
odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 1 of 74

OData Version 4.0 Part 1: Protocol Plus
Errata 02

OASIS Standard incorporating Approved Errata 02

30 October 2014

Specification URIs
This version:

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-
errata02-os-part1-protocol-complete.doc (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-
errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-
errata02-os-part1-protocol-complete.pdf

Previous version:
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-
errata01-os-part1-protocol-complete.doc (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-
errata01-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-
errata01-os-part1-protocol-complete.pdf

Latest version:
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.doc (Authoritative)
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.pdf

Technical Committee:

OASIS Open Data Protocol (OData) TC

Chairs:
Ralf Handl (ralf.handl@sap.com), SAP AG
Ram Jeyaraman (Ram.Jeyaraman@microsoft.com), Microsoft

Editors:
Michael Pizzo (mikep@microsoft.com), Microsoft
Ralf Handl (ralf.handl@sap.com), SAP AG
Martin Zurmuehl (martin.zurmuehl@sap.com), SAP AG

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

 List of Errata items. OData Version 4.0 Errata 02. Edited by Michael Pizzo, Ralf Handl, Martin
Zurmuehl, and Hubert Heijkers. 30 October 2014. OASIS Approved Errata. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/odata-v4.0-errata02-os.html.

 OData Version 4.0 Part 1: Protocol Plus Errata 02 (this document). Edited by Michael Pizzo,
Ralf Handl, and Martin Zurmuehl. 30 October 2014. OASIS Standard incorporating Approved
Errata 02. http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-
protocol/odata-v4.0-errata02-os-part1-protocol-complete.html.

 OData Version 4.0 Part 2: URL Conventions Plus Errata 02. Edited by Michael Pizzo, Ralf
Handl, and Martin Zurmuehl. 30 October 2014. OASIS Standard incorporating Approved

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.doc
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/errata01/os/complete/part1-protocol/odata-v4.0-errata01-os-part1-protocol-complete.pdf
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.doc
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.pdf
https://www.oasis-open.org/committees/odata/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:Ram.Jeyaraman@microsoft.com
http://www.microsoft.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:martin.zurmuehl@sap.com
http://www.sap.com/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/odata-v4.0-errata02-os.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/odata-v4.0-errata02-os.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 2 of 74

Errata 02. http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-
conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html.

 OData Version 4.0 Part 3: Common Schema Definition Language (CSDL) Plus Errata 02.
Edited by Michael Pizzo, Ralf Handl, and Martin Zurmuehl. 30 October 2014. OASIS
Standard incorporating Approved Errata 02. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-
csdl-complete.html.

 ABNF components: OData ABNF Construction Rules Version 4.0 and OData ABNF Test
Cases. http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/.

 Vocabulary components: OData Core Vocabulary, OData Measures Vocabulary and OData
Capabilities Vocabulary. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/.

 XML schemas: OData EDMX XML Schema and OData EDM XML Schema. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/schemas/.

 OData Metadata Service Entity Model: http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/models/.

 Change-marked (redlined) versions of OData Version 4.0 Part 1, Part 2, and Part 3. OASIS
Standard incorporating Approved Errata 02. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/redlined/.

Related work:

This specification is related to:

 OData Version 4.0 Part 1: Protocol. Edited by Michael Pizzo, Ralf Handl, and Martin
Zurmuehl. 24 February 2014. OASIS Standard. http://docs.oasis-
open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html.

 OData Atom Format Version 4.0. Edited by Martin Zurmuehl, Michael Pizzo, and Ralf Handl.
Latest version. http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-
v4.0.html.

 OData JSON Format Version 4.0. Edited by Ralf Handl, Michael Pizzo, and Mark Biamonte.
Latest version. http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-
v4.0.html.

Declared XML namespaces:

 http://docs.oasis-open.org/odata/ns/edmx

 http://docs.oasis-open.org/odata/ns/edm

Abstract:
The Open Data Protocol (OData) enables the creation of REST-based data services, which allow
resources, identified using Uniform Resource Locators (URLs) and defined in an Entity Data
Model (EDM), to be published and edited by Web clients using simple HTTP messages. This
document defines the core semantics and facilities of the protocol.

Status:
This document was last revised or approved by the OASIS Open Data Protocol (OData) TC on
the above date. The level of approval is also listed above. Check the “Latest version” location
noted above for possible later revisions of this document. Any other numbered Versions and
other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=odata#technical.

TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/odata/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/odata/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part2-url-conventions/odata-v4.0-errata02-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part3-csdl/odata-v4.0-errata02-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/schemas/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/schemas/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/models/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/models/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/redlined/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/redlined/
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/ns/edmx
http://docs.oasis-open.org/odata/ns/edm
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 3 of 74

[OData-Part1]

OData Version 4.0 Part 1: Protocol Plus Errata 02. Edited by Michael Pizzo, Ralf Handl, and
Martin Zurmuehl. 30 October 2014. OASIS Standard incorporating Approved Errata 02.
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-
errata02-os-part1-protocol-complete.html. Latest version: http://docs.oasis-
open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html.

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 4 of 74

Notices

Copyright © OASIS Open 2014. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 5 of 74

Table of Contents

1 Introduction ... 10

1.1 Terminology .. 10

1.2 Normative References .. 10

1.3 Typographical Conventions .. 11

2 Overview ... 12

3 Data Model ... 13

3.1 Annotations ... 13

4 Service Model ... 15

4.1 Entity-Ids and Entity References .. 15

4.2 Read URLs and Edit URLs ... 15

4.3 Transient Entities .. 15

5 Versioning ... 16

5.1 Protocol Versioning ... 16

5.2 Model Versioning .. 16

6 Extensibility ... 17

6.1 Query Option Extensibility .. 17

6.2 Payload Extensibility ... 17

6.3 Action/Function Extensibility ... 17

6.4 Vocabulary Extensibility .. 17

6.5 Header Field Extensibility ... 18

6.6 Format Extensibility .. 18

7 Formats .. 19

8 Header Fields ... 20

8.1 Common Headers ... 20

8.1.1 Header Content-Type .. 20

8.1.2 Header Content-Encoding ... 20

8.1.3 Header Content-Language ... 20

8.1.4 Header Content-Length ... 20

8.1.5 Header OData-Version.. 20

8.2 Request Headers .. 21

8.2.1 Header Accept ... 21

8.2.2 Header Accept-Charset ... 21

8.2.3 Header Accept-Language ... 21

8.2.4 Header If-Match .. 21

8.2.5 Header If-None-Match.. 21

8.2.6 Header OData-Isolation ... 22

8.2.7 Header OData-MaxVersion ... 22

8.2.8 Header Prefer ... 22

8.2.8.1 Preference odata.allow-entityreferences .. 23

8.2.8.2 Preference odata.callback .. 23

8.2.8.3 Preference odata.continue-on-error ... 24

8.2.8.4 Preference odata.include-annotations ... 24

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 6 of 74

8.2.8.5 Preference odata.maxpagesize .. 25

8.2.8.6 Preference odata.track-changes .. 25

8.2.8.7 Preference return=representation and return=minimal ... 25

8.2.8.8 Preference respond-async .. 26

8.2.8.9 Preference wait .. 26

8.3 Response Headers ... 26

8.3.1 Header ETag ... 26

8.3.2 Header Location .. 27

8.3.3 Header OData-EntityId ... 27

8.3.4 Header Preference-Applied ... 27

8.3.5 Header Retry-After .. 27

9 Common Response Status Codes ... 28

9.1 Success Responses ... 28

9.1.1 Response Code 200 OK ... 28

9.1.2 Response Code 201 Created ... 28

9.1.3 Response Code 202 Accepted .. 28

9.1.4 Response Code 204 No Content .. 28

9.1.5 Response Code 3xx Redirection .. 28

9.1.6 Response Code 304 Not Modified .. 28

9.2 Client Error Responses ... 29

9.2.1 Response Code 404 Not Found .. 29

9.2.2 Response Code 405 Method Not Allowed ... 29

9.2.3 Response Code 410 Gone .. 29

9.2.4 Response Code 412 Precondition Failed .. 29

9.3 Server Error Responses ... 29

9.3.1 Response Code 501 Not Implemented ... 29

9.4 In-Stream Errors ... 29

10 Context URL ... 30

10.1 Service Document .. 30

10.2 Collection of Entities ... 30

10.3 Entity ... 31

10.4 Singleton ... 31

10.5 Collection of Derived Entities .. 31

10.6 Derived Entity ... 32

10.7 Collection of Projected Entities ... 32

10.8 Projected Entity ... 32

10.9 Collection of Projected Expanded Entities .. 33

10.10 Projected Expanded Entity ... 33

10.11 Collection of Entity References .. 33

10.12 Entity Reference ... 34

10.13 Property Value .. 34

10.14 Collection of Complex or Primitive Types ... 34

10.15 Complex or Primitive Type .. 34

10.16 Operation Result ... 34

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 7 of 74

10.17 Delta Response .. 35

10.18 Item in a Delta Response ... 35

10.19 $all Response ... 35

10.20 $crossjoin Response .. 35

11 Data Service Requests ... 36

11.1 Metadata Requests ... 36

11.1.1 Service Document Request ... 36

11.1.2 Metadata Document Request.. 36

11.1.3 Metadata Service Document Request .. 36

11.2 Requesting Data ... 36

11.2.1 Evaluating System Query Options .. 37

11.2.2 Requesting Individual Entities ... 37

11.2.3 Requesting Individual Properties .. 37
11.2.3.1 Requesting a Property's Raw Value using $value ... 38

11.2.4 Specifying Properties to Return .. 38

11.2.4.1 System Query Option $select ... 38

11.2.4.2 System Query Option $expand ... 39

11.2.4.2.1 Expand Options .. 39

11.2.5 Querying Collections ... 40
11.2.5.1 System Query Option $filter ... 40

11.2.5.1.1 Built-in Filter Operations ... 40
11.2.5.1.2 Built-in Query Functions ... 41
11.2.5.1.3 Parameter Aliases .. 43

11.2.5.2 System Query Option $orderby .. 43

11.2.5.3 System Query Option $top ... 44

11.2.5.4 System Query Option $skip ... 44

11.2.5.5 System Query Option $count ... 44

11.2.5.6 System Query Option $search ... 45

11.2.5.7 Server-Driven Paging ... 45

11.2.6 Requesting Related Entities .. 46

11.2.7 Requesting Entity References ... 46

11.2.8 Resolving an Entity-Id ... 46

11.2.9 Requesting the Number of Items in a Collection ... 47

11.2.10 System Query Option $format .. 47

11.3 Requesting Changes .. 48

11.3.1 Delta Links ... 48

11.3.2 Using Delta Links .. 48

11.4 Data Modification .. 49

11.4.1 Common Data Modification Semantics ... 49
11.4.1.1 Use of ETags for Avoiding Update Conflicts .. 49
11.4.1.2 Handling of DateTimeOffset Values .. 49

11.4.1.3 Handling of Properties Not Advertised in Metadata ... 49
11.4.1.4 Handling of Consistency Constraints ... 49
11.4.1.5 Returning Results from Data Modification Requests .. 50

11.4.2 Create an Entity ... 50
11.4.2.1 Link to Related Entities When Creating an Entity... 50

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 8 of 74

11.4.2.2 Create Related Entities When Creating an Entity .. 51

11.4.3 Update an Entity .. 51

11.4.4 Upsert an Entity ... 52

11.4.5 Delete an Entity ... 52

11.4.6 Modifying Relationships between Entities ... 53
11.4.6.1 Add a Reference to a Collection-Valued Navigation Property .. 53
11.4.6.2 Remove a Reference to an Entity .. 53
11.4.6.3 Change the Reference in a Single-Valued Navigation Property .. 53

11.4.7 Managing Media Entities ... 53
11.4.7.1 Creating a Media Entity .. 53
11.4.7.2 Editing a Media Entity Stream .. 54
11.4.7.3 Deleting a Media Entity .. 54

11.4.8 Managing Stream Properties ... 54
11.4.8.1 Editing Stream Values ... 54
11.4.8.2 Deleting Stream Values ... 54

11.4.9 Managing Values and Properties Directly ... 54
11.4.9.1 Update a Primitive Property ... 54
11.4.9.2 Set a Value to Null ... 55
11.4.9.3 Update a Complex Property ... 55
11.4.9.4 Update a Collection Property ... 55

11.5 Operations .. 55

11.5.1 Binding an Operation to a Resource ... 55

11.5.2 Advertising Available Operations within a Payload ... 56

11.5.3 Functions ... 56
11.5.3.1 Invoking a Function .. 56

11.5.3.1.1 Inline Parameter Syntax ... 57
11.5.3.2 Function overload resolution .. 57

11.5.4 Actions ... 58
11.5.4.1 Invoking an Action .. 58
11.5.4.2 Action Overload Resolution ... 58

11.6 Asynchronous Requests ... 59

11.7 Batch Requests .. 59

11.7.1 Batch Request Headers .. 59

11.7.2 Batch Request Body .. 60

11.7.3 Change Sets .. 62
11.7.3.1 Referencing New Entities in a Change Set .. 62

11.7.4 Responding to a Batch Request ... 63

11.7.5 Asynchronous Batch Requests ... 65

12 Security Considerations ... 67

12.1 Authentication ... 67

13 Conformance .. 68

13.1 OData Service Conformance Levels .. 68

13.1.1 OData Minimal Conformance Level .. 68

13.1.2 OData Intermediate Conformance Level ... 69

13.1.3 OData Advanced Conformance Level ... 70

13.2 Interoperable OData Clients ... 70

Appendix A. Acknowledgments ... 72

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 9 of 74

Appendix B. Revision History .. 73

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 10 of 74

1 Introduction
The Open Data Protocol (OData) enables the creation of REST-based data services, which allow
resources, identified using Uniform Resource Locators (URLs) and defined in a data model, to be
published and edited by Web clients using simple HTTP messages. This specification defines the core
semantics and the behavioral aspects of the protocol.

The [OData-URL] specification defines a set of rules for constructing URLs to identify the data and

metadata exposed by an OData service as well as a set of reserved URL query options.

The [OData-CSDL] specification defines an XML representation of the entity data model exposed by an

OData service.

The [OData-Atom] and [OData-JSON] documents specify the format of the resource representations that

are exchanged using OData.

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References

[OData-ABNF] OData ABNF Construction Rules Version 4.0.

See link in "Additional artifacts" section on cover page.

[OData-Atom] OData ATOM Format Version 4.0.

See link in "Related work" section on cover page.

[OData-CSDL] OData Version 4.0 Part 3: Common Schema Definition Language (CSDL).

See link in "Additional artifacts" section on cover page.

[OData-JSON] OData JSON Format Version 4.0.

See link in "Related work" section on cover page.

[OData-URL] OData Version 4.0 Part 2: URL Conventions.

See link in "Additional artifacts" section on cover page.

[OData-VocCap] OData Capabilities Vocabulary.

See link in "Additional artifacts" section on cover page.

[OData-VocCore] OData Core Vocabulary.

See link in "Additional artifacts" section on cover page.

[RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part

Two: Media Types", RFC 2046, November, 1996. http://www.ietf.org/rfc/rfc2046.txt.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14,

RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A.,
and L. Stewart, “HTTP Authentication: Basic and Digest Access Authentication”,
RFC 2617, June 1999. http://www.ietf.org/rfc/rfc2617.txt.

[RFC3987] Duerst, M. and, M. Suignard, “Internationalized Resource Identifiers (IRIs)”, RFC

3987, January 2005. http://www.ietf.org/rfc/rfc3987.txt.

[RFC5023] Gregorio, J., Ed., and B. de hOra, Ed., “The Atom Publishing Protocol.”, RFC 5023,

October 2007. http://tools.ietf.org/html/rfc5023.

[RFC5789] Dusseault, L., and J. Snell, “Patch Method for HTTP”, RFC 5789, March 2010.

http://tools.ietf.org/html/rfc5789.

http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc3987.txt
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc5789

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 11 of 74

[RFC7230] Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing”, RFC 7230, June 2014.
http://www.ietf.org/rfc/rfc7230.txt.

[RFC7231] Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol (HTTP/1.1):

Semantics and Content”, RFC 7231, June 2014. http://www.ietf.org/rfc/rfc7231.txt.

[RFC7232] Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol (HTTP/1.1):

Conditional Requests”, RFC 7232, June 2014. http://www.ietf.org/rfc/rfc7232.txt.

[RFC7240] Snell, J., "Prefer Header for HTTP", RFC 7240, June 2014.

http://www.ietf.org/rfc/rfc7240.txt.

1.3 Typographical Conventions

Keywords defined by this specification use this monospaced font.

Normative source code uses this paragraph style.

Some sections of this specification are illustrated with non-normative examples.

Example 1: text describing an example uses this paragraph style

Non-normative examples use this paragraph style.

All examples in this document are non-normative and informative only.

All other text is normative unless otherwise labeled.

http://www.ietf.org/rfc/rfc7230.txt
http://www.ietf.org/rfc/rfc7231.txt
http://www.ietf.org/rfc/rfc7232.txt
http://www.ietf.org/rfc/rfc7240.txt

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 12 of 74

2 Overview
The OData Protocol is an application-level protocol for interacting with data via RESTful interfaces. The
protocol supports the description of data models and the editing and querying of data according to those
models. It provides facilities for:

 Metadata: a machine-readable description of the data model exposed by a particular data
provider.

