[image: ]
OASIS Committee Note
OData to OpenAPI Mapping Version 1.0
Committee Note 01
11 July 2019
This stage:
https://docs.oasis-open.org/odata/odata-openapi/v1.0/cn01/odata-openapi-v1.0-cn01.docx (Authoritative)
https://docs.oasis-open.org/odata/odata-openapi/v1.0/cn01/odata-openapi-v1.0-cn01.html
https://docs.oasis-open.org/odata/odata-openapi/v1.0/cn01/odata-openapi-v1.0-cn01.pdf
Previous stage:
http://docs.oasis-open.org/odata/odata-openapi/v1.0/cnprd01/odata-openapi-v1.0-cnprd01.docx (Authoritative)
http://docs.oasis-open.org/odata/odata-openapi/v1.0/cnprd01/odata-openapi-v1.0-cnprd01.html
http://docs.oasis-open.org/odata/odata-openapi/v1.0/cnprd01/odata-openapi-v1.0-cnprd01.pdf
Latest stage:
https://docs.oasis-open.org/odata/odata-openapi/v1.0/odata-openapi-v1.0.docx (Authoritative)
https://docs.oasis-open.org/odata/odata-openapi/v1.0/odata-openapi-v1.0.html
https://docs.oasis-open.org/odata/odata-openapi/v1.0/odata-openapi-v1.0.pdf
Technical Committee:
OASIS Open Data Protocol (OData) TC
Chairs:
Ralf Handl (ralf.handl@sap.com), SAP SE
Mike Pizzo (mikep@microsoft.com), Microsoft
Editors:
Ralf Handl (ralf.handl@sap.com), SAP SE
Hubert Heijkers (hubert.heijkers@nl.ibm.com), IBM 
Mike Pizzo (mikep@microsoft.com), Microsoft
Martin Zurmuehl (martin.zurmuehl@sap.com), SAP SE
Related work:
[bookmark: _GoBack]This document is related to:
OData Version 4.01. Part 1: Protocol. Latest version. http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html.
OData Version 4.01. Part 2: URL Conventions. Latest version. http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html.
OData Common Schema Definition Language (CSDL) XML Representation Version 4.01. Latest Version. http://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html
OData JSON Format Version 4.01. Latest Version. http://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html
OData Vocabularies Version 4.0. Latest Version. http://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html
Abstract:
The Open Data Protocol (OData) is an open protocol for creating and consuming queryable and interoperable RESTful APIs in a simple and standard way. OData services are described by an entity-relationship model, and the model description is an integral part of each OData service.
The OpenAPI Specification (OAS) is a standard, language-agnostic interface to REST APIs which allows both humans and computers to discover and understand the capabilities of the service. This document describes a possible mapping of OData service descriptions to OAS documents.
Status:
This is a Non-Standards Track Work Product. The patent provisions of the OASIS IPR Policy do not apply.
This document was last revised or approved by the OASIS Open Data Protocol (OData) TC on the above date. The level of approval is also listed above. Check the "Latest stage" location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical.
TC members should send comments on this document to the TC's email list. Others should send comments to the TC's public comment list, after subscribing to it by following the instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/odata/.
Citation format:
When referencing this document the following citation format should be used:
[OData-OpenAPI-v1.0]
OData to OpenAPI Mapping Version 1.0. Edited by Ralf Handl, Hubert Heijkers, Mike Pizzo, and Martin Zurmuehl. 11 July 2019. OASIS Committee Note 01. https://docs.oasis-open.org/odata/odata-openapi/v1.0/cn01/odata-openapi-v1.0-cn01.html. Latest version: https://docs.oasis-open.org/odata/odata-openapi/v1.0/odata-openapi-v1.0.html.
Notices
Copyright © OASIS Open 2019.  All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Table of Contents
1	Introduction	6
1.1 References (non-normative)	6
2	Design Principles	8
3	Providing OAS Documents for an OData Service	9
4	OAS Document Structure	10
4.1 Field openapi	10
4.2 Field info	10
4.2.1 Field title	10
4.2.2 Field version	10
4.2.3 Field description	11
4.3 Field servers	11
4.4 Field tags	11
4.5 Field paths	12
4.5.1 Paths for Collections of Entities	13
4.5.1.1 Query a Collection of Entities	13
4.5.1.2 Create an Entity	17
4.5.1.3 Invoke Bound Actions and Functions on Collections	18
4.5.2 Paths for Single Entities	20
4.5.2.1 Retrieve an Entity	21
4.5.2.2 Update an Entity	23
4.5.2.3 Delete an Entity	25
4.5.2.4 Invoke Bound Actions and Functions on Single Entities	26
4.5.3 Paths for Action Imports	26
4.5.4 Paths for Function Imports	28
4.6 Field components	29
4.6.1 Field schemas	29
4.6.1.1 Schemas for Entity Types and Complex Types	30
4.6.1.1 Properties	31
4.6.1.1.1 Primitive Properties	32
4.6.1.1.2 Single-Value Complex and Navigation Properties	37
4.6.1.1.3 Collection-Valued Properties	38
4.6.1.2 Schemas for Enumeration Types	38
4.6.1.3 Schemas for Type Definitions	39
4.6.2 Field parameters	39
4.6.3 Field responses	40
4.6.4 Field securitySchemes	41
4.7 Field security	41
5	Annotations influencing OAS Documents	42
5.1 Authorization Vocabulary	42
5.2 Capabilities Vocabulary	42
5.3 Core Vocabulary	43
5.4 Validation Vocabulary	43
6	Example	44
Appendix A.	Acknowledgments	45
Appendix B.	Revision History	46
[Type the document title]







wp-abbrev-v1.0-cndNN		DD Month 2018
Non-Standards Track	Copyright © OASIS Open 2018.  All Rights Reserved.	Page 1 of 9
This is a Non-Standards Track Work Product. The patent provisions of the OASIS IPR Policy do not apply.

2

odata-openapi-v1.0-cn01		11 July 2019
Non-Standards Track	Copyright © OASIS Open 2019.  All Rights Reserved.	Page 2 of 9

