OASIS [
OASIS

OData JSON Format Version 4.01

Committee Specification 02Draft 05 /
Public Review Draft 05

e n 2l

I
21 June 2019

This version:
https://docs.oasis-open.org/odata/odata-json-format/v4.01/csprd05/odata-json-format-v4.01-csprd05.docx
(Authoritative)
https://docs.oasis-open.org/odata/odata-json-format/v4.01/csprd05/odata-json-format-v4.01-csprd05.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/csprd05/odata-json-format-v4.01-csprd05.pdf

Previous version:
http://docs.oasis-open.org/odata/odata-json-format/v4.01/cs01/odata-json-format-v4.01-cs01.docx
(Authoritative)
http://docs.oasis-open.org/odata/odata-json-format/v4.01/cs01/odata-json-format-v4.01-cs01.html
http://docs.oasis-open.org/odata/odata-json-format/v4.01/cs01/odata-json-format-v4.01-csO1.pdf

Authoritative
Latest version:
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.docx (Authoritative)

https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.pdf

Technical Committee:
OASIS Open Data Protocol (OData) TC

Chairs:
Ralf Handl (ralf.handl@sap.com), SAP SE
Michael Pizzo (mikep@microsoft.com), Microsoft

Editors:
Michael Pizzo (mikep@microsoft.com), Microsoft
Ralf Handl (ralf.handl@sap.com), SAP SE

Mark Biamonte (mark.biamonte@progress.com), Progress Software

Related work:

This specification replaces or supersedes:

e OData JSON Format Version 4.0. Edited by Ralf Handl, Michael Pizzo, and Mark Biamonte. 24
February-2014-OASIS Standard.- Latest version: http:/docs.oasis-open.org/odata/odata-json-
format/v4.0/odata-json-format-v4.0.html.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 1 of 65


https://docs.oasis-open.org/odata/odata-json-format/v4.01/csprd05/odata-json-format-v4.01-csprd05.docx
https://docs.oasis-open.org/odata/odata-json-format/v4.01/csprd05/odata-json-format-v4.01-csprd05.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/csprd05/odata-json-format-v4.01-csprd05.pdf
http://docs.oasis-open.org/odata/odata-json-format/v4.01/cs01/odata-json-format-v4.01-cs01.docx
http://docs.oasis-open.org/odata/odata-json-format/v4.01/cs01/odata-json-format-v4.01-cs01.html
http://docs.oasis-open.org/odata/odata-json-format/v4.01/cs01/odata-json-format-v4.01-cs01.pdf
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.docx
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.pdf
https://www.oasis-open.org/committees/odata/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:mark.biamonte@progress.com
http://www.progress.com/
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
https://www.oasis-open.org/

This specification is related to:

e OData Version 4.01. Edited by Michael Pizzo, Ralf Handl, and Martin Zurmuehl. A multi-part Work
Product which includes:

o OData Version 4.01. Part 1: Protocol. Latest version: hitp :/ldocs.oasis-
open.org/odata/odata/v4.01/odata-v4.01-partl-protocol.html.

o OData Version 4.01. Part 2: URL Conventions. Latest version: https://docs.oasis-
open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.htmil.

o ABNF components: OData ABNF Construction Rules Version 4.01 and OData ABNF Test Cases.
http :/ldocs.oasis-open.org/odata/odata/v4.01/es6% /abnf/.

e OData Vocabularies Version 4.0. Edited by Mike Pizzo, Ralf Handl, and Ram Jeyaraman.
Latest version: http://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-
v4.0.html.

e OData Common Schema Definition Language (CSDL) JSON Representation Version 4.01. Edited by
Michael Pizzo, Ralf Handl, and Martin Zurmuehl. Latest version: http :/ldocs.oasis-
open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html.

e OData Common Schema Definition Language (CSDL) XML Representation Version 4.01;. Edited by
Michael Pizzo, Ralf Handl, and Martin Zurmuehl. Latest version: https://docs.oasis-
open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html.

Abstract:

The Open Data Protocol (OData) for representing and interacting with structured content is comprised of
a set of specifications. The core specification for the protocol is in OData Version 4.01 Part 1: Protocol.
This document extends the core specification by defining representations for OData requests and
responses using a JSON format.

Status:

This document was last revised or approved by the OASIS Open Data Protocol (OData) TC on the above
date. The level of approval is also listed above. Check the “Latest version” location noted above for
possible later revisions of this document. Any other numbered Versions and other technical work
produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=odata#technical.

TC members should send comments on this specification to the TC’s email list. Others should send
comments to the TC'’s public comment list, after subscribing to it by following the instructions at the “Send
A Comments®’ button on the TC's web page at https://www.oasis-open.org/committees/odata/.

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/odata/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such
plain text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[OData-JSON-Format-v4.01]

OData JSON Format Version 4.01. Edited by Michael Pizzo, Ralf Handl, and Mark Biamonte. 30-January
2009 OASIS Committee Specn‘lcatlon o
https://docs.oasis-open.org/odata/odata-json-format/v4.01/csprd05/odata-json-format-v4.01-csprd05.html.
Latest version: http :/ldocs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-
v4.01.html.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 2 of 65


https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/csprd05/abnf/
http://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html
http://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/policies-guidelines/ipr#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/odata/odata-json-format/v4.01/csprd05/odata-json-format-v4.01-csprd05.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html

Notices

Copyright © OASIS Open 20618 . All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 3 of 65


https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

Table of Contents

1 gL o To (3T i o] o ISP USRI 7
o = 3 o] Tos TSP PP PP PP P PPPPPPPPPPPPPPPPIN 7
R T 0011 T ] (o | PO P PP PPPPPPPPPPPPPPPPPPIN 7
1.3 NOIMALIVE REFEIENCES ...ttt e e et et e e e e e e e eataaa e e e eeeeeeennnaeaaeeeenes 7
1.4 NON-NOIMALIVE REFEIENCES. ... .o i et e e e e e e e et e e e e e e e eearann e eeeaeeees 8
1.5 TypographiCal CONVENTIONS. .........uuuitieiiiitieieeteeeeeeeeeeeeeeeaeeee e e e e e e e eeeeeeesesassesssssssssssssssesessnsesssnesnnennnes 8

2 JSON FOIMEAE DESIGIN ...eeeeeeiiieietiteetteee ettt ettt ettt et e et s st s st s s et s s s s s et e e s s e st es e et seeenennnnnnnnes 9

3 Requesting the JSON FOMMI@L. .......uuuuiiiiiiiiiiiiiiii s 10
3.1 Controlling the Amount of Control Information in RESPONSES .........uuuuiiii e 10

3.1.1 metadata=minimal (odata.metadata=minimal) ..o 10
3.1.2 metadata=full (odata.metadata=full) ..ccccciiiiiiiiiiiiiiiee e 11
3.1.3 metadata=none (0data.metadata=none) ...ccccoiiiiiiiiiiiiiii e 11
3.2 Controlling the Representation of NUMDEIS...........u 11

4 (070] 101 1 aT0] g I @ 1 Fo T = Tox 1T 1S3 103U 13
N ToT T [ GO N = o etV oY= 13
4.2 MESSAGE BOOY ... oo 13
e B Lo = LY 2T U PSS 13
4.4 Payload Ordering CONSIIAINTS ......cooiiiiieee e 14
4.5 Control INFOrMAaLION ..o 15

4.5.1 Control Information: context (0data.Context) e e e e e e e e 15
4.5.2 Control Information: metadataEtag (odata.metadataEtag) covveeeneeeerreeeenniieeeeereeennnneees 15
4.5.3 Control Information: type (0Aata . EYPE) iiiuuuuiiiiieeriieetiiiree e e e eeeteiss e e e e e e eeeenr e e e e e eeaann e 16
4.5.4 Control Information: count (0data . COUNT) wuiiiiiiiriiriiiiirie e e e eeeeiirs e e e e e e e e e e e eaanae s 17
4.5.5 Control Information: nextLink (0data.NeXtLink) ieerieeerreeeieiiiieeeeeeeeernire e e e reeeannn s 17
4.5.6 Control Information: delta (0data.delta) civeeeiieeeerieeriiiieeeeereeeiiss e e e e e e rearnr e e e e e eeeann s 17
4.5.7 Control Information: deltalLink (0data.deltaLink) i ereiiiieeeeeereereiireeeeeeeennnnnns 17
4.5.8 Control Information: 1d (0data . 1d) . cceeieeereeeriiiisieeeeeeeeiire e e e e e e e e e e e e e e e e e e 17
4.5.9 Control Information; editLink and readLink (odata.editLink and odata.readLink)

