

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 1 of 17

OASIS Committee Note

Repeatable Requests Version 1.0

Committee Note Draft 01 /
Public Review Draft 01

24 October 2019

This stage:
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/cnprd01/repeatable-requests-v1.0-
cnprd01.docx (Authoritative)
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/cnprd01/repeatable-requests-v1.0-
cnprd01.html
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/cnprd01/repeatable-requests-v1.0-
cnprd01.pdf

Previous stage:
N/A

Latest stage:
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/repeatable-requests-v1.0.docx (Authoritative)
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/repeatable-requests-v1.0.html
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/repeatable-requests-v1.0.pdf

Technical Committee:
OASIS Open Data Protocol (OData) TC

Chairs:
Ralf Handl (ralf.handl@sap.com), SAP SE
Mike Pizzo (mikep@microsoft.com), Microsoft

Editors:
Evan Ireland (evan.ireland@sap.com), SAP SE
Matt Borges (matt.borges@sap.com), SAP SE

Related work:
This document is related to:

• Org.OData.Repeatability.V1.xml. https://oasis-tcs.github.io/odata-
vocabularies/vocabularies/Org.OData.Repeatability.V1.xml.

• OData Version 4.01. Part 1: Protocol. Latest version. https://docs.oasis-
open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html.

• OData JSON Format Version 4.01. Latest version: https://docs.oasis-open.org/odata/odata-json-
format/v4.01/odata-json-format-v4.01.html.

Abstract:

This document describes a method to provide the ability to retry unsafe (i.e. POST, PUT, PATCH,
DELETE) requests without incurring unintended side-effects. This specification can be applied to any
HTTP based protocol.

Status:
This is a Non-Standards Track Work Product. The patent provisions of the OASIS IPR Policy do not
apply.

https://docs.oasis-open.org/odata/repeatable-requests/v1.0/cnprd01/repeatable-requests-v1.0-cnprd01.docx
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/cnprd01/repeatable-requests-v1.0-cnprd01.docx
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/cnprd01/repeatable-requests-v1.0-cnprd01.html
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/cnprd01/repeatable-requests-v1.0-cnprd01.html
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/cnprd01/repeatable-requests-v1.0-cnprd01.pdf
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/cnprd01/repeatable-requests-v1.0-cnprd01.pdf
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/repeatable-requests-v1.0.docx
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/repeatable-requests-v1.0.html
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/repeatable-requests-v1.0.pdf
https://www.oasis-open.org/committees/odata/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:evan.ireland@sap.com
http://www.sap.com/
mailto:matt.borges@sap.com
http://www.sap.com/
https://oasis-tcs.github.io/odata-vocabularies/vocabularies/Org.OData.Repeatability.V1.xml
https://oasis-tcs.github.io/odata-vocabularies/vocabularies/Org.OData.Repeatability.V1.xml
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html
https://www.oasis-open.org/

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 2 of 17

This document was last revised or approved by the OASIS Open Data Protocol (OData) TC on the above
date. The level of approval is also listed above. Check the "Latest stage" location noted above for
possible later revisions of this document. Any other numbered Versions and other technical work
produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=odata#technical.
TC members should send comments on this document to the TC's email list. Others should send
comments to the TC's public comment list, after subscribing to it by following the instructions at the "Send
A Comment" button on the TC's web page at https://www.oasis-open.org/committees/odata/.

Citation format:
When referencing this document the following citation format should be used:

[RepeatableRequests-v1.0]

Repeatable Requests Version 1.0. Edited by Evan Ireland and Matt Borges. 24 October 2019. OASIS
Committee Note Draft 01 / Public Review Draft 01. https://docs.oasis-open.org/odata/repeatable-
requests/v1.0/cnprd01/repeatable-requests-v1.0-cnprd01.html. Latest stage: https://docs.oasis-
open.org/odata/repeatable-requests/v1.0/repeatable-requests-v1.0.html.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/odata/
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/cnprd01/repeatable-requests-v1.0-cnprd01.html
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/cnprd01/repeatable-requests-v1.0-cnprd01.html
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/repeatable-requests-v1.0.html
https://docs.oasis-open.org/odata/repeatable-requests/v1.0/repeatable-requests-v1.0.html