 Data: sets of data entities and the relationships between them.

 Querying: requesting that the service perform a set of filtering and other transformations to its
data, then return the results.

 Editing: creating, updating, and deleting data.

 Operations: invoking custom logic

 Vocabularies: attaching custom semantics

The OData Protocol is different from other REST-based web service approaches in that it provides a
uniform way to describe both the data and the data model. This improves semantic interoperability
between systems and allows an ecosystem to emerge.

Towards that end, the OData Protocol follows these design principles:

 Prefer mechanisms that work on a variety of data stores. In particular, do not assume a relational
data model.

 Extensibility is important. Services should be able to support extended functionality without
breaking clients unaware of those extensions.

 Follow REST principles.

 OData should build incrementally. A very basic, compliant service should be easy to build, with
additional work necessary only to support additional capabilities.

 Keep it simple. Address the common cases and provide extensibility where necessary.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 13 of 74

3 Data Model
This section provides a high-level description of the Entity Data Model (EDM): the abstract data model
that is used to describe the data exposed by an OData service. An OData Metadata Document is a
representation of a service's data model exposed for client consumption.

The central concepts in the EDM are entities, relationships, entity sets, actions, and functions.

Entities are instances of entity types (e.g. Customer, Employee, etc.).

Entity types are named structured types with a key. They define the named properties and relationships

of an entity. Entity types may derive by single inheritance from other entity types.

The key of an entity type is formed from a subset of the primitive properties (e.g. CustomerId, OrderId,

LineId, etc.) of the entity type.

Complex types are keyless named structured types consisting of a set of properties. These are value
types whose instances cannot be referenced outside of their containing entity. Complex types are
commonly used as property values in an entity or as parameters to operations.

Properties declared as part of a structured type's definition are called declared properties. Instances of
structured types may contain additional undeclared dynamic properties. A dynamic property cannot have
the same name as a declared property. Entity or complex types which allow clients to persist additional
undeclared properties are called open types.

Relationships from one entity to another are represented as navigation properties. Navigation properties
are generally defined as part of an entity type, but can also appear on entity instances as undeclared
dynamic navigation properties. Each relationship has a cardinality.

Enumeration types are named primitive types whose values are named constants with underlying integer

values.

Type definitions are named primitive types with fixed facet values such as maximum length or precision.
Type definitions can be used in place of primitive typed properties, for example, within property
definitions.

Entity sets are named collections of entities (e.g. Customers is an entity set containing Customer

entities). An entity's key uniquely identifies the entity within an entity set. If multiple entity sets use the
same entity type, the same combination of key values can appear in more than one entity set and
identifies different entities, one per entity set where this key combination appears. Each of these entities
has a different entity-id. Entity sets provide entry points into the data model.

Operations allow the execution of custom logic on parts of a data model. Functions are operations that do
not have side effects and may support further composition, for example, with additional filter operations,
functions or an action. Actions are operations that allow side effects, such as data modification, and
cannot be further composed in order to avoid non-deterministic behavior. Actions and functions are either
bound to a type, enabling them to be called as members of an instance of that type, or unbound, in which
case they are called as static operations. Action imports and function imports enable unbound actions
and functions to be called from the service root.

Singletons are single entities which are accessed as children of the entity container.

An OData resource is anything in the model that can be addressed (an entity set, entity, property, or
operation).

Refer to [OData-CSDL] for more information on the OData entity data model.

3.1 Annotations

Model and instance elements can be decorated with Annotations.

Annotations can be used to specify an individual fact about an element, such as whether it is read-only, or
to define a common concept, such as a person or a movie.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 14 of 74

Applied annotations consist of a term (the namespace-qualified name of the annotation being applied), a
target (the model or instance element to which the term is applied), and a value. The value may be a

static value, or an expression that may contain a path to one or more properties of an annotated entity.

Annotation terms are defined in metadata and have a name and a type.

A set of related terms in a common namespace comprises a Vocabulary.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 15 of 74

4 Service Model
OData services are defined using a common data model. The service advertises its concrete data model
in a machine-readable form, allowing generic clients to interact with the service in a well-defined way.

An OData service exposes two well-defined resources that describe its data model; a service document
and a metadata document.

The service document lists entity sets, functions, and singletons that can be retrieved. Clients can use the

service document to navigate the model in a hypermedia-driven fashion.

The metadata document describes the types, sets, functions and actions understood by the OData
service. Clients can use the metadata document to understand how to query and interact with entities in
the service.

In addition to these two “fixed” resources an OData service consists of dynamic resources. The URLs for
many of these resources can be computed from the information in the metadata document.

See Requesting Data and Data Modification for details.

4.1 Entity-Ids and Entity References

Whereas entities within an entity set are uniquely identified by their key values, entities are also uniquely
identified by a durable, opaque, globally unique entity-id. The entity-id MUST be an IRI as defined in
[RFC3987] and MAY be expressed in payloads and URLs as a relative reference as appropriate. While
the client MUST be prepared to accept any IRI, services MUST use valid URIs in this version of the

specification since there is currently no lossless representation of an IRI in the OData-EntityId

header.

Services are strongly encouraged to use the canonical URL for an entity as defined in OData-URL as its
entity-id, but clients cannot assume the entity-id can be used to locate the entity unless the

Core.DereferenceableIDs term is applied to the entity container, nor can the client assume any

semantics from the structure of the entity-id. The canonical resource $entity provides a general

mechanism for resolving an entity-id into an entity representation.

Services that use the standard URL conventions for entity-ids annotate their entity container with the term

Core.ConventionalIDs, see [OData-VocCore].

Entity references refer to an entity using the entity's entity-id.

4.2 Read URLs and Edit URLs

The read URL of an entity is the URL that can be used to read the entity.

The edit URL of an entity is the URL that can be used to update or delete the entity.

The edit URL of a property is the edit URL of the entity with appended segment(s) containing the path to
the property.

Services are strongly encouraged to use the canonical URL for an entity as defined in OData-URL for
both the read URL and the edit URL of an entity, with a cast segment to the type of the entity appended to
the canonical URL if the type of the entity is derived from the declared type of the entity set. However,
clients cannot assume this convention and must use the links specified in the payload according to the
appropriate format as the two URLs may be different from one another, or one or both of them may differ
from convention.

4.3 Transient Entities

Transient entities are instances of an entity type that are “calculated on the fly” and only exist within a
single payload. They cannot be reread or updated and consequently possess neither a stable entity-id nor
a read URL or an update URL.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 16 of 74

5 Versioning
Versioning enables clients and services to evolve independently. OData defines semantics for both
protocol and data model versioning.

5.1 Protocol Versioning

OData requests and responses are versioned according to the OData-Version header.

OData clients include the OData-MaxVersion header in requests in order to specify the maximum

acceptable response version. Services respond with the maximum supported version that is less than or

equal to the requested OData-MaxVersion, using decimal comparison. The syntax of the OData-

Version and OData-MaxVersion header fields is specified in [OData-ABNF].

This version of the specification defines data service version value 4.0.

5.2 Model Versioning

The Data Model exposed by an OData Service defines a contract between the OData service and its
clients. Services are allowed to extend their model only to the degree that it does not break existing
clients. Breaking changes, such as removing properties or changing the type of existing properties,
require that a new service version is provided at a different service root URL for the new model.

The following Data Model additions are considered safe and do not require services to version their entry
point.

 Adding a property that is nullable or has a default value; if it has the same name as an existing
dynamic property, it must have the same type (or base type) as the existing dynamic property

 Adding a navigation property that is nullable or collection-valued; if it has the same name as an
existing dynamic navigation property, it must have the same type (or base type) as the existing
dynamic navigation property

 Adding a new entity type to the model

 Adding a new complex type to the model

 Adding a new entity set

 Adding a new singleton

 Adding an action, a function, an action import, or function import

 Adding an action parameter that is nullable

 Adding a type definition or enumeration

 Adding any annotation to a model element that does not need to be understood by the client in
order to correctly interact with the service

Clients SHOULD be prepared for services to make such incremental changes to their model. In particular,
clients should be prepared to receive properties and derived types not previously defined by the service.

Services SHOULD NOT change their data model depending on the authenticated user. If the data model
is user or user group dependent, all changes MUST be safe changes as defined in this section when

comparing the full model to the model visible to users with restricted authorizations.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 17 of 74

6 Extensibility
The OData protocol supports both user- and version-driven extensibility through a combination of
versioning, convention, and explicit extension points.

6.1 Query Option Extensibility

Query options within the request URL can control how a particular request is processed by the service.

OData-defined system query options are prefixed with "$". Services may support additional custom query

options not defined in the OData specification, but they MUST NOT begin with the "$" or "@" character.

OData services SHOULD NOT require any query options to be specified in a request. Services SHOULD
fail any request that contains query options that they do not understand and MUST fail any request that
contains unsupported OData query options defined in the version of this specification supported by the
service.

In many cases OData services return URLs to identify resources that are later requested by clients.
Where possible, interoperability is enhanced by providing all identifying information in the path portion of
the URL. However, clients should be prepared for such URLs to include custom query options and
propagate any such custom query options in future requests to the identified resource.

6.2 Payload Extensibility

OData supports extensibility in the payload, according to the specific format.

Regardless of the format, additional content MUST NOT be present if it needs to be understood by the

receiver in order to correctly interpret the payload according to the specified OData-Version header.

Thus, clients and services MUST be prepared to handle or safely ignore any content not specifically

defined in the version of the payload specified by the OData-Version header.

6.3 Action/Function Extensibility

Actions and Functions extend the set of operations that can be performed on or with a service or
resource. Actions can have side-effects. For example, Actions can be used to modify data or to invoke
custom operations. Functions MUST NOT have side-effects. Functions can be invoked from a URL that

addresses a resource or within an expression to a $filter or $orderby system query option.

Fully qualified action and function names include a namespace or alias prefix. The Edm, odata and geo

namespaces are reserved for the use of this specification.

An OData service MUST fail any request that contains actions or functions that it does not understand.

6.4 Vocabulary Extensibility

The set of annotations defined within a schema comprise a vocabulary. Shared vocabularies provide a

powerful extensibility point for OData.

Metadata annotations can be used to define additional characteristics or capabilities of a metadata
element, such as a service, entity type, property, function, action or parameter. For example, a metadata
annotation could define ranges of valid values for a particular property.

Instance annotations can be used to define additional information associated with a particular result,
entity, property, or error; for example whether a property is read-only for a particular instance.

Where annotations apply across all instances of a type, services are encouraged to specify the
annotation in metadata rather than repeating in each instance of the payload. Where the same annotation
is defined at both the metadata and instance level, the instance-level annotation overrides the one
specified at the metadata level.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 18 of 74

A service MUST NOT require the client to understand custom annotations in order to accurately interpret
a response.

OData defines a Core vocabulary with a set of basic terms describing behavioral aspects along with

terms that can be used in defining other vocabularies; see [OData-VocCore].

6.5 Header Field Extensibility

OData defines semantics around certain HTTP request and response headers. Services that support a
version of OData conform to the processing requirements for the headers defined by this specification for
that version.

Individual services may define custom headers. These headers MUST NOT begin with OData . Custom

headers SHOULD be optional when making requests to the service. A service MUST NOT require the
client to understand custom headers to accurately interpret the response.

6.6 Format Extensibility

An OData service MUST support at least one of [OData-JSON]ODataJSONRefOData-JSON or [OData-
Atom]OData-Atom, and MAY support additional formats for both request and response bodies.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 19 of 74

7 Formats
The client MAY request a particular response format through the Accept header, as specified in

[RFC7231], or through the system query option $format

In the case that both the Accept header and the $format query option are specified on a request, the

value specified in the $format query option MUST be used.

If the service does not support the requested format, it replies with a 406 Not Acceptable error

response.

Services SHOULD advertise their supported formats by annotating their entity container with the term

Capabilities.SupportedFormats, as defined in [OData-VocCap], listing all available formats and

combinations of supported format parameters.

See the format specifications ([OData-JSON]OData-JSON, [OData-Atom]OData-Atom) for details.

Client libraries MUST retain the order of objects within an array in JSON responses, and elements in
document order for ATOM and XML responses, including CSDL documents.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 20 of 74

8 Header Fields
OData defines semantics around the following request and response headers. Additional headers may be
specified, but have no unique semantics defined in OData.

8.1 Common Headers

The Content-Type, Content-Length, and OData-Version headers are common between

OData requests and responses.

8.1.1 Header Content-Type

As specified in [RFC7231], the format of an individual request or response body MUST be specified in the

Content-Type header of the request or response.

The specified format MAY include format parameters. Clients MUST be prepared for the service to return
custom format parameters not specified in OData. Custom format parameters MUST NOT start with
"odata" and services MUST NOT require generic OData consumers to understand custom format
parameters in order to correctly interpret the payload.

See the format-specific specifications ([OData-JSON], [OData-Atom]) for details.

8.1.2 Header Content-Encoding

As specified in [RFC7231], the Content-Encoding header field is used as a modifier to the media-type

(as indicated in the Content-Type). When present, its value indicates what additional content codings

have been applied to the entity-body.
A service MAY specify a list of acceptable content codings using an annotation with term

Capabilities.AcceptableEncodings, see [OData-VocCap].

8.1.3 Header Content-Language

As specified in [RFC7231], a request or response can include a Content-Language header to indicate

the natural language of the intended audience for the enclosed message body. OData does not add any

additional requirements over HTTP for including Content-Language. OData services can annotate

model elements whose content depends on the content language with the term

Core.IsLanguageDependent, see [OData-VocCore].

8.1.4 Header Content-Length

As specified in [RFC7230], a request or response SHOULD include a Content-Length header when

the message's length can be determined prior to being transferred. OData does not add any additional

requirements over HTTP for writing Content-Length.

8.1.5 Header OData-Version

OData clients SHOULD use the OData-Version header on a request to specify the version of the

protocol used to generate the request.

If present on a request, the service MUST interpret the request according to the rules defined in the

specified version of the protocol, or fail the request with a 4xx response code.

If not specified in a request, the service MUST assume the request is generated using the minimum of the

OData-MaxVersion, if specified, and the maximum version of the protocol that the service understands.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 21 of 74

OData services MUST include the OData-Version header on a response to specify the version of the

protocol used to generate the response. The client MUST interpret the response according to the rules
defined in the specified version of the protocol.

For more details, see Versioning.

8.2 Request Headers

In addition to the Common Headers, the client may specify any combination of the following request
headers.

8.2.1 Header Accept

As specified in [RFC7231], the client MAY specify the set of accepted formats with the Accept Header.

Services MUST reject formats that specify unknown or unsupported format parameters.

If a media type specified in the Accept header includes a charset format parameter and the request

also contains an Accept-Charset header, then the Accept-Charset header MUST be used.

If the media type specified in the Accept header does not include a charset format parameter, then the

Content-Type header of the response MUST NOT contain a charset format parameter.

8.2.2 Header Accept-Charset

As specified in. [RFC7231], the client MAY specify the set of accepted character sets with the Accept-

Charset header.

8.2.3 Header Accept-Language

As specified in [RFC7231], the client MAY specify the set of accepted natural languages with the

Accept-Language header.

8.2.4 Header If-Match

As specified in [RFC7232], a client MAY include an If-Match header in a request to GET, PUT, PATCH

or DELETE. The value of the If-Match request header MUST be an ETag value previously retrieved for

the entity, or "*" to match any value.

If an operation on an existing entity requires an ETag, (see Core.OptimisticConcurrency in [OData-

VocCore]) and the client does not specify an If-Match request header in a Data Modification Request

or in an Action Request bound to the entity, the service responds with a 428 Precondition

Required and MUST ensure that no observable change occurs as a result of the request.

If specified, the request MUST only be processed if the specified value matches the current ETag value of
the target entity, using the weak comparison function (see [RFC7230]). If the value does not match the
current ETag value of the entity for a Data Modification Request or Action Request, the service MUST

respond with 412 Precondition Failed and MUST ensure that no observable change occurs as a

result of the request. In the case of an upsert, if the addressed entity does not exist the provided ETag
value is considered not to match.

The client MAY include an If-Match header in a PUT or PATCH request in order to ensure that the

request is handled as an update and not an upsert.

8.2.5 Header If-None-Match

As specified in [RFC7232], a client MAY include an If-None-Match header in a request to GET, PUT,

PATCH or DELETE. The value of the If-None-Match request header MUST be an ETag value

previously retrieved for the entity, or "*".

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 22 of 74

If specified, the request MUST only be processed if the specified value does not match the current ETag
value of the entity, using the weak comparison function (see [RFC7230]). If the value matches the current

ETag value of the entity, then for a GET request, the service SHOULD respond with 304 Not

Modified, and for a Data Modification Request or Action Request, the service MUST respond with 412

Precondition Failed and MUST ensure that no observable change occurs as a result of the request.

An If-None-Match header with a value of "*" in a PUT or PATCH request results in an upsert request

being processed as an insert and not an update.

8.2.6 Header OData-Isolation

The OData-Isolation header specifies the isolation of the current request from external changes. The

only supported value for this header is snapshot.

If the service doesn’t support OData-Isolation:snapshot and this header was specified on the

request, the service MUST NOT process the request and MUST respond with 412 Precondition
Failed.

Snapshot isolation guarantees that all data returned for a request, including multiple requests within a
batch or results retrieved across multiple pages, will be consistent as of a single point in time. Only data
modifications made within the request (for example, by a data modification request within the same batch)
are visible. The effect is as if the request generates a "snapshot" of the committed data as it existed at the
start of the request.