..................................................................................................................................................... 18
4.5.10 Control Information: etag (0data . Lag) . iiii i erieeiiiiieee e e e ee s e e e e e e e e e e e eear s 18
4.5.11 Control Information: navigationLink and associationLink (odata.navigationLink
F=1g(0 [ oTo ERut=RAEY-T=Te Yok =1 ol KoY o1 Fs 18 o < ISR 18
4.5.12 Control Information: media* (0data.media™®) ..cciiiiiiieeeeiieeiiiie e e e e e 19
4.5.13 Control Information: removed (0data . removVed) iiieeeeeeerreiiiiieeeeeeeeerrerr e e e e e eerana s 20
4.5.14 Control Information: collectionAnnotations (odata.collectionAnnotations)....20

5 SEIVICE DOCUMEBNL ... 21

6 T 1 23

7 SHUCIURAl PIOPEITY ..o 24
7.1 PHMILIVE VAIUE ...ttt s 24
7.2 COMPUEX VAIUE ...ttt s 25
7.3 Collection Of PrIMItIVE VAIUES.........uuiiiiiiiiiiiii e 25
7.4 Collection Of COMPIEX VAIUES .......uuuuiiiiiiiiiiiiiiiiiii e s 25

odata-json-format-v4.01-csprd05 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 4 of 65



7.5 UNEYPEA VAIUE ...t s 26

8 NAVIGALION PIOPEITY . ...ttt s 27
8.1 NAVIGALION LINK ...ttt s 27
8.2 ASSOCIALION LINK ...ttt ettt e e e e e e e e ettt e e e e e e e et aaa e e e e e e eetea e e eaaaaee 27
8.3 Expanded NaVigation PrOPEITY ............u i s 27
SR B LT =T o I =T S PSSP PP PRRPPPPPN 28
8.5 BN OPEIALION ...ttt s 28
I G @0 [=Tox 110 o I = 1= T [ 29

9 Y (T T oI o] o T4 PSSP PPPPPN 31

1O MEAIA ENTLY e 32

11 Individual Property or Operation RESPONSE........ccoiii i 33

12 Collection of Operation RESPONSES. ....cccii it 34

R I 0o | =Tt o] o =t 1] PR 35

14 ENLLY REIEIENCE. .. oo 36

15 Delta PAYIOAU. .. ..o 37
15.1 DEILA RESPONSES ...eeiiiiiiiiiiiitittteeetteteeeee ettt e ettt ettt et e et ettt e et e ettt ettt et s s st st st s st s st s s s s se s s e sttt et seeeseteenennnnnes 37
15.2 ADAed/Changed ENTILY ..........eiiiiiiiiiiiiiiieiiieieee ettt e e te e e e et et s ss s et essssssssseeesbseesesenennnes 38
15.3 DEIELEM ENLILY ...eeeteeeeiiieiiietieieete ettt ettt ettt ettt ettt ettt sttt e sttt sttt e e s e st nteneenennne 39
LT o [ [ To I IR PP PPPPPPPPPRS 41
TR ST =11 (=T I 0 S 41
15.6 Update a ColleCtion Of ENLIES .........uiiiiiiiiiiiiiiiiiiiiieie ittt eeeeeeeeseeeeeeeeeenee 41

16 BOUNG FUNCHON ... 43

L7 BOUNG ACH ON. it 45

18 ACHON INVOCAIION. ...t 47

19 Batch Requests and RESPONSES. .....ccoiiiiriiiiei i e e eieeeetiis e e e e e e et e e e e e e e e e e e e e e e eeeeeanaaaeeeeeeenannneees 48
TR 2 7= (o (=T [ 1<) P 48
19.2 ReferenCing NEW ENtIlIES. .. ...t e et e e e e e et e e e e e e e e e eran e eas 50
e B = (=TT oo T o =T T = 1= Lo 50
19.4 Processing @ BatCh REQUEST..........couiiiiii e e e e e e e e e et e e e e e e e naran e ees 51
SRR 2 T (o] LTS 0o T 51
19.6 ASynchronous BatCh REQUESES .........uuuuiiiiiiiiiiiiiiie et e e e e e et e e e e e e e eeann e s 53

20 INSEANCE ANNOLALIONS.....ccci i 56
20.1 ANNotate @ JSON ODJECL......cciiiieiiiii e e e e e e e e e e e et e e e e e eeaastanaeeeaaaaees 56
20.2 Annotate a JSON Array OF PHMILIVE .......cooiiiiiiiii e e et e e e e e e e eea e e eeaaaes 56
20.3 Annotate a Primitive Value Within @ JSON AITaAY...........uuiiiiiieeiiieeiiiie e eee e e e e e eearn e e eeeeens 57

240 R 4 (o gl = = Vg Vo |1 o USRS 58
40 N = o (= o0 1 N 58
21,2 IN-SEIEAM BTN ... . ittt e e e et ettt et e e e e ettt eb e e e e e e e eesbe e e eeaaenes 58
21.3 Error Information in @ SUCCESS PAYIOAU ........uuuuuimimiiiii e 59

21.3.1 Primitive ValUe EITOIS ...ccoiiiiiieeeeeeeeeeeee e 59
21.3.2 SrUCtUIred TYPE EITOIS ..o 59
21.3.3 COllECHION EFTOIS ... 59

22 EXEENSIDIIILY ..o 60

23 SeCUrity CONSIHEIALIONS. ......ccc e 61

24 CONFOIMANCE ... e e e e 62

odata-json-format-v4.01-csprd05 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 5 of 65



AppendiX A, ACKNOWIEAGMENTS ......uiiiiiiiiiii s 64
Appendix B. REVISION HISTOTY ... s 65

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 6 of 65



1 Introduction

The OData protocol is comprised of a set of specifications for representing and interacting with structured
content. The core specification for the protocol is in [OData-Protocol]; this document is an extension of
the core protocol. This document defines representations for the OData requests and responses using
the JavaScript Object Notation (JSON), see [RFC8259].

An OData JSON payload may represent:

a single primitive value

a collection of primitive values

a single complex type value

a collection of complex type values

a single entity or entity reference

a collection of entities or entity references

a collection of changes

a service document describing the top-level resources exposed by the service
an error.

1:01.1 IPR Policy

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/odata/ipr.php).

1:21.2 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL", “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL" in this document are to be interpreted as described
in [RFC2119].

= Normative References

[ECMAScript] ECMAScript 2016 Language Specification, 7" Edition, June 2016. Standard
ECMA-262. http://www.ecma-international.org/publications/standards/Ecma-
262.htm.

[OData-ABNF] OData ABNF Construction Rules Version 4.01.

See link in “Related work” section on cover page.

[OData-CSDLJSON] OData Common Schema Definition Language (CSDL) JSON

Representation Version 4.01. See link in “Related work” section on cover page.

[OData-CSDLXML] OData Common Schema Definition Language (CSDL) XML Representation
Version 4.01. See link in "Related work" section on cover page.
[OData-Protocol] OData Version 4.801 Part 1: Protocol.
See link in “Related work” section on cover page.
[OData-URL] OData Version 4.001 Part 2: URL Conventions.
See link in "Related work" section on cover page.
[OData-VocCap] OData Vocabularies Version 4.0: Capabilities Vocabulary.
See link in "Related work" section on cover page.
[OData-VocCore] OData Vocabularies Version 4.0: Core Vocabulary.
See link in "Related work" section on cover page

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
14, RFC 2119, March 1997. https://tools.ietf.org/html/rfc2119.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 7 of 65


https://www.oasis-open.org/policies-guidelines/ipr#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://tools.ietf.org/html/rfc2119

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource ldentifier
(URI): Generic Syntax”, IETF RFC3986, January 2005.
https://tools.ietf.org/html/rfc3986.

[RFC3987] Duerst, M. and, M. Suignard, “Internationalized Resource Identifiers (IRIs)”, RFC
3987, January 2005. https://tools.ietf.org/html/rfc3987.

[RFC4648] Josefsson, S,, “The Basel6, Base32, and Base64 Data Encodings", RFC 4648,
October 2006. https://tools.ietf.org/html/rfc4648.