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 3 of 17

Notices

Copyright © OASIS Open 2019. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

https://www.oasis-open.org/policies-guidelines/ipr

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 4 of 17

Table of Contents
1 Introduction .. 5

1.1 References (non-normative) ... 6

2 Example Scenarios .. 7

2.1 Insert a new Item ... 7

2.2 Invoke an Action .. 8

3 Proposal... 10

3.1 New Request Headers .. 10

3.1.1 Repeatability-Request-ID ... 10

3.1.2 Repeatability-First-Sent .. 10

3.1.3 Repeatability-Client-ID.. 10

3.2 New Response Header ... 10

3.2.1 Repeatability-Result ... 10

3.2.1.1 accepted .. 10

3.2.1.2 rejected ... 11

3.3 Client Behavior .. 11

3.4 Server Behavior ... 11

3.5 Repeatability Deletion ... 12

3.6 Notes ... 13

4 Incorporation into OData ... 14

4.1 Support .. 14

4.2 Discovery ... 14

4.3 Response Payload .. 14

4.4 Batch Requests ... 15

Appendix A. Acknowledgments ... 16

Appendix B. Revision History .. 17

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 5 of 17

1 Introduction
HTTP is an inherently unreliable protocol. If connection or other issues prevent the client from receiving a
response, the client is left in doubt as to whether the request was processed by the server. For safe
HTTP requests as defined in [RFC7231] section 4.2 (for example, GET) the client can simply re-try the
request, but for operations that change state (for example, inserting a new resource or invoking a side-
effecting service operation such as PlaceOrder or TransferFunds) re-issuing the request may result

in an undesired state (for example, two orders placed, or double the amount of funds transferred).

FIGURE 1: LOST REQUESTS AND RESPONSES WITHOUT REPEATABILITY

As the sender does not receive responses to requests 2a and 2b, it creates three orders instead of the
intended two orders.

Sender Receiver

1: POST Orders

Location: Orders/1

2a: POST Orders

2b: POST Orders

Location: Orders/2

2c: POST Orders

Location: Orders/3

Create Order 1

Place first order

Create Order 2

Create Order 3

Place second order

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 6 of 17

This document proposes a simple approach that lets the receiver recognize repeated requests, so it can
echo a stored response for an already received and processed request without processing the request a
second time:

FIGURE 2: LOST REQUESTS AND RESPONSES WITH REPEATABILITY

1.1 References (non-normative)

[Idempotency] SAP Gateway Foundation (SAP_GWFND) – Defining Settings for Idempotent
Services,
https://help.sap.com/viewer/68bf513362174d54b58cddec28794093/7.5.14/en-
US/09f82651c294256ee10000000a445394.html

[OData-Protocol] OData Version 4.01 Part 1: Protocol.
See link in "Related work" section on cover page.

[OData-JSON] OData JSON Format Version 4.01.
See link in "Related work" section on cover page.

[OData-VocRep] OData Vocabularies Version 4.0: Repeatability Vocabulary.
See link in "Related work" section on cover page.

[RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, DOI 10.17487/RFC4122, July 2005, https://www.rfc-
editor.org/info/rfc4122.

[RFC7231] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content", RFC 7231, DOI 10.17487/RFC7231, June 2014,
https://www.rfc-editor.org/info/rfc7231.

Sender Receiver

1: POST Orders, Repeatable-Request-ID: 1

Location: Orders/1

2a: POST Orders, Repeatable-Request-ID: 2

2b: POST Orders, Repeatable-Request-ID: 2

Location: Orders/2

2c: POST Orders, Repeatable-Request-ID: 2

Location: Orders/2

Create Order 1

Place first order

Create Order 2

Echo Order 2

Place second order

https://help.sap.com/viewer/68bf513362174d54b58cddec28794093/7.5.14/en-US/09f82651c294256ee10000000a445394.html
https://help.sap.com/viewer/68bf513362174d54b58cddec28794093/7.5.14/en-US/09f82651c294256ee10000000a445394.html
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc7231

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 7 of 17

2 Example Scenarios

2.1 Insert a new Item

Adding a new item to a collection is a POST request to the collection. To safeguard against a lost

response the client adds repeatability headers:

