by days; see section 4.11.7.

If both, Rate and AnnualYield, are 0, the return value is 100.

See also PRICEDISC 8.12.40, PRICEMAT 8.12.41

8.12.42 PV

Summary: Compute the present value (PV) of an investment.

Syntax: PV(Number Rate ; Number Nper ; Number Payment [; [Number Fv = 0] [; Number
PayType = 0]])

Returns: Currency

Constraints: None.

Semantics: Computes the present value of an investment. The parameters are:

● Rate: the interest rate per period.

● Nper: the total number of payment periods.

● Payment: the payment made in each period.

● Fv: the future value; default is 0.

● PayType: the type of payment, defaults to 0. It is 0 if payments are due at the end of the
period; 1 if they are due at the beginning of the period.

If Rate is 0, then:

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 114 of 254

PV =−Fv−Payment∗Nper 

If Rate is nonzero, then PV solves this equation:

0 = PV⋅1Rate Nper
Payment⋅1Rate⋅PayType ⋅1Rate Nper−1

Rate
Fv

See also FV 8.12.21, NPER 8.12.30, PMT 8.12.37, RATE 8.12.43

8.12.43 RATE

Summary: Compute the interest rate per period of an investment.

Syntax: RATE(Number Nper ; Number Payment ; Number Pv [; [Number Fv = 0] [; [Number
PayType = 0] [; Number Guess = 0.1]]])

Returns: Percentage

Constraints: If Nper is 0 or less than 0, the result is an Error.

Semantics: Computes the interest rate of an investment. The parameters are:

● Nper: the total number of payment periods.

● Payment: the payment made in each period.

● Pv: the present value of the investment.

● Fv: the future value; default is 0.

● PayType: the type of payment, defaults to 0. It is 0 if payments are due at the end of the
period; 1 if they are due at the beginning of the period.

● Guess: An estimate of the interest rate to start the iterative computation. If omitted, 0.1 (10%)
is assumed.

RATE solves this equation:

0 = FvPv⋅1Rate Nper


Payment⋅1Rate⋅PayType ⋅ 1Rate Nper−1

Rate

See also FV 8.12.21, NPER 8.12.30, PMT 8.12.37, PV 8.12.42

8.12.44 RECEIVED

Summary: Calculates the amount received at maturity for a zero coupon bond.

Syntax: RECEIVED(DateParam Settlement ; DateParam Maturity ; Number Investment ;
Number Discount [; Basis Basis = 0])

Returns: Number

Constraints: Investment and Discount should be greater than 0.

Semantics:

The parameters are

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 115 of 254

● Settlement: the settlement/purchase date of the security

● Maturity: the maturity/expire date of the security

● Investment: the amount of investment in the security

● Discount: the discount rate of the security

● Basis: indicates the day-count convention to use in the calculation. the day count basis used
in this calculation; see section 4.11.7

The return value is:

RECEIVED=
Investment

1−Discount⋅YEARFRAC Settlement ;Maturity ; Basis 

See also YEARFRAC 8.10.24

8.12.45 RRI

Summary: Returns an equivalent interest rate when an investment increases in value.

Syntax: RRI(Number N ; Number Pv ; Number Fv)

Returns: Percentage

Constraints: N > 0

Semantics: Returns the interest rate given N (the number of periods), Pv (present value), and Fv
(future value), calculated as follows:

 Fv
Pv

1 /N 

−1

See also FV 8.12.21, NPER 8.12.30, PMT 8.12.37, PV 8.12.42, RATE 8.12.43

8.12.46 SLN

Summary: Compute the amount of depreciation at a given period of time using the straight-line
depreciation method.

Syntax: DDB(Number Cost ; Number Salvage ; Number LifeTime)

Returns: Currency

Constraints: None.

Semantics: Compute the amount of depreciation of an asset at a given period of time using
straight-line depreciation. The parameters are:

● Cost: the total amount paid for the asset.

● Salvage: the salvage value at the end of the LifeTime (often 0)

● LifeTime: the number of periods that the depreciation will occur over. A positive integer.

For alternative methods to compute depreciation, see DDB 8.12.15.

See also DDB 8.12.15

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 116 of 254

8.12.47 SYD

Summary: Compute the amount of depreciation at a given period of time using the Sum-of-the-
Years'-Digits method.

Syntax: SYD(Number Cost ; Number Salvage ; Number LifeTime ; Number Period)

Returns: Currency

Constraints: None.

Semantics: Compute the amount of depreciation of an asset at a given period of time using the
Sum-of-the-Years'-Digits method. The parameters are:

● Cost: the total amount paid for the asset.

● Salvage: the salvage value at the end of the LifeTime (often 0)

● LifeTime: the number of periods that the depreciation will occur over. A positive integer.

● Period: the period for which the depreciation value is specified.

SYD=
Cost−Salvage⋅LifeTime1−Period ⋅2

 LifeTime1⋅LifeTime

For other methods of computing depreciation, see DDB 8.12.15.

See also SLN 8.12.46, DDB 8.12.15

8.12.48 TBILLEQ

Summary: Compute the bond-equivalent yield for a treasury bill.

Syntax: TBILLEQ(DateParam Settlement ; DateParam Maturity ; Number Discount)

Returns: Number

Constraints: The maturity date should be less than one year beyond settlement date. Discount is
any positive value.

Semantics: The parameters are defined as,

● Settlement: the settlement/purchase date of the treasury bill

● Maturity: the maturity/expire date of the treasury bill

● Discount: the discount rate of the treasury bill.

TBILLEQ is calculated as

TBILLEQ=
365⋅rate

360−rate⋅DSM 

where DSM is the number of days between settlement and maturity computed according to the
360 days per year basis (basis 2, 4.11.7)

See also TBILLPRICE 8.12.49, TBILLYIELD 8.12.50

8.12.49 TBILLPRICE

Summary: Compute the price per 100 face value for a treasury bill.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 117 of 254

Syntax: TBILLPRICE(DateParam Settlement ; DateParam Maturity ; Number Discount)

Returns: Number

Constraints: The maturity date should be less than one year beyond settlement. Discount is any
positive value.

Semantics: The parameters are:

● Settlement: the settlement/purchase date of the treasury bill

● Maturity: the maturity/expire date of the treasury bill

● Discount: the discount rate of the treasury bill.

See also TBILLEQ 8.12.48, TBILLYIELD 8.12.50

8.12.50 TBILLYIELD

Summary: Compute the yield for a treasury bill.

Syntax: TBILLYIELD(DateParam Settlement ; DateParam Maturity ; Number Price)

Returns: Number

Constraints: The maturity date should be less than one year beyond settlement. Price is any
positive value.

Semantics: The parameters are:

● Settlement: the settlement/purchase date of the treasury bill

● Maturity: the maturity/expire date of the treasury bill

● Price: the price of the treasury bill per 100 face value

See also TBILLEQ 8.12.48, TBILLPRICE 8.12.49

8.12.51 VDB

Summary: Calculates the depreciation allowance of an asset with an initial value, an expected
useful life, and a final value of salvage for a period specified, using the variable-rate declining
balance method..

Syntax: VDB(Number cost ; Number salvage ; Number lifeTime ; Number startPeriod ; Number
endPeriod [; Number depreciationFactor = 2 [; Logical noSwitch = FALSE()]])

Returns: Number

Constraints: salvage < cost, lifeTime > 0, 0 ≤ startPeriod ≤ lifeTime, startPeriod ≤ endPeriod ≤
lifeTime, depreciationFactor ≥ 0

Semantics: cost is the amount paid for the asset. cost can be any value greater than salvage.

salvage is the value of the asset at the end of its life. salvage can be any value.

lifeTime is the number of periods the asset takes to depreciate to its salvage value. lifeTime can
be any value greater than 0.

startPeriod is the point in the asset's life when you want to begin calculating depreciation. start-
Period can be any value greater than or equal to 0, but cannot be greater than lifeTime.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 118 of 254

endPeriod is the point in the asset's life when you want to stop calculating depreciation. end-
Period can be any value greater than startPeriod.

startPeriod and endPeriod correspond to the asset's life, relative to the fiscal period. For example,
if you want to find the first year's depreciation of an asset purchased at the beginning of the
second quarter of a fiscal year, start-period would be 0 and end-period would be 0.75 (1 minus
0.25 of a year).

VDB allows for the use of an initialPeriod option to calculate depreciation for the period the asset
is placed in service. VDB uses the fractional part of startPeriod and endPeriod to determine the
initialPeriod option. If both startPeriod and endPeriod have fractional parts, then VDB uses the
fractional part of startPeriod.

depreciationFactor is an optional argument that specifies the percentage of straight-line
depreciation you want to use as the depreciation rate. If you omit this argument, VDB uses 2,
which is the double-declining balance rate. depreciation-factor can be any value greater than or
equal to 0; commonly used rates are 1.25, 1.50, 1.75, and 2.

noSwitch is an optional argument that you include if you do not want VDB to switch to straight-line
depreciation for the remaining useful life. Normally, declining-balance switches to such a straight-
line calculation when it is greater than the declining-balance calculation.

If noSwitch is FALSE() or omitted, VDB automatically switches to straight-line depreciation when
that is greater than declining-balance depreciation. If noSwitch is TRUE(), VDB never switches to
straight-line depreciation.

See also DDB 8.12.15, SLN 8.12.46

8.12.52 XIRR

Summary: Compute the internal rate of return for a non-periodic series of cash flows.

Syntax: XIRR(NumberSequence Values ; DateSequence Dates [; Number Guess = 0.1])

Returns: Number

Constraints: The size of Values and Dates are equal. Values contains at least one positive and
one negative cash flow.

Semantics: Compute the internal rate of return for a series of cash flows which is not necessarily
periodic. The parameters are

● Values: a series of cash flows. The first cash-flow amount is a negative number that
represents the investment. The later cash flows are discounted based on the annual discount
rate and the timing of the flow. The series of cash flow should contain at least one positive
and one negative value.

● Dates: a series of dates that corresponds to values. The first date indicates the start of the
cash flows. The range of Values and Dates shall be the same size.

● Guess: If provided, Guess is an estimate of the interest rate to start the iterative
computation. If omitted, the value 0.1 (10%) is assumed. The result of XIRR is the rate at
which the XNPV() function will return zero with the given cash flows. There is no closed form
for XIRR. Implementations may return an approximate solution using an iterative method, in
which case the Guess parameter may be used to initialize the iteration. If the implementation
is unable to converge on a solution given a particular Guess, it may return an error.

See also IRR 8.12.25

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 119 of 254

8.12.53 XNPV

Summary: Compute the net present value of a series of cash flows.

Syntax: XNPV(Number Rate ; Reference|Array Values ; Reference| Array Dates)

Returns: Number

Constraints:

Number of elements in Values equals number of elements in Dates.

All elements of Values are of type Number.

All elements of Dates are of type Number.

All elements of Dates >= Dates[1]

Semantics: Compute the net present value for a series of cash flows which is not necessarily
periodic. The parameters are

● Rate: discount rate. The value should be greater than -1.

● Values: a series of cash flows. The first cash-flow amount is a negative number that
represents the investment. The later cash flows are discounted based on the annual discount
rate and the timing of the flow. The series of cash flow should contain at least one positive
and one negative value.

● Dates: a series of dates that corresponds to values. The first date indicates the start of the
cash flows. If the dimensions of the Values and Dates arrays differ, evaluators shall match
value and date pairs row-wise starting from top left.

With N being the number of elements in Values and Dates each, the formula is:

XNPV=∑
i=1

N Valuesi

 1Rate 
Dates i−Dates1

365

See also NPV 8.12.31

8.12.54 YIELD

Summary: Calculate the yield of a bond.

Syntax: YIELD(DateParam Settlement ; DateParam Maturity ; Number Rate ; Number Price ;
Number Redemption ; Number Frequency [; Basis Basis = 0])

Returns: Number

Constraints: Rate, Price, and Redemption should be greater than 0.

Semantics: The parameters are

● Settlement: the settlement/purchase date of the bond

● Maturity: the maturity/expire date of the bond

● Rate: the interest rate of the bond

● Price: the price of the bond per 100 currency units face value

● Redemption: the redemption value of the bond per 100 currency units face value

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 120 of 254

● Frequency: the number of interest payments per year. 1=annual; 2=semiannualhalf-yearly;
4=quarterly

● Basis: indicates the day-count convention to use in the calculation.the day count convention
to use, see section 4.11.7

See also PRICE 8.12.39, YIELDDISC 8.12.55, YIELDMAT 8.12.56

8.12.55 YIELDDISC

Summary: Calculate the yield of a discounted security per 100 currency units of face value.

Syntax: YIELDDISC(DateParam Settlement ; DateParam Maturity ; Number Price ; Number
Redemption [; Basis Basis = 0])

Returns: Number

Constraints: Price and Redemption should be greater than 0.

Semantics: The parameters are

● Settlement: the settlement/purchase date of the security

● Maturity: the maturity/expire date of the security

● Price: the price of the security per 100 currency units face value

● Redemption: the redemption value per 100 currency units face value

● Basis: indicates the day-count convention to use in the calculation. the day count basis for
this calculation; see section 4.11.7

The return value is

YIELDDISC=

Redemption
Price

−1

YEARFRAC Settlement ;Maturity ; Basis 

See also PRICEDISC 8.12.40, YEARFRAC 8.10.24

8.12.56 YIELDMAT

Summary: Calculate the yield of the security that pays interest on the maturity date.

Syntax: YIELDMAT(DateParam Settlement ; DateParam Maturity ; DateParam Issue ; Number
Rate ; Number Price [; Basis Basis = 0])

Returns: Number

Constraints: Rate and Price should be greater than 0.

Semantics: The parameters are

● Settlement: the settlement/purchase date of the security

● Maturity: the maturity/expire date of the security

● Issue: the issue date of the security

● Rate: the interest rate of the security

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 121 of 254

● Price: the price of the security per 100 currency units face value

● Basis: indicates the day-count convention to use in the calculation. the type which indicates
how the year is to be calculated by days; see section 4.11.7

See also PRICE 8.12.39, YIELD 8.12.54, YIELDDISC 8.12.55

8.13 Information Functions

8.13.1 General

Information functions provide information about a data value, the spreadsheet, or underlying
environment, including special functions for converting between data types.

8.13.2 AREAS

Summary: Returns the number of areas in a given reference

Syntax: AREAS(ReferenceList R)

Returns: Number

Constraints: None

Semantics: Returns the number of areas in the reference list.

See also Infix Operator Reference Concatenation 8.4.13, INDEX 8.14.6

8.13.3 CELL

Summary: Returns information about position, formatting or contents in a reference.

Syntax: CELL(Text Info_Type [; Reference R])

Returns: Information about position, formatting properties or content

Constraints: None

Semantics: The parameters are

● Info_Type: the text string which specifies the type of information. Please refer to the following
table.

Table 19 - CELL

Info_Type Comment

COL Returns the column number of the cell.

ROW Returns the row number of the cell.

SHEET Returns the sheet number of the cell.

ADDRESS
Returns the absolute address of the cell. The sheet name is included if
given in the reference. For an external reference a Source as
specified in the syntax rules for References 7.7 is included.

FILENAME Returns the file name of the file that contains the cell as an IRI. If the

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 122 of 254

file is newly created and has not yet been saved, the file name is
empty text “”.

CONTENTS Returns the contents of the cell, without formatting properties.

COLOR Returns 1 if color formatting is set for negative value in this cell;
otherwise returns 0

FORMAT

Returns a text string which shows the number format of the cell.

,(comma) = number with thousands separator

F = number without thousands separator

C = currency format

S = exponential representation

P = percentage

To indicate the number of decimal places after the decimal separator,
a number is given right after the above characters.

D1 = MMM-D-YY, MM-D-YY and similar formats

D2 = DD-MM

D3 = MM-YY

D4 = DD-MM-YYYY HH:MM:SS

D5 = MM-DD

D6 = HH:MM:SS AM/PM

D7 = HH:MM AM/PM

D8 = HH:MM:SS

D9 = HH:MM

G = All other formats

- (Minus) at the end = negative numbers in the cell have color setting

() (brackets) at the end = this cell has the format settings with
parentheses for positive or all values

TYPE

Returns the text value corresponding to the type of content in the cell:

“b” : blank or empty cell content

“l” : label or text cell content

“v” : number value cell content

WIDTH
Returns the column width of the cell.

The unit is the width of one zero (0) character in default font size.

PROTECT Returns the protection status of the cell:

1 = cell is protected

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 123 of 254

0 = cell is unprotected

PARENTHESES
Returns 1 if the cell has the format settings with parentheses for
positive or all values, otherwise returns 0

PREFIX

Returns single character text strings corresponding to the alignment of
the cell.

“'” (APOSTROPHE, U+0027) = left alignment

'"' (QUOTATION MARK, U+0022) = right alignment

^(caret) = centered alignment

\(back slash) = filled alignment

otherwise, returns empty string "".

● R : if R is a reference to a cell, it is the cell whose information will be returned; if R is a
reference to a range, the top-left cell in the range is the selected one; if R is omitted, the
current cell is used.

8.13.4 COLUMN

Summary: Returns the column number(s) of a reference

Syntax: COLUMN([Reference R])

Returns: Number

Constraints: AREAS(R) = 1

Semantics: Returns the column number of a reference, where “A” is 1, “B” is 2, and so on. If no
parameter is given, the current cell is used. If a reference has multiple columns, an array of
numbers is returned with all of the columns in the reference.

See also ROW 8.13.29, SHEET 8.13.31

8.13.5 COLUMNS

Summary: Returns the number of columns in a given range

Syntax: COLUMNS(Reference|Array R)

Returns: Number

Constraints: None

Semantics: Returns the number of columns in the range or array specified. The result is not
dependent on the cell content in the range.

See also ROWS 8.13.30

8.13.6 COUNT

Summary: Count the number of Numbers provided

Syntax: COUNT({ NumberSequenceList N }+)

Returns: Number

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 124 of 254

Constraints: One or more parameters.

Semantics: Counts the numbers in the list of NumberSequences provided. Only numbers in
references are counted; all other types are ignored. Errors are not propagated. It is
implementation-defined what happens if 0 parameters are passed, but it should be an Error or 0.

See also COUNTA 8.13.7

8.13.7 COUNTA

Summary: Count the number of non-empty values

Syntax: COUNTA({ Any A }+)

Returns: Number

Constraints: None.

Semantics: Counts the number of non-blank values in the list of Any sequences provided. A
value is non-blank if it contains any content of any type, including an Error. In a reference, every
cell that is not empty is included in the count. An empty string value ("") is not considered blank.
Errors contained in a range are considered a non-blank value for purposes of the count; errors do
not propagate. Constant expressions or formulas are allowed; these are evaluated and if they
produce an Error value the Error value is counted as one non-blank value (and not propagated as
an Error). It is implementation-defined what happens if 0 parameters are passed, but it should be
an Error or 0. Any A may be a ReferenceList.

See also COUNT 8.13.6, ISBLANK 8.13.14

8.13.8 COUNTBLANK

Summary: Count the number of blank values

Syntax: COUNTBLANK(ReferenceList R)

Returns: Number

Constraints: None.

Semantics: Counts the number of blank cells in the Reference provided. A cell is blank if the cell
is empty for purposes of COUNTBLANK. If ISBLANK(R) is true, then it is blank. A cell with
numeric value zero ('0') is not blank. It is implementation-defined whether or not a cell returning
the empty string ("") is considered blank; because of this, there is a (potential) subtle difference
between COUNTBLANK and ISBLANK.

Evaluators shall support one Reference as a parameter and may support a ReferenceList as a
parameter.

See also COUNT 8.13.6, COUNTA 8.13.7, COUNTIF 8.13.9, ISBLANK 8.13.14

8.13.9 COUNTIF

Summary: Count the number of cells in a range that meet a criteria.

Syntax: COUNTIF(ReferenceList R ; Criterion C)

Returns: Number

Constraints: Does not accept constant values as the reference parameter.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 125 of 254

Semantics: Counts the number of cells in the reference range R that meet the Criterion C
(4.11.7.8).

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.5

See also COUNT 8.13.6, COUNTA 8.13.7, COUNTBLANK 8.13.8, COUNTIFS 8.13.10, SUMIF
8.16.62, Infix Operator "=" 8.4.7, Infix Operator "<>" 8.4.8, Infix Operator Ordered Comparison
("<", "<=", ">", ">=") 8.4.9

8.13.10 COUNTIFS

Summary: Count the number of cells that meet multiple criteria in multiple ranges.

Syntax: COUNTIFS(Reference R1 ; Criterion C1 [; Reference R2 ; Criterion C2]...)

Returns: Number

Constraints: Does not accept constant values as the reference parameter.

Semantics: Counts the number of cells that meet the Criterion C1 in the reference range R1 and
the Criterion C2 in the reference range R2, and so on (4.11.7.8). All reference ranges shall have
the same dimension and size, else an Error is returned. A logical AND is applied between each
array result of each selection; an entry is counted only if the same position in each array is the
result of a Criterion match.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.5

See also AVERAGEIFS 8.18.6, COUNT 8.13.6, COUNTA 8.13.7, COUNTBLANK 8.13.8,
COUNTIF 8.13.9, SUMIF 8.16.62, SUMIFSCOUNT 8.13.6, COUNTA 8.13.7, COUNTBLANK
8.13.8, COUNTIF 8.13.9, SUMIF 8.16.63, Infix Operator "=" 8.4.7, Infix Operator "<>" 8.4.8, Infix
Operator Ordered Comparison ("<", "<=", ">", ">=") 8.4.9

8.13.11 ERROR.TYPE

Summary: Returns Number representing the specific Error type.

Syntax: ERROR.TYPE(Error E)

Returns: Number

Constraints: None.

Semantics: Returns a number representing what kind of Error has occurred. Note that unlike
most functions, this function does not propagate Error values. Receiving a non-Error value
returns an Error. In particular, ERROR.TYPE(NA()) returns 7, and ERROR.TYPE applied to a
non-Error returns an Error.

See also NA 8.13.27

8.13.12 FORMULA

Summary: Returns formula at given reference as text

Syntax: FORMULA(Reference X)

Returns: String

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 126 of 254

Constraints: Reference X shall contain a formula

Semantics: Returns the formula in reference X as a string. The specific syntax of this returned
string is implementation-defined. This function is intended to aid debugging by simplifying display
of formulas in other cells. Error results of the referred formula cell are not propagated.

See also ISFORMULA 8.13.18

8.13.13 INFO

Summary: Returns information about the environment

Syntax: INFO(Text Category)

Returns: Any (see below)

Constraints: Category shall be valid

Semantics: Returns information about the environment in the given category.

Evaluators shall support at least the following categories:

Table 20 - INFO

Category Meaning Type

"directory" Current directory. This shall be formatted so file names
can be appended to the result (e.g., on POSIX and
Windows systems it shall end with the separator “/” or
“\” respectively).

Text

"memavail" Amount of memory “available”, in bytes. On many
modern (virtual memory) systems this value is not
really available, but a system should return 0 if it is
known that there is no more memory available, and
greater than 0 otherwise

Number

"memused" Amount of memory used, in bytes, by the data Number

"numfile" Number of active worksheets in files Number

"osversion" Operating system version Text

"origin" The top leftmost visible cell's absolute reference
prefixed with “$A:”. In locales where cells are ordered
right-to-left, the top rightmost visible cell is used
instead.

Text

"recalc" Current recalculation mode. If the locale is English,
this is either "Automatic" or "Manual" (the exact text
depends on the locale)

Text

"release" The version of the implementation. Text

"system" The type of the operating system. Text

"totmem" Total memory available in bytes, including the memory
already used.

Number

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 127 of 254

Evaluators may support other categories.

See also CELL 8.13.3

8.13.14 ISBLANK

Summary: Return TRUE if the referenced cell is blank, else return FALSE

Syntax: ISBLANK(Scalar X)

Returns: Logical

Constraints: None

Semantics: If X is of type Number, Text, or Logical, return FALSE. If X is a reference to a cell,
examine the cell; if it is blank (has no value), return TRUE, but if it has a value, return FALSE. A
cell with the empty string is not considered blank.

See also ISNUMBER 8.13.22, ISTEXT 8.13.25

8.13.15 ISERR

Summary: Return True if the parameter has type Error and is not NA, else return False.

Syntax: ISERR(Scalar X)

Returns: Logical

Constraints: None

Semantics: If X is of type Error, and ISNA(X) is not true, returns TRUE. Otherwise it returns
FALSE. Note that this function returns False if given NA(); if this is not desired, use ISERROR
8.13.16. Note that this function does not propagate Error values.

ISERR(X) is the same as:

IF(ISNA(X),FALSE(),ISERROR(X))

See also ERROR.TYPE 8.13.11, ISERROR 8.13.16, ISNUMBER 8.13.22, ISTEXT 8.13.25, NA
8.13.27

8.13.16 ISERROR

Summary: Return TRUE if the parameter has type Error, else return FALSE

Syntax: ISERROR(Scalar X)

Returns: Logical

Constraints: None

Semantics: If X is of type Error, returns TRUE, else returns FALSE. Note that this function
returns True if given NA(); if this is not desired, use ISERR 8.13.15. Note that this function does
not propagate Error values.

See also ERROR.TYPE 8.13.11, ISERR 8.13.15, ISNA 8.13.20, ISNUMBER 8.13.22, ISTEXT
8.13.25, NA 8.13.27

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 128 of 254

8.13.17 ISEVEN

Summary: Return TRUE if the value is even, else return FALSE

Syntax: ISEVEN(Number X)

Returns: Logical

Constraints: None

Semantics: First, compute X1=TRUNC(X). Then, if X1 is even (a division by 2 has a remainder
of 0), return True, else return False. The result is implementation-defined if given a Logical value;
an evaluator may return either an Error or the result of converting the Logical value to a Number
(per Conversion to Number 8.3.5).

See also ISODD 8.13.23

8.13.18 ISFORMULA

Summary: Return TRUE if the reference refers to a formula, else return FALSE

Syntax: ISFORMULA(Reference X)

Returns: Logical

Constraints: None

Semantics: If X refers to a cell whose value is computed by a formula, return TRUE(), else return
FALSE(). A formula itself may compute a constant; in that case it will still return TRUE() since it is
still a formula. Passing a non-reference, or a reference to more than one cell, is implementation-
defined.

See also ISTEXT 8.13.25, ISNUMBER 8.13.22

8.13.19 ISLOGICAL

Summary: Return TRUE if the parameter has type Logical, else return FALSE

Syntax: ISLOGICAL(Scalar X)

Returns: Logical

Constraints: None

Semantics: If X is of type Logical, returns TRUE, else FALSE. Evaluators that do not have a
distinct Logical type will return the same value ISNUMBER(X) would return.

See also ISTEXT 8.13.25, ISNUMBER 8.13.22

8.13.20 ISNA

Summary: Return True if the parameter is of type NA, else return False.

Syntax: ISERR(Scalar X)

Returns: Logical

Constraints: None

Semantics: If X is NA, return True, else return False. Note that if X is a reference, the value
being referenced is considered. This function does not propagate Error values.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 129 of 254

See also ERROR.TYPE 8.13.11, ISERROR 8.13.16, ISERR 8.13.15, ISNUMBER 8.13.22,
ISTEXT 8.13.25, NA 8.13.27

8.13.21 ISNONTEXT

Summary: Return TRUE if the parameter does not have type Text, else return FALSE

Syntax: ISNONTEXT(Scalar X)

Returns: Logical

Constraints: None

Semantics: If X is of type Text, ISNONTEXT returns FALSE, else TRUE. If X is a reference, it
examines what X references. References to empty cells are not considered text, so for reference
to an empty cell ISNONTEXT will return TRUE. returns FALSE, else TRUE. If X is a reference,
examines what X references. References to empty cells are NOT considered Text, so a reference
to an empty cell will return TRUE. Empty Cell 4.7

ISNONTEXT(X) is equivalent to NOT(ISTEXT(X))

See also ISNUMBER 8.13.22, ISLOGICAL 8.13.19, ISTEXT 8.13.25

8.13.22 ISNUMBER

Summary: Return TRUE if the parameter has type Number, else return FALSE

Syntax: ISNUMBER(Scalar X)

Returns: Logical

Constraints: None

Semantics: If X is of type Number, returns TRUE, else FALSE. Evaluators may not have a
distinguished Logical type; in such evaluators, ISNUMBER(TRUE()) is TRUE.

See also ISTEXT 8.13.25, ISLOGICAL 8.13.19

8.13.23 ISODD

Summary: Return TRUE if the value is even, else return FALSE

Syntax: ISODD(Number X)

Returns: Logical

Constraints: None

Semantics: First, compute X1=TRUNC(X). Then, if X1 is odd (a division by 2 has a remainder of
1), return True, else return False. The result is implementation-defined if given a Logical value; an
evaluator may return either an Error or the result of converting the Logical value to a Number (per
Conversion to Number 8.3.5).

See also ISEVEN 8.13.17

8.13.24 ISREF

Summary: Return True if the parameter is of type reference, else return False.

Syntax: ISREF(Any X)

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 130 of 254

Returns: Logical

Constraints: None

Semantics: If X is of type Reference or ReferenceList, return True, else return False. Note that
unlike nearly all other functions, when given a reference this function does not then examine the
value being referenced. Some functions and operators return references, and thus ISREF will
return True when given their results. X may be a ReferenceList, in which case ISREF returns
True.

See also ISNUMBER 8.13.22, ISTEXT 8.13.25

8.13.25 ISTEXT

Summary: Return TRUE if the parameter has type Text, else return FALSE. If X is a reference,
examines what X references. References to empty cells are NOT considered Text, so a reference
to a empty cell will return FALSE. Empty Cell 4.7

ISTEXT(X) is equivalent to NOT(ISNONTEXT(X)).

Syntax: ISTEXT(Scalar X)

Returns: Logical

Constraints: None

Semantics: If X is of type Text, returns TRUE, else FALSE. References to empty cells are NOT
considered Text. If X is a reference, examines what X references. References to empty cells are
NOT considered Text, so a reference to a empty cell will return FALSE. Empty Cell 4.7blank cells
are NOT considered Text.

See also ISNONTEXT 8.13.21, ISNUMBER 8.13.22, ISLOGICAL 8.13.19

8.13.26 N

Summary: Return the number of a value.

Syntax: N(Any X)

Returns: NumberText

Constraints: None

Semantics: If X is a Reference, it is first dereferenced to a scalar. Then its type is examined. If it
is of type Number, it is returned. If it is of type Logical, 1 is returned if TRUE else 0 is returned. It
is implementation-defined what happens if it is provided a Text value.

See also T 8.20.22, VALUE 8.13.34

8.13.27 NA

Summary: Return the constant Error value #N/A.

Syntax: NA()

Returns: Error

Constraints: Shall have 0 parameters

Semantics: This function takes no arguments and returns the Error NA

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 131 of 254

See also ERROR.TYPE 8.13.11, ISERROR 8.13.16

8.13.28 NUMBERVALUE

Summary: Convert text to number, in a locale-independent way

Syntax: NUMBERVALUE(Text X [; Text DecimalSeparator [; Text GroupSeparator]])

Returns: Number

Constraints: LEN(DecimalSeparator) = 1, DecimalSeparator shall not appear in GroupSeparator

Semantics: Converts given Text value X into Number. If X is a Reference, it is first dereferenced.

X is transformed according to the following rules:

1) Starting from the beginning, remove all occurrences of the group separator before any
decimal separator

2) Starting from the beginning, replace the first occurrence in the text of the decimal
separator character with the FULL STOP (U+002E) character

3) Remove all whitespace characters (7.15).

4) If the first character of the resulting string is a period FULL STOP (U+002E) then prepend
a zero

5) If the string ends in one or more instances of PERCENT SIGN (U+0025) , remove the
percent sign(s)

If the resulting string is a valid xsd:float, then return the number corresponding to that string,
according to the definition provided in XML Schema, Part 2, Section 3.2.4. If percent signs were
removed in step 5, divide the value of the returned number by 100 for each percent sign
removed.

If the string is not a valid xsd:float then return an error.

DecimalSeparator defines the character used as the decimal separator, for example "." (period) or
"," (comma). If this parameter is not given, only integer numbers are parsed.

GroupSeparator defines the character(s) used as grouping separator, for example "," (comma) or
"." (period). If this parameter is not given, only integer or decimal numbers containing the
DecimalSeparator are parsed. If this parameter is given, all characters contained are ignored in T
if each is surrounded by a digit on each side. If GroupSeparator contains " " U+0020 (SPACE),
U+0020 and U+00A0 (NO-BREAK SPACE) shall be equally treated.

If the supplied text X cannot be converted into a Number, an Error is returned.

Regardless of the current locale, the evaluator shall accept text representations that match this
regular expression when DecimalSeparator is "." (a period) and GroupSeparator is "," (a comma):

[+|-]?([0-9]+(,[0-9])*)?(\.[0-9]+)?(([eE][+-]?[0-9]+)|%)?

If, for example, DecimalSeparator is "," (a comma) and GroupSeparator is "." (a period), use the
expression above but swapping the comma for the period (so "." is ignored).