The OData-Isolation header may be specified on a single or batch request. If it is specified on a

batch then the value is applied to all statements within the batch.

Next links returned within a snapshot return results within the same snapshot as the initial request; the
client is not required to repeat the header on each individual page request.

The OData-Isolation header has no effect on links other than the next link. Navigation links, read

links, and edit links return the current version of the data.

A service returns 410 Gone or 404 Not Found if a consumer tries to follow a next link referring to a snapshot

that is no longer available.

The syntax of the OData-Isolation header is specified in [OData-ABNF].

A service MAY specify the support for OData-Isolation:snapshot using an annotation with term

Capabilities.IsolationSupport, see [OData-VocCap].

8.2.7 Header OData-MaxVersion

Clients SHOULD specify an OData-MaxVersion request header.

If specified the service MUST generate a response with an OData-Version less than or equal to the

specified OData-MaxVersion.

If OData-MaxVersion is not specified, then the service SHOULD interpret the request as having an

OData-MaxVersion equal to the maximum version supported by the service.

For more details, see Versioning.

8.2.8 Header Prefer

The Prefer header, as defined in [RFC7240], allows clients to request certain behavior from the service.

The service MUST ignore preference values that are either not supported or not know by the service.

The value of the Prefer header is a comma-separated list of preferences. The following subsections

describe preferences whose meaning in OData is defined by this specification.

In response to a request containing a Prefer header, the service MAY return the Preference-

Applied Header.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 23 of 74

8.2.8.1 Preference odata.allow-entityreferences

The odata.allow-entityreferences preference indicates that the service is allowed to return entity

references in place of entities that have previously been returned, with at least the properties requested,
in the same response (for example, when serializing the expanded results of many-to-many
relationships). The service MUST NOT return entity references in place of requested entities if

odata.allow-entityreferences has not been specified in the request, unless explicitly defined by

other rules in this document. The syntax of the odata.allow-entityreferences preference is

specified in [OData-ABNF].

In the case the service applies the odata.allow-entityreferences preference it MUST include a

Preference-Applied response header containing the odata.allow-entityreferences

preference to indicate that entity references MAY be returned in place of entities that have previously

been returned.

8.2.8.2 Preference odata.callback

For scenarios in which links returned by the service are used by the client to poll for additional

information, the client can specify the odata.callback preference to request that the service notify the

client when data is available.

The odata.callback preference can be specified:

 when requesting asynchronous processing of a request with the respond-async preference, or

 on a GET request to a delta link.

The odata.callback preference MUST include the parameter url whose value is the URL of a

callback endpoint to be invoked by the OData service when data is available. The syntax of the

odata.callback preference is specified in [OData-ABNF].

For HTTP based callbacks, the OData service executes an HTTP GET request against the specified URL.

Services that support odata.callback SHOULD support notifying the client through HTTP. Services

can advertise callback support using the Capabilities.CallbackSupport annotation term defined in

[OData-VocCap].

If the service applies the odata.callback preference it MUST include the odata.callback

preference in the Preference-Applied response header.

When the odata.callback preference is applied to asynchronous requests, the OData service invokes

the callback endpoint once it has finished processing the request. The status monitor resource, returned

in the Location header of the previously returned 202 Accepted response, can then be used to

retrieve the results of the asynchronously executed request.

When the odata.callback preference is specified on a GET request to a delta link and there are no

changes available, the OData service returns a 202 Accepted response with a Location header

specifying the delta link to be used to check for future updates. The OData service then invokes the
specified callback endpoint once new changes become available.

Combining respond-async, odata.callback and odata.track-changes preferences on a GET

request to a delta-link might influence the response in a couple of ways.

 If the service processes the request synchronously, and no updates are available, then the

response is the same as if the respond-async hadn’t been specified and results in a response

as described above.

 If the service processes the request asynchronously, then it responds with a 202 Accepted

response specifying the URL to the status monitor resource as it would have with any other
asynchronous request. Once the service has finished processing the asynchronous request to the
delta link resource, if changes are available it invokes the specified callback endpoint. If no
changes are available, the service SHOULD wait to notify the client until changes are available.

Once notified, the client uses the status monitor resource from the Location header of the

previously returned 202 Accepted response to retrieve the results. In case no updates were

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 24 of 74

available after processing the initial request, the result will contain no updates and the client can
use the delta-link contained in the result to retrieve the updates that have since become available.

If the consumer specifies the same URL as callback endpoint in multiple requests, the service MAY
collate them into a single notification once additional data is available for any of the requests. However,
the consumer MUST be prepared to deal with receiving up to as many notifications as it requested.

Example 2: using a HTTP callback endpoint to receive notification

Prefer: odata.callback; url="http://myserver/notfication/token/12345"

8.2.8.3 Preference odata.continue-on-error

The odata.continue-on-error preference on a batch request is used to request that, upon

encountering a request within the batch that returns an error, the service return the error for that request

and continue processing additional requests within the batch. The syntax of the odata.continue-on-

error preference is specified in [OData-ABNF].

If not specified, upon encountering an error the service MUST return the error within the batch and stop
processing additional requests within the batch.

A service MAY specify the support for the odata.continue-on-error preference using an annotation

with term Capabilities.BatchContinueOnErrorSupported, see [OData-VocCap].

8.2.8.4 Preference odata.include-annotations

The odata.include-annotations preference in a request for data or metadata is used to specify the

set of annotations the client requests to be included, where applicable, in the response.

The value of the odata.include-annotations preference is a comma-separated list of namespaces

or namespace qualified term names to include or exclude, with "*" representing all. The full syntax of the

odata.include-annotations preference is defined in [OData-ABNF].

The most specific identifier always takes precedence. If the same identifier value is requested to both be
excluded and included the behavior is undefined; the service MAY return or omit the specified vocabulary
but MUST NOT raise an exception.

Example 3: a Prefer header requesting all annotations within a metadata document to be returned

Prefer: odata.include-annotations="*"

Example 4: a Prefer header requesting that no annotations are returned

Prefer: odata.include-annotations="-*"

Example 5: a Prefer header requesting that all annotations defined under the "display" namespace (recursively) be

returned

Prefer: odata.include-annotations="display.*"

Example 6: a Prefer header requesting that the annotation with the term name subject within the display

namespace be returned if applied

Prefer: odata.include-annotations="display.subject"

The odata.include-annotations preference is only a hint to the service. The service MAY ignore

the preference and is free to decide whether or not to return annotations not specified in the

odata.include-annotations preference.

In the case that the client has specified the odata.include-annotations preference in the request,

the service SHOULD include a Preference-Applied response header containing the

odata.include-annotations preference to specify the annotations actually included, where

applicable, in the response. This value may differ from the annotations requested in the Prefer header

of the request.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 25 of 74

8.2.8.5 Preference odata.maxpagesize

The odata.maxpagesize preference is used to request that each collection within the response contain

no more than the number of items specified as the positive integer value of this preference. The syntax of

the odata.maxpagesize preference is specified in [OData-ABNF].

Example 7: a request for customers and their orders would result in a response containing one collection with
customer entities and for every customer a separate collection with order entities. The client could specify

odata.maxpagesize=50 in order to request that each page of results contain a maximum of 50 customers, each

with a maximum of 50 orders.

If a collection within the result contains more than the specified odata.maxpagesize, the collection

SHOULD be a partial set of the results with a next link to the next page of results. The client MAY specify
a different value for this preference with every request following a next link.

In the example given above, the result page should include a next link for the customer collection, if there are more
than 50 customers, and additional next links for all returned orders collections with more than 50 entities.

If the client has specified the odata.maxpagesize preference in the request, and the service limits the

number of items in collections within the response through server-driven paging, the service MAY include

a Preference-Applied response header containing the odata.maxpagesize preference and the

maximum page size applied. This value may differ from the value requested by the client.

8.2.8.6 Preference odata.track-changes

The odata.track-changes preference is used to request that the service return a delta link that can

subsequently be used to obtain changes (deltas) to this result. The syntax of the odata.track-

changes preference is specified in [OData-ABNF].

For paged results, the preference MUST be specified on the initial request. Services MUST ignore the

odata.track-changes preference if applied to the next link.

The delta link MUST NOT be returned prior to the final page of results.

The service includes a Preference-Applied response header in the first page of the response

containing the odata.track-changes preference to signal that changes are being tracked.

A service MAY specify the support for the odata.track-changes preference using an annotation with

term Capabilities.ChangeTrackingSupport, see [OData-VocCap].

8.2.8.7 Preference return=representation and return=minimal

The return=representation and return=minimal preferences are defined in [RFC7240].

In OData, return=representation or return=minimal is defined for use with a POST, PUT, or

PATCH Data Modification Request other than to a stream property, or to an Action Request. Specifying a

preference of return=representation or return=minimal in a GET or DELETE request, or any

request to a stream property, SHOULD return a 4xx Client Error.

A preference of return=representation or return=minimal is allowed on an individual Data

Modification Request or Action Request within a batch, subject to the same restrictions, but SHOULD

return a 4xx Client Error if specified on the batch request itself.

A preference of return=minimal requests that the service invoke the request but does not return

content in the response. The service MAY apply this preference by returning 204 No Content in which

case it MAY include a Preference-Applied response header containing the return=minimal

preference.

A preference of return=representation requests that the service invokes the request and returns the

modified resource. The service MAY apply this preference by returning the representation of the
successfully modified resource in the body of the response, formatted according to the rules specified for

the requested format. In this case the service MAY include a Preference-Applied response header

containing the return=representation preference.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 26 of 74

8.2.8.8 Preference respond-async

The respond-async preference, as defined in [RFC7240], allows clients to request that the service

process the request asynchronously.

If the client has specified respond-async in the request, the service MAY process the request

asynchronously and return a 202 Accepted response.

The respond-async preference MAY be used for batch requests, but the service MUST ignore the

respond-async preference for individual requests within a batch request.

In the case that the service applies the respond-async preference it MUST include a Preference-

Applied response header containing the respond-async preference.

A service MAY specify the support for the respond-async preference using an annotation with term

Capabilities.AsynchronousRequestsSupported, see [OData-VocCap].

Example 8: a service receiving the following header might choose to respond

 asynchronously if the synchronous processing of the request will take longer than 10 seconds

 synchronously after 5 seconds

 asynchronously (ignoring the wait preference)

 synchronously after 15 seconds (ignoring respond-async preference and the wait preference)

Prefer: respond-async, wait=10

8.2.8.9 Preference wait

The wait preference, as defined in [RFC7240], is used to establish an upper bound on the length of

time, in seconds, the client is prepared to wait for the service to process the request synchronously once
it has been received.

If the respond-async preference is also specified, the client requests that the service respond

asynchronously after the specified length of time.

If the respond-async preference has not been specified, the service MAY interpret the wait as a

request to timeout after the specified period of time.

8.3 Response Headers

In addition to the Common Headers, the following response headers have defined meaning in OData.

8.3.1 Header ETag

A request that returns an individual resource MAY include an ETag header in the response. Services

MUST include this header in such a response if they require it to be specified when modifying the
resource.

The value specified in the ETag header may be specified in the If-Match or If-None-Match header of

a subsequent Data Modification Request or Action Request in order to apply optimistic concurrency in
updating, deleting, or invoking the action bound to the entity.

As OData allows multiple formats for representing the same structured information, services SHOULD
use weak ETags that only depend on the format-independent entity state is recommended. A strong
ETag MUST change whenever the representation of an entity changes, so it has to depend on the

Content-Type, the Content-Language, and potentially other characteristics of the response.

An ETag header MAY also be returned on a metadata document request or service document request to

allow the client subsequently to make a conditional request for the metadata or service document. Clients

can also compare the value of the ETag header returned from a metadata document request to the

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 27 of 74

metadata ETag returned in a response in order to verify the version of the metadata used to generate that
response.

8.3.2 Header Location

The Location header MUST be returned in the response from a Create Entity or Create Media Entity

request to specify the edit URL, or for read-only entities the read URL, of the created entity, and in

responses returning 202 Accepted to specify the URL that the client can use to request the status of an

asynchronous request.

8.3.3 Header OData-EntityId

A response to a create operation that returns 204 No Content MUST include an OData-EntityId

response header. The value of the header is the entity-id of the entity that was acted on by the request.

The syntax of the OData-EntityId preference is specified in [OData-ABNF].

8.3.4 Header Preference-Applied

In a response to a request that specifies a Prefer header, a service MAY include a Preference-

Applied header, as defined in [RFC7240], specifying how individual preferences within the request were

handled.

The value of the Preference-Applied header is a comma-separated list of preferences applied in the

response. For more information on the individual preferences, see the Prefer header.

8.3.5 Header Retry-After

A service MAY include a Retry-After header in 202 Accepted and in 3xx Redirect responses

The Retry-After header specifies the duration of time, in seconds, that the client is asked to wait

before retrying the request or issuing a request to the resource returned as the value of the Location

header.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 28 of 74

9 Common Response Status Codes
An OData service MAY respond to any request using any valid HTTP status code appropriate for the
request. A service SHOULD be as specific as possible in its choice of HTTP status codes.

The following represent the most common success response codes. In some cases, a service MAY
respond with a more specific success code.

9.1 Success Responses

The following response codes represent successful requests.

9.1.1 Response Code 200 OK

A request that does not create a resource returns 200 OK if it is completed successfully and the value of

the resource is not null. In this case, the response body MUST contain the value of the resource

specified in the request URL.

9.1.2 Response Code 201 Created

A Create Entity, Create Media Entity, Create Link or Invoke Action request that successfully creates a

resource returns 201 Created. In this case, the response body MUST contain the resource created.

9.1.3 Response Code 202 Accepted

202 Accepted indicates that the Data Service Request has been accepted and has not yet completed

executing asynchronously. The asynchronous handling of requests is specified in section 11.6, and in
section 11.7.5 for batch requests.

9.1.4 Response Code 204 No Content

A request returns 204 No Content if the requested resource has the null value, or if the service

applies a return=minimal preference. In this case, the response body MUST be empty.

As defined in [RFC7231], a Data Modification Request that responds with 204 No Content MUST

NOT include an ETag header unless the request's representation data was saved without any

transformation applied to the body (i.e., the resource's new representation data is identical to the

representation data received in the PUT request) and the ETag value reflects the new representation.

9.1.5 Response Code 3xx Redirection

As per [RFC7231], a 3xx Redirection indicates that further action needs to be taken by the client in

order to fulfill the request. In this case, the response SHOULD include a Location header, as

appropriate, with the URL from which the result can be obtained; it MAY include a Retry-After header.

9.1.6 Response Code 304 Not Modified

As per [RFC7231], a 304 Not Modified is returned when the client performs a GET request containing

an If-None-Match header and the content has not changed. In this case the response SHOULD NOT

include other headers in order to prevent inconsistencies between cached entity-bodies and updated
headers.

The service MUST ensure that no observable change has occurred to the state of the service as a result

of any request that returns a 304 Not Modified.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 29 of 74

9.2 Client Error Responses

Error codes in the 4xx range indicate a client error, such as a malformed request.

The service MUST ensure that no observable change has occurred to the state of the service as a result
of any request that returns an error status code.

In the case that a response body is defined for the error code, the body of the error is as defined for the
appropriate format.

9.2.1 Response Code 404 Not Found

404 Not Found indicates that the resource specified by the request URL does not exist. The response

body MAY provide additional information.

9.2.2 Response Code 405 Method Not Allowed

405 Method Not Allowed indicates that the resource specified by the request URL does not support

the request method. In this case the response MUST include an Allow header containing a list of valid

request methods for the requested resource as specified in [RFC7231].

9.2.3 Response Code 410 Gone

410 Gone indicates that the requested resource is no longer available. This can happen if a client has

waited too long to follow a delta link or a status-monitor-resource link, or a next link on a collection that
was requested with snapshot isolation.

9.2.4 Response Code 412 Precondition Failed

As specified in [RFC7230], 412 Precondition Failed indicates that the client has performed a

conditional request and the resource fails the condition. The service MUST ensure that no observable
change occurs as a result of the request.

9.3 Server Error Responses

As specified in [RFC7231], error codes in the 5xx range indicate service errors.

9.3.1 Response Code 501 Not Implemented

If the client requests functionality not implemented by the OData Service, the service MUST respond with

501 Not Implemented and the response body SHOULD describe the functionality not implemented.

9.4 In-Stream Errors

In the case that the service encounters an error after sending a success status to the client, the service
MUST generate an error within the payload, which may leave the response malformed. Clients MUST
treat the entire response as being in error.

This specification does not prescribe a particular format for generating errors within a payload.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 30 of 74

10 Context URL
The context URL describes the content of the payload. It consists of the canonical metadata document

URL and a fragment identifying the relevant portion of the metadata document.

Request payloads generally do not require context URLs as the type of the payload can generally be
determined from the request URL.

For details on how the context URL is used to describe a payload, see the relevant sections in the
particular format.

The following subsections describe how the context URL is constructed for each category of payload by
providing a context URL template. The context URL template uses the following terms:

 {context-url} is the canonical resource path to the $metadata document,

 {entity-set} is the name of an entity set or path to a containment navigation property,

 {entity} is the canonical URL for an entity,

 {singleton} is the canonical URL for a singleton entity,

 {select-list} is an optional parenthesized comma-separated list of selected properties,

functions and actions,

 {property-path} is the path to a structural property of the entity,

 {type-name} is a qualified type name,

 {/type-name} is an optional type-cast segment containing the qualified name of a derived type

prefixed with a forward slash.

