[image: oasis]
OData Version 4.01. Part 1: Protocol
Committee Specification Draft 01 /
Public Review Draft 01
08 December 2016
Specification URIs
This version:
http://docs.oasis-open.org/odata/odata/v4.01/csprd01/part1-protocol/odata-v4.01-csprd01-part1-protocol.docx (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.01/csprd01/part1-protocol/odata-v4.01-csprd01-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.01/csprd01/part1-protocol/odata-v4.01-csprd01-part1-protocol.pdf
Previous version:
N/A
Latest version:
http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.docx (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.pdf
Technical Committee:
OASIS Open Data Protocol (OData) TC
Chairs:
Ralf Handl (ralf.handl@sap.com), SAP SE
Ram Jeyaraman (Ram.Jeyaraman@microsoft.com), Microsoft
Editors:
Michael Pizzo (mikep@microsoft.com), Microsoft
Ralf Handl (ralf.handl@sap.com), SAP SE
Martin Zurmuehl (martin.zurmuehl@sap.com), SAP SE
[bookmark: AdditionalArtifacts]Additional artifacts:
This prose specification is one component of a Work Product that also includes:
OData Version 4.01. Part 1: Protocol (this document). http://docs.oasis-open.org/odata/odata/v4.01/csprd01/part1-protocol/odata-v4.01-csprd01-part1-protocol.html.
OData Version 4.01. Part 2: URL Conventions. http://docs.oasis-open.org/odata/odata/v4.01/csprd01/part2-url-conventions/odata-v4.01-csprd01-part2-url-conventions.html.
OData Version 4.01. Part 3: Common Schema Definition Language (CSDL). http://docs.oasis-open.org/odata/odata/v4.01/csprd01/part3-csdl/odata-v4.01-csprd01-part3-csdl.html.
ABNF components: OData ABNF Construction Rules Version 4.0 and OData ABNF Test Cases. http://docs.oasis-open.org/odata/odata/v4.01/csprd01/abnf/.
[bookmark: RelatedWork]Related work:
This specification replaces or supersedes:
OData Version 4.0 Part 1: Protocol. Edited by Michael Pizzo, Ralf Handl, and Martin Zurmuehl. 24 February 2014. OASIS Standard. http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html. Latest version: http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html.
This specification is related to:
OData Vocabularies Version 4.0. Edited by Mike Pizzo, Ralf Handl, and Ram Jeyaraman. Latest version: http://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html.
OData Common Schema Definition Language (CSDL) XML Representation Version 4.01. Edited by Michael Pizzo, Ralf Handl, and Martin Zurmuehl. Latest version: http://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html.
OData JSON Format Version 4.01. Edited by Ralf Handl, Michael Pizzo, and Mark Biamonte. Latest version: http://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html.
OData Extension for Data Aggregation Version 4.0. Edited by Ralf Handl, Hubert Heijkers, Gerald Krause, Michael Pizzo, and Martin Zurmuehl. Latest version: http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html.
OData Atom Format Version 4.0. Edited by Martin Zurmuehl, Michael Pizzo, and Ralf Handl. Latest version. http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html.
Abstract:
The Open Data Protocol (OData) enables the creation of REST-based data services, which allow resources, identified using Uniform Resource Locators (URLs) and defined in an Entity Data Model (EDM), to be published and edited by Web clients using simple HTTP messages. This document defines the core semantics and facilities of the protocol.
Status:
This document was last revised or approved by the OASIS Open Data Protocol (OData) TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical.)
TC members should send comments on this specification to the TC’s email list. Others should send comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/odata/.
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-open.org/committees/odata/ipr.php).
Citation format:
When referencing this specification the following citation format should be used:
[OData-Part1]
OData Version 4.01. Part 1: Protocol. Edited by Michael Pizzo, Ralf Handl, and Martin Zurmuehl. 08 December 2016. OASIS Committee Specification Draft 01 / Public Review Draft 01. http://docs.oasis-open.org/odata/odata/v4.01/csprd01/part1-protocol/odata-v4.01-csprd01-part1-protocol.html. Latest version: http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html.
Notices
Copyright © OASIS Open 2016. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.
The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.
Table of Contents
1	Introduction	9
1.1 Terminology	9
1.2 Normative References	9
1.3 Typographical Conventions	10
2	Overview	11
3	Data Model	12
3.1 Annotations	12
4	Service Model	14
4.1 Entity-Ids and Entity References	14
4.2 Read URLs and Edit URLs	14
4.3 Transient Entities	14
4.4 Default Namespaces	15
5	Versioning	16
5.1 Protocol Versioning	16
5.2 Model Versioning	16
6	Extensibility	17
6.1 Query Option Extensibility	17
6.2 Payload Extensibility	17
6.3 Action/Function Extensibility	17
6.4 Vocabulary Extensibility	17
6.5 Header Field Extensibility	18
6.6 Format Extensibility	18
7	Formats	19
8	Header Fields	20
8.1 Common Headers	20
8.1.1 Header Content-Type	20
8.1.2 Header Content-Encoding	20
8.1.3 Header Content-Language	20
8.1.4 Header Content-Length	20
8.1.5 Header OData-Version	21
8.2 Request Headers	21
8.2.1 Header Accept	21
8.2.2 Header Accept-Charset	21
8.2.3 Header Accept-Language	21
8.2.4 Header If-Match	22
8.2.5 Header If-None-Match	22
8.2.6 Header Isolation (OData-Isolation)	22
8.2.7 Header OData-MaxVersion	23
8.2.8 Header Prefer	23
8.2.8.1 Preference allow-entityreferences (odata.allow-entityreferences)	23
8.2.8.2 Preference callback (odata.callback)	24
8.2.8.3 Preference continue-on-error (odata.continue-on-error)	25
8.2.8.4 Preference include-annotations (odata.include-annotations)	25
8.2.8.5 Preference maxpagesize (odata.maxpagesize)	26
8.2.8.6 Preference omit-values	27
8.2.8.7 Preference return=representation and return=minimal	27
8.2.8.8 Preference respond-async	27
8.2.8.9 Preference track-changes (odata.track-changes)	28
8.2.8.10 Preference wait	28
8.2.9 Header SchemaVersion	28
8.3 Response Headers	29
8.3.1 Header ETag	29
8.3.2 Header Location	29
8.3.3 Header EntityId (OData-EntityId)	29
8.3.4 Header Preference-Applied	30
8.3.5 Header Retry-After	30
8.3.6 Header AsyncResult	30
9	Common Response Status Codes	31
9.1 Success Responses	31
9.1.1 Response Code 200 OK	31
9.1.2 Response Code 201 Created	31
9.1.3 Response Code 202 Accepted	31
9.1.4 Response Code 204 No Content	31
9.1.5 Response Code 3xx Redirection	31
9.1.6 Response Code 304 Not Modified	31
9.2 Client Error Responses	32
9.2.1 Response Code 404 Not Found	32
9.2.2 Response Code 405 Method Not Allowed	32
9.2.3 Response Code 410 Gone	32
9.2.4 Response Code 412 Precondition Failed	32
9.3 Server Error Responses	32
9.3.1 Response Code 501 Not Implemented	32
9.4 In-Stream Errors	32
10	Context URL	33
10.1 Service Document	33
10.2 Collection of Entities	33
10.3 Entity	34
10.4 Singleton	34
10.5 Collection of Derived Entities	34
10.6 Derived Entity	35
10.7 Collection of Projected Entities	35
10.8 Projected Entity	35
10.9 Collection of Expanded Entities	36
10.10 Expanded Entity	36
10.11 Collection of Entity References	37
10.12 Entity Reference	37
10.13 Property Value	37
10.14 Collection of Complex or Primitive Types	37
10.15 Complex or Primitive Type	38
10.16 Operation Result	38
10.17 Delta Response	38
10.18 Item in a Delta Response	38
10.19 $all Response	39
10.20 $crossjoin Response	39
11	Data Service Requests	40
11.1 Metadata Requests	40
11.1.1 Service Document Request	40
11.1.2 Metadata Document Request	40
11.2 Requesting Data	40
11.2.1 System Query Options	40
11.2.2 Requesting Individual Entities	41
11.2.3 Requesting the Media Stream of a Media Entity using $value	41
11.2.4 Requesting Individual Properties	41
11.2.4.1 Requesting a Property's Raw Value using $value	42
11.2.5 Specifying Properties to Return	42
11.2.5.1 System Query Option $select	42
11.2.5.2 System Query Option $expand	43
11.2.5.2.1 Expand Options	44
11.2.5.2.1.1	Expand Option $levels	44
11.2.5.3 System Query Option $compute	44
[bookmark: _GoBack]11.2.6 Querying Collections	45
11.2.6.1 System Query Option $filter	45
11.2.6.1.1 Built-in Filter Operations	45
11.2.6.1.2 Built-in Query Functions	46
11.2.6.1.3 Parameter Aliases	47
11.2.6.2 System Query Option $orderby	48
11.2.6.3 System Query Option $top	48
11.2.6.4 System Query Option $skip	49
11.2.6.5 System Query Option $count	49
11.2.6.6 System Query Option $search	49
11.2.6.7 Server-Driven Paging	50
11.2.6.8 Requesting an Individual Member of an Ordered Collection	50
11.2.7 Requesting Related Entities	51
11.2.8 Requesting Entity References	51
11.2.9 Resolving an Entity-Id	51
11.2.10 Requesting the Number of Items in a Collection	52
11.2.11 System Query Option $format	52
11.3 Requesting Changes	53
11.3.1 Delta Links	53
11.3.2 Using Delta Links	53
11.4 Data Modification	54
11.4.1 Common Data Modification Semantics	54
11.4.1.1 Use of ETags for Avoiding Update Conflicts	54
11.4.1.2 Handling of DateTimeOffset Values	54
11.4.1.3 Handling of Properties Not Advertised in Metadata	54
11.4.1.4 Handling of Integrity Constraints	55
11.4.1.5 Returning Results from Data Modification Requests	55
11.4.2 Create an Entity	55
11.4.2.1 Link to Related Entities When Creating an Entity	56
11.4.2.2 Create Related Entities When Creating an Entity	56
11.4.3 Update an Entity	57
11.4.3.1 Treating Related Entities When Updating an Entity	58
11.4.4 Upsert an Entity	59
11.4.5 Delete an Entity	60
11.4.6 Modifying Relationships between Entities	60
11.4.6.1 Add a Reference to a Collection-Valued Navigation Property	60
11.4.6.2 Remove a Reference to an Entity	60
11.4.6.3 Change the Reference in a Single-Valued Navigation Property	60
11.4.6.4 Change all References in a Collection-valued Navigation Property	61
11.4.7 Managing Media Entities	61
11.4.7.1 Creating a Media Entity	61
11.4.7.2 Editing a Media Entity Stream	61
11.4.7.3 Deleting a Media Entity	61
11.4.8 Managing Stream Properties	61
11.4.8.1 Editing Stream Values	61
11.4.8.2 Deleting Stream Values	62
11.4.9 Managing Values and Properties Directly	62
11.4.9.1 Update a Primitive Property	62
11.4.9.2 Set a Value to Null	62
11.4.9.3 Update a Complex Property	62
11.4.9.4 Update a Collection Property	63
11.4.10 Managing Members of an Ordered Collection	63
11.4.11 Positional Inserts	63
11.4.12 Set-Based Updates	63
11.4.13 Set-Based Deletes	64
11.5 Operations	64
11.5.1 Binding an Operation to a Resource	64
11.5.2 Advertising Available Operations within a Payload	64
11.5.3 Functions	65
11.5.3.1 Invoking a Function	65
11.5.3.1.1 Inline Parameter Syntax	66
11.5.3.2 Function overload resolution	66
11.5.4 Actions	66
11.5.4.1 Invoking an Action	66
11.5.4.2 Action Overload Resolution	67
11.6 Asynchronous Requests	67
11.7 Batch Requests	68
11.7.1 Batch Request Headers	68
11.7.2 Batch Request Body	69
11.7.3 Change Sets	71
11.7.3.1 Referencing New Entities in a Change Set	71
11.7.3.2 Referencing the ETag of an Entity in a Change Set	72
11.7.4 Responding to a Batch Request	72
11.7.5 Asynchronous Batch Requests	74
12	Security Considerations	76
12.1 Authentication	76
13	Conformance	77
13.1 OData 4.0 Service Conformance Levels	77
13.1.1 OData 4.0 Minimal Conformance Level	77
13.1.2 OData 4.0 Intermediate Conformance Level	78
13.1.3 OData 4.0 Advanced Conformance Level	79
13.2 OData 4.01 Service Conformance Levels	79
13.2.1 OData 4.01 Minimal Conformance Level	79
13.2.2 OData 4.01 Intermediate Conformance Level	80
13.2.3 OData 4.01 Advanced Conformance Level	81
13.3 Interoperable OData Clients	81
Appendix A.	Acknowledgments	82
Appendix B.	Revision History	83