See also N 8.13.26, T 8.20.22, DATEVALUE 8.10.4, TIMEVALUE 8.10.18, VALUE 8.13.34

8.13.29 ROW

Summary: Returns the row number(s) of a reference

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 132 of 254

Syntax: ROW([Reference R])

Returns: Number

Constraints: AREAS(R) = 1

Semantics: Returns the row number of a reference. If no parameter is given, the current cell is
used. If a reference has multiple rows, an array of numbers is returned with all of the rows in the
reference.

See also COLUMN 8.13.4, SHEET 8.13.31

8.13.30 ROWS

Summary: Returns the number of rows in a given range

Syntax: ROWS(Reference|Array R)

Returns: Number

Constraints: None

Semantics: Returns the number of rows in the range or array specified. The result is not
dependent on the cell content in the range.

See also COLUMNS 8.13.5

8.13.31 SHEET

Summary: Returns the sheet number of the reference or the string representing a sheet name.

Syntax: SHEET([Text|Reference R])

Returns: Number >= 1

Constraints: R shall not contain a Source Location (7.7 References)

Semantics: Returns the 1 based sheet number of the given reference or sheet name.

Hidden sheets are not excluded from the sheet count.

If no parameter is given, the result is the sheet number of the sheet containing the formula.

If a Reference is given it is not dereferenced.

If the reference encompasses more than one sheet, the result is the number of the first sheet in
the range.

If a reference does not contain a sheet reference, the result is the sheet number of the sheet
containing the formula.

If the function is not evaluated within a table cell, an error is returned.

See also COLUMN 8.13.4, ROW 8.13.29, SHEETS 8.13.32

8.13.32 SHEETS

Summary: Returns the number of sheets in a reference or current document

Syntax: SHEETS([Reference R])

Returns: Number >= 1

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 133 of 254

Constraints: R shall not contain a Source Location (7.7 References)

Semantics: Returns the number of sheets in the given reference.

If no parameter is given, the number of sheets in the document is returned.

Hidden sheets are not excluded from the sheet count.

See also COLUMNS 8.13.5, ROWS 8.13.30, SHEET 8.13.31

8.13.33 TYPE

Summary: Returns a number indicating the type of the provided value.

Syntax: TYPE(Any value)

Returns: Number

Constraints: None

Semantics: Returns a number indicating the type of the value given:

Table 21 - TYPE

Value's Type TYPE Return

Number 1

Text 2

Logical 4

Error 16

Array 64

If a Reference is provided, the reference is first dereferenced, and any formulas are evaluated.

Note: Reliance on the return of 4 for TYPE() will impair the interoperability of a document
containing an expression that relies on that value.

See also ERROR.TYPE 8.13.11

8.13.34 VALUE

Summary: Convert text to number

Syntax: VALUE(Text X)

Returns: Number

Constraints: None

Semantics: Converts given text value X into Number. If X is a Reference, it is first dereferenced.
VALUE is only specified if it is given a Text value or a Reference to a single cell containing a Text
value; it is implementation-defined what happens if VALUE is given neither a Text value nor a
Reference to a Text value. If the Text has a date, time, or datetime format, it is converted into a
serial Number. In many cases the conversion of a date or datetime format is locale-dependent.

If the supplied text X cannot be converted into a Number, an Error is returned.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 134 of 254

Regardless of the current locale, an evaluator shall accept numbers matching this regular
expression (which does not include a decimal point character) and convert it into a Number. If the
value ends in %, it shall divide the number by 100:

[+-]? [0-9]+([eE][+-]?[0-9]+)?)%?

VALUE shall accept text representations of numbers in the current locale. In the en_US locale, an
evaluator shall accept decimal numbers matching this regular expression and convert it into a
Number (the leading “$” is ignored; commas are ignored if they match the rule of a thousands
separator; if the value ends in %, it shall divide the number by 100):

[+-]?\$?([0-9]+(,[0-9]{3})*)?(\.[0-9]+)?(([eE][+-]?[0-9]+)|%)?

Evaluators shall accept accept fractional values matching the regular expression:

[+-]? [0-9]+ \ [0-9]+/[1-9][0-9]?

A leading minus sign is considered identifying a negative number for the entire value. There is a
space between the integer and the fractional portion; values between 0 and 1 can be represented
by using 0 for the integer part.

Evaluators shall support time values in at least the HH:MM and HH:MM:SS formats, where HH is
a 1-2 digit value from 0 to 23, MM is a 1-2 digit value from 0 to 59, and SS is a 1-2 digit value
from 0 to 59. The hour may be one or two digits when it is less than 10. VALUE converts time
values into Numbers ranging from 0 to 1, which is percentage of day that has elapsed by that
time. Thus, VALUE("2:00") is the same as 2/24. Evaluators should accept times with fractional
seconds as well when expressed in the form HH:MM:SS.ssss...

Evaluators shall accept textual dates in [ISO8601]ISO 8601 format (YYYY-MM-DD), converting
them into serial numbers based on the current epoch. Evaluators shall, when running in the
en_US locale, accept the format MM/DD/YYYY .

In addition, in locale en_US, evaluators shall support the following formats (where YYYY is a 4-
digit year, YY a 2-digit year, MM a numerical month, DD a numerical day, mmm a 3-character
abbreviated alphabetical name, and mmmmm a full name):

Table 22 - VALUE

Format Example Comment

MM/DD/YYY
Y

5/21/2006 LOCALE-DEPENDENT; Long year format with slashes.

MM/DD/YY 5/21/06 LOCALE-DEPENDENT; Short year format with slashes

MM-DD-
YYYY 5-21-2006

LOCALE-DEPENDENT; Long year format with dashes (short year
may be supported, but it may also be used for years less than
100 .

mmm DD,
YYYY

Oct 29,
2006

LOCALE-DEPENDENT; Short alphabetic month day, year.

Note: mmm depends on the locale's language.

DD mmm
YYYY

29 Oct 2006 LOCALE-DEPENDENT; Short alphabetic day month year

mmmmm
DD, YYYY

October 29,
2006

LOCALE-DEPENDENT; Long alphabetic month day, year

DD mmmmm
YYYY

29 October
2006

LOCALE-DEPENDENT; Long alphabetic day month year

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 135 of 254

Format Example Comment

MM/DD/YYY
Y

5/21/2006 LOCALE-DEPENDENT; Long year format with slashes.

MM/DD/YY 5/21/06 LOCALE-DEPENDENT; Short year format with slashes

MM-DD-
YYYY

5-21-2006
LOCALE-DEPENDENT; Long year format with dashes (short year
may be supported, but it may also be used for years less than
100 .

mmm DD,
YYYY

Oct 29,
2006

LOCALE-DEPENDENT; Short alphabetic month day, year. Note:
mmm depends on the locale's language.

DD mmm
YYYY

29 Oct 2006 LOCALE-DEPENDENT; Short alphabetic day month year

mmmmm
DD, YYYY

October 29,
2006

LOCALE-DEPENDENT; Long alphabetic month day, year

DD mmmmm
YYYY

29 October
2006

LOCALE-DEPENDENT; Long alphabetic day month year

Evaluators should support other locales. Many conversions will vary by locale, including the
decimal point (comma or period), names of months, date formats (MM/DD vs. DD/MM), and so
on. Dates in particular vary by locale.

Evaluators shall support the datetime format, which is a date followed by a time, using either the
space character or the literal “T” character as the separator (the “T” is from ISO 8601). Evaluators
shall support at least the ISO date format in a datetime format; they may support other date
formats in a datetime format as well. Formats such as “YYYY-MM-DD HH:MM” and “YYYY-MM-
DDTHH:MM:SS” (where “T” is the literal character T) shall be accepted. The result of accepting a
datetime format shall be a representation of that specific time (without removing either the date or
the time of day, unlike DATEVALUE or TIMEVALUE).

Evaluators may accept other formats that will convert to numbers, and those conversions may be
locale-dependent, as long as they do not conflict with the above. Where no conversion is
determined, an Error is returned.

See also N 8.13.26, T 8.20.22, DATEVALUE 8.10.4, TIMEVALUE 8.10.18, NUMBERVALUE
8.13.28

8.14 Lookup Functions

8.14.1 General

These functions look up information. Note that IF() can be considered a trivial lookup function, but
it is listed as a logical function instead.

8.14.2 ADDRESS

Summary: Returns a cell address (reference) as text

Syntax: ADDRESS(Integer Row ; Integer Column [; Integer Abs = 14 [; Logical A1 = TRUE() [;
Text Sheet]]])

Returns: Text

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 136 of 254

Constraints: Row >= 1, Column >= 1, 1 <= Abs <= 4; A1 = TRUE(). Evaluators may evaluate
expressions that do not meet the constraint A1 = TRUE().

Semantics: Returns a cell address (reference) as text. The text does not include the surrounding
[...] of a reference. If a Sheet name is given, the sheet name in the text returned is followed by a
“.” and the column/row reference if A1 is TRUE, or a “!” and the column/row reference if A1 is
FALSE; otherwise no “.” respectively “!” is included. Columns are identified using uppercase
letters. The value of Abs determines if the column and/or row is absolute or relative. The value of
A1 determines if A1 reference style or R1C1 reference style is used.

Table 23 - ADDRESS

Abs Meaning A1 = TRUE() A1 = FALSE()

1 fully absolute A1 R1C1

2 row absolute, column relative A$1 R1C[1]

3 row relative, column absolute $A1 R[1]C1

4 fully relative A1 R[1]C[1]

Note that the INDIRECT function accepts this format.

See also INDIRECT 8.14.7

8.14.3 CHOOSE

Summary: Uses an index to return a value from a list of values.

Syntax: CHOOSE(Integer Index ; { Any Value }+)

Returns: Any

Constraints: Returns an Error if Index < 1 or if there is no corresponding value in the list of
Values.

Semantics: Uses Index to determine which value, from a list of values, to return. If Index is 1,
CHOOSE returns the first Value; if Index is 2, CHOOSE returns the second value, and so on.
Note that the Values may be formula expressions. Expression paths of parameters other than the
one chosen are not calculated or evaluated for side effects.

See also IF 8.15.4

8.14.4 GETPIVOTDATA

Summary: Return a value from a data pilot table.

Syntax: GETPIVOTDATA(Text DataField ; Reference Table { ; Text Field ; Scalar Member }*)

Note: This function knows two different syntaxes. This version of the syntax is distinguished by
the second parameter Table being a Reference.

Returns: Any

Semantics: Returns a single result from the calculation of a data pilot table.

The data pilot table is selected by Table, which is a reference to a cell or cell range that's within a
data pilot table or contains a data pilot table. If the cell range contains several data pilot tables,
the last one in the order of <table:data-pilot-table> elements in the file is used.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 137 of 254

DataField selects one of the data pilot table's data fields. It can be the name of the source
column, or the given name of the data field (such as “Sum of Sales”).

If no Field/Member pairs are given, the grand total is returned. Otherwise, each pair adds a
constraint that the result shall satisfy. Field is the name of a field from the data pilot table.
Member is the name of a member (item) from that field. If a member is a number, Member can
alternatively be its numerical value.

If the data pilot table contains only a single result value that fulfills all of the constraints, or a
subtotal result that summarizes all matching values, that result is returned. If there is no matching
result, or several ones without a subtotal for them, an Error is returned. These conditions apply to
results that are included in the data pilot table. If the source data contains entries that are hidden
by settings of the data pilot table, they are ignored. The order of the Field/Member pairs is not
significant. Field and member names are case-insensitive.

If no constraint for a page field is given, the field's selected value is implicitly used. If a constraint
for a page field is given, it shall match the field's selected value, or an Error is returned.

Subtotal values from the data pilot table are only used if they use the function “auto” (except
when specified in the constraint, see below).

Alternative syntax: GETPIVOTDATA(Reference Table ; Text Constraints)

For compatibility, a second syntax is allowed. Table has the same meaning as above. This
version of the syntax is distinguished by the first parameter Table being a Reference.

Constraints is a space-separated list. Entries can be quoted (single quotes). One of the entries
can be the data field name. The data field name can be left out if the data pilot table contains only
one data field, otherwise it shall be present. Each of the other entries specifies a constraint in the
form Field[Member] (with literal characters [and]), or only Member if the member name is unique
within all fields that are used in the data pilot table. A function name can be added in the form
Field[Member;Function], which will cause the constraint to match only subtotal values which use
that function. The possible function names are the same as in the table:function attribute of
the <table:data-pilot-subtotal> element, case-insensitive.

8.14.5 HLOOKUP

Summary: Look for a matching value in the first row of the given table, and return the value of
the indicated row.

Syntax: HLOOKUP(Any Lookup ; Reference|Array DataSource ; Integer Row [; Logical
RangeLookup = TRUE()])

Returns: Any

Constraints: Row >= 1; Searched portion of DataSource shall not include Logical values.
Evaluators may evaluate expressions that do not meet the constraint that the searched portion of
a DataSource not include Logical values.

Semantics:

If RangeLookup is omitted or TRUE or not 0, the first row of DataSource is assumed to be sorted
in ascending order, with smaller numbers before larger ones, smaller text values before larger
ones (e.g., "A" before "B", and "B" before "BA"), and False before True. If the types are mixed,
Numbers are sorted before Text, and Text before Logicals; evaluators without a separate Logical
type may include a Logical as a Number. The lookup will try to match an entry of value Lookup. If
none is found the largest entry less than Lookup is taken as a match. From a sequence of
identical values <= Lookup the last entry is taken. If there is no data less than or equal to Lookup,
the #N/A Error is returned. If Lookup is of type Text and the value found is of type Number, the
#N/A Error is returned. If DataSource is not sorted, the result is undetermined and

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 138 of 254

implementation-dependent. In most cases it will be arbitrary and just plain wrong due to binary
search algorithms.

If RangeLookup is FALSE or 0, DataSource does not need to be sorted and an exact match is
searched. Each value in the first row of DataSource is examined in order (starting at the left) until
its value matches Lookup.

Both methods, if there is a match, return the corresponding value in row Row, relative to the
DataSource, where the topmost row in DataSource is 1.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.5

See also INDEX 8.14.6, MATCH 8.14.9, OFFSET 8.14.11, VLOOKUP 8.14.12

8.14.6 INDEX

Summary: Returns a value using a row and column index value (and optionally an area index).

Syntax: INDEX(ReferenceList|Array DataSource ; [Integer Row] [; [Integer Column]] [;
Integer AreaNumber = 1])

Returns: Any

Constraints: Row >= 0, Column >= 0,
1 <= AreaNumber <= number of references in DataSource if that is a ReferenceList, else
AreaNumber = 1

Semantics:

Given a DataSource, returns the value at the given Row and Column (starting numbering at 1,
relative to the top left of the DataSource) of the given area AreaNumber. If AreaNumber is not
given, it defaults to 1 (the first and possibly only area). This function is essentially a two-
dimensional version of CHOOSE, which does not accept range parameters.

If Row is omitted or an empty parameter (two consecutive ;; semicolons) or 0, an entire column of
the given area AreaNumber in DataSource is returned. If Column is omitted or an empty
parameter (two consecutive ;; semicolons) or 0, an entire row of the given area AreaNumber in
DataSource is returned. If both, Row and Column, are omitted or empty or 0, the entire given
area AreaNumber is returned.

If DataSource is a one-dimensional column vector, Column is optional or can be omitted as an
empty parameter (two consecutive ;; semicolons). If DataSource is a one-dimensional row vector,
Row is optional, which effectively makes Row act as the column offset into the vector, or can be
omitted as an empty parameter (two consecutive ;; semicolons).

If Row or Column have a value greater than the dimension of the corresponding given area
AreaNumber, an Error is returned.

See also AREAS 8.13.2, CHOOSE 8.14.3

8.14.7 INDIRECT

Summary: Return a reference given a string representation of a reference

Syntax: INDIRECT(Text Ref [; Logical A1 = TRUE()])

Returns: Reference

Constraints: Ref is valid reference

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 139 of 254

Semantics: Given text for a reference (such as “A3”), returns a reference. If A1 is False, it is
interpreted as an R1C1 reference style. For interoperability, if the Ref text includes a sheet name,
evaluators should be able to parse both, the “.” dot and the “!” exclamation mark, as the sheet
name separator. If evaluators support the A1=FALSE() case of the ADDRESS 8.14.2 function and
include the “!” exclamation mark as the sheet name separator, evaluators shall correctly parse
that in the A1=FALSE() case of this INDIRECT function. Evaluators shall correctly parse the “.”
dot as the sheet name separator in the A1=TRUE() case.

See also ADDRESS 8.14.2

8.14.8 LOOKUP

Summary: Look for criterion in an already-sorted array, and return a corresponding result

Syntax: LOOKUP(Any Find ; ForceArray Reference|Array Searched [; ForceArray Reference|
Array Results])

Returns: Any

Constraints: The searched portion of Searched shall be sorted in ascending order; if provided,
Results shall have the same length as Searched. The searched portion of Searched shall not
include Logical values. Evaluators may evaluate expressions that do not meet the constraint that
the searched portion of a Searched not include Logical values.

Semantics: This function searches for Find in a row or column of the previously-sorted array
Searched and returns a corresponding value. The match is the largest value in the row/column of
Searched that is less than or equal to Find (so an exact match is always preferred over inexact
ones). From a sequence of identical values <= Find the last entry is taken. If Find is smaller than
the smallest value in the first row or column (depending on the array dimensions), LOOKUP
returns the #N/A Error. If Find is of type Text and the value found is of type Number, the #N/A
Error is returned.

The searched portion of Searched shall be sorted in ascending order, and so that values of type
Number precede values of type Text if both types are included (e.g., -2, 0, 2, “A”, “B”).

There are two major uses for this function; the 3-parameter version (vector) and the 2-parameter
version (non-vector array).

Note: Interoperability is improved by use of HLOOKUP or VLOOKUP in expressions over
LOOKUP.

When given two parameters, Searched is first examined:

● If Searched is square or is taller than it is wide (more rows than columns), LOOKUP searches
in the first column (similar to VLOOKUP), and returns the corresponding value in the last
column.

● If Searched covers an area that is wider than it is tall (more columns than rows), LOOKUP
searches in the first row (similar to HLOOKUP), and returns the corresponding value in the
last row.

When given 3 parameters, Results shall be a vector (either a row or a column) or an Error is
raised. The function determines the index of the match in the first column respectively row of
Searched, and returns the value in Results with the same index.

Searched is first examined:

● If Searched is square or is taller than it is wide (more rows than columns), LOOKUP searches
in the first column (similar to VLOOKUP).

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 140 of 254

● If Searched covers an area that is wider than it is tall (more columns than rows), LOOKUP
searches in the first row (similar to HLOOKUP).

The lengths of the search vector and the result vector do not need to be identical. When the
match position falls outside the length of the result vector, an Error is returned if the result vector
is given as an array object. If it is a cell range, it gets automatically extended to the length of the
searched vector, but in the direction of the result vector. If just a single cell reference was passed,
a column vector is generated. If the cell range cannot be extended due to the sheet's size limit,
then the #N/A Error is returned.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.5

See also HLOOKUP 8.14.5, INDEX 8.14.6, MATCH 8.14.9, OFFSET 8.14.11, VLOOKUP 8.14.12

8.14.9 MATCH

Summary: Finds a Search item in a sequence, and returns its position (starting from 1).

Syntax: MATCH(Scalar Search ; Reference|Array SearchRegion [; Integer MatchType = 1])

Returns: Any

Constraints: -1 <= MatchType <= 1; The searched portion of SearchRegion shall not include
Logical values. Evaluators may evaluate expressions that do not meet the constraint that the
searched portion of a SearchRegion not include Logical values.

SearchRegion shall be a vector (a single row or column)

Semantics:

● MatchType = -1 finds the smallest value that is greater than or equal to Search in a
SearchRegion where values are sorted in descending order. From a sequence of identical
values >= Search the last value is taken. If no value >= Search exists, the #N/A Error is
returned. If Search is of type Number and the value found is of type Text, the #N/A Error is
returned.

● MatchType = 0 finds the first value that is equal to Search. Values in SearchRegion do not
need to be sorted. If no value equal to Search exists, the #N/A Error is returned.

● MatchType = 1 or omitted finds the largest value that is less than or equal to Search in a
SearchRegion where values are sorted in ascending order. From a sequence of identical
values <= Search the last value is taken. If no value <= Search exists, the #N/A Error is
returned. If Search is of type Text and the value found is of type Number, the #N/A Error is
returned.

If a match is found, MATCH returns the relative position (starting from 1). For Text the comparison
is case-insensitive. MatchType determines the type of search; if MatchType is 0, the
SearchRegion shall be considered unsorted, and the first match is returned. If MatchType is 1,
the SearchRegion may be assumed to be sorted in ascending order, with smaller Numbers before
larger ones, smaller Text values before larger ones (e.g., "A" before "B", and "B" before "BA"),
and False before True. If the types are mixed, Numbers are sorted before Text, and Text before
Logicals; evaluators without a separate Logical type may include a Logical as a Number. If
MatchType is -1, then SearchRegion may be assumed to be sorted in descending order (the
opposite of the above). If MatchType is 1 or -1, evaluators may use binary search or other
techniques so that they do not need to examine every value in linear order. MatchType defaults to
1.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 141 of 254

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.5

See also HLOOKUP 8.14.5, OFFSET 8.14.11, VLOOKUP 8.14.12

8.14.10 MULTIPLE.OPERATIONS

Summary: Executes a formula expression while substituting a row reference and a column
reference.

Syntax: MULTIPLE.OPERATIONS(Reference FormulaCell ; Reference RowCell ; Reference
RowReplacement [; Reference ColumnCell ; Reference ColumnReplacement])

Returns: Any

Semantics:

• FormulaCell reference to the cell that contains the formula expression to
calculate.

• RowCell reference that is to be replaced by RowReplacement.

• RowReplacement reference that replaces RowCell.

• ColumnCell reference that is to be replaced by ColumnReplacement.

• ColumnReplacement reference that replaces ColumnCell.

MULTIPLE.OPERATIONS executes the formula expression pointed to by FormulaCell and all
formula expressions it depends on while replacing all references to RowCell with references to
RowReplacement respectively all references to ColumnCell with references to
ColumnReplacement.

If calls to MULTIPLE.OPERATIONS are encountered in dependencies, replacements of target
cells shall occur in queued order, with each replacement using the result of the previous
replacement.

Note: The function may be used to create tables of expressions that depend on two input
parameters.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 142 of 254

Example: FormulaCell is B5, RowCell is B3, ColumnCell is B2

Table 24 - MULTIPLE.OPERATIONS

col_B col_C col_D col_E col_F

row_2 1 1 2 3

row_3 1 1

=MULTIPLE.OPER
ATIONS(B5;B
3;$C3;$B$2;D$2)

=MULTIPLE.OPER
ATIONS(B5;B
3;$C3;$B$2;E$2)

=MULTIPLE.OPER
ATIONS(B5;B
3;$C3;$B$2;F$2)

row_4 =B2+B3 2

=MULTIPLE.OPER
ATIONS(B5;B
3;$C4;$B$2;D$2)

=MULTIPLE.OPER
ATIONS(B5;B
3;$C4;$B$2;E$2)

=MULTIPLE.OPER
ATIONS(B5;B
3;$C4;$B$2;F$2)

row_5 =B2*B3+B4 3

=MULTIPLE.OPER
ATIONS(B5;B
3;$C5;$B$2;D$2)

=MULTIPLE.OPER
ATIONS(B5;B
3;$C5;$B$2;E$2)

=MULTIPLE.OPER
ATIONS(B5;B
3;$C5;$B$2;F$2)

4

=MULTIPLE.OPER
ATIONS(B5;B
3;$C6;$B$2;D$2)

=MULTIPLE.OPER
ATIONS(B5;B
3;$C6;$B$2;E$2)

=MULTIPLE.OPER
ATIONS(B5;B
3;$C6;$B$2;F$2)

Result:

Table 25 - MULTIPLE.OPERATIONS

col_B col_C col_D col_E col_F

row_2 1 1 2 3

row_3 1 1 3 5 7

row_4 2 2 5 8 11

row_5 3 3 7 11 15

4 9 14 19

Note that although only cell B5 is passed as the FormulaCell parameter, also the references to B2
and B3 of the formula in cell B4 are replaced, because B5 depends on B4.

8.14.11 OFFSET

Summary: Modifies a reference's position and dimension.

Syntax: OFFSET(Reference reference ; Integer rowOffset ; Integer columnOffset [; [Integer
newHeight] [; [Integer newWidth]]])

Returns: Reference

Constraints: newWidth > 0; newHeight > 0
The modified reference shall be in a valid range, starting from column/row one to the maximum
column/row.

Semantics: Shifts reference by rowOffset rows and by columnOffset columns. Optionally, the
dimension can be set to newWidth and/or newHeight, if omitted the width/height of the original
reference is taken. Note that newHeight may be empty (two consecutive semicolons ;;) followed
by a given newWidth argument. Returns the modified reference.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 143 of 254

See also COLUMN 8.13.4, COLUMNS 8.13.5, ROW 8.13.29, ROWS 8.13.30

8.14.12 VLOOKUP

Summary: Look for a matching value in the first column of the given table, and return the value of
the indicated column.

Syntax: VLOOKUP(Any Lookup ; Reference|Array DataSource ; Integer Column [; Logical
RangeLookup = TRUE()])

Returns: Any

Constraints: Column >= 1; The searched portion of DataSource shall not include Logical values.
Evaluators may evaluate expressions that do not meet the constraint that the searched portion of
a DataSource not include Logical values.

Semantics:

If RangeLookup is omitted or TRUE or not 0, the first column of DataSource is assumed to be
sorted in ascending order, with smaller Numbers before larger ones, smaller Text values before
larger ones (e.g., "A" before "B", and "B" before "BA"), and False before True. If the types are
mixed, Numbers are sorted before Text, and Text before Logicals; evaluators without a separate
Logical type may include a Logical as a Number. The lookup will try to match an entry of value
Lookup. From a sequence of identical values <= Lookup the last entry is taken. If none is found
the largest entry less than Lookup is taken as a match. If there is no data less than or equal to
Lookup, the #N/A Error is returned. If Lookup is of type Text and the value found is of type
Number, the #N/A Error is returned. If DataSource is not sorted, the result is undetermined and
implementation-dependent. In most cases it will be arbitrary and just plain wrong due to binary
search algorithms.

If RangeLookup is FALSE or 0, DataSource does not need to be sorted and an exact match is
searched. Each value in the first column of DataSource is examined in order (starting at the top)
until its value matches Lookup. If no value matches, the #N/A Error is returned.

Both methods, if there is a match, return the corresponding value in column Column, relative to
the DataSource, where the leftmost column in DataSource is 1.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.5

See also HLOOKUP 8.14.5, INDEX 8.14.6, MATCH 8.14.9, OFFSET 8.14.11

8.15 Logical Functions

8.15.1 General

The logical functions are the constants TRUE() and FALSE(), the functions that compute Logical
values NOT(), AND(), and OR(), and the conditional function IF(). The OpenDocument
specification mentions "logical operators"; these are another name for the logical functions.

Note that because of Error values, any logical function that accepts parameters can actually
produce TRUE, FALSE, or an Error value, instead of TRUE or FALSE.

These are not bitwise operations, e.g., AND(12;10) produces TRUE(), not 8. See the bit operation
functions for bitwise operations.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 144 of 254

8.15.2 AND

Summary: Compute logical AND of all parameters.

Syntax: AND({ Logical|NumberSequenceList L }+)

Returns: Logical

Constraints: Shall have 1 or more parameters

Semantics: Computes the logical AND of the parameters. If all parameters are True, returns
True; if any are False, returns False. When given one parameter, this has the effect of converting
that one parameter into a Logical value. When given zero parameters, evaluators may return a
Logical value or an Error.

Also in array context a logical AND of all arguments is computed, range or array parameters are
not evaluated as a matrix and no array is returned. This behavior is consistent with functions like
SUM. To compute a logical AND of arrays per element use the * operator in array context.

See also OR 8.15.8, IF 8.15.4

8.15.3 FALSE

Summary: Returns constant FALSE

Syntax: FALSE()

Returns: Logical

Constraints: Shall have 0 parameters

Semantics: Returns logical constant FALSE. This may be a Number or a distinct type.

See also TRUE 8.15.9, IF 8.15.4

8.15.4 IF

Summary: Return one of two values, depending on a condition

Syntax: IF(Logical Condition [; [Any IfTrue] [; [Any IfFalse]]])

Returns: Any

Constraints: None.

Semantics: Computes Condition. If it is TRUE, it returns IfTrue, else it returns IfFalse. If there is
only 1 parameter, IfTrue is considered to be TRUE(). If there are less than 3 parameters, IfFalse
is considered to be FALSE(). Thus the 1 parameter version converts Condition into a Logical
value. If there are 2 or 3 parameters but the second parameter is null (two consecutive ;;
semicolons), IfFalse is considered to be 0. If there are 3 parameters but the third parameter is
null, IfFalse is considered to be 0. This function only evaluates IfTrue, or ifFalse, and never both;
that is to say, it short-circuits.

See also AND 8.15.2, OR 8.15.8

8.15.5 IFERROR

Summary: Return X unless it is an Error, in which case return an alternative value

Syntax: IFERROR(Any X ; Any Alternative)

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 145 of 254

Returns: Any

Constraints: None.

Semantics: Computes X. If ISERROR(X) is true, return Alternative, else return X. Thus this is
semantically equivalent to IF(ISERROR(X); Alternative; X), except that X is only computed once.
If X or Alternative is a cell reference to an empty cell, it is treated as the empty string "".

Note: This is semantically equivalent to IF(ISERROR(X); Alternative; X), except that X is only
computed once.

See also IF 8.15.4, ISERROR 8.13.16

See also IF 8.15.2

8.15.6 IFNA

Summary: Return X unless it is an NA, in which case return an alternative value

Syntax: IFNA(Any X ; Any Alternative)

Returns: Any

Constraints: None.

Semantics: Computes X. If ISNA(X) is true, return Alternative, else return X. Thus this is
semantically equivalent to IF(ISNA(X); Alternative; X), except that X is only computed once. If X
or Alternative is a cell reference to an empty cell, it is treated as the empty string "".

Note: This is semantically equivalent to IF(ISNA(X); Alternative; X), except that X is only
computed once.

See also IF 8.15.4, ISNA 8.13.20

See also IF 8.15.2

8.15.7 NOT

Summary: Compute logical NOT

Syntax: NOT(Logical L)

Returns: Logical

Constraints: Shall have 1 parameter

Semantics: Computes the logical NOT. If given TRUE, returns FALSE; if given FALSE, returns
TRUE.

See also AND 8.15.2, IF 8.15.4

8.15.8 OR

Summary: Compute logical OR of all parameters.

Syntax: OR({ Logical|NumberSequenceList L }+)

Returns: Logical

Constraints: Shall have 1 or more parameters

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 146 of 254

Semantics: Computes the logical OR of the parameters. If all parameters are False, it shall
return False; if any are True, it shall returns True. When given one parameter, this has the effect
of converting that one parameter into a Logical value. When given zero parameters, evaluators
may return a Logical value or an Error.

Also in array context a logical OR of all arguments is computed, range or array parameters are
not evaluated as a matrix and no array is returned. This behavior is consistent with functions like
SUM. To compute a logical OR of arrays per element use the + operator in array context.

See also AND 8.15.2, IF 8.15.4

8.15.9 TRUE

Summary: Returns constant TRUE

Syntax: TRUE()

Returns: Logical

Constraints: Shall have 0 parameters

Semantics: Returns logical constant TRUE. The result of this function may or may not be equal
to 1 when compared using “=”. It always has the value of 1 if used in a context requiring Number
(because of the automatic conversions), so if ISNUMBER(TRUE()), then it shall have the value 1.

See also FALSE 8.15.3, IF 8.15.4

8.15.10 XOR

Summary: Compute a logical XOR of all parameters.

Syntax: XOR({ Logical L }+)

Returns: Logical

Constraints: Shall have 1 or more parameters.

Semantics: Computes the logical XOR of the parameters such that the result is an addition
modulo 2. If an even number of parameters is True it returns False, if an odd number of
parameters is True it returns True. When given one parameter, this has the effect of converting
that one parameter into a Logical value.

See also AND 8.15.2, OR 8.15.8

8.16 Mathematical Functions

8.16.1 General

This section describes functions for various mathematical functions, including trigonometric
functions like SIN 8.16.55). Note that the constraint text presumes that a value of type Number is
a real number (no imaginary component). Unless noted otherwise, all angle measurements are in
radians.

8.16.2 ABS

Summary: Return the absolute (nonnegative) value.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 147 of 254

Syntax: ABS(Number N)

Returns: Number

Constraints: None

Semantics: If N < 0, returns -N, otherwise returns N.

See also Prefix Operator “-” 8.4.16

8.16.3 ACOS

Summary: Returns the principal value of the arc cosine of a number. The angle is returned in
radians.

Syntax: ACOS(Number N)

Returns: Number

Constraints: -1.0 <= N <= 1.0.

Semantics: Computes the arc cosine of a number, in radians.

acos N =
π
2
−[N

1
2⋅3

N 3
1⋅3

2⋅4⋅5
N 5

1⋅3⋅5
2⋅4⋅6⋅7

N 7...]
Returns a principal value 0 ≤ result ≤ PI.