1 [bookmark: _Toc16003245][bookmark: _Toc13813023]Introduction
The Open Data Protocol (OData) is an application-level protocol for interacting with data via RESTful APIs. It supports the description of data models and the editing and querying of data according to those models. The OData Protocol is different from other REST-based web service approaches in that it provides a uniform way to describe both the data and the data model. This improves semantic interoperability between systems. The Entity Data Model (EDM) describing an OData service is part of the service itself. [OData-CSDL] defines an XML representation of the entity data model exposed by an OData service. 
The OpenAPI Specification (OAS, formerly known as Swagger RESTful API Documentation Specification) defines a standard, language-agnostic interface to RESTful APIs which allows both humans and computers to discover and understand the capabilities of the service without access to source code, documentation, or through network traffic inspection. When properly defined, a consumer can understand and interact with the remote service with a minimal amount of implementation logic. An OpenAPI definition can then be used by documentation generation tools to display the API, code generation tools to generate servers and clients in various programming languages, testing tools, and many other use cases. 
This document describes a possible mapping of OData service descriptions to OAS documents which allows OpenAPI tools to be used for interacting with OData services.
OData is based on a powerful set of concepts and conventions which allow rich interaction with OData services. OpenAPI on the other hand does not assume or rely on any conventions and requires explicit and – from an OData perspective – relatively low-level and repetitive description of each service feature. As a consequence, this mapping only translates the basic features of an OData service into OpenAPI terms to allow an easy “first contact” by exploring it e.g. with the Swagger UI [Swagger UI], rather than trying to capture all features of an OData service in an unmanageably long OAS document.
1.1 [bookmark: _Toc16003246][bookmark: _Toc13813024]References (non-normative)
[bookmark: odataCSDL][OData-CSDL]	OData Common Schema Definition Language (CSDL) XML Representation Version 4.01. 
See link in “Related work” section on cover page.
[bookmark: odataJSON][OData-JSON]	OData JSON Format Version 4.01. 
See link in “Related work” section on cover page.
[bookmark: odataOpenAPI][OData-OpenAPI]	odata-openapi OASIS TC GitHub repository
https://github.com/oasis-tcs/odata-openapi. 
[bookmark: odataProtocol][OData-Protocol]	OData Version 4.01 Part 1: Protocol. 
See link in “Related work” section on cover page.
[bookmark: odataURL][OData-URL]	OData Version 4.01 Part 2: URL Conventions. 
See link in "Related work" section on cover page.
[bookmark: VocAuth][OData-VocAuth]	OData Vocabularies Version 4.0: Authorization Vocabulary. 
See link in "Related work" section on cover page.
[bookmark: VocCapabilities][OData-VocCap]	OData Vocabularies Version 4.0: Capabilities Vocabulary. 
See link in "Related work" section on cover page.
[bookmark: VocCore][OData-VocCore]	OData Vocabularies Version 4.0: Core Vocabulary. 
See link in "Related work" section on cover page.
[bookmark: VocValidation][OData-VocVal]	OData Vocabularies Version 4.0: Core Vocabulary. 
See link in "Related work" section on cover page.
[bookmark: OpenAPIspec][OpenAPI]	OpenAPI Specification Version 3.0.2, 
https://openapis.org/specification, specifically https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md 
[bookmark: _Toc287336980][bookmark: _Toc287337063][bookmark: rfcJSON][RFC8259]	Bray, T., Ed., “The JavaScript Object Notation (JSON) Data Interchange Format”, RFC 8259, December 2017. http://tools.ietf.org/html/rfc827159. 
[bookmark: SwaggerUI][Swagger UI]	https://github.com/swagger-api/swagger-ui
[bookmark: YAML][YAML]	YAML Ain‘t Markup Language (YAMLTM), Version 1.2, 3rd Edition, Patched at 2001-10-01. Copyright © 2001-2009 Oren Ben-Kiki, Clark Evans, Ingy döt Net. http://www.yaml.org/spec/1.2/spec.html 
2 [bookmark: _Toc16003247][bookmark: _Toc13813025]Design Principles
Given the different goals of and levels of abstractions used by OData and OpenAPI, this mapping of OData metadata documents into OAS documents is intentionally lossy and only tries to preserve the main features of an OData service:
· The entity container is translated into an OpenAPI Paths Object with path templates and operation objects for all top-level resources described by the entity container
· Structure-describing CSDL elements (structured types, type definitions, enumerations) are translated into OpenAPI Schema Objects within the OpenAPI Components Object
· CSDL constructs that don’t have an OpenAPI counterpart are omitted
3 [bookmark: _Toc16003248][bookmark: _Toc13813026]Providing OAS Documents for an OData Service
OAS documents describing an OData service can be provided in several ways, and the examples given here are by no means exhaustive or mutually exclusive. 
Typical provisioning is as a static resource, e.g. as part of a Service Catalog or API Hub.
A more OData-ish way is to provide the OAS document as part of the service. Following the OpenAPI convention, this would be a resource <service-root>/openapi.json at the service root, next to <service-root>/$metadata.
4 [bookmark: _Toc16003249][bookmark: _Toc13813027]OAS Document Structure
OAS documents are represented as JSON objects and conform to [RFC8259]. [YAML], being a superset of JSON, can be used as well to represent an OAS document. 
An OAS document consists of a single OpenAPI Object, see [OpenAPI]. It is represented as a JSON object. How to construct each of its name/value pairs (“fields” in OpenAPI terminology) is described in the following sections.
Example 1: Structure of an OAS document
{
  "openapi":"3.0.1",
  "info": …,
  "servers": …,
  "tags": …,
  "paths": …,
  "components": …
}
4.1 [bookmark: _Toc16003250][bookmark: _Toc13813028]Field openapi
The value of openapi is a string representing the OpenAPI version used, e.g. "3.0.2".
4.2 [bookmark: _Toc16003251][bookmark: _Toc13813029]Field info
The value of info is an Info Object, see [OpenAPI]. It contains the fields title and version, and optionally the field description.
Example 2: Info Object – note that description allows CommonMark syntax
"info":{
  "title":"OData Service for namespace ODataDemo",
  "version":"0.1.0",
  "description":"This OData service is located at [http://localhost/service-root/](http://localhost/service-root/)\n\n## References\n- [Org.OData.Core.V1](https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md)\n- [Org.OData.Measures.V1](https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Measures.V1.md)"
}
4.2.1 [bookmark: _Toc508284057][bookmark: _Toc13813030][bookmark: _Toc16003252] Field title
The value of title is the value of the unqualified annotation Core.Description (see [OData-VocCore]) of the main schema or the entity container of the OData service.
If no Core.Description is present, a default title must be provided as this is a required OpenAPI field.
4.2.2 [bookmark: _Toc16003253][bookmark: _Toc13813031]Field version
The value of version is the value of the annotation Core.SchemaVersion (see [OData-VocCore]) of the main schema.
If no Core.SchemaVersion is present, a default version must be provided as this is a required OpenAPI field.
4.2.3 [bookmark: _Toc16003254][bookmark: _Toc13813032]Field description
The value of description is the value of the annotation Core.LongDescription (see [OData-VocCore]) of the main schema or the entity container.
While this field is optional, it prominently appears in OpenAPI exploration tools, so a default description should be provided if no Core.LongDescription annotation is present.
4.3 [bookmark: _Toc16003255][bookmark: _Toc13813033]Field servers
The value of servers is an array of Server Objects, see [OpenAPI].  It contains one object with a field url.  The value of url is a string containing the service root URL without the trailing forward slash.
Example 3: absolute service root URL
"servers": [
  {
    "url": "http://localhost/service-root"
  }
]
The value of url can be relative to the discovery document openapi.json, so if it is located at the service root, the relative URL is just a dot.
Example 4: relative service root URL if openapi.json is located at the service root
"servers": [
  {
    "url": "."
  }
]
4.4 [bookmark: _Toc16003256][bookmark: _Toc13813034]Field tags
The value of tags is an array of Tag Objects, see [OpenAPI]. Tags are used for logical grouping of operations. For an OData service the natural groups are entity sets and singletons, so the tags array contains one Tag Object per entity set and singleton in the entity container.
A Tag Object has to contain the field name, whose value is the name of the entity set or singleton, and it optionally can contain the field description, whose value is the value of the unqualified annotation Core.Description of the entity set or singleton.
The tags array can contain additional Tag Objects for other logical groups, e.g. for action imports or function imports that are not associated with an entity set, or for entity types that are only used in containment navigation properties or action/function return types.
Example 5: tags with optional descriptions
"tags": [
  {
    "name": "Products"
  },
  {
    "name": "Categories",
    "description": "Product Categories"
  },
  {
    "name": "Suppliers"
  },
  {
    "name": "MainSupplier",
    "description": "Primary Supplier"
  },
  {
    "name": "Countries"
  }
]
4.5 [bookmark: _Toc16003257][bookmark: _Toc13813035]Field paths
The value of paths is a Paths Object, see [OpenAPI]. It is the main source of information on how to use the described API. It consists of name/value pairs whose name is a path template relative to the service root URL, and whose value is a Path Item Object, see [OpenAPI].
Due to the power and flexibility of OData a full representation of all service capabilities in the Paths Object is typically not feasible, so this mapping only describes the minimum information desired in the Paths Object. Implementations are allowed – and in fact encouraged – to add additional information that is deemed useful for the intended target audience of the OpenAPI description of that service, leveraging the documentation features of the OpenAPI Specification, especially and not limited to human-readable descriptions. 
The minimum information to be included in the Paths Object is described in the remainder of this section. The Paths Object reflects the top-level resources and capabilities of the service as closely as possible, i.e. only list supported operations and query options.
Example 6: paths for entity sets, individual entities, singletons, action imports, and function imports using parens-style key syntax
"paths": {
  "/Products": …,
  "/Products('{ID}')": …,
  "/Categories": …,
  "/Categories({ID})": …,
  "/Suppliers": …,
  "/Suppliers('{ID}')": …,
  "/MainSupplier": …,
  "/Countries": …,
  "/Countries('{Code}')": …,
  "/ProductsByRating(Rating={Rating})": …
}