		
Copyright © OASIS Open 2004.All Rights Reserved. 		Page 5 of 5
odata-v4.01-csprd01-part1-protocol		08 December 2016
Standards Track Work Product	Copyright © OASIS Open 2016. All Rights Reserved.	Page 1 of 83
1 [bookmark: _Toc370125977][bookmark: _Toc370374774][bookmark: _Toc468953892][bookmark: _Toc470092955]Introduction
The Open Data Protocol (OData) enables the creation of REST-based data services, which allow resources, identified using Uniform Resource Locators (URLs) and defined in a data model, to be published and edited by Web clients using simple HTTP messages. This specification defines the core semantics and the behavioral aspects of the protocol.
The [OData‑URL] specification defines a set of rules for constructing URLs to identify the data and metadata exposed by an OData service as well as a set of reserved URL query options.
The specification defines an XML representation of the entity data model exposed by an OData service.
The [OData-Atom] and [OData-JSON] documents specify the format of the resource representations that are exchanged using OData.
1.1 [bookmark: _Toc370125978][bookmark: _Toc370374775][bookmark: _Toc468953893][bookmark: _Toc470092956]Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
1.2 [bookmark: _Ref7502892][bookmark: _Toc370125979][bookmark: _Toc370374776][bookmark: _Toc468953894][bookmark: _Toc470092957]Normative References
[bookmark: ABNF][OData-ABNF]	OData ABNF Construction Rules Version 4.0.
See link in "Additional artifacts" section on cover page.
[bookmark: ODataAggregationRef][OData-Aggregation]	OData Extension for Data Aggregation Version 4.0.
See link in "Related work" section on cover page.
[bookmark: ODataAtomRef][OData-Atom]	OData Atom Format Version 4.0.
See link in "Related work" section on cover page.
[bookmark: ODataCSDLRef][OData-CSDL]	OData Version 4.0 Part 3: Common Schema Definition Language (CSDL).
See link in "Additional artifacts" section on cover page.
[bookmark: ODataCSDLXMLRef][OData-CSDLXML]	OData Common Schema Definition Language (CSDL) XML Representation Version 4.01. See link in "Related work" section on cover page
[bookmark: ODataJSONRef][OData-JSON]	OData JSON Format Version 4.0.
See link in "Related work" section on cover page.
[bookmark: ODataURLRef][OData-URL]	OData Version 4.0 Part 2: URL Conventions.
See link in "Additional artifacts" section on cover page.
[bookmark: VocCapabilities][OData-VocCap]	OData Vocabularies Version 4.0: Capabilities Vocabulary.
See link in "Related work" section on cover page.
[bookmark: VocCore][OData-VocCore]	OData Vocabularies Version 4.0: Core Vocabulary.
See link in "Related work" section on cover page.
[bookmark: RFC2046][RFC2046]	Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types", RFC 2046, November 1996. https://tools.ietf.org/html/rfc2046.
[bookmark: RFC2119][RFC2119]	Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119, March 1997. https://tools.ietf.org/html/rfc2119.
[bookmark: RFC7617][RFC7617]	Reschke, J., "The 'Basic' HTTP Authentication Scheme", RFC 7617, September 2015. https://tools.ietf.org/html/rfc7617.
[bookmark: RFC3987][RFC3987]	Duerst, M. and, M. Suignard, “Internationalized Resource Identifiers (IRIs)”, RFC 3987, January 2005. https://tools.ietf.org/html/rfc3987.
[bookmark: RFC5023][RFC5023]	Gregorio, J., Ed., and B. de hOra, Ed., “The Atom Publishing Protocol.”, RFC 5023, October 2007. http://tools.ietf.org/html/rfc5023.
[bookmark: RFC5789][RFC5789]	Dusseault, L., and J. Snell, “Patch Method for HTTP”, RFC 5789, March 2010. http://tools.ietf.org/html/rfc5789.
[bookmark: HTTPMessage][RFC7230]	Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing”, RFC 7230, June 2014. https://tools.ietf.org/html/rfc7230.
[bookmark: HTTPSemantic][RFC7231]	Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content”, RFC 7231, June 2014. https://tools.ietf.org/html/rfc7231.
[bookmark: HTTPConditional][RFC7232]	Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests”, RFC 7232, June 2014. https://tools.ietf.org/html/rfc7232.
[bookmark: _Toc370125980][bookmark: _Toc370374777][bookmark: HTTPPREFER][RFC7240]	Snell, J., "Prefer Header for HTTP", RFC 7240, June 2014.https://tools.ietf.org/html/rfc7240.
1.3 [bookmark: _Toc468953695][bookmark: _Toc468953895][bookmark: _Toc468953896][bookmark: _Toc470092958]Typographical Conventions
Keywords defined by this specification use this monospaced font.
Normative source code uses this paragraph style.
Some sections of this specification are illustrated with non-normative examples.
Example 1: text describing an example uses this paragraph style
Non-normative examples use this paragraph style.
All examples in this document are non-normative and informative only.
All other text is normative unless otherwise labeled.
2 [bookmark: _Toc370125981][bookmark: _Toc370374778][bookmark: _Toc468953897][bookmark: _Toc470092959]Overview
The OData Protocol is an application-level protocol for interacting with data via RESTful interfaces. The protocol supports the description of data models and the editing and querying of data according to those models. It provides facilities for:
· Metadata: a machine-readable description of the data model exposed by a particular data provider.
· Data: sets of data entities and the relationships between them.
· Querying: requesting that the service perform a set of filtering and other transformations to its data, then return the results.
· Editing: creating, updating, and deleting data.
· Operations: invoking custom logic
· Vocabularies: attaching custom semantics
The OData Protocol is different from other REST-based web service approaches in that it provides a uniform way to describe both the data and the data model. This improves semantic interoperability between systems and allows an ecosystem to emerge.
Towards that end, the OData Protocol follows these design principles:
· Prefer mechanisms that work on a variety of data stores. In particular, do not assume a relational data model.
· Extensibility is important. Services should be able to support extended functionality without breaking clients unaware of those extensions.
· Follow REST principles.
· OData should build incrementally. A very basic, compliant service should be easy to build, with additional work necessary only to support additional capabilities.
· Keep it simple. Address the common cases and provide extensibility where necessary.
3 [bookmark: _Data_Model][bookmark: _Toc370125982][bookmark: _Toc370374779][bookmark: _Toc468953898][bookmark: _Toc470092960]Data Model
This section provides a high-level description of the Entity Data Model (EDM): the abstract data model that is used to describe the data exposed by an OData service. An OData Metadata Document is a representation of a service's data model exposed for client consumption.
The central concepts in the EDM are entities, relationships, entity sets, actions, and functions.
Entities are instances of entity types (e.g. Customer, Employee, etc.).
Entity types are named structured types with a key. They define the named properties and relationships of an entity. Entity types may derive by single inheritance from other entity types.
The key of an entity type is formed from a subset of the primitive properties (e.g. CustomerId, OrderId, LineId, etc.) of the entity type.
Complex types are keyless named structured types consisting of a set of properties. These are value types whose instances cannot be referenced outside of their containing entity. Complex types are commonly used as property values in an entity or as parameters to operations.
Properties declared as part of a structured type's definition are called declared properties. Instances of structured types may contain additional undeclared dynamic properties. A dynamic property cannot have the same name as a declared property. Entity or complex types which allow clients to persist additional undeclared properties are called open types.
Relationships from one entity to another are represented as navigation properties. Navigation properties are generally defined as part of an entity type, but can also appear on entity instances as undeclared dynamic navigation properties. Each relationship has a cardinality.
Enumeration types are named primitive types whose values are named constants with underlying integer values.
Type definitions are named primitive types with fixed facet values such as maximum length or precision. Type definitions can be used in place of primitive typed properties, for example, within property definitions.
Entity sets are named collections of entities (e.g. Customers is an entity set containing Customer entities). An entity's key uniquely identifies the entity within an entity set. If multiple entity sets use the same entity type, the same combination of key values can appear in more than one entity set and identifies different entities, one per entity set where this key combination appears. Each of these entities has a different entity-id. Entity sets provide entry points into the data model.
Operations allow the execution of custom logic on parts of a data model. Functions are operations that do not have side effects and may support further composition, for example, with additional filter operations, functions or an action. Actions are operations that allow side effects, such as data modification, and cannot be further composed in order to avoid non-deterministic behavior. Actions and functions are either bound to a type, enabling them to be called as members of an instance of that type, or unbound, in which case they are called as static operations. Action imports and function imports enable unbound actions and functions to be called from the service root.
Singletons are named entities which can be accessed as direct children of the entity container. A singleton may also be a member of an entity set.
An OData resource is anything in the model that can be addressed (an entity set, entity, property, or operation).
Refer to [OData-CSDLXML] for more information on the OData entity data model.
3.1 [bookmark: _Annotations][bookmark: _Toc370125983][bookmark: _Toc370374780][bookmark: _Toc468953899][bookmark: _Toc470092961]Annotations
Model and instance elements can be decorated with Annotations.
Annotations can be used to specify an individual fact about an element, such as whether it is read-only, or to define a common concept, such as a person or a movie.
Applied annotations consist of a term (the namespace-qualified name of the annotation being applied), a target (the model or instance element to which the term is applied), and a value. The value may be a static value, or an expression that may contain a path to one or more properties of an annotated entity.
Annotation terms are defined in metadata and have a name and a type.
A set of related terms in a common namespace comprises a Vocabulary.
4 [bookmark: _Toc370125984][bookmark: _Toc370374781][bookmark: _Toc468953900][bookmark: _Toc470092962]Service Model
OData services are defined using a common data model. The service advertises its concrete data model in a machine-readable form, allowing generic clients to interact with the service in a well-defined way.
An OData service exposes two well-defined resources that describe its data model; a service document and a metadata document.
The service document lists entity sets, functions, and singletons that can be retrieved. Clients can use the service document to navigate the model in a hypermedia-driven fashion.
The metadata document describes the types, sets, functions and actions understood by the OData service. Clients can use the metadata document to understand how to query and interact with entities in the service.
In addition to these two “fixed” resources an OData service consists of dynamic resources. The URLs for many of these resources can be computed from the information in the metadata document.
See Requesting Data and Data Modification for details.
4.1 [bookmark: _Entity_Ids_and][bookmark: _Entity-Ids_and_Entity][bookmark: _Toc370125985][bookmark: _Toc370374782][bookmark: _Toc468953901][bookmark: _Toc470092963]Entity-Ids and Entity References
Whereas entities within an entity set are uniquely identified by their key values, entities are also uniquely identified by a durable, opaque, globally unique entity-id. The entity-id MUST be an IRI as defined in [RFC3987] and MAY be expressed in payloads and URLs as a relative reference as appropriate. While the client MUST be prepared to accept any IRI, services MUST use valid URIs in this version of the specification since there is currently no lossless representation of an IRI in the OData-EntityId header.
Services are strongly encouraged to use the canonical URL for an entity as defined in OData-URL as its entity-id, but clients cannot assume the entity-id can be used to locate the entity unless the Core.DereferenceableIDs term is applied to the entity container, nor can the client assume any semantics from the structure of the entity-id. The canonical resource $entity provides a general mechanism for resolving an entity-id into an entity representation.
Services that use the standard URL conventions for entity-ids annotate their entity container with the term Core.ConventionalIDs, see [OData-VocCore].
Entity references refer to an entity using the entity's entity-id.
4.2 [bookmark: _Versioning][bookmark: _Toc370125986][bookmark: _Toc370374783][bookmark: _Toc468953902][bookmark: _Toc470092964]Read URLs and Edit URLs
The read URL of an entity is the URL that can be used to read the entity.
The edit URL of an entity is the URL that can be used to update or delete the entity.
The edit URL of a property is the edit URL of the entity with appended segment(s) containing the path to the property.
Services are strongly encouraged to use the canonical URL for an entity as defined in OData-URL for both the read URL and the edit URL of an entity, with a cast segment to the type of the entity appended to the canonical URL if the type of the entity is derived from the declared type of the entity set. However, clients cannot assume this convention and must use the links specified in the payload according to the appropriate format as the two URLs may be different from one another, or one or both of them may differ from convention.
4.3 [bookmark: _Versioning_1][bookmark: _Toc370374784][bookmark: _Toc370125987][bookmark: _Toc468953903][bookmark: _Toc470092965]Transient Entities
Transient entities are instances of an entity type that are “calculated on the fly” and only exist within a single payload. They cannot be reread or updated and consequently possess neither a stable entity-id nor a read URL or an update URL.
4.4 [bookmark: _Default_Namespaces][bookmark: _Toc468953904][bookmark: _Toc470092966]Default Namespaces
References to actions, functions, and types within a URL typically requires prefixing the name of the action, function, or type with the namespace or alias in which it is defined. This namespace qualification enables differentiating between similarly named elements across schema, or between properties and bound functions, actions, or types with the same name.
Services MAY define one or more default namespaces through the Core.DefaultNamespace term defined in [OData-VocCore]. Functions, actions and types in a default namespace can be referenced in URLs with or without namespace or alias qualification.
Service designers should ensure uniqueness of schema children across all default namespaces, and should avoid naming bound functions, actions, or derived types with the same name as a structural or navigation property of the type.
In the case where ambiguity does exist, an unqualified segment appended to a structured value is always first compared to the list of properties defined on the structured type. If no defined property with a name matching the unqualified segment exists, or the preceding segment represents a collection or a scalar value, it is next compared to the names of any bound functions or actions, or derived type names, defined within any default namespace. If it still does not match, and the preceding segment represents a structured value, it is interpreted as a dynamic property.
Services MAY disallow dynamic properties on structured values whose names conflict with a bound action, function, or derived type defined within in a default namespace.
The behavior if name conflicts occur across children of default namespaces is undefined. Generic clients are encouraged to always qualify action, function, and type names in order to avoid any possible ambiguity.
5 [bookmark: _Versioning_2][bookmark: _Toc370125988][bookmark: _Toc370374785][bookmark: _Toc468953905][bookmark: _Toc470092967]Versioning
Versioning enables clients and services to evolve independently. OData defines semantics for both protocol and data model versioning.
5.1 [bookmark: _Toc370125989][bookmark: _Toc370374786][bookmark: _Toc468953906][bookmark: _Toc470092968]Protocol Versioning
OData requests and responses are versioned according to the OData-Version header.
OData clients include the OData-MaxVersion header in requests in order to specify the maximum acceptable response version. Services respond with the maximum supported version that is less than or equal to the requested OData-MaxVersion, using decimal comparison. The syntax of the OData-Version and OData-MaxVersion header fields is specified in [OData-ABNF].
Services SHOULD advertise supported versions of OData through the Core.ODataVersions term, defined in [OData-VocCore].
This version of the specification defines OData version value 4.0 and 4.01. Content that applies only to one version or another is explicitly called out in the text.
5.2 [bookmark: _Model_Versioning][bookmark: _Toc370125990][bookmark: _Toc370374787][bookmark: _Toc468953907][bookmark: _Toc470092969]Model Versioning
The Data Model exposed by an OData Service defines a contract between the OData service and its clients. Services are allowed to extend their model only to the degree that it does not break existing clients. Breaking changes, such as removing properties, changing the type of existing properties, or adding or removing key properties, require that a new service version is provided at a different service root URL for the new model, or that the service version its metadata using the Core.SchemaVersion annotation, defined in [OData-VocCore].
Services that version their metadata MUST support version-specific requests according to the SchemaVersion header. The following Data Model additions are considered safe and do not require services to version their entry point or schema.
· Adding a property that is nullable or has a default value; if it has the same name as an existing dynamic property, it must have the same type (or base type) as the existing dynamic property
· Adding a navigation property that is nullable or collection-valued; if it has the same name as an existing dynamic navigation property, it must have the same type (or base type) as the existing dynamic navigation property
· Adding a new entity type to the model
· Adding a new complex type to the model
· Adding a new entity set
· Adding a new singleton
· Adding an action, a function, an action import, or function import
· Adding an action parameter that is nullable
· Adding a type definition or enumeration
· Adding a new term
· Adding any annotation to a model element that does not need to be understood by the client in order to correctly interact with the service
Clients SHOULD be prepared for services to make such incremental changes to their model. In particular, clients should be prepared to receive properties and derived types not previously defined by the service.
Services SHOULD NOT change their data model depending on the authenticated user. If the data model is user or user group dependent, all changes MUST be safe changes as defined in this section when comparing the full model to the model visible to users with restricted authorizations.
6 [bookmark: _Extensibility][bookmark: _Ref356809509][bookmark: _Toc370125991][bookmark: _Toc370374788][bookmark: _Toc468953908][bookmark: _Toc470092970]Extensibility
The OData protocol supports both user- and version-driven extensibility through a combination of versioning, convention, and explicit extension points.
6.1 [bookmark: _Toc370125992][bookmark: _Toc370374789][bookmark: _Toc468953909][bookmark: _Toc470092971]Query Option Extensibility
Query options within the request URL can control how a particular request is processed by the service.
OData-defined system query options are optionally prefixed with "$". Services may support additional custom query options not defined in the OData specification, but they MUST NOT begin with the "$" or "@" character and MUST NOT conflict with any OData-defined system query options defined in the OData version supported by the service.
OData services SHOULD NOT require any query options to be specified in a request. Services SHOULD fail any request that contains query options that they do not understand and MUST fail any request that contains unsupported OData query options defined in the version of this specification supported by the service.
In many cases OData services return URLs to identify resources that are later requested by clients. Where possible, interoperability is enhanced by providing all identifying information in the path portion of the URL. However, clients should be prepared for such URLs to include custom query options and propagate any such custom query options in future requests to the identified resource.
6.2 [bookmark: _Payload_Extensibility][bookmark: _Ref356809847][bookmark: _Toc370125993][bookmark: _Toc370374790][bookmark: _Toc468953910][bookmark: _Toc470092972]Payload Extensibility
OData supports extensibility in the payload, according to the specific format.
Regardless of the format, additional content MUST NOT be present if it needs to be understood by the receiver in order to correctly interpret the payload according to the specified OData-Version header. Thus, clients and services MUST be prepared to handle or safely ignore any content not specifically defined in the version of the payload specified by the OData-Version header.
6.3 [bookmark: _Toc370125994][bookmark: _Toc370374791][bookmark: _Toc468953911][bookmark: _Toc470092973]Action/Function Extensibility
Actions and Functions extend the set of operations that can be performed on or with a service or resource. Actions can have side-effects. For example, Actions can be used to modify data or to invoke custom operations. Functions MUST NOT have side-effects. Functions can be invoked from a URL that addresses a resource or within an expression to a $filter or $orderby system query option.
Fully qualified action and function names include a namespace or alias prefix. The Edm, odata and geo namespaces are reserved for the use of this specification.
An OData service MUST fail any request that contains actions or functions that it does not understand.
6.4 [bookmark: _Ref356809809][bookmark: _Toc370125995][bookmark: _Toc370374792][bookmark: _Toc468953912][bookmark: _Toc470092974]Vocabulary Extensibility
The set of annotations defined within a schema comprise a vocabulary. Shared vocabularies provide a powerful extensibility point for OData.
Metadata annotations can be used to define additional characteristics or capabilities of a metadata element, such as a service, entity type, property, function, action or parameter. For example, a metadata annotation could define ranges of valid values for a particular property.
Instance annotations can be used to define additional information associated with a particular result, entity, property, or error; for example whether a property is read-only for a particular instance.
Where annotations apply across all instances of a type, services are encouraged to specify the annotation in metadata rather than repeating in each instance of the payload. Where the same annotation is defined at both the metadata and instance level, the instance-level annotation overrides the one specified at the metadata level.
A service MUST NOT require the client to understand custom annotations in order to accurately interpret a response.
OData defines a Core vocabulary with a set of basic terms describing behavioral aspects along with terms that can be used in defining other vocabularies; see [OData-VocCore].
6.5 [bookmark: _Header_Field_Extensibility][bookmark: _Ref356809832][bookmark: _Toc370125996][bookmark: _Toc370374793][bookmark: _Toc468953913][bookmark: _Toc470092975]Header Field Extensibility
OData defines semantics around certain HTTP request and response headers. Services that support a version of OData conform to the processing requirements for the headers defined by this specification for that version.
Individual services may define custom headers. These headers MUST NOT begin with OData . Custom headers SHOULD be optional when making requests to the service. A service MUST NOT require the client to understand custom headers to accurately interpret the response.
6.6 [bookmark: _Toc370125997][bookmark: _Toc370374794][bookmark: _Toc468953914][bookmark: _Toc470092976]Format Extensibility
An OData service MUST support at least one of [OData-JSON] or [OData-Atom], and MAY support additional formats for both request and response bodies.
7 [bookmark: _Formats][bookmark: _Ref356809372][bookmark: _Toc370125998][bookmark: _Toc370374795][bookmark: _Toc468953915][bookmark: _Toc470092977]Formats
The client MAY request a particular response format through the Accept header, as specified in [RFC7231], or through the system query option $format
In the case that both the Accept header and the $format query option are specified on a request, the value specified in the $format query option MUST be used.
If the service does not support the requested format, it replies with a 406 Not Acceptable error response.
If neither the Accept header nor the $format query option are specified, the service is allowed to respond to requests for data in any format.
Services SHOULD advertise their supported formats by annotating their entity container with the term Capabilities.SupportedFormats, as defined in [OData-VocCap], listing all available formats and combinations of supported format parameters.
See the format specifications ([OData-JSON], [OData-Atom]) for details.
Client libraries MUST retain the order of objects within an array in JSON responses, and elements in document order for Atom and XML responses, including CSDL documents.
8 [bookmark: _Toc370125999][bookmark: _Toc370374796][bookmark: _Toc468953916][bookmark: _Toc470092978]Header Fields
OData defines semantics around the following request and response headers. Additional headers may be specified, but have no unique semantics defined in OData.
8.1 [bookmark: _Common_Headers][bookmark: _Toc370126000][bookmark: _Toc370374797][bookmark: _Toc468953917][bookmark: _Toc470092979]Common Headers
The following headers are common between OData requests and responses.
8.1.1 [bookmark: _The_DataServiceVersion_Header][bookmark: _The_Content-Type_Header][bookmark: _Header_Content-Type][bookmark: _Ref356812153][bookmark: _Toc370126001][bookmark: _Toc370374798][bookmark: _Toc468953918][bookmark: _Toc470092980]Header Content-Type
The format of a non-empty individual request or response body MUST be specified in the Content-Type header of a request or response. The exception to this is if the body represents the media stream of a media entity or stream property, in which case the Content-Type header SHOULD be present.
The specified format MAY include format parameters. Clients MUST be prepared for the service to return custom format parameters not specified in OData and SHOULD NOT expect that such format parameters can be ignored. Custom format parameters MUST NOT start with "odata" and services MUST NOT require generic OData consumers to understand custom format parameters in order to correctly interpret the payload.
See the format-specific specifications ([OData-JSON], [OData-Atom]) for details.
8.1.2 [bookmark: _Toc370126002][bookmark: _Toc370374799][bookmark: _Toc468953919][bookmark: _Toc470092981]Header Content-Encoding
As specified in [RFC7231], the Content-Encoding header field is used as a modifier to the media-type (as indicated in the Content-Type). When present, its value indicates what additional content codings have been applied to the entity-body.
A service MAY specify a list of acceptable content codings using an annotation with term Capabilities.AcceptableEncodings, see [OData-VocCap].
If the Content-Encoding header is specified on an individual request or response within a batch, then it specifies the encoding for that individual request or response. Individual requests or responses that don’t include the Content-Encoding header inherit the encoding of the overall batch request or response.
8.1.3 [bookmark: _Header_Content-Language][bookmark: _Toc370374800][bookmark: _Toc370126009][bookmark: _Toc468953920][bookmark: _Toc370126003][bookmark: _Toc470092982]Header Content-Language
As specified in [RFC7231], a request or response can include a Content-Language header to indicate the natural language of the intended audience for the enclosed message body. OData does not add any additional requirements over HTTP for including Content-Language. OData services can annotate model elements whose content depends on the content language with the term Core.IsLanguageDependent, see [OData-VocCore].
If the Content-Language header is specified on an individual request or response within a batch, then it specifies the language for that individual request or response. Individual requests or responses that don’t include the Content-Language header inherit the language of the overall batch request or response.
8.1.4 [bookmark: _Toc370374801][bookmark: _Toc468953921][bookmark: _Toc470092983]Header Content-Length
As specified in [RFC7230], a request or response SHOULD include a Content-Length header when the message's length can be determined prior to being transferred. OData does not add any additional requirements over HTTP for writing Content-Length.
If the Content-Length header is specified on an individual request or response within a batch, then it specifies the length for that individual request or response.
8.1.5 [bookmark: _The_OData-Version_Header][bookmark: _Header_OData-Version][bookmark: _Ref356809441][bookmark: _Ref356812141][bookmark: _Toc370126004][bookmark: _Toc370374802][bookmark: _Toc468953922][bookmark: _Toc470092984]Header OData-Version
OData clients SHOULD use the OData-Version header on a request to specify the version of the protocol used to generate the request.
If present on a request, the service MUST interpret the request according to the rules defined in the specified version of the protocol, or fail the request with a 4xx response code.
If not specified in a request, the service MUST assume the request is generated using the minimum of the OData-MaxVersion, if specified, and the maximum version of the protocol that the service understands.
OData services MUST include the OData-Version header on a response to specify the version of the protocol used to generate the response. The client MUST interpret the response according to the rules defined in the specified version of the protocol.
If the OData-Version header is specified on an individual request or response within a batch, then it specifies the OData version for that individual request or response. Individual requests or responses that don’t include the OData-Version header inherit the OData version of the overall batch request or response. This OData version does not typically vary within a batch.
For more details, see Versioning.
8.2 [bookmark: _Toc370126005][bookmark: _Toc370374803][bookmark: _Toc468953923][bookmark: _Toc470092985]Request Headers
In addition to the Common Headers, the client may specify any combination of the following request headers.
8.2.1 [bookmark: _The_MaxDataServiceVersion_Request][bookmark: _The_MinDataServiceVersion_Request][bookmark: _The_Accept_Request][bookmark: _Header_Accept][bookmark: _Ref356809459][bookmark: _Toc370126006][bookmark: _Toc370374804][bookmark: _Toc468953924][bookmark: _Toc470092986]Header Accept
As specified in [RFC7231], the client MAY specify the set of accepted formats with the Accept Header.
Services MUST reject formats that specify unknown or unsupported format parameters.
If a media type specified in the Accept header includes a charset format parameter and the request also contains an Accept-Charset header, then the Accept-Charset header MUST be used.
If the media type specified in the Accept header does not include a charset format parameter, then the Content-Type header of the response MUST NOT contain a charset format parameter.
The service SHOULD NOT add any format parameters to the Content-Type parameter not specified in the Accept header.
If the Accept header is specified on an individual request within a batch, then it specifies the acceptable formats for that individual request. Requests within a batch that don’t include the Accept header inherit the acceptable formats of the overall batch request.
8.2.2 [bookmark: _The_If-Match_Request][bookmark: _The_Accept-Charset_Request][bookmark: _Toc370126007][bookmark: _Toc370374805][bookmark: _Toc468953925][bookmark: _Toc470092987]Header Accept-Charset
As specified in. [RFC7231], the client MAY specify the set of accepted character sets with the Accept-Charset header.
If the Accept-Charset header is specified on an individual request within a batch, then it specifies the acceptable character sets for that individual request. Requests within a batch that don’t include the Accept-Charset header inherit the acceptable character sets of the overall batch request.
8.2.3 [bookmark: _Header_If-Match][bookmark: _Toc370374806][bookmark: _Toc370126008][bookmark: _Toc468953926][bookmark: _Toc470092988]Header Accept-Language
As specified in [RFC7231], the client MAY specify the set of accepted natural languages with the Accept-Language header.
If the Accept-Language header is specified on an individual request within a batch, then it specifies the acceptable languages for that individual request. Requests within a batch that don’t include the Accept-Language header inherit the acceptable languages of the overall batch request.
8.2.4 [bookmark: _Header_If-Match_1][bookmark: _Toc370126010][bookmark: _Toc370374807][bookmark: _Toc468953927][bookmark: _Toc470092989]Header If-Match
As specified in [RFC7232], a client MAY include an If-Match header in a request to GET, PUT, PATCH or DELETE. The value of the If-Match request header MUST be an ETag value previously retrieved for the resource, or "*" to match any value.
If an operation on an existing resource requires an ETag, (see Core.OptimisticConcurrency in [OData-VocCore]) and the client does not specify an If-Match request header in a or in an Action Request bound to the resource, the service responds with a 428 Precondition Required and MUST ensure that no observable change occurs as a result of the request.
If specified, the request MUST only be processed if the specified value matches the current ETag value of the target resource, using the weak comparison function (see [RFC7232]). If the value does not match the current ETag value of the resource for a or Action Request, the service MUST respond with 412 Precondition Failed and MUST ensure that no observable change occurs as a result of the request. In the case of an upsert, if the addressed entity does not exist the provided ETag value is considered not to match.
The client MAY include an If-Match header in a PUT or PATCH request in order to ensure that the request is handled as an update and not an upsert.
The If-Match header MUST NOT be specified on a batch request, but MAY be specified on individual requests within the batch.
8.2.5 [bookmark: _The_If-None-Match_Request][bookmark: _Header_If-None-Match][bookmark: _Toc370126011][bookmark: _Toc370374808][bookmark: _Toc468953928][bookmark: _Toc470092990]Header If-None-Match
As specified in [RFC7232], a client MAY include an If-None-Match header in a request to GET, PUT, PATCH or DELETE. The value of the If-None-Match request header MUST be an ETag value previously retrieved for the resource, or "*".
If specified, the request MUST only be processed if the specified value does not match the current ETag value of the resource, using the weak comparison function (see [RFC7232]). If the value matches the current ETag value of the resource, then for a GET request, the service SHOULD respond with 304 Not Modified, and for a or Action Request, the service MUST respond with 412 Precondition Failed and MUST ensure that no observable change occurs as a result of the request.
An If-None-Match header with a value of "*" in a PUT or PATCH request results in an upsert request being processed as an insert and not an update.
The If-None-Match header MUST NOT be specified on a batch request, but MAY be specified on individual requests within the batch.
8.2.6 [bookmark: _The_Prefer_Header_1][bookmark: _Header_OData-MaxVersion][bookmark: _Header_OData-Isolation][bookmark: _Toc370126012][bookmark: _Toc370374809][bookmark: _Toc468953929][bookmark: _Ref356809484][bookmark: _Ref356812046][bookmark: _Toc470092991]Header Isolation (OData-Isolation)
The Isolation header specifies the isolation of the current request from external changes. The only supported value for this header is snapshot.