[RFC5646] Phillips, A., Ed., and M. Davis, Ed., “Tags for Identifying Languages”, BCP 47,

RFC 5646, September 2009.

http://tools.ietf.org/html/rfc5646.

[RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC7493, March 2015.
https://tools.ietf.org/html/rfc7493.
[RFC7946] Howard Butler, Martin Daly, Alan Doyle, Sean Gillies, Stefan Hagen and Tim

Schaub, "The GeoJSON Format", RFC 7946, August 2016.
http://tools.ietf.org/html/rfc7946.

[RFC8259] Bray, T., Ed., “The JavaScript Object Notation (JSON) Data Interchange Format”,
RFC 8259, December 2017. http://tools.ietf.org/html/rfc8259.

1.4 Non-Normative References

[GeoJSON-2008] Butler, H., Daly, M., Doyle, A., Gillies, S., Schaub, T., and C. Schmidt, "The
GeoJSON Format Specification”, June 2008. http://geojson.org/geojson-
spec.html.

1.31.5 Typographical Conventions
Keywords defined by this specification use this monospaced font.
Normative source code uses this paragraph style.
Some sections of this specification are illustrated with non-normative examples.

Example 1: text describing an example uses this paragraph style

Non-normative examples use this paragraph style.

All examples in this document are hon-normative and informative only.
All other text is normative unless otherwise labeled.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 8 of 65


https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc7493
http://tools.ietf.org/html/rfc7946
http://tools.ietf.org/html/rfc8259
http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html

2 JSON Format Design

JSON, as described in [RFC8259], defines a text format for serializing structured data. Objects are
serialized as an unordered collection of name/value pairs.

JSON does not define any semantics around the name/value pairs that make up an object, nor does it
define an extensibility mechanism for adding control information to a payload.

OData’s JSON format extends JSON by defining general conventions for name/value pairs that annotate
a JSON object, property or array. OData defines a set of canonical annetations for
control information such as ids, types, and links, and instance annotationseustom-annotations MAY be
used to add domain-specific information to the payload.

A key feature of OData’s JSON format is to allow omitting predictable parts of the wire format from the
actual payload. To reconstitute this data on the receiving end, expressions are used to compute missing
links, type information, and other control data. These expressions (together with the data on the wire) can
be used by the client to compute predictable payload pieces as if they had been included on the wire
directly.

Annotations-are used in JSON to capture controtinfermation- that
cannot be predicted (e.g-. the next link of a collection) as well as a mechanism to provide values where a
computed value would be wrong (e.g-. if the media read link of one particular entity does not follow the
standard URL conventions). Computing values from metadata expressions is compute intensive and
some clients might opt for a larger payload size to avoid computational complexity; to accommodate for
this the Accept header allows the client to control the amount of control information added to the
response.

To optimize streaming scenarios, there are a few restrictions that MAY be imposed on the sequence in

which name/value pairs appear within JSON objects. For details on the ordering requirements see
Payload Ordering Constraints.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 9 of 65



3 Requesting the JSON Format

The OData JSON format can be requested using the sformat query option in the request URL with the
media type application/json, optionally followed by format parameters, or the case-insensitive
abbreviation json which MUST NOT be followed by format parameters.

Alternatively, this format can be requested using the Accept header with the media type
application/json, optionally followed by format parameters.

If specified, $format overrides any value specified in the Accept header.
Possible format parameters are:

e FExponentialDecimals

e TEEE754Compatible

e metadata (odata.metadata)

e streaming (odata.streaming)

The names and values of these format parameters are case-insensitive.

Services SHOULD advertise the supported media types by annotating the entity container with the term
Capabilities.SupportedFormatsCapabititiesSupportedFormats defined in [OData-
VocCap], listing all available formats and combinations of supported format parameters.

3.1 Controlling the Amount of Control Information in Responses

The amount of control information needed (or desired) in the payload depends on the client application
and device. The metadata parameter can be applied to the Accept header of an OData request to
influence how much control information will be included in the response.

Other Accept header parameters (e.g., streaming) are orthogonal to the metadata parameter and are
therefore not mentioned in this section.

If a client prefers a very small wire size and is intelligent enough to compute data using metadata
expressions, the Accept header should include metadata=minimal. If computation is more critical
than wire size or the client is incapable of computing control information, metadata=full directs the
service to inline the control information that normally would be computed from metadata expressions in
the payload. metadata=none is an option for clients that have out-of-band knowledge or don't require
control information.

In addition, the client may use the include-annotations preference in the prefer header to request
additional control information. Services supporting this MUST NOT omit control information required by
the chosen metadata parameter, and services MUST NOT exclude the nextLink, deltaLink, and
count if they are required by the response type.

If the client includes the OData-MaxVersion header in a request and does not specify the metadata
format parameter in either the Accept header or $format query option, the service MUST return at least
the minimal control information.

Note that in OData 4.0 the metadata format parameter was prefixed with “odata.”. Payloads with an
OData-Version header equal to 4.0 MUST include the “odata.” prefix. Payloads with an OData-
Version header equal to 4.01 or greater SHOULD NOT include the “odata.” prefix.

3.1.1 metadata=minimal (odata.metadata=minimal)

The metadata=minimal format parameter indicates that the service SHOULD remove computable
control information from the payload wherever possible. The response payload MUST contain at least the
following control information:

e context: the root context URL of the payload and the context URL for any deleted entries or
added or deleted links in a delta response, or for entities or entity collections whose set cannot be
determined from the root context URL

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 10 of 65


https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#SupportedFormats

e ectag: the ETag of the entity , as appropriate

e count: the total count of a collection of entities or collection of entity references, if requested
e nextLink: the next link of a collection with partial results

e deltaLink: the delta link for obtaining changes to the result, if requested

In addition, control information MUST appear in the payload for cases where actual values are not the
same as the computed values and MAY appear otherwise. When control information appears in the
payload, it is treated as exceptions to the computed values.

Media entities and stream properties MAY in addition contain the following control information:

e mediaEtag: the ETag of the stream, as appropriate
e mediaContentType: the content type of the stream

3.1.2 metadata=full (odata.metadata=full)

The metadata=full format parameter indicates that the service MUST include all control information
explicitly in the payload.
The full list of control information that may appear in ara metadata=full response is as follows:

e context: the context URL for a collection, entity, primitive value, or service document.

e count: the total count of a collection of entities or collection of entity references, if requested.

e nextLink: the next link of a collection with partial results

e deltaLink: the delta link for obtaining changes to the result, if requested

e id: the ID of the entity

e ectag: the ETag of the entity

e readLink: the link used to read the entity, if the edit link cannot be used to read the entity

e editLink: the link used to edit/update the entity, if the entity is updatable and the id does not
represent a URL that can be used to edit the entity

e navigationLink: the link used to retrieve the values of a navigation property

e associationLink: the link used to describe the relationship between this entity and related

entities
e type: the type of the containing object or targeted property if the type of the object or targeted
property cannot be heuristically determined Control Information:

type (odata.type)
Media entities and stream properties may in addition contain the following control information:
e mediaReadLink: the link used to read the stream
e mediaEditLink: the link used to edit/update the stream

e mediaEtag: the ETag of the stream, as appropriate
e mediaContentType: the content type of the stream

3.1.3 metadata=none (odata.metadata=none)

The metadata=none format parameter indicates that the service SHOULD omit control information other
than nextLink and count. This control information MUST continue to be included, as applicable, even
in the metadata=none case.

It is not valid to specify metadata=none on a delta request.

3.2 Controlling the Representation of Numbers

The IEEE754Compatible=true format parameter indicates that the service MUST serialize
Edm.Int64 and Edm.Decimal numbers (including the count, if requested) as strings. This is in
conformance with [RFC7493].

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 11 of 65



If not specified, or specified as IEEE754Compatible=false, all numbers MUST be serialized as JSON
numbers.

This enables support for JavaScript numbers that are defined to be 64-bit binary format IEEE 754 values
[ECMAScript] (see section 4.3.1.9) resulting in integers losing precision past 15 digits, and decimals
losing precision due to the conversion from base 10 to base 2.

OData JSON payloads that format Edm. Int64 and Edm.Decimal values as strings MUST specify this
format parameter in the media type returned in the Content-Type header.