EXAMPLE 1: CREATE A NEW ORDER

POST /service/Orders

Content-Type: application/json

Repeatability-Request-ID: 112a3a3e-f94c-4f56-b49b-5aab3d97e5b7

Repeatability-First-Sent: Tue, 26 Mar 2019 16:06:51 GMT

{

 "CustomerID": "ALFKI",

 "OrderLines": [

 {

 "ProductID": "tomatoes-red-cherry",

 "Quantity": 5,

 "Unit": "kg",

 },

 {

 "ProductID": "grapejuice-merlot",

 "Quantity": 2,

 "Unit": "l",

 }

]

}

The client does not receive a response, so it simply sends the request again:

EXAMPLE 2: REPEAT: CREATE A NEW ORDER

POST /service/Orders

Content-Type: application/json

Repeatability-Request-ID: 112a3a3e-f94c-4f56-b49b-5aab3d97e5b7

Repeatability-First-Sent: Tue, 26 Mar 2019 16:06:51 GMT

{

 "CustomerID": "ALFKI",

 "OrderLines": [

 {

 "ProductID": "tomatoes-red-cherry",

 "Quantity": 5,

 "Unit": "kg",

 },

 {

 "ProductID": "grapejuice-merlot",

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 8 of 17

 "Quantity": 2,

 "Unit": "l",

 }

]

}

This time the client receives a response:

EXAMPLE 3: RESPONSE TO CREATE A NEW ORDER

HTTP/1.1 200 OK

Content-Type: application/json

Location: http://host/service/Orders/4711

Repeatability-Result: accepted

{

 "OrderID": 4711,

 "CustomerID": "ALFKI",

 "OrderLines": [

 {

 "ProductID": "tomatoes-red-cherry",

 "Quantity": 5,

 "Unit": "kg",

 },

 {

 "ProductID": "grapejuice-merlot",

 "Quantity": 2,

 "Unit": "l",

 }

]

}

The Repeatability-Result response header tells the client that it need not worry: the new order was

created exactly once.

2.2 Invoke an Action

Sometime later the client wants to place an exact clone of a recent order

EXAMPLE 4: CLONE AN EXISTING ORDER

POST /service/Orders/4711/Clone

Content-Type: application/json

Repeatability-Request-ID: a47a83d9-be50-46aa-ab2a-55f18f4fbc64

Repeatability-First-Sent: Mon, 01 Apr 2019 06:22:03 GMT

{}

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 9 of 17

The client does not receive a response, so it simply sends the request again. This time the client receives
a response:

EXAMPLE 5: RESPONSE TO CLONE AN EXISTING ORDER

HTTP/1.1 204 No Content

Location: http://host/service/Orders/4712

Repeatability-Result: accepted

The Repeatability-Result response header tells the client that it need not worry: the new order was

cloned exactly once.

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 10 of 17

3 Proposal
Two new request headers and one response header are added to facilitate the ability to retry requests
without incurring unintended side effects.

Another optional header is added to facilitate the ability for a server to eagerly cleanup tracking
information that it may use for the implementation of repeatable requests (rather than keeping such
information for a possibly extended retention period).

3.1 New Request Headers

3.1.1 Repeatability-Request-ID

An opaque string representing a client-generated, globally unique for all time, identifier for the request.
Servers must accommodate the 36-character hexadecimal case-insensitive encoding of a UUID (GUID),
as defined in [RFC4122]. It is recommended for security purposes to use version 4 (random) UUIDs as
defined in [RFC4122] section 4.1.3. Support for other forms of unique identifiers is optional.

If specified, the client directs that the request must be repeatable; that is, that the client can make the
request multiple times with the same Repeatability-Request-ID and Repeatability-First-

Sent header values and get back an appropriate response without the server executing the request

multiple times. Servers aware of repeatability but unable to fulfill this direction for this request type must
not execute the request and instead return 501 Not Implemented.

3.1.2 Repeatability-First-Sent

The date and time at which the request was first created, expressed using the IMF-fixdate form of HTTP-
date as defined in [RFC7231].