OData 4.01 introduces semantics for representing a key as a segment in a URL path, see term Capabilities.KeyAsSegmentSupported in [OData-VocCap]. While compliant services are also required to support the traditional parentheses-style syntax shown above for interoperability, services that additionally support the key-as-segment syntax may choose to advertise either or both styles of supported paths in OpenAPI.  The examples used in the remainder of this document favor the key-as-segment style convention, as shown in the example below.
Example 7: paths using key-as-segment convention for entities and implicit parameter aliases for function imports
"paths": {
  "/Products": …,
  "/Products/{ID}": …,
  "/Categories": …,
  "/Categories/{ID}": …,
  "/Suppliers": …,
  "/Suppliers/{ID}": …,
  "/MainSupplier": …,
  "/Countries": …,
  "/Countries/{Code}": …,
  "/ProductsByRating": …
}
4.5.1 [bookmark: _Toc16003258][bookmark: _Toc13813036]Paths for Collections of Entities
Each entity set is represented as a name/value pair whose name is the service-relative resource path of the entity set prepended with a forward slash, and whose value is a Path Item Object, see [OpenAPI].
Example 8: path template for an entity set
"/Products": …
Each collection-valued navigation property of the declared entity type of an entity set, one of its derived types, or of a complex property (recursively) of one of these entity types, is represented as a name/value pair whose name is the path template for reaching that navigation property, with path parameters for the key values. The Path Item Object contains a parameters array with one Parameter Object for each key property in the path template. These Parameter Objects use the same type mapping as described for primitive properties. They optionally can contain the field description whose value is the value of the unqualified annotation Core.Description of the key property.
Example 9: path template for a navigation property
"/Categories/{ID}/Products": …
Each bound action or function applicable to the collection is represented as an additional name/value pair with a path template for the action/function invocation, with path parameters for the key values in the binding path, and with path parameters for non-binding function parameters. If the action or function is defined in a namespace that is marked as a default namespace through the Core.DefaultNamespace term (see [OData-VocCore]), path templates both with and without namespace prefix may be provided. Care has to be taken to avoid ambiguous path templates as [OpenAPI] doesn’t define how to resolve ambiguities and leaves this to the individual tool authors.
Example 10: path template for a function bound to a collection of entities
"/Products/OData.Demo.BestSelling()": …
[bookmark: _Toc456622996][bookmark: _Toc463874439][bookmark: _Toc463874440]Example 11: path template for a bound function without namespace and parentheses
"/Products/BestSelling": …
Example 12: path template with key values in binding path and bound function
"/Categories/{ID}/Products/OData.Demo.BestSelling()": …
4.5.1.1 [bookmark: _Toc16003259][bookmark: _Toc13813037]Query a Collection of Entities
The Path Item Object for a collection of entities that supports querying (see terms Capabilities.ReadRestrictions and Capabilities.NavigationRestrictions in [OData-VocCap]) contains the keyword get with an Operation Object as value that describes the capabilities for querying the collection. The tags array of the Operation Object includes the entity set name in the first segment of the path template. Additional tag values, e.g. for the entity type of a containment navigation property or the target entity set of a non-containment navigation property, can be included to make this operation more easily discoverable. 
Example 13: GET operation for an entity set – summary and tags
"/Products": {
  "get": {
    "summary": "Get entities from Products",
    "tags": [
      "Products"
    ],
The parameters array contains Parameter Objects for all system query options allowed for this collection. It does not list system query options not allowed for this collection, see [OData-VocCap] terms 
· Capabilities.CountRestrictions 
· Capabilities.ExpandRestrictions
· Capabilities.FilterRestrictions
· Capabilities.NavigationRestrictions/RestrictedProperties
· Capabilities.SearchRestrictions
· Capabilities.SelectSupport
· Capabilities.SkipSupported
· Capabilities.SortRestrictions
· Capabilities.TopSupported
Example 14: GET operation for an entity set - parameters
    "parameters": [
      {
        "$ref": "#/components/parameters/top"
      },
      {
        "$ref": "#/components/parameters/skip"
      },
      {
        "$ref": "#/components/parameters/search"
      },
      {
        "$ref": "#/components/parameters/filter"
      },
      {
        "$ref": "#/components/parameters/count"
      },
Note: the syntax of the system query options $expand, $select, and $orderby is too flexible to be formally described with OpenAPI Specification means, yet the typical use cases of just providing a comma-separated list of properties can be expressed via an array-valued parameter with an enum constraint, as shown in the following example. This makes it easy to try out these system query options in OpenAPI tools.
Example 15: GET operation for an entity set – more specific parameters
      {
        "name": "$expand",
        "in": "query",
        "description": "Expand related entities, see [OData Expand](http://docs.oasis-open.org/odata/odata/v4.01/cs01/part1-protocol/odata-v4.01-cs01-part1-protocol.html#sec_SystemQueryOptionexpand)",
        "explode": false,
        "schema": {
          "type": "array",
          "uniqueItems": true,
          "items": {
            "type": "string",
            "enum": [
              "*",
              "Category",
              "Supplier"
            ]
          }
        }
      },
      {
        "name": "$select",
        "in": "query",
        "description": "Select properties to be returned, see [OData Select](http://docs.oasis-open.org/odata/odata/v4.01/cs01/part1-protocol/odata-v4.01-cs01-part1-protocol.html#sec_SystemQueryOptionselect)",
        "explode": false,
        "schema": {
          "type": "array",
          "uniqueItems": true,
          "items": {
            "type": "string",
            "enum": [
              "*",
              "ID",
              "Description",
              "ReleaseDate",
              "DiscontinuedDate",
              "Rating",
              "Price",
              "Currency"
            ]
          }
        }
      },
      {
        "name": "$orderby",
        "in": "query",
        "description": "Order items by property values, see [OData Sorting](http://docs.oasis-open.org/odata/odata/v4.01/cs01/part1-protocol/odata-v4.01-cs01-part1-protocol.html#sec_SystemQueryOptionorderby)",
        "explode": false,
        "schema": {
          "type": "array",
          "uniqueItems": true,
          "items": {
            "type": "string",
            "enum": [
              "ID",
              "ID desc",
              "Description",
              "Description desc",
              "ReleaseDate",
              "ReleaseDate desc",
              "DiscontinuedDate",
              "DiscontinuedDate desc",
              "Rating",
              "Rating desc",
              "Price",
              "Price desc",
              "Currency",
              "Currency desc"
            ]
          }
        }
      }
    ],
The value of responses is a Responses Object, see [OpenAPI]. It contains a name/value pair for the success case (HTTP response code 200) describing the structure of a successful response referencing the schema of the collection’s entity type in the global schemas. 
In addition, it contains a default name/value pair for the OData error response referencing the global responses.
Example 16: GET operation for an entity set - responses
    "responses": {
      "200": {
        "description": "Retrieved entities",
        "content": {
          "application/json": {
            "schema": {
              "type": "object",
              "title": "Collection of Product",
              "properties": {
                "value": {
                  "type": "array",
                  "items": {
                    "$ref": "#/components/schemas/ODataDemo.Product"
                  }
                }
              }
            }
          }
        }
      },
      "default": {
        "$ref": "#/components/responses/error"
        }
      }
    }
  },
4.5.1.2 [bookmark: _Toc16003260][bookmark: _Toc13813038]Create an Entity
If the collection of entities allows inserts (see terms Capabilities.InsertRestrictions and Capabilities.NavigationRestrictions in [OData-VocCap]), the Path Item Object contains the keyword post with an Operation Object as value that describes the capabilities for creating new entities. The tags array of the Operation Object includes the entity set name in the first segment of the path template. Additional tag values, e.g. for the entity type of a containment navigation property or the target entity set of a non-containment navigation property, can be included to make this operation more easily discoverable.
The parameters array contains a Parameter Object for each key property in the path template, and it contains specific Parameter Objects for the system query options $select and $expand if these are allowed.
The requestBody field contains a Request Body Object for the request body that references the schema of the entity set’s entity type in the global schemas. 
The responses object contains a name/value pair for the success case (HTTP response code 201) describing the structure of the success response referencing the schema of the entity type in the global schemas. If the service supports the preference return=minimal, it contains a name/value pair for the HTTP response code 204. In addition, it contains a default name/value pair for the OData error response referencing the global responses.