Services producing responses without format parameter IEEE754Compatible=true which are unable
to produce exact JSON numbers MAY serialize Edm.Int64 and Edm.Decimal humbers with a
rounded/inexact value as a JSON number and annotate that value with an instance annotation with term
Core.ValueException defined in [OData-VocCore] containing the exact value as a string. This
situation can for example happen if the client only accepts application/json without any format
parameters and the service is written in JavaScript.

For payloads with an OData-Version header equal to 4.0 the ExponentialDecimals=true format
parameter indicates that the service MAY serialize Edm. Decimal numbers in exponential notation (e.g.
le-6 instead of 0.000001).

The sender of a request MUST specify ExponentialDecimals=true inthe Content-Type header if
the request body contains Edm. Decimal values in exponential notation.

If not specified, or specified as ExponentialDecimals=false, all Edm.Decimal values MUST be
serialized in long notation, using only an optional sign, digits, and an optional decimal point followed by
digits.

Payloads with an OData-Version header equal to 4.01 or greater always allow exponential notation for
numbers and the ExponentialNotation format parameter is not needed or used.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 12 of 65


http://www.ecma-international.org/ecma-262/5.1/#sec-4.3.19

4 Common Characteristics

This section describes common characteristics of the representation for OData values in JSON. A request
or response body consists of several parts. It contains OData values as part of a larger document.
Requests and responses are structured almost identical; the few existing differences will be explicitly
called out in the respective subsections.

4.1 Header Content-Type

Requests and responses with a JSON message body MUST have a Content-Type header value of
application/Jjson.

Requests MAY add the charset parameter to the content type. Allowed values are UTF-8, UTF-16,
and UTF-32. If no charset parameter is present, UTF-8 MUST be assumed.

Responses MUST include the metadata parameter to specify the amount of metadata included in the
response.

Responses MUST include the IEEE754Compatible parameter if Edm. Int64 and Edm.Decimal
numbers are represented as strings.

Requests and responses MAY add the streaming parameter with a value of true or false, see
section Payload Ordering Constraints.

4.2 Message Body

Each message body is represented as a single JSON object. This object is either the representation of an
entity, an entity reference or a complex type instance, or it contains a name/value pair whose name
MUST be value and whose value is the correct representation for a primitive value, a collection of
primitive values, a collection of complex values, a collection of entities, or a collection of objects that
represent changes to a previous result.

Client libraries MUST retain the order of objects within an array in JSON responses.

4.3 Relative URLs

URLSs present in a payload (whether request or response) MAY be represented as relative URLS.

Relative URLS, other than those in type, are relative to their base URL, which is
the context URL of the same JSON object, if one exists, otherwise
the context URL of the enclosing object, if one exists, otherwise

the context URL of the next enclosing object, if one exists, etc. until the document root, otherwise
the request URL.

For context URLSs, these rules apply starting with the second bullet point.
Within the type annetation , relative URLSs are relative to the base type URL, which is

e the type of the enclosing object, if one exists, otherwise

e the type of the next enclosing object, if one exists, etc. until the document root, otherwise

¢ the context URL of the document root, if one exists, otherwise

e the request URL.
Processors expanding the URLs MUST use normal URL expansion rules as defined in RFC3986. This
means that if the base URL is a context URL, the part starting with Smetadata# is ignored when
resolving the relative URL.
Clients that receive relative URLs in response payloads SHOULD use the same relative URLs, where

appropriate, in request payloads (such as bind operations and batch requests) and in system query
options (such as sid).

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 13 of 65



batch requests

Example 2:
{
"@context": "http://host/service/$metadata#Customers/Sentity",
"'('@éditLink" : "Customers ("ALFKI'")"
"'C')J'cders@navigationLink" : "Customers ('ALFKI') /Orders",

}

The resulting absolute URLs are http://host/service/Customers ('ALFKI') and
http://host/service/Customers ('ALFKI') /Orders.

4.4 Payload Ordering Constraints

Ordering constraints MAY be imposed on the JSON payload in order to support streaming scenarios.
These ordering constraints MUST only be assumed if explicitly specified as some clients (and services)
might not be able to control, or might not care about, the order of the JSON properties in the payload.
Clients can request that a JSON response conform to these ordering constraints by specifying a media
type of application/json with the streaming=true parameter in the Accept header or Sformat
query option. Services MUST return 406 Not Acceptable if the client only requests streaming and the
service does not support it.

Clients may specify the st reaming=true parameter in the Content-Type header of requests to
indicate that the request body follows the payload ordering constraints. In the absence of this parameter,
the service must assume that the JSON properties in the request are unordered.

Processors MUST only assume streaming support if it is explicitly indicated in the Content-Type header
via the streaming=true parameter.

Example 3: a payload with

Content-Type: application/json;metadata=minimal;streaming=true

can be assumed to support streaming, whereas a payload with

Content-Type: application/json;metadata=minimal

cannot be assumed to support streaming.

JSON producers are encouraged to follow the payload ordering constraints whenever possible (and
include the streaming=true content-type parameter) to support the maximum set of client scenarios.

To support streaming scenarios the following payload ordering constraints have to be met:

e |If present, the context annotation MUST be the first property in the JSON
object.
e The type annotation , if present, MUST appear next in the JSON object.
e The id and etag annetations MUST appear before any property
or property annetation .
e All annotations for a structural or navigation property MUST appear as a

group immediately before the property they-anneotate. The one exception is the
nextlinkaextlink-annotation of ana collection which MAY appear after the collection it

annotates.
o All other edata—-anneotations can appear anywhere in the payload as long as
heede not violate any of the above rules.
odata-json-format-v4.01-csprd05 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 14 of 65



e For 4.0 payloads, annotations_and control information for navigation properties MUST appear
after all structural properties. 4.01 clients MUST NOT assume this ordering.

Note that, in OData 4.0, the streaming format parameter was prefixed with “odata.”. Payloads with an
OData-Version header equal to 4.0 MUST include the “odata.” prefix. Payloads with an OData-
Version header equal to 4.01 or greater SHOULD NOT include the “odata.” prefix.

4.5 Control Information
In addition to the “pure data” a message body MAY contain eentreHnformation-thatisrepresented-as

annotations intheJSONformatand control information that is represented as name/value pairs whose
names start with edata-fellowed-by-a-det0.

In requests and responses that-do-net-centainthe-with an OData-Version header with a value of 4. 0;
the— control information names are prefixed with @odata~"prefix., €.9. Godata.context. In requests
and responses without such a header the "odata.” infix SHOULD be omitted, e.g Gcontext.

In some cases, control information is required in request payloads; this is called out in the following
subsections.

Receivers that encounter unknown annotations in any namespaceinetuding-the-edatanamespaee; or

unknown control information MUST NOT stop processing and MUST NOT signal an error.

4.5.1 Control Information: context (odata.context)

The context annetationcontrol information returns the context URL (see [OData-Protocol]) for the
payload. This URL can be absolute or relative.

The context annetationcontrol information is not returned if metadata=none is requested. Otherwise it
MUST be the first property of any JSON response.

The context annetationcontrol information MUST also be included in requests and responses for
entities whose entity set cannot be determined from the context URL of the collection.

For more information on the format of the context URL, see [OData-Protocol].
Request payloads MAY include a context URL as a base URL for relative URLSs in the request payload.

Example 4:
{
"@Qcontext": "http://host/service/Smetadata#Customers/Sentity",
"@metadataEtag": "W/\"ALFF3E230954908F\"",
HeCewafeomopalloradop. o g 10

4.5.2 Control Information: metadataEtag (odata.metadataEtaq)

The metadataEtag arnetationcontrol information MAY appear in a response in order to specify the
entity tag (ETag) that can be used to determine the version of the metadata of the response. If an ETag is
returned when requesting the metadata document, then the service SHOULD set the metadataEtag
annetatiencontrol information to the metadata document's ETag in all responses when using
metadata=minimal or metadata=full. If no ETag is returned when requesting the metadata
document, then the service SHOULD NOT set the metadataEtag apnetationcontrol information in any
responses.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 15 of 65



For details on how ETags are used, see [OData-Protocol].

4.5.3 Control Information: type (odata. type)

The type annotation specifies the type of a JSON object or name/value pair. Its value
is a URI that identifies the type of the property or object. For built-in primitive types the value is the
unqualified name of the primitive type. For payloads described by an ObData-Version header with a
value of 4.0, this name MUST be prefixed with the hash symbol (#); for non-OData 4.0 payloads, built-in
primitive type values SHOULD be represented without the hash symbol, but consumers of 4.01 or greater
payloads MUST support values with or without the hash symbol. For all other types, the URI may be
absolute or relative to the type of the containing object. The root type may be absolute or relative to the
root context URL.