See also COS 8.16.19, RADIANS 8.16.49, DEGREES 8.16.25

8.16.4 ACOSH

Summary: Return the principal value of the inverse hyperbolic cosine

Syntax: ACOSH(Number N)

Returns: Number

Constraints: N >= 1

Semantics: Computes the principal value of the inverse hyperbolic cosine.

acosh N =ln NN 2−1

See also COSH 8.16.20, ASINH 8.16.8

8.16.5 ACOT

Summary: Return the principal value of the arc cotangent of a number. The angle is returned in
radians.

Syntax: ACOT(Number N)

Returns: Number

Semantics: Computes the arc cotangent of a number, in radians.

Returns a principal value 0 < result < PI.

See also COT 8.16.21, ATAN 8.16.9, TAN 8.16.69, RADIANS 8.16.49, DEGREES 8.16.25

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 148 of 254

8.16.6 ACOTH

Summary: Return the hyperbolic arc cotangent

Syntax: ACOTH(Number N)

Returns: Number

Constraints: ABS(N) > 1

Semantics: Computes the hyperbolic arc cotangent. The hyperbolic arc cotangent is an analog
of the ordinary (circular) arc cotangent.

acoth N =
1
2

ln
x1
x−1



See also COSH 8.16.20, ASINH 8.16.8

8.16.7 ASIN

Summary: Return the principal value of the arc sine of a number. The angle is returned in
radians.

Syntax: ASIN(Number N)

Returns: Number

Constraints: -1 <= N <= 1.

Semantics: Computes the arc sine of a number, in radians.

asin N =N
1

2⋅3
N 3

1⋅3
2⋅4⋅5

N 5
1⋅3⋅5

2⋅4⋅6⋅7
N 7...

Returns a principal value -PI/2 ≤ result ≤ PI/2.

See also SIN 8.16.55, RADIANS 8.16.49, DEGREES 8.16.25

8.16.8 ASINH

Summary: Return the principal value of the inverse hyperbolic sine

Syntax: ASINH(Number N)

Returns: Number

Constraints: None

Semantics: Computes the principal value of the inverse hyperbolic sine.

asinh N =ln NN 21

See also SINH 8.16.56, ACOSH 8.16.4

8.16.9 ATAN

Summary: Return the principal value of the arc tangent of a number. The angle is returned in
radians.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 149 of 254

Syntax: ATAN(Number N)

Returns: Number

Semantics: Computes the arc tangent of a number, in radians.

Returns a principal value -PI/2 < result < PI/2.

See also ATAN2 8.16.10, TAN 8.16.69, RADIANS 8.16.49, DEGREES 8.16.25

8.16.10 ATAN2

Summary: Returns the principal value of the arc tangent given a coordinate of two numbers.

The angle is returned in radians.

Syntax: ATAN2(Number x ; Number y)

Returns: Number

Constraints: x<>0 or y<>0

Semantics: Computes the arc tangent of two numbers (the x and y coordinates of a point), in
radians. This is similar to ATAN(y/x), but the signs of the two numbers are taken into account so
that the result covers the full range from -PI() to +PI(). ATAN2(0;0) is implementation-defined,
evaluators may return 0 or an Error.

Returns a principal value -PI < result ≤ PI.

See also ATAN 8.16.9, TAN 8.16.69, RADIANS 8.16.49, DEGREES 8.16.25

8.16.11 ATANH

Summary: Return the principal value of the inverse hyperbolic tangent

Syntax: ATANH(Number N)

Returns: Number

Constraints: -1 < N < 1

Semantics: Computes the principal value of the inverse hyperbolic tangent.

atanh N =1
2

ln  1N
1−N 

See also COSH 8.16.20, SINH 8.16.56, ASINH 8.16.8, ACOSH 8.16.4, ATAN 8.16.9, ATAN2
8.16.10, FISHER 8.18.26

8.16.12 BESSELI

Summary: Returns the modified Bessel function of integer order In(x).

Syntax: BESSELI(Integer X ; Number N)

Returns: Number

Constraints: N >= 0, INT(N)=N; Evaluators may evaluate expressions where N >= 0 returns a
non-error value.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 150 of 254

Semantics: Computes the modified Bessel function of integer order In(x). N is also known as the
order.

See also BESSELJ 8.16.13, BESSELK 8.16.14, BESSELY 8.16.15

8.16.13 BESSELJ

Summary: Returns the Bessel function of integer order Jn(x) (cylinder function)

Syntax: BESSELJ(Integer X ; Number N)

Returns: Number

Constraints: N >= 0, INT(N)=N; Evaluators may evaluate expressions where N >= 0 returns a
non-error value.

Semantics: Computes the Bessel function of integer order Jn(x). N is also known as the order.

See also BESSELI 8.16.12, BESSELK 8.16.14, BESSELY 8.16.15

8.16.14 BESSELK

Summary: Returns the modified Bessel function of integer order Kn(x).

Syntax: BESSELK(Integer X ; Number N)

Returns: Number

Constraints: N >= 0, INT (N)=N; Evaluators may evaluate expressions where N >= 0 returns a
non-error value.

Semantics: Computes the Bessel function of integer order Kn(x). N is also known as the order.

See also BESSELI 8.16.12, BESSELJ 8.16.13, BESSELY 8.16.15

8.16.15 BESSELY

Summary: Returns the Bessel function of integer order Yn(x), also known as the Neumann
function.

Syntax: BESSELY(Integer X ; Number N)

Returns: Number

Constraints: N >= 0, INT(N)=N; Evaluators may evaluate expressions where N >= 0 returns a
non-error value.

Semantics: Computes Bessel function of integer order Yn(x), also known as the Neumann
function. N is also known as the order.

See also BESSELI 8.16.12, BESSELJ 8.16.13, BESSELK 8.16.14

8.16.16 COMBIN

Summary: Returns the number of different R-length sets that can be selected from N items.

Syntax: COMBIN(Integer N ; Integer R)

Returns: Number

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 151 of 254

Constraints: N >= 0, R >= 0, R <= N

Semantics: COMBIN returns the binomial coefficient, which is the number of different R-length
sets that can be selected from N items. Since they are sets, order in the sets is not relevant. The
parameters are truncated (using INT) before use. For example, if a jar contains five marbles,
each one a distinct color, the number of different three-marble groups COMBIN(5;3) = 10. The
result is

NR  = PERMUT
R!

=
N !

R! N−R !

Note that if order is important, use PERMUT instead.

See also PERMUT 8.18.59

8.16.17 COMBINA

Summary: Returns the number of combinations with repetitions.

Syntax: COMBINA(Integer N ; Integer M)

Returns: Number

Constraints: N >= 0, M >= 0, N >= M; Evaluators may evaluate expressions where N >= 0, M >=
0 returns a non-error value.

Semantics: Returns the number of possible combinations of M objects out of N possible ones,
with repetitions allowed. Actual arguments that are not integers are truncated (using INT) before
use. The result is

NM−1
N−1 

See also COMBIN 8.16.16

8.16.18 CONVERT

Summary: Returns a number converted from one unit system into another

Syntax: CONVERT(Number N ; Text From ; Text Into)

Returns: Number

Constraints: From and Into shall be legal units, and shall be in the same unit group.

Semantics: Returns the number converted from the unit identified by From into the unit identified
by Into. A unit is a unit symbol , optionally preceded by a unit prefix (either a decimal prefix or a
binary prefix). Units (including both the unit symbol and the optional unit prefix) are case-
sensitive.

Evaluators claiming to implement this function shall support at least the following unit symbols
(with conversions between them and other units in the same group):

Table 26 - Unit names

Unit group Unit symbol Description

Area "uk_acre" International acre (using international feet), exactly
4046.8564224 m2 ; normally not used for U.S. land

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 152 of 254

Unit group Unit symbol Description

areas

"us_acre" U.S. survey/statute acre (using U.S. survey/statute
feet), exactly 4046+13525426/15499969 m 2

"ang2" or
"ang^2" *

Square angstrom (an Angstrom is exactly 10-10 m)

"ar" * are, 100 m2 (not abbreviated as “a”)

"ft2" or "ft^2" Square international feet (1 foot is exactly 0.3048 m)

"ha" hectare, 10 000 m2

"in2" or "in^2" Square international inches (1 inch is exactly 2.54 cm)

"ly2" or "ly^2" Square light-year (where year=365.25 days)

"m2" or "m^2" * Square meters

"Morgen" Morgen, 2500 m2

"mi2" or "mi^2" Square international miles

"Nmi2" or
"Nmi^2" Square nautical miles (1 nautical mile is 1852 m)

"Pica2" or
"Pica^2"

"picapt2" or

"picapt^2"

Square Pica Point (one Pica point is 1/72 inch)

“pica2” or

“pica^2”
Square Pica (one Pica is 1/6 inch)

"yd2" or "yd^2" Square international yards (1 yard is 0.9144 m)

Distance
(Length)

"ang" * Angstrom, exactly 10-10 m

"ell" Ell, exactly 45 international inches

"ft" International Foot, exactly 0.3048 m and also exactly
12 international inches.

"in" International Inch, exactly 2.54 cm.

"ly" * Light-year, (299792458 m/s) (3600 s/hr) (24 hr/day)
(365.25 day)

"m" * Meter

"mi" International Mile, exactly 1609.344 m and exactly

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 153 of 254

Unit group Unit symbol Description

5280 international feet. This is not a U.S. survey/statute
mile (see “smi”) nor a nautical mile (see “Nmi”), but this
is the mile normally used in the U.S. customary system

"Nmi"
International nautical mile, exactly 1852 m. Note that
this is not the obsolete U.S. nautical mile nor the
Admiralty mile.

"parsec" or "pc"
*

Distance from sun to a point having heliocentric
parallax of one second (used for stellar distance),
AU/tan(1/3600 degree) where an AU is exactly
149,597,870.691 kilometers. *

"Pica" or
"picapt" Pica (1/72 inch)

“pica” Pica (1/6 inch)

"survey_mi"
U.S. survey "mile, aka U.S. statute mile, exactly
6336000/3937 m; used in some U.S. maps. This is not
the mile (see “mi”) normally used in the U.S.

"yd" International yard, exactly 0.9144 m and exactly 3
international feet.

Energy

"BTU" ("btu") International Table British Thermal Unit

"c" *
Thermodynamic calorie, 4.184 J. This is not a dietary
Calorie (kilocalorie). For high accuracy, use Joule, due
to the many conflicting definitions of calorie.

"cal" *
International Table (IT) calorie, 4.1868 J. This is not a
dietary Calorie (kilocalorie). For high accuracy, use
Joule, due to the many conflicting definitions of calorie.

"e" * Erg

"eV" ("ev") * Electron volt (eV preferred)

"flb" Foot-pound (international foot, avoirdupois pound)

"HPh" ("hh") Horsepower-hour (HPh preferred)

"J" * Joule

"Wh" ("wh") * Watt-hour

Force
(Weight)

"dyn" ("dy") * Dyne

"N" * Newton

"lbf" Pound force (see “lbm” for pound mass)

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 154 of 254

Unit group Unit symbol Description

"pond" * Pond, gravitational force on a mass of one gram,
9.80665E-3 N.

Information
"bit" * † bit

"byte" * † byte = 8 bits

Magnetic
Flux Density

"ga" * Gauss

"T" * Tesla

Mass

"g" * Gram

"grain" Grain, 1/7000 international pound mass (avoirdupois)
(U.S. usage).

"cwt"
("shweight")

U.S. (short) hundredweight, 100 lbm

"uk_cwt" or
"lcwt"
("hweight")

Imperial hundredweight, aka long hundredweight; 112
lbm

"lbm" International pound mass (avoirdupois), exactly
453.59237 g (see “lbf” for pound force)

"stone" 14 international pound mass (avoirdupois)

"ton"

2000 international pound mass (avoirdupois) (U.S.
usage). Note that there are many other measures also
called “ton”; in particular, this is not a metric ton
(tonne).

"ozm"
Ounce mass (avoirdupois), exactly 1/16 of an
international pound mass (avoirdupois) (see “oz” for
fluid ounce)

"sg" Slug; 32.174 international pound mass (avoirdupois)

"u" * U (atomic mass unit)

"uk_ton" or
"LTON" ("brton")

Imperial ton, aka “long ton”, "deadweight ton", or
"weight ton". 2240 lbm.

Power "HP" ("h") Mechanical horsepower aka Imperial horsepower. 550
foot-pounds per second. The unit “h” is deprecated
and should be replaced with “HP”.

"PS" Pferdestärke (German “horse strength”, close but not

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 155 of 254

Unit group Unit symbol Description

identical to “HP”), the amount of power to lift a mass of
75 kilograms in one second against the earth
gravitation between a distance of one meter,
approximately 735.49875 W.

"W" ("w") * Watt

Pressure

"atm" ("at") * Atmosphere

"mmHg" * mm of Mercury

"Pa" * Pascal; Pa preferred, as it is the standard abbreviation.
Note that “P” or “p” may not be accepted.

"psi" Pounds per square inch, using avoirdupois pounds and
international inches.

"Torr" Torr, exactly 101325/760 Pa (this is close but not equal
to mmHg)

Speed

"admkn" Admiralty knot, exactly 6080 international feet/hour.

"kn"
Knot, exactly one Nautical mile per hour or exactly
1852/3600 m/s. Note that this is not an Admiralty knot
(“admkn”).

"m/h" or "m/hr" * Meters per hour

"m/s" or "m/sec"
*

Meters per second

"mph" Miles per hour (international miles)

Temperature

"C" ("cel") degrees Celsius

"F" ("fah") degrees Fahrenheit

"K" ("kel") * Kelvin

"Rank" degrees Rankine

"Reau" degrees Réaumur; °C = °Ré · 5/4.

Time

"day" or "d" Day (exactly 24 hours)

"hr" Hour (exactly 60 minutes)

"mn" or "min" Minute (exactly 60 seconds)

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 156 of 254

Unit group Unit symbol Description

"sec" or "s" *
Second (“s” is the official abbreviation of this SI base
unit, while “sec” is its traditional abbreviation in the
CONVERT function) *

"yr" Year (exactly 365.25 days, for purposes of this
function)

Volume "ang3" or
"ang^3" *

Cubic angstrom

"barrel" U.S. oil barrel, exactly 42 U.S. customary gallons
(liquid). Note that many other units are also called
barrels (e.g., a beer barrel in the U.K. is 36 Imperial
gallons)

"bushel" U.S. bushel (not Imperial bushel), interpreted as
volume

"cup" Cup (U.S. customary liquid measure)

"ft3" or "ft^3" Cubic international feet

"gal" Gallon (U.S. customary liquid measure), 3.785411784
liters.

"GRT" ("regton") Gross Registered Ton, 100 cubic (international) feet

"in3" or "in^3" Cubic international inch

"l" or "L" ("lt")
*

Liter

"ly3" or "ly^3" Cubic light-year

"m3" or "m^3" * Cubic meter

"mi3" or "mi^3" Cubic international mile

"MTON" Measurement ton aka “freight ton”, 40 cubic feet

"Nmi3" or
"Nmi^3"

Cubic nautical mile

"oz" Fluid ounce (U.S. customary liquid measure; see “ozm”
for ounce mass)

"Pica3" or
"Pica^3"

"picapt3" or

"picapt^3"

Cubic Pica Point (one Pica point is 1/72 inch)

“pica3” or Cubic Pica (one Pica is 1/6 inch)

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 157 of 254

Unit group Unit symbol Description

“pica^3”

"pt" or "us_pt" U.S. Pint (liquid measure)

"qt"

Quart (U.S. customary liquid measure). This is
0.946352946 liters, and thus not the same as the U.S.
dry quart (1.101220 liters), nor is this the same as the
Imperial quart (as used in the U.K. and Canada, which
is 1.1365225 liters exactly)

"tbs"
Tablespoon (U.S. customary, traditional meaning). This
shall be 0.5 U.S. fluid ounce, not 15mL (common in
U.S.) or 20mL (common in Australia).

"tsp"

Teaspoon (U.S. customary, traditional meaning), 1/6
fluid ounce in U.S. customary measure. This is not the
1/8 Imperial fl. oz. per Imperial units nor the modern
teaspoon of 5 mL currently used in the U.S.; see “tspm”

"tspm" Modern teaspoon, 5mL

"uk_gal" U.K. / Imperial gallon, 4.54609 liters.

"uk_pt" U.K. / Imperial pint,1/8 of a UK gallon.

"uk_qt" U.K. / Imperial quart,1/4 of a UK gallon.

"yd3" or "yd^3" Cubic international yard

If a conversion factor (as listed above) is not exact, an implementation may use a more accurate
conversion factor instead.

Implementation-defined unit names should contain a 'FULL STOP' (U+002E) character.

Unit group Unit symbol Description

Area

"uk_acre"
International acre (using international feet), exactly
4046.8564224 m2; normally not used for U.S. land
areas

"us_acre" U.S. survey/statute acre (using U.S. survey/statute
feet), exactly 4046+13525426/15499969 m 2

"ang2" or
"ang^2" *

Square angstrom (an Angstrom is exactly 10-10 m)

"ar" * are, 100 m2 (not abbreviated as “a”)

"ft2" or "ft^2" Square international feet (1 foot is exactly 0.3048 m)

"ha" hectare, 10 000 m2

"in2" or "in^2" Square international inches (1 inch is exactly 2.54 cm)

"ly" or "ly2" Square light-year (where year=365.25 days)

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 158 of 254

Unit group Unit symbol Description

"m2" or "m^2" * Square meters

"Morgen" Morgen, 2500 m2

"mi2" or "mi^2" Square international miles

"Nmi2" or
"Nmi^2" Square nautical miles (1 nautical mile is 1852 m)

"Pica2" or
"Pica^2" Square Pica (one Pica is 1/72 in.)

"yd2" or "yd^2" Square international yards (1 yard is 0.9144 m)

Distance
(Length)

"ang" * Angstrom, exactly 10-10 m

"ell" Ell, exactly 45 international inches

"ft" International Foot, exactly 0.3048 m and also exactly
12 international inches.

"in" International Inch, exactly 2.54 cm.

"ly" * Light-year, the distance light travels, in a vacuum, in a
Julian year of 365.25 days

"m" * Meter

"mi"

International Mile, exactly 1609.344 m and exactly
5280 international feet. This is not a U.S. survey/statute
mile (see “smi”) nor a nautical mile (see “Nmi”), but this
is the mile normally used in the U.S. customary system

"Nmi"
International nautical mile, exactly 1852 m. Note that
this is not the obsolete U.S. nautical mile nor the
Admiralty mile.

"parsec" or "pc"
*

Distance from sun to a point having heliocentric
parallax of one second (used for stellar distance)*

"Pica" Pica (1/72 in.)

"survey_mi"
U.S. survey mile, aka U.S. statute mile, exactly
6336000/3937 m; used in some U.S. maps. This is not
the mile (see “mi”) normally used in the U.S.

"yd" International yard, exactly 0.9144 m and exactly 3
international feet.

Energy "BTU" ("btu") International Table British Thermal Unit

"c" * Thermodynamic calorie, 4.184 J. This is not a dietary
Calorie (kilocalorie). For high accuracy, use Joule, due

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 159 of 254

Unit group Unit symbol Description

to the many conflicting definitions of calorie.

"cal" *
International Table (IT) calorie, 4.1868 J. This is not a
dietary Calorie (kilocalorie). For high accuracy, use
Joule, due to the many conflicting definitions of calorie.

"e" * Erg

"eV" ("ev") * Electron volt (eV preferred)

"flb" Foot-pound (international foot, avoirdupois pound)

"HPh" ("hh") Horsepower-hour (HPh preferred)

"J" * Joule

"Wh" ("wh") * Watt-hour

Force
(Weight)

"dyn" ("dy") * Dyne

"N" * Newton

"lbf" Pound force (see “lbm” for pound mass)

"pond" * Pond, gravitational force on a mass of one gram

Information
"bit" * † bit

"byte" * † byte = 8 bits

Magnetic
Flux Density

"ga" * Gauss

"T" * Tesla

Mass

"g" * Gram

"grain" Grain, 1/7000 international pound mass (avoirdupois)
(U.S. usage).

"cwt"
("shweight")

U.S. (short) hundredweight, 100 lbm

"uk_cwt" or
"lcwt"
("hweight")

Imperial hundredweight, aka long hundredweight; 112
lbm

"lbm" International pound mass (avoirdupois), exactly
453.59237 g (see “lbf” for pound force)

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 160 of 254

Unit group Unit symbol Description

"stone" 14 international pound mass (avoirdupois)

"ton"

2000 international pound mass (avoirdupois) (U.S.
usage). Note that there are many other measures also
called “ton”; in particular, this is not a metric ton
(tonne).

"ozm"
Ounce mass (avoirdupois), exactly 1/16 of an
international pound mass (avoirdupois) (see “oz” for
fluid ounce)

"sg" Slug; 32.174 international pound mass (avoirdupois)

"u" * U (atomic mass unit)

"uk_ton" or
"LTON" ("brton")

Imperial ton, aka “long ton”, "deadweight ton", or
"weight ton". 2240 lbm.

Power

"HP" ("h") Horsepower. The unit “h” is deprecated and should be
replaced with “HP”.

"PS" Pferdestärke (German “horse strength”, close but not
identical to “HP”)

"W" ("w") * Watt

Pressure

"atm" ("at") * Atmosphere

"mmHg" * mm of Mercury

"Pa" * Pascal; Pa preferred, as it is the standard abbreviation.
Note that “P” or “p” may not be accepted.

"psi" Pounds per square inch, using avoirdupois pounds and
international inches.

"Torr" Torr, exactly 101325/760 Pa (this is close but not equal
to mmHg)

Speed

"admkn" Admiralty knot, exactly 6080 international feet/hour.

"kn"
Knot, exactly one Nautical mile per hour or exactly
1852/3600 m/s. Note that this is not an Admiralty knot
(“admkn”).

"m/h" or "m/hr" * Meters per hour

"m/s" or "m/sec"
*

Meters per second

"mph" Miles per hour (international miles)

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 161 of 254

Unit group Unit symbol Description

Temperature

"C" ("cel") degrees Celsius

"F" ("fah") degrees Fahrenheit

"K" ("kel") * Kelvin

"Rank" degrees Rankine

"Reau" degrees Réaumur; °C = °Ré · 5/4.

Time

"day" or "d" Day (exactly 24 hours)

"hr" Hour (exactly 60 minutes)

"mn" or "min" Minute (exactly 60 seconds)

"sec" or "s" *
Second (“s” is the official abbreviation of this SI base
unit, while “sec” is its traditional abbreviation in the
CONVERT function) *

"yr" Year (exactly 365.25 days, for purposes of this
function)

Volume

"ang3" or
"ang^3" *

Cubic angstrom

"barrel"

U.S. oil barrel, exactly 42 U.S. customary gallons
(liquid). Note that many other units are also called
barrels (e.g., a beer barrel in the U.K. is 36 Imperial
gallons)

"bushel" U.S. bushel (not Imperial bushel), interpreted as
volume

"cup" Cup (U.S. customary liquid measure)

"ft3" or "ft^3" Cubic international feet

"gal" Gallon (U.S. customary liquid measure)

"GRT" ("regton") Gross Registered Ton, 100 cubic (international) feet

"in3" or "in^3" Cubic international inch

"l" or "L" ("lt")
*

Liter

"ly3" or "ly^3" Cubic light-year

"m3" or "m^3" * Cubic meter

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 162 of 254

Unit group Unit symbol Description

"mi3" or "mi^3" Cubic international mile

"MTON" Measurement ton aka “freight ton”, 40 cubic feet

"Nmi3" or
"Nmi^3" Cubic nautical mile

"oz" Fluid ounce (U.S. customary liquid measure; see “ozm”
for ounce mass)

"Pica3" or
"Pica^3" Cubic Pica

"pt" or "us_pt" U.S. Pint (liquid measure)

"qt"

Quart (U.S. customary liquid measure). This is
0.946352946 liters, and thus not the same as the U.S.
dry quart (1.101220 liters), nor is this the same as the
Imperial quart (as used in the U.K. and Canada, which
is 1.1365225 liters exactly)

"tbs"
Tablespoon (U.S. customary, traditional meaning). This
shall be 0.5 U.S. fluid ounce, not 15mL (common in
U.S.) or 20mL (common in Australia).

"tsp"

Teaspoon (U.S. customary, traditional meaning), 1/6
fluid ounce in U.S. customary measure. This is not the
1/8 Imperial fl. oz. per Imperial units nor the modern
teaspoon of 5 mL currently used in the U.S.; see “tspm”

"tspm" Modern teaspoon, 5mL

"uk_gal" U.K. / Imperial gallon

"uk_pt" U.K. / Imperial pint

"uk_qt" U.K. / Imperial quart

"yd3" or "yd^3" Cubic international yard

Evaluators shall support decimal prefixes for unit symbols marked with * and binary prefixes for
unit symbols marked with †. Evaluators should not support prefixes for other unit symbols.

The unit symbols in parentheses are deprecated unit symbols; evaluators shall support these unit
symbols.

Evaluators should use internationally-standardized unit name abbreviations for such additions
where possible. Evaluators may support the obsolete symbols “p” and “P” as unit names for
Pascals.

For purposes of this function, a year is exactly 365.25 days long.

Evaluators claiming to support this function shall permit the following unit decimal prefixes to be
prepended to any unit symbol marked with “*” in the unit table cell above. Adding a unit prefix
indicates multiplication of the (scalar) unit by the given prefix value; for example km indicates
kilometres, and km2 or km^2 indicate square kilometres.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 163 of 254

Table 27 - Decimal Prefixes for use in CONVERT

Unit Prefix Description Prefix Value

"Y" yotta 1E+24

"Z" zetta 1E+21

"E" exa 1E+18

"P" peta 1E+15

"T" tera 1E+12

"G" giga 1E+09

"M" mega 1E+06

"k" kilo 1E+03

"h" hecto 1E+02

“da” or "e"

deka (

Note: “e” is not a
standard SI prefix

1E+01

"d" deci 1E-01

"c" centi 1E-02

"m" milli 1E-03

"u"

micro

Note: this is “u”,
not the standard
SI µ

1E-06

"n" nano 1E-09

"p" pico 1E-12

"f" femto 1E-15

"a" atto 1E-18

"z" zepto 1E-21

"y" yocto 1E-24

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 164 of 254

Unit Prefix Description Prefix Value

"Y" yotta 1E+24

"Z" zetta 1E+21

"E" exa 1E+18

"P" peta 1E+15

"T" tera 1E+12

"G" giga 1E+09

"M" mega 1E+06

"k" kilo 1E+03

"h" hecto 1E+02

“da” or "e"
deka (note: “e” is
not a standard SI
prefix)

1E+01

"d" deci 1E-01

"c" centi 1E-02

"m" milli 1E-03

"u"
micro (note: this
is “u”, not the
standard SI µ)

1E-06

"n" nano 1E-09

"p" pico 1E-12

"f" femto 1E-15

"a" atto 1E-18

"z" zepto 1E-21

"y" yocto 1E-24

The prefix “e” for 10 1 is nonstandard and included for backward compatibility with legacy
applications and documents.

The unit names marked with † in the unit symbol table above (see the Information group) shall
also support the following binary prefixes per IEC 60027-2:

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 165 of 254

Table 28 - Binary prefixes for use in CONVERT

Binary Unit
Prefix

Description Prefix Value Derived from

"Yi" yobi 2^80 = 1 208 925 819 614 629 174 706 176 yotta

"Zi" zebi 2^70 = 1 180 591 620 717 411 303 424 zetta

"Ei" exbi 2^60 = 1 152 921 504 606 846 976 exa

"Pi" pebi 2^50 = 1 125 899 906 842 624 peta

"Ti" tebi 2^40 = 1 099 511 627 776 tera

"Gi" gibi 2^30 = 1 073 741 824 giga

"Mi" mebi 2^20 = 1 048 576 mega

"Ki" kibi 2^10 = 1024 kilo

Binary Unit
Prefix

Description Prefix Value Derived from

"Yi" yobi 2^80 = 1 208 925 819 614 629 174 706 176 yotta

"Zi" zebi 2^70 = 1 180 591 620 717 411 303 424 zetta

"Ei" exbi 2^60 = 1 152 921 504 606 846 976 exa

"Pi" pebi 2^50 = 1 125 899 906 842 624 peta

"Ti" tebi 2^40 = 1 099 511 627 776 tera

"Gi" gibi 2^30 = 1 073 741 824 giga

"Mi" mebi 2^20 = 1 048 576 mega

"ki" kibi 2^10 = 1024 kilo

In the case where there is a naming conflict (a unit name with a prefix is the same as an
unprefixed name), the unprefixed name shall take precedence.

Evaluators may implement this conversion by first converting to some SI unit (e.g., meter and
kilogram), and then convert again to the final unit.

See also EUROCONVERT 8.16.29

8.16.19 COS

Summary: Return the cosine of an angle specified in radians.

Syntax: COS(Number N)

Returns: Number

Constraints: None

Semantics: Computes the cosine of an angle specified in radians.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 166 of 254

cosN=1−N 2

2 !
 N 4

4!
− N 6

6 !
...

See also ACOS 8.16.3, RADIANS 8.16.49, DEGREES 8.16.25

8.16.20 COSH

Summary: Return the hyperbolic cosine of the given hyperbolic angle

Syntax: COSH(Number N)

Returns: Number

Constraints: None

Semantics: Computes the hyperbolic cosine of a hyperbolic angle. The hyperbolic cosine is an
analog of the ordinary (circular) cosine. The points (cosh t, sinh t) define the right half of the
equilateral hyperbola, just as the points (cos t, sin t) define the points of a circle.

coshN =
eNe−N

2

See also ACOSH 8.16.4, SINH 8.16.56, TANH 8.16.70

8.16.21 COT

Summary: Return the cotangent of an angle specified in radians

Syntax: COT(Number N)

Returns: Number

Constraints: None

Semantics: Computes the cotangent of an angle specified in radians.

COT(x) = 1 / TAN(x)

See also ACOT 8.16.5, TAN 8.16.69, RADIANS 8.16.49, DEGREES 8.16.25, SIN 8.16.55, COS
8.16.19

8.16.22 COTH

Summary: Return the hyperbolic cotangent of the given hyperbolic angle

Syntax: COTH(Number N)

Returns: Number

Constraints: N<>0

Semantics: Computes the hyperbolic cotangent of a hyperbolic angle. The hyperbolic cotangent
is an analog of the ordinary (circular) cotangent.

coth N = 1
tanh N 

= cosh N 
sinh N 

= eNe−N

eN−e−N

See also ACOSH 8.16.4, SINH 8.16.56, TANH 8.16.70

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 167 of 254

8.16.23 CSC

Summary: Return the cosecant of an angle specified in radians.

Syntax: CSC(Number N)

Returns: Number

Constraints: None

Semantics: Computes the cosecant cosine of an angle specified in radians. Equivalent to:

1/SIN(N)

See also SIN 8.16.55

8.16.24 CSCH

Summary: Return the hyperbolic cosecant of the given angle specified in radians

Syntax: CSCH(Number N)

Returns: Number

Constraints: None

Semantics: Computes the hyperbolic cosecant of a hyperbolic angle. This is equivalent to:

1/SINH(N)

See also SINH 8.16.56, CSCH

8.16.25 DEGREES

Summary: Convert radians to degrees.

Syntax: DEGREES(Number N)

Returns: Number

Constraints: None

Semantics: Converts a number in radians into a number in degrees. DEGREES(N) is equal to
N*180/PI().

See also RADIANS 8.16.49, PI 8.16.45

8.16.26 DELTA

Summary: Report if two numbers are equal, returns 1 if they are equal.

Syntax: DELTA(Number X [; Number Y = 0])

Returns: Number

Constraints: None

Semantics: If X and Y are equal, return 1, else 0. Y is set to 0 if omitted.

See also Infix operator “=” 8.4.7

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 168 of 254

8.16.27 ERF

Summary: Calculates the error function.

Syntax: ERF(Number z0 [; Number z1])

Returns: Number

Constraints: None

Semantics: With a single argument, returns the error function of z0:

ERF Z0 =
2

 ∫0

Z0
e−t

2

dt

With two arguments, returns

ERF Z0 ; Z1=
2

 ∫Z0

Z1
e−t

2

dt

See also ERFC 8.16.28

8.16.28 ERFC

Summary: Calculates the complementary error function.

Syntax: ERFC(Number z)

Returns: Number

Constraints: None

Semantics: returns the complementary error function of z: ERFC(z) = 1 – ERF(z)

See also ERF 8.16.27

8.16.29 EUROCONVERT

Summary: Converts a Number, representing a value in one European currency, to an equivalent
value in another European currency, according to the fixed conversion rates defined by the
Council of the European Union.

Syntax: EUROCONVERT(Number N ; Text From ; Text To [; Logical FullPrecision = FALSE() [;
Integer TriangulationPrecision]])

Returns: Currency

Constraints: From and To shall be known to the evaluator. TriangulationPrecision shall be >= 3,
if not omitted.

If an evaluator does not support the parameters FullPrecision and TriangulationPrecision,
FullPrecision should be assumed to be false.