Example 17: POST operation for an entity set
  "post": {
    "summary": "Add new entity to Products",
    "tags": [
      "Products"
    ],
    "requestBody": {
      "required": true,
      "description": "New entity",
      "content": {
        "application/json": {
          "schema": {
            "$ref": "#/components/schemas/ODataDemo.Product"
          }
        }
      }
    },
    "responses": {
      "201": {
        "description": "Created entity",
        "content": {
          "application/json": {
            "schema": {
              "$ref": "#/components/schemas/ODataDemo.Product"
            }
          }
        }
      },
      "204": {
        "description": "Success"
      },
      "default": {
        "$ref": "#/components/responses/error"
        }
      }
    }
  }
}
4.5.1.3 [bookmark: _Toc16003261][bookmark: _Toc13813039]Invoke Bound Actions and Functions on Collections
The Path Item Object for a bound action contains the keyword post, the Path Item Object for a bound function contains the keyword get. The value of the post or get keyword is an Operation Object that describes how to invoke the action or function. The tags array of the Operation Object includes the entity set name in the first segment of the path template. Additional tag values, e.g. for the binding parameter type or the result type of the action or function, can be included to make this operation more easily discoverable.
Example 18: function bound to a collection of entities – summary and tags
"/Categories/{ID}/Products/OData.Demo.BestSelling()": {
  "get": {
    "summary": "Determine the best-selling product",
    "tags": [
      "Categories”,
      "Products"
    ],
The parameters array contains a Parameter Object for each key property and for each non-binding parameter in the path template. 
The Parameter Objects describing key values and primitive parameter values use the same type mapping as described for primitive properties. 
Structured or collection-valued parameters are represented as a parameter alias in the path template and the parameters array contains a Parameter Object for the parameter alias as a query option of type string. The parameter description describes the format of this URL-encoded JSON object or array, and/or references to [OData-URL], section “Complex and Collection Literals”. 
Parameter Objects optionally can contain the field description, whose value is the value of the unqualified annotation Core.Description of the parameter.
Depending on the result type of the bound action or function the parameters array contains specific Parameter Objects for the allowed system query options.
For bound actions on collections that use optimistic concurrency control and require ETags for modification operations (see term Core.OptimisticConcurrency in [OData-VocCore]), the parameters array contains a Parameter Object for the If-Match header.
For bound actions with non-binding parameters, the requestBody field contains a Request Body Object describing the structure of the request body. Its schema value follows the rules for Schema Objects for complex types, with one property per non-binding action parameter. 
Example 19: function bound to a collection of entities – parameters
    "parameters": [
      {
        "name": "ID",
        "in": "path",
        "required": true,
        "description": "key: ID",
        "schema": {
          "type": "integer",
          "format": "int32"
        }
      },
      {
        "name": "$expand",
        "in": "query",
        …
      },
      {
        "name": "$select",
        "in": "query",
        …
      }
    ],
The responses object contains name/value pairs for the success cases (HTTP response code 204 if the response has no body or the service supports the preference return=minimal, 201 in case a new entity is created by the operation, and 200 in other success cases). In addition, it contains a default name/value pair for the OData error response referencing the global responses.
Example 20: action bound to entity within a set – responses
    "responses": {
      "200": {
        "description": "The best-selling product",
        "content": {
          "application/json": {
            "schema": {
              "$ref": "#/components/schemas/ODataDemo.Product"
            }
          }
        }
      },
      "default": {
        "$ref": "#/components/responses/error"
      }
    }
  }
}
4.5.2 [bookmark: _Toc16003262][bookmark: _Toc13813040]Paths for Single Entities
Each entity set that is indexable by key (see term Capabilities.IndexableByKey and Capabilities.NavigationRestrictions in [OData-VocCap]) is represented as a name/value pair whose name is the path template for key access, with path parameters for the key values, and whose value is a Path Item Object describing the allowed operations on individual entities of this set. It contains a parameters array with one Parameter Object for each key property in the path template. These Parameter Objects use the same type mapping as described for primitive properties. They optionally can contain the field description whose value is the value of the unqualified annotation Core.Description of the key property.
If the service supports both parentheses-style key predicates and key-as-segment convention (indicated by annotating the entity container with term Capabilities.KeyAsSegmentSupported in [OData-VocCap]), the service author is free to provide path templates for both key conventions or just for the convention preferred by the service author.  
Example 21: path template for an individual entity within an entity set – single-part key
"/Products('{ID}')": …
Example 22: path template for an individual entity using key-as-segment convention
"/Products/{ID}": …
Example 23: path template for an individual entity within an entity set – multi-part key
"/OrderItems(OrderID={OrderID},ItemID={ItemID})": …
Example 24: path template for multi-part key using key-as-segment convention
"/OrderItems/{OrderID}/{ItemID})": …
Each singleton is represented as a name/value pair whose name is the service-relative resource path of the singleton prepended with a forward slash, and whose value is Path Item Object describing the allowed operations on this singleton.
Example 25: path template for a singleton
"/MainSupplier": …
Each single-valued containment navigation property is represented as a name/value pair whose name is the shortest possible path template for reaching that navigation property, with path parameters for the key values of all intermediate entity types. 
Each collection-valued containment navigation property that allows key access is represented as a name/value pair whose name is the shortest possible path template for reaching that navigation property, plus a key segment, with path parameters for all key values. If the contained entity itself has navigation properties, paths for these navigation properties are also added, applying the rules in this and the preceding section recursively, up to an implementation-specific limit.
Each single-valued navigation property of the declared entity type of an entity set, one of its derived types, or of a complex property (recursively) of one of these entity types, is represented as a name/value pair whose name is the path template for reaching that navigation property, with path parameters for the key values.
Example 26: path template for a single-valued navigation property on an individual entity
"/Products/{ID}/Category": …
Each bound action or function applicable to a single entity is represented as an additional name/value pair with a path template for the action/function invocation, with path parameters for key values needed to identify the single entity, and with path parameters for non-binding function parameters. If the action or function is defined in a namespace that is marked as a default namespace through the Core.DefaultNamespace term (see [OData-VocCore]), path templates both with and without namespace prefix may be provided. Care has to be taken to avoid ambiguous path templates as [OpenAPI] doesn’t define how to resolve ambiguities and leaves this to the individual tool authors.
Example 27: path template for an action bound to a single entity within an entity set
"/LeaveRequests/{ID}/OData.Demo.Approval": …
Example 28: path template for a bound action without namespace prefix
"/LeaveRequests/{ID}/Approval": …
4.5.2.1 [bookmark: _Toc16003263][bookmark: _Toc13813041]Retrieve an Entity
If the entity allows read (see terms Capabilities.ReadRestrictions, Capabilities.ReadByKeyRestrictions, and Capabilities.NavigationRestrictions in [OData-VocCap]), the Path Item Object for a single entity contains the keyword get with an Operation Object as value that describes the capabilities for retrieving a single entity. The tags array of the Operation Object includes the entity set or singleton name in the first segment of the path template. Additional tag values, e.g. for the entity type of a containment navigation property or the target entity set of a non-containment navigation property, can be included to make this operation more easily discoverable.
Example 29: GET operation for an individual entity
"/Products/{ID}": {
  "get": {
    "summary": "Get entity from Products by key",
    "tags": [
      "Products"
    ],
The parameters array contains specific Parameter Objects for the system query options $select and $expand if these are allowed.
Example 30: GET operation for an individual entity - parameters
    "parameters": [
      {
        "name": "ID",
        "in": "path",
        "required": true,
        "description": "key: ID",
        "schema": {
          "type": "string"
        }
      },
      {
        "name": "$select",
        "in": "query",
        "description": "Select properties to be returned, see [OData Select](http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html#_Toc406398297)",
        "explode": false,
        "schema": {
          "type": "array",
          "uniqueItems": true,