If the URI references a metadata document (that is, it's not just a fragment) ane-refers toa
specmc version of that metadata y v;

header; deflned in [OData-Protocol]éHQUIzD—be

For non-built in primitive types, the URI contains the namespace-qualified or alias-qualified type, specified
as a URI fragment. For properties that represent a collection of values, the fragment is the namespace-
qualified or alias-qualified element type enclosed in parentheses and prefixed with Collection. The
namespace or alias MUST be defined or the namespace referenced in the metadata document of the
service, see [OData-CSDLJSON] or [OData-CSDLXML].

The type annotation MUST appear in requests and in responses with minimal or full
metadata, if the type cannot be heuristically determined, as described below, and one of the following is
true:

e The type is derived from the type specified for the (collection of) entities or (collection of) complex
type instances, or
e The type is for a property whose type is not declared in Smetadata.

The following heuristics are used to determlne the primitive type of a dynamic property in the absence of
the type annotation

e Boolean values have a first-class representation in JSON and do not need any additional

annotations

e Numeric values have a first- class representation in JSON but are not further distinguished, so
they include a type annotation unless their type is Double.

e The special floating-point values —-INF, INF, and NaN are serialized as strings and MUST have a
type annotation to specify the numeric type of the property.

e String values do have a first class representation in JSON, but there is an obvious collision:
OData also encodes a number of other primitive types as strings, e.g. DateTimeOffset, Int64
in the presence of the IEEE754Compatible format parameter etc. If a property appears in
JSON string format, it should be treated as a string value unless the property is known (from the
metadata document) to have a different type.

For more information on namespace- and alias-qualified names, see [OData-CSDLJSON] or [OData-
CSDLXML].

Example 5: entity of type Model . VipCustomer defined in the metadata document of the same service with a
dynamic property of type Edm. Date

{
"@context": "http://host/service/S$Smetadata#Customers/Sentity",
"Qtype": "#Model.VipCustomer",
"ID": 2,
"DynamicValue@type": "Date",

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 16 of 65



"DynamicValue": "2016-09-22",

}

Example 6: entity of type Model . VipCustomer defined in the metadata document of a different service

{

"@context": "http://host/service/$metadata#Customers/S$Sentity",
"@type": "http://host/alternate/$metadata#Model.VipCustomer",
"ID": 2,

4.5.4 Control Information: count (odata.count)

The count anneotation occurs only in responses and can annotate any collection, see
[OData-Protocol] section 11.2.5.5 System Query Option Scount. Its value is an Edm. Int64 value
corresponding to the total count of members in the collection represented by the request.

4.5.5 Control Information: nextLink (odata.nextLink)

The nextLink anneotation indicates that a response is only a subset of the requested
collection. It contains a URL that allows retrieving the next subset of the requested collection.

This annetation can also be applied to expanded to-many navigation properties.

4.5.6 Control Information: delta (odata.delta)

The delta annotation is applied to a collection-valued navigation property within an
added/changed entity in a delta payload to represent changes in membership or value of nested entities.

4.5.7 Control Information: deltaLink (odata.deltaLink)

The deltalink annetation contains a URL that can be used to retrieve changes to
the current set of results. The deltalink annetation MUST only appear on the last
page of results. A page of results MUST NOT have both a deltalLink annetation and
a nextLinkaextlink-annotation

4.5.8 Control Information: id (odata. id)

The id annotation contains the entity-id, see [OData-Protocol]. By convention the
entity-id is identical to the canonical URL of the entity, as defined in [OData-URL].

The id annetation MUST appear in responses if metadata=full is requested, or if
metadata=minimal is requested and any of the entity's key fields are omitted from the
response or the entity-id is not identical to the canonical URL of the entity after

¢ |RI-to-URI conversion as defined in [RFC3987],
e relative resolution as defined in section 5.2 of [RFC3986], and
e percent-encoding normalization as defined in section 6 of [RFC3986].

Note that the entity-id MUST be invariant across languages, so if key values are language dependent
then the 1d MUST be included if it does not match convention for the localized key values. If the id is
represented, it MAY be a relative URL.

If the entity is transient (i.e. cannot be read or updated), the id anneotation MUST
appear and have the null value
odata-json-format-v4.01-csprd05 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 17 of 65



The id annetatien MUST NOT appear for a collection. Its meaning in this context is
reserved for future versions of this specification.

Entities with 1d equal to nul1l cannot be compared to other entities, reread, or updated. If
metadata=minimal is specified and the id is not present in the entity, then the canonical URL MUST
be used as the entity-id.

4.5.9 Control Information: editLink and readLink (odata.editLink and
odata.readLink)

The editLink anneotation contains the edit URL of the entity; see [OData-Protocol].
The readLink anhetation contains the read URL of the entity or collection; see
[OData-Protocol].

The editLink and readLink ahnotations-are ignored in request payloads and not

written in responses if metadata=none is requested.

The default value of both the edit URL and read URL is the entity's entity-id appended with a cast
segment to the type of the entity if its type is derived from the declared type of the entity set. If neither the
editLink northe readLink arnetation is present in an entity, the client uses this
default value for the edit URL.

For updatable entities:

e The editLink annotation is written if metadata=full is requested or if
metadata=minimal is requested and the edit URL differs from the default value of the edit
URL.

e The readLink annotation is written if the read URL is different from the edit
URL. If no readLink anneotation is present, the read URL is identical to the
edit URL.

For read-only entities:

e The readLink annotation is written if metadata=full is requested or if
metadata=minimal is requested and its value differs from the default value of the read URL.

e The readLink annotation may also be written if metadata=minimal is

specified in order to signal that an individual entity is read-only.
For collections:

e The readLink annotation , if written, MUST be the request URL that produced
the collection.
e The editLink annotation MUST NOT be written as its meaning in this

context is reserved for future versions of this specification.

4.5.10 Control Information: etag (odata.etaq)

The etag annotation MAY be applied to an entity in a response. The
value of the annotation is an entity tag (ETag) which is an opaque string value that can
be used in a subsequent request to determine if the value of the entity has changed.

For details on how ETags are used, see [OData-Protocol].

The etag annetation is ignored in request payloads and not written

in responses if metadata=none is requested.

4.5.11 Control Information: navigationLink and associationLink
(odata.navigationLink and odata.associationLink)

The navigationLink annetation in a response contains a navigation URL that can
be used to retrieve an entity or collection of entities related to the current entity via a navigation property.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 18 of 65



The default computed value of a navigation URL is the value of the read URL appended with a segment
containing the name of the navigation property. The service MAY omit the navigationLink
annetatiencontrol information if metadata=minimal has been specified on the request and the
navigation link matches this computed value.

The associationLink annetatiorcontrol information in a response contains an association URL that
can be used to retrieve a reference to an entity or a collection of references to entities related to the
current entity via a navigation property.

The default computed value of an association URL is the value of the navigation URL appended with
/S$ref. The service MAY omit the associationLink annetationcontrol information if the association
link matches this computed value.

The navigationLink and associationLink annetations-arecontrol information is ignored in request
payloads and not written in responses if metadata=none is requested.

4.5.12 Control Information: media* (odata.media%*)

For media entities and stream properties at least one of the annetationscontrol information
mediaEditLink and mediaReadLink MUST be included in responses if they don't follow standard
URL conventions as defined in [OData-URL] or if mnetadata=full is requested.

The mediaEditLink annetatiencontrol information contains a URL that can be used to update the
binary stream associated with the media entity or stream property. It MUST be included for updatable
media entities if it differs from the value of the id, and for updatable stream properties if it differs from
standard URL conventions.

The mediaReadLink annetationcontrol information contains a URL that can be used to read the binary
stream associated with the media entity or stream property. It MUST be included if its value differs from
the value of the associated mediaEditLink, if present, or the value of the id for media entities if the
associated mediaEditLink is not present.

The mediaContentType annetationcontrol information MAY be included; its value SHOULD match the
contentmedia type of the binary stream represented by the mediaReadLink URL. This is only a hint; the
actual eententmedia type will be included in athe Content-Type header when the resource is
requested.

The mediaEtag annetationcontrol information MAY be included; its value is the ETag of the binary
stream represented by this media entity or stream property.