If the service doesn’t support Isolation:snapshot and this header was specified on the request, the service MUST NOT process the request and MUST respond with 412 Precondition Failed.
Snapshot isolation guarantees that all data returned for a request, including multiple requests within a batch or results retrieved across multiple pages, will be consistent as of a single point in time. Only data modifications made within the request (for example, by a data modification request within the same batch) are visible. The effect is as if the request generates a "snapshot" of the committed data as it existed at the start of the request.
The Isolation header may be specified on a single or batch request. If it is specified on a batch then the value is applied to all statements within the batch.
Next links returned within a snapshot return results within the same snapshot as the initial request; the client is not required to repeat the header on each individual page request.
The Isolation header has no effect on links other than the next link. Navigation links, read links, and edit links return the current version of the data.
A service returns 410 Gone or 404 Not Found if a consumer tries to follow a next link referring to a snapshot that is no longer available.
The syntax of the Isolation header is specified in [OData-ABNF].
A service MAY specify the support for Isolation:snapshot using an annotation with term Capabilities.IsolationSupport, see [OData-VocCap].
Note: The Isolation header was named OData-Isolation in OData version 4.0. Services that support the Isolation header SHOULD also support OData-Isolation for OData 4.0 clients and clients SHOULD use OData-Isolation for compatibility with OData 4.0 services. If both Isolation and OData-Isolation headers are specified in the same request, the value of the Isolation preference SHOULD be used.
8.2.7 [bookmark: _Header_OData-MaxVersion_1][bookmark: _Ref359795855][bookmark: _Toc370126013][bookmark: _Toc370374810][bookmark: _Toc468953930][bookmark: _Toc470092992]Header OData-MaxVersion
Clients SHOULD specify an OData-MaxVersion request header.
If specified the service MUST generate a response with an OData-Version less than or equal to the specified OData-MaxVersion.
If OData-MaxVersion is not specified, then the service SHOULD interpret the request as having an OData-MaxVersion equal to the maximum version supported by the service.
If the OData-MaxVersion header is specified on an individual request within a batch, then it specifies the maximum OData version for that individual request. Individual requests that don’t include the OData-Version header inherit the maximum OData version of the overall batch request or response. The maximum OData version does not typically vary within a batch.
For more details, see Versioning.
8.2.8 [bookmark: _Header_Prefer][bookmark: _Toc370126014][bookmark: _Toc370374811][bookmark: _Toc468953931][bookmark: _Toc470092993]Header Prefer
The Prefer header, as defined in [RFC7240], allows clients to request certain behavior from the service. The service MUST ignore preference values that are either not supported or not known by the service.
The value of the Prefer header is a comma-separated list of preferences. The following subsections describe preferences whose meaning in OData is defined by this specification.
In response to a request containing a Prefer header, the service MAY return the Preference-Applied Header.
8.2.8.1 [bookmark: _Toc370126015][bookmark: _Toc370374812][bookmark: _Toc468953932][bookmark: _Toc470092994]Preference allow-entityreferences (odata.allow-entityreferences)
The allow-entityreferences preference indicates that the service is allowed to return entity references in place of entities that have previously been returned, with at least the properties requested, in the same response (for example, when serializing the expanded results of many-to-many relationships). The service MUST NOT return entity references in place of requested entities if allow-entityreferences has not been specified in the request, unless explicitly defined by other rules in this document. The syntax of the allow-entityreferences preference is specified in [OData-ABNF].
In the case the service applies the allow-entityreferences preference it MUST include a Preference-Applied response header containing the allow-entityreferences preference to indicate that entity references MAY be returned in place of entities that have previously been returned.
If the allow-entityreferences preference is specified on an individual request within a batch, then it specifies the preference for that individual request. Individual requests within a batch that don’t include the allow-entityreferences preference inherit the preference of the overall batch request.
Note: The allow-entityreferences preference was named odata.allow-entityreferences in OData version 4.0. Services that support the allow-entityreferences preference SHOULD also support odata.allow-entityreferences for OData 4.0 clients and clients SHOULD use odata.allow-entityreferences for compatibility with OData 4.0 services.
8.2.8.2 [bookmark: _The_odata-track-changes_Preference][bookmark: _The_OData-Continue-On-Error_Prefere][bookmark: _Toc370126016][bookmark: _Toc370374813][bookmark: _Toc468953933][bookmark: _Toc470092995]Preference callback (odata.callback)
For scenarios in which links returned by the service are used by the client to poll for additional information, the client can specify the callback preference to request that the service notify the client when data is available.
The callback preference can be specified:
· when requesting asynchronous processing of a request with the respond-async preference, or
· on a GET request to a delta link.
The callback preference MUST include the parameter url whose value is the URL of a callback endpoint to be invoked by the OData service when data is available. The syntax of the callback preference is specified in [OData-ABNF].
For HTTP based callbacks, the OData service executes an HTTP GET request against the specified URL.
Services that support callback SHOULD support notifying the client through HTTP. Services can advertise callback support using the Capabilities.CallbackSupport annotation term defined in [OData-VocCap].
If the service applies the callback preference it MUST include the callback preference in the Preference-Applied response header.
When the callback preference is applied to asynchronous requests, the OData service invokes the callback endpoint once it has finished processing the request. The status monitor resource, returned in the Location header of the previously returned 202 Accepted response, can then be used to retrieve the results of the asynchronously executed request.
When the callback preference is specified on a GET request to a delta link and there are no changes available, the OData service returns a 202 Accepted response with a Location header specifying the delta link to be used to check for future updates. The OData service then invokes the specified callback endpoint once new changes become available.
Combining respond-async, callback and track-changes preferences on a GET request to a delta-link might influence the response in a couple of ways.
· If the service processes the request synchronously, and no updates are available, then the response is the same as if the respond-async hadn’t been specified and results in a response as described above.
· If the service processes the request asynchronously, then it responds with a 202 Accepted response specifying the URL to the status monitor resource as it would have with any other asynchronous request. Once the service has finished processing the asynchronous request to the delta link resource, if changes are available it invokes the specified callback endpoint. If no changes are available, the service SHOULD wait to notify the client until changes are available. Once notified, the client uses the status monitor resource from the Location header of the previously returned 202 Accepted response to retrieve the results. In case no updates were available after processing the initial request, the result will contain no updates and the client can use the delta-link contained in the result to retrieve the updates that have since become available.
If the consumer specifies the same URL as callback endpoint in multiple requests, the service MAY collate them into a single notification once additional data is available for any of the requests. However, the consumer MUST be prepared to deal with receiving up to as many notifications as it requested.
Example 2: using a HTTP callback endpoint to receive notification
Prefer: callback; url="http://myserver/notfication/token/12345"
[bookmark: _Preference_odata.continue-on-error][bookmark: _Toc370126017][bookmark: _Toc370374814]If the callback preference is specified on an individual request within a batch, then it specifies the callback to be used for tracking changes to that individual request. If the callback preference is specified on a batch, then it specifies the callback to be used for async responses to the batch.
Note: The callback preference was named odata.callback in OData version 4.0. Services that support the callback preference SHOULD also support odata.callback for OData 4.0 clients and clients SHOULD use odata.callback for compatibility with OData 4.0 services. If both callback and odata.callback preferences are specified in the same request, the value of the callback preference SHOULD be used.
8.2.8.3 [bookmark: _Toc468953934][bookmark: _Toc470092996]Preference continue-on-error (odata.continue-on-error)
The continue-on-error preference on a batch request is used to request that, upon encountering a request within the batch that returns an error, the service return the error for that request and continue processing additional requests within the batch. The syntax of the continue-on-error preference is specified in [OData-ABNF].
If not specified, upon encountering an error the service MUST return the error within the batch and stop processing additional requests within the batch.
A service MAY specify the support for the continue-on-error preference using an annotation with term Capabilities.BatchContinueOnErrorSupported, see [OData-VocCap].
The continue-on-error preference SHOULD NOT be applied to individual requests within a batch.
Note: The continue-on-error preference was named odata.continue-on-error in OData version 4.0. Services that support the continue-on-error preference SHOULD also support odata.continue-on-error for OData 4.0 clients and clients SHOULD use odata.continue-on-error for compatibility with OData 4.0 services.
8.2.8.4 [bookmark: _Toc370126018][bookmark: _Toc370374815][bookmark: _Toc468953935][bookmark: _Toc470092997]Preference include-annotations (odata.include-annotations)
The include-annotations preference in a request for data or metadata is used to specify the set of annotations the client requests to be included, where applicable, in the response.
The value of the include-annotations preference is a comma-separated list of namespace-qualified term names or term name patterns to include or exclude, with "*" as a wildcard for name segments. Term names and term name patterns can optionally be followed by a hash (#) character and an annotation qualifier. The full syntax of the include-annotations preference is defined in [OData-ABNF].
The most specific identifier always takes precedence, with an explicit name taking precedence over a name pattern, and a longer pattern taking precedence over a shorter pattern. If the same identifier value is requested to both be excluded and included the behavior is undefined; the service MAY return or omit the specified vocabulary but MUST NOT raise an exception.
Example 3: a Prefer header requesting all annotations within a metadata document to be returned
Prefer: include-annotations="*"
Example 4: a Prefer header requesting that no annotations are returned
Prefer: include-annotations="-*"
Example 5: a Prefer header requesting that all annotations defined under the "display" namespace (recursively) be returned
Prefer: include-annotations="display.*"
Example 6: a Prefer header requesting that the annotation with the term name subject within the display namespace be returned
Prefer: include-annotations="display.subject"
Example 7: a Prefer header requesting that all annotations defined under the "display" namespace (recursively) with the qualifier “tablet” be returned
Prefer: include-annotations="display.*#tablet"
The include-annotations preference is only a hint to the service. The service MAY ignore the preference and is free to decide whether or not to return annotations not specified in the include-annotations preference.
In the case that the client has specified the include-annotations preference in the request, the service SHOULD include a Preference-Applied response header containing the include-annotations preference to specify the annotations actually included, where applicable, in the response. This value may differ from the annotations requested in the Prefer header of the request.
If the include-annotations preference is specified on an individual request within a batch, then it specifies the preference for that individual request. Individual requests within a batch that don’t include the include-annotations preference inherit the preference of the overall batch request.
Note: The include-annotations preference was named odata.include-annotations in OData version 4.0. Services that support the include-annotations preference SHOULD also support odata.include-annotations for OData 4.0 clients and clients SHOULD use odata.include-annotations for compatibility with OData 4.0 services. If both include-annotations and odata.include-annotations preferences are specified in the same request, the value of the include-annotations preference SHOULD be used.
8.2.8.5 [bookmark: _The_odata.maxpagesize_Preference][bookmark: _Toc370126019][bookmark: _Toc370374816][bookmark: _Toc468953936][bookmark: _Toc470092998]Preference maxpagesize (odata.maxpagesize)
The maxpagesize preference is used to request that each collection within the response contain no more than the number of items specified as the positive integer value of this preference. The syntax of the maxpagesize preference is specified in [OData-ABNF].
Example 8: a request for customers and their orders would result in a response containing one collection with customer entities and for every customer a separate collection with order entities. The client could specify maxpagesize=50 in order to request that each page of results contain a maximum of 50 customers, each with a maximum of 50 orders.
If a collection within the result contains more than the specified maxpagesize, the collection SHOULD be a partial set of the results with a next link to the next page of results. The client MAY specify a different value for this preference with every request following a next link.
In the example given above, the result page should include a next link for the customer collection, if there are more than 50 customers, and additional next links for all returned orders collections with more than 50 entities.
If the client has specified the maxpagesize preference in the request, and the service limits the number of items in collections within the response through server-driven paging, the service MAY include a Preference-Applied response header containing the maxpagesize preference and the maximum page size applied. This value may differ from the value requested by the client.
The maxpagesize preference SHOULD NOT be applied to a batch request, but MAY be applied to individual requests within a batch.
Note: The maxpagesize preference was named odata.maxpagesize in OData version 4.0. Services that support the maxpagesize preference SHOULD also support odata.maxpagesize for OData 4.0 clients and clients SHOULD use odata.maxpagesize for compatibility with OData 4.0 services. If both maxpagesize and odata.maxpagesize preferences are specified in the same request, the value of the maxpagesize preference SHOULD be used.
8.2.8.6 [bookmark: _Preference_odata.track-changes][bookmark: _Toc462914200][bookmark: _Toc462914420][bookmark: _Toc468953937][bookmark: _Toc470092999]Preference omit-values
The omit-values preference specifies values that MAY be omitted from a response payload. Valid values are nulls or defaults.
If nulls is specified, then the service MAY omit properties containing null values from the response, in which case it MUST specify the preference-applied response header with omit-values=nulls.
If defaults is specified, then the service MAY omit properties containing default values from the response, including nulls for properties that have no other defined default value. Nulls MUST be included for properties that have a non-null default value defined. If the service omits default values it MUST specify the preference-applied response header with omit-values=defaults.
Properties with null or default values MUST be included in delta payloads, if modified.
The response to a POST operation MUST include any properties not set to their default value, and the response to a PUT/PATCH operation MUST include any properties whose values were changed as part of the operation.
The omit-values preference does not affect a request payload.
8.2.8.7 [bookmark: _Toc462914202][bookmark: _Toc462914422][bookmark: _Toc462914204][bookmark: _Toc462914424][bookmark: _Toc462914206][bookmark: _Toc462914426][bookmark: _Toc462914208][bookmark: _Toc462914428][bookmark: _Toc462914212][bookmark: _Toc462914432][bookmark: _Toc462914216][bookmark: _Toc462914436][bookmark: _Toc370126021][bookmark: _Toc370374818][bookmark: _Toc468953938][bookmark: _Toc470093000]Preference return=representation and return=minimal
The return=representation and return=minimal preferences are defined in [RFC7240].
In OData, return=representation or return=minimal is defined for use with a POST, PUT, or PATCH Data Modification Request other than to a stream property, or to an Action Request. Specifying a preference of return=representation or return=minimal in a GET or DELETE request, or any request to a stream property, SHOULD return a 4xx Client Error.
A preference of return=representation or return=minimal is allowed on an individual Data Modification Request or Action Request within a batch, subject to the same restrictions, but SHOULD return a 4xx Client Error if specified on the batch request itself.
A preference of return=minimal requests that the service invoke the request but does not return content in the response. The service MAY apply this preference by returning 204 No Content in which case it MAY include a Preference-Applied response header containing the return=minimal preference.
A preference of return=representation requests that the service invokes the request and returns the modified resource. The service MAY apply this preference by returning the representation of the successfully modified resource in the body of the response, formatted according to the rules specified for the requested format. In this case the service MAY include a Preference-Applied response header containing the return=representation preference.
The return preference SHOULD NOT be applied to a batch request, but MAY be applied to individual requests within a batch.
8.2.8.8 [bookmark: _The_respond-async_Preference][bookmark: _Preference_respond-async][bookmark: _Ref356811944][bookmark: _Toc370126022][bookmark: _Toc370374819][bookmark: _Toc468953939][bookmark: _Toc470093001]Preference respond-async
The respond-async preference, as defined in [RFC7240], allows clients to request that the service process the request asynchronously.
If the client has specified respond-async in the request, the service MAY process the request asynchronously and return a 202 Accepted response.
The respond-async preference MAY be used for batch requests, but the service MUST ignore the respond-async preference for individual requests within a batch request.
In the case that the service applies the respond-async preference it MUST include a Preference-Applied response header containing the respond-async preference.
A service MAY specify the support for the respond-async preference using an annotation with term Capabilities.AsynchronousRequestsSupported, see [OData-VocCap].
Example 9: a service receiving the following header might choose to respond
· asynchronously if the synchronous processing of the request will take longer than 10 seconds
· synchronously after 5 seconds
· asynchronously (ignoring the wait preference)
· synchronously after 15 seconds (ignoring respond-async preference and the wait preference)
Prefer: respond-async, wait=10
[bookmark: _The_wait_Preference][bookmark: _Toc370126023][bookmark: _Toc370374820]The respond-async preference SHOULD NOT be applied to individual requests within a batch.
8.2.8.9 [bookmark: _Toc468953940][bookmark: _Toc470093002]Preference track-changes (odata.track-changes)
The track-changes preference is used to request that the service return a delta link that can subsequently be used to obtain changes (deltas) to this result. The syntax of the track-changes preference is specified in [OData-ABNF].
For paged results, the preference MUST be specified on the initial request. Services MUST ignore the track-changes preference if applied to the next link.
The delta link MUST NOT be returned prior to the final page of results.
The service includes a Preference-Applied response header in the first page of the response containing the track-changes preference to signal that changes are being tracked.
A service MAY specify the support for the track-changes preference using an annotation with term Capabilities.ChangeTracking, see [OData-VocCap].
The track-changes preference SHOULD NOT be applied to a batch request, but MAY be applied to individual requests within a batch.
Note: The track-changes preference was named odata.track-changes in OData version 4.0. Services that support the track-changes preference SHOULD also support odata.track-changes for OData 4.0 clients and clients SHOULD use odata.track-changes for compatibility with OData 4.0 services.
8.2.8.10 [bookmark: _Toc468953941][bookmark: _Toc470093003]Preference wait
The wait preference, as defined in [RFC7240], is used to establish an upper bound on the length of time, in seconds, the client is prepared to wait for the service to process the request synchronously once it has been received.
If the respond-async preference is also specified, the client requests that the service respond asynchronously after the specified length of time.
If the respond-async preference has not been specified, the service MAY interpret the wait as a request to timeout after the specified period of time.
If the wait preference is specified on an individual request within a batch, then it specifies the maximum amount of time to wait for that individual request. If the wait preference is specified on a batch, then it specifies the maximum time to wait for the entire batch.
8.2.9 [bookmark: _Header_SchemaVersion][bookmark: _Toc468953942][bookmark: _Toc370126024][bookmark: _Toc370374821][bookmark: _Toc470093004]Header SchemaVersion
The SchemaVersion header MAY be included in any request in order to specify the version of the schema against which the request is made. The syntax of the SchemaVersion header is specified in [OData-ABNF].
The value of the SchemaVersion header MUST be a version of the schema as returned in the Core.SchemaVersion annotation, defined in [OData-VocCore], of a previous request to the metadata document, or * in order to specify the current version of the metadata.
If specified, the service MUST process the request according to the specified version of the metadata.
Clients can retrieve the current version of the metadata by making a metadata document request with a SchemaVersion header value of *, and SHOULD include the value from the returned Core.SchemaVersion annotation in the SchemaVersion header value of subsequent requests.
If the SchemaVersion header is not specified in a request for the metadata document, the service MUST return a version of the metadata with no breaking changes over time, and the processing of all other requests that omit the SchemaVersion header MUST be compatible with that “unversioned” schema.
If the SchemaVersion header is specified on an individual request within a batch, then it specifies the version of the schema to apply to that individual request. Individual requests within a batch that don’t include the SchemaVersion header inherit the schema version of the overall batch request.
For more information on breaking changes, see Model Versioning.
8.3 [bookmark: _Toc468953943][bookmark: _Toc470093005]Response Headers
In addition to the Common Headers, the following response headers have defined meaning in OData.
8.3.1 [bookmark: _The_ETag_Header][bookmark: _Toc370126025][bookmark: _Toc370374822][bookmark: _Toc468953944][bookmark: _Toc470093006]Header ETag
A response MAY include an ETag header. Services MUST include this header if they require it to be specified when modifying the resource.
Services MUST support specifying the value returned in the ETag header in an If-None-Match header of a subsequent Data Request for the resource. Clients MUST specify the value returned in the ETag header, or star (*), in an If-Match header of a subsequent or Action Request in order to apply optimistic concurrency in updating, deleting, or invoking an action bound to the resource.
As OData allows multiple formats for representing the same structured information, services SHOULD use weak ETags that only depend on the format-independent entity state. A strong ETag MUST change whenever the representation of an entity changes, so it has to depend on the Content-Type, the Content-Language, and potentially other characteristics of the response.
[bookmark: _The_Location_Header]An ETag header MAY also be returned on a metadata document request or service document request to allow the client subsequently to make a conditional request for the metadata or service document. Clients can also compare the value of the ETag header returned from a metadata document request to the metadata ETag returned in a response in order to verify the version of the metadata used to generate that response.
The ETag header SHOULD NOT be included for the overall batch response, but MAY be included in individual responses within a batch.
8.3.2 [bookmark: _Header_Location][bookmark: _Toc370126026][bookmark: _Toc370374823][bookmark: _Toc468953945][bookmark: _Toc470093007]Header Location
The Location header MUST be returned in the response from a Create Entity or Create Media Entity request to specify the edit URL, or for read-only entities the read URL, of the created entity, and in responses returning 202 Accepted to specify the URL that the client can use to request the status of an asynchronous request.
The Location header SHOULD NOT be included for the overall batch response, but MAY be included in individual responses within a batch.
8.3.3 [bookmark: _The_Preference-Applied_Header][bookmark: _Header_OData-EntityId][bookmark: _Ref356918973][bookmark: _Toc370126027][bookmark: _Toc370374824][bookmark: _Toc468953946][bookmark: _Toc470093008]Header EntityId (OData-EntityId)
A response to a create or upsert operation that returns 204 No Content MUST include an EntityId response header. The value of the header is the entity-id of the entity that was acted on by the request. The syntax of the EntityId header is specified in [OData-ABNF].
The EntityID header SHOULD NOT be included for the overall batch response, but MAY be included in individual responses within a batch.
Note: The EntityId header was named OData-EntityId in OData version 4.0. Services MUST return the OData-EntityId header for responses that have an OData.Version response header of 4.0 and the EntityId header for response with an OData.Version header of 4.01 or greater, and MAY return both EntityId and OData-EntityId headers in the same response.
8.3.4 [bookmark: _Header_Preference-Applied][bookmark: _Toc370126028][bookmark: _Toc370374825][bookmark: _Toc468953947][bookmark: _Toc470093009]Header Preference-Applied
In a response to a request that specifies a Prefer header, a service MAY include a Preference-Applied header, as defined in [RFC7240], specifying how individual preferences within the request were handled.
The value of the Preference-Applied header is a comma-separated list of preferences applied in the response. For more information on the individual preferences, see the Prefer header.
If the preference-applied header is specified on an individual response within a batch, then it specifies the preferences applied to that individual response. If the preference-applied header is specified on a batch response, then it specifies the preferences applied to the overall batch.
8.3.5 [bookmark: _The_Prefer_Header][bookmark: _The_Retry-After_Header][bookmark: _Toc370126029][bookmark: _Toc370374826][bookmark: _Toc468953948][bookmark: _Toc470093010]Header Retry-After
A service MAY include a Retry-After header in 202 Accepted and in 3xx Redirect responses
The Retry-After header specifies the duration of time, in seconds, that the client is asked to wait before retrying the request or issuing a request to the resource returned as the value of the Location header.
The retry after header SHOULD NOT be applied to individual responses within a batch.
8.3.6 [bookmark: _AsyncResult][bookmark: _Header_AsyncResult][bookmark: _Toc468953949][bookmark: _Toc470093011]Header AsyncResult
A 4.01 service MUST include the AsyncResult header in 200 OK response from a status monitor resource in order to indicate the final HTTP Response Status Code of an asynchronously executed request.
The AsyncResult header SHOULD NOT be applied to individual responses within a batch.
9 [bookmark: _Common_Response_Status][bookmark: _Toc370126030][bookmark: _Toc370374827][bookmark: _Toc468953950][bookmark: _Toc470093012]Common Response Status Codes
An OData service MAY respond to any request using any valid HTTP status code appropriate for the request. A service SHOULD be as specific as possible in its choice of HTTP status codes.
The following represent the most common success response codes. In some cases, a service MAY respond with a more specific success code.
9.1 [bookmark: _Success_Response_Codes][bookmark: _Toc370126031][bookmark: _Toc370374828][bookmark: _Toc468953951][bookmark: _Toc470093013]Success Responses
The following response codes represent successful requests.
9.1.1 [bookmark: _200_OK_Response][bookmark: _Response_Code_200][bookmark: _Toc370126032][bookmark: _Toc370374829][bookmark: _Toc468953952][bookmark: _Toc470093014]Response Code 200 OK
A request that does not create a resource returns 200 OK if it is completed successfully and the value of the resource is not null. In this case, the response body MUST contain the value of the resource specified in the request URL.
9.1.2 [bookmark: _201_Created_Response][bookmark: _Response_Code_201][bookmark: _Ref356812426][bookmark: _Toc370126033][bookmark: _Toc370374830][bookmark: _Toc468953953][bookmark: _Toc470093015]Response Code 201 Created
A Create Entity, Create Media Entity, Create Link or Invoke Action request that successfully creates a resource returns 201 Created. In this case, the response body MUST contain the resource created.
9.1.3 [bookmark: _202_Accepted_Response][bookmark: _Response_Code_202][bookmark: _Ref359762533][bookmark: _Toc370126034][bookmark: _Toc370374831][bookmark: _Toc468953954][bookmark: _Toc470093016]Response Code 202 Accepted
202 Accepted indicates that the Data Service Request has been accepted and has not yet completed executing asynchronously. The asynchronous handling of requests is specified in section 11.6, and in section 11.7.5 for batch requests.
9.1.4 [bookmark: _204_No_Content][bookmark: _Response_Code_204][bookmark: _Toc370126035][bookmark: _Toc370374832][bookmark: _Toc468953955][bookmark: _Toc470093017]Response Code 204 No Content
A request returns 204 No Content if the requested resource has the null value, or if the service applies a return=minimal preference. In this case, the response body MUST be empty.
As defined in [RFC7231], a Data Modification Request that responds with 204 No Content MUST NOT include an ETag header unless the request's representation data was saved without any transformation applied to the body (i.e., the resource's new representation data is identical to the representation data received in the PUT request) and the ETag value reflects the new representation.
9.1.5 [bookmark: _3xx_Redirect_Response][bookmark: _Response_Code_3xx][bookmark: _Ref356812180][bookmark: _Toc370126036][bookmark: _Toc370374833][bookmark: _Toc468953956][bookmark: _Toc470093018]Response Code 3xx Redirection
As per [RFC7231], a 3xx Redirection indicates that further action needs to be taken by the client in order to fulfill the request. In this case, the response SHOULD include a Location header, as appropriate, with the URL from which the result can be obtained; it MAY include a Retry-After header.
9.1.6 [bookmark: _4xx_Client_Error][bookmark: _304_Not_Modified][bookmark: _Toc370126037][bookmark: _Toc370374834][bookmark: _Toc468953957][bookmark: _Toc470093019]Response Code 304 Not Modified
As per [RFC7232], a 304 Not Modified is returned when the client performs a GET request containing an If-None-Match header and the content has not changed. In this case the response SHOULD NOT include other headers in order to prevent inconsistencies between cached entity-bodies and updated headers.
The service MUST ensure that no observable change has occurred to the state of the service as a result of any request that returns a 304 Not Modified.
9.2 [bookmark: _Client_Error_Responses][bookmark: _Toc370126038][bookmark: _Toc370374835][bookmark: _Toc468953958][bookmark: _Toc470093020]Client Error Responses
Error codes in the 4xx range indicate a client error, such as a malformed request.
The service MUST ensure that no observable change has occurred to the state of the service as a result of any request that returns an error status code.
In the case that a response body is defined for the error code, the body of the error is as defined for the appropriate format.
9.2.1 [bookmark: _404_Not_Found][bookmark: _Response_Code_404][bookmark: _Toc370126039][bookmark: _Toc370374836][bookmark: _Toc468953959][bookmark: _Toc470093021]Response Code 404 Not Found
404 Not Found indicates that the resource specified by the request URL does not exist. The response body MAY provide additional information.
9.2.2 [bookmark: _Response_Code_405][bookmark: _Toc370126040][bookmark: _Toc370374837][bookmark: _Toc468953960][bookmark: _Toc470093022]Response Code 405 Method Not Allowed
405 Method Not Allowed indicates that the resource specified by the request URL does not support the request method. In this case the response MUST include an Allow header containing a list of valid request methods for the requested resource as specified in [RFC7231].
9.2.3 [bookmark: _501_Not_Implemented][bookmark: _Response_code_410][bookmark: _Toc370126041][bookmark: _Toc370374838][bookmark: _Toc468953961][bookmark: _Toc470093023]Response Code 410 Gone
410 Gone indicates that the requested resource is no longer available. This can happen if a client has waited too long to follow a delta link or a status-monitor-resource link, or a next link on a collection that was requested with snapshot isolation.
9.2.4 [bookmark: _Response_Code_412][bookmark: _Toc468953962][bookmark: _Toc370126042][bookmark: _Toc370374839][bookmark: _Toc470093024]Response Code 412 Precondition Failed
As specified in [RFC7232], 412 Precondition Failed indicates that the client has performed a conditional request and the resource fails the condition. The service MUST ensure that no observable change occurs as a result of the request.
9.3 [bookmark: _Toc468953963][bookmark: _Toc470093025]Server Error Responses
As specified in [RFC7231], error codes in the 5xx range indicate service errors.