The full grammar for the context URL is defined in [OData-ABNF].

10.1 Service Document

Context URL template:

{context-url}

The context URL of the service document is the metadata document URL of the service.

Example 9: resource URL and corresponding context URL

http://host/service/

http://host/service/$metadata

10.2 Collection of Entities

Context URL template:

{context-url}#{entity-set}

{context-url}#Collection({type-name})

If all entities in the collection are members of one entity set, its name is the context URL fragment.

Example 10: resource URL and corresponding context URL

http://host/service/Customers

http://host/service/$metadata#Customers

If the entities are contained, then entity-set is the top-level entity set followed by the path to the

containment navigation property of the containing entity.

Example 11: resource URL and corresponding context URL for contained entities

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 31 of 74

http://host/service/Orders(4711)/Items

http://host/service/$metadata#Orders(4711)/Items

If the entities in the response are not bound to a single entity set, such as from a function or action with
no entity set path, a function import or action import with no specified entity set, or a navigation property
with no navigation property binding, the context URL specifies the type of the returned entity collection.

10.3 Entity

Context URL template:

{context-url}#{entity-set}/$entity

{context-url}#{type-name}

If a response or response part is a single entity of the declared type of an entity set, /$entity is

appended to the context URL.

Example 12: resource URL and corresponding context URL

http://host/service/Customers(1)

http://host/service/$metadata#Customers/$entity

If the entity is contained, then entity-set is the canonical URL for the containment navigation property

of the containing entity, e.g. Orders(4711)/Items.

Example 13: resource URL and corresponding context URL for contained entity

http://host/service/Orders(4711)/Items(1)

http://host/service/$metadata#Orders(4711)/Items/$entity

If the response is not bound to a single entity set, such as an entity returned from a function or action with
no entity set path, a function import or action import with no specified entity set, or a navigation property
with no navigation property binding, the context URL specifies the type of the returned entity.

10.4 Singleton

Context URL template:

{context-url}#{singleton}

If a response or response part is a singleton, its name is the context URL fragment.

Example 14: resource URL and corresponding context URL

http://host/service/Contoso

http://host/service/$metadata#Contoso

10.5 Collection of Derived Entities

Context URL template:

{context-url}#{entity-set}{/type-name}

If an entity set consists exclusively of derived entities, a type-cast segment is added to the context URL.

Example 15: resource URL and corresponding context URL

http://host/service/Customers/Model.VipCustomer

http://host/service/$metadata#Customers/Model.VipCustomer

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 32 of 74

10.6 Derived Entity

Context URL template:

{context-url}#{entity-set}{/type-name}/$entity

If a response or response part is a single entity of a type derived from the declared type of an entity set, a
type-cast segment is appended to the entity set name.

Example 16: resource URL and corresponding context URL

http://host/service/Customers(2)/Model.VipCustomer

http://host/service/$metadata#Customers/Model.VipCustomer/$entity

10.7 Collection of Projected Entities

Context URL templates:

{context-url}#{entity-set}{/type-name}{select-list}

{context-url}#Collection({type-name}){select-list}

If a result contains only a subset of properties, the parenthesized comma-separated list of the selected
defined or dynamic properties, navigation properties, functions, and actions is appended to the

{entity-set} after an optional type-cast segment, or the type of the entity collection if the response is

not bound to a single entity set. The shortcut * represents the list of all structural properties. Properties

defined on types derived from the declared type of the entity set (or type specified in the type-cast
segment if specified) are prefixed with the qualified name of the derived type as defined in [OData-
ABNF]OData-ABNF.

Example 17: resource URL and corresponding context URL

http://host/service/Customers?$select=Address,Orders

http://host/service/$metadata#Customers(Address,Orders)

10.8 Projected Entity

Context URL templates:

{context-url}#{entity-set}{/type-name}{select-list}/$entity

{context-url}#{singleton}{select-list}

{context-url}#{type-name}{select-list}

If a single entity contains a subset of properties, the parenthesized comma-separated list of the selected
defined or dynamic properties, navigation properties, functions, and actions is appended to the

{entity-set} after an optional type-cast segment and prior to appending /$entity. If the response is

not bound to a single entity set, the {select-list} is instead appended to the {type-name} of the

returned entity.

The shortcut * represents the list of all structural properties. Properties defined on types derived from the

type of the entity set (or type specified in the type-cast segment if specified) are prefixed with the qualified
name of the derived type as defined in [OData-ABNF]OData-ABNF. Note that expanded properties are

implicitly selected.

Example 18: resource URL and corresponding context URL

http://host/service/Customers(1)?$select=Name,Rating

http://host/service/$metadata#Customers(Name,Rating)/$entity

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 33 of 74

10.9 Collection of Projected Expanded Entities

Context URL template:

{context-url}#{entity-set}{/type-name}{select-list}

{context-url}#Collection({type-name}){select-list}

If a navigation property is explicitly selected, the parenthesized comma-separated list of properties

includes the name of the selected navigation property with no parenthesis. If a $expand contains a

nested $select, the navigation property appears suffixed with the parenthesized comma-separated list

of properties selected (or expanded, containing a $select) from the related entities. Additionally, if the

expansion is recursive for nested children, a plus sign (+) is infixed between the navigation property name

and the list of properties.

Example 19: resource URL and corresponding context URL

http://host/service/Customers$select=Name&$expand=Address/Country

http://host/service/$metadata#Customers(Name,Address/Country)

Example 20: resource URL and corresponding context URL

http://host/service/Employees/Sales.Manager?$select=DirectReports

 &$expand=DirectReports($select=FirstName,LastName;$levels=4)

http://host/service/$metadata

 #Employees/Sales.Manager(DirectReports,

 DirectReports+(FirstName,LastName))

10.10 Projected Expanded Entity

Context URL template:

{context-url}#{entity-set}{/type-name}{select-list}/$entity

{context-url}#{singleton}{select-list}

{context-url}#{type-name}{select-list}

If a single entity is expanded and projected (or contains a $expand with a $select expand option), the

parenthesized comma-separated list of selected properties includes the name of the expanded navigation

properties containing a nested $select, each suffixed with the parenthesized comma-separated list of

properties selected (or expanded with a nested $select) from the related entities.

Example 21: resource URL and corresponding context URL

http://host/service/Employees(1)/Sales.Manager?

 $expand=DirectReports($select=FirstName,LastName;$levels=4)

http://host/service/$metadata

 #Employees/Sales.Manager(DirectReports+(FirstName,LastName))/$entity

10.11 Collection of Entity References

Context URL template:

{context-url}#Collection($ref)

If a response is a collection of entity references, the context URL does not contain the type of the
referenced entities.

Example 22: resource URL and corresponding context URL for a collection of entity references

http://host/service/Customers('ALFKI')/Orders/$ref

http://host/service/$metadata#Collection($ref)

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 34 of 74

10.12 Entity Reference

Context URL template:

{context-url}#$ref

If a response is a single entity reference, $ref is the context URL fragment.

Example 23: resource URL and corresponding context URL for a single entity reference

http://host/service/Orders(10643)/Customer/$ref

http://host/service/$metadata#$ref

10.13 Property Value

Context URL template:

{context-url}#{entity}/{property-path}{select-list}

If a response represents an individual property of an entity with a canonical URL, the context URL
specifies the canonical URL of the entity and the path to the structural property of that entity. The path
MUST include cast segments for properties defined on types derived from the expected type of the
previous segment.

Example 24: resource URL and corresponding context URL

http://host/service/Customers(1)/Addresses

http://host/service/$metadata#Customers(1)/Addresses

10.14 Collection of Complex or Primitive Types

Context URL template:

{context-url}#Collection({type-name}){select-list}

If a response is a collection of complex types or primitive types that do not represent an individual
property of an entity with a canonical URL, the context URL specifies the fully qualified type of the
collection.

Example 25: resource URL and corresponding context URL

http://host/service/TopFiveHobbies()

http://host/service/$metadata#Collection(Edm.String)

10.15 Complex or Primitive Type

Context URL template:

{context-url}#{type-name}{select-list}

If a response is a complex type or primitive type that does not represent an individual property of an entity
with a canonical URL, the context URL specifies the fully qualified type of the result.

Example 26: resource URL and corresponding context URL

http://host/service/MostPopularName()

http://host/service/$metadata#Edm.String

10.16 Operation Result

Context URL templates:

{context-url}#{entity-set}{/type-name}{select-list}

{context-url}#{entity-set}{/type-name}{select-list}/$entity

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 35 of 74

{context-url}#{entity}/{property-path}{select-list}

{context-url}#Collection({type-name}){select-list}

{context-url}#{type-name}{select-list}

If the response from an action or function is a collection of entities or a single entity that is a member of
an entity set, the context URL identifies the entity set. If the response from an action or function is a
property of a single entity, the context URL identifies the entity and property. Otherwise, the context URL
identifies the type returned by the operation. The context URL will correspond to one of the former
examples.

Example 27: resource URL and corresponding context URL

http://host/service/TopFiveCustomers{}

http://host/service/$metadata#Customers

10.17 Delta Response

Context URL template:

{context-url}#{entity-set}{/type-name}{select-list}/$delta

The context URL of a delta response is the same as the context URL of the root entity set, followed by

/$delta.

Example 28: resource URL and corresponding context URL

http://host/service/Customers?$deltaToken=1234

http://host/service/$metadata#Customers/$delta

10.18 Item in a Delta Response

Context URL templates:

{context-url}#{entity-set}/$deletedEntity

{context-url}#{entity-set}/$link

{context-url}#{entity-set}/$deletedLink

In addition to new or changed entities which have the canonical context URL for an entity a delta
response can contain deleted entities, new links, and deleted links. They are identified by the

corresponding context URL fragment. {entity-set} corresponds to the set of the deleted entity, or

source entity for an added or deleted link.

10.19 $all Response

Context URL template:

{context-url}#Collection(Edm.EntityType)

Responses to requests to the virtual collection $all (see [OData-URL]) use the built-in abstract entity

type. Each single entity in such a response has its individual context URL that identifies the entity set or
singleton.

10.20 $crossjoin Response

Context URL template:

{context-url}#Collection(Edm.ComplexType)

Responses to requests to the virtual collections $crossjoin(...) (see [OData-URL]) use the built-in

abstract complex type. Single instances in these responses do not have a context URL.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 36 of 74

11 Data Service Requests

11.1 Metadata Requests

An OData service is a self-describing service that exposes metadata defining the entity sets,
relationships, entity types, and operations.

11.1.1 Service Document Request

Service documents enable simple hypermedia-driven clients to enumerate and explore the resources
offered by the data service.

OData services MUST support returning a service document from the root URL of the service (the service

root).

The format of the service document is dependent upon the format selected. For example, in Atom the
service document is an AtomPub service document (as specified in [RFC5023]).

11.1.2 Metadata Document Request

An OData Metadata Document is a representation of the data model that describes the data and

operations exposed by an OData service.

[OData-CSDL] describes an XML representation for OData metadata documents and provides an XML
schema to validate their contents. The media type of the XML representation of an OData metadata

document is application/xml.

OData services MUST expose a metadata document that describes the data model exposed by the

service. The Metadata Document URL MUST be the root URL of the service with $metadata appended.

To retrieve this document the client issues a GET request to the metadata document URL.

If a request for metadata does not specify a format preference (via Accept header or $format) then the

XML representation MUST be returned.

11.1.3 Metadata Service Document Request

An OData Service MAY expose a Metadata Service. An OData Metadata Service is a representation of
the data model that describes the data and operations exposed by an OData service as an OData service
with a fixed (meta) data model.

A metadata service MUST use the schema defined in [OData-CSDL]. The root URL of the metadata
service is the metadata document URL of the service with a forward slash appended. To retrieve this

document the client issues a GET request to the metadata service root URL

11.2 Requesting Data

OData services support requests for data via HTTP GET requests.

The path of the URL specifies the target of the request (for example; the collection of entities, entity,
navigation property, structural property, or operation). Additional query operators, such as filter, sort,
page, and projection operations are specified through query options.

This section describes the types of data requests defined by OData. For complete details on the syntax
for building requests, see [OData-URL].

OData services are hypermedia driven services that return URLs to the client. If a client subsequently

requests the advertised resource and the URL has expired, then the service SHOULD respond with 410

Gone. If this is not feasible, the service MUST respond with 404 Not Found.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 37 of 74

The format of the returned data is dependent upon the request and the format specified by the client,

either in the Accept header or using the $format query option.

11.2.1 Evaluating System Query Options

OData defines a number of system query options that allow refining the request. The result of the request
MUST be as if the system query options were evaluated in the following order.

Prior to applying any server-driven paging:

 $search

 $filter

 $count

 $orderby

 $skip

 $top

After applying any server-driven paging:

 $expand

 $select

 $format

11.2.2 Requesting Individual Entities

To retrieve an individual entity, the client makes a GET request to the read URL of an entity.

The read URL can be obtained from a response payload containing that instance, for example as a self-
link in an [OData-Atom] payload. In addition, Services MAY support conventions for constructing a read
URL using the entity's key value(s), as described in [OData-URL].

The set of structural or navigation properties to return may be specified through $select or $expand

system query options.

Clients MUST be prepared to receive additional properties in an entity or complex type instance that are
not advertised in metadata, even for types not marked as open.

Properties that are not available, for example due to permissions, are not returned. In this case, the

Core.Permissions annotation, defined in [OData-VocCore] MUST be returned for the property with a

value of Core.Permission'None'.

If no entity exists with the key values specified in the request URL, the service responds with 404 Not

Found.

11.2.3 Requesting Individual Properties

To retrieve an individual property, the client issues a GET request to the property URL. The property URL

is the entity read URL with "/" and the property name appended.

For complex typed properties, the path can be further extended with the name of an individual property of
the complex type.

See [OData-URL] for details.

If the property is single-valued and has the null value, the service responds with 204 No Content.

If the property is not available, for example due to permissions, the service responds with 404 Not

Found.

 Example 29:

http://host/service/Products(1)/Name

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 38 of 74

11.2.3.1 Requesting a Property's Raw Value using $value

To retrieve the raw value of a primitive type property, the client sends a GET request to the property value

URL. See the [OData-URL] document for details.

The Content-Type of the response is determined using the Accept header and the $format system

query option.

The default format for single primitive values except Edm.Binary and the Edm.Geo types is

text/plain.

The default format for Edm.Geo types is text/plain using the WKT (well-known text) format, see rules

fullCollectionLiteral, fullLineStringLiteral, fullMultiPointLiteral,

fullMultiLineStringLiteral, fullMultiPolygonLiteral, fullPointLiteral, and

fullPolygonLiteral in [OData-ABNF].

The default format for Edm.Binary is the format specified by the Core.MediaType annotation of this

property (see [OData-VocCore]) if this annotation is present. If not annotated, the format cannot be
predicted by the client.

A $value request for a property that is null results in a 204 No Content response.

If the property is not available, for example due to permissions, the service responds with 404 Not

Found.

Example 30:

http://host/service/Products(1)/Name/$value

11.2.4 Specifying Properties to Return

The $select and $expand system query options enable the client to specify the set of structural

properties and navigation properties to include in a response. The service MAY include additional

properties not specified in $select and $expand, including properties not defined in the metadata

document.

11.2.4.1 System Query Option $select

The $select system query option requests that the service return only the properties, dynamic

properties, actions and functions explicitly requested by the client. The service returns the specified
content, if available, along with any available expanded navigation properties, and MAY return additional
information.

The value of the $select query option is a comma-separated list of properties, qualified action names,

qualified function names, the star operator (*), or the star operator prefixed with the namespace or alias

of the schema in order to specify all operations defined in the schema.

Example 31: request only the Rating and ReleaseDate for the matching Products

http://host/service/Products?$select=Rating,ReleaseDate

It is also possible to request all structural properties, including any dynamic properties, using the star
operator. The star operator SHOULD NOT introduce navigation properties, actions or functions not
otherwise requested.

Example 32:

http://host/service/Products?$select=*

Properties of related entities can be specified by including the $select query option within the $expand.

Example 33:

http://host/service/Products?$expand=Category($select=Name)

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 39 of 74

The properties specified in $select are in addition to any expanded navigation properties.

Example 34: these two requests are equivalent

http://host/service/Categories?$select=CategoryName&$expand=Products

http://host/service/Categories?$select=CategoryName,Products&$expand=Products

It is also possible to request all actions or functions available for each returned entity.

Example 35:

http://host/service/Products?$select=DemoService.*

If the $select query option is not specified, the service returns the full set of properties or a default set

of properties. The default set of properties MUST include all key properties.

If the service returns less than the full set of properties, either because the client specified a select or
because the service returned a subset of properties in the absence of a select, the context URL MUST
reflect the set of selected properties and expanded navigation properties.

11.2.4.2 System Query Option $expand

The $expand system query option indicates the related entities that MUST be represented inline. The

service MUST return the specified content, and MAY choose to return additional information.

The value of the $expand query option is a comma-separated list of navigation property names,

optionally followed by a /$ref path segment or a /$count path segment, and optionally a

parenthesized set of expand options (for filtering, sorting, selecting, paging, or expanding the related
entities).

For a full description of the syntax used when building requests, see [OData-URL].