Semantics: Returns the given money value of a conversion from From currency into To currency.
Both From and To shall be the official [ISO4217] abbreviation for the given currency; note that
these are in upper case, but the function accepts lower case or mixed case as well. If From and
To are equal currencies, the value N is returned, no precision or trianguISO 4217 abbreviation for
the given currency; note that these are in upper case, but the function accepts lower case or
mixed case as well. If From and To are equal currencies, the value N is returned, no precision or
triangualation is applied.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 169 of 254

The function shall use the rates of exchange as set by the European Commission, as follows:

Table 29 - EUROCONVERT

From To Rate Currency Decimals

"EUR" "ATS" 13.7603 Austrian Schilling 2

"EUR" "BEF" 40.3399 Belgian Franc 0

"EUR" "DEM" 1.95583 German Mark 2

"EUR" "ESP" 166.386 Spanish Peseta 0

"EUR" "FIM" 5.94573 Finnish Markka 2

"EUR" "FRF" 6.55957 French Franc 2

"EUR" "IEP" 0.787564 Irish Pound 2

"EUR" "ITL" 1936.27 Italian Lira 0

"EUR" "LUF" 40.3399 Luxembourg Franc 0

"EUR" "NLG" 2.20371 Dutch Guilder 2

"EUR" "PTE" 200.482 Portuguese Escudo 2

"EUR" "GRD" 340.750 Greek Drachma 2

"EUR" "SIT" 239.640 Slovenian Tolar 2

“EUR” “MTL” 0.429300 Maltese Lira 2

“EUR” “CYP” 0.585274 Cypriot Pound 2

"EUR" "SKK" 30.1260 Slovak Koruna 2

As new member countries adopt the Euro, new conversion rates will become active and
evaluators may add them using the respective [ISO4217]ISO 4217 codes and fixed rates as
defined by the European Council, on the basis of a European Commission proposal.

Note:
The European Commission's Euro entry page is http://ec.europa.eu/euro/
The conversion rates and triangulation rules are available at
http://ec.europa.eu/economy_finance/euro/adoption/conversion/index_en.htm with links to the
European Council Regulation legal documents at the http://eur-lex.europa.eu/ European Union
law database server.

If FullPrecision is omitted or False, the result is rounded according to the decimals of the To
currency. If FullPrecision is True the result is not rounded.

If TriangulationPrecision is given and >=3, the intermediate result of a triangular conversion
(currency1,EUR,currency2) is rounded to that precision. If TriangulationPrecision is omitted, the
intermediate result is not rounded. Also if To currency is “EUR”, TriangulationPrecision precision
is used as if triangulation was needed and conversion from EUR to EUR was applied.

See also CONVERT

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 170 of 254

http://eur-lex.europa.eu/
http://ec.europa.eu/economy_finance/euro/adoption/conversion/index_en.htm
http://ec.europa.eu/euro/

8.16.30 EVEN

Summary: Rounds a number up to the nearest even integer. Rounding is away from zero.

Syntax: EVEN(Number N)

Returns: Number

Constraints: None

Semantics: Returns the even integer whose sign is the same as N's and whose absolute value is
greater than or equal to the absolute value of N.

See also ODD 8.16.44

8.16.31 EXP

Summary: Returns e raised by the given number.

Syntax: EXP(Number X)

Returns: Number

Constraints: None

Semantics: Computes

eX=1 X
1!
 X 2

2!
 X 3

3 !
 X n

n !
...

See also LOG 8.16.40, LN 8.16.39

8.16.32 FACT

Summary: Return factorial (!).

Syntax: FACT(Integer F)

Returns: Number

Constraints: F >= 0

Semantics: Return the factorial

F !=F⋅F−1⋅F−2⋅... 1

F(0)=F(1)=1.

See also Infix Operator "*" 8.4.4, GAMMA 8.16.34

8.16.33 FACTDOUBLE

Summary: Returns double factorial (!!).

Syntax: FACTDOUBLE(Integer F)

Returns: Number

Constraints: F >= 0

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 171 of 254

Semantics: Return

F !=F⋅F−2⋅F−4⋅...1

Double factorial is computed by multiplying every other number in the 1..N range, with N always
being included.

See also Infix Operator "*" 8.4.4, GAMMA 8.16.34, FACT 8.16.32

8.16.34 GAMMA

Summary: Return gamma function value.

Syntax: GAMMA(Number N)

Returns: Number

Constraints: N<>0 and N not a negative integer.

Semantics: Return

Γ(N) =∫
0

∞

t N−1 e−tdt

with Γ(N+1) = N * Γ(N). Note that for non-negative integers N, Γ(N+1) = N! = FACT(N). Note that
GAMMA can accept non-integers.

See also FACT 8.16.32

8.16.35 GAMMALN

Summary: Returns the natural logarithm of the GAMMA function.

Syntax: GAMMALN(Number X)

Returns: Number

Constraints: For each X, X > 0

Semantics: Returns the same value as =LN(GAMMA(X))

See also GAMMA 8.16.34, FACT 8.16.32

8.16.36 GCD

Summary: Returns the greatest common divisor (GCD)

Syntax: GCD({ NumberSequenceList X }+)

Returns: Number

Constraints: For all a in X: INT(a) >= 0 and for at least one a in X: INT(a)>0

Semantics: Return the largest integer N such that for every a in X: INT(a) is a multiple of N.

Note: If for all a in X: INT(a)=0 the return value is implementation-defined but is either an Error or
0.

See also LCM 8.16.38

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 172 of 254

8.16.37 GESTEP

Summary: Returns 1 if a number is greater than or equal to another number, else returns 0.

Syntax: GESTEP(Number X [; Number Step = 0])

Returns: Number

Semantics: Number X is tested against number Step. If greater or equal 1 is returned, else 0.
The second parameter is assumed 0 if omitted. If one of the parameters is not a Number, the
function results in an Error.

See also

8.16.38 LCM

Summary: Returns the least common multiplier

Syntax: LCM({ NumberSequenceList X }+)

Returns: Number

Constraints: For all in X: INT(X)=X, X >= 0

Semantics: Return the smallest integer that is the multiple of the given values. Each value has
INT applied to it first. Note that if given two numbers, ABS(a*b)=LCM(a;b)*GCD(a;b).

See also GCD 8.16.36

8.16.39 LN

Summary: Return the natural logarithm of a number.

Syntax: LN(Number X)

Returns: Number

Constraints: X>0

Semantics: Computes the natural logarithm (base e) of the given number.

ln x=2[x−1
x1


1
3 x−1

x1
3


1
5 x−1

x1
5

...]
See also LOG 8.16.40, LOG10 8.16.41, POWER 8.16.46, EXP 8.16.31

8.16.40 LOG

Summary: Return the logarithm of a number in a specified base.

Syntax: LOG(Number N [; Number Base = 10])

Returns: Number

Constraints: N > 0

Semantics: Computes the logarithm of a number in the specified base. Note that if the base is
not specified, the logarithm base 10 is returned.

See also LOG10 8.16.41, LN 8.16.39, POWER 8.16.46, EXP 8.16.31

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 173 of 254

8.16.41 LOG10

Summary: Return the base 10 logarithm of a number.

Syntax: LOG10(Number N)

Returns: Number

Constraints: N > 0

Semantics: Computes the base 10 logarithm of a number.

See also LOG 8.16.40, LN 8.16.39, POWER 8.16.46, EXP 8.16.31

8.16.42 MOD

Summary: Return the remainder when one number is divided by another number.

Syntax: MOD(Number a ; Number b)

Returns: Number

Constraints: b != 0

Semantics: Computes the remainder of a/b. The remainder has the same sign as b.

See also Infix Operator "/" 8.4.5, QUOTIENT 8.16.48

8.16.43 MULTINOMIAL

Summary: Returns the multinomial for the given values.

Syntax: MULTINOMIAL({ NumberSequence A }+)

Returns: Number

Constraints: None

Semantics: Returns the multinomial of the sequence A = (a1, a2, ..., an). Multinomial is defined
as FACT(a1+a2+...+an) / (FACT(a1)*FACT(a2)*...*FACT(an))

See also FACT 8.16.32

8.16.44 ODD

Summary: Rounds a number up to the nearest odd integer, where "up" means "away from 0".

Syntax: ODD(Number N)

Returns: Number

Constraints: None

Semantics: Returns the odd integer whose sign is the same as N's and whose absolute value is
greater than or equal to the absolute value of N. In other words, any "rounding" is away from
zero. By definition, ODD(0) is 1.

See also EVEN 8.16.30

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 174 of 254

8.16.45 PI

Summary: Return the approximate value of Pi.

Syntax: PI()

Returns: Number

Constraints: None.

Semantics: This function takes no arguments and returns the (approximate) value of pi.
Evaluators should use the closest possible numerical representation that is possible in their
representation of numbers.

See also SIN 8.16.55, COS 8.16.19

8.16.46 POWER

Summary: Return the value of one number raised to the power of another number.

Syntax: POWER(Number a ; Number b)

Returns: Number

Constraints: None

Semantics: Computes a raised to the power b.

• POWER(0,0) is implementation-defined, but shall be one of 0,1, or an Error.

• POWER(0,b), where b < 0, shall return an Error.

• POWER(a,b), where a<=0 and INT(b)!=b, is implementation-defined.

See also LOG 8.16.40, LOG10 8.16.41, LN 8.16.39, EXP 8.16.31

8.16.47 PRODUCT

Summary: Multiply the set of numbers, including all numbers inside ranges

Syntax: PRODUCT({ NumberSequence N }+)

Returns: Number

Constraints: None

Semantics: Returns the product of the Numbers (and only the Numbers, i.e., not Text inside
ranges). This is equivalent to SUM except that it uses the * operator instead of +.

See also SUM 8.16.61

8.16.48 QUOTIENT

Summary: Return the integer portion of a division.

Syntax: QUOTIENT(Number A ; Number B)

Returns: Number

Constraints: B <> 0

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 175 of 254

Semantics: Return the integer portion of a division.

See also MOD 8.16.42

8.16.49 RADIANS

Summary: Convert degrees to radians.

Syntax: RADIANS(Number N)

Returns: Number

Constraints: None

Semantics: Converts a number in degrees into a number in radians. RADIANS(N) is equal to
N*PI()/180.

See also DEGREES 8.16.25, PI 8.16.45

8.16.50 RAND

Summary: Return a random number between 0 (inclusive) and 1 (exclusive).

Syntax: RAND()

Returns: Number

Semantics: This function takes no arguments and returns a random number between 0
(inclusive) and 1 (exclusive). Note that unlike most functions, this function will typically return
different values when called each time with the same (empty set of) parameters.

See also RANDBETWEEN 8.16.51

8.16.51 RANDBETWEEN

Summary: Return a random integer number between A and B.

Syntax: RANDBETWEEN(Integer A ; Integer B)

Returns: Integer

Constraints: A <= B

Semantics: The function returns a random integer number between A and B inclusive. Note that
unlike most functions, this function will often return different values when called each time with
the same parameters.

See also RAND 8.16.50

8.16.52 SEC

Summary: Return the secant of an angle specified in radians.

Syntax: SEC(Number N)

Returns: Number

Constraints: None

Semantics: Computes the secant cosine of an angle specified in radians. Equivalent to:

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 176 of 254

1/COS(N)

See also SIN 8.16.55

8.16.53 SERIESSUM

Summary: Returns the sum of a power series.

Syntax: SERIESSUM(Number X ; Number N ; Number M ; Array Coefficients)

● X: the independent variable of the power series.

● N: the initial power to which X is to be raised.

● M: the increment by which to increase N for each term in the series.

● Coefficients: a set of coefficients by which each successive power of the variable X is
multiplied.

Returns: Number

Constraints:

All elements of Coefficients are of type Number.

X < > 0 if any of the exponents, which are generated from N and M, are negative.

Semantics: Returns a sum of powers of the number X.

With C being the number of coefficients the function is computed as:

SERIESSUM =∑
i=1

C

Coefcient i⋅X
 N i−1M 

If X=0 and all of the exponents are non-negative then 00
 shall be set to 1 and 0exponent0

 shall
be set to 0.

8.16.54 SIGN

Summary: Return the sign of a number

Syntax: SIGN(Number N)

Returns: Number

Constraints: None

Semantics: If N < 0, returns -1; if N > 0, returns +1; if N == 0, returns 0.

See also ABS 8.16.2

8.16.55 SIN

Summary: Return the sine of an angle specified in radians

Syntax: SIN(Number N)

Returns: Number

Constraints: None

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 177 of 254

Semantics: Computes the sine of an angle specified in radians.

sinN =N−N 3

3 !
 N 5

5 !
− N 7

7!
...

See also ASIN 8.16.7, RADIANS 8.16.49, DEGREES 8.16.25

8.16.56 SINH

Summary: Return the hyperbolic sine of the given hyperbolic angle

Syntax: SINH(Number N)

Returns: Number

Constraints: None

Semantics: Computes the hyperbolic sine of a hyperbolic angle. The hyperbolic sine is an analog
of the ordinary (circular) sine. The points (cosh t, sinh t) define the right half of the equilateral
hyperbola, just as the points (cos t, sin t) define the points of a circle.

sinh N = eN−e−N

2

See also ASINH 8.16.8, COSH 8.16.20, TANH 8.16.70

8.16.57 SECH

Summary: Return the hyperbolic secant of the given angle specified in radians

Syntax: SECH(Number N)

Returns: Number

Constraints: None

Semantics: Computes the hyperbolic secant of a hyperbolic angle. This is equivalent to:

1/COSH(N)

See also SINH 8.16.56, CSCH

8.16.58 SQRT

Summary: Return the square root of a number

Syntax: SQRT(Number N)

Returns: Number

Constraints: N>=0

Semantics: Returns the square root of a non-negative number. This function shall produce an
Error if given a negative number; for producing complex numbers, see IMSQRT.

See also POWER 8.16.46, IMSQRT 8.8.24, SQRTPI 8.16.59

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 178 of 254

8.16.59 SQRTPI

Summary: Return the square root of a number multiplied by pi.

Syntax: SQRTPI(Number N)

Returns: Number

Constraints: N>=0

Semantics: Returns the square root of a non-negative number after it was first multiplied by PI,
that is, SQRT(N*PI()). This function shall produce an Error if given a negative number; for
producing complex numbers, see IMSQRT.

See also POWER 8.16.46, SQRT 8.16.58, PI 8.16.45, IMSQRT 8.8.24

8.16.60 SUBTOTAL

Summary: Evaluates a function on a range.

Syntax: SUBTOTAL(Integer function ; NumberSequence sequence)

Returns: Number

Constraints: None

Semantics: Computes a given function on a number sequence. Function is denoted by the first
parameter: The difference from standard functions is that all members of the sequence are
excluded which:

● include a call to SUBTOTAL in their formula

● are in a row that is hidden by a table:visibility=”filter” attribute of the
<table:table-row> element.

● are in a row that is hidden by a table:visibility=”collapse” attribute of the
<table:table-row> element if the function ID is one of 101...111.

Function Exclude hidden by filter Exclude hidden by filter or
collapsed

AVERAGE 1 101

COUNT 2 102

COUNTA 3 103

MAX 4 104

MIN 5 105

PRODUCT 6 106

STDEV 7 107

STDEVP 8 108

SUM 9 109

VAR 10 110

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 179 of 254

VARP 11 111

See also SUM 8.16.61, AVERAGE 8.18.3

8.16.61 SUM

Summary: Sum (add) the set of numbers, including all numbers in ranges

Syntax: SUM({ NumberSequenceList N }+)

Returns: Number

Constraints: N != {}; Evaluators may evaluate expressions that do not meet this constraint.

Semantics: Adds Numbers (and only Numbers) together (see the text on conversions).

See also AVERAGE 8.18.3

8.16.62 SUMIF

Summary: Sum the values of cells in a range that meet a criteria.

Syntax: SUMIF(ReferenceList|Reference R ; Criterion C [; Reference S])

Returns: Number

Constraints: Does not accept constant values as the range parameter.

Semantics: Sums the values of type Number in the range R or S that meet the Criterion C
(4.11.7.8).

If S is not given, R may be a reference list. If S is given, R shall not be a reference list with more
than 1 references and an Error be generated if it was.

If the optional range S is included, then the values of S starting from the top left cell and matching
the geometry of R (same number of rows and columns) are summed if the corresponding value in
R meets the Criterion. The actual range S is not considered. If the resulting range exceeds the
sheet bounds, column numbers larger than the maximum column and row numbers larger than
the maximum row are silently ignored, no Error is generated for this case.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.5

See also COUNTIF 8.13.9, SUM 8.16.61, Infix Operator "=" 8.4.7, Infix Operator "<>" 8.4.8, Infix
Operator Ordered Comparison ("<", "<=", ">", ">=") 8.4.9

8.16.63 SUMIFS

Summary: Sum the values of cells in a range that meet multiple criteria in multiple ranges.

Syntax: SUMIFS(Reference R ; Reference R1 ; Criterion C1 [; Reference R2 ; CriterionAny
C2]...)

Returns: Number

Constraints: Does not accept constant values as the reference parameter.

Semantics: Sums the value of cells in range R that meet the Criterion C1 in the reference range
R1 and the Criterion C2 in the reference range R2, and so on (4.11.7.8). All reference ranges

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 180 of 254

shall have the same dimension and size, else an Error is returned. A logical AND is applied
between each array result of each selection; an entry is counted only if the same position in each
array is the result of a criteria match.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.5

See also AVERAGEIFS 8.18.6, COUNTIFS 8.13.10, SUMIF 8.16.62, Infix Operator "=" 8.4.7,
Infix Operator "<>" 8.4.8, Infix Operator Ordered Comparison ("<", "<=", ">", ">=") 8.4.9

8.16.64 SUMPRODUCT

Summary: Returns the sum of the products of the matrix elements.

Syntax: SUMPRODUCT({ ForceArray Array A }+)

Returns: Number

Constraints: All matrices shall have the same dimensions.

Semantics: Multiplies the corresponding elements of all matrices and returns the sum of them.

SUMPRODUCT  A1 , A2 ,... , AK =∑
m=1

M

∑
n=1

N  ∏
k=1

K

ak ,mn
where ak ,mn denotes an element of the matrix AK .

8.16.65 SUMSQ

Summary: Sum (add) the set of squares of numbers, including all numbers in ranges

Syntax: SUMSQ({ NumberSequence N }+)

Returns: Number

Constraints: N != {}; Evaluators may evaluate expressions that do not meet this constraint.

Semantics: Adds squares of Numbers (and only Numbers) together. See the text on
conversions.

8.16.66 SUMX2MY2

Summary: Returns the sum of the difference between the squares of the matrices A and B.

Syntax: SUMX2MY2(ForceArray Array A ; ForceArray Array B)

Returns: Number

Constraints: Both matrices shall have the same dimensions.

Semantics: Sums up the differences of the corresponding elements squares for two matrices.

SUMX2MY2  A , B=∑
m=1

M

∑
n=1

N

 amn2 −bmn
2 

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 181 of 254

8.16.67 SUMX2PY2

Summary: Returns the total sum of the squares of the matrices A and B.

Syntax: SUMX2PY2(ForceArray Array A ; ForceArray Array B)

Returns: Number

Constraints: Both matrices shall have the same dimensions.

Semantics: Sums up the squares of each element of the two matrices.

SUMX2PY2 A , B=∑
m=1

M

∑
n=1

N

 amn
2 bmn

2 

8.16.68 SUMXMY2

Summary: Returns the sum of the squares of the differences between matrix A and B.

Syntax: SUMXMY2(ForceArray Array A ; ForceArray Array B)

Returns: Number

Constraints: Both matrices shall have the same dimensions.

Semantics: Sums up the squares of the differences of the corresponding elements for two
matrices.

SUMXMY2  A , B=∑
m=1

M

∑
n=1

N

 amn−bmn
2

8.16.69 TAN

Summary: Return the tangent of an angle specified in radians

Syntax: TAN(Number N)

Returns: Number

Constraints: None

Semantics: Computes the tangent of an angle specified in radians.

TAN(x) = SIN(x) / COS(x)

See also ATAN 8.16.9, ATAN2 8.16.10, RADIANS 8.16.49, DEGREES 8.16.25, SIN 8.16.55,
COS 8.16.19, COT 8.16.21

8.16.70 TANH

Summary: Return the hyperbolic tangent of the given hyperbolic angle

Syntax: TANH(Number N)

Returns: Number

Constraints: None

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 182 of 254

Semantics: Computes the hyperbolic tangent of a hyperbolic angle. The hyperbolic tangent is an
analog of the ordinary (circular) tangent. The points (cosh t, sinh t) define the right half of the
equilateral hyperbola, just as the points (cos t, sin t) define the points of a circle.

tanhN =
sinh N 
cosh N 

=
eN−e−N

eNe−N

See also ATANH 8.16.11, SINH 8.16.56, COSH 8.16.20, FISHERINV 8.18.27

8.17 Rounding Functions

8.17.1 General

Rounding functions convert an arbitrary Number into an Integer.

8.17.2 CEILING

Summary: Round a number N up to the nearest multiple of the second parameter, significance.

Syntax: CEILING(Number N [; [Number significance] [; Number mode]])

Returns: Number

Constraints: Both N and significance shall be numeric and have the same sign if not 0.

Semantics: Rounds a number up to a multiple of the second number. If significance is omitted or
an empty parameter (two consecutive ;; semicolons) it is assumed to be -1 if N is negative and +1
if N is non-negative, making the function act like the normal mathematical ceiling function if mode
is not given or zero. If mode is given and not equal to zero, the absolute value of N is rounded
away from zero to a multiple of the absolute value of significance and then the sign applied mount
of N is rounded away from zero to a multiple of significance and then the sign applied. If mode is
omitted or zero, rounding is toward positive infinity; the number is rounded to the smallest multiple
of significance that is equal-to or greater than N. If any of the two parameters N or significance is
zero, the result is zero.

Note: Many application user interfaces have a CEILING function with only two parameters, and
somewhat different semantics than given here (e.g., they operate as if there was a non-zero
mode value). These CEILING functions are inconsistent with the standard mathematical definition
of CEILING.

See also FLOOR 8.17.4, INT 8.17.3

8.17.3 INT

Summary: Rounds a number down to the nearest integer.

Syntax: INT(Number N)

Returns: Number

Constraints: None

Semantics: Returns the nearest integer whose value is less than or equal to N. Rounding is
towards negative infinity.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 183 of 254

See also ROUND 8.17.6, TRUNC 8.17.9

8.17.4 FLOOR

Summary: Round a number N down to the nearest multiple of the second parameter,
significance.

Syntax: FLOOR(Number N [; [Number significance] [; Number mode]])

Returns: Number

Constraints: Both N and significance shall be numeric and have the same sign.

Semantics: Rounds a number down to a multiple of the second number. If significance is omitted
or an empty parameter (two consecutive ;; semicolons) it is assumed to be -1 if N is negative and
+1 if N is non-negative, making the function act like the normal mathematical floor function if
mode is not given or zero. If mode is given and not equal to zero, the absolute value of N is
rounded away from zero to a multiple of the absolute value of significance and then the sign
applied mount of N is rounded toward zero to a multiple of significance and then the sign applied.
Otherwise, it rounds toward negative infinity, and the result is the largest multiple of significance
that is less than or equal to N. If any of the two parameters N or significance is zero, the result is
zero.

Note: Many application user interfaces have a FLOOR function with only two parameters, and
somewhat different semantics than given here (e.g., they operate as if there was a non-zero
mode value). These FLOOR functions are inconsistent with the standard mathematical definition
of FLOOR.

See also CEILING 8.17.2, INT 8.17.3

8.17.5 MROUND

Summary: Rounds the number to given multiple.

Syntax: MROUND(Number a ; Number b)

Returns: Number

Constraints: None

Semantics: Returns the number X, for which the following holds: X/b=INT(X/b) (b divides X), and
for any other Y with the same property, ABS(Y-a)>=ABS(X-a). In case that two such X exist, the
greater one is the result. In less formal language, this function rounds the number a to multiples
of b.

See also ROUND 8.17.6

8.17.6 ROUND

Summary: Rounds the value X to the nearest multiple of the power of 10 specified by Digits.

Syntax: ROUND(Number X [; Number Digits = 0])

Returns: Number

Constraints: None

Semantics: Round number X to the precision specified by Digits. The number X is rounded to the
nearest power of 10 given by 10 −Digits. If Digits is zero, or absent, round to the nearest decimal

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 184 of 254

integer. If Digits is non-negative, round to the specified number of decimal places. If Digits is
negative, round to the left of the decimal point by -Digits places. If X is halfway between the two
nearest values, the result shall round away from zero. Note that if X is a Number, and Digits <= 0,
the results will always be an integer (without a fractional component).

See also TRUNC 8.17.9, INT 8.17.3

8.17.7 ROUNDDOWN

Summary: Rounds the value X towards zero to the number of digits specified by Digits

Syntax: ROUNDDOWN(Number X [; Integer Digits = 0])

Returns: Number

Constraints: None

Semantics: Round X towards zero, to the precision specified by Digits. The number returned is a
multiple of 10−Digits. If Digits is zero, or absent, round to the largest decimal integer whose
absolute value is smaller or equal to the absolute value of X.
smaller or equal to X. If Digits is positive, round towards zero to the specified number of decimal
places. If Digits is negative, round towards zero to the left of the decimal point by -Digits places.

See also TRUNC 8.17.9, INT 8.17.3, ROUND 8.17.6, ROUNDUP 8.17.8

8.17.8 ROUNDUP

Summary: Rounds the value X away from zero to the number of digits specified by Digits

Syntax: ROUNDUP(Number X [; Integer Digits = 0])

Returns: Number

Constraints: None

Semantics: Round X away from zero, to the precision specified by Digits. The number returned
is a multiple of 10−Digits. If Digits is zero, or absent, round to the smallest decimal integer whose
absolute value is larger or equal to the absolute value of X. larger or equal to X. If Digits is
positive, round away from zero to the specified number of decimal places. If Digits is negative,
round away from zero to the left of the decimal point by -Digits places.

See also TRUNC 8.17.9, INT 8.17.3, ROUND 8.17.6, ROUNDDOWN 8.17.7

8.17.9 TRUNC

Summary: Truncate a number to a specified number of digits.

Syntax: TRUNC(Number a ; IntegNumber b)

Returns: Number

Constraints: None

Semantics: Truncate number a to the number of digits specified by b. If b is zero, or absent,
truncate to a decimal integer. If b is positive, truncate to the specified number of decimal places. If
b is negative, truncate to the left of the decimal point. If b is not an integer, it is truncated.

See also ROUND 8.17.6, INT 8.17.3

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 185 of 254

8.18 Statistical Functions

8.18.1 General

The following are statistical functions (functions that report information on a set of numbers).
Some functions that could also be considered statistical functions, such as SUM, are listed
elsewhere.

8.18.2 AVEDEV

Summary: Calculates the average of the absolute deviations of the values in list.

Syntax: AVEDEV({ NumberSequenceList N }+)

Returns: Number

Constraints: None.

Semantics:

1
n
∑
i=1

n

∣x i−x ∣

See also SUM, AVERAGE

8.18.3 AVERAGE

Summary: Average the set of numbers

Syntax: AVERAGE({ NumberSequence N }+)

Returns: Number

Constraints: At least one Number included. Returns an Error if no Numbers provided.

Semantics: Computes SUM(List) / COUNT(List).

See also SUM 8.16.61, COUNT 8.13.6

8.18.4 AVERAGEA

Summary: Average values, including values of type Text and Logical.

Syntax: AVERAGEA({ Any N }+)

Returns: Number

Constraints: At least one value included. Returns an Error if no value provided.

Semantics: A variant of the AVERAGE function that includes values of type Text and Logical.
Text values are treated as number 0. Logical True is treated as 1 and False is treated as 0. Empty
cells are not included. Any N may be of type ReferenceList.

See also AVERAGE 8.18.3

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 186 of 254

8.18.5 AVERAGEIF

Summary: Average the values of cells in a range that meet a criteria.

Syntax: AVERAGEIF(Reference R ; Criterion C [; Reference A])

Returns: Number

Constraints: Does not accept constant values as reference parameters.

Semantics: If reference A is omitted, averages the values of cells in the reference range R that
meet the Criterion C (4.11.7.8). If reference A is given, averages the values of cells of a range
that is constructed using the top left cell of reference A and applying the dimensions, shape and
size, of reference R. If no cell in range R matches the Criterion C, an Error is returned. If no
Numbers are in the range to be averaged, an Error is returned.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.5

See also AVERAGEIFS 8.18.6, COUNTIF 8.13.9, SUMIF 8.16.62, Infix Operator "=" 8.4.7, Infix
Operator "<>" 8.4.8, Infix Operator Ordered Comparison ("<", "<=", ">", ">=") 8.4.9

8.18.6 AVERAGEIFS

Summary: Average the values of cells that meet multiple criteria in multiple ranges.

Syntax: AVERAGEIFS(Reference A ; Reference R1 ; Criterion C1 [; Reference R2 ; Criterion
C2]...)

Returns: Number

Constraints: Does not accept constant values as reference parameters.

Semantics: Averages the values of cells in the reference range A that meet the Criterion C1 in
the reference range R1 and the Criterion C2 in the reference range R2, and so on (4.11.7.8). All
reference ranges shall have the same dimension and size, else an Error is returned. A logical
AND is applied between each array result of each selection; a cell of reference range A is
evaluated only if the same position in each array is the result of a Criterion match. If no numbers
are in the result set to be averaged, an Error is returned.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.5

See also AVERAGEIF 8.18.5, COUNTIFS 8.13.10, SUMIFS 8.16.63, Infix Operator "=" 8.4.7,
Infix Operator "<>" 8.4.8, Infix Operator Ordered Comparison ("<", "<=", ">", ">=") 8.4.9

8.18.7 BETADIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the beta distribution.

Syntax: BETADIST(Number x ; Number α ; Number β [; Number a = 0 [; Number b = 1 [;
Logical Cumulative = TRUE()]]])

Returns: Number

Constraints: α > 0, β > 0, a < b,
If α < 1, then the density function has a pole at x = a.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 187 of 254

If β < 1, then the density function has a pole at x = b.
In both cases, if x=a respectively x=b and Cumulative=FALSE(), an Error is returned.

Semantics: If Cumulative is FALSE(), BETADIST returns 0 if x < a or x > b and the value


  

⋅ x −ab−a 
−1

⋅1− x−a
b−a 

−1

⋅ 1
b−a

otherwise.

If Cumulative is TRUE(), BETADIST returns 0 if x < a, 1 if x > b, and the value

∫a

x  
  

⋅ t−ab−a 
−1

⋅1− t−a
b−a

−1

⋅ 1
b−a

dt

otherwise.

Note: With substitution

z≝
t−a
b−a

the term can be written as

∫0

x−a
b−a 


⋅z−1⋅1−z −1dz

See also BETAINV 8.18.8

8.18.8 BETAINV

Summary: returns the inverse of BETADIST(x;α;β;a;b;TRUE()).

Syntax: BETAINV(Number p ; Number α ; Number β [; Number a = 0 [; Number b = 1]])

Returns: Number

Constraints: 0≤p≤1 , α > 0, β > 0, a < b

Semantics: BETAINV returns the unique number x in the closed interval from a to b such that
BETADIST(x;α;β;a;b) = p.

See also BETADIST 8.18.7

8.18.9 BINOM.DIST.RANGE

Summary: Returns the probability of a trial result using binomial distribution.

Syntax: BINOM.DIST.RANGE(Integer N ; Number P ; Integer S [; Integer S2])

Returns: Number

Constraints: 0<=P<=1, 0<=S<=S2<=N

Semantics: Let N be a total number of independent trials, and P be a probability of success for
each trial. This function returns the probability that the number of successful trials shall be exactly

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 188 of 254

S. If the optional parameter S2 is provided, this function returns the probability that the number of
successful trials shall lie between S and S2 inclusive.

This function is computed as follows:

If S2 is not given, let S2:=S. Then the function returns the value of

∑
k=S

S2

Nk Pk 1− P N − k

See also BINOMDIST 8.18.10

Note: This describes how the function works in OOo. KSpread has a similar function, called
BINO, which takes the arguments in a different order, and doesn't have the 4th argument.
Gnumeric doesn't have this function. Excel doesn't have this function.

8.18.10 BINOMDIST

Summary: Returns the binomial distribution.

Syntax: BINOMDIST(Integer S ; Integer N ; Number P ; Logical Cumulative)

Returns: Number

Constraints: 0 <= P <= 1; 0 <= S <= N

Semantics: If Cumulative is FALSE(), this function returns the same result as
BINOM.DIST.RANGE(N;P;S). If Cumulative is TRUE(), it is equivalent to calling
BINOM.DIST.RANGE(N;P;0;S).

See also BINOM.DIST.RANGE 8.18.9

8.18.11 LEGACY.CHIDIST

Summary: returns the right-tail probability for the χ2−distribution.

Syntax: LEGACY.CHIDIST(Number x ; Number DegreesOfFreedom)

Returns: Number

Constraints: DegreesOfFreedom is a positive integer.

Semantics: In the following n is DegreesOfFreedom. LEGACY.CHIDIST returns 1 for x0 and
the value

∫x

∞ t
n
2
−1
e
−
t
2

2
n
2n /2

dt

for x0 .

See also CHISQDIST 8.18.12, LEGACY.CHITEST 8.18.15

8.18.12 CHISQDIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the χ2−distribution.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 189 of 254

Syntax: CHISQDIST(Number x ; Number DegreesOfFreedom [; Logical Cumulative =
TRUE()])

Returns: Number

Constraints: DegreesOfFreedom is a positive integer.