9.3.1 [bookmark: _501_Not_Implemented_1][bookmark: _Response_Code_501][bookmark: _Ref356810514][bookmark: _Toc370126043][bookmark: _Toc370374840][bookmark: _Toc468953964][bookmark: _Toc470093026]Response Code 501 Not Implemented
If the client requests functionality not implemented by the OData Service, the service MUST respond with 501 Not Implemented and the response body SHOULD describe the functionality not implemented.
9.4 [bookmark: _Not_Implemented_Error][bookmark: _Toc370126044][bookmark: _Toc370374841][bookmark: _Toc468953965][bookmark: _Toc470093027]In-Stream Errors
In the case that the service encounters an error after sending a success status to the client, the service MUST generate an error within the payload, which may leave the response malformed. Clients MUST treat the entire response as being in error.
This specification does not prescribe a particular format for generating errors within a payload.
10 [bookmark: _Data_Service_Requests][bookmark: _Metadata_URL][bookmark: _Toc370126045][bookmark: _Toc370374842][bookmark: _Toc468953966][bookmark: _Toc470093028]Context URL
The context URL describes the content of the payload. It consists of the canonical metadata document URL and a fragment identifying the relevant portion of the metadata document.
Request payloads generally do not require context URLs as the type of the payload can generally be determined from the request URL.
For details on how the context URL is used to describe a payload, see the relevant sections in the particular format.
The following subsections describe how the context URL is constructed for each category of payload by providing a context URL template. The context URL template uses the following terms:
· {context-url} is the canonical resource path to the $metadata document,
· {entity-set} is the name of an entity set or path to a containment navigation property,
· {entity} is the canonical URL for an entity,
· {singleton} is the canonical URL for a singleton entity,
· {select-list} is an optional parenthesized comma-separated list of selected properties, functions and actions,
· {property-path} is the path to a structural property of the entity,
· {type-name} is a qualified type name,
· {/type-name} is an optional type-cast segment containing the qualified name of a derived or implemented type prefixed with a forward slash.
The full grammar for the context URL is defined in [OData-ABNF]. Note that the syntax of the context URL is independent of whatever URL conventions the service uses for addressing individual entities.
10.1 [bookmark: _Toc370126046][bookmark: _Toc370374843][bookmark: _Toc468953967][bookmark: _Toc470093029]Service Document
Context URL template:
{context-url}
The context URL of the service document is the metadata document URL of the service.
Example 10: resource URL and corresponding context URL
http://host/service/
http://host/service/$metadata
10.2 [bookmark: _Toc370126047][bookmark: _Toc370374844][bookmark: _Toc468953968][bookmark: _Toc470093030]Collection of Entities
Context URL template:
{context-url}#{entity-set}
{context-url}#Collection({type-name})
If all entities in the collection are members of one entity set, its name is the context URL fragment.
Example 11: resource URL and corresponding context URL
http://host/service/Customers
http://host/service/$metadata#Customers
If the entities are contained, then entity-set is the top-level entity set followed by the path to the containment navigation property of the containing entity.
Example 12: resource URL and corresponding context URL for contained entities
http://host/service/Orders(4711)/Items
http://host/service/$metadata#Orders(4711)/Items
If the entities in the response are not bound to a single entity set, such as from a function or action with no entity set path, a function import or action import with no specified entity set, or a navigation property with no navigation property binding, the context URL specifies the type of the returned entity collection.
10.3 [bookmark: _Toc370126048][bookmark: _Toc370374845][bookmark: _Toc468953969][bookmark: _Toc470093031]Entity
Context URL template:
{context-url}#{entity-set}/$entity
{context-url}#{type-name}
If a response or response part is a single entity of the declared type of an entity set, /$entity is appended to the context URL.
Example 13: resource URL and corresponding context URL
http://host/service/Customers(1)
http://host/service/$metadata#Customers/$entity
If the entity is contained, then entity-set is the canonical URL for the containment navigation property of the containing entity, e.g. Orders(4711)/Items.
Example 14: resource URL and corresponding context URL for contained entity
http://host/service/Orders(4711)/Items(1)
http://host/service/$metadata#Orders(4711)/Items/$entity
If the response is not bound to a single entity set, such as an entity returned from a function or action with no entity set path, a function import or action import with no specified entity set, or a navigation property with no navigation property binding, the context URL specifies the type of the returned entity.
10.4 [bookmark: _Toc370126049][bookmark: _Toc370374846][bookmark: _Toc468953970][bookmark: _Toc470093032]Singleton
Context URL template:
{context-url}#{singleton}
If a response or response part is a singleton, its name is the context URL fragment.
Example 15: resource URL and corresponding context URL
http://host/service/MainSupplier
http://host/service/$metadata#MainSupplier
10.5 [bookmark: _Toc370126050][bookmark: _Toc370374847][bookmark: _Toc468953971][bookmark: _Toc470093033]Collection of Derived Entities
Context URL template:
{context-url}#{entity-set}{/type-name}
If an entity set consists exclusively of derived entities, a type-cast segment is added to the context URL.
Example 16: resource URL and corresponding context URL
http://host/service/Customers/Model.VipCustomer
http://host/service/$metadata#Customers/Model.VipCustomer
10.6 [bookmark: _Ref358202636][bookmark: _Toc370126051][bookmark: _Toc370374848][bookmark: _Toc468953972][bookmark: _Toc470093034]Derived Entity
Context URL template:
{context-url}#{entity-set}{/type-name}/$entity
If a response or response part is a single entity of a type derived from the declared type of an entity set, a type-cast segment is appended to the entity set name.
Example 17: resource URL and corresponding context URL
http://host/service/Customers(2)/Model.VipCustomer
http://host/service/$metadata#Customers/Model.VipCustomer/$entity
10.7 [bookmark: _Toc370126052][bookmark: _Toc370374849][bookmark: _Toc468953973][bookmark: _Toc470093035]Collection of Projected Entities
Context URL templates:
{context-url}#{entity-set}{/type-name}{select-list}
{context-url}#Collection({type-name}){select-list}
If a result contains only a subset of properties, the parenthesized comma-separated list of the selected defined or dynamic properties, navigation properties, functions, and actions is appended to the {entity-set} after an optional type-cast segment, or the type of the entity collection if the response is not bound to a single entity set. The shortcut * represents the list of all structural properties. Properties defined on types derived from the declared type of the entity set (or type specified in the type-cast segment if specified) are prefixed with the qualified name of the derived type as defined in [OData-ABNF].
Example 18: resource URL and corresponding context URL
http://host/service/Customers?$select=Address,Orders
http://host/service/$metadata#Customers(Address,Orders)
10.8 [bookmark: _Toc370126053][bookmark: _Toc370374850][bookmark: _Toc468953974][bookmark: _Toc470093036]Projected Entity
Context URL templates:
{context-url}#{entity-set}{/type-name}{select-list}/$entity
{context-url}#{singleton}{select-list}
{context-url}#{type-name}{select-list}
If a single entity contains a subset of properties, the parenthesized comma-separated list of the selected defined or dynamic properties, navigation properties, functions, and actions is appended to the {entity-set} after an optional type-cast segment and prior to appending /$entity. If the response is not bound to a single entity set, the {select-list} is instead appended to the {type-name} of the returned entity.
The shortcut * represents the list of all structural properties. Properties defined on types derived from the type of the entity set (or type specified in the type-cast segment if specified) are prefixed with the qualified name of the derived type as defined in [OData-ABNF]. Note that expanded properties are implicitly selected.
Example 19: resource URL and corresponding context URL
http://host/service/Customers(1)?$select=Name,Rating
http://host/service/$metadata#Customers(Name,Rating)/$entity
10.9 [bookmark: _Toc370126054][bookmark: _Toc370374851][bookmark: _Toc468953975][bookmark: _Toc470093037]Collection of Expanded Entities
Context URL template:
{context-url}#{entity-set}{/type-name}{select-list}
{context-url}#Collection({type-name}){select-list}
For a 4.01 response, if a navigation property is explicitly expanded, then in addition to any non-suffixed names of any selected properties, navigation properties, functions or actions, the comma-separated list of properties MUST include the name of the expanded property, suffixed with the parenthesized comma-separated list of any properties of the expanded navigation property that are selected or expanded. If the expanded navigation property does not contain a nested $select or $expand, then the expanded property is suffixed with empty parentheses. If the expansion is recursive for nested children, a plus sign (+) is infixed between the navigation property name and the opening parenthesis.
For a 4.0 response, the expanded navigation property suffixed with parentheses MAY NOT be present in the select-list if it does not contain a nested $select or $expand, but MUST still be present, without a suffix, if it is explicitly selected.
Example 20: resource URL and corresponding context URL
http://host/service/Customers$select=Name&$expand=Address/Country
http://host/service/$metadata#Customers(Name,Address/Country)
Example 21: resource URL and corresponding context URL
http://host/service/Employees/Sales.Manager?$select=DirectReports
 &$expand=DirectReports($select=FirstName,LastName;$levels=4)
http://host/service/$metadata
 #Employees/Sales.Manager(DirectReports,
 DirectReports+(FirstName,LastName))
10.10 [bookmark: _Toc370126055][bookmark: _Toc370374852][bookmark: _Toc468953976][bookmark: _Toc470093038]Expanded Entity
Context URL template:
{context-url}#{entity-set}{/type-name}{select-list}/$entity
{context-url}#{singleton}{select-list}
{context-url}#{type-name}{select-list}
For a 4.01 response, if a navigation property is explicitly expanded, then in addition to the non-suffixed names of any selected properties, navigation properties, functions or actions, the comma-separated list of properties MUST include the name of the expanded property, suffixed with the parenthesized comma-separated list of any properties of the expanded navigation property that are selected or expanded. If the expanded navigation property does not contain a nested $select or $expand, then the expanded property is suffixed with empty parentheses. If the expansion is recursive for nested children, a plus sign (+) is infixed between the navigation property name and the opening parenthesis.
For a 4.0 response, the expanded navigation property suffixed with parentheses MAY NOT be present in the select-list if it does not contain a nested $select or $expand, but MUST still be present, without a suffix, if it is explicitly selected..
Example 22: resource URL and corresponding context URL
http://host/service/Employees(1)/Sales.Manager?
 $expand=DirectReports($select=FirstName,LastName;$levels=4)
http://host/service/$metadata
 #Employees/Sales.Manager(DirectReports+(FirstName,LastName))/$entity
10.11 [bookmark: _Toc370126056][bookmark: _Toc370374853][bookmark: _Toc468953977][bookmark: _Toc470093039]Collection of Entity References
Context URL template:
{context-url}#Collection($ref)
If a response is a collection of entity references, the context URL does not contain the type of the referenced entities.
Example 23: resource URL and corresponding context URL for a collection of entity references
http://host/service/Customers('ALFKI')/Orders/$ref
http://host/service/$metadata#Collection($ref)
10.12 [bookmark: _Toc370126057][bookmark: _Toc370374854][bookmark: _Toc468953978][bookmark: _Toc470093040]Entity Reference
Context URL template:
{context-url}#$ref
If a response is a single entity reference, $ref is the context URL fragment.
Example 24: resource URL and corresponding context URL for a single entity reference
http://host/service/Orders(10643)/Customer/$ref
http://host/service/$metadata#$ref
10.13 [bookmark: _Toc370126058][bookmark: _Toc370374855][bookmark: _Toc468953979][bookmark: _Toc470093041]Property Value
Context URL template:
{context-url}#{entity}/{property-path}{select-list}
If a response represents an individual property of an entity with a canonical URL, the context URL specifies the canonical URL of the entity and the path to the structural property of that entity. The path MUST include cast segments for properties defined on types derived from the expected type of the previous segment.
Example 25: resource URL and corresponding context URL
http://host/service/Customers(1)/Addresses
http://host/service/$metadata#Customers(1)/Addresses
10.14 [bookmark: _Toc370126059][bookmark: _Toc370374856][bookmark: _Toc468953980][bookmark: _Toc470093042]Collection of Complex or Primitive Types
Context URL template:
{context-url}#Collection({type-name}){select-list}
If a response is a collection of complex types or primitive types that do not represent an individual property of an entity with a canonical URL, the context URL specifies the fully qualified type of the collection.
Example 26: resource URL and corresponding context URL
http://host/service/TopFiveHobbies()
http://host/service/$metadata#Collection(Edm.String)
10.15 [bookmark: _Toc370126060][bookmark: _Toc370374857][bookmark: _Toc468953981][bookmark: _Toc470093043]Complex or Primitive Type
Context URL template:
{context-url}#{type-name}{select-list}
If a response is a complex type or primitive type that does not represent an individual property of an entity with a canonical URL, the context URL specifies the fully qualified type of the result.
Example 27: resource URL and corresponding context URL
http://host/service/MostPopularName()
http://host/service/$metadata#Edm.String
10.16 [bookmark: _Toc370126061][bookmark: _Toc370374858][bookmark: _Toc468953982][bookmark: _Toc470093044]Operation Result
Context URL templates:
{context-url}#{entity-set}{/type-name}{select-list}
{context-url}#{entity-set}{/type-name}{select-list}/$entity
{context-url}#{entity}/{property-path}{select-list}
{context-url}#Collection({type-name}){select-list}
{context-url}#{type-name}{select-list}
If the response from an action or function is a collection of entities or a single entity that is a member of an entity set, the context URL identifies the entity set. If the response from an action or function is a property of a single entity, the context URL identifies the entity and property. Otherwise, the context URL identifies the type returned by the operation. The context URL will correspond to one of the former examples.
Example 28: resource URL and corresponding context URL
http://host/service/TopFiveCustomers{}
http://host/service/$metadata#Customers
10.17 [bookmark: _Toc370126062][bookmark: _Toc370374859][bookmark: _Toc468953983][bookmark: _Toc470093045]Delta Response
Context URL template:
{context-url}#{entity-set}{/type-name}{select-list}/$delta
#$delta
The context URL of a delta response is the context URL of the response to the defining query, followed by /$delta.
If the entities are contained, then {entity-set} is the top-level entity set followed by the path to the containment navigation property of the containing entity.
Example 29: resource URL and corresponding context URL
http://host/service/Customers?$deltatoken=1234
http://host/service/$metadata#Customers/$delta
[bookmark: _Toc370126063][bookmark: _Toc370374860]The context URL of a nested collection representing a delta is simply the fragment #$delta.
10.18 [bookmark: _Toc468953984][bookmark: _Toc470093046]Item in a Delta Response
Context URL templates:
{context-url}#{entity-set}/$deletedEntity
{context-url}#{entity-set}/$link
{context-url}#{entity-set}/$deletedLink
In addition to new or changed entities which have the canonical context URL for an entity a delta response can contain deleted entities, new links, and deleted links. They are identified by the corresponding context URL fragment. {entity-set} corresponds to the set of the deleted entity, or source entity for an added or deleted link.
10.19 [bookmark: _Toc370126064][bookmark: _Toc370374861][bookmark: _Toc468953985][bookmark: _Toc470093047]$all Response
Context URL template:
{context-url}#Collection(Edm.EntityType)
Responses to requests to the virtual collection $all (see [OData‑URL]) use the built-in abstract entity type. Each single entity in such a response has its individual context URL that identifies the entity set or singleton.
10.20 [bookmark: _Toc370126065][bookmark: _Toc370374862][bookmark: _Toc468953986][bookmark: _Toc470093048]$crossjoin Response
Context URL template:
{context-url}#Collection(Edm.ComplexType)
Responses to requests to the virtual collections $crossjoin(...) (see [OData‑URL]) use the built-in abstract complex type. Single instances in these responses do not have a context URL.
11 [bookmark: _Data_Service_Requests_1][bookmark: _Toc370126066][bookmark: _Toc370374863][bookmark: _Toc468953987][bookmark: _Toc470093049]Data Service Requests
11.1 [bookmark: _Toc370126067][bookmark: _Toc370374864][bookmark: _Toc468953988][bookmark: _Toc470093050]Metadata Requests
An OData service is a self-describing service that exposes metadata defining the entity sets, relationships, entity types, and operations.
11.1.1 [bookmark: _Service_Document_Request][bookmark: _Ref356809318][bookmark: _Toc370126068][bookmark: _Toc370374865][bookmark: _Toc468953989][bookmark: _Toc470093051]Service Document Request
Service documents enable simple hypermedia-driven clients to enumerate and explore the resources offered by the data service.
OData services MUST support returning a service document from the root URL of the service (the service root).
The format of the service document is dependent upon the format selected. For example, in Atom the service document is an AtomPub service document (as specified in [RFC5023]).
11.1.2 [bookmark: _Metadata_Document_Request][bookmark: _Ref356811257][bookmark: _Ref356811607][bookmark: _Toc370126069][bookmark: _Toc370374866][bookmark: _Toc468953990][bookmark: _Toc470093052]Metadata Document Request
An OData Metadata Document is a representation of the data model that describes the data and operations exposed by an OData service.
[OData-CSDLXML] describes an XML representation for OData metadata documents and provides an XML schema to validate their contents. The media type of the XML representation of an OData metadata document is application/xml.
OData services MUST expose a metadata document that describes the data model exposed by the service. The Metadata Document URL MUST be the root URL of the service with $metadata appended. To retrieve this document the client issues a GET request to the metadata document URL.
If a request for metadata does not specify a format preference (via Accept header or $format) then the XML representation MUST be returned.
11.2 [bookmark: _10.2._Requesting_Data][bookmark: _Requesting_Data][bookmark: _Toc468953991][bookmark: _Toc468953992][bookmark: _Toc468953993][bookmark: _Requesting_Data_1][bookmark: _Ref359256568][bookmark: _Toc370126071][bookmark: _Toc370374868][bookmark: _Toc468953994][bookmark: _Toc470093053]Requesting Data
OData services support requests for data via HTTP GET requests.
The path of the URL specifies the target of the request (for example; the collection of entities, entity, navigation property, structural property, or operation). Additional query operators, such as filter, sort, page, and projection operations are specified through query options.
This section describes the types of data requests defined by OData. For complete details on the syntax for building requests, see [OData‑URL].
OData services are hypermedia driven services that return URLs to the client. If a client subsequently requests the advertised resource and the URL has expired, then the service SHOULD respond with 410 Gone. If this is not feasible, the service MUST respond with 404 Not Found.
[bookmark: _Ref356918808][bookmark: _Toc370126072][bookmark: _Toc370374869]The format of the returned data is dependent upon the request and the format specified by the client, either in the Accept header or using the $format query option. If the client specifies neither an Accept header nor the $format query option, the service is allowed to return the response in any format.
11.2.1 [bookmark: _Evaluating_System_Query][bookmark: _Toc468953995][bookmark: _Toc470093054]System Query Options
OData defines a number of system query options that allow refining the request. System query options are prefixed with the dollar ($) character, which is optional in OData 4.01. 4.01 services MUST support case-insensitive system query option names specified with or without the $ prefix. Clients that want to work with 4.0 services MUST use lower case names and specify the $ prefix.
The result of the request MUST be as if the system query options were evaluated in the following order.
Prior to applying any server-driven paging:
· $apply – defined in [OData-Aggregation]
· $compute
· $search
· $filter
· $count
· $orderby
· $skip
· $top
After applying any server-driven paging:
· $expand
· $select
· $format
11.2.2 [bookmark: _Toc370126073][bookmark: _Toc370374870][bookmark: _Toc468953996][bookmark: _Toc470093055]Requesting Individual Entities
To retrieve an individual entity, the client makes a GET request to the read URL of an entity.
The read URL can be obtained from a response payload containing that instance, for example as a self-link in an [OData-Atom] payload. In addition, Services MAY support conventions for constructing a read URL using the entity's key value(s), as described in [OData‑URL].
The set of structural or navigation properties to return may be specified through $select or $expand system query options.
Clients MUST be prepared to receive additional properties in an entity or complex type instance that are not advertised in metadata, even for types not marked as open.
Properties that are not available, for example due to permissions, are not returned. In this case, the Core.Permissions annotation, defined in [OData-VocCore] MUST be returned for the property with a value of Core.Permission'None'.
If no entity exists with the key values specified in the request URL, the service responds with 404 Not Found.
11.2.3 [bookmark: _Requesting_Individual_Properties][bookmark: _Requesting_the_Media][bookmark: _Toc468953997][bookmark: _Toc370126074][bookmark: _Toc370374871][bookmark: _Toc470093056]Requesting the Media Stream of a Media Entity using $value
A media entity is an entity that represents an out-of-band stream, such as a photograph.
To address the media stream represented by a media entity, clients append /$value to the resource path of the media entity URL. Services may redirect from this canonical URL to the source URL of the media stream.
Appending /$value to an entity that is not a media entity returns 400 Bad Request.
Attempting to retrieve the media stream from a single-valued navigation property referencing a media entity whose value is null returns 404 Not Found.
11.2.4 [bookmark: _Toc468953998][bookmark: _Toc470093057]Requesting Individual Properties
To retrieve an individual property, the client issues a GET request to the property URL. The property URL is the entity read URL with "/" and the property name appended.
For complex typed properties, the path can be further extended with the name of an individual property of the complex type.
See [OData‑URL] for details.
If the property is single-valued and has the null value, the service responds with 204 No Content.
If the property is not available, for example due to permissions, the service responds with 404 Not Found.
Example 30:
http://host/service/Products(1)/Name
11.2.4.1 [bookmark: _Requesting_a_Property's][bookmark: _Ref356810722][bookmark: _Toc370126075][bookmark: _Toc370374872][bookmark: _Toc468953999][bookmark: _Toc470093058]Requesting a Property's Raw Value using $value
To retrieve the raw value of a primitive type property, the client sends a GET request to the property value URL. See the [OData‑URL] document for details.
The Content-Type of the response is determined using the Accept header and the $format system query option.
The default format for single primitive values except Edm.Binary and the Edm.Geo types is text/plain.
The default format for Edm.Geo types is text/plain using the WKT (well-known text) format, see rules fullCollectionLiteral, fullLineStringLiteral, fullMultiPointLiteral, fullMultiLineStringLiteral, fullMultiPolygonLiteral, fullPointLiteral, and fullPolygonLiteral in [OData-ABNF].
The default format for Edm.Binary is the format specified by the Core.MediaType annotation of this property (see [OData-VocCore]) if this annotation is present. If not annotated, the format cannot be predicted by the client.
A $value request for a property that is null results in a 204 No Content response.
If the property is not available, for example due to permissions, the service responds with 404 Not Found.
[bookmark: _Ref356920699]Example 31:
http://host/service/Products(1)/Name/$value
11.2.5 [bookmark: _Specifying_Properties_to][bookmark: _Toc370126076][bookmark: _Toc370374873][bookmark: _Toc468954000][bookmark: _Toc470093059]Specifying Properties to Return
The $select and $expand system query options enable the client to specify the set of structural properties and navigation properties to include in a response. The service MAY include additional properties not specified in $select and $expand, including properties not defined in the metadata document.
11.2.5.1 [bookmark: _System_Query_Option_3][bookmark: _Ref358202576][bookmark: _Toc370126077][bookmark: _Toc370374874][bookmark: _Toc468954001][bookmark: _Toc470093060]System Query Option $select
The $select system query option requests that the service return only the properties, dynamic properties, actions and functions explicitly requested by the client. The service returns the specified content, if available, along with any available expanded navigation or stream properties, and MAY return additional information.
The value of the $select query option is a comma-separated list of properties, qualified action names, qualified function names, the star operator (*), or the star operator prefixed with the namespace or alias of the schema in order to specify all operations defined in the schema. Only aliases defined in the metadata document of the service can be used in URLs.
Example 32: request only the Rating and ReleaseDate for the matching Products
http://host/service/Products?$select=Rating,ReleaseDate
It is also possible to request all structural properties, including any dynamic properties, using the star operator. The star operator SHOULD NOT introduce navigation properties, actions or functions not otherwise requested.
Example 33:
http://host/service/Products?$select=*
Properties of related entities can be specified by including the $select query option within the $expand.
Example 34:
http://host/service/Products?$expand=Category($select=Name)
The properties specified in $select are represented in addition to any expanded navigation or stream properties. If a navigation property is specified in $select, then the corresponding navigation link is represented in the response. If the navigation property also appears in an $expand query option, then it is additionally represented as inline content.
Example 35: for each category, return the CategoryName and the Products navigation link
http://host/service/Categories?$select=CategoryName&$expand=Products
It is also possible to request all actions or functions available for each returned entity.
Example 36:
http://host/service/Products?$select=DemoService.*
[bookmark: _System_Query_Option_4][bookmark: _Ref358202018]If the $select query option is not specified, the service returns the full set of properties or a default set of properties. The default set of properties MUST include all key properties.
If the service returns less than the full set of properties, either because the client specified a select or because the service returned a subset of properties in the absence of a select, the context URL MUST reflect the set of selected properties and expanded navigation properties.
11.2.5.2 [bookmark: _System_Query_Option_6][bookmark: _Ref359271022][bookmark: _Toc370126078][bookmark: _Toc370374875][bookmark: _Toc468954002][bookmark: _Toc470093061]System Query Option $expand
The $expand system query option indicates the related entities and stream values that MUST be represented inline. The service MUST return the specified content, and MAY choose to return additional information.
The value of the $expand query option is a comma-separated list of navigation property names, stream property names, or $value indicating the stream content of a media-entity.
For navigation properties, the navigation property name is optionally followed by a /$ref path segment or a /$count path segment, and optionally a parenthesized set of expand options (for filtering, sorting, selecting, paging, or expanding the related entities).
For a full description of the syntax used when building requests, see [OData‑URL].
Example 37: for each customer entity within the Customers entity set the value of all related Orders will be represented inline
http://host/service.svc/Customers?$expand=Orders
Example 38: for each customer entity within the Customers entity set the references to the related Orders will be represented inline
http://host/service.svc/Customers?$expand=Orders/$ref
[bookmark: _Expand_Options_1][bookmark: _Ref356919051][bookmark: _Toc370126079][bookmark: _Toc370374876]Example 39: for each customer entity within the Customers entity set the media stream representing the customer photo will be represented inline
http://host/service.svc/Customers?$expand=Photo
11.2.5.2.1 [bookmark: _Toc468954003][bookmark: _Toc470093062]Expand Options
The set of expanded entities can be further refined through the application of expand options, expressed as a semicolon-separated list of system query options, enclosed in parentheses, see [OData‑URL].
Allowed system query options are $filter, $select, $orderby, $skip, $top, $count, $search, $expand, $compute, and $levels.
Example 40: for each customer entity within the Customers entity set, the value of those related Orders whose Amount is greater than 100 will be represented inline
http://host/service.svc/Customers?$expand=Orders($filter=Amount gt 100)
Example 41: for each order within the Orders entity set, the following will be represented inline:
· The Items related to the Orders identified by the resource path section of the URL and the products related to each order item.
The Customer related to each order returned.
http://host/service.svc/Orders?$expand=Items($expand=Product),Customer
Example 42: for each customer entity in the Customers entity set, the value of all related InHouseStaff will be represented inline if the entity is of type VipCustomer or a subtype of that. For entities that are not of type VipCustomer, or any of its subtypes, that entity may be returned with no inline representation for the expanded navigation property InHouseStaff (the service can always send more than requested)
http://host/service.svc/Customers?$expand=SampleModel.VipCustomer/InHouseStaff
11.2.5.2.1.1 [bookmark: _Expand_Option_$levels][bookmark: _Ref359800523][bookmark: _Toc370126080][bookmark: _Toc370374877][bookmark: _Toc468954004][bookmark: _Toc470093063]Expand Option $levels
The $levels expand option can be used to specify the number of levels of recursion for a hierarchy in which the related entity type is the same as, or can be cast to, the source entity type. A $levels option with a value of 1 specifies a single expand with no recursion. The same expand options are applied at each level of the hierarchy.
Services MAY support the symbolic value max in addition to numeric values. In that case they MUST solve circular dependencies by injecting an entity reference somewhere in the circular dependency.
Clients using $levels=max MUST be prepared to handle entity references in cases were a circular reference would occur otherwise.
4.01 services that support max SHOULD do so in a case-insensitive manner. Clients that want to work with 4.0 services MUST use lower case.
Example 43: return each employee from the Employees entity set and, for each employee that is a manager, return all direct reports, recursively to four levels
http://host/service/Employees?$expand=Model.Manager/DirectReports($levels=4)
11.2.5.3 [bookmark: _System_Query_Option_2][bookmark: _Toc468954005][bookmark: _Toc370126081][bookmark: _Toc370374878][bookmark: _Toc470093064]System Query Option $compute
The $compute system query option allows clients to define computed properties that can be used in a $select or within a $filter or $orderby expression.
Computed properties SHOULD be included as dynamic properties in the result and MUST be included if $select is specified with the computed property name, or star (*).
Example 44: compute total price for order items
http://host/service/Customers?
 $filter=Orders/any(o:o/TotalPrice gt 100)
 &$expand=Orders(
 $compute=Price mult Qty as TotalPrice;$select=Name,Price,Qty,TotalPrice)
11.2.6 [bookmark: _Toc468954006][bookmark: _Toc470093065]Querying Collections
OData services support querying collections of entities, complex type instances, and primitive values.
The target collection is specified through a URL, and query operations such as filter, sort, paging, and projection are specified as system query options optionally prefixed with a dollar ($) character. 4.01 Services MUST support case-insensitive system query option names specified with or without the $ prefix. Clients that want to work with 4.0 services MUST use lower case names and specify the $ prefix..
The same system query option MUST NOT be specified more than once for any resource.
An OData service MAY support some or all of the system query options defined. If a data service does not support a system query option, it MUST fail any request that contains the unsupported option and SHOULD return 501 Not Implemented.
11.2.6.1 [bookmark: _The_$filter_System][bookmark: _Ref356809647][bookmark: _Ref356809679][bookmark: _Ref356810710][bookmark: _Toc370126082][bookmark: _Toc370374879][bookmark: _Toc468954007][bookmark: _Toc470093066]System Query Option $filter
The $filter system query option restricts the set of items returned.
Example 45: return all Products whose Price is less than $10.00
http://host/service/Products?$filter=Price lt 10.00
The $count segment may be used within a $filter expression to limit the items returned based on the exact count of related entities or items within a collection-valued property.
Example 46: return all Categories with less than 10 products
http://host/service/Categories?$filter=Products/$count lt 10
The value of the $filter option is a Boolean expression as defined in [OData-ABNF].
11.2.6.1.1 [bookmark: _Built-in_Filter_Operations][bookmark: _Ref356810738][bookmark: _Toc370126083][bookmark: _Toc370374880][bookmark: _Toc468954008][bookmark: _Toc470093067]Built-in Filter Operations
OData supports a set of built-in filter operations, as described in this section.
4.01 services MUST support case-insensitive operation names. Clients that want to work with 4.0 services MUST use lower case operation names.
For a full description of the syntax used when building requests, see [OData‑URL].
	Operator
	Description
	Example