Example 36: for each customer entity within the Customers entity set the value of all related Orders will be
represented inline

http://host/service.svc/Customers?$expand=Orders

Example 37: for each customer entity within the Customers entity set the references to the related Orders will be
represented inline

http://host/service.svc/Customers?$expand=Orders/$ref

11.2.4.2.1 Expand Options

The set of expanded entities can be further refined through the application of expand options, expressed
as a semicolon-separated list of system query options, enclosed in parentheses, see [OData-URL].

Allowed system query options are $filter, $select, $orderby, $skip, $top, $count, $search,

$expand, and $levels.

Example 38: for each customer entity within the Customers entity set, the value of those related Orders whose

Amount is greater than 100 will be represented inline

http://host/service.svc/Customers?$expand=Orders($filter=Amount gt 100)

Example 39: for each order within the Orders entity set, the following will be represented inline:

 The Items related to the Orders identified by the resource path section of the URL and the

products related to each order item.

 The Customer related to each order returned.

http://host/service.svc/Orders?$expand=Items($expand=Product),Customer

Example 40: for each customer entity in the Customers entity set, the value of all related InHouseStaff will be
represented inline if the entity is of type VipCustomer or a subtype of that. For entities that are not of type

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 40 of 74

VipCustomer, or any of its subtypes, that entity may be returned with no inline representation for the expanded

navigation property InHouseStaff (the service can always send more than requested)

http://host/service.svc/Customers?$expand=SampleModel.VipCustomer/InHouseStaff

11.2.4.2.1.1 Expand Option $levels

The $levels expand option can be used to specify the number of levels of recursion for a hierarchy in

which the related entity type is the same as, or can be cast to, the source entity type. The same expand
options are applied at each level of the hierarchy.

Services MAY support the symbolic value max in addition to numeric values. In that case they MUST

solve circular dependencies by injecting an entity reference somewhere in the circular dependency.

Clients using $levels=max MUST be prepared to handle entity references in cases were a circular

reference would occur otherwise.

Example 41: return each employee from the Employees entity set and, for each employee that is a manager, return
all direct reports, recursively to four levels

http://contoso.com/HR/Employees?$expand=Model.Manager/DirectReports($levels=4)

11.2.5 Querying Collections

OData services support querying collections of entities, complex type instances, and primitive values.

The target collection is specified through a URL, and query operations such as filter, sort, paging, and
projection are specified as system query options provided as query options. The names of all system

query options are prefixed with a dollar ($) character.

The same system query option MUST NOT be specified more than once for any resource.

An OData service MAY support some or all of the system query options defined. If a data service does
not support a system query option, it MUST fail any request that contains the unsupported option and

SHOULD return 501 Not Implemented.

11.2.5.1 System Query Option $filter

The $filter system query option restricts the set of items returned.

Example 42: return all Products whose Price is less than $10.00

http://host/service/Products?$filter=Price lt 10.00

The $count segment may be used within a $filter expression to limit the items returned based on

the exact count of related entities or items within a collection-valued property.

Example 43: return all Categories with less than 10 products

http://host/service/Categories?$filter=Products/$count lt 10

The value of the $filter option is a Boolean expression as defined in [OData-ABNF].

11.2.5.1.1 Built-in Filter Operations

OData supports a set of built-in filter operations, as described in this section. For a full description of the
syntax used when building requests, see [OData-URL].

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 41 of 74

Operator Description Example

Comparison Operators

eq Equal Address/City eq 'Redmond'

ne Not equal Address/City ne 'London'

gt Greater than Price gt 20

ge Greater than or equal Price ge 10

lt Less than Price lt 20

le Less than or equal Price le 100

has Has flags Style has Sales.Color'Yellow'

Logical Operators

and Logical and Price le 200 and Price gt 3.5

or Logical or Price le 3.5 or Price gt 200

not Logical negation not endswith(Description,'milk')

Arithmetic Operators

add Addition Price add 5 gt 10

sub Subtraction Price sub 5 gt 10

mul Multiplication Price mul 2 gt 2000

div Division Price div 2 gt 4

mod Modulo Price mod 2 eq 0

Grouping Operators

() Precedence grouping (Price sub 5) gt 10

11.2.5.1.2 Built-in Query Functions

OData supports a set of built-in functions that can be used within $filter operations. The following

table lists the available functions. For a full description of the syntax used when building requests, see
[OData-URL].

OData does not define an ISNULL or COALESCE operator. Instead, there is a null literal that can be

used in comparisons.

Function Example

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 42 of 74

Function Example

String Functions

contains contains(CompanyName,'freds')

endswith endswith(CompanyName,'Futterkiste')

startswith startswith(CompanyName,'Alfr')

length length(CompanyName) eq 19

indexof indexof(CompanyName,'lfreds') eq 1

substring substring(CompanyName,1) eq 'lfreds Futterkiste'

tolower tolower(CompanyName) eq 'alfreds futterkiste'

toupper toupper(CompanyName) eq 'ALFREDS FUTTERKISTE'

trim trim(CompanyName) eq 'Alfreds Futterkiste'

concat concat(concat(City,', '), Country) eq 'Berlin, Germany'

Date Functions

year year(BirthDate) eq 0

month month(BirthDate) eq 12

day day(StartTime) eq 8

hour hour(StartTime) eq 1

minute minute(StartTime) eq 0

second second(StartTime) eq 0

fractionalseconds second(StartTime) eq 0

date date(StartTime) ne date(EndTime)

time time(StartTime) le StartOfDay

totaloffsetminutes totaloffsetminutes(StartTime) eq 60

now StartTime ge now()

mindatetime StartTime eq mindatetime()

maxdatetime EndTime eq maxdatetime()

Math Functions

round round(Freight) eq 32

floor floor(Freight) eq 32

ceiling ceiling(Freight) eq 33

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 43 of 74

Function Example

Type Functions

cast cast(ShipCountry,Edm.String)

isof isof(NorthwindModel.Order)

isof isof(ShipCountry,Edm.String)

Geo Functions

geo.distance geo.distance(CurrentPosition,TargetPosition)

geo.length geo.length(DirectRoute)

geo.intersects geo.intersects(Position,TargetArea)

11.2.5.1.3 Parameter Aliases

Parameter aliases can be used in place of literal values in function parameters or within a $filter or

$orderby expression. Parameters aliases are names beginning with an at sign (@).

Actual parameter values are specified as query options in the query part of the request URL. The query
option name is the name of the parameter alias, and the query option value is the value to be used for the
specified parameter alias.

Example 44: returns all employees whose Region property matches the string parameter value "WA"

http://host/service.svc/Employees?$filter=Region eq @p1&@p1='WA'

Parameter aliases allow the same value to be used multiple times in a request and may be used to
reference primitive values, complex, or collection values.

If a parameter alias is not given a value in the Query part of the request URL, the value MUST be
assumed to be null. A parameter alias can be used in multiple places within a request URL but its value
MUST NOT be specified more than once.

11.2.5.2 System Query Option $orderby

The $orderby System Query option specifies the order in which items are returned from the service.

The value of the $orderby System Query option contains a comma-separated list of expressions whose

primitive result values are used to sort the items. A special case of such an expression is a property path
terminating on a primitive property. A type cast using the qualified entity type name is required to order by
a property defined on a derived type.

The expression can include the suffix asc for ascending or desc for descending, separated from the

property name by one or more spaces. If asc or desc is not specified, the service MUST order by the

specified property in ascending order.

Null values come before non-null values when sorting in ascending order and after non-null values when
sorting in descending order.

Items are sorted by the result values of the first expression, and then items with the same value for the
first expression are sorted by the result value of the second expression, and so on.

Example 45: return all Products ordered by release date in ascending order, then by rating in descending order

http://host/service/Products?$orderby=ReleaseDate asc, Rating desc

Related entities may be ordered by specifying $orderby within the $expand clause.

Example 46: return all Categories, and their Products ordered according to release date and in descending order of
rating

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 44 of 74

http://host/service/Categories?

 $expand=Products($orderby=ReleaseDate asc, Rating desc)

$count may be used within a $orderby expression to order the returned items according to the exact

count of related entities or items within a collection-valued property.

Example 47: return all Categories ordered by the number of Products within each category

http://host/service/Cateoriges?$orderby=Products/$count

11.2.5.3 System Query Option $top

The $top system query option specifies a non-negative integer n that limits the number of items returned

from a collection. The service returns the number of available items up to but not greater than the
specified value n.

Example 48: return only the first five products of the Products entity set

http://host/service/Products?$top=5

If no unique ordering is imposed through an $orderby query option, the service MUST impose a stable

ordering across requests that include $top.

11.2.5.4 System Query Option $skip

The $skip system query option specifies a non-negative integer n that excludes the first n items of the

queried collection from the result. The service returns items starting at position n+1.

Example 49: return products starting with the 6th product of the Products entity set

http://host/service/Products?$skip=5

Where $top and $skip are used together, $skip MUST be applied before $top, regardless of the

order in which they appear in the request.

Example 50: return the third through seventh products of the Products entity set

http://host/service/Products?$top=5&$skip=2

If no unique ordering is imposed through an $orderby query option, the service MUST impose a stable

ordering across requests that include $skip.

11.2.5.5 System Query Option $count

The $count system query option with a value of true specifies that the total count of items within a

collection matching the request be returned along with the result.

Example 51: return, along with the results, the total number of products in the collection

http://host/service/Products?$count=true

The count of related entities can be requested by specifying the $count query option within the

$expand clause.

Example 52:

http://host/service/Categories?$expand=Products($count=true)

A $count query option with a value of false (or not specified) hints that the service SHOULD NOT

return a count.

The service returns an HTTP Status code of 400 Bad Request if a value other than true or false is

specified.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 45 of 74

The $count system query option ignores any $top, $skip, or $expand query options, and returns the

total count of results across all pages including only those results matching any specified $filter and

$search. Clients should be aware that the count returned inline may not exactly equal the actual number

of items returned, due to latency between calculating the count and enumerating the last value or due to
inexact calculations on the service.

How the count is encoded in the response body is dependent upon the selected format.

11.2.5.6 System Query Option $search

The $search system query option restricts the result to include only those entities matching the specified

search expression. The definition of what it means to match is dependent upon the implementation.

Example 53: return all Products that match the search term "bike"

http://host/service/Products?$search=bike

The search expression can contain phrases, enclosed in double-quotes.

Example 54: return all Products that match the phrase "mountain bike"

http://host/service/Products?$search="mountain bike"

The upper case keyword NOT restricts the set of entities to those that do not match the specified term.

Example 55: return all Products that do not match "clothing"

http://host/service/Products?$search=NOT clothing

Multiple terms within a search expression are separated by a space (implicit AND) or the upper-case

keyword AND, indicating that all such terms must be matched.

Example 56: return all Products that match both "mountain" and "bike"

http://host/service/Products?$search=mountain AND bike

The upper-case keyword OR is used to return entities that satisfy either the immediately preceding or

subsequent expression.

Example 57: return all Products that match either "mountain" or "bike"

http://host/service/Products?$search=mountain OR bike

Parentheses within the search expression group together multiple expressions.

Example 58: return all Products that match either "mountain" or "bike" and do not match clothing

http://host/service/Products?$search=(mountain OR bike) AND NOT clothing

The operations within a search expression MUST be evaluated in the following order: grouping operator,

NOT operator, AND operator, OR operator

If both $search and $filter are specified in the same request, only those entities satisfying both

criteria are returned.

The value of the $search option is a Boolean expression as defined in [OData-ABNF].

11.2.5.7 Server-Driven Paging

Responses that include only a partial set of the items identified by the request URL MUST contain a link
that allows retrieving the next partial set of items. This link is called a next link; its representation is

format-specific. The final partial set of items MUST NOT contain a next link.

The client can request a maximum page size through the odata.maxpagesize preference. The service

may apply this requested page size or implement a page size different than, or in the absence of, this
preference.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 46 of 74

OData clients MUST treat the URL of the next link as opaque, and MUST NOT append system query
options to the URL of a next link. Services may not allow a change of format on requests for subsequent
pages using the next link. Clients therefore SHOULD request the same format on subsequent page

requests using a compatible Accept header. OData services may use the reserved system query option

$skiptoken when building next links. Its content is opaque, service-specific, and must only follow the

rules for URL query parts.

OData clients MUST NOT use the system query option $skiptoken when constructing requests.

11.2.6 Requesting Related Entities

To request related entities according to a particular relationship, the client issues a GET request to the

source entity’s request URL, followed by a forward slash and the name of the navigation property
representing the relationship.

If the navigation property does not exist on the entity indicated by the request URL, the service returns

404 Not Found.

If the relationship terminates on a collection, the response MUST be the format-specific representation of
the collection of related entities. If no entities are related, the response is the format-specific
representation of an empty collection.

If the relationship terminates on a single entity, the response MUST be the format-specific representation

of the related single entity. If no entity is related, the service returns 204 No Content

Example 59: return the supplier of the product with ID=1 in the Products entity set

http://host/service/Products(1)/Supplier

11.2.7 Requesting Entity References

To request entity references in place of the actual entities, the client issues a GET request with /$ref

appended to the resource path.

If the resource path does not identify an entity or a collection of entities, the service returns 404 Not

Found.

If the resource path terminates on a collection, the response MUST be the format-specific representation
of a collection of entity references pointing to the related entities. If no entities are related, the response is
the format-specific representation of an empty collection.

If the resource path terminates on a single entity, the response MUST be the format-specific
representation of an entity reference pointing to the related single entity. If the resource path terminates

on a single entity and no such entity exists, the service returns 404 Not Found.

Example 60: collection with an entity reference for each Order related to the Product with ID=0

http://host/service/Products(0)/Orders/$ref

11.2.8 Resolving an Entity-Id

To resolve an entity-id, e.g. obtained in an entity reference, into a representation of the identified entity,

the client issues a GET request to the $entity resource which located at the URL $entity relative to

the service root. The entity-id MUST be specified using the system query option $id.

Example 61: return the entity representation for a given entity-id

http://host/service/$entity?$id=http://host/service/Products(0)

A type segment following the $entity resource casts the resource to the specified type. If the identified

entity is not of the specified type, or a type derived from the specified type, the service returns 404 Not

Found.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 47 of 74

After applying a type-cast segment to cast to a specific type, the system query options $select and

$expand can be specified in GET requests to the $entity resource.

Example 62: return the entity representation for a given entity-id and specify properties to return

http://host/service/$entity/Model.Customer?

 $id=http://host/service/Customers('ALFKI')

 &$select=CompanyName,ContactName&$expand=Orders

11.2.9 Requesting the Number of Items in a Collection

To request only the number of items of a collection of entities or items of a collection-valued property, the

client issues a GET request with /$count appended to the resource path of the collection.

On success, the response body MUST contain the exact count of items matching the request after

applying any $filter or $search system query options, formatted as a simple primitive integer value

with media type text/plain. The returned count MUST NOT be affected by $top, $skip, $orderby,

or $expand. Content negotiation using the Accept request header or the $format system query option

is not allowed with the path segment /$count.

Example 63: return the number of products in the Products entity set

http://host/service/Products/$count

Example 64: return the number of all products whose Price is less than $10.00

http://host/service/Products/$count?$filter=Price lt 10.00

The /$count segment can be used in combination with the $filter system query option.

Example 65: return all customers with more than five interests

http://host/service/Customers?$filter=Interests/$count gt 5

11.2.10 System Query Option $format

The $format system query option specifies the media type of the response.

The $format query option, if present in a request, MUST take precedence over the value(s) specified in

the Accept request header.

The value of the $format query option is a valid internet media type, optionally including parameters.

In addition, format-specific abbreviations may be used, see [OData-Atom] and [OData-JSON], but format

parameters MUST NOT be appended to the format abbreviations.

Example 66: the request

http://host/service/Orders?$format=application/json;odata.metadata=full

is equivalent to a request with an Accept header using the same media type; it requests the set of Order entities

represented using the JSON media type including full metadata, as specified in [OData-JSON].

Example 67: the request

http://host/service/Orders?$format=json

is equivalent to a request with the Accept header set to application/json; it requests the set of Order entities

represented using the JSON media type with minimal metadata, as specified in [OData-JSON].

The $format system query option MUST NOT be specified in batch requests as these always use the

media type multipart/mixed.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 48 of 74

In metadata document requests the values application/atom+xml, application/json, their

subtypes and parameterized variants as well as the format-specific abbreviations atom and json are

reserved for future versions of this specification.

11.3 Requesting Changes

Services advertise their change-tracking capabilities by annotating entity sets with the

Capabilities.ChangeTracking term defined in [OData-VocCap].

Clients request that the service track changes to a result by specifying the odata.track-changes

preference on a request. If supported for the request, the service includes a Preference-Applied

header in the response containing the odata.track-changes preference and includes a delta link on

the last page of results.

11.3.1 Delta Links

Delta links are opaque, service-generated links that the client uses to retrieve subsequent changes to a
result.

Delta links are based on a defining query that describes the set of results for which changes are being
tracked; for example, the request that generated the results containing the delta link. The delta link
encodes the collection of entities for which changes are being tracked, along with a starting point from
which to track changes.

If the defining query contains a $filter or $search, the response MUST include only changes to

entities matching the specified criteria. Added entities MUST be returned for entities that were added or
changed and now match the specified criteria, and deleted entities MUST be returned for entities that are

changed to no longer match the criteria of $filter or $search.