Semantics: In the following n is DegreesOfFreedom.

If Cumulative is FALSE(), CHISQDIST returns 0 for x0 and the value

x
n
2
−1
e
−
x
2

2
n
2n/2

for x0 .

If Cumulative is TRUE(), CHISQDIST returns 0 for x0 and the value

∫0

x t
n
2
−1
e
−
t
2

2
n
2  n /2

dt

for x0 .

See also LEGACY.CHIDIST 8.18.11

8.18.13 LEGACY.CHIINV

Summary: returns the inverse of LEGACY.CHIDIST(x; DegreesOfFreedom).

Syntax: LEGACY.CHIINV(Number p ; Number DegreesOfFreedom)

Returns: Number

Constraints: DegreesOfFreedom is a positive integer and 0p≤1 .

Semantics: LEGACY.CHIINV returns the unique number x such that LEGACY.CHIDIST(x;
DegreesOfFreedom) = p.

See also LEGACY.CHIDIST 8.18.11

8.18.14 CHISQINV

Summary: returns the inverse of CHISQDIST(x; DegreesOfFreedom; TRUE()).

Syntax: CHISQINV(Number p ; Number DegreesOfFreedom)

Returns: Number

Constraints: DegreesOfFreedom is a positive integer and 0≤p1 .

Semantics: CHISQINV returns the unique number x≥0 such that CHISQDIST(x;
DegreesOfFreedom;TRUE()) = p.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 190 of 254

See also CHISQDIST 8.18.12

8.18.15 LEGACY.CHITEST

Summary: Returns some Chi square goodness-for-fit test.

Syntax: LEGACY.CHITEST(ForceArray Array A ; ForceArray Array E)

Returns: Number

Constraints:
ROWS(A) == ROWS(E)
COLUMNS(A) == COLUMNS(E)
COLUMNS(A) * ROWS(A) > 1

Semantics:

For an empty element or an element of type Text or Boolean in A the element at the
corresponding position of E is ignored, and vice versa.

● A actual observation data.

● E expected values.

First a Chi square statistic is calculated:

2=∑
i=1

r

∑
j=1

c  Aij−E ij 
2

E ij

with

r = number of rows
c= number of columns
Aij = element of actual data
E ij = element of expected values

Then LEGACY.CHIDIST is called with the Chi-square value and a degree of freedom (df):

if r1 and c1
df = r−1⋅c−1

else
df =r⋅c−1

LEGACY.CHITEST=LEGACY.CHIDIST 2 ; df 

See also LEGACY.CHIDIST 8.18.11

8.18.16 CONFIDENCE

Summary: Returns the confidence interval for a population mean.

Syntax: CONFIDENCE(Number alpha ; Number stddev ; Number size)

Returns: Number

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 191 of 254

Constraints: 0 < alpha < 1; stddev > 0, size >= 1

Semantics: Calling this function is equivalent to calling NORMINV(1 - alpha / 2; 0; 1) * stddev /
SQRT (size)

8.18.17 CORREL

Summary: Calculates the correlation coefficient of values in N1 and N2.

Syntax: CORREL(ForceArray Array N1 ; ForceArray Array N2)

Returns: Number

Constraints: COLUMNS(N1) = COLUMNS(N2), ROWS(N1) = ROWS(N2), both sequences shall
contain at least one number at corresponding positions each.

Semantics: Has the same value as COVAR(N1;N2)/STDEVP(N1)*(STDEVP(N2)). The CORREL
function actually is identical to the PEARSON function.

For an empty element or an element of type Text or Boolean in N1 the element at the
corresponding position of N2 is ignored, and vice versa.

See also PEARSON 8.18.56

8.18.18 COVAR

Summary: Calculates covariance of two cell ranges.

Syntax: COVAR(ForceArray Array n1 ; ForceArray Array n2)

Returns: Number

Constraints: COLUMNS(n1) = COLUMNS(n2), ROWS(n1) = ROWS(n2), both sequences shall
contain at least one number at corresponding positions each.

Semantics: returns

∑
a∈n1 , b∈n2

a−n1⋅b−n2

where n1 is the result of calling AVERAGE(n1), and n2 is the result of calling AVERAGE(n2).

For an empty element or an element of type Text or Boolean in n1 the element at the
corresponding position of n2 is ignored, and vice versa.

8.18.19 CRITBINOM

Summary: Returns the smallest value for which the cumulative binomial distribution is greater
than or equal to a criterion value.

Syntax: CRITBINOM(Number Trials ; Number SP ; Number Alpha)

Returns: Number

Constraints: Trials >=0, 0 <= SP <= 1, Alpha >= 1

Semantics:
Trials is the total number of trials.
SP is the probability of success for one trial.
Alpha is the threshold probability to be reached or exceeded.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 192 of 254

8.18.20 DEVSQ

Summary: Calculates sum of squares of deviations.

Syntax: DEVSQ({ NumberSequence n }+)

Returns: Number

Semantics: returns

∑
x∈n

x−a 2

where a is the result of calling AVERAGE(n).

8.18.21 EXPONDIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the exponential distribution.

Syntax: EXPONDIST(Number x ; Number λ [; Logical Cumulative = TRUE()])

Returns: Number

Constraints: λ > 0

Semantics: If Cumulative is FALSE(), EXPONDIST returns 0 if x < 0 and the value

e−x

otherwise.

If Cumulative is TRUE(), EXPONDIST returns 0 if x < 0 and the value

∫0

x
e− tdt=1−e−x

otherwise.

8.18.22 FDIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the F-distribution.

Syntax: FDIST(Number x ; Number r1 ; Number r2 [; Logical Cumulative = TRUE()])

Returns: Number

Constraints: r1 and r2 are positive integers

Semantics:

r1 is the degrees of freedom in the numerator of the F distribution.
r2 is the degrees of freedom in the denominator of the F distribution.

If Cumulative is FALSE(), FDIST returns 0 if x < 0, an Error if the numerator degrees of freedom r1

= 1 and x = 0, and the value

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 193 of 254


r1r2
2

 r1r2 
r 1

2


r1
2
 

r2
2


⋅
x

r1
2
−1

1 r1
r2
x 

r1r2
2

otherwise.

If the numerator degrees of freedom r1 = 1, then the density function has a pole at x=0, the

subterm x
r1

2
−1

=0−0.5
 is not defined.

If Cumulative is TRUE(), FDIST returns 0 if x < 0 and the value

 
r 1r 2

2
 r 1

r 2

r 1

2

 
r 1

2
 

r 2

2


⋅∫0

x t
r 1

2
−1

1 r 1

r 2

t 
r 1r 2

2

dt

otherwise.

See also LEGACY.FDIST 8.18.23

8.18.23 LEGACY.FDIST

Summary: returns the area of the right tail of the probability density function for the F-distribution.

Syntax: LEGACY.FDIST(Number x ; Number r1 ; Number r2)

Returns: Number

Constraints: r1 and r2 are positive integers

Semantics:

LEGACY.FDIST returns Error if x < 0 and the value

 
r 1r 2

2
 r 1

r 2

r 1

2

 
r 1

2


r 2

2


⋅∫x

∞ t
r 1

2
−1

1 r 1

r 2

t 
r 1r 2

2

dt

otherwise.

Note that the latter is (1-FDIST(x; r1; r2;TRUE())).

See also FDIST 8.18.22

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 194 of 254

8.18.24 FINV

Summary: returns the inverse of FDIST(x;r1;r2;TRUE()).

Syntax: FINV(Number p ; Number r1 ; Number r2)

Returns: Number

Constraints: 0≤p1 , r1 and r2 are positive integers

Semantics: FINV returns the unique non-negative number x such that FDIST(x;r1;r2) = p.

See also FDIST 8.18.22, LEGACY.FDIST 8.18.23, LEGACY.FINV 8.18.25

8.18.25 LEGACY.FINV

Summary: returns the inverse of LEGACY.FDIST(x;r1;r2).

Syntax: LEGACY.FINV(Number p ; Number r1 ; Number r2)

Returns: Number

Constraints: 0p≤1 , r1 and r2 are positive integers

Semantics: LEGACY.FINV returns the unique non-negative number x such that
LEGACY.FDIST(x;r1;r2) = p.

See also FDIST 8.18.22, LEGACY.FDIST 8.18.23, FINV 8.18.24

8.18.26 FISHER

Summary: returns the Fisher transformation.

Syntax: FISHER(Number r)

Returns: Number

Constraints: -1 < r < 1

Semantics: Returns the Fisher transformation with a sample correlation r. This function
computes

1
2

ln 
1r
1−r



where ln is the natural logarithm function.

FISHER is a synonym for ATANH.

See also ATANH 8.16.11

8.18.27 FISHERINV

Summary: returns the inverse Fisher transformation.

Syntax: FISHERINV(Number r)

Returns: Number

Constraints: none

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 195 of 254

Semantics: Returns the inverse Fisher transformation. This function computes

e2r−1

e2r1

FISHERINV is a synonym for TANH.

See also TANH 8.16.70

8.18.28 FORECAST

Summary: Extrapolates future values based on existing x and y values.

Syntax: FORECAST(Number Value ; ForceArray Array Data_Y ; ForceArray Array Data_X)

Returns: Number

Constraints: COLUMNS(Data_Y) = COLUMNS(Data_X), ROWS(Data_Y) = ROWS(Data_X)

Semantics:
Value is the x-value, for which the y-value on the linear regression is to be returned.
Data_Y is the array or range of known y-values.
Data_X is the array or range of known x-values.

For an empty element or an element of type Text or Boolean in Data_Y the element at the
corresponding position of Data_X is ignored, and vice versa.

8.18.29 FREQUENCY

Summary: Categorizes values into intervals and counts the number of values in each interval.

Syntax: FREQUENCY(NumberSequenceList data ; NumberSequenceList bins)

Returns: Array

Constraints: Values in bins shall be sorted in ascending order and bins shall be a column vector.
Evaluators may accept unsorted values in bins.

Semantics: Counts the number of values for each interval given by the border values in bins .
The values in bins determine the upper boundaries of the intervals. The intervals include the
upper boundaries. The returned array is a column vector and has one more element than bins ;
the last element represents the number of all elements greater than the last value in bins . If bins
is empty, all values in data are counted. The values in the result array are ordered matching the
original order of bins . If the values in bins are not sorted in ascending order, they are sorted
internally to form category intervals and the counts of data values are "unsorted" to the original
order of bins. If data is empty, the value of all elements in the returned array is 0.

data The data, that should be categorized and counted according to the given intervals.
bins The upper boundaries determining the intervals the values in data should be grouped by.

8.18.30 FTEST

Summary: Calculates the probability of an F-test.

Syntax: FTEST(ForceArray NumberSequence Data_1 ; ForceArray NumberSequence Data_2)

Returns: Number

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 196 of 254

Constraints: Data_1 and Data_2 shall both contain at least 2 numbers and shall both have
nonzero variances

Semantics: Calculates the two-tailed probability that, based on two samples from two normal
distributions, these normal distributions have different variances.

Suppose the first sample has size n1 and sample variance s1^2 and the second sample has size
n2 and sample variance s2^2. If s1^2>s^2 FDIST returns twice the area of the right tail of the F-
distribution with degrees of freedom n1-1,n2-1 beyond s^1/s^2. If s1^2<s^2 FDIST returns twice
the area of the left tail of the F-distribution with degrees of freedom n1-1,n2-1 below s^1/s^2.

See also TTEST 8.18.81

8.18.31 GAMMADIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the Gamma distribution.

Syntax: GAMMADIST(Number x ; Number α ; Number β [; Logical Cumulative = TRUE()])

Returns: Number

Constraints: α > 0, β > 0

Semantics: If Cumulative is FALSE(), GAMMADIST returns 0 if x < 0 and the value

1
⋅ 

⋅x −1⋅e
−x


otherwise.

If Cumulative is TRUE(), GAMMADIST returns 0 if x < 0 and the value

∫0

x 1
⋅

⋅t −1⋅e
−tdt

otherwise.

See also GAMMAINV 8.18.32

8.18.32 GAMMAINV

Summary: returns the inverse of GAMMADIST(x;α;β ;TRUE()).

Syntax: GAMMAINV(Number p ; Number α ; Number β)

Returns: Number

Constraints: 0≤p1 , α > 0, β > 0

Semantics: GAMMAINV returns the unique number x≥0 such that GAMMAINV(x;α;β) = p.

See also GAMMADIST 8.18.31

8.18.33 GAUSS

Summary: Returns 0.5 less than the standard normal cumulative distribution

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 197 of 254

Syntax: GAUSS(Number x)

Returns: Number

Semantics: Returns NORMDIST(x;0;1;TRUE())-0.5

See also NORMDIST 8.18.52

8.18.34 GEOMEAN

Summary: returns the geometric mean of a sequence

Syntax: GEOMEAN({ NumberSequenceList N }+)

Returns: Number

Semantics: Returns the geometric mean of a given sequence. That means

∏a∈N

a
1/n

where n is a result of calling COUNT(N).

8.18.35 GROWTH

Summary: Returns predicted values based on an exponential regressionCalculates a sequence
of values based on a least squares exponential fit to known value pairs.

Syntax: GROWTH(Array knownY [; [Array knownX] [; [Array newX] [; Logical
ConsNumberSequence knownY [; [NumberSequence knownX] [; [NumberSequence newX] [;
Logical allowConstant = TRUE()]]])

Returns: Array

Constraints: (COLUMNS(knownY) = COLUMNS(knownX) and ROWS(knownY) =
ROWS(knownX)) or (COLUMNS(knownY) = 1 and ROWS(knownY) = ROWS(knownX) and
COLUMNS(knownX) = COLUMNS(newX)) or (COLUMNS(knownY) = COLUMNS(knownX) and
ROWS(knownY) = 1 and ROWS(knownX) = ROWS(newX))COUNT(knownY) =
COUNT(knownX); COUNT(knownY), COUNT(knownX)>1.

Semantics:

knownY: The set of known y-values to be used to determine the regression equation

knownX: The set of known x-values to be used to determine the regression equation. If omitted or

an empty parameter, it is set to the sequence 1,2,3,…, k , where
k=ROWS(knownY)⋅COLUMNS(knownY) .

newX: The set of x-values for which predicted
̂
y -values are to be calculated. If omitted or an

empty parameter, it is set to knownX.

Const: If set to FALSE(), the model constant a is equal to 0.

LOGEST(knownY; knownX; Const; FALSE()) either returns an error or an array with 1 row and
n+1 columns. If it returns an error then so does GROWTH. If it returns an array, we call the

entries in that array bn , bn−1 ,…, b1, a .

Let z i j denote the entry in the ith row and jth column of newX.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 198 of 254

If COLUMNS(knownY) = COLUMNS(knownX) and ROWS(knownY) = ROWS(knownX), then
GROWTH returns an array with ROWS(newX) rows and COLUMNS(newX) column, such that the

entry in its ith row and jth column is a×b1
zi j

.

Otherwise, if COLUMNS(knownY) = 1 and ROWS(knownY) = ROWS(knownX) and
COLUMNS(knownX) = COLUMNS(newX), then GROWTH returns an array with ROWS(newX)

rows and 1 column, such that the entry in the ith row is
a×∏

j=1

n

b j
zi j

.

Otherwise, if COLUMNS(knownY) = COLUMNS(knownX) and ROWS(knownY) = 1 and
ROWS(knownX) = ROWS(newX), then GROWTH returns an array with 1 row and

COLUMNS(newX) columns, such that the entry in the jth column is
a×∏

i=1

n

bi
z i j

.

COLUMNS(knownY) = COLUMNS(knownX), ROWS(knownY) = ROWS(knownX)

Semantics: Calculates a sequence of values based on an exponential least squares fit of known
value pairs.

If knownX is omitted or an empty parameter (two consecutive ;; semicolons), it is set to the

sequence Object 392 , where Object 393 .

If newX is omitted or an empty parameter (two consecutive ;; semicolons), it is set to be equal to
knownX.

If allowConstant is TRUE, the fit is to the function Object 394 , where b and m are constants

determined in the fit. If allowConstant is FALSE, the fit is to the function Object 395 , i.e when
allowConstant is FALSE, the constant b is set to 1. The default is TRUE.

See also TREND 8.18.79

8.18.36 HARMEAN

Summary: returns the harmonic mean of a sequence

Syntax: HARMEAN({ NumberSequenceList N }+)

Returns: Number

Semantics: Returns the harmonic mean of a given sequence. That means

n

∑
i=1

n
1
a i

where a1,a2,...,an are the numbers of the sequence N and n is a result of calling COUNT(N).

8.18.37 HYPGEOMDIST

Summary: The hypergeometric distribution returns the number of successes in a sequence of n
draws from a finite population without replacement.

Syntax: HYPGEOMDIST(Integer x ; Integer n ; Integer M ; Integer N [; Logical Cumulative =
FALSE()])

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 199 of 254

Returns: Number

Constraints: 0 <= x <= n <= N, 0 <= M <= N

Semantics:

x is the number of successes in n trials

n is the number of trials

M is the number of successes in the population

N is the total population

cumulative is a Logical parameter. If cumulative is FALSE(), return the probability of exactly x
successes. If cumulative is TRUE(), return the probability of at most x successes. If omitted,
FALSE() is assumed.

If Cumulative is FALSE(), HYPGEOMDIST returns

Mx N−M
n−x 

Nn 
If Cumulative is TRUE(), HYPGEOMDIST returns

∑
i=0

x Mi N−M
n−i 

Nn 
Note:

xy=0 for yx

8.18.38 INTERCEPT

Summary: Returns the y-intercept of the linear regression line for the given data.

Syntax: INTERCEPT(ForceArray Array Data_Y ; ForceArray Array Data_X)

Returns: Number

Constraints: COLUMNS(Data_X) = COLUMNS(Data_Y), ROWS(Data_X) = ROWS(Data_Y)

Semantics:

INTERCEPT returns the intercept (a) calculated as described in 5.18.41 for the function call
LINEST(DATA_Y,DATA_X,FALSE()).

For an empty element or an element of type Text or Boolean in Data_Y the element at the
corresponding position of Data_X is ignored, and vice versa.

8.18.39 KURT

Summary: Return the kurtosis (“peakedness”) of a data set.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 200 of 254

Syntax: KURT({ NumberSequenceList X } +)

Returns: Number

Constraints: #Numbers>=4, STDEV(X) <> 0

Semantics:

Kurtosis characterizes the relative peakedness or flatness of a distribution compared with the
normal distribution. Positive kurtosis indicates a relatively peaked distribution (compared to the
normal distribution), while negative kurtosis indicates a relatively flat distribution.

kurtosis= nn1
n−1n−2n−3∑i=1

n  x i− x

s 
4 − 3n−12

n−2n−3

where s is the sample standard deviation, and n is the number of numbers.

8.18.40 LARGE

Summary: Finds the nth largest value in a list.

Syntax: LARGE(NumberSequenceList List ; Number|Array N)

Returns: Number or Array

Constraints: ROUNDUP(N;0)=N. If the resulting N is <1 or larger than the size of List, Error is
returned

Semantics: If N is an array of numbers, an array of largest values is returned.

See also SMALL 8.18.70, ROUNDUP 8.17.8

8.18.41 LINEST

Summary: Returns the parameters of the (simple or multiple) linear regression equation for the
given data and, optionally, statistics on this regressiona linear trend best fitting the given data.
This function shall be entered as an array formula.

Syntax: LINEST(Array knownY [; [Array knownX] [; Logical Const = TRUE() [; Logical Stats =
FALSE()]]])

Returns: Array

Constraints: (COLUMNS(knownY) = COLUMNS(knownX) and ROWS(knownY) =
ROWS(knownX)) or (COLUMNS(knownY) = 1 and ROWS(knownY) = ROWS(knownX)) or
(COLUMNS(knownY) = COLUMNS(knownX) and ROWS(knownY) = 1COLUMNS(knownY) =
COLUMNS(knownX), ROWS(knownY) = ROWS(knownX), COUNT(knownY) = COUNT(knownX)

Semantics:

knownY: The set of y-values for the equation, either one single column or one single row

knownX: The set of x-values for the equation. If omitted or an empty parameter, it is set to the

sequence 1,2,3,…, k , where k=ROWS(knownY)⋅COLUMNS(knownY) , a single
column or single row matching knownY. If omitted or an empt y parameter (two consecutive ;;

semicolons), it is set to the sequence Object 396 , where Object 397 . If one
single value, it is applied to all.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 201 of 254

Const: If set to FALSE(), the model constant a is equal to 0constant a is equal to 0 and the line
goes through the zero point.

Stats: If FALSE(), only the regression coefficient is to be calculated. If set to TRUE(), the result
will include other statistical data. returned as an array, as shown in the table:

If any of the entries in knownY and knownX do not convert to Number, LINEST returns an error.

The result created by LINEST if STATS is TRUE() is given in Table 30 - LINEST. If STATS is
FALSE() it is just the first row of Table 30 - LINEST. The empty cells in this table are returned as
empty or as containing an error.

Table 30 - LINEST

bn bn-1 … b1 a

sbn
sbn−1

… sb1
sa

R2 se

F df

SSreg SSresid

If COLUMNS(knownY) = COLUMNS(knownX) and ROWS(knownY) = ROWS(knownX) then
n=1 , k=ROWS(knownY)⋅COLUMNS(knownY) , the entries of knownX in column major

order are denoted with x1n, x2n,… , xk n and the entries of knownY in column major order are

denoted with y1 , y2 ,…, yk .

Otherwise but if COLUMNS(knownY) = 1, then n=COLUMNS(knownX) ,

k=ROWS(knownY) , the entry in the jth column and ith row of knownX is denoted x i j and

the entry in the ith row of knownY is denoted y i .

Otherwise but if ROWS(knownY) = 1, then n=ROWS (knownX) , k=COLUMNS(knownY)

, the entry in the jth column and ith row of knownX is denoted x j i and the entry in the jth column

of knownY is denoted y j .

If Const is TRUE() and k≤n+1 LINEST returns an error. Similarly, if Const is FALSE() and
k≤n LINEST returns an error.

We denote
x i=

1
k
⋅∑

j=1

k

x i j
 and

y=1
k
⋅∑

j=1

k

y j
, and define the following matrices:

Y=(y1

⋮
yk
) and X=(

1 x1 1 … x1n

1 x1 2 … x2n

⋮ ⋮ ⋱ ⋮
1 xk 1 … xk n

) for Const being TRUE(), and X=(
x1 1 … x1n

x1 2 … x2n

⋮ ⋱ ⋮
xk 1 … xk n

) for

Const being FALSE().

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 202 of 254

Let XT
 denote the transpose of X, see 6.5.6 TRANSPOSE. Then the matrix product XT⋅X is a

square matrix. If XT⋅X is not invertible, then LINEST shall either return an error or calculate a
result as described below.

If XT⋅X is invertible, then (X
T⋅X)−1⋅XT⋅Y is a matrix B with a single column. If Const is

TRUE(), the entries of B are denoted B=(
a
b1

⋮
bn
) ; if Const is FALSE(), the entries of B are denoted

B=(b1

⋮
bn
) and a=0 .

These a ,b1 ,…, bn are the values returned by LINEST in the first row of its result array in the
order given in Table 30 - LINEST.

The statistics in the 2nd to 5 th rows of Table 30 - LINEST are as follows:

If Const is TRUE():

df =k−n−1 .
SSresid=∑

j=1

k

((a+∑
i=1

n

b j x i j)− y i)
2

,
SSreg=∑

j=1

k

((a+∑
i=1

n

b j x i j)− y)
2

,

sa=se√d1 and sbi
=se√d i+1 where d i is the element in the ith row and ith column of

(XT⋅X)−1

, se=√ SSresid

df
,
R2=

SSreg

∑
j=1

k

(yk− y)2 and F=
SSreg /n
SSresid /df

.

If Const is FALSE():

df =k−n ,
SSresid=∑

j=1

k

((∑
i=1

n

b j x i j)− y i)
2

,
SSreg=∑

j=1

k

(∑
i=1

n

b j x i j)
2

,
sbi
=se√d i

 where d i is

the element in the ith row and ith column of
(XT⋅X)−1

, se=√ SSresid

df ,

R2=
SSreg

∑
j=1

k

yk
2 and

F=
SSreg /n
SSresid /df

. In this case sa is undefined and is returned as either 0, blank or an error.

If XT⋅X is not invertible, then the columns of X are linearly dependent. In this case an evaluator
shall return an error or select any maximal linearly independent subset of these columns that if
Const is TRUE() includes the first column and perform the above calculations with that subset. In

the latter case the coefficients bi of omitted columns are returned as 0.

Table 31 - LINEST

slope (bn) slope (bn-1) ... slope (b1) intercept (a)

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 203 of 254

σa Standard error for
the slope (bn)

σa Standard error
for the slope (bn-1)

σa Standard error
for the slope (b1)

σb Standard error for the
intercept (a)

r2 σy Standard error
for the y-Values

F Statistics degrees of freedom
(df)

SSreg Regression
sum of squares

SSresid Residual
sum of squares

Every linear equation can be written using the form Object 398 or

Object 399 if there are multiple x-values.

where y is the dependent y-value

a is the intercept (or constant) that represents the point at which the line crosses the y-axis.

b is the slope coefficient that corresponds to each x-value

a or the INTERCEPT is calculated using this formula :

Object 400

b or the SLOPE is calculated using this formula:

Object 401

Standard Error of the Y value is calculated using this formula:

Object 402

Standard Error of the Slope (a) value is calculated using this formula:

Object 403

Standard Error of the Intercept (b) value is calculated using this formula:

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 204 of 254

Object 404

The RSQ Value (r2) is calculated using the following formula:

Object 405

The Regression Sum of squares is calculated as follows:

Object 406

The Residual sum of squares is calculated using this formula:

Object 407

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 205 of 254

The degrees of freedom (df) is calculated with this formula:

Object 408

The F Statistics is calculated as follows:

Object 409

For const = FALSE() the Calculations for the INTERCEPT, the SLOPE and the other statistics are
based on the following formulas:

a or the INTERCEPT is zero by definition:

Object 410

b or the SLOPE is calculated using this formula:

Object 411

Standard Error of the Y value is calculated using this formula:

Object 412

Standard Error of the Slope (a) value is calculated using this formula:

Object 413

Standard Error of the Intercept (b) value is calculated using this formula:

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 206 of 254

Object 414

The RSQ Value (r2) is calculated using the following formula:

Object 415

The Regression Sum of squares is calculated as follows:

Object 416

The Residual sum of squares is calculated using this formula:

Object 417

The degrees of freedom (df) is calculated with this formula:

Object 418

The F Statistics is calculated as follows:

Object 419

8.18.42 LOGEST

Summary: Returns the parameters of an exponential regression equation for the given data
obtained by linearizing this intrinsically linear response function and returns, optionally, statistics

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 207 of 254

on this regressionarray of values for an exponential curve that best fits your data.. This function
shall be entered as an array formula.

Syntax: LOGEST(Array knownY [; [Array knownX] [; Logical Const = TRUE() [; Logical Stats
= FALSE()]]])

Returns: Array

Constraints: (COLUMNS(knownY) = COLUMNS(knownX) and ROWS(knownY) =
ROWS(knownX)) or (COLUMNS(knownY) = 1 and ROWS(knownY) = ROWS(knownX)) or
(COLUMNS(knownY) = COLUMNS(knownX) and ROWS(knownY) = 1COLUMNS(knownY) =
COLUMNS(knownX), ROWS(knownY) = ROWS(knownX), COUNT(knownY) = COUNT(knownX)

Semantics:

knownY: The set of y-values for the equation, either one single column or one single row

knownX: The set of x-values for the equation. If omitted or an empty parameter, it is set to the

sequence 1,2,3,…, k , where k=ROWS(knownY)⋅COLUMNS(knownY) , a single
column or single row matching knownY. If omitted or an empty parameter (two consecutive ;;

semicolons), it is set to the sequence Object 420 , where Object 421 . If one
single value, it is applied to all.

Const: If set to FALSE(), the model constant a is equal to 0FALSE() to specify whether the
constant b is equal to 1.

Stats: If FALSE(), only the regression coefficient is to be calculated. If set to TRUE(), the result
will include other statistical dataTRUE() to specify to return additional regression statistics.

If any of the entries in knownY and knownX do not convert to Number or if any of the entries in
knownY is negative, LOGEST returns an errorEvery exponential equation can be written using

the form Object 422 or Object 423 if there are multiple x-values.

The result created by LOGEST if STATS is TRUE() is given in Table 32 - LOGEST. If STATS is
FALSE() it is just the first row of Table 32 - LOGEST. The empty cells in this table are returned as
empty or as containing an error.

Table 32 - LOGEST

ebn ebn−1 … eb1 ea

sbn
sbn−1

… sb1
sa

R2 se

F df

SSreg SSresid

If COLUMNS(knownY) = COLUMNS(knownX) and ROWS(knownY) = ROWS(knownX) then
n=1 , k=ROWS(knownY)⋅COLUMNS(knownY) , the entries of knownX in column major

order are denoted with x1n, x2n,… , xk n and the entries of knownY in column major order are

denoted with y1 , y2 ,…, yk .

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 208 of 254

Otherwise but if COLUMNS(knownY) = 1, then n=COLUMNS(knownX) ,

k=ROWS(knownY) , the entry in the jth column and ith row of knownX is denoted x i j and

the entry in the ith row of knownY is denoted y i .

Otherwise but if ROWS(knownY) = 1, then n=ROWS (knownX) , k=COLUMNS(knownY)

, the entry in the jth column and ith row of knownX is denoted x j i and the entry in the jth column

of knownY is denoted y j .

If Const is TRUE() and k≤n+1 LOGEST returns an error. Similarly, if Const is FALSE() and
k≤n LOGEST returns an error.

We denote
x i=

1
k
⋅∑

j=1

k

x i j
 and

ln(y)=1
k
⋅∑

j=1

k

ln(y j)
, and define the following matrices:

Y=(ln(y1)
⋮

ln(yk)) and X=(
1 x1 1 … x1n

1 x1 2 … x2n

⋮ ⋮ ⋱ ⋮
1 xk 1 … xk n

) for Const being TRUE(), and X=(
x1 1 … x1n

x1 2 … x2n

⋮ ⋱ ⋮
xk 1 … xk n

)

for Const being FALSE().

Let XT
 denote the transpose of X, see 6.5.6 TRANSPOSE. Then the matrix product XT⋅X is a

square matrix. If XT⋅X is not invertible, then LOGEST shall either return an error or calculate a
result as described below.

If XT⋅X is invertible, then (X
T⋅X)−1⋅XT⋅Y is a matrix B with a single column. If Const is

TRUE(), the entries of B are denoted B=(
a
b1

⋮
bn
) ; if Const is FALSE(), the entries of B are denoted

B=(b1

⋮
bn
) and a=0 .

Then ea , eb1 ,…, ebn

 are the values returned by LOGEST in the first row of its result array in the
order given in Table 1 - Operators.

The statistics in the 2nd to 5 th rows of Table 1 - Operators are as follows:

If Const is TRUE():

df =k−n−1 .
SSresid=∑

j=1

k

((a+∑
i=1

n

b j x i j)−ln(y i))
2

,
SSreg=∑

j=1

k

((a+∑
i=1

n

b j x i j)−ln (y))
2

,

sa=se√d1 and

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 209 of 254

 sbi
=se√d i+1 where d i is the element in the ith row and ith column of (X

T⋅X)−1
,

se=√ SSresid

df
,
R2=

SSreg

∑
j=1

k

(ln(y k)− ln(y))2 and F=
SSreg /n
SSresid /df

.

If Const is FALSE():

df =k−n ,
SSresid=∑

j=1

k

((∑
i=1

n

b j x i j)− ln(y i))
2

,
SSreg=∑

j=1

k

(∑
i=1

n

b j x i j)
2

,
sbi
=se√d i

 where

d i is the element in the ith row and ith column of
(XT⋅X)−1

, se=√ SSresid

df
,
R2=

SSreg

∑
j=1

k

ln(yk)
2

and F=
SSreg/n
SSresid /df

. In this case sa is undefined and is returned as either 0, blank or an error.

If XT⋅X is not invertible, then the columns of X are linearly dependent. In this case an evaluator
shall return an error or select any maximal linearly independent subset of these columns that if
Const is TRUE() includes the first column and perform the above calculations with that subset. In

the latter case the coefficients ebi

 of omitted columns are returned as 1.

where 'y' is the dependent y-value

The b-values are bases corresponding to each exponent x-value

a is a constant value.

The Functions used to calculate the LOGEST values are the same as for the LINEST function.
You have just to make the Y-Values the natural logarithmic of the given ones (C=Y and the New
Y=ln (C)). The result for the 'a' and 'b' values has to be calculated by applying the EXP() function
to the values.

LOGEST with Stats parameter set to TRUE() returns additional statistical data in an array. They
are at the positions shown in the table :

Table 33 - LOGEST

slope (bn) slope (bn-1) ... slope (b1) intercept (a)

σa Standard error for
the slope (bn)

σa Standard error
for the slope (bn-1)

σa Standard error
for the slope (b1)

σb Standard error for the
intercept (a)

r2 σy Standard error
for the y-Values

F Statistics degrees of freedom
(df)

SSreg Regression
sum of squares

SSresid Residual
sum of squares

8.18.43 LOGINV

Summary: returns the inverse of LOGNORMDIST(x;Mean;StandardDeviation,TRUE()).