The media* annotations-are-ighored-inrequestpayloads-andcontrol information is not written in

responses if metadata=none is requested.

If a stream property is provided inline in a request, the mediaContentType control information may be
specified.

If a stream property is annotated with Capabilities.MedialLocationUpdateSupported (see
[OData-VocCap]) and a value of true, clients MAY specify the mediaEditLink and/or
mediaReadLink control information for that stream property in order to change the association between
the stream property and a media stream.

In all other cases media* control information is ignored in request payloads.

Example 7:
{
"@context": "http://host/service/S$metadata#Employees/Sentity",
"@mediaReadLink": "Employees (1)/$value",
"@mediaContentType": "image/Jjpeg",
"ID": 1,
}
odata-json-format-v4.01-csprd05 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 19 of 65



4.5.13 Control Information: removed (odata. removed)

The removed control information is used in delta payloads and indicates that the represented entity is (to

be) deleted.

4.5.14 Control Information: collectionAnnotations
(odata.collectionAnnotations)

The collectionAnnotations control information can be applied to a collection containing primitive
members in order to annotate such primitive members. The value of the collectionAnnotations
control information is an array of JSON objects containing an integer property index, specifying the zero-
based ordinal index of the primitive item within the collection, along with any annotations that are to be
applied to that primitive collection member.

Example 8: Annotating primitive values within a collection

{
"@context": "http://host/service/Smetadata#Employees/Sentity",
"ID": 1,
"EmailAddresses@collectionAnnotations" : [

"index":0,
"@emailType" :"Personal"

"index":2,
"@emailType" :"Work"

1,

"EmailAddresses": |
"Julie@Swansworth.com",
"JulieSwa@live.com",
"Julie.Swansworth@work.com"

1,

1

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 20 of 65



5 Service Document

A service document in JSON is represented as a single JSON object with at least the context
anpnetaten and a property value.

The value of the context anneotation MUST be the URL of the metadata document,
without any fragment part.

The value of the value property MUST be a JSON array containing one element for each entity set and
function import with an explicit or default value of true for the attribute IncludeInServiceDocument
and each singleton exposed by the service, see [OData-CSDLJSON] or [OData-CSDLXML].

Each element MUST be a JSON object with at least two name/value pairs, one with name name
containing the name of the entity set, function import, or singleton, and one with name ur1 containing the
URL of the entity set, which may be an absolute or a relative URL. It MAY contain a name/value pair with
name title containing a human-readable, language-dependent title for the object.

JSON objects representing an entity set MAY contain an additional name/value pair with name kind and
avalue of EntitySet. If the kind name/value pair is not present, the object MUST represent an entity
set.

JSON objects representing a function import MUST contain the kind name/value pair with a value of
FunctionImport

JSON objects representing a singleton MUST contain the kind name/value pair with a value of
Singleton.

JSON objects representing a related service document MUST contain the kind name/value pair with a
value of ServiceDocument.

Clients that encounter unknown values of the kind name/value pair not defined in this version of the
specification MUST NOT stop processing and MUST NOT signal an error.

Service documents MAY contain annotations in any of its JSON objects. Services MUST NOT produce

name/value pairs other than the ones explicitly defined in this section, and clients MUST ignore unknown
name/value pairs.

Example 9:
{
"@Qcontext": "http://host/service/Smetadata",
"value": [

{
"name": "Orders",
"kind": "EntitySet",
"url": "Orders"

by

{
"name": "OrderItems",
"title": "Order Details",
"url": "OrderItems"

by

{
"name": "TopProducts",
"title": "Best-Selling Products",
"kind": "FunctionImport",
"url": "TopProducts"

by

{
"name": "MainSupplier",
"title": "Main Supplier",
"kind": "Singleton",
"url": "MainSuppliexr"

}y

odata-json-format-v4.01-csprd05 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 21 of 65



"name": "Human Resources",

"kind": "ServiceDocument",
"url": "http://host/HR/"
}
]
}
odata-json-format-v4.01-csprd05 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 22 of 65



6 Entity

An entity is serialized as a JSON object. context, type deltaLink

Each property to be transmitted is represented as a name/value pair within the object. The order
properties appear within the object is considered insignificant.

An entity in a payload may be a complete entity, a projected entity (see System Query Option $select
[OData-Protocol]), or a partial entity update (see Update an Entity in [OData-Protocol]).

An entity representation can be (modified and) round-tripped to the service directly. The context URL is
used in requests only as a base for relative URLS.

Example 10: entity with metadata=minimal

{

"@context": "http://host/service/Smetadata#Customers/S$entity",
"ID" . "ALFKI ",

"CompanyName": "Alfreds Futterkiste",

"ContactName": "Maria Anders",

"ContactTitle": "Sales Representative",

"Phone": "030-0074321",
"Fax": "030-0076545",
"Address": {
"Street": "Obere Str. 57",
"City": "Berlin",
"Region": null,
"PostalCode": "D-12209"

}

Example 11: entity with metadata=rfull

{

"@context": "http://host/service/Smetadata#Customers/Sentity",
"@id": "Customers ('ALFKI'")",

"@etag": "W/\"MjAxMyOwNSOyN1QxMTolOFo=\"",

"Q@editLink": "Customers ('ALFKI')",

IIID" . IIALFKI II,

"CompanyName": "Alfreds Futterkiste",

"ContactName": "Maria Anders",

"ContactTitle": "Sales Representative",

"Phone": "030-0074321",

"Fax": "030-0076545",
"Address": {
"Street": "Obere Str. 57",
"City": "Berlin",
"Region": null,
"PostalCode": "D-12209",
"Country@associationLink":"Customers ('ALFKI') /Address/Country/S$ref",

"Country@navigationLink": "Customers ('ALFKI') /Address/Country"
by
"Orders@associationLink": "Customers ('ALFKI') /Orders/Sref",
"Orders@navigationLink": "Customers ('ALFKI')/Orders"
}
odata-json-format-v4.01-csprd05 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 23 of 65



7 Structural Property

A property within an entity or complex type instance is represented as a name/value pair. The name
MUST be the name of the property; the value is represented depending on its type as a primitive value, a
complex value, a collection of primitive values, or a collection of complex values.

7.1 Primitive Value

Primitive values are represented following the rules of [RFC8259].
Null values are represented as the JSON literal null.
Values of type Edm.Boolean are represented as the JSON literals true and false

Values of types Edm.Byte, Edm. SByte, Edm.Int16, Edm.Int32, Edm.Int64, Edm.Single,
Edm.Double, and Edm.Decimal are represented as JSON numbers, except for -INF, INF, and NaN
which are represented as strings.

Values of type Edm. String are represented as JSON strings, using the JSON string escaping rules.

Values of type Edm.Binary, Edm.Date, Edm.DateTimeOffset, Edm.Duration, Edm.Guid, and
Edm.TimeOfDay are represented as JSON strings whose content satisfies the rules binaryvalue,
dateValue, dateTimeOffsetValue, durationValue, guidvalue, and timeOfDayValue
respectively, in [OData-ABNF].

Enumeration values are represented as JSON strings whose content satisfies the rule enumvalue in
[OData-ABNF]. The preferred representation is the enumerationMember. If N0 enumerationMember
(or combination of named enumeration members) is available, the enumMembervalue representation
may be used.

Geography and geometry values are represented as geometry types as defined in [RFC7946], with the
following modifications:

e Keys SHOULD be ordered with type first, then coordinates, then any other keys

e |f the optional CRS objectCRS-ebject is present, it MUST be of type name, where the value of the
name member of the contained properties objectis an EPSG SRID legacy identifier-

Geography and geometry types have the same representation in a JSON payload. Whether the value
represents a geography type or geometry type is inferred from its usage or specified using the type
oRmsknten

Example 12:

{
"NullValue": null,

"TrueValue": true,

"FalseValue": false,

"BinaryValue": "TORhdGE",

"IntegerValue": -128,

"DoubleValue": 3.1415926535897931,
"SingleValue": "INF",

"DecimalValue": 34.95,

"StringValue": "Say \"Hello\", \nthen go",

"DateValue": "2012-12-03",
"DateTimeOffsetValue": "2012-12-03T07:16:232",

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 24 of 65


http://geojson.org/geojson-spec.html#named-crs

"DurationValue": "P12DT23H59M59.999999999999s",

"TimeOfDayValue": "07:59:59.999",

"Guidvalue": "01234567-89%ab-cdef-0123-456789%abcdef",
"Int64Value": O,

"ColorEnumValue": "Yellow",

"GeographyPoint": {"type": "Point","coordinates":[142.1,64.1]}

7.2 Complex Value

A complex value is represented as a single JSON object containing one name/value pair for each
property that makes up the complex type. Each property value is formatted as appropriate for the type of
the property.