          "items": {
            "type": "string",
            "enum": [
              "*",
              "ID",
              "Description",
              "ReleaseDate",
              "DiscontinuedDate",
              "Rating",
              "Price",
              "Currency"
            ]
          }
        }
      },
      {
        "name": "$expand",
        "in": "query",
        "description": "Expand related entities, see [OData Expand](http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html#_Toc406398298)",
        "explode": false,
        "schema": {
          "type": "array",
          "uniqueItems": true,
          "items": {
            "type": "string"
            "enum": [
              "*",
              "Category",
              "Supplier"
            ]
          }
        }
      }
    ],
The responses object contains a name/value pair for the success case (HTTP response code 200) describing the structure of the success response referencing the schema of the entity’s type in the global schemas. In addition, it contains a default name/value pair for the OData error response referencing the global responses.
Example 31: GET operation for an individual entity - responses
    "responses": {
      "200": {
        "description": "Retrieved entity",
        "content": {
          "application/json": {
            "schema": {
              "$ref": "#/components/schemas/ODataDemo.Product"
            }
          }
        }
      },
      "default": {
        "$ref": "#/components/responses/error"
        }
      }
    }
  },
4.5.2.2 [bookmark: _Toc16003264][bookmark: _Toc13813042]Update an Entity
If the entity allows updates (see term Capabilities.UpdateRestrictions and Capabilities.NavigationRestrictions in [OData-VocCap]), the Path Item Object contains the keyword patch with an Operation Object as value that describes the capabilities for updating the entity. The tags array of the Operation Object includes the entity set or singleton name in the first segment of the path template. Additional tag values, e.g. for the entity type of a containment navigation property or the target entity set of a non-containment navigation property, can be included to make this operation more easily discoverable.
The parameters array contains specific Parameter Objects for the system query options $select and $expand if these are allowed.
If the entity uses optimistic concurrency control and requires ETags for modification operations (see term Core.OptimisticConcurrency in [OData-VocCore]), the parameters array contains a Parameter Object for the If-Match header.
The requestBody field contains a Request Body Object for the request body that references the schema of the entity’s type in the global schemas. 
The responses object contains a name/value pair for the success case (HTTP response code 204). If the service supports the preference return=representation, it contains a name/value pair for the HTTP response code 200 describing the structure of the success response referencing the schema of the entity’s type in the global schemas. In addition, it contains a default name/value pair for the OData error response referencing the global responses.
Example 32: PATCH operation for an individual entity
  "patch": {
    "summary": "Update entity in Products",
    "tags": [
      "Products"
    ],
    "parameters": [
      {
        "name": "ID",
        "in": "path",
        "required": true,
        "description": "key: ID",
        "schema": {
          "type": "string"
        }
      },
      {
        "name": "If-Match",
        "in": "header",
        "description": "ETag",
        "schema": {
          "type": "string"
        }
      }
    ],
    "requestBody": {
      "required": true,
      "description": "New property values",
      "content": {
        "application/json": {
          "schema": {
            "$ref": "#/components/schemas/ODataDemo.Product"
          }
        }
      }
    },
    "responses": {
      "204": {
        "description": "Success"
      },
      "default": {
        "$ref": "#/components/responses/error"
        }
      }
    }
  },
4.5.2.3 [bookmark: _Toc16003265][bookmark: _Toc13813043]Delete an Entity
If the entity allows deletion (see term Capabilities.DeleteRestrictions and Capabilities.NavigationRestrictions in [OData-VocCap]), the Path Item Object contains the keyword delete with an Operation Object as value that describes the capabilities for deleting the entity. The tags array of the Operation Object includes the entity set or singleton name in the first segment of the path template. Additional tag values, e.g. for the entity type of a containment navigation property or the target entity set of a non-containment navigation property, can be included to make this operation more easily discoverable.
If the entity uses optimistic concurrency control and requires ETags for modification operations (see term Core.OptimisticConcurrency in [OData-VocCore]), the parameters array contains a Parameter Object for the If-Match header.
The responses object contains a name/value pair for the success case (HTTP response code 204). In addition, it contains a default name/value pair for the OData error response referencing the global responses.
Example 33: DELETE operation for an individual entity
  "delete": {
    "summary": "Delete entity from Products",
    "tags": [
      "Products"
    ],
    "parameters": [
      {
        "name": "ID",
        "in": "path",
        "required": true,
        "description": "key: ID",
        "schema": {
          "type": "string"
        }
      },
      {
        "name": "If-Match",
        "in": "header",
        "description": "ETag",
        "schema": {
          "type": "string"
        }
      }
    ],
    "responses": {
      "204": {
        "description": "Success"
      },
      "default": {
        "$ref": "#/components/responses/error"
        }
      }
    }
  }
}
4.5.2.4 [bookmark: _Toc16003266][bookmark: _Toc13813044]Invoke Bound Actions and Functions on Single Entities
The Path Item Object for a bound action contains the keyword post, the Path Item Object for a bound function contains the keyword get. The value of the post or get keyword is an Operation Object that describes how to invoke the action or function. The tags array of the Operation Object includes the entity set or singleton name in the first segment of the path template. Additional tag values, e.g. for the binding parameter type or the result type of the action or function, can be included to make this operation more easily discoverable.
Example 34: action bound to entity within a set – summary and tags
"/LeaveRequests/{ID}/OData.Demo.Rejection": {
  "post": {
    "summary": "Invoke action Rejection",
    "tags": [
      "LeaveRequests"
    ],
The parameters array contains a Parameter Object for each key property and for each non-binding parameter in the path template. These Parameter Objects follow the rules described in section Invoke Bound Actions and Functions on Collections.
Depending on the result type of the bound action or function the parameters array contains specific Parameter Objects for the allowed system query options.
For bound actions on entities that use optimistic concurrency control, i.e. require ETags for modification operations, the parameters array contains a Parameter Object for the If-Match header.
For bound actions with non-binding parameters, the requestBody field contains a Request Body Object describing the structure of the request body. Its schema value follows the rules for Schema Objects for complex types, with one property per non-binding action parameter. 
The responses object contains a name/value pair for the success case (HTTP response code 201) describing the structure of the success response referencing the schema of the entity type in the global schemas. If the service supports the preference return=minimal, it contains a name/value pair for the HTTP response code 204. In addition, it contains a default name/value pair for the OData error response referencing the global responses.
The responses object contains name/value pairs for the success cases (HTTP response code 204 if the response has no body or the service supports the preference return=minimal, 201 in case a new entity is created by the operation, and 200 in other success cases). In addition, it contains a default name/value pair for the OData error response referencing the global responses.
4.5.3 [bookmark: _Toc16003267][bookmark: _Toc13813045]Paths for Action Imports
Each action import is represented as a name/value pair whose name is the service-relative resource path of the action import prepended with a forward slash, and whose value is a Path Item Object containing the keyword post with an Operation Object as value that describes how to invoke the action import.
If the action import specifies the EntitySet attribute, the tags array of the Operation Object includes the entity set name. Additional tag values, e.g. for the result type of the action, can be included to make this operation more easily discoverable.
Depending on the result type of the action import’s action the parameters array contains specific Parameter Objects for the allowed system query options.
The requestBody field contains a Request Body Object describing the structure of the request body. Its schema value follows the rules for Schema Objects for complex types, with one property per action parameter. 
The responses object contains name/value pairs for the success cases (HTTP response code 204 if the response has no body or the service supports the preference return=minimal, 201 in case a new entity is created by the operation, and 200 in other success cases). In addition, it contains a default name/value pair for the OData error response referencing the global responses.
Example 35: action import
"/IncreaseSalaries": {
  "post": {
    "summary": "Invoke action IncreaseSalaries",
    "tags": [
      "Service Operations"
    ],
    "requestBody": {