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 210 of 254

Syntax: LOGINV(Number p [; Number Mean = 0 [; Number StandardDeviation = 1]])

Returns: Number

Constraints: StandardDeviation > 0 and 0 < p < 1.

Semantics: LOGINV returns the unique number x such that
LOGNORMDIST(x;Mean;StandardDeviation;TRUE()) = p.

See also LOGNORMDIST 8.18.44

8.18.44 LOGNORMDIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the lognormal distribution with the mean and standard deviation given.

Syntax: LOGNORMDIST(Number x [; Number µ = 0 [; Number σ = 1 [; Logical Cumulative =
TRUE()]]])

Returns: Number

Constraints: σ > 0; x > 0 if Cumulative is FALSE()

Semantics: If Cumulative is FALSE(), LOGNORMDIST returns the value

e
−
1
2
⋅
lnx −



2

x 2
If Cumulative is TRUE(), LOGNORMDIST returns the value

∫0

x e
−
1
2
⋅
lnt −

 
2

t2
dt

if X > 0 and 0 otherwise.

8.18.45 MAX

Summary: Return the maximum from a set of numbers.

Syntax: MAX({ NumberSequenceList N }+)

Returns: Number

Constraints: None.

Semantics: Returns the value of the maximum number in the list passed in. Non-numbers are
ignored. Note that if Logical types are a distinct type, they are not included. What happens when
MAX is provided 0 parameters is implementation-defined, but MAX with no parameters should
return 0.

See also MAXA 8.18.46, MIN 8.18.48

8.18.46 MAXA

Summary: Return the maximum from a set of values, including values of type Text and Logical.

Syntax: MAXA({ Any N }+)

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 211 of 254

Returns: Number

Constraints: None.

Semantics: A variation of the MAX function that includes values of type Text and Logical. Text
values are treated as number 0. Logical True is treated as 1, and False is treated as 0. Empty
cells are not included. What happens when MAXA is provided 0 parameters is implementation-
defined. Any N may be of type ReferenceList.

See also MAX 8.18.45, MIN 8.18.48, MINA 8.18.49

8.18.47 MEDIAN

Summary: Returns the median (middle) value in the list.

Syntax: MEDIAN({ NumberSequenceList X}+)

Returns: Number

Semantics:

MEDIAN logically ranks the numbers (lowest to highest). If given an odd number of values,
MEDIAN returns the middle value. If given an even number of values, MEDIAN returns the
arithmetic average of the two middle values.

n=is thecount of the ranked numbersequence

x=x
 n1

2 
for n=odd

x=
1
2  x n2 x

 n
2
1

for n=even

8.18.48 MIN

Summary: Return the minimum from a set of numbers.

Syntax: MIN({ NumberSequenceList N }+)

Returns: Number

Constraints: None.

Semantics: Returns the value of the minimum number in the list passed in. Returns zero if no
numbers are provided in the list. What happens when MIN is provided 0 parameters is
implementation-defined, but MIN() with no parameters should return 0.

See also MAX 8.18.45, MINA 8.18.49

8.18.49 MINA

Summary: Return the minimum from a set of values, including values of type Text and Logical.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 212 of 254

Syntax: MINA({ Any N }+)

Returns: Number

Constraints: None.

Semantics: A variation of the MIN function that includes values of type Text and Logical. Text
values are treated as number 0. Logical True is treated as 1, and False is treated as 0. Empty
cells are not included. What happens when MINA is provided 0 parameters is implementation-
defined. Any N may be of type ReferenceList.

See also MIN 8.18.48, MAXA 8.18.46

8.18.50 MODE

Summary: Returns the most common value in a data set.

Syntax: MODE({ ForceArray NumberSequence N }+)

Semantics: Returns the most common value in a data set. If there are more than one values with
the same largest frequency, returns the smallest value. If the number sequence does no contain
at least two equal values, the MODE is not defined as no most common value can be found.
Therefore an Error message has to be shown.

8.18.51 NEGBINOMDIST

Summary: Returns the negative binomial distribution.

Syntax: NEGBINOMDIST(Integer x ; Integer r ; Number p)

● x The number of failures.

● r The threshold number of successes.

● p The probability of a success.

Returns: Number

Constraints:

● If (x + r - 1) <= 0 NEGBINOMDIST returns an Error.

● If p < 0 or p > 1 NEGBINOMDIST returns an Error.

Semantics:

NEGBINOMDIST returns the probability that there will be x failures before the r-th success, when
the constant probability of a success is p.

Note: This function is similar to the binomial distribution, except that the number of successes is
fixed, and the number of trials is variable. Like the binomial, trials are assumed to be
independent.

P r , px =xr−1
r−1  pr 1−px

xr−1
r−1  is a binomial coefficient

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 213 of 254

8.18.52 NORMDIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the normal distribution with the mean and standard deviation given.

Syntax: NORMDIST(Number x ; Number Mean ; Number StandardDeviation [; Logical
Cumulative = TRUE()])

Returns: Number

Constraints: StandardDeviation > 0.

Semantics: In the following  is Mean and  is StandardDeviation.

If Cumulative is FALSE(), NORMDIST returns the value

e
−
1
2
⋅
x−
 

2

2
If Cumulative is TRUE(), NORMDIST returns the value

∫−∞

x e
−
1
2
⋅
t−
 

2

2
dt

See also LEGACY.NORMSDIST 8.18.54

8.18.53 NORMINV

Summary: returns the inverse of NORMDIST(x;Mean;StandardDeviation,TRUE()).

Syntax: NORMINV(Number p ; Number Mean ; Number StandardDeviation)

Returns: Number

Constraints: StandardDeviation > 0 and 0 < p < 1.

Semantics: NORMINV returns the unique number x such that
NORMDIST(x;Mean;StandardDeviation;TRUE()) = p.

See also NORMDIST 8.18.52

8.18.54 LEGACY.NORMSDIST

Summary: returns the value of the cumulative distribution function for the standard normal
distribution.

Syntax: LEGACY.NORMSDIST(Number x)

Returns: Number

Constraints: None

Semantics: LEGACY.NORMSDIST returns the value

∫−∞

x e
−
1
2
⋅t2

2
dt

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 214 of 254

This is exactly NORMDIST(x;0;1;TRUE()).

See also NORMDIST 8.18.52, LEGACY.NORMSINV 8.18.55

8.18.55 LEGACY.NORMSINV

Summary: returns the inverse of LEGACY.NORMSDIST(x).

Syntax: LEGACY.NORMSINV(Number p)

Returns: Number

Constraints: 0 < p < 1.

Semantics: LEGACY.NORMSINV returns NORMINV (p).

See also NORMINV 8.18.53, LEGACY.NORMSDIST 8.18.54

8.18.56 PEARSON

Summary: PEARSON returns the Pearson correlation coefficient of two data sets

Syntax: PEARSON(ForceArray Array independent_Values ; ForceArray Array
dependent_Values)

Returns: Number

Constraints: COLUMNS(independent_Values) = COLUMNS(dependent_Values),
ROWS(independent_Values) = ROWS(dependent_Values), both sequences shall contain at least
one number at corresponding positions each.

Semantics:

independent_Values represents the array of the first data set. (X-Values)

dependent_Values represents the array of the second data set. (Y-Values)

r=
∑
i=1

N

 xi−x  y i− y 

∑
i=1

N

x i− x2∑
i=1

N

 yi− y 2

x , y are the averages of the given x , y data

For an empty element or an element of type Text or Boolean in independent_Values the element
at the corresponding position of dependent_Values is ignored, and vice versa.

8.18.57 PERCENTILE

Summary: Calculates the x-th sample percentile among the values in range.

Syntax: PERCENTILE(NumberSequenceList Data ; Number x)

Returns: Number

Constraints:

● COUNT(Data) > 0

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 215 of 254

● 0 <= x <= 1

Semantics:

● Data The array or range of values to get the percentile from.

● x The percentile value between 0 and 1, inclusive. If x is not a multiple of

1
n−1 ,

PERCENTILE interpolates to obtain the value between two data points.

Returns the x -th sample percentile of data values in Data . A percentile returns the scale value
for a data series which goes from the smallest (Alpha=0) to the largest value (Alpha=1) of a data
series. For Alpha = 25%, the percentile means the first quartile; Alpha = 50% is the MEDIAN.

Step 1:
Sort the list of numbers given by array Data .

Step 2:
Calculate the ranking {1, ,n}, split into integer and decimal part

r=1x⋅n−1 =ID

with
x = the percentile you want to find
n = the count of values
I = the integer part of the ranking = ⌊ r ⌋
D = the decimal part of the ranking = r−⌊r ⌋

Step 3:
Interpolate between the necessary two numbers

PERCENTILE=Y ID⋅Y I1−Y I 

with Y I being the data point ranked at position I

See also MAX 8.18.45, MEDIAN 8.18.47, MIN 8.18.48, PERCENTRANK 8.18.58, QUARTILE
8.18.64, RANK 8.18.65

8.18.58 PERCENTRANK

Summary: Returns the percentage rank of a value in a sample.

Syntax: PERCENTRANK(NumberSequenceList Data ; Number X [; Integer Significance = 3])

Returns: Number

Constraints:

● COUNT(Data) > 0

● MIN(Data) <= X <= MAX(Data)

● INT(Significance) = Significance; Significance >= 1

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 216 of 254

Semantics:

● Data is the array or range of data with numeric values.

● X is the value whose rank is to be determined.

● Significance is an optional value that identifies the number of significant digits for the
returned percentage value. If omitted, a value of 3 is used (0.xxx).

Returns the rank of a value in a data set Data as a percentage of the data set, a value between 0
and 1, inclusive. This function can be used to evaluate the relative standing of a value within a
data set.

For COUNT(Data) > 1, PERCENTRANK returns r / (COUNT(Data) -1), where r is the rank of X in
Data. The rank of the lowest number in Data is 0, and of the next lowest number 1, and so on. If
X is not in Data, it is assigned a fractional rank proportionately between the rank of the numbers
on either side. Specifically, if X lies between Y and Z=Y+1 (Y < X < Z) with Y being the largest
number smaller than X and Z the smallest number larger than X, and where Y has rank ry, the
rank of X is calculated as

rx=ry X −Y
Z−Y

In the special case where COUNT(Data) == 1, the only valid value for X is the single value in
Data, in which case PERCENTRANK returns 1.

See also PERCENTILE 8.18.57, RANK 8.18.65

8.18.59 PERMUT

Summary: returns the number of permutations of k objects taken from n objects.

Syntax: PERMUT(Integer n ; Integer k)

Returns: Number

Constraints: n >= 0; k >= 0; n >= k

Semantics: PERMUT returns

⌊n⌋⌊k ⌋ ⌊k⌋!
respectively

n!
n−k !

8.18.60 PERMUTATIONA

Summary: Returns the number of permutations for a given number of objects (repetition
allowed).

Syntax: PERMUTATIONA(Integer Total ; Integer Chosen)

Returns: Number

Constraints: Total >= 0, Chosen >= 0

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 217 of 254

Semantics: Given Total number of objects, return the number of permutations containing Chosen
number of objects, with repetition permitted. The result is 1 if Total = 0 and Chosen = 0, otherwise
the result is

PERMUTATIONA = Total Chosen

8.18.61 PHI

Summary: Returns the values of the density function for a standard normal distribution.

Syntax: PHI(Number N)

Returns: Number

Semantics: PHI(N) is a synonym for NORMDIST(N,0,1,FALSE()).

8.18.62 POISSON

Summary: returns the probability or the cumulative distribution function for the Poisson
distribution

Syntax: POISSON(Integer x ; Number λ [; Logical Cumulative = TRUE()])

Returns: Number

Constraints: λ > 0, x >= 0

Semantics: If Cumulative is FALSE(), POISSON returns the value

e−⌊x ⌋

⌊x ⌋!

If Cumulative is TRUE(), POISSON returns the value

∑k=0

k=⌊x⌋ e−k

k!

8.18.63 PROB

Summary: Returns the probability that a discrete random variable lies between two limits.

Syntax: PROB(ForceArray Array Data ; ForceArray Array Probability ; Number Start [; Number
End])

Returns: Number

Constraints:

● The sum of the probabilities in Probability shall equal 1.

● All values in Probability shall be > 0 and <= 1.

● COUNT(Data) = COUNT(Probability)

Semantics:

● Data is the array or range of data in the sample (the Number values in this array or

range are referred to below as d 1,d 2, , d n).

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 218 of 254

● Probability is the array or range of the corresponding probabilities (the Number values in

this array or range are referred to below as p1, p2, , pn).

● Start is the start value (lower bound) of the interval whose probabilities are to be
summed.

● End (optional) is the end value (upper bound) of the interval whose probabilities are to
be summed. If omitted, End = Start is used.

a≤x≤b Suppose that I x ,a ,b denotes the indicator function that is 1 if and 0 otherwise.

Then PROB returns

∑
i=1

n

 I d i , Start , End × p i

i.e. the sum of all probabilities p i whose corresponding data value d i satisfies

Start≤d i≤End . Note that if EndStart then PROB returns 0 since in this case

I d i , Start , End =0 for all i.

See also

8.18.64 QUARTILE

Summary: Returns a quartile of a set of data points.

Syntax: QUARTILE(NumberSequence Data ; Integer Quart)

Returns: Number

Constraints:

● COUNT(Data) > 0

● 0 <= Quart <= 4

Semantics:

● Data The cell range or data array of numeric values.

● Quart The number of the quartile to return.

If Quart = 0, the minimum value is returned, which is equivalent to the MIN() function.

If Quart = 1, the value of the 25th percentile is returned.

If Quart = 2, the value of the 50th percentile is returned, which is equivalent to the MEDIAN()
function.

If Quart = 3, the value of the 75th percentile is returned.

If Quart = 4, the maximum value is returned, which is equivalent to the MAX() function.

Based on the statistical rank of the data points in Data, QUARTILE returns the percentile value
indicated by Quart. The percentile is calculated as Quart divided by 4. An algorithm to calculate
the percentile for a set of data points is given in the definition of PERCENTILE.

See also MAX 8.18.45, MEDIAN 8.18.47, MIN 8.18.48, PERCENTILE 8.18.57, PERCENTRANK
8.18.58, RANK 8.18.65

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 219 of 254

8.18.65 RANK

Summary: R eturns the rank of a number in a list of numbers.

Syntax: RANK(Number Value ; NumberSequenceList Data [; Number Order = 0])

Returns: Number

Constraints: Value shall exist in Data.

Semantics: The RANK function returns the rank of a value within a list.

● Value the number for which to determine the rank.

● Data numbers used to determine the ranking.

● Order specifies how to rank the numbers:
If 0 or omitted, Data is ranked in descending order.
If not 0, Data is ranked in ascending order.

If a number in Data occurs more than once it is given the same rank, but increments the rank for
subsequent different numbers. If Value does not exist in Data an Error is returned.

8.18.66 RSQ

Summary: Returns the square of the Pearson product moment correlation coefficient through
data points in known_y's and known_x's.

Syntax: RSQ(ForceArray Array arrayY ; ForceArray Array arrayX)

Returns: Number

Constraints:

The arguments shall be either numbers or names, arrays, or references that contain numbers.

If an array or reference argument contains Text, Logical values, or empty cells, those values are
ignored; however, cells with the value zero are included.

If "arrayY" and "arrayX" are empty or have a different number of data points, then #N/A is
returned.

COLUMNS(arrayY) = COLUMNS(arrayX), ROWS(arrayY) = ROWS(arrayX)

Semantics: The r-squared value can be interpreted as the proportion of the variance in y
attributable to the variance in x.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 220 of 254

r2=
∑
i=1

N

 y i− y2−∑
i=1

N

 y i− ycalc 
2

∑
i=1

N

 yi− y 2

ycalc=abx
and

a=
 ∑

i=1

N

x i
2  ∑

i=1

N

 y i − ∑
i=1

N

x i  ∑
I=1

N

x i y i
N  ∑

i=1

N

x i
2 − ∑

i=1

N

x i
2

b=
N  ∑

i=1

N

x i yi − ∑
i=1

N

x i  ∑
i=1

N

 y i
N ∑

i=1

N

x i
2 − ∑

i=1

N

x i
2

The result of the RSQ function is the same as PEARSON * PEARSON.

For an empty element or an element of type Text or Boolean in arrayY the element at the
corresponding position of arrayX is ignored, and vice versa.

See also PEARSON 8.18.56

8.18.67 SKEW

Summary: Estimates the skewness of a distribution using a sample set of numbers.

Syntax: SKEW({ NumberSequenceList sample }+)

Returns: Number

Constraints: The sequence shall contain three numbers at least.

Semantics: Estimates the skewness of a distribution using a sample set of numbers.

Given the expectation value x and the standard deviation estimate s , the skewness becomes

v=
N

N−1N−2∑i=1

N  x i−x

s 
3

See also SKEWP 8.18.68

8.18.68 SKEWP

Summary: Calculates the skewness of a distribution using the population of a random variable.

Syntax: SKEWP({ NumberSequence population }+)

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 221 of 254

Returns: Number

Constraints: The sequence shall contain three numbers at least.

Semantics: Calculates the skewness of a distribution using the population, i.e. the possible
outcomes, of a random variable.

Given the expectation value x and the standard deviation  , the skewness becomes

v=
1
N
∑
i=1

N  x i− x

 
3

See also SKEW 8.18.67

8.18.69 SLOPE

Summary: Calculates the slope of the linear regression line.

Syntax: SLOPE(ForceArray Array y ; ForceArray Array x)

Returns: Number

Constraints: COLUMNS(y) = COLUMNS(x), ROWS(y) = ROWS(x), both sequences shall
contain at least one number at corresponding positions each.

Semantics: Calculates the slope of the linear regression line.

a=
∑
i=1

N

x i−x y i− y

∑
i=1

N

x i−x 2

For an empty element or an element of type Text or Boolean in y the element at the
corresponding position of x is ignored, and vice versa.

See also INTERCEPT 8.18.38, STEYX 8.18.76

8.18.70 SMALL

Summary: Finds the nth smallest value in a list.

Syntax: SMALL(NumberSequenceList List ; Integer|Array N)

Returns: Number or Array

Constraints: ROUNDDOWN(N;0)=N, effectively being INT(N)=N for positive numbers. If the
resulting N is <1 or larger than the size of List, Error is returned.

Semantics: If N is an array of numbers, an array of smallest values is returned.

See also LARGE 8.18.40, ROUNDDOWN 8.17.7

8.18.71 STANDARDIZE

Summary: Calculates a normalized value of a random variable.

Syntax: STANDARDIZE(Number value ; Number mean ; Number sigma)

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 222 of 254

Returns: Number

Constraints: sigma > 0

Semantics: Calculates a normalized value of a random variable.

STANDARDIZE=
value−mean

sigma

See also GAUSS 8.18.33

8.18.72 STDEV

Summary: Compute the sample standard deviation of a set of numbers.

Syntax: STDEV({ NumberSequenceList N }+)

Returns: Number

Constraints: At least two numbers shall be included. Returns an Error if less than two Numbers
are provided.

Semantics: Computes the sample standard deviation s, where

s2= 1
n−1

∑
i=1

n

xi− x2

with

x=
1
n
∑
i=1

n

xi

Note that s is not the same as the standard deviation of the set, σ, which uses n rather than n − 1.

See also STDEVP 8.18.74, AVERAGE 8.18.3

8.18.73 STDEVA

Summary: Calculate the standard deviation using a sample set of values, including values of
type Text and Logical.

Syntax: STDEVA({ Any sample }+)

Returns: Number

Constraints: COUNTA(sample) > 1.

Semantics: Unlike the STDEV function, includes values of type Text and Logical. Text values are
treated as number 0. Logical True is treated as 1, and False is treated as 0. Empty cells are not
included.

The handling of string constants as parameters is implementation-defined. Either, string constants
are converted to numbers, if possible and otherwise, they are treated as zero, or string constants
are always treated as zero.

Suppose the resulting sequence of values is x1, x2, …, xn. Then let

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 223 of 254

x=1
n
∑
i=1

n

x i

STDEVA returns

s= 1
n−1∑i=1

n

x i− x2

See also STDEV 8.18.72

8.18.74 STDEVP

Summary: Calculates the standard deviation using the population of a random variable, including
values of type Text and Logical.

Syntax: STDEVP({ NumberSequence N }+)

Returns: Number

Constraints: None.

Semantics: Computes the standard deviation of the set σ, where

 2=1
n
∑
i=1

n

x i−x 2

Note that σ is not the same as the sample standard deviation, s, which uses n − 1 rather than n.

See also STDEV 8.18.72, AVERAGE 8.18.3

8.18.75 STDEVPA

Summary: Calculates the standard deviation using the population of a random variable, including
values of type Text and Logical.

Syntax: STDEVPA({ Any sample }+)

Returns: Number

Constraints: None.

Semantics: Unlike the STDEV function, includes values of type Text and Logical. Text values are
treated as number 0. Logical True is treated as 1, and False is treated as 0. Empty cells are not
included.

Given the expectation value x the standard deviation becomes

 2=1
n
∑
i=1

n

x i−x 2

In the sequence, only Numbers and Logical types are considered; cells with Text are converted to
0; other types are ignored. If Logical types are a distinct type, they are still included, with True
considered 1 and False considered 0. Any sample may be of type ReferenceList.

The handling of string constants as parameters is implementation-defined. Either, string constants
are converted to numbers, if possible and otherwise, they are treated as zero, or string constants
are always treated as zero.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 224 of 254

See also STDEVP 8.18.74

8.18.76 STEYX

Summary: Calculates the standard error of the predicted y value for each x in the regression.

Syntax: STEYX(ForceArray Array measuredY ; ForceArray Array X)

Returns: Number

Constraints: COLUMNS(measuredY) = COLUMNS(X), ROWS(measuredY) = ROWS(X), both
sequences shall contain at least three numbers at corresponding positions each.

Semantics: Calculates the standard error of the predicted y value for each x in the regression.

STEYX=  1
nn−2 n∑n y i

2− ∑n yi 
2
−
 n∑n x i y i−∑

n

x i∑
n

y i
2

n∑
n

x2−∑n x 
2 

For an empty element or an element of type Text or Boolean in measuredY the element at the
corresponding position of X is ignored, and vice versa.

See also INTERCEPT 8.18.38, SLOPE 8.18.69

8.18.77 LEGACY.TDIST

Summary: Returns the area toot the tail or tails of the probability density function of the t-
distribution.

Syntax: LEGACY.TDIST(Number x ; Integer df ; Integer tails)

Returns: Number

Constraints: x≥0, df ≥ 1, tails = 1 or 2

Semantics: Then LEGACY.TDIST returns

tails⋅∫x

∞
f t dt

where

f t =
  df 1

2 
df   df2  

1 t 2

df −
df 1 

2

Note that df denotes the degrees of freedom of the t-distribution and Γ is the Gamma function.

See also BETADIST 8.18.7, BINOMDIST 8.18.10, CHISQDIST 8.18.12, EXPONDIST 8.18.21,
FDIST 8.18.22, GAMMADIST 8.18.31, GAUSS 8.18.33, HYPGEOMDIST 8.18.37,
LOGNORMDIST 8.18.44, NEGBINOMDIST 8.18.51, NORMDIST 8.18.52, POISSON 8.18.62,
WEIBULL 8.18.86

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 225 of 254

8.18.78 TINV

Summary: Calculates the inverse of the two-tailed t-distribution.

Syntax: TINV(Number probability ; Integer degreeOfFreedom)

Returns: Number

Constraints: 0 < probability <= 1, degreeOfFreedom >= 1

Semantics: Calculates the inverse of the two-tailed t-distribution.

See also LEGACY.TDIST 8.18.77

8.18.79 TREND

Summary: Returns predicted values based on a simple or multiple linear regressionCalculates a
sequence of values based on a linear regression of known value pairs.

Syntax: TREND(Array knownY [; [Array knownX] [; [Array newX] [; Logical
ConsNumberSequence knownY [; [NumberSequence knownX] [; [NumberSequence newX] [;
Logical allowOffset = TRUE()]]])

Returns: Array

Constraints: (COLUMNS(knownY) = COLUMNS(knownX) and ROWS(knownY) =
ROWS(knownX)) or (COLUMNS(knownY) = 1 and ROWS(knownY) = ROWS(knownX) and
COLUMNS(knownX) = COLUMNS(newX)) or (COLUMNS(knownY) = COLUMNS(knownX) and
ROWS(knownY) = 1 and ROWS(knownX) = ROWS(newX)COUNT(knownY) = COUNT(knownX),
COLUMNS(knownY) = COLUMNS(knownX), ROWS(knownY) = ROWS(knownX)

Semantics: Calculates a sequence of values based on a linear regression of known value
pairs.

knownY: The set of known y-values to be used to determine the regression equation

knownX: The set of known x-values to be used to determine the regression equation. If omitted or

an empty parameter, it is set to the sequence 1,2,3,…, k , where
k=ROWS(knownY)⋅COLUMNS(knownY) .

newX: The set of x-values for which predicted
̂
y -values are to be calculated. If omitted or an

empty parameter, it is set to knownX.

Const: If set to FALSE(), the model constant a is equal to 0.

LINEST(knownY; knownX; Const; FALSE()) either returns an error an array with 1 row and n+1
columns. If it returns an error then so does TREND. If it returns an array, we call the entries in

that array bn , bn−1 ,…, b1, a .

Let z i j denote the entry in the ith row and jth column of newX.

If COLUMNS(knownY) = COLUMNS(knownX) and ROWS(knownY) = ROWS(knownX), then
TREND returns an array with ROWS(newX) rows and COLUMNS(newX) column, such that the

entry in its ith row and jth column is a+b1⋅zi j .

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 226 of 254

Otherwise, if COLUMNS(knownY) = 1 and ROWS(knownY) = ROWS(knownX) and
COLUMNS(knownX) = COLUMNS(newX), then TREND returns an array with ROWS(newX) rows

and 1 column, such that the entry in the ith row is
a+∑

j=1

n

b j⋅zi j
.

Otherwise, if COLUMNS(knownY) = COLUMNS(knownX) and ROWS(knownY) = 1 and
ROWS(knownX) = ROWS(newX), then TREND returns an array with 1 row and

COLUMNS(newX) columns, such that the entry in the jth column is
a+∑

i=1

n

bi⋅z i j
.

If knownX is omitted or an empty parameter (two consecutive ;; semicolons), it is set to the

sequence Object 424 , where Object 433 .

If newX is omitted or an empty parameter (two consecutive ;; semicolons), it is set to be equal to
knownX.

If allowOffset is TRUE:

Object 434

If allowOffset is FALSE:

See also INTERCEPT 8.18.38, SLOPE 8.18.69 , STEYX 8.18.76

8.18.80 TRIMMEAN

Summary: Returns the mean of a data set, ignoring a proportion of high and low values.

Syntax: TRIMMEAN(NumberSequenceList dataSet ; Number cutOffFraction)

Returns: Number

Constraints: 0 ≤ cutOffFraction < 1

Semantics: Returns the mean of a data set, ignoring a proportion of high and low values.

Let n denote the number of elements in the data set and let

sortedDataSet 1, sortedDataSet2, sortedDataSet3,…, sortedDataSetn

be the values in the data set sorted in ascending order. Moreover let

cutOff =INT  n⋅cutOffFraction2 
Then TRIMMEAN returns the value

1
n−2⋅cutOff ∑

i=cutOff1

n−cutOff

sortedDataSeti

See also AVERAGE 8.18.3 , GEOMEAN 8.18.34 , HARMEAN 8.18.36

8.18.81 TTEST

Summary: Calculates the p-value of a 2-sample t-test.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 227 of 254

Syntax: TTEST(ForceArray Array X ; ForceArray Array Y ; Integer tails ; Integer type)

Returns: Number

Constraints: COUNT(X)>1, COUNT(Y)>1, tails = 1 or 2, type = 1,2, or 3,
(COUNT(X)=COUNT(Y) or type ≠1)

COLUMNS(X) = COLUMNS(Y), ROWS(X) = ROWS(Y)

Semantics: Let X1, X2, …,Xn be the numbers in the sequence X and Y1, Y2, …,Ym be the
numbers in the sequence Y. Then

X=
1
n∑i=1

n
X i

and

Y=
1
m∑i=1

m
Y i

Moreover let

s X
2 =

1
n−1∑i=1

n
X i−X 2

sY
2=

1
m−1∑i=1

m
Y i−Y 2

and

f x , df =
  df1

2 
df   df2  

1
x2

df −
df 1

2

where Γ is the Gamma function.

(1) If type = 1, TTEST calculates the p-value for a paired-sample comparison of means test.
Note that in this case due to the above constraints n=m. With

s X−Y
2 =

1
n−1∑i=1

n
X i−Y i−X−Y 2

and

t=∣X −Y

 s X−Y
2

 n∣
TTEST returns

tails⋅∫t

∞
f x , n−1dx

(2) If type = 2, TTEST calculates the p-value of a comparison of means for independent
samples from populations with equal variance. With

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 228 of 254

s p
2=

n−1 sX
2m−1 sY

2

nm−2

and

t=∣ X−Y

s p2  1
n


1
m
∣

TTEST returns

tails⋅∫t

∞
f x , nm−2dx

(3) If type = 3, TTEST calculates the p-value of a comparison of means for independent
samples from populations with not necessarily equal variances. With

t=∣ X−Y

 s X2n  sY
2

m
∣

and

v=

S X

2

n


SY
2

m

2


S X

2

n

2

n−1


SY

2

m

2

m−1

TTEST returns

tails⋅∫t

∞
f x , v dx

For an empty element or an element of type Text or Boolean in X the element at the
corresponding position of Y is ignored, and vice versa.

See also FTEST 8.18.30, LEGACY.TDIST 8.18.77, ZTEST 8.18.87

8.18.82 VAR

Summary: Compute the sample variance of a set of numbers.

Syntax: VAR({ NumberSequence N }+)

Returns: Number

Constraints: At least two numbers shall be included. Returns an Error if less than two Numbers
are provided.

Semantics: Computes the sample variance s2, where

s2=
1

n−1
∑
i=1

n

x i−x 2=
1

n−1 ∑i=1

n

x i
2−n x2

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 229 of 254

Note that s2 is not the same as the variance of the set, σ2, which uses n rather than n − 1.

See also VARP 8.18.84, STDEV 8.18.72, AVERAGE 8.18.3

8.18.83 VARA

Summary: Estimates the variance using a sample set of values, including values of type Text and
Logical.

Syntax: VARA({ Any sample }+)

Returns: Number

Constraints: The sequence shall contain two numbers at least.

Semantics: Unlike the VAR function, includes values of type Text and Logical. Text values are
treated as number 0. Logical True is treated as 1, and False is treated as 0. Empty cells are not
included.

Given the expectation value x the estimated variance becomes

s2=
1

n−1
∑
i=1

n

x i−x 2=
1

n−1 ∑i=1

n

x i
2−n x2

In the sequence, only Numbers and Logical types are considered; cells with Text are converted to
0; other types are ignored. If Logical types are a distinct type, they are still included, with True
considered 1 and False considered 0. Any sample may be of type ReferenceList.

The handling of string constants as parameters is implementation-defined. Either, string constants
are converted to numbers, if possible and otherwise, they are treated as zero, or string constants
are always treated as zero.

See also VAR 8.18.82

8.18.84 VARP

Summary: Compute the variance of the set for a set of numbers.

Syntax: VARP({ NumberSequence N }+)

Returns: Number

Constraints: COUNT(N)>=1

Semantics: Computes the variance of the set σ2, where

 2=
1
n
∑
i=1

n

x i− x2=
1
n ∑i=1

n

x i
2−n x2

Note that σ2 is not the same as the sample variance, s2, which uses n − 1 rather than n.

If only one number is provided, returns 0.

See also VAR 8.18.82, STDEVP 8.18.74, AVERAGE 8.18.3

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 230 of 254

8.18.85 VARPA

Summary: Calculates the variance using the population of the distribution, including values of
type Text and Logical.

Syntax: VARPA({ Any sample }+)

Returns: Number

Constraints: None

Semantics: Unlike the VARP function, includes values of type Text and Logical. Text values are
treated as number 0. Logical True is treated as 1, and False is treated as 0. Empty cells are not
included.

Given the expectation value x the variance becomes

 2=
1
n
∑
i=1

n

x i− x2=
1
n ∑i=1

n

x i
2−n x2

In the sequence, only Numbers and Logical types are considered; cells with Text are converted to
0; other types are ignored. If Logical types are a distinct type, they are still included, with True
considered 1 and False considered 0. Any sample may be of type ReferenceList.

The handling of string constants as parameters is implementation-defined. Either, string constants
are converted to numbers, if possible and otherwise, they are treated as zero, or string constants
are always treated as zero.

See also VARP 8.18.84

8.18.86 WEIBULL

Summary: Calculates the Weibull distribution.

Syntax: WEIBULL(Number value ; Number alpha ; Number beta ; Logical cumulative)

Returns: Number

Constraints: value >= 0; shape > 0; scale > 0

Semantics: Calculates the Weibull distribution at the position value.