The delta link MUST NOT encode any client top or skip value, and SHOULD NOT encode a request for
an inline count.

If the defining query includes expanded relationships, the delta link MUST return changes, additions, or
deletions to the expanded entities, as well as added or deleted links to expanded entities.

Entities are considered changed if any of the structural properties have changed. Changes to related
entities and to streams are not considered a change to the entity containing the stream or navigation
property.

If the defining query contains a projection, the generated delta link SHOULD logically include the same
projection, such that the delta query only includes fields specified in the projection. Services MAY use the
projection to limit the entities returned to those that have changed within the selected fields, but the client
MUST be prepared to receive entities returned whether or not the field that changed was specified in the
projection.

11.3.2 Using Delta Links

The client requests changes by invoking the GET method on the delta link. The client MUST NOT attempt

to append system query options to the delta link. The Accept header MAY be used to specify the desired

response format.

The /$count segment can be appended to the path of a delta link in order to get just the number of

changes available. The count includes all added, changed, or deleted entities, as well as added or
deleted links.

The results of a request against the delta link may span multiple pages but MUST be ordered by the
service across all pages in such a way as to guarantee consistency when applied in order to the response
which contained the delta link.

Services SHOULD return only changed entities, but MAY return additional entities matching the defining
query for which the client will not see a change.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 49 of 74

In order to continue tracking changes beyond the current set, the client specifies odata.track-

changes on the initial request to the delta link but is not required to repeat it for subsequent pages. The

new delta link appears at the end of the last page of changes and MUST return all changes subsequent
to the last change of the previous delta link.

If no changes have occurred, the response is an empty collection that contains a delta link for subsequent
changes if requested. This delta link MAY be identical to the delta link resulting in the empty collection of
changes.

If the delta link is no longer valid, the service responds with 410 Gone, and SHOULD include the URL for

refetching the entire set in the Location header of the response.

11.4 Data Modification

Updatable OData services support Create, Update, and Delete operations for some or all exposed
entities. Additionally, Actions supported by a service can affect the state of the system.

A successfully completed Data Modification Request must not violate the integrity of the data.

The client may request whether content be returned from a Create, Update, or Delete request, or the

invocation of an Action, by specifying the return Prefer header.

11.4.1 Common Data Modification Semantics

Data Modification Requests share the following semantics.

11.4.1.1 Use of ETags for Avoiding Update Conflicts

If an ETag value is specified in an If-Match or If-None-Match header of a Data Modification Request

or Action Request, the operation MUST only be invoked if the if-match or if-none-match condition is

satisfied.

The ETag value specified in the if-match or if-none-match request header may be obtained from an

ETag header of a response for an individual entity, or may be included for an individual entity in a format-
specific manner.

11.4.1.2 Handling of DateTimeOffset Values

Services SHOULD preserve the offset of Edm.DateTimeOffset values, if possible. However, where the

underlying storage does not support offset services may be forced to normalize the value to some
common time zone (i.e. UTC) in which case the result would be returned with that time zone offset. If the

service normalizes values, it MUST fail evaluation of the query functions year, month, day, hour, and

time for literal values that are not stated in the time zone of the normalized values.

11.4.1.3 Handling of Properties Not Advertised in Metadata

Clients MUST be prepared to receive additional properties in an entity or complex type instance that are

not advertised in metadata, even for types not marked as open. By using PATCH when updating entities,

clients can ensure that such properties values are not lost if omitted from the update request.

11.4.1.4 Handling of Consistency Constraints

Services may impose cross-entity consistency constraints. Certain referential constraints, such as
requiring an entity to be created with related entities can be satisfied through creating or linking related
entities when creating the entity. Other constraints might require multiple changes to be specified together
in a single atomic change set.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 50 of 74

11.4.1.5 Returning Results from Data Modification Requests

Clients can request whether created or modified resources are returned from create, update, and upsert

operations using the return preference header. In the absence of such a header, services SHOULD

return the created or modified content unless the resource is a stream property value.

When returning content other than for an update to a media entity stream, services MUST return the
same content as a subsequent request to retrieve the same resource. For updating media entity streams,
the content of a non-empty response body MUST be the updated media entity.

11.4.2 Create an Entity

To create an entity in a collection, the client sends a POST request to that collection's URL. The POST

body MUST contain a single valid entity representation.

An entity may also be created as the result of an Upsert operation.

If the target URL for the collection is a navigation link, the new entity is automatically linked to the entity
containing the navigation link.

To create an open entity (an instance of an open type), additional property values beyond those specified
in the metadata MAY be sent in the request body. The service MUST treat these as dynamic properties
and add them to the created instance.

If the entity being created is not an open entity, additional property values beyond those specified in the
metadata SHOULD NOT be sent in the request body. The service MUST fail if unable to persist all
property values specified in the request.

Properties computed by the service (annotated with the term Core.Computed, see [OData-

VocCore]OData-VocCore) and properties that are tied to properties of the principal entity by a referential
constraint, can be omitted and MUST be ignored if included in the request.

Upon successful completion, the response MUST contain a Location header that contains the edit URL

or read URL of the created entity.

Upon successful completion the service MUST respond with either 201 Created, or 204 No Content

if the request included a return Prefer header with a value of return=minimal.

11.4.2.1 Link to Related Entities When Creating an Entity

To create a new entity with links to existing entities in a single request, the client includes the entity-ids of
the entities related through the corresponding navigation properties in the request body.

The representation for binding information is format-specific.

Example 68: using the JSON format the client can create a new manager entity with links to two existing employees

by applying the odata.bind annotation to the DirectReports navigation property

{

 "@odata.type":"#Northwind.Manager",

 "EmployeeID": 1,

 "DirectReports@odata.bind": [

 "http://host/service/Employees(5)",

 "http://host/service/Employees(6)"

]

}

Example 69: using the Atom format the client can create a new manager entity with links to two existing employees
by including a navigation link element for each employee in the Atom entry representing the manager

<entry>

 <id> http://host/service /Employees(1)</id>

 <title type="text" />

 <updated>2011-02-16T01:00:25Z</updated>

 <author><name /></author>

 <link rel="http://docs.oasis-open.org/odata/ns/related/DirectReports"

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 51 of 74

 href="http://host/service/Employees(5)"

 type="application/atom+xml;type=entry"

 title="Direct Reports" />

 <link rel="http://docs.oasis-open.org/odata/ns/related/DirectReports"

 href="http://host/service/Employees(6)"

 type="application/atom+xml;type=entry"

 title="Direct Reports" />

 <category term="NorthwindModel.Manager"

scheme="http://odata.org/scheme"/>

 <content type="application/xml">

 <metadata:properties>

 <data:EmployeeID>1</data:EmployeeID>

 </metadata:properties>

 </content>

</entry>

Upon successful completion of the operation, the service creates the requested entity and relates it to the
requested existing entities.

If the target URL for the collection the entity is created in and binding information provided in the POST

body contradicts the implicit binding information provided by the request URL, the request MUST fail and

the service respond with 400 Bad Request.

Upon failure of the operation, the service MUST NOT create the new entity. In particular, the service
MUST never create an entity in a partially-valid state (with the navigation property unset).

11.4.2.2 Create Related Entities When Creating an Entity

A request to create an entity that includes related entities, represented using the appropriate inline
representation, is referred to as a “deep insert”. Media entities, whose binary representation cannot be
represented inline, cannot be created within a deep insert.

If the inline representation contains a value for a computed property or dependent property of a referential
constraint, the service MUST ignore that value when creating the related entity.

On success, the service MUST create all entities and relate them. If the request included a return

Prefer header with a value of return=representation and is applied by the service, the response

MUST be expanded to at least the level that was present in the deep-insert request.

On failure, the service MUST NOT create any of the entities.

11.4.3 Update an Entity

Services SHOULD support PATCH as the preferred means of updating an entity. PATCH provides more

resiliency between clients and services by directly modifying only those values specified by the client.

The semantics of PATCH, as defined in [RFC5789], is to merge the content in the request payload with

the [entity’s] current state, applying the update only to those components specified in the request body.
Collection properties and primitive properties provided in the payload corresponding to updatable
properties MUST replace the value of the corresponding property in the entity or complex type. Missing
properties of the containing entity or complex property, including dynamic properties, MUST NOT be
directly altered unless as a side effect of changes resulting from the provided properties.

Services MAY additionally support PUT, but should be aware of the potential for data-loss in round-

tripping properties that the client may not know about in advance, such as open or added properties, or

properties not specified in metadata. Services that support PUT MUST replace all values of structural

properties with those specified in the request body. Missing non-key, updatable structural properties not
defined as dependent properties within a referential constraint MUST be set to their default values.

Omitting a non-nullable property with no service-generated or default value from a PUT request results in

a 400 Bad Request error. Missing dynamic structural properties MUST be removed or set to null.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 52 of 74

Updating a dependent property that is tied to a key property of the principal entity through a referential
constraint updates the relationship to point to the entity with the specified key value. If there is no such
entity, the update fails.

Updating a principle property that is tied to a dependent entity through a referential constraint on the
dependent entity updates the dependent property.

Key and other non-updatable properties, as well as dependent properties that are not tied to key
properties of the principal entity, can be omitted from the request. If the request contains a value for one
of these properties, the service MUST ignore that value when applying the update.

The service ignores entity id and entity type values in the payload when applying the update.

The entity MUST NOT contain related entities as inline content. It MAY contain binding information for
navigation properties. For single-valued navigation properties this replaces the relationship. For
collection-valued navigation properties this adds to the relationship.

If an update specifies both a binding to a single-valued navigation property and a dependent property that
is tied to a key property of the principal entity according to the same navigation property, then the
dependent property is ignored and the relationship is updated according to the value specified in the
binding.

If the entity being updated is open, then additional values for properties beyond those specified in the
metadata or returned in a previous request MAY be sent in the request body. The service MUST treat
these as dynamic properties.

If the entity being updated is not open, then additional values for properties beyond those specified in the
metadata or returned in a previous request SHOULD NOT be sent in the request body. The service
MUST fail if it is unable to persist all updatable property values specified in the request.

On success, the response MUST be a valid success response.

11.4.4 Upsert an Entity

An upsert occurs when the client sends an update request to a valid URL that identifies a single entity
that does not exist. In this case the service MUST handle the request as a create entity request or fail the
request altogether.

Upserts are not supported against media entities or entities whose keys values are generated by the
service. Services MUST fail an update request to a URL that would identify such an entity and the entity
does not yet exist.

Key and other non-updatable properties, as well as dependent properties that are not tied to key
properties of the principal entity, MUST be ignored by the service in processing the Upsert request.

To ensure that an update request is not treated as an insert, the client MAY specify an If-Match header

in the update request. The service MUST NOT treat an update request containing an If-Match header

as an insert.

A PUT or PATCH request MUST NOT be treated as an update if an If-None-Match header is specified

with a value of "*".

11.4.5 Delete an Entity

A successful DELETE request to an entity's edit URL deletes the entity. The request body SHOULD be

empty. Singleton entities cannot be deleted.

On successful completion of the delete, the response MUST be 204 No Content and contain an empty

body.

Services MUST implicitly remove relations to and from an entity when deleting it; clients need not delete
the relations explicitly.

Services MAY implicitly delete or modify related entities if required by integrity constraints. If integrity

constraints are declared in $metadata using a ReferentialConstraint element, services MUST

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 53 of 74

modify affected related entities according to the declared integrity constraints, e.g. by deleting dependent

entities, or setting dependent properties to null or their default value.

11.4.6 Modifying Relationships between Entities

Relationships between entities are represented by navigation properties as described in Data Model. URL
conventions for navigation properties are described in [OData-URL].

11.4.6.1 Add a Reference to a Collection-Valued Navigation Property

A successful POST request to a navigation property's references collection adds a relationship to an

existing entity. The request body MUST contain a single entity reference that identifies the entity to be
added. See the appropriate format document for details.

On successful completion, the response MUST be 204 No Content and contain an empty body.

11.4.6.2 Remove a Reference to an Entity

A successful DELETE request to the URL that represents a reference to a related entity removes the

relationship to that entity.

For collection-valued navigation properties, the entity reference of the entity to be removed MUST be

specified using the $id query string option.

For single-valued navigation properties, the $id query string option MUST NOT be specified.

The DELETE request MUST NOT violate any integrity constraints in the data model.

On successful completion, the response MUST be 204 No Content and contain an empty body.

11.4.6.3 Change the Reference in a Single-Valued Navigation Property

A successful PUT request to a single-valued navigation property’s reference resource changes the related

entity. The request body MUST contain a single entity reference that identifies the existing entity to be
related. See the appropriate format document for details.

On successful completion, the response MUST be 204 No Content and contain an empty body.

Alternatively, a relationship MAY be updated as part of an update to the source entity by including the
required binding information for the new target entity. This binding information is format-specific, see
[OData-JSON] and [OData-Atom] for details.

11.4.7 Managing Media Entities

A media entity is an entity that represents an out-of-band stream, such as a photograph.

A media entity MUST have a source URL that can be used to read the media stream, and MAY have a
media edit URL that can be used to write to the media stream.

Because a media entity has both a media stream and standard entity properties special handling is
required.

11.4.7.1 Creating a Media Entity

A POST request to a media entity's entity set creates a new media entity. The request body MUST contain

the media value (for example, the photograph) whose media type MUST be specified in a Content-

Type header.

Upon successful completion, the response MUST contain a Location header that contains the edit URL

of the created entity.

Upon successful completion the service responds with either 201 Created, or 204 No Content if the

request included a return Prefer header with a value of return=minimal.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 54 of 74

11.4.7.2 Editing a Media Entity Stream

A successful PUT request to the media edit URL of a media entity changes the media stream of the entity.

If the entity includes an ETag value for the media stream, the client MUST include an If-Match header

with the ETag value.

The request body MUST contain the new media value for the entity whose media type MUST be specified

in a Content-Type header.

If the request to edit a media stream returns a non-empty response body, the response body MUST
contain the updated media entity.

11.4.7.3 Deleting a Media Entity

A successful DELETE request to the entity's edit URL or to the edit URL of its media resource deletes the

media entity as described in Delete an Entity.

Deleting a media entity also deletes the media associated with the entity.

11.4.8 Managing Stream Properties

An entity may have one or more stream properties. Stream properties are properties of type

Edm.Stream.

The values for stream properties do not appear in the entity payload. Instead, the values are read or
written through URLs.

11.4.8.1 Editing Stream Values

A successful PUT request to the edit URL of a stream property changes the media stream associated with

that property.

If the stream metadata includes an ETag value, the client SHOULD include an If-Match header with the

ETag value.

The request body MUST contain the new media value for the stream whose media type MUST be

specified in a Content-Type header. It may have a Content-Length of zero to set the stream data to

empty.

Stream properties MAY specify a list of acceptable media types using an annotation with term

Core.AcceptableMediaTypes, see [OData-VocCore].

11.4.8.2 Deleting Stream Values

A successful DELETE request to the edit URL of a stream property attempts to set the property to null and

results in an error if the property is non-nullable.

Attempting to request a stream property whose value is null results in 204 No Content.

11.4.9 Managing Values and Properties Directly

Values and properties can be explicitly addressed with URLs. The edit URL of a property is the edit URL
of the entity appended with the path segment(s) specifying the individual property. The edit URL allows
properties to be individually modified. See [OData-URL] for details on addressing.

11.4.9.1 Update a Primitive Property

A successful PUT request to the edit URL for a primitive property updates the value of the property. The

message body MUST contain the new value, formatted as a single property according to the specified
format.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 55 of 74

A successful PUT request to the edit URL for the raw value of a primitive property updates the property

with the raw value specified in the payload. The payload MUST be formatted as an appropriate content
type for the raw value of the property.

The same rules apply whether this is a regular property or a dynamic property.

Upon successful completion of the update, the response MUST be a valid update response.

11.4.9.2 Set a Value to Null

A successful DELETE request to the edit URL for a structural property, or to the edit URL of the raw value

of a primitive property, sets the property to null. The request body is ignored and should be empty.

A DELETE request to a non-nullable value MUST fail and the service respond with 400 Bad Request or

other appropriate error.

The same rules apply whether the target is the value of a regular property or the value of a dynamic

property. A missing dynamic property is defined to be the same as a dynamic property with value null.

All dynamic properties are nullable.

On success, the service MUST respond with 204 No Content and an empty body.

Updating a primitive property or a complex property with a null value also sets the property to null.

11.4.9.3 Update a Complex Property

A successful PATCH request to the edit URL for a complex typed property updates that property. The

request body MUST contain a single valid representation for the target complex type.

The service MUST directly modify only those properties of the complex type specified in the payload of

the PATCH request.

The service MAY additionally support clients sending a PUT request to a URL that specifies a complex

type. In this case, the service MUST replace the entire complex property with the values specified in the
request body and set all unspecified properties to their default value.

On success, the response MUST be a valid update response.

11.4.9.4 Update a Collection Property

A successful PUT request to the edit URL of a collection property updates that collection. The message

body MUST contain the desired new value, formatted as a collection property according to the specified
format.

The service MUST replace the entire value with the value supplied in the request body.

Since collection members have no individual identity, PATCH is not supported for collection properties.

On success, the response MUST be a valid update response.

11.5 Operations

Custom operations (Actions and Functions) are represented as Action, ActionImport, Function,

and FunctionImport elements in [OData-CSDL].