	Comparison Operators

	eq
	Equal
	Address/City eq 'Redmond'

	ne
	Not equal
	Address/City ne 'London'

	gt
	Greater than
	Price gt 20

	ge
	Greater than or equal
	Price ge 10

	lt
	Less than
	Price lt 20

	le
	Less than or equal
	Price le 100

	has
	Has flags
	Style has Sales.Color'Yellow'

	in
	Is a member of
	Address/City in ('Redmond', 'London')

	Logical Operators

	and
	Logical and
	Price le 200 and Price gt 3.5

	or
	Logical or
	Price le 3.5 or Price gt 200

	not
	Logical negation
	not endswith(Description,'milk')

	Arithmetic Operators

	add
	Addition
	Price add 5 gt 10

	sub
	Subtraction
	Price sub 5 gt 10

	mul
	Multiplication
	Price mul 2 gt 2000

	div
	Division
	Price div 2 gt 4

	divby
	Decimal Division
	Price divby 2 gt 3.5

	mod
	Modulo
	Price mod 2 eq 0

	Grouping Operators

	()
	Precedence grouping
	(Price sub 5) gt 10

11.2.6.1.2 [bookmark: _Built-in_Query_Functions][bookmark: _Ref356810887][bookmark: _Toc370126084][bookmark: _Toc370374881][bookmark: _Toc468954009][bookmark: _Toc470093068]Built-in Query Functions
OData supports a set of built-in functions that can be used within $filter operations. The following table lists the available functions.
4.01 services MUST support case-insensitive built-in function names. Clients that want to work with 4.0 services MUST use lower case names.
For a full description of the syntax used when building requests, see [OData‑URL].
OData does not define an ISNULL or COALESCE operator. Instead, there is a null literal that can be used in comparisons.
	Function
	Example

	String Functions

	contains
	contains(CompanyName,'freds')

	endswith
	endswith(CompanyName,'Futterkiste')

	startswith
	startswith(CompanyName,'Alfr')

	length
	length(CompanyName) eq 19

	indexof
	indexof(CompanyName,'lfreds') eq 1

	substring
	substring(CompanyName,1) eq 'lfreds Futterkiste'

	tolower
	tolower(CompanyName) eq 'alfreds futterkiste'

	toupper
	toupper(CompanyName) eq 'ALFREDS FUTTERKISTE'

	trim	
	trim(CompanyName) eq 'Alfreds Futterkiste'

	concat
	concat(concat(City,', '), Country) eq 'Berlin, Germany'

	Date Functions

	year
	year(BirthDate) eq 0

	month
	month(BirthDate) eq 12

	day
	day(StartTime) eq 8

	hour
	hour(StartTime) eq 1

	minute
	minute(StartTime) eq 0

	second
	second(StartTime) eq 0

	fractionalseconds
	second(StartTime) eq 0

	date
	date(StartTime) ne date(EndTime)

	time
	time(StartTime) le StartOfDay

	totaloffsetminutes
	totaloffsetminutes(StartTime) eq 60

	now
	StartTime ge now()

	mindatetime
	StartTime eq mindatetime()

	maxdatetime
	EndTime eq maxdatetime()

	Math Functions

	round
	round(Freight) eq 32

	floor
	floor(Freight) eq 32

	ceiling
	ceiling(Freight) eq 33

	Type Functions

	cast
	cast(ShipCountry,Edm.String)

	isof
	isof(NorthwindModel.Order)

	isof
	isof(ShipCountry,Edm.String)

	[bookmark: _The_$expand_System]Geo Functions

	geo.distance
	geo.distance(CurrentPosition,TargetPosition)

	geo.length
	geo.length(DirectRoute)

	geo.intersects
	geo.intersects(Position,TargetArea)