It MAY have namelvalue pairs for instance annotationsinstance-annetations—ihcludingedataanneotations

Example 13:
{
"@context": "http://host/service/$metadata#Customers/Sentity",
"Address": {
"Street": "Obere Str. 57",
"City": "Berlin",

"Region": null,
"PostalCode": "D-12209"

}

A complex value with no selected properties, or no defined properties (such as an empty open complex
type or complex type with no structural properties) is represented as an empty JSON object.

7.3 Collection of Primitive Values

A collection of primitive values is represented as a JSON array; each element in the array is the
representation of a primitive value. A JSON literal nul1l represents a null value within the collection. An

empty collection is represented as an empty array.

Example 14: partial collection of strings with next link

{
"@Qcontext": "http://host/service/S$metadata#Customers/Sentity",

"EmailAddresses": [
"Julie@Swansworth.com",
"Julie.Swansworth@work.com"

1y

"EmailAddresses@nextLink": "..."

7.4 Collection of Complex Values

A collection of complex values is represented as a JSON array; each element in the array is the
representation of a complex value. A JSON literal nul1 represents a null value within the collection. An

empty collection is represented as an empty array.

Example 15: partial collection of complex values with next link

{

"PhoneNumbers": [

{
"Number": "425-555-1212",

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 25 of 65



"Type" . "Home"
b
{

"Qtype": "#Model.CellPhoneNumber",
"Number": "425-555-0178",

"Type" 2 "Cell",

"Carrier": "Sprint"

}

1,
"PhoneNumbers@nextLink": "..."

7.5 Untyped Value

OData 4.01 adds the built-in abstract types Edm.Untyped and Collection (Edm.Untyped) that
services can use to advertise in metadata that there is a property of a particular name present, but there
is no type to describe the structure of the property’s values.

The value of an Edm. Untyped property MAY be a primitive value, a structural value, or a collection. If a
collection, it may contain any combination of primitive values, structural values, and collections.

The value of a property of type Collection (Edm.Untyped) MUST be a collection, and it MAY contain
any combination of primitive values, structural values, and collections.

Untyped values are the only place where a collection can directly contain a collection, or a collection can
contain a mix of primitive values, structural values, and collections.

All children of an untyped property are assumed to be untyped unless they are annotated with the type
annetation , in which case they MUST conform to the type described by the
onnskaten

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 26 of 65



8 Navigation Property

A navigation property is a reference from a source entity to zero or more related entities.

8.1 Navigation Link

The navigation link for a navigation property is represented as a navigationLink anhetation

on the navigation property. Its value is an absolute or relative URL that allows retrieving the
related entity or collection of entities.
The navigation link for a navigation property is only represented if the client requests metadata=full or
the navigation link cannot be computed, e.qg. if it is within a collection of complex type instances. If it is
represented it MUST immediately precede the expanded navigation property if the latter is represented.

Example 16:
{
"@context": "http://host/service/Smetadata#Customers/S$entity",
"Orders@navigationLink": "Customers ('ALFKI')/Orders",

8.2 Association Link

The association link for a navigation property is represented as an associationLink anneotation
on the navigation property. Its value is an absolute or relative URL that can be used to
retrieve the reference or collection of references to the related entity or entities.

The association link for a navigation property is only represented if the client requests metadata=full
or the association link cannot be computed by appending /$ref to the navigation link. If it is represented,
it MUST immediately precede the navigation link if the latter is represented, otherwise it MUST
immediately precede the expanded navigation property if it is represented.

Example 17:
{
"@context": "http://host/service/Smetadata#Customers/Sentity",
"Orders@RassociationLink": "Customers ('ALFKI') /Orders/Sref",

8.3 Expanded Navigation Property

An expanded navigation property is represented as a name/value pair where the name is the name of the
navigation property, and the value is the representation of the related entity or collection of entities.

If at most one entity can be related, the value is the representation of the related entity, or null if no
entity is currently related.

If a collection of entities can be related, it is represented as a JSON array. Each element is the
representation of an entity or the representation of an entity reference. An empty collection of entities

(one that contains no entities) is represented as an empty JSON array. The navigation property MAY be
include context, type, count, or nextLink control information. If a navigation property is expanded

with the suffix /$count, only the count control information is represented.

Example 18:
{
"@context": "http://host/service/Smetadata#Customers/Sentity",
odata-json-format-v4.01-csprd05 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 27 of 65



"Orders@count": 42,
"Orders": [ ... 1,
"Orders@nextLink": "...",

8.4 Deep Insert

When inserting a new entity with a POST request, related new entities MAY be specified using the same
representation as for an expanded navigation property.

Deep inserts are not allowed in update operations using PUT or PATCH requests.

Example 19: inserting a new order for a new customer with order items related to existing products:

{
"ID": 11643,
"Amount": 100,
.7
"Customer": {
"ID": "ANEWONE",

by
"Ttems": [
{
"Product": { "@id": "Products(28)" },
"Quantity": 1,

"Product": { "@id": "Products(39)" 1},
"Quantity": 5,

8.5 Bind Operation

When inserting or updating an entity, relationships of navigation properties MAY be inserted or updated
via bind operations.

For requests containing an Obata-Version header with a value of 4.0, a bind operation is encoded as
a property anneotation odata.bind on the navigation property it belongs to and has a
single value for single-valued navigation properties or an array of values for collection navigation
properties. For nullable single-valued navigation properties the value null may be used to remove the
relationship.

Example 20: assign an existing product to an existing category with a partial update request against the product

PATCH http://host/service/Products (42) HTTP/1.1

{
"Category@odata.bind": "Categories (6)"

}

The values are the ids of the related entities. They MAY be absolute or relative URLSs.

For requests containing an OData-Version header with a value of 4.01, a relationship is bound to an
existing entity using the same representation as for an expanded entity reference.

Example 20: assign an existing product to an existing category with a partial update request against the product

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 28 of 65



PATCH http://host/service/Products (42) HTTP/1.1

{
"Category": {"Q@id": "Categories(6)"}
}

Example 21: submit a partial update request to:
o modify the name of an existing category
e assign an existing product with the id 42 to the category
e assign an existing product 57 to the category and update its name
e create a new product named “Wedges” and assign it to the category

at the end of the request, the updated category contains exactly the three specified products.
PATCH http://host/service/Categories (6) HTTP/1.1

{

"Name": "UpdatedCategory",
"Products": [
{
"@id": "Products (42)"
y
{
"@id": "Products (57)",
"Name": "Widgets"
y
{
"Name": "Wedges"

]
}

OData 4.01 services MUST support both the OData 4.0 representation, for requests containing an
OData-Version header with a value of 4.0, and the OData 4.01 representation, for requests containing
an OData-Version header with a value of 4.01. Clients MUST NOT use @odata.bind in requests
with an OData-Version header with a value of 4.01.

For insert operations collection navigation property bind operations and deep insert operations can be
combined. For OData 4.0 requests, the bind operations MUST appear before the deep insert operations
in the payload.

For update operations a bind operation on a collection navigation property adds additional relationships, it
does not replace existing relationships, while bind operations on an entity navigation property update the
relationship.

Collection ETag

etag

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 29 of 65



T

Note: the collection ETag for a navigation property may or may not be identical to the ETag of the
containing entity, the example shows a different ETag for the Items collection.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 30 of 65



9 Stream Property

An entity or complex type instance can have one or more stream properties.

The actual stream data is not usually contained in the representation. Instead stream property data is
generally read and edited via URLSs.

Depending on the metadata level, the stream property MAY be annotated to provide the read link, edit
link, eenfeentmema type, and ETag of the media stream through a set of medla* annetaﬂeﬂs—lf—th&aetuai

5contro| |nformat|on

If the actual stream data is included inline, the control information mediaContentType MUST be present

to indicate how the included stream property value is represented. Stream property values of media type
application/json or one of its subtypes, optionally with format parameters, are represented as native

JSON. Values of top-level type text, for example text/plain, are represented as a string, with JSON
string escaping rules applied. Included stream data of other media types is represented as a base64url-
encoded string value, see [RFC4648], section 5.