11.5.1 Binding an Operation to a Resource

Actions and Functions MAY be bound to an entity type, primitive type, complex type, or a collection. The
first parameter of a bound operation is the binding parameter.

The namespace- or alias-qualified name of a bound operation may be appended to any URL that
identifies a resource whose type matches, or is derived from, the type of the binding parameter. The
resource identified by that URL is used as the binding parameter value.

Example 70: the function MostRecentOrder can be bound to any URL that identifies a SampleModel.Customer

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 56 of 74

<Function Name="MostRecentOrder" ReturnType="SampleModel.Order"

 IsBound="true">

 <Parameter Name="customer" Type="SampleModel.Customer" />

</Function>

Example 71: invoking the MostRecentOrder function with the value of the binding parameter customer being the

entity identified by http://host/service/Customers(6)

http://host/service/Customers(6)/SampleModel.MostRecentOrder()

11.5.2 Advertising Available Operations within a Payload

Services MAY return the available actions and/or functions bound to a particular entity as part of the entity
representation within the payload. The representation of an action or function depends on the format. An
efficient format that assumes client knowledge of metadata SHOULD NOT include actions and functions
in the payload that are available on all instances and whose target URL can be computed via metadata
following standard conventions defined in [OData-URL].

Example 72: given a GET request to http://host/service/Customers('ALFKI'), the service might respond

with a Customer that includes the SampleEntities.MostRecentOrder function bound to the entity

{

 "@odata.context": ...,

 "#SampleEntities.MostRecentOrder": {

 "title": "Most Recent Order",

 "target": "Customers('ALFKI')/SampleEntities.MostRecentOrder()"

 },

 "CustomerID": "ALFKI",

 "CompanyName": "Alfreds Futterkiste",

 ...

}

11.5.3 Functions

Functions are operations exposed by an OData service that MUST return data and MUST have no
observable side effects.

11.5.3.1 Invoking a Function

To invoke a function bound to a resource, the client issues a GET request to a function URL. A function

URL may be obtained from a previously returned entity representation or constructed by appending the
namespace- or alias-qualified function name to a URL that identifies a resource whose type is the same
as, or derived from, the type of the binding parameter of the function. The value for the binding parameter
is the value of the resource identified by the URL prior to appending the function name, and additional
parameter values are specified using inline parameter syntax. If the function URL is obtained from a
previously returned entity representation, parameter aliases that are identical to the parameter name

preceded by an at (@) sign MUST be used. Clients MUST check if the obtained URL already contains a

query part and appropriately precede the parameters either with an ampersand (&) or a question mark

(?).

Functions can be used within $filter or $orderby system query options. Such functions can be

bound to a resource, as described above, or called directly by specifying the namespace- (or alias-)

qualified function name. Parameter values for functions within $filter or $orderby are specified

according to the inline parameter syntax.

To invoke a function through a function import the client issues a GET request to a URL identifying the

function import and passing parameter values using inline parameter syntax. The canonical URL for a
function import is the service root, followed by the name of the function import.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 57 of 74

Additional path segments and system query options may be appended to a URL or a path segment that
identifies a composable function (or function import) as appropriate for the type returned by the function
(or function import).

Services MAY support invoking a function or function import using a PUT, POST, PATCH or DELETE

requests where the target of the operation is the result of the function.

Example 73: add a new item to the list of items of the shopping cart returned by the composable MyShoppingCart

function import

POST http://host/service/MyShoppingCart()/Items

...

Parameter values passed to functions MUST be specified either as a URL literal (for primitive types) or as
a JSON formatted OData object (for complex types or collections of primitive types or complex types).

If a collection-valued function has no result for a given parameter value combination, the response is the
format-specific representation of an empty collection. If a single-valued function with a nullable return-type

has no result, the service returns 204 No Content.

If a single-valued function with a non-nullable return type has no result, the service returns 4xx. For

functions that return a single entity 404 Not Found is the appropriate response code.

For a composable function the processing is stopped when the function result requires a 4xx response,

and continues otherwise.

Function imports MUST NOT be used inside either the $filter or $orderby system query options.

11.5.3.1.1 Inline Parameter Syntax

Parameter values are specified inline by appending a comma-separated list of parameter values,
enclosed by parenthesis to the function name.

Each parameter value is represented as a name/value pair in the format Name=Value, where Name is the

name of the parameter to the function and Value is the parameter value.

Example 74: invoke a Sales.EmployeesByManager function which takes a single ManagerID parameter via the

function import EmployeesByManager

http://host/service/EmployeesByManager(ManagerID=3)

Example 75: return all Customers whose City property returns "Western" when passed to the

Sales.SalesRegion function

http://host/service/Customers?

 $filter=Sales.SalesRegion(City=$it/City) eq 'Western'

A parameter alias can be used in place of an inline parameter to a function call. The value for the alias is
specified as a separate query option using the name of the parameter alias.

Example 76: invoke a Sales.EmployeesByManager function via the function import EmployeesByManager,

passing 3 for the ManagerID parameter

http://host/service/EmployeesByManager(ManagerID=@p1)?@p1=3

11.5.3.2 Function overload resolution

The same function name may be used multiple times within a schema, each with a different set of
parameters. For unbound overloads the combination of the function name and the unordered list of
parameter types and names MUST identify a particular function overload. For bound overloads the
combination of the function name, the binding parameter type, and the unordered set of names of the
non-binding parameters MUST identify a particular function overload.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 58 of 74

All unbound overloads MUST have the same return type. Also, all bound overloads with a given binding
parameter type MUST have the same return type.

If the function is bound and the binding parameter type is part of an inheritance hierarchy, the function
overload is selected based on the type of the URL segment preceding the function name. A type-cast
segment can be used to select a function defined on a particular type in the hierarchy, see [OData-URL].

11.5.4 Actions

Actions are operations exposed by an OData service that MAY have side effects when invoked. Actions
MAY return data but MUST NOT be further composed with additional path segments.

11.5.4.1 Invoking an Action

To invoke an action bound to a resource, the client issues a POST request to an action URL. An action

URL may be obtained from a previously returned entity representation or constructed by appending the
namespace- or alias-qualified action name to a URL that identifies a resource whose type is the same as,
or derives from, the type of the binding parameter of the action. The value for the binding parameter is the
value of the resource identified by the URL prior to appending the action name, and any non-binding
parameter values are passed in the request body according to the particular format.

To invoke an action through an action import, the client issues a POST request to a URL identifying the

action import. The canonical URL for an action import is the service root, followed by the name of the
action import. When invoking an action through an action import all parameter values MUST be passed in
the request body according to the particular format.

Any nullable parameter values not specified in the request MUST be assumed to have the null value.

If the action returns results the client SHOULD use content type negotiation to request the results in the
desired format, otherwise the default content type will be used.

To request processing of the action only if the binding parameter value, an entity or collection of entities,

is unmodified, the client includes the If-Match header with the latest known ETag value for the entity or

collection of entities. The ETag value for a collection as a whole is transported in the ETag header of a

collection response.

On success, the response is 201 Created for actions that create entities, 200 OK for actions that return

results or 204 No Content for action without a return type. The client can request whether any results

from the action be returned using the Prefer header.

Example 77: invoke the SampleEntities.CreateOrder action using /Customers('ALFKI') as the customer

(or binding parameter). The values 2 for the quantity parameter and BLACKFRIDAY for the discountCode

parameter are passed in the body of the request

POST http://host/service/Customers('ALFKI')/SampleEntities.CreateOrder

{

 "quantity": 2,

 "discountCode": "BLACKFRIDAY"

}

11.5.4.2 Action Overload Resolution

The same action name may be used multiple times within a schema provided there is at most one
unbound overload, and each bound overload specifies a different binding parameter type.

If the action is bound and the binding parameter type is part of an inheritance hierarchy, the action
overload is selected based on the type of the URL segment preceding the action name. A type-cast
segment can be used to select an action defined on a particular type in the hierarchy, see [OData-URL].

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 59 of 74

11.6 Asynchronous Requests

A Prefer header with a respond-async preference allows clients to request that the service process a

Data Service Request asynchronously.

If the client has specified respond-async in the request, the service MAY process the request

asynchronously and return a 202 Accepted response. A service MUST NOT reply to a Data Service

Request with 202 Accepted if the request has not included the respond-async preference.

Responses that return 202 Accepted MUST have an empty response body and MUST include a

Location header pointing to a status monitor resource that represents the current state of the

asynchronous processing in addition to an optional Retry-After header indicating the time, in seconds,

the client should wait before querying the service for status.

A GET request to the status monitor resource again returns 202 Accepted response if the

asynchronous processing has not finished. This response MUST again include a Location header and

MAY include a Retry-After header to be used for a subsequent request. The Location header and

optional Retry-After header may or may not contain the same values as returned by the previous

request.

A GET request to the status monitor resource returns 200 OK once the asynchronous processing has

completed. This response MUST include a Content-Type header with value application/http and

a Content-Transfer-Encoding header with value binary as described in [RFC7230]. The response

body MUST enclose a single HTTP response which is the response to the initial Data Service Request.

A DELETE request sent to the status monitor resource requests that the asynchronous processing be

canceled. A 200 OK or a 204 No Content response indicates that the asynchronous processing has

been successfully canceled. A client can request that the DELETE should be executed asynchronously. A

202 Accepted response indicates that the cancellation is being processed asynchronously; the client

can use the returned Location header (which MUST be different from the status monitor resource of

the initial request) to query for the status of the cancellation. If a delete request is not supported by the

service, the service returns 405 Method Not Allowed.

After a successful DELETE request against the status monitor resource, any subsequent GET requests for

the same status monitor resource returns 404 Not Found.

If an asynchronous request is cancelled for reasons other than the consumers issuing a DELETE request

against the status monitor resource, a GET request to the status monitor resource returns 200 OK with a

response body containing a single HTTP response with a status code in the 5xx Server Error range

indicating that the operation was cancelled.

The service MUST ensure that no observable change has occurred as a result of a canceled request.

If the client waits too long to request the result of the asynchronous processing, the service responds with

a 410 Gone or 404 Not Found.

The status monitor resource URL MUST differ from any other resource URL.

11.7 Batch Requests

Batch requests allow grouping multiple operations into a single HTTP request payload. A batch request is
represented as a Multipart MIME v1.0 message [RFC2046], a standard format allowing the
representation of multiple parts, each of which may have a different content type (as described in [OData-
Atom] and [OData-JSON]), within a single request.

11.7.1 Batch Request Headers

Batch requests are submitted as a single HTTP POST request to the batch endpoint of a service, located

at the URL $batch relative to the service root.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 60 of 74

The batch request MUST contain a Content-Type header specifying a content type of

multipart/mixed and a boundary specification as defined in [RFC2046] is defined in the Batch

Request Body section below.

Batch requests SHOULD contain the applicable OData-Version header.

Example 78:

POST /service/$batch HTTP/1.1

Host: odata.org

OData-Version: 4.0

OData-MaxVersion: 4.0

Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-

56071383e77b

<Batch Request Body>

11.7.2 Batch Request Body

The body of a batch request is made up of a series of individual requests and change sets, each

represented as a distinct MIME part (i.e. separated by the boundary defined in the Content-Type

header).

The service MUST process the requests within a batch request sequentially. Processing stops on the first

error unless the odata.continue-on-error preference is specified.

An individual request in the context of a batch request is a Data request, Data Modification request,
Action invocation request, or Function invocation request. A MIME part representing an individual request

MUST include a Content-Type header with value application/http and a Content-Transfer-

Encoding header with value binary.

Preambles and Epilogues in the MIME payload, as defined in [RFC2046], are valid but are assigned no

meaning and thus MUST be ignored by processors of batch requests.

The Request-URI of HTTP requests serialized within MIME part bodies can use one of the following three
formats:

 Absolute URI with schema, host, port, and absolute resource path.

Example 79:

GET https://host:1234/path/service/People(1) HTTP/1.1

 Absolute resource path and separate Host header.

Example 80:

GET /path/service/People(1) HTTP/1.1

Host: myserver.mydomain.org:1234

 Resource path relative to the batch request URI.

Example 81:

GET People(1) HTTP/1.1

Services MUST support all three formats.

Each MIME part body that represents a single request MUST NOT include:

 authentication or authorization related HTTP headers

 Expect, From, Max-Forwards, Range, or TE headers

Processors of batch requests MAY choose to disallow additional HTTP constructs in HTTP requests
serialized within MIME part bodies. For example, a processor may choose to disallow chunked encoding
to be used by such HTTP requests.

Example 82: a batch request that contains the following operations in the order listed

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 61 of 74

1. A query request

2. Change Set that contains the following requests:

 Insert entity (with Content-ID = 1)

 Update request (with Content-ID = 2)

3. A second query request

Note: For brevity, in the example, request bodies are excluded in favor of English descriptions inside <>

brackets and OData-Version headers are omitted.

Note also that the two empty lines after the Host header of the GET request are necessary: the first is part of

the GET request header; the second is the empty body of the GET request, followed by a CRLF according to

[RFC2046].

POST /service/$batch HTTP/1.1

Host: host

OData-Version: 4.0

Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-

56071383e77b

Content-Length: ###

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: application/http

Content-Transfer-Encoding:binary

GET /service/Customers('ALFKI')

Host: host

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: multipart/mixed;boundary=changeset_77162fcd-b8da-41ac-a9f8-

9357efbbd

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 1

POST /service/Customers HTTP/1.1

Host: host

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of a new Customer>

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-Transfer-Encoding:binary

Content-ID: 2

PATCH /service/Customers('ALFKI') HTTP/1.1

Host: host

Content-Type: application/json

If-Match: xxxxx

Content-Length: ###

<JSON representation of Customer ALFKI>

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 62 of 74

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd--

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: application/http

Content-Transfer-Encoding: binary

GET /service/Products HTTP/1.1

Host: host

--batch_36522ad7-fc75-4b56-8c71-56071383e77b--

11.7.3 Change Sets

A change set is an atomic unit of work consisting of an unordered group of one or more Data Modification

requests or Action invocation requests. Change sets MUST NOT contain any GET requests or other

change sets. The contents of a MIME part representing a change set MUST itself be a multipart MIME
document (see [RFC2046]) with one part for each operation that makes up the change set. Each part

representing an operation in the change set MUST include the same headers (Content-Type and

Content-Transfer-Encoding) and associated values as previously described for operations. In

addition each request within a change set MUST specify a Content-ID header with a value unique

within the batch request. The syntax of the Content-ID header is specified by rule content-id in

[OData-ABNF].

11.7.3.1 Referencing New Entities in a Change Set

Entities created by an Insert request within a change set can be referenced by subsequent requests
within the same change set in places where a resource path to an existing entity can be specified. The

temporary resource path for a newly inserted entity is the value of the Content-ID header prefixed with

a $ character. If $<Content-ID> is identical to the name of a top-level system resource ($batch,

$crossjoin, $all, $entity, $root, $id, $metadata, or other system resources defined

according to the OData-Version of the protocol specified in the request), then the reference to the top-

level system resource is used.

Example 83: a batch request that contains the following operations in the order listed:

A change set that contains the following requests:

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 63 of 74

 Insert a new entity (with Content-ID = 1)

 Insert a second new entity (references request with Content-ID = 1)

POST /service/$batch HTTP/1.1

Host: host

OData-Version: 4.0

Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-

56071383e77b

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: multipart/mixed;boundary=changeset_77162fcd-b8da-41ac-a9f8-

9357efbbd

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 1

POST /service/Customers HTTP/1.1

Host: host

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of a new Customer>

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 2

POST $1/Orders HTTP/1.1

Host: host

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of a new Order>

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd--

--batch_36522ad7-fc75-4b56-8c71-56071383e77b--

11.7.4 Responding to a Batch Request

Requests within a batch are evaluated according to the same semantics used when the request appears
outside the context of a batch.

The order of change sets and individual requests in a Batch request is significant. A service MUST
process the components of the Batch in the order received. The order of requests within a change set is
not significant; a service may process the requests within a change set in any order.

All operations in a change set represent a single change unit so a service MUST successfully process
and apply all the requests in the change set or else apply none of them. It is up to the service
implementation to define rollback semantics to undo any requests within a change set that may have
been applied before another request in that same change set failed and thereby apply this all-or-nothing
requirement. The service MAY execute the requests within a change set in any order and MAY return the

responses to the individual requests in any order. The service MUST include the Content-ID header in

each response with the same value that the client specified in the corresponding request, so clients can
correlate requests and responses.

If the set of request headers of a Batch request are valid (the Content-Type is set to

multipart/mixed, etc.) the service MUST return a 200 OK HTTP response code to indicate that the

request was accepted for processing, but the processing is yet to be completed. The requests within the
body of the batch may subsequently fail or be malformed; however, this enables batch implementations to
stream the results.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 64 of 74

If the service receives a Batch request with an invalid set of headers it MUST return a 4xx response

code and perform no further processing of the request.

A response to a batch request MUST contain a Content-Type header with value multipart/mixed.

Structurally, a batch response body MUST match one-to-one with the corresponding batch request body,
such that the same multipart MIME message structure defined for requests is used for responses. There
are three exceptions to this rule:

 When a request within a change set fails, the change set response is not represented using the

multipart/mixed media type. Instead, a single response, using the application/http

media type and a Content-Transfer-Encoding header with a value of binary, is returned

that applies to all requests in the change set and MUST be formatted according to the Error
Handling defined for the particular response format.