11.2.6.1.3 [bookmark: _Parameter_Aliases_1][bookmark: _Ref356810757][bookmark: _Toc370126085][bookmark: _Toc370374882][bookmark: _Toc468954010][bookmark: _Toc470093069]Parameter Aliases
Parameter aliases can be used in place of literal values in entity keys, function parameters, or within a $filter or $orderby expression. Parameters aliases are names beginning with an at sign (@).
Actual parameter values are specified as query options in the query part of the request URL. The query option name is the name of the parameter alias, and the query option value is the value to be used for the specified parameter alias.
Example 47: returns all employees whose Region property matches the string parameter value "WA"
http://host/service.svc/Employees?$filter=Region eq @p1&@p1='WA'
Parameter aliases allow the same value to be used multiple times in a request and may be used to reference primitive values, complex, or collection values.
If a parameter alias is not given a value in the Query part of the request URL, the value MUST be assumed to be null. A parameter alias can be used in multiple places within a request URL but its value MUST NOT be specified more than once.
11.2.6.2 [bookmark: _The_$select_System_1][bookmark: _The_$orderby_System][bookmark: _Ref356809651][bookmark: _Ref356809687][bookmark: _Ref356811547][bookmark: _Ref356811818][bookmark: _Toc370126086][bookmark: _Toc370374883][bookmark: _Toc468954011][bookmark: _Toc470093070]System Query Option $orderby
The $orderby System Query option specifies the order in which items are returned from the service.
The value of the $orderby System Query option contains a comma-separated list of expressions whose primitive result values are used to sort the items. A special case of such an expression is a property path terminating on a primitive property. A type cast using the qualified entity type name is required to order by a property defined on a derived type. Only aliases defined in the metadata document of the service can be used in URLs.
The expression can include the suffix asc for ascending or desc for descending, separated from the property name by one or more spaces. If asc or desc is not specified, the service MUST order by the specified property in ascending order. 4.01 services MUST support case-insensitive values for asc and desc. Clients that want to work with 4.0 services MUST use lower case values.
Null values come before non-null values when sorting in ascending order and after non-null values when sorting in descending order.
Items are sorted by the result values of the first expression, and then items with the same value for the first expression are sorted by the result value of the second expression, and so on.
The Boolean value false comes before the value true in ascending order.
Values of type Edm.Stream or any of the Geo types cannot be sorted.
Example 48: return all Products ordered by release date in ascending order, then by rating in descending order
http://host/service/Products?$orderby=ReleaseDate asc, Rating desc
[bookmark: _The_$top_System]Related entities may be ordered by specifying $orderby within the $expand clause.
Example 49: return all Categories, and their Products ordered according to release date and in descending order of rating
http://host/service/Categories?
	$expand=Products($orderby=ReleaseDate asc, Rating desc)
$count may be used within a $orderby expression to order the returned items according to the exact count of related entities or items within a collection-valued property.
Example 50: return all Categories ordered by the number of Products within each category
http://host/service/Categories?$orderby=Products/$count
11.2.6.3 [bookmark: _The_$top_System_1][bookmark: _Ref356809710][bookmark: _Ref356810605][bookmark: _Toc370126087][bookmark: _Toc370374884][bookmark: _Toc468954012][bookmark: _Toc470093071]System Query Option $top
The $top system query option specifies a non-negative integer n that limits the number of items returned from a collection. The service returns the number of available items up to but not greater than the specified value n.
Example 51: return only the first five products of the Products entity set
http://host/service/Products?$top=5
If no unique ordering is imposed through an $orderby query option, the service MUST impose a stable ordering across requests that include $top.
11.2.6.4 [bookmark: _The_$skip_System][bookmark: _Ref356809726][bookmark: _Ref356811304][bookmark: _Ref356811749][bookmark: _Toc370126088][bookmark: _Toc370374885][bookmark: _Toc468954013][bookmark: _Toc470093072]System Query Option $skip
The $skip system query option specifies a non-negative integer n that excludes the first n items of the queried collection from the result. The service returns items starting at position n+1.
Example 52: return products starting with the 6th product of the Products entity set
http://host/service/Products?$skip=5
Where $top and $skip are used together, $skip MUST be applied before $top, regardless of the order in which they appear in the request.
Example 53: return the third through seventh products of the Products entity set
http://host/service/Products?$top=5&$skip=2
If no unique ordering is imposed through an $orderby query option, the service MUST impose a stable ordering across requests that include $skip.
11.2.6.5 [bookmark: _The_$inlinecount_System][bookmark: _Ref356811324][bookmark: _Ref356811804][bookmark: _Toc370126089][bookmark: _Toc370374886][bookmark: _Toc468954014][bookmark: _Toc470093073]System Query Option $count
The $count system query option with a value of true specifies that the total count of items within a collection matching the request be returned along with the result.
Example 54: return, along with the results, the total number of products in the collection
http://host/service/Products?$count=true
The count of related entities can be requested by specifying the $count query option within the $expand clause.
Example 55:
http://host/service/Categories?$expand=Products($count=true)
A $count query option with a value of false (or not specified) hints that the service SHOULD NOT return a count.
The service returns an HTTP Status code of 400 Bad Request if a value other than true or false is specified.
The $count system query option ignores any $top, $skip, or $expand query options, and returns the total count of results across all pages including only those results matching any specified $filter and $search. Clients should be aware that the count returned inline may not exactly equal the actual number of items returned, due to latency between calculating the count and enumerating the last value or due to inexact calculations on the service.
How the count is encoded in the response body is dependent upon the selected format.
11.2.6.6 [bookmark: _The_$format_System][bookmark: _The_$search_System][bookmark: _Ref356811189][bookmark: _Ref356811898][bookmark: _Toc370126090][bookmark: _Toc370374887][bookmark: _Toc468954015][bookmark: _Toc470093074]System Query Option $search
The $search system query option restricts the result to include only those items matching the specified search expression. The definition of what it means to match is dependent upon the implementation.
Example 56: return all Products that match the search term "bike"
http://host/service/Products?$search=bike
The search expression can contain phrases, enclosed in double-quotes.
Example 57: return all Products that match the phrase "mountain bike"
http://host/service/Products?$search="mountain bike"
The upper case keyword NOT restricts the set of entities to those that do not match the specified term.
Example 58: return all Products that do not match "clothing"
http://host/service/Products?$search=NOT clothing
Multiple terms within a search expression are separated by a space (implicit AND) or the upper-case keyword AND, indicating that all such terms must be matched.
Example 59: return all Products that match both "mountain" and "bike"
http://host/service/Products?$search=mountain AND bike
The upper-case keyword OR is used to return entities that satisfy either the immediately preceding or subsequent expression.
Example 60: return all Products that match either "mountain" or "bike"
http://host/service/Products?$search=mountain OR bike
Parentheses within the search expression group together multiple expressions.
Example 61: return all Products that match either "mountain" or "bike" and do not match clothing
http://host/service/Products?$search=(mountain OR bike) AND NOT clothing
The operations within a search expression MUST be evaluated in the following order: grouping operator, NOT operator, AND operator, OR operator
If both $search and $filter are specified in the same request, only those items satisfying both criteria are returned.
The value of the $search option is a Boolean expression as defined in [OData-ABNF].
11.2.6.7 [bookmark: _Server-Driven_Paging][bookmark: _Ref356809416][bookmark: _Ref356812215][bookmark: _Toc370126091][bookmark: _Toc370374888][bookmark: _Toc468954016][bookmark: _Toc470093075]Server-Driven Paging
Responses that include only a partial set of the items identified by the request URL MUST contain a link that allows retrieving the next partial set of items. This link is called a next link; its representation is format-specific. The final partial set of items MUST NOT contain a next link.
The client can request a maximum page size through the maxpagesize preference. The service may apply this requested page size or implement a page size different than, or in the absence of, this preference.
OData clients MUST treat the URL of the next link as opaque, and MUST NOT append system query options to the URL of a next link. Services may not allow a change of format on requests for subsequent pages using the next link. Clients therefore SHOULD request the same format on subsequent page requests using a compatible Accept header. OData services may use the reserved system query option $skiptoken when building next links. Its content is opaque, service-specific, and must only follow the rules for URL query parts.
OData clients MUST NOT use the system query option $skiptoken when constructing requests.
11.2.6.8 [bookmark: _Requesting_an_Individual][bookmark: _Toc468954017][bookmark: _Toc470093076]Requesting an Individual Member of an Ordered Collection
[bookmark: _The_$expand_System_1][bookmark: _System_Query_Option][bookmark: _System_Query_Option_1][bookmark: _The_$select_System_2][bookmark: _System_Query_Option_5][bookmark: _Requesting_Related_Entities][bookmark: _Toc370126092][bookmark: _Toc370374889]Collections of primitive and complex types annotated with the Ordered term (see [OData-VocCore]) can be addressed by appending a segment containing the zero-based ordinal to the URL of the collection. A negative ordinal indexes from the end of the collection, with -1 representing the last item in the collection.
Entity types are stably addressable using their canonical URL and SHOULD NOT be accessed or accessible using an index.
Example 60: the first address in a list of addresses for MainSuppplier
http://host/service/Suppliers(MainSupplier)/Addresses/0
11.2.7 [bookmark: _Toc468954018][bookmark: _Toc470093077]Requesting Related Entities
To request related entities according to a particular relationship, the client issues a GET request to the source entity’s request URL, followed by a forward slash and the name of the navigation property representing the relationship.
If the navigation property does not exist on the entity indicated by the request URL, the service returns 404 Not Found.
If the relationship terminates on a collection, the response MUST be the format-specific representation of the collection of related entities. If no entities are related, the response is the format-specific representation of an empty collection.
If the relationship terminates on a single entity, the response MUST be the format-specific representation of the related single entity. If no entity is related, the service returns 204 No Content.
Example 62: return the supplier of the product with ID=1 in the Products entity set
http://host/service/Products(1)/Supplier
11.2.8 [bookmark: _Ref356812390][bookmark: _Toc370126093][bookmark: _Toc370374890][bookmark: _Toc468954019][bookmark: _Toc470093078]Requesting Entity References
To request entity references in place of the actual entities, the client issues a GET request with /$ref appended to the resource path.
If the resource path does not identify an entity or a collection of entities, the service returns 404 Not Found.
If the resource path terminates on a collection, the response MUST be the format-specific representation of a collection of entity references pointing to the related entities. If no entities are related, the response is the format-specific representation of an empty collection.
If the resource path terminates on a single entity, the response MUST be the format-specific representation of an entity reference pointing to the related single entity. If the resource path terminates on a single entity and no such entity exists, the service returns either 204 No Content or 404 Not Found.
Example 63: collection with an entity reference for each Order related to the Product with ID=0
http://host/service/Products(0)/Orders/$ref
11.2.9 [bookmark: _Requesting_the_Number][bookmark: _Resolving_an_Entity-Id][bookmark: _Toc370126094][bookmark: _Toc370374891][bookmark: _Toc468954020][bookmark: _Ref356811460][bookmark: _Ref356811693][bookmark: _Ref356811774][bookmark: _Toc470093079]Resolving an Entity-Id
To resolve an entity-id, e.g. obtained in an entity reference, into a representation of the identified entity, the client issues a GET request to the $entity resource located at the URL $entity relative to the service root. The entity-id MUST be specified using the system query option $id.
Example 64: return the entity representation for a given entity-id
http://host/service/$entity?$id=http://host/service/Products(0)
A type segment following the $entity resource casts the resource to the specified type. If the identified entity is not of the specified type, or a type derived from the specified type, the service returns 404 Not Found.
After applying a type-cast segment to cast to a specific type, the system query options $select and $expand can be specified in GET requests to the $entity resource.
Example 65: return the entity representation for a given entity-id and specify properties to return
http://host/service/$entity/Model.Customer?
 $id=http://host/service/Customers('ALFKI')
 &$select=CompanyName,ContactName&$expand=Orders
11.2.10 [bookmark: _Ref359763299][bookmark: _Toc370126095][bookmark: _Toc370374892][bookmark: _Toc468954021][bookmark: _Toc470093080]Requesting the Number of Items in a Collection
To request only the number of items of a collection of entities or items of a collection-valued property, the client issues a GET request with /$count appended to the resource path of the collection.
On success, the response body MUST contain the exact count of items matching the request after applying any $filter or $search system query options, formatted as a simple primitive integer value with media type text/plain. The returned count MUST NOT be affected by $top, $skip, $orderby, or $expand. Content negotiation using the Accept request header or the $format system query option is not allowed with the path segment /$count.
Example 66: return the number of products in the Products entity set
http://host/service/Products/$count
Example 67: return the number of all products whose Price is less than $10.00
http://host/service/Products/$count?$filter=Price lt 10.00
The /$count segment can be used in combination with the $filter system query option.
Example 68: return all customers with more than five interests
http://host/service/Customers?$filter=Interests/$count gt 5
[bookmark: _Requesting_Changes][bookmark: _Toc370126096][bookmark: _Toc370374893][bookmark: _Ref356812405]Example 69: return all categories with more than one product over $5.00
http://host/service/Categories?$filter=Products/$count($filter=Price gt 5.0) gt 1
11.2.11 [bookmark: _Toc468954022][bookmark: _Toc470093081]System Query Option $format
The $format system query option specifies the media type of the response.
The $format query option, if present in a request, MUST take precedence over the value(s) specified in the Accept request header.
The value of the $format query option is a valid internet media type, optionally including parameters.
In addition, format-specific abbreviations may be used, see [OData-Atom] and [OData-JSON], but format parameters MUST NOT be appended to the format abbreviations.
Example 70: the request
http://host/service/Orders?$format=application/json;metadata=full
is equivalent to a request with an Accept header using the same media type; it requests the set of Order entities represented using the JSON media type including full metadata, as specified in [OData-JSON].
Example 71: the request
http://host/service/Orders?$format=json
is equivalent to a request with the Accept header set to application/json; it requests the set of Order entities represented using the JSON media type with minimal metadata, as specified in [OData-JSON].
[bookmark: _Requesting_Changes_1]The $format system query option MUST NOT be specified in batch requests as these always use the media type multipart/mixed.
In metadata document requests the values application/atom+xml, application/json, their subtypes and parameterized variants as well as the format-specific abbreviations atom and json are reserved for future versions of this specification.
11.3 [bookmark: _Requesting_Changes_2][bookmark: _Ref359762876][bookmark: _Toc370126097][bookmark: _Toc370374894][bookmark: _Toc468954023][bookmark: _Toc470093082]Requesting Changes
Services advertise their change-tracking capabilities by annotating entity sets with the Capabilities.ChangeTracking term defined in [OData-VocCap].
Clients request that the service track changes to a result by specifying the track-changes preference on a request. If supported for the request, the service includes a Preference-Applied header in the response containing the track-changes preference and includes a delta link on the last page of results.
11.3.1 [bookmark: _Delta_Link_URL][bookmark: _Delta_Links][bookmark: _Toc370126098][bookmark: _Toc370374895][bookmark: _Toc468954024][bookmark: _Toc470093083]Delta Links
Delta links are opaque, service-generated links that the client uses to retrieve subsequent changes to a result.
Delta links are based on a defining query that describes the set of results for which changes are being tracked; for example, the request that generated the results containing the delta link. The delta link encodes the collection of entities for which changes are being tracked, along with a starting point from which to track changes. OData services may use the reserved system query option $deltatoken when building delta links. Its content is opaque, service-specific, and must only follow the rules for URL query parts.
If the defining query contains a $filter or $search, the response MUST include only changes to entities matching the specified criteria. Added entities MUST be returned for entities that were added or changed and now match the specified criteria, and deleted entities MUST be returned for entities that are changed to no longer match the criteria of $filter or $search.
The delta link MUST NOT encode any client top or skip value, and SHOULD NOT encode a request for an inline count.
If the defining query includes expanded relationships, the delta link MUST return changes, additions, or deletions to the expanded entities, as well as added or deleted links to expanded entities.
If an expanded entity becomes orphaned because all paths to the entity as specified in the defining query have been broken (i.e. due to relationship changes and/or changes or deletions to parent entities) then the service MUST return the appropriate notifications for the client to determine that the entity has been orphaned (i.e. the changed relationships and removed parent entities). The client should not assume that it will receive additional notifications for such an orphaned entity.
Entities are considered changed if any of the structural properties have changed. Changes to related entities and to streams are not considered a change to the entity containing the stream or navigation property.
If the defining query contains a projection, the generated delta link SHOULD logically include the same projection, such that the delta query only includes fields specified in the projection. Services MAY use the projection to limit the entities returned to those that have changed within the selected fields, but the client MUST be prepared to receive entities returned whether or not the field that changed was specified in the projection.
11.3.2 [bookmark: _Toc370126099][bookmark: _Toc370374896][bookmark: _Toc468954025][bookmark: _Toc470093084]Using Delta Links
The client requests changes by invoking the GET method on the delta link. The client MUST NOT attempt to append system query options to the delta link. The Accept header MAY be used to specify the desired response format.
Clients SHOULD specify the same Accept-Language header when querying the delta link as was specified in the defining query. Services MAY return 406 Not Acceptable if a different Accept-Language is specified. If a service does support an Accept-Language header it MAY return changes only visible in that language, or MAY include records that have changes not visible in the requested language.
The /$count segment can be appended to the path of a delta link in order to get just the number of changes available. The count includes all added, changed, or deleted entities, as well as added or deleted links.
The results of a request against the delta link may span multiple pages but MUST be ordered by the service across all pages in such a way as to guarantee consistency when applied in order to the response which contained the delta link.
Services SHOULD return only changed entities, but MAY return additional entities matching the defining query for which the client will not see a change.
In order to continue tracking changes beyond the current set, the client specifies track-changes on the initial request to the delta link but is not required to repeat it for subsequent pages. The new delta link appears at the end of the last page of changes and MUST return all changes subsequent to the last change of the previous delta link.
If no changes have occurred, the response is an empty collection that contains a delta link for subsequent changes if requested. This delta link MAY be identical to the delta link resulting in the empty collection of changes.
If the delta link is no longer valid, the service responds with 410 Gone, and SHOULD include the URL for refetching the entire set in the Location header of the response.
11.4 [bookmark: _Data_Modification][bookmark: _Ref356809881][bookmark: _Toc370126100][bookmark: _Toc370374897][bookmark: _Toc468954026][bookmark: _Toc470093085]Data Modification
Updatable OData services support Create, Update, and Delete operations for some or all exposed entities. Additionally, Actions supported by a service can affect the state of the system.
A successfully completed Data Modification Request must not violate the integrity of the data.
The client may request whether content be returned from a Create, Update, or Delete request, or the invocation of an Action, by specifying the return Prefer header.
11.4.1 [bookmark: _Toc370126101][bookmark: _Toc370374898][bookmark: _Toc468954027][bookmark: _Toc470093086]Common Data Modification Semantics
Data Modification Requests share the following semantics.
11.4.1.1 [bookmark: _Use_of_ETags][bookmark: _Ref356810214][bookmark: _Toc370126102][bookmark: _Toc370374899][bookmark: _Toc468954028][bookmark: _Toc470093087]Use of ETags for Avoiding Update Conflicts
Each entity has its own ETag value that MUST change when structural properties or links from that entity have changed. In addition, modifying, adding, or deleting a contained entity MAY change the ETag of the parent entity.
If an ETag value is specified in an If-Match or If-None-Match header of a or Action Request, the operation MUST only be invoked if the if-match or if-none-match condition is satisfied.
The ETag value specified in the if-match or if-none-match request header may be obtained from an ETag header of a response for an individual entity, or may be included for an individual entity in a format-specific manner.
For requests including an OData-Version header value of 4.01, any ETag values specified in the payload of an update request MUST also match the current value for the record being updated, or “*”.
11.4.1.2 [bookmark: _Differential_Update][bookmark: _Create_an_Entity][bookmark: _Toc370126103][bookmark: _Toc370374900][bookmark: _Toc468954029][bookmark: _Toc470093088]Handling of DateTimeOffset Values
Services SHOULD preserve the offset of Edm.DateTimeOffset values, if possible. However, where the underlying storage does not support offset services may be forced to normalize the value to some common time zone (i.e. UTC) in which case the result would be returned with that time zone offset. If the service normalizes values, it MUST fail evaluation of the query functions year, month, day, hour, and time for literal values that are not stated in the time zone of the normalized values.
11.4.1.3 [bookmark: _Toc370126104][bookmark: _Toc370374901][bookmark: _Toc468954030][bookmark: _Toc470093089]Handling of Properties Not Advertised in Metadata
Clients MUST be prepared to receive additional properties in an entity or complex type instance that are not advertised in metadata, even for types not marked as open. By using PATCH when updating entities, clients can ensure that such properties values are not lost if omitted from the update request.
11.4.1.4 [bookmark: _Handling_of_Consistency][bookmark: _Toc370126105][bookmark: _Toc370374902][bookmark: _Toc468954031][bookmark: _Toc470093090]Handling of Integrity Constraints
Services may impose cross-entity integrity constraints. Certain referential constraints, such as requiring an entity to be created with related entities can be satisfied through creating or linking related entities when creating the entity. Other constraints might require multiple changes to be specified together in a single atomic change set.
11.4.1.5 [bookmark: _Create_an_Entity_1][bookmark: _Toc468954032][bookmark: _Ref356809954][bookmark: _Ref356809997][bookmark: _Ref356810240][bookmark: _Toc370126106][bookmark: _Toc370374903][bookmark: _Toc470093091]Returning Results from Data Modification Requests
Clients can request whether created or modified resources are returned from create, update, and upsert operations using the return preference header. In the absence of such a header, services SHOULD return the created or modified content unless the resource is a stream property value.
When returning content other than for an update to a media entity stream, services MUST return the same content as a subsequent request to retrieve the same resource. For updating media entity streams, the content of a non-empty response body MUST be the updated media entity.
Requests that return a single instance of a structured type MAY specify the system query options
· $expand
· $select
If one or both of these query options are present, this implies a return=representation preference if no return preference is specified.
If one or both of these query options are present with a return=minimal preference, the service MUST include a preference-applied header if it does not return a representation.
If one or both of these query options are present and the service returns a representation, then the service MUST apply the specified query options. If it cannot apply the specified query options appropriately, it MUST NOT fail the request solely due to the presence of these query options and instead MUST return 204 No Content.
11.4.2 [bookmark: _Create_an_Entity_2][bookmark: _Toc468954033][bookmark: _Toc470093092]Create an Entity
To create an entity in a collection, the client sends a POST request to that collection's URL. The POST body MUST contain a single valid entity representation.
The entity representation MAY include references to existing entities as well as content for new related entities, but MUST NOT contain content for existing related entities. The end result of the operation is the entity with relationships to all included references to existing entities as well as all related entities created inline. If the key properties for an entity reside in a related entity, those related entities carrying key properties MUST be included either as references to existing entities or as content for new related entities.
An entity may also be created as the result of an Upsert operation.
If the target URL for the collection is a navigation link, the new entity is automatically linked to the entity containing the navigation link.
If the target URL terminates in a type cast segment, then the segment MUST specify the type of, or a type derived from, the type of the collection, and the entity MUST be created as that specified type.
To create an open entity (an instance of an open type), additional property values beyond those specified in the metadata MAY be sent in the request body. The service MUST treat these as dynamic properties and add them to the created instance.
If the entity being created is not an open entity, additional property values beyond those specified in the metadata SHOULD NOT be sent in the request body. The service MUST fail if unable to persist all property values specified in the request.
Properties computed by the service (annotated with the term Core.Computed, see [OData-VocCore]) and properties that are tied to properties of the principal entity by a referential constraint, can be omitted and MUST be ignored if included in the request.
Properties with a defined default value, nullable properties, and collection-valued properties omitted from the request are set to the default value, null, or an empty collection, respectively.
Upon successful completion, the response MUST contain a Location header that contains the edit URL or read URL of the created entity.
Upon successful completion the service MUST respond with either 201 Created, or 204 No Content if the request included a return Prefer header with a value of return=minimal.
11.4.2.1 [bookmark: _Link_to_Related][bookmark: _Ref358202296][bookmark: _Toc370126107][bookmark: _Toc370374904][bookmark: _Toc468954034][bookmark: _Toc470093093]Link to Related Entities When Creating an Entity
To create a new entity with links to existing entities in a single request, the client includes the entity-ids of the entities related through the corresponding navigation properties in the request body.
The representation for binding information is format-specific.
Example 72: using the JSON format, 4.0 clients can create a new manager entity with links to two existing employees by applying the odata.bind annotation to the DirectReports navigation property
{
 "@odata.type":"#Northwind.Manager",
 "ID": 1,
 "FirstName": "Pat",
 "LastName": "Griswold",
 "DirectReports@odata.bind": [
 "http://host/service/Employees(5)",
 "http://host/service/Employees(6)"
]
}
Example 73: using the JSON format, 4.01 clients can create a new manager entity with links to two existing employees by including the entity-ids within the DirectReports navigation property
{
 "@odata.type":"#Northwind.Manager",
 "ID": 1,
 "FirstName": "Pat",
 "LastName": "Griswold",
 "DirectReports": [
 {"@odata.id": "Employees(5}"},
 {"@odata.id": "Employees(6}"}
]
}
Upon successful completion of the operation, the service creates the requested entity and relates it to the requested existing entities.
If the target URL for the collection the entity is created in and binding information provided in the POST body contradicts the implicit binding information provided by the request URL, the request MUST fail and the service respond with 400 Bad Request.
Upon failure of the operation, the service MUST NOT create the new entity. In particular, the service MUST never create an entity in a partially-valid state (with the navigation property unset).
11.4.2.2 [bookmark: _Create_Related_Entities][bookmark: _Ref356810405][bookmark: _Toc370126108][bookmark: _Toc370374905][bookmark: _Toc468954035][bookmark: _Toc470093094]Create Related Entities When Creating an Entity
A request to create an entity that includes related entities, represented using the appropriate inline representation, is referred to as a “deep insert”. Media entities, whose binary representation cannot be represented inline, cannot be created within a deep insert.
Each included related entity is processed observing the rules for creating an entity as if it was posted against the original target URL extended with the navigation path to this related entity.
On success, the service MUST create all entities and relate them. If the service responds with 201 Created, the response MUST be expanded to at least the level that was present in the deep-insert request.
Clients MAY associate an id with individual nested entities in the request by using the Core.ContentID term defined in [OData-VocCore]. Services that respond with 201 Created SHOULD annotate the entities in the response using the same Core.ContentID value as specified in the request. Services SHOULD advertise support for deep inserts, including support for returning the Core.ContentID, through the Capabilities.DeepInsertSupport term, defined in [OData-VocCap].
On failure, the service MUST NOT create any of the entities.
11.4.3 [bookmark: _Update_an_Entity][bookmark: _Delete_an_Entity][bookmark: _Upsert_an_Entity][bookmark: _Toc468954036][bookmark: _Ref469994692][bookmark: _Ref469995108][bookmark: _Ref356810287][bookmark: _Toc370126110][bookmark: _Toc370374907][bookmark: _Toc470093095]Update an Entity
Services SHOULD support PATCH as the preferred means of updating an entity. PATCH provides more resiliency between clients and services by directly modifying only those values specified by the client.
The semantics of PATCH, as defined in [RFC5789], is to merge the content in the request payload with the [entity’s] current state, applying the update only to those components specified in the request body. Collection properties and primitive properties provided in the payload corresponding to updatable properties MUST replace the value of the corresponding property in the entity or complex type. Missing properties of the containing entity or complex property, including dynamic properties, MUST NOT be directly altered unless as a side effect of changes resulting from the provided properties.
Services MAY additionally support PUT, but should be aware of the potential for data-loss in round-tripping properties that the client may not know about in advance, such as open or added properties, or properties not specified in metadata. Services that support PUT MUST replace all values of structural properties with those specified in the request body. Missing non-key, updatable structural properties not defined as dependent properties within a referential constraint MUST be set to their default values. Omitting a non-nullable property with no service-generated or default value from a PUT request results in a 400 Bad Request error. Missing dynamic structural properties MUST be removed or set to null.
Updating a dependent property that is tied to a key property of the principal entity through a referential constraint updates the relationship to point to the entity with the specified key value. If there is no such entity, the update fails.
Updating a principle property that is tied to a dependent entity through a referential constraint on the dependent entity updates the dependent property.
Key and other properties marked as read-only in metadata (including computed properties), as well as dependent properties that are not tied to key properties of the principal entity, can be omitted from the request. If the request contains a value for one of these properties, the service MUST ignore that value when applying the update. Services MUST return an error if an insert or update contains a new value for a property marked as updatable that cannot currently be changed by the user (i.e., given the state of the object or permissions of the user). The service MAY return success in this case if the specified value matches the value of the property. Clients SHOULD use PATCH and specify only those properties intended to be changed.
Entity id and entity type cannot be changed when updating an entity. However, format-specific rules might in some cases require providing entity id and entity type values in the payload when applying the update.
For requests with an OData-Version header with a value of 4.01 or greater, if the entity representation includes an ETag value, the update MUST NOT be performed and SHOULD return 412, Precondition Failed, if the supplied ETag value does not match the current etag value for the entity, or *. Etag values in payloads MUST be ignored for requests containing an OData-Version header with a value of 4.0.
If an update specifies both a binding to a single-valued navigation property and a dependent property that is tied to a key property of the principal entity according to the same navigation property, then the dependent property is ignored and the relationship is updated according to the value specified in the binding.
If the entity being updated is open, then additional values for properties beyond those specified in the metadata or returned in a previous request MAY be sent in the request body. The service MUST treat these as dynamic properties.
If the entity being updated is not open, then additional values for properties beyond those specified in the metadata or returned in a previous request SHOULD NOT be sent in the request body. The service MUST fail if it is unable to persist all updatable property values specified in the request.
On success, the response MUST be a valid success response.
11.4.3.1 [bookmark: _Link_Treatingto_Related][bookmark: _Treating_Related_Entities][bookmark: _Toc468954037][bookmark: _Toc470093096]Treating Related Entities When Updating an Entity
Requests with an OData-Version header with a value of 4.0 MUST NOT contain related entities as inline content. Such requests MAY contain binding information for navigation properties. For single-valued navigation properties this replaces the relationship. For collection-valued navigation properties this adds to the relationship.
Payloads with an OData-Version header with a value of 4.01 or greater MAY include nested entities and entity references that specify the full set of currently related entities, or a nested delta payload representing the related entities that have been added, removed, or changed.
If the nested collection is not represented as a delta, then the set of nested entities and entity references specified in a successful update request represents the full set of entities to be related according to that relationship and MUST NOT include added links, deleted links, or deleted entities.
If the nested collection represents a delta, then the collection contains members to be added or changed and MAY include deleted entities for entities that are no longer part of the collection. If the deleted entity specifies a reason as deleted, then the entity is both removed from the collection and deleted, otherwise it is removed from the collection and only deleted if the relationship is contained. Nested collections MUST NOT contain added or deleted links. If the request contains nested delta collections, then the PATCH verb must be specified.
If a nested entity has the same id or key fields as an existing entity, the existing entity is updated according to the semantics of the PUT or PATCH request. Nested entities that have no id or key fields, or for which the id or key fields do not match existing entities, are treated as inserts. If the nested collection does not represent a containment relationship and has no navigation property binding, then such entities MUST include a context URL specifying the entity set in which the new entity is to be created. If any nested entities contain both id and key fields they MUST identify the same entity or the request is invalid.
Example 74: using the JSON format, a 4.01 PATCH request can update a manager entity. Following the update, the manager has three direct reports; two existing employees and one new employee named Suzanne Brown. The LastName of employee 6 is updated to Smith.
{
 "@type":"#Northwind.Manager",
 "FirstName" : "Patricia",
 "DirectReports": [
 {
 "@id": "Employees(5}"
 },
 {
 "@id": "Employees(6}",
 "LastName": "Smith"
 },
 {
 "FirstName": "Suzanne",
 "LastName": "Brown"
 }
]
}
[bookmark: _Upsert_an_Entity_1]Example 75: using the JSON format, a 4.01 PATCH request can specify a nested delta representation to:
· delete employee 3
· remove the link to employee 4
· add a link to employee 5
· change the last name of employee 6
· add a new employee named “Suzanne Brown”
{
 "@type": "#Northwind.Manager",
 "FirstName": "Patricia",
 "DirectReports@delta": [
 {
 "@context": "#Employees/$deletedEntity",
 "@removed": {
 "reason": "deleted"
 },
 "@id": "Employees(3)"
 },
 {
 "@context": "#Employees/$deletedEntity",
 "@removed": {
 "reason": "changed"
 },
 "@id": "Employees(4)"
 },
 {
 "@id": "Employees(5)"
 },
 {
 "@id": "Employees(6)",
 "LastName": "Smith"
 },
 {
 "@context": "#Employees/$entity",
 "FirstName": "Suzanne",
 "LastName": "Brown"
 }
]
}
11.4.4 [bookmark: _Upsert_an_Entity_2][bookmark: _Toc468954038][bookmark: _Ref469994758][bookmark: _Toc470093097]Upsert an Entity
An upsert occurs when the client sends an update request to a valid URL that identifies a single entity that does not exist. In this case the service MUST handle the request as a create entity request or fail the request altogether.
Upserts are not supported against media entities or entities whose keys values are generated by the service. Services MUST fail an update request to a URL that would identify such an entity and the entity does not yet exist.
Key and other non-updatable properties, as well as dependent properties that are not tied to key properties of the principal entity, MUST be ignored by the service in processing the Upsert request.
To ensure that an update request is not treated as an insert, the client MAY specify an If-Match header in the update request. The service MUST NOT treat an update request containing an If-Match header as an insert.
A PUT or PATCH request MUST NOT be treated as an update if an If-None-Match header is specified with a value of "*".
11.4.5 [bookmark: _Delete_an_Entity_1][bookmark: _Ref356810076][bookmark: _Toc370126111][bookmark: _Toc370374908][bookmark: _Toc468954039][bookmark: _Toc470093098]Delete an Entity
A successful DELETE request to an entity's edit URL deletes the entity. The request body SHOULD be empty. Singleton entities cannot be deleted.
Related entities can be deleted by including an $expand clause which MAY contain nested $expand and $filter expand options.
On successful completion of the delete, the response MUST be 204 No Content and contain an empty body.
Services MUST implicitly remove relations to and from an entity when deleting it; clients need not delete the relations explicitly.
Services MAY implicitly delete or modify related entities if required by integrity constraints. If integrity constraints are declared in $metadata using a ReferentialConstraint element, services MUST modify affected related entities according to the declared integrity constraints, e.g. by deleting dependent entities, or setting dependent properties to null or their default value.
One such integrity constraint results from using a navigation property in a key definition of an entity type. If the related “key” entity is deleted, the dependent entity is also deleted.
11.4.6 [bookmark: _Modifying_Relationships_between][bookmark: _Toc370126112][bookmark: _Toc370374909][bookmark: _Toc468954040][bookmark: _Toc470093099]Modifying Relationships between Entities
Relationships between entities are represented by navigation properties as described in Data Model. URL conventions for navigation properties are described in [OData‑URL].
11.4.6.1 [bookmark: _Create_a_New][bookmark: _Ref341360817][bookmark: _Toc370126113][bookmark: _Toc370374910][bookmark: _Toc468954041][bookmark: _Toc470093100]Add a Reference to a Collection-Valued Navigation Property
A successful POST request to a navigation property's references collection adds a relationship to an existing entity. The request body MUST contain a single entity reference that identifies the entity to be added. See the appropriate format document for details.
On successful completion, the response MUST be 204 No Content and contain an empty body.
Note that if the two entities are already related prior to the request, the request is completed successfully.
11.4.6.2 [bookmark: _Remove_a_Reference][bookmark: _Ref356810092][bookmark: _Toc370126114][bookmark: _Toc370374911][bookmark: _Toc468954042][bookmark: _Toc470093101]Remove a Reference to an Entity
A successful DELETE request to the URL that represents a reference to a related entity removes the relationship to that entity.
For collection-valued navigation properties, the entity reference of the entity to be removed MUST be specified using the $id query string option.
For single-valued navigation properties, the $id query string option MUST NOT be specified.
The DELETE request MUST NOT violate any integrity constraints in the data model.
On successful completion, the response MUST be 204 No Content and contain an empty body.
11.4.6.3 [bookmark: _Ref356810048][bookmark: _Toc370126115][bookmark: _Toc370374912][bookmark: _Toc468954043][bookmark: _Toc470093102]Change the Reference in a Single-Valued Navigation Property
A successful PUT request to a single-valued navigation property’s reference resource changes the related entity. The request body MUST contain a single entity reference that identifies the existing entity to be related. See the appropriate format document for details.
On successful completion, the response MUST be 204 No Content and contain an empty body.
Alternatively, a relationship MAY be updated as part of an update to the source entity by including the required binding information for the new target entity. This binding information is format-specific, see [OData-JSON] and [OData-Atom] for details.
If the single-valued navigation property is used in the key definition of an entity type, it cannot be changed and the request MUST fail with 405 Method Not Allowed or an other appropriate error.
11.4.6.4 [bookmark: _Toc468954044][bookmark: _Toc470093103]Change all References in a Collection-valued Navigation Property
A successful PUT request to a collection-valued navigation property’s reference resource replaces the set of related entities. The request body MUST contain a collection of entity references in the same format as returned by a GET request to the navigation property’s reference resource.
[bookmark: _Managing_Media_Entities][bookmark: _Toc370126116][bookmark: _Toc370374913]A successful DELETE request to a collection-valued navigation property’s reference resource removes all related references from the collection. The $filter query option MAY be applied in order to delete only references to entities matching the specified filter clause.
11.4.7 [bookmark: _Toc468954045][bookmark: _Toc470093104]Managing Media Entities
A media entity MUST have a source URL that can be used to read the media stream, and MAY have a media edit URL that can be used to write to the media stream.
Because a media entity has both a media stream and standard entity properties special handling is required.
11.4.7.1 [bookmark: _Creating_a_Media][bookmark: _Toc370126117][bookmark: _Toc370374914][bookmark: _Toc468954046][bookmark: _Toc470093105]Creating a Media Entity
A POST request to a media entity's entity set creates a new media entity. The request body MUST contain the media value (for example, the photograph) whose media type MUST be specified in a Content-Type header.
Upon successful completion, the response MUST contain a Location header that contains the edit URL of the created entity.
Upon successful completion the service responds with either 201 Created, or 204 No Content if the request included a return Prefer header with a value of return=minimal.
11.4.7.2 [bookmark: _Editing_a_Media][bookmark: _Toc370126118][bookmark: _Toc370374915][bookmark: _Toc468954047][bookmark: _Toc470093106]Editing a Media Entity Stream
A successful PUT request to the media edit URL of a media entity changes the media stream of the entity.
If the entity includes an ETag value for the media stream, the client MUST include an If-Match header with the ETag value.
The request body MUST contain the new media value for the entity whose media type MUST be specified in a Content-Type header.
If the request to edit a media stream returns a non-empty response body, the response body MUST contain the updated media entity.
11.4.7.3 [bookmark: _Toc370126119][bookmark: _Toc370374916][bookmark: _Toc468954048][bookmark: _Toc470093107]Deleting a Media Entity
A successful DELETE request to the entity's edit URL or to the edit URL of its media resource deletes the media entity as described in Delete an Entity.
Deleting a media entity also deletes the media associated with the entity.
11.4.8 [bookmark: _Managing_Stream_Properties][bookmark: _Toc370126120][bookmark: _Toc370374917][bookmark: _Toc468954049][bookmark: _Toc470093108]Managing Stream Properties
An entity may have one or more stream properties. Stream properties are properties of type Edm.Stream.
The values for stream properties do not appear in the entity payload. Instead, the values are read or written through URLs.
11.4.8.1 [bookmark: _Toc370126121][bookmark: _Toc370374918][bookmark: _Toc468954050][bookmark: _Toc470093109]Editing Stream Values
A successful PUT request to the edit URL of a stream property changes the media stream associated with that property.
If the stream metadata includes an ETag value, the client SHOULD include an If-Match header with the ETag value.
The request body MUST contain the new media value for the stream whose media type MUST be specified in a Content-Type header. It may have a Content-Length of zero to set the stream data to empty.
Stream properties MAY specify a list of acceptable media types using an annotation with term Core.AcceptableMediaTypes, see [OData-VocCore].
11.4.8.2 [bookmark: _Toc468954051][bookmark: _Toc470093110]Deleting Stream Values
A successful DELETE request to the edit URL of a stream property attempts to set the property to null and results in an error if the property is non-nullable.
Attempting to request a stream property whose value is null results in 204 No Content.
11.4.9 [bookmark: _Toc370126122][bookmark: _Toc370374919][bookmark: _Toc468954052][bookmark: _Toc470093111]Managing Values and Properties Directly
Values and properties can be explicitly addressed with URLs. The edit URL of a property is the edit URL of the entity appended with the path segment(s) specifying the individual property. The edit URL allows properties to be individually modified. See [OData‑URL] for details on addressing.
11.4.9.1 [bookmark: _Update_a_Primitive][bookmark: _Ref356810333][bookmark: _Toc370126123][bookmark: _Toc370374920][bookmark: _Toc468954053][bookmark: _Toc470093112]Update a Primitive Property
A successful PUT request to the edit URL for a primitive property updates the value of the property. The message body MUST contain the new value, formatted as a single property according to the specified format.
A successful PUT request to the edit URL for the raw value of a primitive property updates the property with the raw value specified in the payload. The payload MUST be formatted as an appropriate content type for the raw value of the property.
The same rules apply whether this is a regular property or a dynamic property.
Upon successful completion of the update, the response MUST be a valid update response.
Services MUST return an error if the property is not updatable.
11.4.9.2 [bookmark: _Set_a_Value][bookmark: _Ref356810383][bookmark: _Toc370126124][bookmark: _Toc370374921][bookmark: _Toc468954054][bookmark: _Toc470093113]Set a Value to Null
A successful DELETE request to the edit URL for a structural property, or to the edit URL of the raw value of a primitive property, sets the property to null. The request body is ignored and should be empty.
A DELETE request to a non-nullable value MUST fail and the service respond with 400 Bad Request or other appropriate error.
The same rules apply whether the target is the value of a regular property or the value of a dynamic property. A missing dynamic property is defined to be the same as a dynamic property with value null. All dynamic properties are nullable.
On success, the service MUST respond with 204 No Content and an empty body.
Services MUST return an error if the property is not updatable.
Updating a primitive property or a complex property with a null value also sets the property to null.
11.4.9.3 [bookmark: _Update_a_Complex][bookmark: _Ref356810347][bookmark: _Toc370126125][bookmark: _Toc370374922][bookmark: _Toc468954055][bookmark: _Toc470093114]Update a Complex Property
A successful PATCH request to the edit URL for a complex typed property updates that property. The request body MUST contain a single valid representation for the target complex type.
The service MUST directly modify only those properties of the complex type specified in the payload of the PATCH request.
The service MAY additionally support clients sending a PUT request to a URL that specifies a complex type. In this case, the service MUST replace the entire complex property with the values specified in the request body and set all unspecified properties to their default value.
On success, the response MUST be a valid update response.
Services MUST return an error if the property is not updatable.
11.4.9.4 [bookmark: _Toc370126126][bookmark: _Toc370374923][bookmark: _Toc468954056][bookmark: _Toc470093115]Update a Collection Property
A successful PUT request to the edit URL of a collection property updates that collection. The message body MUST contain the desired new value, formatted as a collection property according to the specified format.
The service MUST replace the entire value with the value supplied in the request body.
A successful POST request to the edit URL of a collection property adds an item to the collection. The body of the request MUST be a single item to be added to the collection. If the collection is ordered, the item is added to the end of the collection, and $index MAY be used to specify a zero-based ordinal position to insert the new value, with a negative value indicating an ordinal position from the end of the collection.
A successful DELETE request to the edit URL of a collection property deletes all items in that collection. The $filter query option MAY be applied in order to delete only members matching the specified filter clause.
Since collection members have no individual identity, PATCH is not supported for collection properties.
On success, the response MUST be a valid update response.
Services MUST return an error if the property is not updatable.
11.4.10 [bookmark: _Toc468954057][bookmark: _Toc470093116]Managing Members of an Ordered Collection
Collections annotated with the Core.Ordered term (see [OData-VocCore]) have a stable order. Members of an ordered collection of primitive and complex types can be individually updated or deleted by invoking an update operation against the URL of the collection appended by a segment containing the zero-based ordinal of the item within the collection. A negative ordinal indexes from the end of the collection, with -1 representing the last item in the collection.
Entities can be updated using their edit URL and SHOULD NOT be addressed using an index.
11.4.11 [bookmark: _Toc468954058][bookmark: _Toc470093117]Positional Inserts
Collections of entity, complex, or primitive types annotated with the Core.PositionalInsert term (see [OData-VocCore]) support inserting items at a specific location using the $index system query option. The value of the $index system query option is the zero-based ordinal position where the item is to be inserted. The ordinal of items within the collection greater than or equal to the inserted position are increased by one. A negative ordinal indexes from the end of the collection, with -1 representing an insert as the last item in the collection.
11.4.12 [bookmark: _Toc468954059][bookmark: _Toc370126127][bookmark: _Toc370374924][bookmark: _Toc470093118]Set-Based Updates
Members of an entity-, complex-, or primitive-typed collection matching a $filter clause can be updated by submitting a PATCH request to the URL of the collection. If no $filter clause is specified, every member of the collection is updated.
If the URL terminates in a type cast segment, then only those instances of, or derived from, the specified type are updated.
The body of the request MUST be a full or partial representation of a single entity, complex, or primitive value, as appropriate. For collections of structured types, each member of the collection matching the filter condition (if specified) is updated using PATCH semantics. For collections of primitive types, each member matching the filter condition (if specified) is updated to the specified primitive value.
11.4.13 [bookmark: _Toc468954060][bookmark: _Toc470093119]Set-Based Deletes
Members of an entity-, complex-, or primitive-typed collection matching a $filter clause can be deleted by submitting a DELETE request to the URL of the collection. If no $filter clause is specified, every member of the collection is deleted.
If the URL terminates in a type cast segment, then only those instances of, or derived from, the specified type are deleted.
 Related entities can be deleted by including an $expand clause which MAY contain nested $expand and $filter expand options.
11.5 [bookmark: _Toc468954061][bookmark: _Toc470093120] Operations
Custom operations (Actions and Functions) are represented as Action, ActionImport, Function, and FunctionImport elements in .
11.5.1 [bookmark: _Toc370126128][bookmark: _Toc370374925][bookmark: _Toc468954062][bookmark: _Toc470093121]Binding an Operation to a Resource
Actions and Functions MAY be bound to an entity type, primitive type, complex type, or a collection. The first parameter of a bound operation is the binding parameter.
The namespace- or alias-qualified name of a bound operation may be appended to any URL that identifies a resource whose type matches, or is derived from, the type of the binding parameter. The resource identified by that URL is used as the binding parameter value. Only aliases defined in the metadata document of the service can be used in URLs.
Example 76: the function MostRecentOrder can be bound to any URL that identifies a SampleModel.Customer
<Function Name="MostRecentOrder" IsBound="true">
 <Parameter Name="customer" Type="SampleModel.Customer" />
 <ReturnType Type="SampleModel.Order" />
</Function>
Example 77: invoking the MostRecentOrder function with the value of the binding parameter customer being the entity identified by http://host/service/Customers(6)
http://host/service/Customers(6)/SampleModel.MostRecentOrder()
11.5.2 [bookmark: _Advertising_Available_Operations][bookmark: _Toc370126129][bookmark: _Toc370374926][bookmark: _Toc468954063][bookmark: _Toc470093122][bookmark: _Actions][bookmark: _Returning_Available_Operations]Advertising Available Operations within a Payload
Services MAY return the available actions and/or functions bound to a particular entity or entity collection as part of the representation of the entity or entity collection within the payload. The representation of an action or function depends on the format. An efficient format that assumes client knowledge of metadata SHOULD NOT include actions and functions in the payload that are available on all instances and whose target URL can be computed via metadata following standard conventions defined in [OData‑URL].
Example 78: given a GET request to http://host/service/Customers('ALFKI'), the service might respond with a Customer that includes the SampleEntities.MostRecentOrder function bound to the entity
{
 "@odata.context": ...,
 "#SampleEntities.MostRecentOrder": {
 "title": "Most Recent Order",
 "target": "Customers('ALFKI')/SampleEntities.MostRecentOrder()"
 },
 "CustomerID": "ALFKI",
 "CompanyName": "Alfreds Futterkiste",
 ...
}
11.5.3 [bookmark: _Functions_1][bookmark: _Toc370126130][bookmark: _Toc370374927][bookmark: _Toc468954064][bookmark: _Toc470093123]Functions
Functions are operations exposed by an OData service that MUST return data and MUST have no observable side effects.
11.5.3.1 [bookmark: _Invoking_a_Function][bookmark: _Toc370126131][bookmark: _Toc370374928][bookmark: _Toc468954065][bookmark: _Toc470093124]Invoking a Function
To invoke a function bound to a resource, the client issues a GET request to a function URL. A function URL may be obtained from a previously returned entity representation or constructed by appending the namespace- or alias-qualified function name to a URL that identifies a resource whose type is the same as, or derived from, the type of the binding parameter of the function. The value for the binding parameter is the value of the resource identified by the URL prior to appending the function name, and additional parameter values are specified using inline parameter syntax. If the function URL is obtained from a previously returned entity representation, parameter aliases that are identical to the parameter name preceded by an at (@) sign MUST be used. Clients MUST check if the obtained URL already contains a query part and appropriately precede the parameters either with an ampersand (&) or a question mark (?).
Services MAY additionally support invoking functions using the unqualified function name by defining one or more default namespaces through the Core.DefaultNamespace term defined in [OData-VocCore].
Functions can be used within $filter or $orderby system query options. Such functions can be bound to a resource, as described above, or called directly by specifying the namespace- (or alias-) qualified function name. Parameter values for functions within $filter or $orderby are specified according to the inline parameter syntax.
To invoke a function through a function import the client issues a GET request to a URL identifying the function import and passing parameter values using inline parameter syntax. The canonical URL for a function import is the service root, followed by the name of the function import. Services MAY support omitting the parentheses when invoking a function import with no parameters, but for maximum interoperability MUST also support invoking the function import with empty parentheses.
If the function is composable, additional path segments may be appended to the URL that identifies the composable function (or function import) as appropriate for the type returned by the function (or function import). The last path segment determines the system query options and HTTP verbs that can be used with this this URL, e.g. if the last path segment is a multi-valued navigation property, a POST request may be used to create a new entity in the identified collection.
Example 79: add a new item to the list of items of the shopping cart returned by the composable MyShoppingCart function import
POST http://host/service/MyShoppingCart()/Items