Repeatability-First-Sent allows the server to determine if the request is within its currently

tracked window of time for repeatability. If Repeatability-First-Sent is within the server’s window

and the request has not been seen previously, the server can safely execute it. If it is not in the window of
currently tracked requests, the server cannot guarantee the request was not already executed and so
returns an error. Without using Repeatability-First-Sent, if/when the server cleans up tracking

information, the server could receive a Repeatability-Request-ID that it has already executed but

no longer has any tracking data for and so the server would incorrectly execute the request again.

3.1.3 Repeatability-Client-ID

Optional. An opaque string representing a client-generated, globally unique for all time, identifier for the
instance of the client application that issued the request. Servers, if they do not ignore this header, must
accommodate the 36-character hexadecimal case-insensitive encoding of a UUID (GUID), as defined in
[RFC4122]. It is recommended for security purposes to use version 4 (random) UUIDs as defined in
[RFC4122] section 4.1.3. Support for other forms of unique identifiers is optional.

Repeatability-Client-ID , if provided by the client, may be used by the server to support bulk

Repeatability Deletion.

3.2 New Response Header

3.2.1 Repeatability-Result

One of the following string values:

3.2.1.1 accepted

The request was accepted, and the server guarantees that the server state reflects a single execution of
the operation.

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 11 of 17

The response returns the success or failure state of the operation as first executed by the server and
reflects either the current state of the system or the state as it existed when the request was first received.

3.2.1.2 rejected

The request was rejected because the combination of Repeatability-First-Sent and

Repeatability-Request-ID were invalid or because the Repeatability-First-Sent value was

outside the range of values held by the server.

The server returns 412 Precondition Failed without attempting to execute the request.

The server state is the same as if the request were never received.

3.3 Client Behavior

In order to issue a repeatable request, the client first creates a UUID (GUID) and encodes that as a string.
It sets that as the string value of the Repeatability-Request-ID header and sets the

Repeatability-First-Sent header to the current date-time value.

The client may also include a Repeatability-Client-ID header allowing the server to associate with

the client any tracking information that it may use in support of repeatable requests.

If the request fails to return, for example, due to connection issues, the client can re-execute the same
command with the same Repeatability-Request-ID and Repeatability-First-Sent headers

(and Repeatability-Client-ID, if it was specified previously).

If the request returns with a Repeatability-Result value of accepted then the client knows that the

request has been executed in a repeatable manner and consumes the results.

If the request returns with Repeatability-Result value of rejected then the client knows that the

creation time is beyond the window of requests that the server has stored and it cannot safely retry the
operation, or some other error has occurred (for example, the Repeatability-Request-ID and

Repeatability-First-Sent values were inconsistent with each other or with a previous request).

If the request returns without a Repeatability-Result header, then the client has to assume that the

request did not reach a server that knows about repeatable requests and therefore the usual mechanism
to determine request outcome should be used, for example by checking the response status code. It is
possible in this case that requests might be executed multiple times.

If the request returns with HTTP response code 501 Not Implemented with a Repeatability-

Result value of accepted, it implies the service knows about repeatability but there is something wrong

with the request.

If the request returns with HTTP response code 501 Not Implemented with a Repeatability-

Result value of rejected, it implies that the service does know about repeatability.

3.4 Server Behavior

When a server receives a request with a valid, non-null Repeatability-First-Sent value:

If the server is aware of this repeatability specification but does not support repeatable execution of the
request it must return 501 Not Implemented.

If the Repeatability-Request-ID value is missing, it must return 400 Bad Request with a

Repeatability-Result of rejected.

If the Repeatability-First-Sent value is before the earliest remembered Repeatability-

Request-ID, or this request cannot be reliably executed for some other implementation-specific reason,

the server must return 412 Precondition Failed with a Repeatability-Result value of

rejected. Otherwise:

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 12 of 17

If the server has not seen the Repeatability-Request-ID since its earliest remembered

Repeatability-Request-ID (if any), and the Repeatability-First-Sent value is within its

window of remembered Repeatability-Request-ID values, then it must execute the request and

return the result with Repeatability-Result header value of accepted and record the

Repeatability-Request-ID.