      "description": "Action parameters",
      "content": {
        "application/json": {
          "schema": {
            "type": "object",
            "properties": {
              "percentage": {
                "anyOf": [
                  { "type": "number" },
                  { "type": "string" }
                ],
                "format": "decimal"
              }
            }
          }
        }
      }
    },
    "responses": {
      "204": {
        "description": "Success"
      },
      "default": {
        "$ref": "#/components/responses/error"
      }
    }
  }
}
4.5.4 [bookmark: _Toc16003268][bookmark: _Toc13813046]Paths for Function Imports
[bookmark: _Field_definitions]Each function import is represented as one name/value pair per unbound function overload whose name is the service-relative resource path template of the function overload, and whose value is a Path Item Object containing the keyword get with an Operation Object as value that describes how to invoke the function overload.
If the function import specifies the EntitySet attribute, the tags array of the Operation Object includes the entity set name. Additional tag values, e.g. for the result type of the function, can be included to make this operation more easily discoverable.
The parameters array contains a Parameter Object for each parameter of the function overload. These Parameter Objects follow the rules described in section Invoke Bound Actions and Functions on Collections.
Depending on the result type of the function overload the parameters array contains specific Parameter Objects for the allowed system query options.
 The responses object contains a name/value pair for the success case (HTTP response code 200) describing the structure of the success response by referencing an appropriate schema in the global schemas. In addition, it contains a default name/value pair for the OData error response referencing the global responses.
[bookmark: _Keyword_definitions]Example 36: function import
"/ProductsByRating(Rating={Rating})": {
  "get": {
    "summary": "Invoke function ProductsByRating",
    "tags": [
      "Products"
    ],
    "parameters": [
      {
        "name": "Rating",
        "in": "path",
        "required": true,
        "schema": {
          "type": "integer",
          "format": "int32"
        }
      }
    ],
    "responses": {
      "200": {
        "description": "Success",
        "content": {
          "application/json": {
            "schema": {
              "title": "Result",
              "type": "object",
              "properties": {
                "value": {
                  "type": "array",
                  "items": {
                    "$ref": "#/components/schemas/ODataDemo.Product"
                  }
                }
              }
            }
          }
        }
      },
      "default": {
        "$ref": "#/components/responses/error"
        }
      }
    }
  }
}
4.6 [bookmark: _Toc16003269][bookmark: _Toc13813047]Field components
The value of components is a Components Object, see [OpenAPI]. It holds maps of reusable schemas describing message bodies, operation parameters, and responses. 
Example 37: Reusable components
"components": {
  "schemas": …,
  "parameters": …,
  "responses": …
}
4.6.1 [bookmark: _Toc16003270][bookmark: _Toc13813048]Field schemas
The value of schemas is a map of Schema Objects, see [OpenAPI]. Each entity type, complex type, enumeration type, and type definition directly or indirectly used in the paths field is represented as a name/value pair below the schemas map.
OData names can contain any Unicode letter or number, whereas keys for reusable objects in the Components Object must match the regular expression ^[a-zA-Z0-9\.\-_]+$. 
OData services whose schema and type names fulfil this restriction can directly place the name/value pairs for their types within the schemas map. 
Example 38: Type schemas without intermediate wrapper schema
"schemas": {
  "ODataDemo.Product": …,
  "ODataDemo.Category": …,
  "ODataDemo.Supplier": …,
  "ODataDemo.Country": …,
  "ODataDemo.Address": …,
  "org.example.Employee": …,
  "org.example.Manager": …
}
OData services using Unicode letters or numbers outside this restricted set have to use a dummy name/value pair in the schemas map whose name is e.g. types, and whose value is a schema of type object whose properties map then contains name/value pairs for the service’s named types. 
Example 39: Type schemas with intermediate wrapper schema
"schemas": {
  "types": {
    "type":"object",
    "properties”: {
      "Liberté.Égalité": …,
      "ODataDemo.Product": …,
      "ODataDemo.Category": …,
      …
    }
  }
}
Of course, references to these types have to consider this intermediate wrapper schema:
Example 40: type reference with intermediate wrapper schema
"$ref": "#/components/schemas/types/properties/Liberté.Égalité"
The name of each pair is the namespace-qualified name of the type. It uses the namespace instead of the alias because these definitions can be reused by other CSDL documents, and aliases are document-local, so they are meaningless for referencing documents. 
The value of each pair is a Schema Object, see [OpenAPI].
4.6.1.1 [bookmark: _Toc16003271][bookmark: _Toc13813049]Schemas for Entity Types and Complex Types
A structured type is represented as a Schema Object of type object. The Schema Object contains the standard OpenAPI Specification keywords appropriate for type object. 
It does not contain the additionalProperties keyword to allow additional properties beyond the declared properties. This is necessary for inheritance as well as instance annotations and dynamic properties.
It also does not contain the required keyword as response bodies can be arbitrarily tailored using $select, and PATCH request bodies can omit any unaltered properties. 
It optionally can contain the field title, whose value is the value of the unqualified annotation Core.Description of the structured type, and the field description, whose value is the value of the unqualified annotation Core.LongDescription.
If desired, different Schema Objects can be used for creating, updating, and retrieving structured type instances. Schema Objects for create would omit all computed properties (see term Core.Computed in in [OData-VocCore]), Schema Objects for update would in addition omit all key properties and all immutable properties (see term Core.Immutable in [OData-VocCore]).
A structured type with a base type can be represented in several ways, depending on whether to preserve the aspect of inheriting properties of the base type, being able to substitute the derived type for its base type, or both.
Property inheritance is expressed with the keyword allOf whose value is an array with one item, a JSON Reference to the Schema Object of the base type. That way all properties of the referenced type are also valid for the current type, and this applies recursively.
Type substitutability is expressed with the keyword anyOf whose value is an array of JSON References to the Schema Objects of the known direct derived types. This also applies recursively, so only the direct derived types need to be represented.
Using both allOf referencing the base type’s Schema Object and anyOf referencing the derived types’ Schema Objects introduces cyclic references that derail many OpenAPI tools, so these two constructs should not be directly combined. If only the substitutability aspect (using anyOf) is necessary, the properties of base types (recursively) need to be copied into the Schema Object of a derived type.
A more complicated representation preserving both property inheritance and substitutability and avoiding cyclic references is to have two Schema Objects per structured type: 
· A “property schema” defining the direct structural and navigation properties of the type and referencing the Schema Object of the base type with allOf, and
· A “payload schema” referencing the “property schema” with allOf and referencing the Schema Objects of the known direct derived types with anyOf, and not defining any properties. The “payload schema” is then referenced from Operation Objects.
This can be combined with having different Schema Objects for create, update, and read, leading to six Schema Objects per structured type.
Example 41: Product entity type
"ODataDemo.Product": {
  "type": "object",
  "properties": {
    …
  },
  …
}
Example 42: Manager entity type inheriting from Employee
"org.example.Manager": {
  "type": "object",
  "allOf": [
    {
      "$ref": "#/components/schemas/org.example.Employee"
    }
  ],
  "properties": {
    …
  },
  …
}
1. [bookmark: _Toc16003272][bookmark: _Toc13813050]Properties
Each structural property and navigation property is represented as a name/value pair of the standard OpenAPI properties object. The name is the property name, the value is a Schema Object describing the allowed values of the property.
The Schema Object for a property optionally can contain the field title, whose value is the value of the unqualified annotation Core.Description of the property, and the field description, whose value is the value of the unqualified annotation Core.LongDescription.
 Example 43: structural and navigation properties of Supplier entity type
"ODataDemo.Supplier":{
  …,
  "properties":{
    "ID":…,
    "Name":…,
    "Address":…,
    "Concurrency":…,
    "Products":…
  },
  …
}
4.6.1.2.1 [bookmark: _Toc16003273][bookmark: _Toc13813051]Primitive Properties
Primitive properties of type Edm.PrimitiveType, Edm.Stream, and any of the Edm.Geo* types are represented as Schema Objects that are JSON References to definitions in the Definitions Object or a reusable definitions file such as odata-definitions.json in the examples folder of the [OData-OpenAPI] OASIS GitHub repository. 
All other primitive properties are represented as a Schema Object with the following OpenAPI Specification types, formats, and validation keywords:
	OData Primitive Type
	OpenAPI Specification
	Comment