...
Parameter values passed to functions MUST be specified either as a URL literal (for primitive types) or as a JSON formatted OData object (for complex types or collections of primitive types or complex types).
If a collection-valued function has no result for a given parameter value combination, the response is the format-specific representation of an empty collection. If a single-valued function with a nullable return-type has no result, the service returns 204 No Content.
If a single-valued function with a non-nullable return type has no result, the service returns 4xx. For functions that return a single entity 404 Not Found is the appropriate response code.
For a composable function the processing is stopped when the function result requires a 4xx response, and continues otherwise.
Function imports MUST NOT be used inside either the $filter or $orderby system query options.
11.5.3.1.1 [bookmark: _Inline_Parameter_Syntax][bookmark: _Toc370126132][bookmark: _Toc370374929][bookmark: _Toc468954066][bookmark: _Toc470093125]Inline Parameter Syntax
Parameter values are specified inline by appending a comma-separated list of parameter values, enclosed by parenthesis to the function name.
Each parameter value is represented as a name/value pair in the format Name=Value, where Name is the name of the parameter to the function and Value is the parameter value.
Example 80: invoke a Sales.EmployeesByManager function which takes a single ManagerID parameter via the function import EmployeesByManager
http://host/service/EmployeesByManager(ManagerID=3)
Example 81: return all Customers whose City property returns "Western" when passed to the Sales.SalesRegion function
http://host/service/Customers?
 $filter=Sales.SalesRegion(City=$it/City) eq 'Western'
[bookmark: _Parameter_Aliases]A parameter alias can be used in place of an inline parameter to a function call. The value for the alias is specified as a separate query option using the name of the parameter alias.
Example 82: invoke a Sales.EmployeesByManager function via the function import EmployeesByManager, passing 3 for the ManagerID parameter
http://host/service/EmployeesByManager(ManagerID=@p1)?@p1=3
[bookmark: _Parameter_Name_Syntax][bookmark: _Toc370126133][bookmark: _Toc370374930]Services MAY in addition allow implicit parameter aliases for function imports and for functions that are the last path segment of the URL. An implicit parameter alias is the parameter name preceded by an at (@) sign, To use implicit parameter aliases, no parentheses are appended to the function (import) name and the value for each parameter is specified as a separate query option using the name of the parameter alias.
Example 83: invoke a Sales.EmployeesByManager function via the function import EmployeesByManager, passing 3 for the ManagerID parameter using the implicit parameter alias
http://host/service/EmployeesByManager?@ManagerID=3
11.5.3.2 [bookmark: _Toc468954067][bookmark: _Toc470093126]Function overload resolution
The same function name may be used multiple times within a schema, each with a different set of parameters. For unbound overloads the combination of the function name and the unordered list of parameter types and names MUST identify a particular function overload. For bound overloads the combination of the function name, the binding parameter type, and the unordered set of names of the non-binding parameters MUST identify a particular function overload.
All unbound overloads MUST have the same return type. Also, all bound overloads with a given binding parameter type MUST have the same return type.
If the function is bound and the binding parameter type is part of an inheritance hierarchy, the function overload is selected based on the type of the URL segment preceding the function name. A type-cast segment can be used to select a function defined on a particular type in the hierarchy, see [OData‑URL].
11.5.4 [bookmark: _Actions_1][bookmark: _Toc370126134][bookmark: _Toc370374931][bookmark: _Toc468954068][bookmark: _Toc470093127]Actions
Actions are operations exposed by an OData service that MAY have side effects when invoked. Actions MAY return data but MUST NOT be further composed with additional path segments.
11.5.4.1 [bookmark: _Invoking_an_Action][bookmark: _Toc370126135][bookmark: _Toc370374932][bookmark: _Toc468954069][bookmark: _Toc470093128]Invoking an Action
To invoke an action bound to a resource, the client issues a POST request to an action URL. An action URL may be obtained from a previously returned entity representation or constructed by appending the namespace- or alias-qualified action name to a URL that identifies a resource whose type is the same as, or derives from, the type of the binding parameter of the action. The value for the binding parameter is the value of the resource identified by the URL prior to appending the action name, and any non-binding parameter values are passed in the request body according to the particular format.
Services MAY additionally support invoking actions using the unqualified action name by defining one or more default namespaces through the Core.DefaultNamespace term defined in [OData-VocCore].
To invoke an action through an action import, the client issues a POST request to a URL identifying the action import. The canonical URL for an action import is the service root, followed by the name of the action import. When invoking an action through an action import all parameter values MUST be passed in the request body according to the particular format.
Any nullable parameter values not specified in the request MUST be assumed to have the null value.
4.01 services MUST support invoking actions with no non-binding parameters and parameterless action imports both without a request body and with a request body representing no parameters according to the particular format. Interoperable clients SHOULD always include a request body, even when invoking actions with no non-binding parameters and parameterless action imports.
If the action returns results the client SHOULD use content type negotiation to request the results in the desired format, otherwise the default content type will be used.
The client can request whether any results from the action be returned using the Prefer header.
Actions that create and return a single entity follow the rules for entity creation and return a Location header that contains the edit URL or read URL of the created entity.
Actions without a return type respond with 204 No Content on success.
To request processing of the action only if the binding parameter value, an entity or collection of entities, is unmodified, the client includes the If-Match header with the latest known ETag value for the entity or collection of entities. The ETag value for a collection as a whole is transported in the ETag header of a collection response.
Example 84: invoke the SampleEntities.CreateOrder action using /Customers('ALFKI') as the customer (or binding parameter). The values 2 for the quantity parameter and BLACKFRIDAY for the discountCode parameter are passed in the body of the request
POST http://host/service/Customers('ALFKI')/SampleEntities.CreateOrder

{
 "items": [
 { "product": 4001, "quantity": 2 },
 { "product": 7062, "quantity": 1 }
],
 "discountCode": "BLACKFRIDAY"
}
11.5.4.2 [bookmark: _Toc370126136][bookmark: _Toc370374933][bookmark: _Toc468954070][bookmark: _Toc470093129] Action Overload Resolution
The same action name may be used multiple times within a schema provided there is at most one unbound overload, and each bound overload specifies a different binding parameter type.
If the action is bound and the binding parameter type is part of an inheritance hierarchy, the action overload is selected based on the type of the URL segment preceding the action name. A type-cast segment can be used to select an action defined on a particular type in the hierarchy, see [OData‑URL].
11.6 [bookmark: _Functions][bookmark: _Batch_Requests][bookmark: _Asynchronous_Requests][bookmark: _Ref358207530][bookmark: _Ref358208003][bookmark: _Toc370126137][bookmark: _Toc370374934][bookmark: _Toc468954071][bookmark: _Ref356811917][bookmark: _Toc470093130]Asynchronous Requests
A Prefer header with a respond-async preference allows clients to request that the service process a Data Service Request asynchronously.
If the client has specified respond-async in the request, the service MAY process the request asynchronously and return a 202 Accepted response. A service MUST NOT reply to a Data Service Request with 202 Accepted if the request has not included the respond-async preference.
Responses that return 202 Accepted MUST include a Location header pointing to a status monitor resource that represents the current state of the asynchronous processing in addition to an optional Retry-After header indicating the time, in seconds, the client should wait before querying the service for status. Services MAY include a response body, for example, to provide additional status information.
A GET request to the status monitor resource again returns 202 Accepted response if the asynchronous processing has not finished. This response MUST again include a Location header and MAY include a Retry-After header to be used for a subsequent request. The Location header and optional Retry-After header may or may not contain the same values as returned by the previous request.
A GET request to the status monitor resource returns 200 OK once the asynchronous processing has completed. For OData 4.01 and greater responses, or OData 4.0 requests that include an Accept header that does not specify application/http, the response MUST include the AsyncResult response header. Any other headers, along with the response body, represent the result of the completed asynchronous operation. If the GET request to the status monitor includes an OData-MaxVersion header with a value of 4.0 and no Accept header, or an Accept header that includes application/http, then the body of the final 200 OK response MUST be represented as an HTTP message, as described in [RFC7230], which is the full HTTP response to the completed asynchronous operation.
A DELETE request sent to the status monitor resource requests that the asynchronous processing be canceled. A 200 OK or a 204 No Content response indicates that the asynchronous processing has been successfully canceled. A client can request that the DELETE should be executed asynchronously. A 202 Accepted response indicates that the cancellation is being processed asynchronously; the client can use the returned Location header (which MUST be different from the status monitor resource of the initial request) to query for the status of the cancellation. If a delete request is not supported by the service, the service returns 405 Method Not Allowed.
After a successful DELETE request against the status monitor resource, any subsequent GET requests for the same status monitor resource returns 404 Not Found.
If an asynchronous request is cancelled for reasons other than the consumers issuing a DELETE request against the status monitor resource, a GET request to the status monitor resource returns 200 OK with a response body containing a single HTTP response with a status code in the 5xx Server Error range indicating that the operation was cancelled.
The service MUST ensure that no observable change has occurred as a result of a canceled request.
If the client waits too long to request the result of the asynchronous processing, the service responds with a 410 Gone or 404 Not Found.
The status monitor resource URL MUST differ from any other resource URL.
11.7 [bookmark: _Batch_Requests_1][bookmark: _Ref358203229][bookmark: _Toc370126138][bookmark: _Toc370374935][bookmark: _Toc468954072][bookmark: _Toc470093131]Batch Requests
Batch requests allow grouping multiple operations into a single HTTP request payload. A batch request is represented as a Multipart MIME v1.0 message [RFC2046], a standard format allowing the representation of multiple parts, each of which may have a different content type (as described in [OData-Atom] and [OData-JSON]), within a single request.
11.7.1 [bookmark: _Toc370126139][bookmark: _Toc370374936][bookmark: _Toc468954073][bookmark: _Toc470093132]Batch Request Headers
Batch requests are submitted as a single HTTP POST request to the batch endpoint of a service, located at the URL $batch relative to the service root.
The batch request MUST contain a Content-Type header specifying a content type of multipart/mixed and a boundary specification as defined in [RFC2046] is defined in the Batch Request Body section below.
Batch requests SHOULD contain the applicable OData-Version header.
Example 85:
POST /service/$batch HTTP/1.1
Host: odata.org
OData-Version: 4.0
OData-MaxVersion: 4.0
Content-Type: multipart/mixed; boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b

<Batch Request Body>
11.7.2 [bookmark: _Toc370126140][bookmark: _Toc370374937][bookmark: _Toc468954074][bookmark: _Toc470093133]Batch Request Body
The body of a batch request is made up of a series of individual requests and change sets, each represented as a distinct MIME part (i.e. separated by the boundary defined in the Content-Type header).
The service MUST process the requests within a batch request sequentially. Processing stops on the first error unless the continue-on-error preference is specified.
An individual request in the context of a batch request is a Data request, Data Modification request, Action invocation request, or Function invocation request. A MIME part representing an individual request MUST include a Content-Type header with value application/http. A Content-Transfer-Encoding header with value binary may be included for historic reasons although this header is not used by HTTP and only needed for transmission via E-Mail. Neither clients nor services should rely on this header being present.
Preambles and Epilogues in the MIME payload, as defined in [RFC2046], are valid but are assigned no meaning and thus MUST be ignored by processors of batch requests.
The Request-URI of HTTP requests serialized within MIME part bodies can use one of the following three formats:
· Absolute URI with schema, host, port, and absolute resource path.
Example 86:
GET https://host:1234/path/service/People(1) HTTP/1.1
· Absolute resource path and separate Host header.
Example 87:
GET /path/service/People(1) HTTP/1.1
Host: myserver.mydomain.org:1234
· Resource path relative to the batch request URI.
Example 88:
GET People(1) HTTP/1.1
Services MUST support all three formats.
Each MIME part body that represents a single request MUST NOT include:
· authentication or authorization related HTTP headers
· Expect, From, Max-Forwards, Range, or TE headers
Processors of batch requests MAY choose to disallow additional HTTP constructs in HTTP requests serialized within MIME part bodies. For example, a processor may choose to disallow chunked encoding to be used by such HTTP requests.
[bookmark: BatchRequestExampleNumber]Example 89: a batch request that contains the following operations in the order listed
1. A query request
2. Change Set that contains the following requests:
· Insert entity (with Content-ID = 1)
· Update request (with Content-ID = 2)
3. A second query request
Note: For brevity, in the example, request bodies are excluded in favor of English descriptions inside <> brackets and OData-Version headers are omitted.
Note also that the two empty lines after the Host header of the GET request are necessary: the first is part of the GET request header; the second is the empty body of the GET request, followed by a CRLF according to [RFC2046].
POST /service/$batch HTTP/1.1
Host: host
OData-Version: 4.0
Content-Type: multipart/mixed; boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b
Content-Length: ###

--batch_36522ad7-fc75-4b56-8c71-56071383e77b
Content-Type: application/http

GET /service/Customers('ALFKI')
Host: host

--batch_36522ad7-fc75-4b56-8c71-56071383e77b
Content-Type: multipart/mixed; boundary=changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd
Content-Type: application/http
Content-ID: 1

POST /service/Customers HTTP/1.1
Host: host
Content-Type: application/json
Content-Length: ###

<JSON representation of a new Customer>
--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd
Content-Type: application/http
Content-ID: 2

PATCH /service/Customers('ALFKI') HTTP/1.1
Host: host
Content-Type: application/json
If-Match: xxxxx
Content-Length: ###

<JSON representation of Customer ALFKI>
--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd--
--batch_36522ad7-fc75-4b56-8c71-56071383e77b
Content-Type: application/http

GET /service/Products HTTP/1.1
Host: host

--batch_36522ad7-fc75-4b56-8c71-56071383e77b--
11.7.3 [bookmark: _Change_Sets][bookmark: _Toc370126141][bookmark: _Toc370374938][bookmark: _Toc468954075][bookmark: _Toc470093134]Change Sets
A change set is an atomic unit of work consisting of an unordered group of one or more Data Modification requests or Action invocation requests. Change sets MUST NOT contain any GET requests or other change sets. The contents of a MIME part representing a change set MUST itself be a multipart MIME document (see [RFC2046]) with one MIME part for each operation that makes up the change set. Each part representing an operation in the change set MUST include the same Content-Type header value. In addition each MIME part MUST specify a Content-ID header with a value unique within the batch request. The syntax of the Content-ID header is specified by rule content-id in [OData-ABNF]. Note: the content-ID header is a header of the MIME part itself, not a header in the contained operation request.
11.7.3.1 [bookmark: _Toc370126142][bookmark: _Toc370374939][bookmark: _Toc468954076][bookmark: _Toc470093135]Referencing New Entities in a Change Set
Entities created by an Insert request can be referenced in the request URL of subsequent requests within the same change set. Services MAY also support Content-ID referencing within request bodies, and MAY support Content-ID referencing across changesets, in which case they SHOULD advertise this support by specifying the ReferencesInRequestBodiesSupported and ReferencesAcrossChangeSetsSupported properties in the Capabilities.BatchSupport term applied to the entity container, see [OData-VocCap].
The temporary resource path for a newly inserted entity is the value of the Content-ID header prefixed with a $ character. If $<Content-ID> is identical to the name of a top-level system resource ($batch, $crossjoin, $all, $entity, $root, $id, $metadata, or other system resources defined according to the OData-Version of the protocol specified in the request), then the reference to the top-level system resource is used.
Example 90: a batch request that contains the following operations in the order listed:
A change set that contains the following requests:
· Insert a new entity (with Content-ID = 1)
· Insert a second new entity (references request with Content-ID = 1)
POST /service/$batch HTTP/1.1
Host: host
OData-Version: 4.0
Content-Type: multipart/mixed; boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b

--batch_36522ad7-fc75-4b56-8c71-56071383e77b
Content-Type: multipart/mixed; boundary=changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd
Content-Type: application/http
Content-ID: 1

POST /service/Customers HTTP/1.1
Host: host
Content-Type: application/json
Content-Length: ###

<JSON representation of a new Customer>
--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd
Content-Type: application/http
Content-ID: 2

POST $1/Orders HTTP/1.1
Host: host
Content-Type: application/json
Content-Length: ###

<JSON representation of a new Order>
--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd--
--batch_36522ad7-fc75-4b56-8c71-56071383e77b--
11.7.3.2 [bookmark: _Toc468954077][bookmark: _Toc370126143][bookmark: _Toc370374940][bookmark: _Toc470093136]Referencing the ETag of an Entity in a Change Set
Services MAY support the use of an ETag returned from a previous operation in an If-Match or If-None-Match header of a subsequent statement. Services SHOULD advertise this support by specifying the EtagReferencesSupported property in the BatchSupport annotation term applied to the entity container, see [OData-VocCap].
The ETag for a previous operation can be referenced as the unquoted value of the Content-ID header from the previous statement prefixed with a $ character.
Example 91: a batch request that contains the following operations in the order listed:
· Get an Employee (with Content-ID = 1)
· Update the salary only if the employee has not changed
POST /service/$batch HTTP/1.1
Host: host
OData-Version: 4.0
Content-Type: multipart/mixed; boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b

--batch_36522ad7-fc75-4b56-8c71-56071383e77b
Content-Type: application/http
Content-ID: 1

GET /service/Employees(0) HTTP/1.1
Host: host
Accept: application/json

--batch_36522ad7-fc75-4b56-8c71-56071383e77b
Content-Type: application/http
Content-ID: 2

PATCH /service/Employees(0) HTTP/1.1
Host: host
Content-Type: application/json
Content-Length: ###
If-Match: $1