 When an error occurs processing a request and the odata.continue-on-error preference is

not specified, processing of the batch is terminated and the error response is the last part of the
multi-part response.

 Asynchronously processed batch requests can return interim results and end with a 202

Accepted as the last part of the multi-part response.

A response to an operation in a batch MUST be formatted exactly as it would have appeared outside of a
batch as described in Requesting Data or Invoking a Function, as appropriate.

Example 84: referencing the batch request example 82 above, assume all the requests except the final query request
succeed. In this case the response would be

HTTP/1.1 200 Ok

OData-Version: 4.0

Content-Length: ####

Content-Type: multipart/mixed;boundary=b_243234_25424_ef_892u748

--b_243234_25424_ef_892u748

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 200 Ok

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of the Customer entity with EntityKey ALFKI>

--b_243234_25424_ef_892u748

Content-Type: multipart/mixed;boundary=cs_12u7hdkin252452345eknd_383673037

--cs_12u7hdkin252452345eknd_383673037

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 1

HTTP/1.1 201 Created

Content-Type: application/atom+xml;type=entry

Location: http://host/service.svc/Customer('POIUY')

Content-Length: ###

<AtomPub representation of a new Customer entity>

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 65 of 74

--cs_12u7hdkin252452345eknd_383673037

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 2

HTTP/1.1 204 No Content

Host: host

--cs_12u7hdkin252452345eknd_383673037--

--b_243234_25424_ef_892u748

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: ###

<Error message>

--b_243234_25424_ef_892u748--

11.7.5 Asynchronous Batch Requests

Batch requests may be executed asynchronously by including the respond-async preference in the

Prefer header. The service MUST ignore the respond-async preference for individual requests within a

batch.

After successful execution of the batch request the response to the batch request would be returned in
the body of a response to an interrogation request against the status monitor resource URL (see section

11.6 “Asynchronous Requests”).

A service MAY return interim results to an asynchronously executing batch. It does this by including a

202 Accepted response as the last part of the multi-part response. The client can use the monitor URL

returned in this 202 Accepted response to continue processing the batch response.

Since a change set is executed atomically, 202 Accepted MUST NOT be returned within a change set.

Example 85: referencing the example 82 above again, assume that when interrogating the monitor URL for the first
time only the first request in the batch finished processing and all the remaining requests except the final query
request succeed. In this case the responses would be

HTTP/1.1 200 Ok

OData-Version: 4.0

Content-Length: ####

Content-Type: multipart/mixed;boundary=b_243234_25424_ef_892u748

--b_243234_25424_ef_892u748

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 200 Ok

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of the Customer entity with EntityKey ALFKI>

--b_243234_25424_ef_892u748

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 202 Accepted

Location: http://service-root/async-monitor

Retry-After: ###

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 66 of 74

--b_243234_25424_ef_892u748--

Client makes a second request using the returned monitor URL

HTTP/1.1 200 Ok

OData-Version: 4.0

Content-Length: ####

Content-Type: multipart/mixed;boundary=b_243234_25424_ef_892u748

--b_243234_25424_ef_892u748

Content-Type: multipart/mixed;boundary=cs_12u7hdkin252452345eknd_383673037

--cs_12u7hdkin252452345eknd_383673037

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 1

HTTP/1.1 201 Created

Content-Type: application/atom+xml;type=entry

Location: http://host/service.svc/Customer('POIUY')

Content-Length: ###

<AtomPub representation of a new Customer entity>

--cs_12u7hdkin252452345eknd_383673037

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 2

HTTP/1.1 204 No Content

Host: host

--cs_12u7hdkin252452345eknd_383673037--

--b_243234_25424_ef_892u748

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: ###

<Error message>

--b_243234_25424_ef_892u748—

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 67 of 74

12 Security Considerations
This section is provided as a service to the application developers, information providers, and users of
OData version 4.0 giving some references to starting points for securing OData services as specified.
OData is a REST-full multi-format service that depends on other services and thus inherits both sides of
the coin, security enhancements and concerns alike from the latter.

For HTTP relevant security implications please cf. the relevant sections of [RFC7231] (9. Security

Considerations) and for the HTTP PATCH method [RFC5023] (5. Security Considerations) as starting

points.

12.1 Authentication

OData Services requiring authentication SHOULD consider supporting basic authentication as specified
in [RFC2617] over HTTPS for the highest level of interoperability with generic clients. They MAY support

other authentication methods.

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 68 of 74

13 Conformance
OData is designed as a set of conventions that can be layered on top of existing standards to provide
common representations for common functionality. Not all services will support all of the conventions
defined in the protocol; services choose those conventions defined in OData as the representation to
expose that functionality appropriate for their scenarios.

To aid in client/server interoperability, this specification defines multiple levels of conformance for an
OData Service, as well as the minimal requirements for an OData Client to be interoperable across OData
services.

13.1 OData Service Conformance Levels

OData defines three levels of conformance for an OData Service.

Note: The conformance levels are design to correspond to different service scenarios. For example, a
service that publishes data compliant with one or more of the OData defined formats may comply with the
OData Minimal Conformance Level without supporting any additional functionality. A service that offers
more control over the data that the client retrieves may comply with the OData Intermediate Conformance
Level. Services that conform to the OData Advanced Conformance Level can expect to interoperate with
the most functionality against the broadest range of generic clients. Services can advertise their level of
conformance by the OData Conformance Level Annotation.

Services can advertise their level of conformance by annotating their entity container with the

Capabilities.ConformanceLevel annotation defined in [OData-VocCap].

Note: Services are encouraged to support as much additional functionality beyond their level of
conformance as is appropriate for their intended scenario.

13.1.1 OData Minimal Conformance Level

In order to conform to the OData Minimal conformance level, a service:

1. MUST publish a service document at the service root (section 11.1.1)

2. MUST return data according to at least one of the OData defined formats (section 7)

3. MUST support server-driven paging when returning partial results (section 11.2.5.7)

4. MUST return the appropriate OData-Version header (section 8.1.5)

5. MUST conform to the semantics the following headers, or fail the request

5.1. Accept (section 8.2.1)

5.2. OData-MaxVersion (section 8.2.7)

6. MUST follow OData guidelines for extensibility (section 6 and all subsections)

7. MUST successfully parse the request according to [OData-ABNF] for any supported system query

string options and either follow the specification or return 501 Not Implemented (section 9.3.1) for

any unsupported functionality (section 11.2.1)

8. MUST expose only data types defined in [OData-CSDL]

9. MUST NOT require clients to understand any metadata or instance annotations (section 6.4), custom
headers (section 6.5), or custom content (section 6.2) in the payload in order to correctly consume
the service

10. MUST NOT violate any OData update semantics (section 11.4 and all subsections)

11. MUST NOT violate any other OData-defined semantics

12. SHOULD support $expand (section 11.2.4.2)

13. MAY publish metadata at $metadata according to [OData-CSDL] (section 11.1.2)

In addition, to be considered an Updatable OData Service, the service:

14. MUST include edit links (explicitly or implicitly) for all updatable or deletable resources according to
[OData-Atom] and [OData-JSON]

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 69 of 74

15. MUST support POST of new entities to insertable entity sets (section 11.4.1.5 and 11.4.2.1)

16. MUST support POST of new related entities to updatable navigation properties (section 11.4.6.1)

17. MUST support POST to $ref to add an existing entity to an updatable related collection (section

11.4.6.1)

18. MUST support PUT to $ref to set an existing single updatable related entity (section 11.4.6.3)

19. MUST support PATCH to all edit URLs for updatable resources (section 11.4.3)

20. MUST support DELETE to all edit URLs for deletable resources (section 11.4.5)

21. MUST support DELETE to $ref to remove an entity from an updatable navigation property (section

11.4.6.2)

22. MUST support if-match header in update/delete of any resources returned with an ETag (section
11.4.1.1)

23. MUST return a Location header with the edit URL or read URL of a created resource (section

11.4.1.5)

24. MUST include the OData-EntityId header in response to any POST/PATCH that returns 204 No

Content (Section 8.3.3)

25. MUST support Upserts (section 11.4.4)

26. SHOULD support PUT and PATCH to an individual primitive (section 11.4.9.1) or complex (section

11.4.9.3) property (respectively)

27. SHOULD support DELETE to set an individual property to null (section 11.4.9.2)

28. SHOULD support deep inserts (section 11.4.2.2)

13.1.2 OData Intermediate Conformance Level

In order to conform to the OData Intermediate Conformance Level, a service:

1. MUST conform to the OData Minimal Conformance Level

2. MUST successfully parse the [OData-ABNF] and either follow the specification or return 501 Not

Implemented for any unsupported functionality (section 9.3.1)

3. MUST support $select (section11.2.4.1)

4. MUST support casting to a derived type according to [OData-URL] if derived types are present in the
model

5. MUST support $top (section 11.2.5.3)

6. MUST support /$value on media entities (section 4.10. in [OData-URL]) and individual properties

(section 11.2.3.1)

7. MUST support $filter (section 11.2.5.1)

7.1. MUST support eq, ne filter operations on properties of entities in the requested entity set (section

11.2.5.1.1)

7.2. MUST support aliases in $filter expressions (section 11.2.5.1.3)

7.3. SHOULD support additional filter operations (section 11.2.5.1.1) and MUST return 501 Not

Implemented for any unsupported filter operations (section 9.3.1)

7.4. SHOULD support the canonical functions (section 11.2.5.1.2) and MUST return 501 Not

Implemented for any unsupported canonical functions (section 9.3.1)

7.5. SHOULD support $filter on expanded entities (section 11.2.4.2.1)

8. SHOULD publish metadata at $metadata according to [OData-CSDL] (section 11.1.2)

9. SHOULD support the [OData-JSON] format

10. SHOULD consider supporting basic authentication as specified in [RFC2617] over HTTPS for the
highest level of interoperability with generic clients

11. SHOULD support the $search system query option (section 11.2.5.6)

12. SHOULD support the $skip system query option (section 11.2.5.4)

13. SHOULD support the $count system query option (section 11.2.5.5)

14. SHOULD support $expand (section 11.2.4.2)

15. SHOULD support the lambda operators any and all on navigation- and collection-valued properties

(section 5.1.1.5 in [OData-URL])

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 70 of 74

16. SHOULD support the /$count segment on navigation and collection properties (section 11.2.9)

17. SHOULD support $orderby asc and desc on individual properties (section 11.2.5.2)

13.1.3 OData Advanced Conformance Level

In order to conform to the OData Advanced Conformance Level, a service:

1. MUST conform to at least the OData Intermediate Conformance Level

2. MUST publish metadata at $metadata according to [OData-CSDL] (section 11.1.2)

3. MUST support the [OData-JSON] format

4. MUST support the /$count segment on navigation and collection properties (section 11.2.9)

5. MUST support the lambda operators any and all on navigation- and collection-valued properties

(section 5.1.1.5 in [OData-URL])

6. MUST support the $skip system query option (section 11.2.5.4)

7. MUST support the $count system query option (section 11.2.5.5)

8. MUST support $orderby asc and desc on individual properties (section 11.2.5.2)

9. MUST support $expand (section 11.2.4.2)

9.1. MUST support returning references for expanded properties (section 11.2.4.2)

9.2. MUST support $filter on expanded entities (section 11.2.4.2.1)

9.3. MUST support cast segment in expand with derived types (section 11.2.4.2.1)

9.4. SHOULD support $orderby asc and desc on individual properties (section 11.2.4.2.1)

9.5. SHOULD support the $count system query option for expanded properties (section 11.2.4.2.1)

9.6. SHOULD support $top and $skip on expanded properties (section 11.2.4.2.1)

9.7. SHOULD support $search on expanded properties (section 11.2.4.2.1)

9.8. SHOULD support $levels for recursive expand (section 11.2.4.2.1.1)

10. MUST support the $search system query option (section 11.2.5.6)

11. MUST support batch requests (section11.7 and all subsections)

12. MUST support the resource path conventions defined in [OData-URL]

13. SHOULD support Asynchronous operations (section 8.2.8.8)

14. SHOULD support Delta change tracking (section 8.2.8.6)

15. SHOULD support cross-join queries defined in [OData-URL]

16. SHOULD support a conforming OData service interface over metadata (section 11.1.3)

13.2 Interoperable OData Clients

Interoperable OData Clients can expect to work with OData Services that comply with at least the OData
Minimal Conformance Level and implement the [OData-JSON] format. Clients that additionally support
[OData-Atom] can expect to interoperate with a broader range of OData Services.

To be generally interoperable, OData Clients

1. MUST specify the OData-MaxVersion header in requests (section 8.2.6)

2. MUST specify OData-Version (section 8.1.5) and Content-Type (section 8.1.1) in any request

with a payload

3. MUST be a conforming consumer of OData as defined in [OData-JSON]

4. MUST follow redirects (section 9.1.5)

5. MUST correctly handle next links (section 11.2.5.7)

6. MUST support instances returning properties and navigation properties not specified in metadata
(section 11.2)

7. MUST generate PATCH requests for updates, if the client supports updates (section 11.4.3)

8. SHOULD support basic authentication as specified in [RFC2617] over HTTPS

9. MAY request entity references in place of entities previously returned in the response (section 11.2.7)

10. MAY support deleted entities, link entities, deleted link entities in a delta response (section 11.3)

11. MAY support asynchronous responses (section 9.1.3)

12. MAY support odata.metadata=minimal in a JSON response (see [OData-JSON])

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 71 of 74

13. MAY support odata.streaming in a JSON response (see [OData-JSON])

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 72 of 74

Appendix A. Acknowledgments

The following individuals were members of the OASIS OData Technical Committee during the creation of
this specification and their contributions are gratefully acknowledged:

 Howard Abrams (CA Technologies)

 Ken Baclawski (Northeastern University)

 Jay Balunas (Red Hat)

 Mark Biamonte (Progress Software)

 Matthew Borges (SAP AG)

 Edmond Bourne (BlackBerry)

 Joseph Boyle (Planetwork, Inc.)

 Peter Brown (Individual)

 Antonio Campanile (Bank of America)

 Pablo Castro (Microsoft)

 Axel Conrad (BlackBerry)

 Robin Cover (OASIS)

 Erik de Voogd (SDL)

 Diane Downie (Citrix Systems)

 Stefan Drees (Individual)

 Patrick Durusau (Individual)

 Andrew Eisenberg (IBM)

 Chet Ensign (OASIS)

 Davina Erasmus (SDL)

 Colleen Evans (Microsoft)

 Senaka Fernando (WSO2)

 Brent Gross (IBM)

 Zhun Guo (Individual)

 Anila Kumar GVN (CA Technologies)

 Ralf Handl (SAP AG)

 Barbara Hartel (SAP AG)

 Hubert Heijkers (IBM)

 Jens Hüsken (SAP AG)

 Evan Ireland (SAP AG)

 Gershon Janssen (Individual)

 Ram Jeyaraman (Microsoft)

 Ted Jones (Red Hat)

 Diane Jordan (IBM)

 Stephan Klevenz (SAP AG)

 Gerald Krause (SAP AG)

 Nuno Linhares (SDL)

 Paul Lipton (CA Technologies)

 Susan Malaika (IBM)

 Ramanjaneyulu Malisetti (CA Technologies)

 Neil McEvoy (iFOSSF – International Free
and Open Source Solutions Foundation)

 Stan Mitranic (CA Technologies)

 Dale Moberg (Axway Software)

 Graham Moore (BrightstarDB Ltd.)

 Farrukh Najmi (Individual)

 Shishir Pardikar (Citrix Systems)

 Sanjay Patil (SAP AG)

 Nuccio Piscopo (iFOSSF – International Free
and Open Source Solutions Foundation)

 Michael Pizzo (Microsoft)

 Robert Richards (Mashery)

 Sumedha Rubasinghe (WSO2)

 James Snell (IBM)

 Jeffrey Turpin (Axway Software)

 John Willson (Individual)

 John Wilmes (Individual)

 Christopher Woodruff (Perficient, Inc.)

 Martin Zurmuehl (SAP AG)

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 73 of 74

Appendix B. Revision History

Revision Date Editor Changes Made

Working Draft
01

2012-08-22 Michael Pizzo Translated Contribution to OASIS
format/template

Committee
Specification
Draft 01

2013-04-26 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Added Delta support, Asynchronous
processing, Upsert

Aligned and expanded Prefer header
preferences

Simplified data model

Defined rules and semantics around distributed
metadata

Fleshed out descriptions and examples and
addressed numerous editorial and technical
issues processed through the TC

Added Conformance section

Committee
Specification
Draft 02

2013-07-01 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Cleaned up action and function overloads and
binding, removed old-style function parameter
syntax

Improved asynchronous processing and added
callback notifications

Improved context URL (formerly: metadata
URL)

Improved handling of empty results

Improved description of rules for processing

PUT and POST requests, especially deep

inserts

Harmonized $count and $inlinecount

Committee
Specification 01

2013-07-30 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Non-Material Changes

Committee
Specification
Draft 03

2013-10-03 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Improved description of type-cast rules

Committee
Specification 02

2013-11-04 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Non-Material Changes

OASIS
Specification

2014-02-24 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Non-Material Changes

Errata 01 2014-07-24 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Minor changes and improvements

odata-v4.0-errata02-os-part1-protocol-complete 30 October 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 74 of 74

Errata 02 2014-10-29 Michael Pizzo,
Ralf Handl,
Martin Zurmuehl

Repaired mechanical error in the editable
source