	
	Type
	Format
	Keywords
	

	Edm.Binary
	string
	base64url
	maxLength
	OData-specific format
maxLength is the maximum length of the base64-encoded string representation, i.e. 4*ceil(MaxLength/3) 

	Edm.Boolean
	boolean
	
	
	

	Edm.Byte
	integer
	uint8
	
	OData-specific format

	Edm.Date
	string
	date
	
	OpenAPI format

	Edm.DateTimeOffset
	string
	date-time
	
	OpenAPI format

	Edm.Decimal
	number, string
	decimal
	minimum maximum multipleOf
	OData-specific format 
string is only needed if the service supports the special values ‑INF, INF, and NaN

	Edm.Double
	number, string
	double
	
	OpenAPI format with extended meaning
Type string is only needed if the service supports the special values ‑INF, INF, and NaN or the IEEE754Compatible format parameter

	Edm.Duration
	string
	duration
	
	OData-specific format

	Edm.Guid
	string
	uuid
	
	OData-specific format

	Edm.Int16 
	integer
	int16
	
	OData-specific format

	Edm.Int32
	integer
	int32
	
	OpenAPI format

	Edm.Int64
	integer, string
	int64
	
	OpenAPI format
Type string is only needed if the service supports the IEEE754Compatible format parameter

	Edm.SByte
	integer
	int8
	
	OData-specific format

	Edm.Single
	number, string
	float
	
	OpenAPI format with extended meaning
Type string is only needed if the service supports the special values ‑INF, INF, and NaN

	Edm.String
	string
	
	maxLength
	Sequence of UTF-8 characters

	Edm.TimeOfDay
	string
	time
	
	OData-specific format


Properties of type Edm.Decimal and Edm.Int64 are represented as JSON strings if the format option IEEE754Compatible=true is specified, so they have to be declared with both number and string, using an anyOf construct. 
The scale of properties of type Edm.Decimal are represented with the OpenAPI Specification keyword multipleOf and a value of 10‑scale. The precision is represented with the maximum and minimum keywords and a value of ±(10precision-scale - 10‑scale) if the scale facet has a numeric value, and ±(10precision - 1) if the scale is variable).
Properties of type Edm.Double and Edm.Single have special values for -INF, INF, and NaN that are represented as JSON strings, so they also have to be declared with both number and string. Services that do not support the special values -INF, INF, and NaN can just use type number.
Nullable properties are marked with the keyword nullable and a value of true.
The default value of a property is represented with the OpenAPI Specification keyword default.
Example 44: non-nullable Boolean property with default value
"BooleanValue": {
  "type": "boolean",
  "default": false
}
Example 45: non-nullable binary property with both maxLength and byteLength
"BinaryValue": {
  "type": "string",
  "format": "base64url",
  "maxLength": 44,
  "default":" T0RhdGE"
}
Example 46: non-nullable integer property
"IntegerValue": {
  "type": "integer",
  "format": "int32",
  "default": -128
}
Example 47: non-nullable floating-point properties: string representation for -INF, INF, and NaN,
"DoubleValue": {
  "anyOf": [
    { "type": "number" },
    { "type": "string" }
  ],
  "format": "double",
  "default": 3.1415926535897931
},
"SingleValue": {
  "anyOf": [
    { "type": "number" },
    { "type": "string" }
  ],
  "format": "float"
}
Example 48: non-nullable decimal property with unspecified precision: no minimum and maximum
"DecimalValue": {
  "anyOf": [
    { "type": "number" },
    { "type": "string" }
  ],
  "format": "decimal",
  "default": 34.95
}
Example 49: non-nullable decimal property with precision 15 and scale 2
"FixedDecimalValue": {
  "anyOf": [
    { "type": "number" },
    { "type": "string" }
  ],
  "format": "decimal",
  "multipleOf": 0.01,
  "minimum": -999999999.99,
  "maximum": 999999999.99
}
Example 50: nullable decimal property with precision 15 and scale 3
"NullableDecimalValue": {
  "anyOf": [
    { "type": "number" },
    { "type": "string"}
  ],
  "nullable": true
  "format":" decimal",
  "multipleOf": 1e-3,
  "minimum": -999999999999.999,
  "maximum": 999999999999.999
}
Example 51: non-nullable string property with maximum length of 40 characters
"StringValue": {
  "type": "string",
  "maxLength": 40
  "default":" Say \"Hello\",\nthen go"
}
Example 52: non-nullable date property
"DateValue": {
  "type": "string",
  "format": "date",
  "default": "2012-12-03"
}
Example 53: non-nullable timestamp property with 7 fractional digits precision
"DateTimeOffsetValue": {
  "type": "string",
  "format": "date-time",
  "default": "2012-12-03T07:16:23:00.0000000Z"
}
Example 54: nullable timestamp property 
"NullableDateTimeOffsetValue": {
  "type": "string",
  "nullable": true,
  "format": "date-time"
}
 Example 55: non-nullable timestamp property with 12 fractional digits precision
"DurationValue": {
  "type": "string",
  "format": "duration",
  "default": "P12DT23H59M59.999999999999S"
}
Example 56: non-nullable time property with 3 fractional digits precision
"TimeOfDayValue": {
  "type": "string",
  "format": "time",
  "default": "07:59:59.999"
}
Example 57: non-nullable guid property with default value
"GuidValue": {
  "type": "string",
  "format": "uuid",
  "default": "1234567-89ab-cdef-0123-456789abcdef"
}
Example 58: non-nullable 8-byte integer property, allowing for string representation in IEEE754Compatible mode
"Int64Value": {
  "anyOf":[
    { "type": "integer" },
    { "type": "string" }
  ],
  "format": "int64",
  "default": 0
}
Example 59: non-nullable enumeration property
"ColorEnumValue": {
  "anyOf": [
    {
      "$ref": "#/components/schemas/Model1.Color"
    }
  ],
  "default": "yellow"
},
Example 60: non-nullable geography-point property
"GeographyPoint":{
  "anyOf": [
    {
      "$ref": "https://raw.githubusercontent.com/oasis-tcs/odata-openapi/master/examples/odata-definitions.json#/definitions/Edm.GeographyPoint"
    }
  ],
  "default": {
    "type": "Point",
    "coordinates": [
      142.1,
      64.1
    ] 
  }
}
Example 61: non-nullable stream property: not part of payload in version 4.0
"StreamValue": {
  "$ref": "https://raw.githubusercontent.com/oasis-tcs/odata-openapi/master/examples/odata-definitions.json#/definitions/Edm.Stream"
}
Example 62: non-nullable property typed with a type definition
"TypeDefValue": {
  "anyOf": [
    {
      "$ref": "#/components/schemas/Model1.IntegerDecimal"
    }
  ],
  "default": 42
}
Example 63: non-nullable primitive property with abstract type, e.g. in term definition
"PrimitiveValue": {
  "$ref": "https://raw.githubusercontent.com/oasis-tcs/odata-openapi/master/examples/odata-definitions.json#/definitions/Edm.PrimitiveType"
}
4.6.1.2.2 [bookmark: _Toc16003274][bookmark: _Toc13813052]Single-Value Complex and Navigation Properties
Complex properties are represented as JSON References to the Schema Object of the complex type, either as local references for types directly defined in the CSDL document, or as external references for types defined in referenced CSDL documents.
Navigation properties are represented similar to complex properties so that a standard OpenAPI Specification validator can validate the expanded representation of the navigation property.
Example 64: complex property Address
"Address": {
  "$ref":"#/components/schemas/ODataDemo.Address"
},
[bookmark: _Navigation_Properties][bookmark: _Nullable_Properties][bookmark: _Toc463874458][bookmark: _Toc463874457]Example 65: single-valued navigation property Category
"Category": {
  "$ref": "#/components/schemas/ODataDemo.Category"
}
Example 66: nullable single-valued navigation property Country
"Country": {
  "nullable": true,
  "anyOf": [
    {
      "$ref": "#/components/schemas/ODataDemo.Category"
    }
  ]
}
4.6.1.2.3 [bookmark: _Toc16003275][bookmark: _Toc13813053]Collection-Valued Properties
Collection-valued structural and navigation properties are represented as Schema Objects of type array. The value of the items keyword is a Schema Object specifying the type of the items. 
Example 67: collection-valued navigation property Products 
"Products": {
  "type": "array",
  "items": {
    "$ref": "#/components/schemas/ODataDemo.Product"
  }
}
Example 68: collection-valued complex property Addresses
"Adresses": {
  "type": "array",
  "items": {
    "$ref":"#/components/schemas/ODataDemo.Address"
  }
}
Example 69: nullable collection-valued primitive property Dates
"Dates": {
  "type": "array",
  "items": {
    "type": "string",
    "nullable": true,
    "format": "date"
  }
},
4.6.1.3 [bookmark: _Toc16003276][bookmark: _Toc13813054]Schemas for Enumeration Types
An enumeration type is represented as a Schema Object of type string containing the OpenAPI Specification enum keyword. Its value is an array that contains a string with the member name for each enumeration member.
It optionally can contain the field title, whose value is the value of the unqualified annotation Core.Description of the enumeration type, and the field description, whose value is the value of the unqualified annotation Core.LongDescription.
Example 70: enumeration type
"org.example.ShippingMethod": {
  "type": "string",
  "enum": [
    "FirstClass",
    "TwoDay",
    "Overnight"
  ]
}
4.6.1.4 [bookmark: _Toc16003277][bookmark: _Toc13813055]Schemas for Type Definitions
A type definition is represented as a Schema Object describing the allowed values of the type definition using the same rules as described for primitive properties.
It optionally can contain the field title, whose value is the value of the unqualified annotation Core.Description of the type definition, and the field description, whose value is the value of the unqualified annotation Core.LongDescription.
Example 71: type definitions based on Edm.String, Edm.Decimal and Edm.DateTimeOffset
"Model1.Text50": {
  "type": "string",
  "maxLength": 50
},
"Model1.VariableDecimal": {
  "type": "number",
  "description": "A type definition"
},
"Model1.ExactTimestamp": {
  "type": "string",
  "format": "date-time"
}
4.6.2 [bookmark: _Toc16003278][bookmark: _Toc13813056]Field parameters
The value of parameters is a map of Parameter Objects, see [OpenAPI]. It allows defining query options and headers that can be reused across operations of the service.
It contains one name/value pair per OData system query option supported by the service. 
Example 72: reusable query options
"parameters": {
  "top": {
    "name": "$top",
    "schema": {
      "type": "integer"
    },
    "in": "query",
    "description": "Show only the first n items, see [OData Paging – Top](http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html#sec_SystemQueryOptiontop))"
  },
  "skip": {
    "name": "$skip",
    "schema": {
      "type": "integer"
    },
    "in": "query",
    "description": "Skip the first n items, see [OData Paging - Skip](http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html#sec_SystemQueryOptionskip)"
  },
  "count": {
    "name": "$count",
    "schema": {
      "type": "boolean"
    },
    "in": "query",
    "description": "Include count of items, see [OData Count](http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html#sec_SystemQueryOptioncount)"
  },
  "filter": {
    "name": "$filter",
    "schema": {
      "type": "string"
    },
    "in": "query",
    "description": "Filter items by property values, see [OData Filtering](http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html#sec_SystemQueryOptionfilter)"
  },
  "search": {
    "name": "$search",
    "schema": {
      "type": "string"
    },
    "in": "query",
    "description": "Search items by search phrases, see [OData Searching](http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html#sec_SystemQueryOptionsearch)"
  }
}
4.6.3 [bookmark: _Toc16003279][bookmark: _Toc13813057]Field responses
The value of responses is a map of Response Objects, see [OpenAPI]. It allows defining responses that can be reused across operations of the service.
It contains one name/value pair for the standard OData error response that is referenced from all operations of the service. The reusable error response in turn references a Schema Object in schemas or a reusable definitions file such as odata-definitions.json in the examples folder of the [OData-OpenAPI] OASIS GitHub repository.
Example 73: reusable error response
"responses": {
  "error": {
    "description": "Error",
    "content": {
      "application/json": {
        "schema": {
          "$ref": "#/components/schemas/odata.error"
        }
      }
    }
  }
}
4.6.4 [bookmark: _Toc16003280][bookmark: _Toc13813058]Field securitySchemes
The value of securitySchemes is a map of Security Scheme Objects, see [OpenAPI]. It allows defining security schemes that can be reused across operations of the service.
The Security Scheme Objects can be constructed from items of annotations with the term Authorization.Authorizations in [OData-VocAuth].
4.7 [bookmark: _Toc16003281][bookmark: _Toc13813059]Field security
The value of security is an array of Security Requirement Objects, see [OpenAPI]. It lists the required security schemes to execute operations of the service.
The Security Requirements Objects can be constructed from items of annotations with the term Authorization.SecuritySchemes in [OData-VocAuth].
5 [bookmark: _Toc16003282][bookmark: _Toc13813060]Annotations influencing OAS Documents
Annotations can influence the contents of an OAS document generated from an OData metadata document.
5.1 [bookmark: _Toc16003283][bookmark: _Toc13813061]Authorization Vocabulary
The following terms from [OData-VocAuth] can be applied to the entity container:
	Term
	OpenAPI field