If cumulative is false, the probability density function is calculated:

shape
scale  valuescale 

shape−1

e
− valuescale 

shape

If cumulative is true, the cumulative distribution function is calculated:

1−e
− valuescale 

shape

See also BETADIST 8.18.7, BINOMDIST 8.18.10, CHISQDIST 8.18.12, EXPONDIST 8.18.21,
FDIST 8.18.22, GAMMADIST 8.18.31, GAUSS 8.18.33, HYPGEOMDIST 8.18.37,
LOGNORMDIST 8.18.44, NEGBINOMDIST 8.18.51, NORMDIST 8.18.52, POISSON 8.18.62,
LEGACY.TDIST 8.18.77

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 231 of 254

8.18.87 ZTEST

Summary: Calculates the probability of observing a sample mean as large or larger than the
mean of the given sample for samples drawn from a normal distribution.

Syntax: ZTEST(NumberSequenceList sample ; Number mean [; Number sigma])

Returns: Number

Constraints: The sequence sample shall contain at least two numbers.

Semantics: Calculates the probability of observing a sample mean as large or larger than the
mean of the given sample for samples drawn from a normal distribution with the given mean
mean and the given standard deviation sigma. If sigma is omitted, it is estimated from sample,
using STDEV. With sample being the mean of sample and

z=
sample−mean

sigma
n

ZTEST returns

P  z≤Z = 1

2
∫
z

∞

e
− x2

2 dx

See also FTEST 8.18.30, TTEST 8.18.81

8.19 Number Representation Conversion Functions

8.19.1 General

These functions convert between different representations of numbers, such as between different
bases and Roman numerals.

The base conversion functions xxx2BIN (such as DEC2BIN), xxx2OCT, and xxx2HEX functions
return Text, while the xxx2DEC functions return Number. All of the xxx2yyy functions accept either
Text or Number, though a Number is interpreted as the digits when printed in base 10. These are
intended to support relatively small numbers, and have a somewhat convoluted interface and
semantics, as described in their specifications. General base conversion capabilities are provided
by BASE and DECIMAL.

As an argument for the HEX2xxx functions, a hexadecimal number is any string consisting solely
of the characters "0","1" to "9", "a" to "f" and "A" to "F". The hexadecimal output of an xxx2HEX
function shall_shall_ be a string consisting solely of the characters "0","1" to "9" (U+0030
through U+0039), "a" to "f" (U+0061 through U+0066) and "A" to "F" (U+0041 through U+0046),
and should be a string consisting solely of the characters "0","1" to "9" and "A" to "F". In both
cases, the 40th bit (from the right) is considered a sign bit.

8.19.2 ARABIC

Summary: Convert Roman numerals to Number.

Syntax: ARABIC(Text X)

Returns: Number

Constraints: X shall contain Roman numerals, or an empty string.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 232 of 254

Semantics: Converts the Roman numeral to Number. This is the reverse of ROMAN; see
ROMAN for the values of individual Roman numeral symbols. A Roman symbol to the left of a
larger symbol (directly or indirectly) reduces the final value by the symbol amount, otherwise, it
increases the final amount by the symbol's amount. Case is ignored.

The characters accepted are U+004D "M", U+0044 "D", U+0043 "C", U+004C "L", U+0058 "X",
U+0056 "V", U+0049 "I", U+006D "m", U+0064 "d", U+0063 "c", U+006C "l", U+0078 "x", U+0076
"v", U+0069 "i" .

The following identity shall hold: ARABIC(ROMAN(x; any)) = x, when ROMAN(x; any) is not an
Error.

If X is an empty string, 0 is returned.

See also Infix Operator "&" 8.4.10, ROMAN 8.19.17

8.19.3 BASE

Summary: Converts a number into a text representation with the given base.

Syntax: BASE(Integer X ; Integer Radix [; Integer MinimumLength])

Returns: Text

Constraints: X ≥ 0, 2 ≤ Radix ≤ 36, MinimumLength ≥ 0

Semantics: Converts number X into text that represents the value of X in base Radix. The
symbols 0-9 (U+0030 through U+0039), then upper case A-Z (U+0041 through U+005A) are used
as digits. Thus, BASE(45745;36) returns “ZAP”.

If MinimumLength is not supplied, the generated text uses the smallest number of characters (i.e.,
it does not add leading 0s). If MinimumLength is supplied, and the resulting text would normally
be smaller than MinimumLength, leading 0s are added to produce text exactly MinimumLength
characters long. If the text is longer than the MinimumLength argument, the MinimumLength
parameter is ignored.

See also DECIMAL 8.19.10

8.19.4 BIN2DEC

Summary: Converts a binary (base 2) number (up to 10 digits) to its decimal equivalent

Syntax: BIN2DEC(TextOrNumber X)

Returns: Number

Constraints: X shall contain only binary digits (no space or other characters), and shall contain
at least one binary digit. When considered as a Number, INT(X)=X. Evaluators may evaluate
expressions where the digits in X are only 0 or 1, no more than 10 digits.

Semantics: Converts given binary number into decimal equivalent, with the topmost 10th digit
being the sign bit (using a two's complement representation). If given Text, the text is considered
a binary number representation. If given a Number, the digits of the number when printed as base
10 are considered the digits of the equivalently-represented binary number. It is implementation-
defined what happens if given a Logical value; an evaluator may produce an Error, or it may
convert the Logical to Number (per “Convert to Number”) and then process as a Number.

If any digits are 2 through 9, an evaluator shall return an Error. It is implementation-defined what
happens if an evaluator is given an empty string; evaluators may return an Error or 0 in such
cases.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 233 of 254

8.19.5 BIN2HEX

Summary: Converts a binary (base 2) number (10th bit is sign) to its hexadecimal equivalent

Syntax: BIN2HEX(TextOrNumber X [; Number Digits])

Returns: Text

Constraints: X shall contain only binary digits (no space or other characters), and shall contain
at least one binary digit. When considered as a Number, INT(X)=X. Evaluators may evaluate
expressions where the digits in X are only 0 or 1, no more than 10 digits.

Semantics: Converts given binary number into hexadecimal (base 16) equivalent. For input
value X, the topmost 10th digit is considered the sign bit (using a two's complement
representation). If given Text, the text is considered a binary number representation. If given a
Number, the digits of the number when printed as base 10 are considered the digits of the
equivalently-represented binary number. It is implementation-defined what happens if given a
Logical value; an evaluator may produce an Error, or it may convert the Logical to Number (per
“Convert to Number”) and then process as a Number.

If any digits in X are 2 through 9, an evaluator shall return an Error. It is implementation-defined
what happens if an evaluator is given an empty string; evaluators may return an Error or 0 in such
cases.

The resulting value is a hexadecimal value, up to 10 hexadecimal digits, with the topmost bit (40th

bit) being the sign bit and in two's complement form. The digits A through F are in uppercase. If
the input has its 10th bit on, the Digits argument is ignored; otherwise, the Digits indicates the
number of digits in the output, with leading 0 digits added as necessary to bring it up to that
number of digits. If there are more digits required than the Digits parameter specifies, the results
are implementation-defined.

8.19.6 BIN2OCT

Summary: Converts a binary (base 2) number (10th bit is sign) to its octal (base 8) equivalent

Syntax: BIN2OCT(TextOrNumber X [; Number Digits])

Returns: Text

Constraints: X shall contain only binary digits (no space or other characters), and shall contain
at least one binary digit. When considered as a Number, INT(X)=X. Evaluators may evaluate
expressions where the digits in X are only 0 or 1, no more than 10 digits.

Semantics: Converts given binary number into octal (base 8) equivalent. For input value X, the
topmost 10th digit is considered the sign bit (using a two's complement representation). If given
Text, the text is considered a binary number representation. If given a Number, the digits of the
number when printed as base 10 are considered the digits of the equivalently-represented binary
number. It is implementation-defined what happens if given a Logical value; an evaluator may
produce an Error, or it may convert the Logical to Number (per “Convert to Number”) and then
process as a Number.

If any digits in X are 2 through 9, an evaluator shall return an Error. It is implementation-defined
what happens if an evaluator is given an empty string; evaluators may return an Error or 0 in such
cases.

The resulting value is an octal value, up to 10 octal digits, with the topmost bit (30th bit) being the
sign bit and in two's complement form. If the input has its 10th bit on, the Digits argument is
ignored; otherwise, the Digits indicates the number of digits in the output, with leading 0 digits
added as necessary to bring it up to that number of digits. If there are more digits than specified
by the Digits parameter, its results are implementation-defined.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 234 of 254

8.19.7 DEC2BIN

Summary: Converts a decimal number to base 2 (whose 10th bit is sign)

Syntax: DEC2BIN(TextOrNumber X [; Number Digits])

Returns: Text

Constraints: X shall contain only decimal digits (no space or other characters), and shall contain
at least one decimal digit. When considered as a Number, INT(X)=X. Evaluators may evaluate
expressions where -512 <= X <= 511.

Semantics: Converts given number into binary (base 2) equivalent. If given Text, the text is
considered a decimal number representation, and may have a leading minus sign. It is
implementation-defined what happens if given a Logical value; an evaluator may produce an
Error, or it may convert the Logical to Number (per “Convert to Number”) and then process as a
Number.

The resulting value is a binary value, up to 10 digits, with the topmost bit (10th bit) being the sign
bit and in two's complement form. If the input is negative, the Digits argument is ignored;
otherwise, the Digits indicates the number of digits in the output, with leading 0 digits added as
necessary to bring it up to that number of digits. If there are more digits than specified by the
Digits parameter, the results are implementation-defined.

8.19.8 DEC2HEX

Summary: Converts a decimal number to base 16 (whose 40th bit is sign)

Syntax: DEC2HEX(TextOrNumber X [; Number Digits])

Returns: Text

Constraints: X shall contain only decimal digits (no space or other characters), and shall contain
at least one decimal digit. When considered as a Number, INT(X)=X. Evaluators may evaluate
expressions where -239<= X <= 239-1.

Semantics: Converts given number into hexadecimal (base 16) equivalent. If given Text, the text
is considered a decimal number representation, and may have a leading minus sign. It is
implementation-defined what happens if given a Logical value; an evaluator may produce an
Error, or it may convert the Logical to Number (per “Convert to Number”) and then process as a
Number.

The resulting value is a hexadecimal value, up to 10 digits, with the topmost bit (40th bit) being the
sign bit and in two's complement form. If the input is negative, the Digits argument is ignored;
otherwise, the Digits indicates the number of digits in the output, with leading 0 digits added as
necessary to bring it up to that number of digits. If there are more digits than specified by the
Digits parameter, the results are implementation-defined.

8.19.9 DEC2OCT

Summary: Converts a decimal number to base 8 (whose 30th bit is sign)

Syntax: DEC2OCT(TextOrNumber X [; Number Digits])

Returns: Text

Constraints: X shall contain only decimal digits (no space or other characters), and shall contain
at least one decimal digit. When considered as a Number, INT(X)=X. Evaluators may evaluate
expressions where -229<= X <= 229-1.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 235 of 254

Semantics: Converts given number into octal (base 8) equivalent. If given Text, the text is
considered a decimal number representation, and may have a leading minus sign. It is
implementation-defined what happens if given a Logical value; an evaluator may produce an
Error, or it may convert the Logical to Number (per “Convert to Number”) and then process as a
Number.

The resulting value is a octal value, up to 10 digits, with the topmost bit (30th bit) being the sign bit
and in two's complement form. If the input is negative, the Digits argument is ignored; otherwise,
the Digits indicates the number of digits in the output, with leading 0 digits added as necessary to
bring it up to that number of digits. If there are more digits than specified by the Digits parameter,
the results are implementation-defined.

See also OCT2DEC

8.19.10 DECIMAL

Summary: Converts text representing a number in a given base into a base 10 number.

Syntax: DECIMAL(Text X ; Integer Radix)

Returns: Number

Constraints: 2 ≤ Radix ≤ 36

Semantics: Converts text X in base Radix to a Number. Uppercase letters (U+0041 through
U+005A) and lowercase letters (U+0061 through U+007A) are both accepted as equivalent if
Radix > 10. Thus, DECIMAL("zap";36) and DECIMAL("ZAP";36) both compute 45745.

An Error is returned if X has characters that do not belong in base Radix. However, leading
spaces and tabs in X are always ignored. If Radix is 16, a leading regular expression “0?[Xx]” is
ignored, as is a trailing letter H or h. If Radix is 2, the letter b or B at the end is ignored (if
present).

See also BASE 8.19.3

8.19.11 HEX2BIN

Summary: Converts a hexadecimal number (40th bit is sign) to base 2 (whose 10th bit is sign)

Syntax: HEX2BIN(TextOrNumber X [; Number Digits])

Returns: Text

Constraints: X shall contain only hexadecimal digits (no space or other characters), and shall
contain at least one hexadecimal digit. When considered as a Number, INT(X)=X. Evaluators may
evaluate expressions where X is considered in base 10, -512 <= X <= 511.

Semantics: Converts given hexadecimal number into binary (base 2) equivalent. If given Text,
the text is considered a hexadecimal number representation; if its 40th bit is 1, it is considered a
negative number. It is implementation-defined what happens if given a Logical value; an evaluator
may produce an Error, or it may convert the Logical to Number (per “Convert to Number”) and
then process as a Number.

The resulting value is a binary value, up to 10 digits, with the topmost bit (10th bit) being the sign
bit and in two's complement form. If the input is negative (40th bit is 1), the Digits argument is
ignored; otherwise, the Digits indicates the number of digits in the output, with leading 0 digits
added as necessary to bring it up to that number of digits. If there are more digits than specified
by the Digits parameter, the results are implementation-defined.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 236 of 254

8.19.12 HEX2DEC

Summary: Converts a hexadecimal number (40th bit is sign) to decimal

Syntax: HEX2DEC(TextOrNumber X)

Returns: Number

Constraints: X shall contain only hexadecimal digits (no space or other characters), and shall
contain at least one hexadecimal digit. When considered as a Number, INT(X)=X. Evaluators may
evaluate expressions where X shall have 1 though 10 (inclusive) hexadecimal digits.

Semantics: Converts given hexadecimal number into decimal equivalent. If given Text, the text is
considered a hexadecimal number representation. If X's 40th bit is 1, it is considered a negative
number. It is implementation-defined what happens if given a Logical value; an evaluator may
produce an Error, or it may convert the Logical to Number (per “Convert to Number”) and then
process as a Number.

The resulting value is a decimal number.

8.19.13 HEX2OCT

Summary: Converts a hexadecimal number (40th bit is sign) to base 8 (whose 30th bit is sign)

Syntax: HEX2OCT(TextOrNumber X [; Number Digits])

Returns: Text

Constraints: X shall contain hexadecimal digits (no spaces or other characters), and shall
contain at least one hexadecimal digit. When considered as Number, INT(X)=X. Evaluators may
evaluate expressions where X has 1 to 10 (inclusive) hexadecimal digits, base 10 value of X is -2
29 < X < 2 29 -1.

Semantics: Converts given hexadecimal number into octal (base 8) equivalent. If given Text, the
text is considered a hexadecimal number representation; if its 40th bit is 1, it is considered a
negative number. It is implementation-defined what happens if given a Logical value; an evaluator
may produce an Error, or it may convert the Logical to Number (per “Convert to Number”) and
then process as a Number.

The resulting value is an octal value, up to 10 digits, with the topmost bit (10th bit) being the sign
bit and in two's complement form. If the input is negative (40th bit is 1), the Digits argument is
ignored; otherwise, the Digits indicates the number of digits in the output, with leading 0 digits
added as necessary to bring it up to that number of digits. If there are more digits than specified
by the Digits parameter, the results are implementation-defined.

8.19.14 OCT2BIN

Summary: Converts an octal number (30th bit is sign) to base 2 (whose 10th bit is sign)

Syntax: OCT2BIN(TextOrNumber X [; Number Digits])

Returns: Text

Constraints: X shall contain only octal digits (no space or other characters), and shall contain at
least one octal digit. When considered as a Number, INT(X)=X. Evaluators may evaluate
expressions where X is considered in base 10, -512 <= X <= 511.

Semantics: Converts given octal (base 8) number into binary (base 2) equivalent. If given Text,
the text is considered an octal number representation; if its 30th bit is 1, it is considered a negative
number. It is implementation-defined what happens if given a Logical value; an evaluator may

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 237 of 254

produce an Error, or it may convert the Logical to Number (per “Convert to Number”) and then
process as a Number.

The resulting value is a binary value, up to 10 digits, with the topmost bit (10th bit) being the sign
bit and in two's complement form. If the input is negative (30th bit is 1), the Digits argument is
ignored; otherwise, the Digits indicates the number of digits in the output, with leading 0 digits
added as necessary to bring it up to that number of digits. If there are more digits than specified
by the Digits parameter, the results are implementation-defined.

8.19.15 OCT2DEC

Syntax: OCT2DEC(TextOrNumber X)

Summary: Converts an octal number (30th bit is sign) to decimal

Returns: Number

Constraints: X shall contain only octal digits (no space or other characters), and shall contain at
least one octal digit. When considered as a Number, INT(X)=X. Evaluators may evaluate
expressions where X shall have 1 though 10 (inclusive) octal digits.

Semantics: Converts given octal number into decimal equivalent. If given Text, the text is
considered a octal number representation. If X's 30th bit is 1, it is considered a negative number. It
is implementation-defined what happens if given a Logical value; an evaluator may produce an
Error, or it may convert the Logical to Number (per “Convert to Number”) and then process as a
Number.

The resulting value is a decimal number.

8.19.16 OCT2HEX

Summary: Converts an octal number (30th bit is sign) to hexadecimal (whose 40th bit is sign)

Syntax: OCT2HEX(TextOrNumber X [; Number Digits])

Returns: Text

Constraints: X shall contain only octal digits (no space or other characters), and shall contain at
least one octal digit. When considered as a Number, INT(X)=X. Evaluators may evaluate
expressions where X shall have 1 to 10 (inclusive) octal digits.

Semantics: Converts given octal (base 8) number into hexadecimal (base 16) equivalent. If given
Text, the text is considered an octal number representation; if its 30th bit is 1, it is considered a
negative number. It is implementation-defined what happens if given a Logical value; an evaluator
may produce an Error, or it may convert the Logical to Number (per “Convert to Number”) and
then process as a Number.

The resulting value is a hexadecimal value, up to 10 digits, with the topmost bit (40th bit) being the
sign bit and in two's complement form. If the input is negative (30th bit is 1), the Digits argument is
ignored; otherwise, the Digits indicates the number of digits in the output, with leading 0 digits
added as necessary to bring it up to that number of digits. If there are more digits than specified
by the Digits parameter, the results are implementation-defined.

8.19.17 ROMAN

Summary: Convert to Roman numerals

Syntax: ROMAN(Integer N [; Integer Format = 0])

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 238 of 254

Returns: Text

Constraints: N>=0, N<4000, 0 <= Format <= 4, ISLOGICAL(1) or NOT(ISLOGICAL(Format))

Semantics: Return the Roman numeral representation of N. “Format” specifies the level of
conciseness, and defaults to 0, the classic representation, with larger numbers requiring
increasing conciseness.

To supcport legacy documents, evaluators with Logical types that are distinct from Number may
accept the format parameter as a scalar, and accept TRUE() specifying format 0, and FALSE()
specifying format 4.

The following identity shall hold: ARABIC(ROMAN(x; any)) = x, when ROMAN(x; any) is not an
Error.

If N is 0, an empty string is returned.

Table 34 - ROMAN lists the values of individual roman numerals; roman numerals that precede
(directly or indirectly) a larger-valued roman number subtract their value from the final value.

Table 34 - ROMAN

Roman
Numeral

Value Unicode
Code Point

I 1 U+0049

V 5 U+0056

X 10 U+0058

L 50 U+004C

C 100 U+0043

D 500 U+0044

M 1000 U+004D

Roman Numeral Value

I 1

V 5

X 10

L 50

C 100

D 500

M 1000

Evaluators that accept 0 as a value of N should return the string “0”. Evaluators that accept
negative values of N should include a negative sign (“-”) as the first character.

The Format levels are:

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 239 of 254

Table 35 - ROMAN

Format Meaning

0
or omitted
(or TRUE)

Only subtract powers of 10, not L or V, and only if the next
number is not more than 10 times greater. A number
following the larger one shall be smaller than the
subtracted number. Also known as classic.

1 Powers of 10, and L and V may be subtracted, only if the
next number is not more than 10 times greater. A number
following the larger one shall be smaller than the
subtracted number.

2 Powers of 10 and L, but not V, may be subtracted, also if
the next number is more than 10 times greater. A number
following the larger one shall be smaller than the
subtracted number.

3 Powers of 10, and L and V may be subtracted, also if the
next number is more than 10 times greater. A number
following the larger one shall be smaller than the
subtracted number.

4
(or FALSE)

Produce the fewest Roman digits possible. Also known as
simplified.

See also Infix Operator "&" 8.4.10, ARABIC 8.19.2

8.20 Text Functions

8.20.1 General

8.20.2 ASC

Summary: Converts full-width to half-width ASCII and katakana characters.

Syntax: ASC(Text T)

Returns: Text

Constraints: None

Semantics: Conversion is done for full-width ASCII and [UNICODE] katakana characters, some
characters are converted in a special way, see table below. Other characters are copied from T to
the result. This is the complementary function to JIS.

The percent sign % in the conversion table below denotes the modulo operation. A followed by
means that a character is converted to two consecutive characters.

Table 36 - ASC

From Unicode Character (c) To Unicode Character Comment

U+30a1 <= c <= U+30aa
if c%2==0

(c - 0x30a2) / 2 + 0xff71 katakana a-o

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 240 of 254

From Unicode Character (c) To Unicode Character Comment

U+30a1 <= c <= U+30aa
if c%2==1

(c - 0x30a1) / 2 + 0xff67 katakana small a-o

U+30ab <= c <= U+30c2
if c%2==1

(c - 0x30ab) / 2 + 0xff76 katakana ka-chi

U+30ab <= c <= U+30c2
if c%2==0

(c - 0x30ac) / 2 + 0xff76
followed by 0xff9e

katakana ga-dhi

U+30c3 0xff6f katakana small tsu

U+30c4 <= c <= U+30c9
if c%2==0

(c - 0x30c4) / 2 + 0xff82 katakana tsu-to

U+30c4 <= c <= U+30c9
if c%2==1

(c - 0x30c5) / 2 + 0xff82
followed by 0xff9e

katakana du-do

U+30ca <= c <= U+30ce c - 0x30ca + 0xff85 katakana na-no

U+30cf <= c <= U+30dd
if c%3==0

(c - 0x30cf) / 3 + 0xff8a katakana ha-ho

U+30cf <= c <= U+30dd
if c%3==1

(c - 0x30d0) / 3 + 0xff8a
followed by 0xff9e

katakana ba-bo

U+30cf <= c <= U+30dd
if c%3==2

(c - 0x30d1) / 3 + 0xff8a
followed by 0xff9f

katakana pa-po

U+30de <= c <= U+30e2 c - 0x30de + 0xff8f katakana ma-mo

U+30e3 <= c <= U+30e8
if c%2==0

(c - 0x30e4) / 2 + 0xff94) katakana ya-yo

U+30e3 <= c <= U+30e8
if c%2==1

(c - 0x30e3) / 2 + 0xff6c katakana small ya-yo

U+30e9 <= c <= U+30ed c - 0x30e9 + 0xff97 katakana ra-ro

U+30ef U+ff9c katakana wa

U+30f2 U+ff66 katakana wo

U+30f3 U+ff9d katakana nn

U+ff01 <= c <= U+ff5e c - 0xff01 + 0x0021 ASCII characters

U+2015 U+ff70 HORIZONTAL BAR =>
HALFWIDTH KATAKANA-
HIRAGANA PROLONGED
SOUND MARK

U+2018 U+0060 LEFT SINGLE QUOTATION
MARK => GRAVE ACCENT

U+2019 U+0027 RIGHT SINGLE QUOTATION
MARK => APOSTROPHE

U+201d U+0022 RIGHT DOUBLE QUOTATION

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 241 of 254

From Unicode Character (c) To Unicode Character Comment

MARK => QUOTATION MARK

U+3001 U+ff64 IDEOGRAPHIC COMMA

U+3002 U+ff61 IDEOGRAPHIC FULL STOP

U+300c U+ff62 LEFT CORNER BRACKET

U+300d U+ff63 RIGHT CORNER BRACKET

U+309b U+ff9e KATAKANA-HIRAGANA
VOICED SOUND MARK

U+309c U+ff9f KATAKANA-HIRAGANA SEMI-
VOICED SOUND MARK

U+30fb U+ff65 KATAKANA MIDDLE DOT

U+30fc U+ff70 KATAKANA-HIRAGANA
PROLONGED SOUND MARK

U+ffe5 U+005c FULLWIDTH YEN SIGN =>
REVERSE SOLIDUS "\"

Note 1: The "\" (REVERSE SOLIDUS, U+005C) is a specialty that gets displayed as a Yen sign
with some Japanese fonts, which is a legacy of code-page 932.

Note 2: For references regarding halfwidth and fullwidth characters see [UAX11] and the
Halfwidth and Fullwidth Code Chart of [UNICODE].

Note 3: For information about the mapping of JIS X 0201 and JIS X 0208 to Unicode characters
see [JISX0201] and [JISX0208].

See also JIS 8.20.11

8.20.3 CHAR

Summary: Return character represented by the given numeric value

Syntax: CHAR(Number N)

Returns: Text

Constraints: N <= 127; Evaluators may evaluate expressions where N >= 1, N <= 255.

Semantics:

Returns character represented by the given numeric value.

Evaluators should return an Error if N > 255.

Evaluators should implement CHAR such that CODE(CHAR(N)) returns N for any 1 <= N <= 255.

Note 1: Beyond 127, some evaluators return a character from a system-specific code page, while
others return the [UNICODE] character. Most evaluators do not allow values greater than 255.

Note 2: Where interoperability is a concern, expressions should use the UNICHAR function.
8.20.25

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 242 of 254

See also CODE 8.20.5, UNICHAR 8.20.25, UNICODE 8.20.26

8.20.4 CLEAN

Summary: Remove all non-printable characters from the string and return the result.

Syntax: CLEAN(Text T)

Returns: Text

Semantics:

Removes all non-printable characters from the string T and returns the resulting string. Evaluators
should remove each particular character from the string, if and only if the character belongs to
[UNICODE] class Cc (Other - Control), or to Unicode class Cn (Other - Not Assigned). The
resulting string shall contain all printable characters from the original string, in the same order.
The space character is considered a printable character.

8.20.5 CODE

Summary: Return numeric value corresponding to the first character of the text value.

Syntax: CODE(Text T)

Returns: Number

Constraints: code point <= 127 (ASCII).; Evaluators may evaluate expressions where Length(T)
> 0.

Semantics:

Returns a numeric value which represents the first letter of the given text T.

Behavior for code points >= 128 is implementation-defined. Evaluators may use the underlying
system's code page. Evaluators should implement CODE such that CODE(CHAR(N)) returns N
for 1 <= N <= 255.

Note: Where interoperability is a concern, expressions should use the UNICODE function.
8.20.26

See also CHAR 8.20.3, UNICHAR 8.20.25, UNICODE 8.20.26

8.20.6 CONCATENATE

Summary: Concatenate the text strings

Syntax: CONCATENATE({ Text T }+)

Returns: Text

Constraints: None

Semantics: Concatenate each text value, in order, into a single text result.

See also Infix Operator "&" 8.4.10

8.20.7 DOLLAR

Summary: Convert the parameters to Text formatted as currency.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 243 of 254

Syntax: DOLLAR(Number N [; Integer D])

Returns: Text

Constraints: None

Semantics: Returns the value formatted as a currency, using locale-specific data. D is the
number of decimal places used in the result string, a negative D rounds number N. If D is omitted,
locale information may be used to determine the currency's decimal places, or a value of 2 shall
be assumed.

8.20.8 EXACT

Summary: Report if two text values are equal using a case-sensitive comparison .

Syntax: EXACT(Text t1 ; Text t2)

Returns: Logical

Constraints: None

Semantics: Converts both sides to Text, and then returns TRUE if the two text values are equal,
including case, otherwise it returns FALSE.

See also FIND 8.20.9, SEARCH 8.20.20, Infix Operator "<>" 8.4.8, Infix Operator "=" 8.4.7

8.20.9 FIND

Summary: Return the starting position of a given text.

Syntax: FIND(Text Search ; Text T [; Integer Start = 1])

Returns: Number

Constraints: Start >= 1

Semantics: Returns the character position where Search is first found in T, when the search is
started from character position Start. The match is case-sensitive, and no wildcards or other
instructions are considered in Search. Returns an Error if text not found.

See also EXACT 8.20.8, SEARCH 8.20.20

8.20.10 FIXED

Summary: Round the number to a specified number of decimals and format the result as a text.

Syntax: FIXED(Number N [; Integer D = 2 [; Logical OmitSeparators = FALSE()]])

Returns: Text

Constraints: None

Semantics: Rounds value N to D decimal places (after the decimal point) and returns the result
formatted as text, using locale-specific settings. If D is negative, the number is rounded to ABS(D)
places to the left from the decimal point. If the optional parameter OmitSeparators is True, then
group separators are omitted from the resulting string. Group separators are included in the
absence of this parameter. If D is a fraction, it is rounded towards 0 as an integer (ignoring what
is the closest integer).

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 244 of 254

8.20.11 JIS

Summary: Converts half-width to full-width ASCII and katakana characters.

Syntax: JIS(Text T)

Returns: Text

Constraints: None

Semantics: Conversion is done for half-width ASCII and [UNICODE] katakana characters, some
characters are converted in a special way, see table below. Other characters are copied from T to
the result. This is the complementary function to ASC.

A followed by means that there are two consecutive characters to convert from.

Table 37 - JIS

From Unicode Character (c) To Unicode Character Comment

U+0022 0x201d QUOTATION MARK => RIGHT
DOUBLE QUOTATION MARK
This is an exception to the
ASCII range that follows below.

U+005c 0xffe5 REVERSE SOLIDUS "\" =>
FULLWIDTH YEN SIGN
(code-page 932 legacy, for
details see ASC function)
This is an exception to the
ASCII range that follows below.

U+0060 0x2018 GRAVE ACCENT => LEFT
SINGLE QUOTATION MARK
This is an exception to the
ASCII range that follows below.

U+0027 0x2019 APOSTROPHE => RIGHT
SINGLE QUOTATION MARK
This is an exception to the
ASCII range that follows below.

U+0021 <= c <= U+007e c - 0x0021 + 0xff01 ASCII characters

U+ff66 0x30f2 katakana wo

U+ff67 <= c <= U+ff6b (c - 0xff67) * 2 + 0x30a1 katakana small a-o

U+ff6c <= c <= U+ff6e (c - 0xff6c) * 2 + 0x30e3 katakana small ya-yo

U+ff6f 0x30c3 katakana small tsu

U+ff71 <= c <= U+ff75 (c - 0xff71) * 2 + 0x30a2 katakana a-o

U+ff76 <= c <= U+ff81
followed by U+ff9e

(c - 0xff76) * 2 + 0x30ac katakana ga-dsu

U+ff76 <= c <= U+ff81
not followed by U+ff9e

(c - 0xff76) * 2 + 0x30ab katakana ka-chi

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 245 of 254

From Unicode Character (c) To Unicode Character Comment

U+ff82 <= c <= U+ff84
followed by U+ff9e

(c - 0xff82) * 2 + 0x30c5 katakana du-do

U+ff82 <= c <= U+ff84
not followed by U+ff9e

(c - 0xff82) * 2 + 0x30c4 katakana tsu-to

U+ff85 <= c <= U+ff89 c - 0xff85 + 0x30ca katakana na-no

U+ff8a <= c <= U+ff8e
followed by U+ff9e

(c - 0xff8a) * 3 + 0x30d0 katakana ba-bo

U+ff8a <= c <= U+ff8e
followed by U+ff9f

(c - 0xff8a) * 3 + 0x30d1 katakana pa-po

U+ff8a <= c <= U+ff8e
neither followed by U+ff9e nor
U+ff9f

(c - 0xff8a) * 3 + 0x30cf katakana ha-ho

U+ff8f <= c <= U+ff93 c - 0xff8f + 0x30de katakana ma-mo

U+ff94 <= c <= U+ff96 (c - 0xff94) * 2 + 0x30e4 katakana ya-yo

U+ff97 <= c <= U+ff9b c - 0xff97 + 0x30e9 katakana ra-ro

U+ff9c U+30ef katakana wa

U+ff9d U+30f3 katakana nn

U+ff9e U+309b HALFWIDTH KATAKANA
VOICED SOUND MARK =>
FULLWIDTH

U+ff9f U+309c HALFWIDTH KATAKANA
SEMI-VOICED SOUND MARK
=> FULLWIDTH

U+ff70 U+30fc HALFWIDTH KATAKANA-
HIRAGANA PROLONGED
SOUND MARK =>
FULLWIDTH

U+ff61 U+3002 HALFWIDTH IDEOGRAPHIC
FULL STOP => FULLWIDTH

U+ff62 U+300c HALFWIDTH LEFT CORNER
BRACKET => FULLWIDTH

U+ff63 U+300d HALFWIDTH RIGHT CORNER
BRACKET => FULLWIDTH

U+ff64 U+3001 HALFWIDTH IDEOGRAPHIC
COMMA => FULLWIDTH

U+ff65 U+30fb HALFWIDTH KATAKANA
MIDDLE DOT => FULLWIDTH

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 246 of 254

Note 1: For references regarding halfwidth and fullwidth characters see [UAX11] and the
Halfwidth and Fullwidth Code Chart of [UNICODE].