The server should return an error 400 Bad Request along with a Repeatability-Result value of

rejected if Repeatability-First-Sent is non-null and

• the request verb, URI, or header fields other than Date are different from that of the original

request, or

• the same Repeatability-Request-ID is within the window of remembered

Repeatability-Request-ID values but has a different Repeatability-First-Sent.

If the server has seen the Repeatability-Request-ID, it may return an error 400 Bad Request

along with a Repeatability-Result header value of rejected if the request body was different from

that of the original Repeatability-Request-ID.

If the server has seen the Repeatability-Request-ID and the request matches the previous request

to the extent validated by the server, the server must return a response with a Repeatability-Result

value of accepted that is either:

• the same response code and body as was generated (if any) when the original request with that
Repeatability-Request-ID was processed, or

• the response code and response body resulting from re-executing the request if the response
code was 4xx or 5xx, i.e. a client error or an internal server error.

In order to permit the server to optimize the storage of response bodies, the client and server may wish to
negotiate the amount of content that will be returned in an initial response and any subsequent repeated
response. The mechanism for such response content negotiation may depend on the protocol used.

Whether a server is considered to have seen a previous request should be transactionally consistent with
the mutating effects of the request. For example, a server is not required to remember a previous request
whose effects were rolled back due to a failure, since the client could reissue such a request without any
possibility for duplication of the effects.

3.5 Repeatability Deletion

In some situations, such as when using occasionally-connected mobile devices, clients may expect the
server to offer a significant retention period (e.g. 50 days) for remembered repeatable requests. In such
situations, the server’s storage system may be burdened by the retention requirements, so it is valuable
to offer clients a way to signal that certain remembered repeatable requests may be forgotten (deleted) by
the server even before the retention period has expired. Some clients may be able to acknowledge that
they have received all responses to all outstanding requests. Bulk deletion of all the tracking information
for repeatable requests from a particular Repeatability-Client-ID may enable a significant

performance boost for the server.

If a server supports deletion of remembered requests by Repeatability-Request-ID, then the

recommended HTTP request method is DELETE and the recommended URL pattern is

“$RepeatableRequestWithRequestID/<Repeatability-Request-ID>”. The HTTP response

status should be 204 No Content, even if no such request was found.

If a server supports deletion of remembered requests by Repeatability-Client-ID, then the

recommended HTTP request method is DELETE and the recommended URL pattern is

“$RepeatableRequestsWithClientID/<Repeatability-Client-ID>”. The HTTP response

status should be 204 No Content, even if no such requests were found.

Note: supporting deletion by Repeatability-Client-ID does not mean that the server needs to

record information about client instances separately from its set of remembered repeatable requests. For

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 13 of 17

example, it might be achieved simply with an extra (indexed) storage column in the storage table used to
track repeatable requests.

3.6 Notes

Servers may support repeatability on POST, PUT, PATCH and DELETE.

• Repeatability on POST ensures that the operation is executed, or the insert is performed no more

than once.

• Repeatability on PUT or PATCH is different from use of an ETag in that repeated PUT or PATCH

operations to the same resource will return success (or fail), possibly including a payload, versus
a concurrency violation.

• Repeatability on DELETE is different from use of an ETag in that repeated DELETE operations to

the same resource will return success (or fail) rather than 404 Not Found.

For some clients, it is important for a repeated request to return with success if the original request
actually succeeded, rather than a failure due to a conflict detected on the repeated execution.

Servers must ignore Repeatability-Request-ID and Repeatability-First-Sent for GET and

HEAD requests.

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 14 of 17

4 Incorporation into OData
The proposal for repeatable requests is valid outside of OData. The following sections describe the use of
repeatable requests within OData.

4.1 Support

OData services are not required to support Repeatability. Clients must rely on external means (e.g.
capabilities) in order to know whether the server supports repeatability.

4.2 Discovery

Services supporting repeatability should annotate the entity container, entity sets, singletons, action
imports, or actions in the service metadata with the term Repeatability.Supported defined in the

Repeatability vocabulary, see [OData-VocRep].

Services supporting repeatability deletion by Repeatability-Request-ID and/or Repeatability-

Client-ID should annotate the entity container with the terms

Repeatability.DeleteWithRequestIDSupported and/or

Repeatability.DeleteWithClientIDSupported.