	Authorizations
	securitySchemes of Components Object

	SecuritySchemes
	security of OpenAPI Object



5.2 [bookmark: _Toc16003284][bookmark: _Toc13813062]Capabilities Vocabulary
The following terms from [OData-VocCap] can be applied to the entity container:
	Term
	OpenAPI field

	KeyAsSegmentSupported
	Path templates for key access



The following terms from [OData-VocCap] can be applied to entity sets and singletons:
	Term
	OpenAPI field

	DeleteRestrictions
	Operation Object for delete

	ExpandRestrictions
	parameters of Operation Object for get

	NavigationRestrictions
	Paths for navigation properties

	ReadRestrictions
	Operation Object for get

	SelectSupport
	Operation Object for get

	UpdateRestrictions
	Operation Object for patch



The following terms from [OData-VocCap] can be applied to entity sets:
	Term
	OpenAPI field

	CountRestrictions
	parameters of Operation Object for get

	FilterRestrictions
	parameters of Operation Object for get

	IndexableByKey
	Paths for key access

	InsertRestrictions
	Operation Object for post

	ReadByKeyRestrictions
	Operation Object for get

	SearchRestrictions
	parameters of Operation Object for get

	SkipSupported
	parameters of Operation Object for get

	SortRestrictions
	parameters of Operation Object for get

	TopSupported
	parameters of Operation Object for get



5.3 [bookmark: _Toc16003285][bookmark: _Toc13813063]Core Vocabulary
The following terms from [OData-VocCore] can be applied to any model element:
	Term
	OpenAPI field

	Description
	title of Info Object when applied to a schema or entity container
title of Schema Object for a property or type
summary of Operation Object for an action or function import
summary of Operation Object for a bound action or function
description of a parameter object

	LongDescription
	description of Info Object when applied to a schema or entity container
description of Schema Object for a property or type
description of Operation Object for an action or function import
description of Operation Object for a bound action or function



The following terms from [OData-VocCore] can be applied to a schema:
	Term
	OpenAPI field

	DefaultNamespace
	Path templates for bound actions and functions

	SchemaVersion
	version of Info Object



The following terms from [OData-VocCore] can be applied to properties:
	Term
	OpenAPI field

	Computed
	omit from Schema Object for create and update requests

	Immutable
	omit from Schema Object for update requests

	Example
	example of Schema Object



5.4 [bookmark: _Toc16003286][bookmark: _Toc13813064]Validation Vocabulary
The following terms from [OData-VocVal] can be applied to primitive properties:
	Term
	OpenAPI field

	AllowedValues
	enum of Schema Object

	Exclusive
	exclusiveMinimum / exclusiveMaximum of Schema Object

	Maximum
	maximum of Schema Object

	Minimum
	minimum of Schema Object

	Pattern
	pattern of Schema Object



6 [bookmark: _Toc16003287][bookmark: _Toc13813065]Example
The Products and Categories example metadata document in section 16.1 of [OData-CSDL] is available in machine-readable form at https://oasis-tcs.github.io/odata-openapi/examples/csdl-16.1.xml.
Its OAS counterpart is available at https://oasis-tcs.github.io/odata-openapi/examples/csdl-16.1.openapi3.json.
Appendix A. [bookmark: _Toc16003288][bookmark: _Toc13813066]Acknowledgments
The contributions of the OASIS OData Technical Committee members, enumerated in [OData‑Protocol], are gratefully acknowledged.
Appendix B. [bookmark: _Toc16003289][bookmark: _Toc13813067]Revision History
	Revision
	Date
	Editor
	Changes Made

	Committee Note Draft 01
	2016-11-28
	Ralf Handl
	Initial version

	Committee Note Draft 02
	2019-07-05
	Ralf Handl
	Based on OpenAPI 3.0.2



image1.png
JOASIS