Note 2: For information about the mapping of JIS X 0201 and JIS X 0208 to Unicode characters
see [JISX0201] and [JISX0208].

See also ASC 8.20.2

8.20.12 LEFT

Summary: Return a selected number of text characters from the left.

Syntax: LEFT(Text T [; Integer Length])

Returns: Text

Constraints: Length >= 0

Semantics: Returns the INT(Length) number of characters of text T, starting from the left. If
Length is omitted, it defaults to 1; otherwise, it computes Length=INT(Length). If T has fewer than
Length characters, it returns T. This means that if T is an empty string (which has length 0) or the
parameter Length is 0, LEFT() will always return an empty string. Note that if Length<0, an Error
is returned. This function shall return the same string as MID(T; 1; Length).

The results of this function may be normalization-sensitive. 4.2

See also LEN 8.20.13, MID 8.20.15, RIGHT 8.20.19

8.20.13 LEN

Summary: Return the length, in characters, of given text

Syntax: LEN(Text T)

Returns: Integer

Constraints: None.

Semantics: Computes number of characters (not the number of bytes) in T. If T is of type
Number, it is automatically converted to Text, including a fractional part and decimal separator if
necessary.

The results of this function may be normalization-sensitive. 4.2

See also TEXT 8.20.23, ISTEXT 8.13.25, LEFT 8.20.12, MID 8.20.15, RIGHT 8.20.19

8.20.14 LOWER

Summary: Return input string, but with all uppercase letters converted to lowercase letters.

Syntax: LOWER(Text T)

Returns: Text

Constraints: None

Semantics: Return input string, but with all uppercase letters converted to lowercase letters, as
defined by sections 3.13 Default Case Algorithms, 4.2 Case-Normative and 5.18 Case Mappings
of [UNICODE]. As with most functions, it is side-effect free (it does not modify the source values).
All Evaluators shall convert A-Z to a-z.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 247 of 254

Note: As this function can be locale aware, results may be unexpected in certain cases. For
example in a Turkish locale an upper case "I without dot" (LATIN CAPITAL LETTER I, U+0049) is
converted to a lower case "i without dot" (LATIN SMALL LETTER DOTLESS I, U+0131).

See also UPPER 8.20.27, PROPER 8.20.16

8.20.15 MID

Summary: Returns extracted text, given an original text, starting position, and length.

Syntax: MID(Text T ; Integer Start ; Integer Length)

Returns: Text

Constraints: Start >= 1, Length >= 0.

Semantics: Returns the characters from T, starting at character position Start, for up to Length
characters. For the integer conversions, Start=INT(Start), and Length=INT(Length). If there are
less than Length characters starting at start, it returns as many characters as it can beginning
with Start. In particular, if Start > LEN(T), it returns the empty string (""). If Start < 0, it returns an
Error. If Start >=0, and Length=0, it returns the empty string. Note that MID(T;1;Length) produces
the same results as LEFT(T;Length).

The results of this function may be normalization-sensitive. 4.2

See also LEFT 8.20.12, LEN 8.20.13, RIGHT 8.20.19, REPLACE 8.20.17, SUBSTITUTE 8.20.21

8.20.16 PROPER

Summary: Return the input string with the first letter of each word converted to an uppercase
letter and the rest of the letters in the word converted to lowercase.

Syntax: PROPER(Text T)

Returns: Text

Constraints: None

Semantics: Return input string, but modified as follows:

● If the first character is a letter, it is converted to its uppercase equivalent; otherwise, the
original character is returned

● If a letter is preceded by a non-letter, it is converted to its uppercase equivalent

● If a letter is preceded by a letter, it is converted to its lowercase equivalent.

Evaluators shall implement this for at least the Latin letters A-Z and a-z.

As with most functions, it is side-effect free, that is, it does not modify the source values.

See also LOWER 8.20.14, UPPER 8.20.27

8.20.17 REPLACE

Summary: Returns text where an old text is substituted with a new text.

Syntax: REPLACE(Text T ; Number Start ; Number Count ; Text New)

Returns: Text

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 248 of 254

Constraints: Start >= 1.

Semantics: Returns text T, but remove the characters starting at character position Start for
Count characters, and instead replace them with New. Character positions defined by Start begin
at 1 (for the leftmost character). If Count=0, the text New is inserted before character position
Start, and all the text before and after Start is retained. If Start > length of text T (TLen) then Start
is set to TLen. If Count > TLen - Start then Count is set to TLen - Start.

REPLACE(T;Start;Len;New) is the same as LEFT(T;Start-1) & New & MID(T; Start+Len; LEN(T)))

See also LEFT 8.20.12, LEN 8.20.13, MID 8.20.15, RIGHT 8.20.19, SUBSTITUTE 8.20.21

8.20.18 REPT

Summary: Return text repeated Count times.

Syntax: T(Text T ; Integer Count)

Returns: Text

Constraints: Count >= 0

Semantics: Returns text T repeated Count number of times; if Count is zero, an empty string is
returned. If Count < 0, the result is Error.

See also LEFT 8.20.12, MID 8.20.15, RIGHT 8.20.19, SUBSTITUTE 8.20.21

8.20.19 RIGHT

Summary: Return a selected number of text characters from the right.

Syntax: RIGHT(Text T [; Integer Length])

Returns: Text

Constraints: Length >= 0

Semantics: Returns the Length number of characters of text T, starting from the right. If Length is
omitted, it defaults to 1; otherwise, it computes Length=INT(Length). If T has fewer than Length
characters, it returns T (unchanged). This means that if T is an empty string (which has length 0)
or the parameter Length is 0, RIGHT() will always return an empty string. Note that if Length<0,
an Error is returned.

The results of this function may be normalization-sensitive. 4.2

See also LEFT 8.20.12, LEN 8.20.13, MID 8.20.15

8.20.20 SEARCH

Summary: Return the starting position of a given text.

Syntax: SEARCH(Text Search ; Text T [; Integer Start = 1])

Returns: Integer

Constraints: Start >= 1

Semantics: Returns the character position where Search is first found in T, when the search is
started from character position Start. The match is not case-sensitive. Start is 1 if omitted.
Returns an Error if text not found.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 249 of 254

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS properties. 3.5

See also EXACT 8.20.8, FIND 8.20.9

8.20.21 SUBSTITUTE

Summary: Returns text where an old text is substituted with a new text.

Syntax: SUBSTITUTE(Text T ; Text Old ; Text New [; Integer Which])

Returns: Text

Constraints: Which >= 1 (when provided)

Semantics: Returns text T, but with text Old replaced by text New (when searching from the left).
If Which is omitted, every occurrence of Old is replaced with New; if Which is provided, only that
occurrence of Old is replaced by New (starting the count from 1). If there is no match, or if Old
has length 0, the value of T is returned. Note that Old and New may have different lengths. If
Which is present and Which < 1, returns Error.

See also LEFT 8.20.12, LEN 8.20.13, MID 8.20.15, REPLACE 8.20.17, RIGHT 8.20.19

8.20.22 T

Summary: Return the text (if Text), else return 0-length Text value

Syntax: T(Any X)

Returns: Text

Constraints: None

Semantics: The type of (a dereferenced) X is examined; if it is of type Text, it is returned, else an
empty string (Text value of zero length) is returned. This is not a type-conversion function; T(5)
produces an empty string, not "5".

See also N 8.13.26

8.20.23 TEXT

Summary: Return the value converted to a text.

Syntax: TEXT(Scalar X ; Text FormatCode)

Returns: Text

Constraints: The FormatCode is a sequence of characters with an implementation-defined
meaning.

Semantics: Converts the value X to a Text according to the rules of a number format code
passed as FormatCode and returns it.

See also N 8.13.26, T 8.20.22

8.20.24 TRIM

Summary: Remove leading and trailing spaces, and replace all internal multiple spaces with a
single space.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 250 of 254

Syntax: TRIM(Text T)

Returns: Text

Constraints: None.

Semantics: Takes T and removes all leading and trailing space. Any other sequence of 2 or more
spaces is replaced with a single space.

A space is one or more, HORIZONTAL TABULATION (U+0009), LINE FEED (U+000A),
CARRIAGE RETURN (U+000D) or SPACE (U+0020) characters.

See also LEFT 8.20.12, RIGHT 8.20.19

8.20.25 UNICHAR

Summary: Return the character represented by the given numeric value according to the
[UNICODE] Standard.

Syntax: UNICHAR(Integer N)

Returns: Text

Constraints: N >= 0, N <= 1114111 (U+10FFFF)

Semantics: Returns the character having the given numeric value as [UNICODE] code point.
Evaluators shall support values between 1 and 0xFFFF. Evaluators should allow N to be any
[UNICODE] code point of type Graphic, Format or Control. Evaluators should implement
UNICHAR such that UNICODE(UNICHAR(N)) returns N for any [UNICODE] code point N of type
Graphic, Format or Controlrepresented by the given numeric value. Evaluators shall support
values between 1 and 0xFFFF, which is the maximum possible value in UCS-2 encoding using
two octets. Evaluators should allow N to be any legal character value in [UNICODE] assuming
UCS-4 encoding. Evaluators should implement UNICHAR such that UNICODE(UNICHAR(N))
returns N for any N >= 0 and N <= 1114111.

Note: Depending on the evaluator's encoding the string returned may be actually longer than
expected, for example in UTF-8 or UTF-16 encodings.

See also UNICODE 8.20.26

8.20.26 UNICODE

Summary: Return the [UNICODE] code point corresponding to the first character of the text
value.

Syntax: UNICODE(Text T)

Returns: Number

Constraints: Length(T) > 0.

Semantics: Returns the numeric value of the [UNICODE] code point of the first character of the
given text T.

The results of this function may be normalization-sensitive. 4.2

See also UNICHAR 8.20.25

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 251 of 254

8.20.27 UPPER

Summary: Return input string, but with all lowercase letters converted to uppercase letters.

Syntax: UPPER(Text T)

Returns: Text

Constraints: None

Semantics: Return input string, but with all lowercase letters converted to uppercase letters, as
defined by sections 3.13 Default Case Algorithms, 4.2 Case-Normative and 5.18 Case Mappings
of [UNICODE]. As with most functions, it is side-effect free (it does not modify the source values).
All Evaluators shall convert a-z to A-Z.

Note: As this function can be locale aware, results may be unexpected in certain cases, for
example in a Turkish locale a lower case "i with dot" (LATIN SMALL LETTER I) U+0069 is
converted to an upper case "I with dot" (LATIN CAPITAL LETTER I WITH DOT ABOVE, U+0130).

See also LOWER 8.20.14, PROPER 8.20.16

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 252 of 254

9 Other Capabilities

9.1 General

Evaluators may implement additional abilities that are not a matter of which function they support.
The following sections describe some specific additional capabilities; evaluators may implement
them, and documents may require them (though such documents may not be correctly
recalculated on applications which do not implement them). Documents that depend on these
other capabilities can still be considered “portable documents”, but only if these additional
capabilities are clearly noted (since not applications implement these additional capabilities).

9.2 Inline constant arrays

Evaluators claiming to implement “Inline constant arrays” shall support inline arrays with one
matrix, with one or more rows, and one or more columns. Such evaluators shall support these 2-
dimensional arrays as long as the number of expressions in each row is identical; evaluators may
but need not support arrays with a different number of expressions in each row. They shall
support at least the following syntactic rules in the Expression values for the inline array:

● Number, optionally preceded with the prefix “-” operator (for negative numbers)

● Text

● Logical constants TRUE() and FALSE()

● Error

9.3 Inline non-constant arrays

Evaluators claiming to implement “Inline non-constant arrays” shall support the full Expression
syntax in each component of an array (and not just constants).

9.4 Year 1583

Evaluators claiming to implement “Year 1583” can correctly calculate dates correctly starting from
the January 1 of the (ISO) year 1583. This means that the evaluator correctly determines that
1900 was not a leap year, and can handle year values for dates back to at least 1583.

These calculations use the ISO (proleptic Gregorian) calendar, that is, the calculations use the
usual rules for the ISO (Gregorian) calendar, regardless of locale. This calendar began official
use in some locales in 1582, but other locales used other calendars (such as the Julian calendar)
and switched to the Gregorian calendar at different times in history, if they switched at all.
Evaluators may choose to support years even earlier than this; such evaluators should use a
proleptic Gregorian system (continuing the years backwards as if the calendar existed in those
years). Note that not all people used, or currently use, the ISO (Gregorian) calendar.

Correct date calculations in this calendar system require that leap years be handled correctly. In
this calendar system, leap years include 29 days in February (which otherwise has 28 days), for
366 total days in a leap year. In general, all years evenly divisible by 4 are leap years. However,
years that are divisible by 100 shall also be divisible by 400 to be a leap year; otherwise, they are
common (non-leap) years.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 253 of 254

10 Non-portable Features

10.1 General

Expressions may depend upon features that are not implemented by all evaluators. This section
identifies and defines some features not commonly implemented to enable expressions to
indicate their reliance on these features.

10.2 Distinct Logical

An evaluator may have the “Distinct Logical” feature, which means that its Logical type is a
distinct type from both Number and Text, and that certain other properties or queries hold true as
well. Some legacy documents depend on the “distinct logical” feature. An evaluator that has the
“distinct logical” feature as described in this specification shall have the following properties:

● ISNUMBER() applied to a Logical value (constant or calculated) will return False, and
ISLOGICAL() applied to a Number will be False, either directly or via a reference

● TRUE() will not be equal to 1, and FALSE() will not be equal to 0, when they are compared
using “=”

● In a NumberSequence (such as when using SUM), Logical values are skipped when inside a
range, but are included and automatically converted to a Number if provided as the
NumberSequence itself

10.3 Auto Text to Number

An evaluator may have the “Auto Text to Number” feature, which means that the “Convert to
Number” function, when receiving a Text value or a Reference to a Text value, converts the Text
into a Number, typically through calling the VALUE() function. This feature can be convenient if
files never change locale, but in today's international environment, this feature can easily lead to
data files that look correct but give subtly wrong answers, especially when shared with users who
use a different locale. This can be a problem even when the documents never leave a small
geographical area, since users may choose a locale they are familiar with that is different that the
one expected by the document sender.

OpenDocument-v1.2-csprd06-part2-diff 2 December 2010
Copyright © OASIS® 2010. All Rights Reserved. Standards Track Work Product Page 254 of 254

	1 Introduction
	1.1 Introduction
	1.2 Purpose
	1.3 Non-Normative References

	2 Expressions and Evaluators
	2.1 Introduction
	2.2 OpenDocument Formula Expression
	2.3 Evaluators
	2.3.1 OpenDocument Formula Evaluator
	2.3.2 OpenDocument Formula Small Group Evaluator
	2.3.3 OpenDocument Formula Medium Group Evaluator
	2.3.4 OpenDocument Formula Large Group Evaluator

	2.4 Variances (Implementation-defined, Unspecified, and Behavioral Changes)

	3 Formula Processing Model
	3.1 General
	3.2 Expression EvaluCalculation
	3.2.1 General
	3.2.2 Expression Calculation
	3.2.3 Operator and Function Evaluation

	3.3 Non-Scalar Evaluation (aka 'Array expressions')
	3.4 Non-Scalar Evaluation (aka 'Array expressions')
	3.5 Host-Defined Behaviors
	3.6 When recalculation occurs
	3.7 Numerical Models

	4 Types
	4.1 General
	4.2 Text (String)
	4.3 Number
	4.3.1 General
	4.3.2 Time
	4.3.3 Date
	4.3.4 DateTime
	4.3.5 Percentage
	4.3.6 Currency
	4.3.7 Logical (Number)

	4.4 Complex Number
	4.5 Logical (Boolean)
	4.6 Error
	4.7 Empty Cell
	4.8 Reference
	4.9 ReferenceList
	4.10 Array
	4.11 Pseudotypes
	4.11.1 General
	4.11.2 Scalar
	4.11.3 DateParam
	4.11.4 TimeParam
	4.11.5 Integer
	4.11.6 TextOrNumber
	4.11.7 Basis
	4.11.7.1 General
	4.11.7.2 Procedural Notation
	4.11.7.3 Procedure A
	4.11.7.4 Procedure B
	4.11.7.5 Procedure C
	4.11.7.6 Procedure D
	4.11.7.7 Procedure E
	4.11.7.8 Procedure F

	4.11.8 Database
	4.11.9 Field
	4.11.10 Criteria
	4.11.11 Sequences (NumberSequence, NumberSequenceList, DateSequence, LogicalSequence, and ComplexSequence)
	4.11.12 Any

	5 Expression Syntax
	6 Expression Syntax
	7 General
	7.1 Basic Expressions
	7.2 Constant Numbers
	7.3 Constant Strings
	7.4 Operators
	7.5 Functions and Function Parameters
	7.6 Nonstandard Function Names
	7.7 References
	7.8 Reference List
	7.9 Quoted Label
	7.9.1 General
	7.9.2 Lookup of Defined Labels
	7.9.3 Automatic Lookup of Labels
	7.9.4 Implicit Intersection
	7.9.5 Automatic Range
	7.9.6 Automatic Intersection

	7.10 Named Expressions
	7.11 Constant Errors
	7.12 Constant Errors
	7.13 Evaluators shall support the Error value #N/A. Evaluators may support other Error values. Evaluators may allow entry of errors directly, parse them and recognize them as Errors. Functions shall propagate Errors unless stated otherwise.
	7.14 Inline Arrays
	7.15 Whitespace

	8 Standard Operators and Functions
	8.1 General
	8.2 Common Template for Functions and Operators
	8.3 Implicit Conversion Operators
	8.3.1 General
	8.3.2 Conversion to Scalar
	8.3.3 Implied intersection
	8.3.4 Force to array context (ForceArray)
	8.3.5 Conversion to Number
	8.3.6 Conversion to Integer
	8.3.7 Conversion to NumberSequence
	8.3.8 Conversion to NumberSequenceList
	8.3.9 Conversion to DateSequence
	8.3.10 Conversion to Complex Number
	8.3.11 Conversion to ComplexSequence
	8.3.12 Conversion to Logical
	8.3.13 Conversion to LogicalSequence
	8.3.14 Conversion to Text
	8.3.15 Conversion to DateParam
	8.3.16 Conversion to TimeParam

	8.4 Standard Operators
	8.4.1 General
	8.4.2 Infix Operator "+"
	8.4.3 Infix Operator "-"
	8.4.4 Infix Operator "*"
	8.4.5 Infix Operator "/"
	8.4.6 Infix Operator "^"
	8.4.7 Infix Operator "="
	8.4.8 Infix Operator "<>"
	8.4.9 Infix Operator Ordered Comparison ("<", "<=", ">", ">=")
	8.4.10 Infix Operator "&"
	8.4.11 Infix Operator Reference Range (":")
	8.4.12 Infix Operator Reference Intersection ("!")
	8.4.13 Infix Operator Reference Concatenation ("~") (aka Union)
	8.4.14 Postfix Operator "%"
	8.4.15 Prefix Operator "+"
	8.4.16 Prefix Operator "-"

	8.5 Matrix Functions
	8.5.1 General
	8.5.2 MDETERM
	8.5.3 MINVERSE
	8.5.4 MMULT
	8.5.5 MUNIT
	8.5.6 TRANSPOSE

	8.6 Bit operation functions
	8.6.1 General
	8.6.2 BITAND
	8.6.3 BITLSHIFT
	8.6.4 BITOR
	8.6.5 BITRSHIFT
	8.6.6 BITXOR

	8.7 Byte-position text functions
	8.7.1 General
	8.7.2 FINDB
	8.7.3 LEFTB
	8.7.4 LENB
	8.7.5 MIDB
	8.7.6 REPLACEB
	8.7.7 RIGHTB
	8.7.8 SEARCHB

	8.8 Complex Number Functions
	8.8.1 General
	8.8.2 COMPLEX
	8.8.3 IMABS
	8.8.4 IMAGINARY
	8.8.5 IMARGUMENT
	8.8.6 IMCONJUGATE
	8.8.7 IMCOS
	8.8.8 IMCOSH
	8.8.9 IMCOT
	8.8.10 IMCSC
	8.8.11 IMCSCH
	8.8.12 IMDIV
	8.8.13 IMEXP
	8.8.14 IMLN
	8.8.15 IMLOG10
	8.8.16 IMLOG2
	8.8.17 IMPOWER
	8.8.18 IMPRODUCT
	8.8.19 IMREAL
	8.8.20 IMSIN
	8.8.21 IMSINH
	8.8.22 IMSEC
	8.8.23 IMSECH
	8.8.24 IMSQRT
	8.8.25 IMSUB
	8.8.26 IMSUM
	8.8.27 IMTAN

	8.9 Database Functions
	8.9.1 General
	8.9.2 DAVERAGE
	8.9.3 DCOUNT
	8.9.4 DCOUNTA
	8.9.5 DGET
	8.9.6 DMAX
	8.9.7 DMIN
	8.9.8 DPRODUCT
	8.9.9 DSTDEV
	8.9.10 DSTDEVP
	8.9.11 DSUM
	8.9.12 DVAR
	8.9.13 DVARP

	8.10 Date and Time Functions
	8.10.1 General
	8.10.2 DATE
	8.10.3 DATEDIF
	8.10.4 DATEVALUE
	8.10.5 DAY
	8.10.6 DAYS
	8.10.7 DAYS360
	8.10.8 EDATE
	8.10.9 EOMONTH
	8.10.10 HOUR
	8.10.11 ISOWEEKNUM
	8.10.12 MINUTE
	8.10.13 MONTH
	8.10.14 NETWORKDAYS
	8.10.15 NOW
	8.10.16 SECOND
	8.10.17 TIME
	8.10.18 TIMEVALUE
	8.10.19 TODAY
	8.10.20 WEEKDAY
	8.10.21 WEEKNUM
	8.10.22 WORKDAY
	8.10.23 YEAR
	8.10.24 YEARFRAC

	8.11 External Access Functions
	8.11.1 General
	8.11.2 DDE
	8.11.3 HYPERLINK

	8.12 Financial Functions
	8.12.1 General
	8.12.2 ACCRINT
	8.12.3 ACCRINTM
	8.12.4 AMORDEGRC
	8.12.5 AMORLINC
	8.12.6 COUPDAYBS
	8.12.7 COUPDAYS
	8.12.8 COUPDAYSNC
	8.12.9 COUPNCD
	8.12.10 COUPNUM
	8.12.11 COUPPCD
	8.12.12 CUMIPMT
	8.12.13 CUMPRINC
	8.12.14 DB
	8.12.15 DDB
	8.12.16 DISC
	8.12.17 DOLLARDE
	8.12.18 DOLLARFR
	8.12.19 DURATION
	8.12.20 EFFECT
	8.12.21 FV
	8.12.22 FVSCHEDULE
	8.12.23 INTRATE
	8.12.24 IPMT
	8.12.25 IRR
	8.12.26 ISPMT
	8.12.27 MDURATION
	8.12.28 MIRR
	8.12.29 NOMINAL
	8.12.30 NPER
	8.12.31 NPV
	8.12.32 ODDFPRICE
	8.12.33 ODDFYIELD
	8.12.34 ODDLPRICE
	8.12.35 ODDLYIELD
	8.12.36 PDURATION
	8.12.37 PMT
	8.12.38 PPMT
	8.12.39 PRICE
	8.12.40 PRICEDISC
	8.12.41 PRICEMAT
	8.12.42 PV
	8.12.43 RATE
	8.12.44 RECEIVED
	8.12.45 RRI
	8.12.46 SLN
	8.12.47 SYD
	8.12.48 TBILLEQ
	8.12.49 TBILLPRICE
	8.12.50 TBILLYIELD
	8.12.51 VDB
	8.12.52 XIRR
	8.12.53 XNPV
	8.12.54 YIELD
	8.12.55 YIELDDISC
	8.12.56 YIELDMAT

	8.13 Information Functions
	8.13.1 General
	8.13.2 AREAS
	8.13.3 CELL
	8.13.4 COLUMN
	8.13.5 COLUMNS
	8.13.6 COUNT
	8.13.7 COUNTA
	8.13.8 COUNTBLANK
	8.13.9 COUNTIF
	8.13.10 COUNTIFS
	8.13.11 ERROR.TYPE
	8.13.12 FORMULA
	8.13.13 INFO
	8.13.14 ISBLANK
	8.13.15 ISERR
	8.13.16 ISERROR
	8.13.17 ISEVEN
	8.13.18 ISFORMULA
	8.13.19 ISLOGICAL
	8.13.20 ISNA
	8.13.21 ISNONTEXT
	8.13.22 ISNUMBER
	8.13.23 ISODD
	8.13.24 ISREF
	8.13.25 ISTEXT
	8.13.26 N
	8.13.27 NA
	8.13.28 NUMBERVALUE
	8.13.29 ROW
	8.13.30 ROWS
	8.13.31 SHEET
	8.13.32 SHEETS
	8.13.33 TYPE
	8.13.34 VALUE

	8.14 Lookup Functions
	8.14.1 General
	8.14.2 ADDRESS
	8.14.3 CHOOSE
	8.14.4 GETPIVOTDATA
	8.14.5 HLOOKUP
	8.14.6 INDEX
	8.14.7 INDIRECT
	8.14.8 LOOKUP
	8.14.9 MATCH
	8.14.10 MULTIPLE.OPERATIONS
	8.14.11 OFFSET
	8.14.12 VLOOKUP

	8.15 Logical Functions
	8.15.1 General
	8.15.2 AND
	8.15.3 FALSE
	8.15.4 IF
	8.15.5 IFERROR
	8.15.6 IFNA
	8.15.7 NOT
	8.15.8 OR
	8.15.9 TRUE
	8.15.10 XOR

	8.16 Mathematical Functions
	8.16.1 General
	8.16.2 ABS
	8.16.3 ACOS
	8.16.4 ACOSH
	8.16.5 ACOT
	8.16.6 ACOTH
	8.16.7 ASIN
	8.16.8 ASINH
	8.16.9 ATAN
	8.16.10 ATAN2
	8.16.11 ATANH
	8.16.12 BESSELI
	8.16.13 BESSELJ
	8.16.14 BESSELK
	8.16.15 BESSELY
	8.16.16 COMBIN
	8.16.17 COMBINA
	8.16.18 CONVERT
	8.16.19 COS
	8.16.20 COSH
	8.16.21 COT
	8.16.22 COTH
	8.16.23 CSC
	8.16.24 CSCH
	8.16.25 DEGREES
	8.16.26 DELTA
	8.16.27 ERF
	8.16.28 ERFC
	8.16.29 EUROCONVERT
	8.16.30 EVEN
	8.16.31 EXP
	8.16.32 FACT
	8.16.33 FACTDOUBLE
	8.16.34 GAMMA
	8.16.35 GAMMALN
	8.16.36 GCD
	8.16.37 GESTEP
	8.16.38 LCM
	8.16.39 LN
	8.16.40 LOG
	8.16.41 LOG10
	8.16.42 MOD
	8.16.43 MULTINOMIAL
	8.16.44 ODD
	8.16.45 PI
	8.16.46 POWER
	8.16.47 PRODUCT
	8.16.48 QUOTIENT
	8.16.49 RADIANS
	8.16.50 RAND
	8.16.51 RANDBETWEEN
	8.16.52 SEC
	8.16.53 SERIESSUM
	8.16.54 SIGN
	8.16.55 SIN
	8.16.56 SINH
	8.16.57 SECH
	8.16.58 SQRT
	8.16.59 SQRTPI
	8.16.60 SUBTOTAL
	8.16.61 SUM
	8.16.62 SUMIF
	8.16.63 SUMIFS
	8.16.64 SUMPRODUCT
	8.16.65 SUMSQ
	8.16.66 SUMX2MY2
	8.16.67 SUMX2PY2
	8.16.68 SUMXMY2
	8.16.69 TAN
	8.16.70 TANH

	8.17 Rounding Functions
	8.17.1 General
	8.17.2 CEILING
	8.17.3 INT
	8.17.4 FLOOR
	8.17.5 MROUND
	8.17.6 ROUND
	8.17.7 ROUNDDOWN
	8.17.8 ROUNDUP
	8.17.9 TRUNC

	8.18 Statistical Functions
	8.18.1 General
	8.18.2 AVEDEV
	8.18.3 AVERAGE
	8.18.4 AVERAGEA
	8.18.5 AVERAGEIF
	8.18.6 AVERAGEIFS
	8.18.7 BETADIST
	8.18.8 BETAINV
	8.18.9 BINOM.DIST.RANGE
	8.18.10 BINOMDIST
	8.18.11 LEGACY.CHIDIST
	8.18.12 CHISQDIST
	8.18.13 LEGACY.CHIINV
	8.18.14 CHISQINV
	8.18.15 LEGACY.CHITEST
	8.18.16 CONFIDENCE
	8.18.17 CORREL
	8.18.18 COVAR
	8.18.19 CRITBINOM
	8.18.20 DEVSQ
	8.18.21 EXPONDIST
	8.18.22 FDIST
	8.18.23 LEGACY.FDIST
	8.18.24 FINV
	8.18.25 LEGACY.FINV
	8.18.26 FISHER
	8.18.27 FISHERINV
	8.18.28 FORECAST
	8.18.29 FREQUENCY
	8.18.30 FTEST
	8.18.31 GAMMADIST
	8.18.32 GAMMAINV
	8.18.33 GAUSS
	8.18.34 GEOMEAN
	8.18.35 GROWTH
	8.18.36 HARMEAN
	8.18.37 HYPGEOMDIST
	8.18.38 INTERCEPT
	8.18.39 KURT
	8.18.40 LARGE
	8.18.41 LINEST
	8.18.42 LOGEST
	8.18.43 LOGINV
	8.18.44 LOGNORMDIST
	8.18.45 MAX
	8.18.46 MAXA
	8.18.47 MEDIAN
	8.18.48 MIN
	8.18.49 MINA
	8.18.50 MODE
	8.18.51 NEGBINOMDIST
	8.18.52 NORMDIST
	8.18.53 NORMINV
	8.18.54 LEGACY.NORMSDIST
	8.18.55 LEGACY.NORMSINV
	8.18.56 PEARSON
	8.18.57 PERCENTILE
	8.18.58 PERCENTRANK
	8.18.59 PERMUT
	8.18.60 PERMUTATIONA
	8.18.61 PHI
	8.18.62 POISSON
	8.18.63 PROB
	8.18.64 QUARTILE
	8.18.65 RANK
	8.18.66 RSQ
	8.18.67 SKEW
	8.18.68 SKEWP
	8.18.69 SLOPE
	8.18.70 SMALL
	8.18.71 STANDARDIZE
	8.18.72 STDEV
	8.18.73 STDEVA
	8.18.74 STDEVP
	8.18.75 STDEVPA
	8.18.76 STEYX
	8.18.77 LEGACY.TDIST
	8.18.78 TINV
	8.18.79 TREND
	8.18.80 TRIMMEAN
	8.18.81 TTEST
	8.18.82 VAR
	8.18.83 VARA
	8.18.84 VARP
	8.18.85 VARPA
	8.18.86 WEIBULL
	8.18.87 ZTEST

	8.19 Number Representation Conversion Functions
	8.19.1 General
	8.19.2 ARABIC
	8.19.3 BASE
	8.19.4 BIN2DEC
	8.19.5 BIN2HEX
	8.19.6 BIN2OCT
	8.19.7 DEC2BIN
	8.19.8 DEC2HEX
	8.19.9 DEC2OCT
	8.19.10 DECIMAL
	8.19.11 HEX2BIN
	8.19.12 HEX2DEC
	8.19.13 HEX2OCT
	8.19.14 OCT2BIN
	8.19.15 OCT2DEC
	8.19.16 OCT2HEX
	8.19.17 ROMAN

	8.20 Text Functions
	8.20.1 General
	8.20.2 ASC
	8.20.3 CHAR
	8.20.4 CLEAN
	8.20.5 CODE
	8.20.6 CONCATENATE
	8.20.7 DOLLAR
	8.20.8 EXACT
	8.20.9 FIND
	8.20.10 FIXED
	8.20.11 JIS
	8.20.12 LEFT
	8.20.13 LEN
	8.20.14 LOWER
	8.20.15 MID
	8.20.16 PROPER
	8.20.17 REPLACE
	8.20.18 REPT
	8.20.19 RIGHT
	8.20.20 SEARCH
	8.20.21 SUBSTITUTE
	8.20.22 T
	8.20.23 TEXT
	8.20.24 TRIM
	8.20.25 UNICHAR
	8.20.26 UNICODE
	8.20.27 UPPER

	9 Other Capabilities
	9.1 General
	9.2 Inline constant arrays
	9.3 Inline non-constant arrays
	9.4 Year 1583

	10 Non-portable Features
	10.1 General
	10.2 Distinct Logical
	10.3 Auto Text to Number