If lower-level elements such as individual entity sets do not support repeatability, then they can opt out of
repeatability using a lower-level override of the Repeatability.Supported term.

EXAMPLE 6: SERVICE THAT SUPPORTS REPEATABILITY AND REPEATABILITY DELETION

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx"

Version="4.0">

 <edmx:Reference Uri="https://oasis-tcs.github.io/odata-

vocabularies/vocabularies/Org.OData.Repeatability.V1.xml">

 <edmx:Include Alias="Repeatability" Namespace="Org.OData.Repeatability.V1"

/>

 </edmx:Reference>

 <Schema xmlns="http://docs.oasis-open.org/odata/ns/edm"

Namespace="MySchema">

 …

 <EntityContainer Name="MyContainer">

 …

 <Annotation Term="Repeatability.Supported" />

 <Annotation Term="Repeatability.DeleteWithRequestIDSupported" />

 <Annotation Term="Repeatability.DeleteWithClientIDSupported" />

 <EntitySet Name="MyEntitySet" EntityType="MySchema.MyEntity">

 <Annotation Term="Repeatability.Supported" Bool="false" />

 </EntitySet>

 </EntityContainer>

 </Schema>

<edmx:Edmx>

Services may support repeatability without the use of annotations in the service metadata.

4.3 Response Payload

The client may optionally use system query options $select and/or $expand in the request URL to

force the service return a payload containing the minimal information required by the client, as compared

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 15 of 17

to what it would ordinarily return without the use of system query options. Note that @Core.ContentID is
always returned in the response payload if it was specified in the request body.

If the client sends a repeatable request containing a data modification operation for an entity, and the
client does not include $select or $expand in the request URL, the server may choose to return 204

No Content even if it would ordinarily return status code 200 or 201 for a non-repeatable request.

The above paragraphs allow the service to minimize the tracking information that it stores in support of
repeatable requests.

4.4 Batch Requests

Services may support repeatability for individual requests within a batch request, as well as for individual
requests within a change set or atomicity group within a batch request.

Individual requests within a batch may have a mix of Repeatability-Request-ID and

Repeatability-First-Sent values. In this case, each individual response within the batch response

has the appropriate Repeatability-Result (or not) according to the corresponding request.

Repeatable request headers cannot be applied to change sets or atomicity groups directly because there
is no way to specify headers for an atomicity group in JSON batch requests, see [OData-JSON]. A client
makes a change set or atomicity group repeatable by specifying the same Repeatability-Request-

ID and Repeatability-First-Sent values for all requests in the change set or atomicity group. The

client must retry the entire change set or atomicity group as a unit if it is repeatable; individual operations
within the change set or atomicity group must not be retried.

There is no correlation between the repeatability of a request and the repeatability of any of its dependent
requests. That is, a repeatable request may be retried without retrying any of its dependent requests.

Repeatability cannot be applied to batch requests themselves because a single Repeatability-

Request-ID on the batch request is not sufficient for uniquely identifying the individual requests within

the batch request, and because repeatability implies transactional atomicity which cannot be guaranteed
for a batch request containing multiple change sets, some of which may succeed (commit) and some of
which may fail (rollback). Therefore, if a server receives a batch request with either a Repeatability-

Request-ID or a Repeatability-First-Sent value, it must not execute any requests within the

batch and respond with 400 Bad Request.

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 16 of 17

Appendix A. Acknowledgments

The contributions of the OASIS OData Technical Committee members, enumerated in [OData-Protocol],
are gratefully acknowledged.

repeatable-requests-v1.0-cnprd01 24 October 2019
Non-Standards Track Copyright © OASIS Open 2019. All Rights Reserved. Page 17 of 17

Appendix B. Revision History

Revision Date Editor Changes Made

Working Draft 01 2013-06-25 Mike Pizzo,
Ralf Handl

Initial version

Committee Note
Draft 01

2019-10-17 Matt Borges,
Evan Ireland

Aligned header names

Added Repeatability Deletion

Clarified client and server behavior with
regard to errors

Clarified what servers are required to
store and return for repeated requests
and how the client and server can
negotiate this for OData.