{
 "Salary": 75000
}
11.7.4 [bookmark: _Toc468954078][bookmark: _Toc470093137]Responding to a Batch Request
Requests within a batch are evaluated according to the same semantics used when the request appears outside the context of a batch.
The order of change sets and individual requests in a Batch request is significant. A service MUST process the components of the Batch in the order received. The order of requests within a change set is not significant; a service may process the requests within a change set in any order.
All operations in a change set represent a single change unit so a service MUST successfully process and apply all the requests in the change set or else apply none of them. It is up to the service implementation to define rollback semantics to undo any requests within a change set that may have been applied before another request in that same change set failed and thereby apply this all-or-nothing requirement. The service MAY execute the requests within a change set in any order and MAY return the responses to the individual requests in any order. The service MUST include the Content-ID header in each response with the same value that the client specified in the corresponding request, so clients can correlate requests and responses.
If the set of request headers of a Batch request are valid (the Content-Type is set to multipart/mixed, etc.) the service MUST return a 200 OK HTTP response code to indicate that the request was accepted for processing, but the processing is yet to be completed. The requests within the body of the batch may subsequently fail or be malformed; however, this enables batch implementations to stream the results.
If the service receives a Batch request with an invalid set of headers it MUST return a 4xx response code and perform no further processing of the request.
A response to a batch request MUST contain a Content-Type header with value multipart/mixed.
Structurally, a batch response body MUST match one-to-one with the corresponding batch request body, such that the same multipart MIME message structure defined for requests is used for responses. There are three exceptions to this rule:
· When a request within a change set fails, the change set response is not represented using the multipart/mixed media type. Instead, a single response, using the application/http media type, is returned that applies to all requests in the change set and MUST be formatted according to the Error Handling defined for the particular response format.
· When an error occurs processing a request and the continue-on-error preference is not specified, processing of the batch is terminated and the error response is the last part of the multi-part response.
· Asynchronously processed batch requests can return interim results and end with a 202 Accepted as the last part of the multi-part response.
A response to an operation in a batch MUST be formatted exactly as it would have appeared outside of a batch as described in Requesting Data or Invoking a Function, as appropriate.
Example 92: referencing the batch request example 89 above, assume all the requests except the final query request succeed. In this case the response would be
HTTP/1.1 200 Ok
OData-Version: 4.0
Content-Length: ####
Content-Type: multipart/mixed; boundary=b_243234_25424_ef_892u748

--b_243234_25424_ef_892u748
Content-Type: application/http

HTTP/1.1 200 Ok
Content-Type: application/json
Content-Length: ###

<JSON representation of the Customer entity with EntityKey ALFKI>
--b_243234_25424_ef_892u748
Content-Type: multipart/mixed; boundary=cs_12u7hdkin252452345eknd_383673037

--cs_12u7hdkin252452345eknd_383673037
Content-Type: application/http
Content-ID: 1

HTTP/1.1 201 Created
Content-Type: application/json
Location: http://host/service.svc/Customer('POIUY')
Content-Length: ###

<JSON representation of a new Customer entity>

--cs_12u7hdkin252452345eknd_383673037
Content-Type: application/http
Content-ID: 2

HTTP/1.1 204 No Content
Host: host

--cs_12u7hdkin252452345eknd_383673037--
--b_243234_25424_ef_892u748
Content-Type: application/http

HTTP/1.1 404 Not Found
Content-Type: application/xml
Content-Length: ###

<Error message>
--b_243234_25424_ef_892u748--
11.7.5 [bookmark: _Asynchronous_Batch_Requests][bookmark: _Ref358207547][bookmark: _Toc370126144][bookmark: _Toc370374941][bookmark: _Toc468954079][bookmark: _Toc470093138]Asynchronous Batch Requests
Batch requests may be executed asynchronously by including the respond-async preference in the Prefer header. The service MUST ignore the respond-async preference for individual requests within a batch.
After successful execution of the batch request the response to the batch request would be returned in the body of a response to an interrogation request against the status monitor resource URL (see section 11.6 “Asynchronous Requests”).
A service MAY return interim results to an asynchronously executing batch. It does this by including a 202 Accepted response as the last part of the multi-part response. The client can use the monitor URL returned in this 202 Accepted response to continue processing the batch response.
Since a change set is executed atomically, 202 Accepted MUST NOT be returned within a change set.
Example 93: referencing the example 89 above again, assume that when interrogating the monitor URL for the first time only the first request in the batch finished processing and all the remaining requests are still being processed. Note that the actual multi-part batch response itself is contained in an application/http wrapper as it is a response to a status monitor resource:
HTTP/1.1 200 Ok
Content-Type: application/http

HTTP/1.1 200 Ok
OData-Version: 4.0
Content-Length: ####
Content-Type: multipart/mixed; boundary=b_243234_25424_ef_892u748

--b_243234_25424_ef_892u748
Content-Type: application/http

HTTP/1.1 200 Ok
Content-Type: application/json
Content-Length: ###

<JSON representation of the Customer entity with EntityKey ALFKI>
--b_243234_25424_ef_892u748
Content-Type: application/http

HTTP/1.1 202 Accepted
Location: http://service-root/async-monitor
Retry-After: ###

--b_243234_25424_ef_892u748--
Client makes a second request using the returned monitor URL
HTTP/1.1 200 Ok
OData-Version: 4.0
Content-Length: ####
Content-Type: multipart/mixed; boundary=b_243234_25424_ef_892u748

--b_243234_25424_ef_892u748
Content-Type: multipart/mixed; boundary=cs_12u7hdkin252452345eknd_383673037

--cs_12u7hdkin252452345eknd_383673037
Content-Type: application/http
Content-ID: 1

HTTP/1.1 201 Created
Content-Type: application/json
Location: http://host/service.svc/Customer('POIUY')
Content-Length: ###

<JSON representation of a new Customer entity>
--cs_12u7hdkin252452345eknd_383673037
Content-Type: application/http
Content-ID: 2

HTTP/1.1 204 No Content
Host: host

--cs_12u7hdkin252452345eknd_383673037--
--b_243234_25424_ef_892u748
Content-Type: application/http

HTTP/1.1 404 Not Found
Content-Type: application/xml
Content-Length: ###

<Error message>
--b_243234_25424_ef_892u748—
12 [bookmark: _Toc370126145][bookmark: _Toc370374942][bookmark: _Toc468954080][bookmark: _Toc470093139]Security Considerations
This section is provided as a service to the application developers, information providers, and users of OData version 4.0 giving some references to starting points for securing OData services as specified. OData is a REST-full multi-format service that depends on other services and thus inherits both sides of the coin, security enhancements and concerns alike from the latter.
For HTTP relevant security implications please cf. the relevant sections of [RFC7231] (9. Security Considerations) and for the HTTP PATCH method [RFC5023] (5. Security Considerations) as starting points.
12.1 [bookmark: _Toc370126146][bookmark: _Toc370374943][bookmark: _Toc468954081][bookmark: _Toc470093140]Authentication
OData Services requiring authentication SHOULD consider supporting basic authentication as specified in [RFC7617] over HTTPS for the highest level of interoperability with generic clients. They MAY support other authentication methods.
13 [bookmark: _Toc370126147][bookmark: _Toc370374944][bookmark: _Toc468954082][bookmark: _Toc470093141]Conformance
OData is designed as a set of conventions that can be layered on top of existing standards to provide common representations for common functionality. Not all services will support all of the conventions defined in the protocol; services choose those conventions defined in OData as the representation to expose that functionality appropriate for their scenarios.
To aid in client/server interoperability, this specification defines multiple levels of conformance for an OData Service, as well as the minimal requirements for an OData Client to be interoperable across OData services.
13.1 [bookmark: _OData_Data_Publishing][bookmark: _Service_Conformance_Levels][bookmark: _Toc370126148][bookmark: _Toc370374945][bookmark: _Toc468954083][bookmark: _Toc470093142]OData 4.0 Service Conformance Levels
OData 4.0 defines three levels of conformance for an OData Service.
Note: The conformance levels are design to correspond to different service scenarios. For example, a service that publishes data compliant with one or more of the OData defined formats may comply with the OData Minimal Conformance Level without supporting any additional functionality. A service that offers more control over the data that the client retrieves may comply with the OData Intermediate Conformance Level. Services that conform to the OData Advanced Conformance Level can expect to interoperate with the most functionality against the broadest range of generic clients. Services can advertise their level of conformance by the OData Conformance Level Annotation.
Services can advertise their level of conformance by annotating their entity container with the term Capabilities.ConformanceLevel defined in [OData-VocCap].
Note: Services are encouraged to support as much additional functionality beyond their level of conformance as is appropriate for their intended scenario.
13.1.1 [bookmark: _OData_Data_Publishing_1][bookmark: _OData_Minimal_Conformance][bookmark: _OData_4.0_Minimal][bookmark: _Ref356810448][bookmark: _Toc370126149][bookmark: _Toc370374946][bookmark: _Toc468954084][bookmark: _Toc470093143]OData 4.0 Minimal Conformance Level
In order to conform to the OData 4.0 Minimal conformance level, a service:
1. MUST publish a service document at the service root (section 11.1.1)
2. MUST return data according to at least one of the OData defined formats (section 7)
3. MUST support server-driven paging when returning partial results (section 11.2.6.7)
4. MUST return the appropriate OData-Version header (section 8.1.5)
5. MUST conform to the semantics the following headers, or fail the request
5.1. Accept (section 8.2.1)
5.2. OData-MaxVersion (section 8.2.7)
6. MUST follow OData guidelines for extensibility (section 6 and all subsections)
7. MUST successfully parse the request according to [OData-ABNF] for any supported system query string options and either follow the specification or return 501 Not Implemented (section 9.3.1) for any unsupported functionality (section 9.3.1)
8. MUST expose only data types defined in
9. MUST NOT require clients to understand any metadata or instance annotations (section 6.4), custom headers (section 6.5), or custom content (section 6.2) in the payload in order to correctly consume the service
10. MUST NOT violate any OData update semantics (section 11.4 and all subsections)
11. MUST NOT violate any other OData-defined semantics
12. SHOULD support $expand (section 11.2.5.2)
13. MAY publish metadata at $metadata according to (section 11.1.2)
14. MUST support prefixed variants of supported headers and preference values
15. MUST support enumeration and duration literals in URLs with the type prefix
Additionally, if async operations are supported:
16. MUST return an HTTP message as the final response to an asynchronous request with an OData-MaxVersion value of 4.0 and an Accept header including application/http.
17. MAY return the AsyncResult header, defined in [OData-Protocol], in the final response to an asynchronous request

To be considered an Updatable OData Service, the service additionally:
18. MUST include edit links (explicitly or implicitly) for all updatable or deletable resources according to [OData-Atom] and [OData-JSON]
19. MUST support POST of new entities to insertable entity sets (section 11.4.1.5 and 11.4.2.1)
20. MUST support POST of new related entities to updatable navigation properties (section 11.4.6.1)
21. MUST support POST to $ref to add an existing entity to an updatable related collection (section 11.4.6.1)
22. MUST support PUT to $ref to set an existing single updatable related entity (section 11.4.6.3)
23. MUST support PATCH to all edit URLs for updatable resources (section 11.4.3)
24. MUST support DELETE to all edit URLs for deletable resources (section 11.4.5)
25. MUST support DELETE to $ref to remove an entity from an updatable navigation property (section 11.4.6.2)
26. MUST support if-match header in update/delete of any resources returned with an ETag (section 11.4.1.1)
27. MUST return a Location header with the edit URL or read URL of a created resource (section 11.4.1.5)
28. MUST include the OData-EntityId header in response to any create or upsert operation that returns 204 No Content (Section 8.3.3)
29. [bookmark: _OData_Data_Service]MUST support Upserts (section Upsert an Entity)
30. SHOULD support PUT and PATCH to an individual primitive (section 11.4.9.1) or complex (section 11.4.9.3) property (respectively)
31. SHOULD support DELETE to set an individual property to null (section 11.4.9.2)
32. SHOULD support deep inserts (section 11.4.2.2)
13.1.2 [bookmark: _OData_Intermediate_Conformance][bookmark: _OData_4.0_Intermediate][bookmark: _Ref356811585][bookmark: _Toc370126150][bookmark: _Toc370374947][bookmark: _Toc468954085][bookmark: _Toc470093144]OData 4.0 Intermediate Conformance Level
In order to conform to the OData Intermediate Conformance Level, a service:
1. MUST conform to the OData 4.0 Minimal Conformance Level
2. MUST successfully parse the [OData-ABNF] and either follow the specification or return 501 Not Implemented for any unsupported functionality (section 9.3.1)
3. MUST support $select (section11.2.5.1)
4. MUST support casting to a derived type according to [OData‑URL] if derived types are present in the model
5. MUST support $top (section 11.2.6.3)
6. MUST support /$value on media entities (section 4.10. in [OData‑URL]) and individual properties (section 11.2.4.1)
7. MUST support $filter (section 11.2.6.1)
7.1. MUST support eq, ne filter operations on properties of entities in the requested entity set (section 11.2.6.1.1)
7.2. MUST support aliases in $filter expressions (section 11.2.6.1.3)
7.3. SHOULD support additional filter operations (section 11.2.6.1.1) and MUST return 501 Not Implemented for any unsupported filter operations (section 9.3.1)
7.4. SHOULD support the canonical functions (section 11.2.6.1.2) and MUST return 501 Not Implemented for any unsupported canonical functions (section 9.3.1)
7.5. SHOULD support $filter on expanded entities (section 0)
8. SHOULD publish metadata at $metadata according to (section 11.1.2)
9. SHOULD support the [OData-JSON] format
10. SHOULD consider supporting basic authentication as specified in [RFC7617] over HTTPS for the highest level of interoperability with generic clients
11. SHOULD support the $search system query option (section 11.2.6.6)
12. SHOULD support the $skip system query option (section 11.2.6.4)
13. SHOULD support the $count system query option (section 11.2.6.5)
14. SHOULD support $expand (section 11.2.5.2)
15. SHOULD support the lambda operators any and all on navigation- and collection-valued properties (section 5.1.1.5 in [OData‑URL])
16. SHOULD support the /$count segment on navigation and collection properties (section 11.2.10)
17. SHOULD support $orderby asc and desc on individual properties (section 11.2.6.2)
13.1.3 [bookmark: _OData_Updatable_Service][bookmark: _OData_Full_Data][bookmark: _OData_4.0_Advanced][bookmark: _Toc370126151][bookmark: _Toc370374948][bookmark: _Toc468954086][bookmark: _Toc470093145]OData 4.0 Advanced Conformance Level
In order to conform to the OData Advanced Conformance Level, a service:
1. MUST conform to at least the OData Intermediate Conformance Level
2. MUST publish metadata at $metadata according to (section 11.1.2)
3. MUST support the [OData-JSON] format
4. MUST support the /$count segment on navigation and collection properties (section 11.2.10)
5. MUST support the lambda operators any and all on navigation- and collection-valued properties (section 5.1.1.5 in [OData‑URL])
6. MUST support the $skip system query option (section 11.2.6.4)
7. MUST support the $count system query option (section 11.2.6.5)
8. MUST support $orderby asc and desc on individual properties (section 11.2.6.2)
9. MUST support $expand (section 11.2.5.2)
9.1. MUST support returning references for expanded properties (section 11.2.5.2)
9.2. MUST support $filter on expanded entities
9.3. MUST support cast segment in expand with derived types
9.4. SHOULD support $orderby asc and desc on individual properties
9.5. SHOULD support the $count system query option for expanded properties
9.6. SHOULD support $top and $skip on expanded properties
9.7. SHOULD support $search on expanded properties
9.8. SHOULD support $levels for recursive expand (section 11.2.5.2.1.1)
9.9. MAY support $compute on expanded properties
10. MUST support the $search system query option (section 11.2.6.6)
11. MUST support batch requests (section11.7 and all subsections)
12. MUST support the resource path conventions defined in [OData‑URL]
13. SHOULD support Asynchronous operations (section 8.2.8.8)
14. SHOULD support Delta change tracking (section 11.3)
15. SHOULD support cross-join queries defined in [OData‑URL]
16. [bookmark: _OData_Conformance_Level][bookmark: _Not_Supported_Codes:][bookmark: _Not_Supported_Codes][bookmark: _Interoperable_OData_Clients][bookmark: _Toc370126152][bookmark: _Toc370374949]MAY support the $compute system query option (section 11.2.5.3)
13.2 [bookmark: _Toc468954087][bookmark: _Toc470093146]OData 4.01 Service Conformance Levels
OData services can report conformance to the OData 4.01 specification by including 4.01 in the list of supported protocol versions in the Core.ODataVersions annotation, as defined in [OData-VocCore]. As all OData 4.01 compliant services must also be fully OData 4.0 compliant, OData 4.01 services do not need to separately list 4.0 as a supported version.
13.2.1 [bookmark: _OData_4.1_Minimal][bookmark: _Toc468954088][bookmark: _Toc470093147]OData 4.01 Minimal Conformance Level
In order to conform to the OData 4.01 Minimal Conformance Level, a service:
1. MUST conform to the OData 4.0 Minimal Conformance Level
2. MUST be compliant with version 4.01 of at least one of the OData defined formats
3. [bookmark: _OData_4.1_Intermediate]MUST return the AsyncResult result header in the final response to an asynchronous request if asynchronous operations are supported.
4. MUST support both prefixed and non-prefixed variants of supported headers and preference values
5. MUST reject a request with an incompatible SchemaVersion header if a SchemaVersion is returned in $metadata
6. MUST support specifying supported system query options with or without the $-prefix
7. MUST support case-insensitive query option, operator, and canonical function names
8. SHOULD return the Core.ODataVersions annotation.
9. SHOULD report capabilities through the Capabilities vocabulary
10. SHOULD support both 4.0 and 4.01 syntax in URLs for supported functionality regardless of requested OData-MaxVersion
a. MUST support casting strings to primitive types in URLs
b. MUST support enumeration and duration literals in URLs with or without the type prefix
c. MUST support invoking parameterless function imports with or without parens
d. MUST support an empty object or no-content for the request body when invoking an action with no non-binding parameters
e. MUST support invoking functions and actions in a default namespace with or without namespace qualification
f. SHOULD support eq/ne null comparison for navigation properties with a maximum cardinality of one
g. SHOULD support implicit aliasing of parameters
h. SHOULD support the in operator
i. SHOULD support divby
j. SHOULD support negative indexes for the substring function
k. MAY support Key-As-Segment url convention
a. MUST also support canonical URL conventions or include urls in payload
l. MAY support the count of a filtered collection in a common expression
m. MAY support equal and non-equal structural comparison
11. MAY support filtering on annotation values
12. MAY support $compute system query option
13. MAY support $search for all collections
14. MAY support 4.01 behavior, including returning 4.01 content and payloads, if the client does not specify the OData-MaxVersion:4.0 request header

In addition, to be considered an Updatable OData 4.01 Service, the service:
15. SHOULD support PUT against single entity with nested content
16. MAY support PUT or DELETE to $ref of a collection-valued nav prop
17. MAY support POST to collections of complex/primitive types
18. MAY support PATCH and DELETE to a collection with $filter
19. MAY support POST, PATCH and DELETE to a collection URL terminating in a type cast segment
20. MAY support PATCH to entity sets using the delta-response format
21. MAY support deep update and deep insert operations
22. MAY support $select and $expand on data modification requests
13.2.2 [bookmark: _Toc468954089][bookmark: _Toc470093148]OData 4.01 Intermediate Conformance Level
In order to conform to the OData 4.01 Intermediate Conformance Level, a service:
1. MUST conform to the OData 4.01 Minimal Conformance Level
2. MUST conform to the OData 4.0 Intermediate Conformance Level
3. MUST support eq/ne null comparison for navigation properties with a maximum cardinality of one
4. MUST support the in operator
5. SHOULD support the count of a filtered collection in a common expression
6. SHOULD support equal and non-equal structural comparison
7. SHOULD support $compute system query option
13.2.3 [bookmark: _Toc468954090][bookmark: _Toc470093149]OData 4.01 Advanced Conformance Level
In order to conform to the OData 4.01 Advanced Conformance Level, a service:
1. MUST conform to the OData 4.01 Intermediate Conformance Level
2. MUST conform to the OData 4.0 Advanced Conformance Level
3. MUST support the count of a filtered/searched collection in a common expression
4. MUST support $compute system query option
13.3 [bookmark: _Toc468954091][bookmark: _Toc470093150]Interoperable OData Clients
Interoperable OData clients can expect to work with OData Services that comply with at least the OData Minimal Conformance Level and implement the [OData-JSON] format. Clients that additionally support [OData-Atom] can expect to interoperate with a broader range of OData Services.
To be generally interoperable, OData clients	
1. MUST specify the OData-MaxVersion header in requests (section 8.2.6)
2. MUST specify OData-Version (section 8.1.5) and Content-Type (section 8.1.1) in any request with a payload
3. MUST be a conforming consumer of OData as defined in [OData-JSON]
4. MUST follow redirects (section 9.1.5)
5. MUST correctly handle next links (section 11.2.6.7)
6. MUST support instances returning properties and navigation properties not specified in metadata (section 11.2)
7. MUST generate PATCH requests for updates, if the client supports updates (section 11.4.3)
8. MUST include the $-prefix when specifying OData-defined system query options
9. MUST use case-sensitive query options, operators, and canonical functions
10. SHOULD support basic authentication as specified in [RFC7617] over HTTPS
11. MAY request entity references in place of entities previously returned in the response (section 11.2.8)
12. MAY support deleted entities, link entities, deleted link entities in a delta response (section 11.3)
13. MAY support asynchronous responses (section 9.1.3)
14. MAY support metadata=minimal in a JSON response (see [OData-JSON])
15. MAY support streaming in a JSON response (see [OData-JSON])
In addition, interoperable OData 4.01 clients
16. MUST send OData 4.0-compliant payloads to services that don't advertise support for 4.01 or greater through the Core.ODataVersions metadata annotation (see [OData-VocCore])
17. MUST be prepared to receive any valid 4.01 CSDL
18. MUST be prepared to receive any valid 4.01 response according to the requested format
19. SHOULD use capabilities (see [OData-VocCap]) to determine if a 4.01 feature is supported but MAY attempt syntax and be prepared to handle either 501 Not Implemented or 400 Bad Request
Appendix A. [bookmark: _Toc370126153][bookmark: _Toc370374950][bookmark: _Toc468954092][bookmark: _Toc470093151]Acknowledgments
The following individuals were members of the OASIS OData Technical Committee during the creation of this specification and their contributions are gratefully acknowledged:
	· Howard Abrams (CA Technologies)
· Ken Baclawski (Northeastern University)
· Jay Balunas (Red Hat)
· Stephen Berard (Schneider Electric Industries SAS)
· Mark Biamonte (Progress Software)
· Matthew Borges (SAP SE)
· Edmond Bourne (BlackBerry)
· Joseph Boyle (Planetwork, Inc.)
· Peter Brown (Individual)
· Antonio Campanile (Bank of America)
· Pablo Castro (Microsoft)
· Axel Conrad (BlackBerry)
· Robin Cover (OASIS)
· Erik de Voogd (SDL)
· Yi Ding (Microsoft)
· Diane Downie (Citrix Systems)
· Stefan Drees (Individual)
· Patrick Durusau (Individual)
· Andrew Eisenberg (IBM)
· Chet Ensign (OASIS)
· Davina Erasmus (SDL)
· Colleen Evans (Microsoft)
· Jason Fam (IBM)
· Senaka Fernando (WSO2)
· Josh Gavant (Microsoft)
· Brent Gross (IBM)
· Zhun Guo (Individual)
· Anila Kumar GVN (CA Technologies)
· Ralf Handl (SAP SE)
· Barbara Hartel (SAP SE)
· Hubert Heijkers (IBM)
	· Jens Hüsken (SAP SE)
· Evan Ireland (SAP SE)
· Gershon Janssen (Individual)
· Ram Jeyaraman (Microsoft)
· Ted Jones (Red Hat)
· Diane Jordan (IBM)
· Stephan Klevenz (SAP SE)
· Gerald Krause (SAP SE)
· Nuno Linhares (SDL)
· Paul Lipton (CA Technologies)
· Susan Malaika (IBM)
· Ramanjaneyulu Malisetti (CA Technologies)
· Neil McEvoy (iFOSSF – International Free and Open Source Solutions Foundation)
· Stan Mitranic (CA Technologies)
· Dale Moberg (Axway Software)
· Graham Moore (BrightstarDB Ltd.)
· Farrukh Najmi (Individual)
· Shishir Pardikar (Citrix Systems)
· Sanjay Patil (SAP SE)
· Nuccio Piscopo (iFOSSF – International Free and Open Source Solutions Foundation)
· Michael Pizzo (Microsoft)
· Ramesh Reddy (Red Hat)
· Robert Richards (Mashery)
· Sumedha Rubasinghe (WSO2)
· James Snell (IBM)
· Jeffrey Turpin (Axway Software)
· John Willson (Individual)
· John Wilmes (Individual)
· Christopher Woodruff (Perficient, Inc.)
· Martin Zurmuehl (SAP SE)

Appendix B. [bookmark: _Toc370126154][bookmark: _Toc370374951][bookmark: _Toc468954093][bookmark: _Toc470093152]Revision History

	Revision
	Date
	Editor
	Changes Made

	Working Draft 01
	2016-06-22
	Michael Pizzo

	Transferred content from OData 4.0 Part I - Protocol Errata 3

	Committee Specification Draft 01
	2016-12-08
	Michael Pizzo
Ralf Handl
	Integrated 4.01 features

image1.png
OASIS)