If the included stream property has no value, the non-existing stream data is represented as null and
the control information mediaContentType_iS not necessary.

Example 21:

{
"@context": "http://host/service/S$metadata#Products/Sentity",

"Thumbnail@mediaReadLink": "http://server/Thumbnail546.jpg",
"Thumbnail@mediaEditLink": "http://server/uploads/Thumbnail546.jpg",
"Thumbnail@mediaContentType": "image/Jjpeg",

"Thumbnail@mediaEtag": "W/\"####\"",

"Thumbnail": "...base64url encoded value...",

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 31 of 65



10Media Entity

Media entities are entities that describe a media resource, for example a photo. They are represented as
entities that contain additional media* annetations:

If the actual stream data for the media entity is included, it is represented as property named $value
whose string value is the base64url-encoded value of the media stream, see [RFC4648], section 5.

Example 22:
{
"@context": "http://host/service/S$metadata#Employees/Sentity",
"@mediaReadLink": "Employees (1) /$value",
"@mediaContentType": "image/Jjpeg",
"Svalue": "...base64url encoded value...",
"ID": 1,

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 32 of 65



11Individual Property or Operation Response

An individual property or operation response is represented as a JSON object.

A single-valued property or operation response that has the null value does not have a representation;
see [OData-Protocol].

A property or operation response that is of a primitive type is represented as an object with a single
name/value pair, whose name is value and whose value is a primitive value.

A property or operation response that is of complex type is represented as a complex value.

A property or operation response that is of a collection type is represented as an object with a single
name/value pair whose name is value. Its value is the JSON representation of a collection of complex
type values or collection of primitive values.

Example 23: primitive value

{
"@context": "http://host/service/$metadata#Edm.String",
"value": "Pilar Ackerman"

}

Example 24: collection of primitive values

{
"@context": "http://host/service/Smetadata#Collection (Edm.String)",
"value": ["small", "medium", "extra large"]

}

Example 25: empty collection of primitive values

{
"@context": "http://host/service/Smetadata#Collection (Edm.String)",
"value": []

}

Example 26: complex value

{

"@Qcontext": "http://host/service/S$Smetadata#Model.Address",
"Street": "12345 Grant Street",

llcityll : IITaftII’

"Region": "Ohio",

"PostalCode": "OH 98052",

"Country@navigationLink": "Countries ('US')"

}

Example 27: empty collection of complex values

{
"@Qcontext":"http://host/service/$Smetadata#Collection (Model.Address)",
"value": []

}

Note: the context URL is optional in requests.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 33 of 65



12Collection of Operation Responses

Invoking a bound action or function with /$each on each member of a collection in one request results in
a collection of operation results, which is represented as a JSON object containing a name/value pair
named value. It MAY contain context, type, count, Or nextLink control information.

If present, the context control information MUST be the first name/value pair in the response.

The count name/value pair represents the number of operation responses in the collection. If present
and the streaming=true media type parameter is set, it MUST come before the value name/value
pair. If the response represents a partial result, the count name/value pair MUST appear in the first
partial response, and it MAY appear in subsequent partial responses (in which case it may vary from
response to response).

The value of the value name/value pair is an array of objects, each object representing a single

operation response. Note: if the operation response is a collection, each single operation response object
itself contains a name/value pair named value.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 34 of 65



13 Collection of Entities

A collection of entities is represented as a JSON object containing a name/value pair named value. It

MAY contain context, type, count, nextLink, of deltalLink annetations
If present, the context anneotation

MUST be the first name/value pair in the response.

The count name/value pair represents the number of entities in the collection. If present and the
streaming=true content-type parameter is set, it MUST come before the value namelvalue pair. If the
response represents a partial result, the count name/value pair MUST appear in the first partial
response, and it MAY appear in subsequent partial responses (in which case it may vary from response

to response).

The value of the value name/value pair is a JSON array where each element is representation of an
entity or a representation of an entity reference. An empty collection is represented as an empty JSON

array.

Functions or actions that are bound to this collection of entities are advertised in the “wrapper object” in

the same way as functions or actions are advertised in the object representing a single entity.

The nextLink anneotation
result.

Example 28:

MUST be included in a response that represents a partial

{
"Qcontext": "...
"@Qcount": 37,
"value": [
{ ...},
(R
{ ...}
1l

"@nextLink": "..

.?$skiptoken=342r89"

odata-json-format-v4.01-csprd05
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

21 June 2019
Page 35 of 65



14 Entity Reference

An entity reference (see [OData-Protocol]) MAY take the place of an entity in a JSON payload, based on
the client request. It is serialized as a JSON object that MUST contain the id of the referenced entity and
MAY contain the type annetationcontrol information and instance annotationsether-custorm-annotations;,

but no additional properties or control information.

A collection of entity references is represented as a collection of entities, with entity reference
representations instead of entity representations as items in the array value of the value name/value
pair.

The outermost JSON object in a response MUST contain a context-annetation control information and
MAY contain count, nextLink, or deltaLink annetationscontrol information.

Example 29: entity reference to order 10643

{
"@context": "http://host/service/$metadata#Sref",

"@id": "Orders (10643)"
}

Example 30: collection of entity references

{
"@Qcontext": "http://host/service/Smetadata#Collection (Sref)",

"value": [
{ "@id": "Orders (10643)" 1},
{ "@id": "Orders (10759)" 1}

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 36 of 65



15Delta Payload

The non-format specific aspects of the delta handling are described in the section “Requesting Changes”
in [OData-Protocoll].

15.1 Delta Responses

Responses from a delta request are returned as a JSON object.

The JSON object added, changed, or deleted entity
MUST contain an array-valued property

named value containing all added, changed, or deleted entities, as well as added links or deleted links

between entities, and MAY contain additional, unchanged entities.

If the delta response contains a partial list of changes, it MUST include a next link for the client to retrieve

the next set of changes.

The last page of a delta response SHOULD contain a delta link for retrieving subsequent changes once

the current set of changes has been applied to the initial set.

If the response from the delta link contains a count anneotation , the returned number
MUST include all added, changed, or deleted entities to be returned, as well as added or deleted links.

Example 31: a 4.01 delta response with five changes, in order of occurrence

1. ContactName for customer 'BOTTM' was changed to "Susan Halvenstern”
Order 10643 was removed from customer 'ALFKI'

Order 10645 was added to customer 'BOTTM'

The shipping information for order 10643 was updated

Customer 'ANTON' was deleted

arLON

"@Qcontext":"http://host/service/Smetadata#Customers/Sdelta",
"@count":5,
"value":
[
{
"@id":"Customers ('BOTTM'") ",
"ContactName" :"Susan Halvenstern"

"Qcontext":"#Customers/S$deletedLink",
"source":"Customers ('ALFKI'") ",
"relationship":"Orders",
"target":"Orders (10643)"

"Qcontext":"#Customers/$1ink",
"source":"Customers ('BOTTM'") ",
"relationship":"Orders",
"target":"Orders (10645)"

"@context":"#Orders/Sentity",
"@id":"Orders (10643)",
"ShippingAddress": {
"Street":"23 Tsawassen Blvd.",
"City":"Tsawassen",
HRegionH : HBCH,
"PostalCode":"T2F 8M4"

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 37 of 65



}o
}o
{
"@Qcontext":"#Customers/SdeletedEntity",
"@removed": {
"reason":"deleted"
}o
"@id":"Customers ('ANTON') "

}

1,
"@deltalLink": "Customers?S$expand=Ordersé&Sdeltatoken=8015"

15.2 Added/Changed Entity

Added or changed entities within a delta response are represented as entities.

Added entities MUST include all available selected properties and MAY include additional, unselected
properties. Collection-valued properties are treated as atomic values; any collection-valued properties
returned from a delta request MUST contain all current values for that collection.

Changed entities MUST include all available selected properties that have changed, and MAY include
additional properties.

If a property of an entity is dependent upon the property of another entity within the expanded set of
entities being tracked, then both the change to the dependent property as well as the change to the
principle property or added/deleted link corresponding to the change to the dependent property are
returned in the delta response.

Entities that are not part of the entity set specified by the context URL MUST include the context

annotation to specify the entity set of the entity, regardless of the specified metadata
value.
Entities include annetations for selected navigation links based on metadata.

OData 4.0 payloads MUST NOT include expanded navigation properties inline; all changes MUST be
represented as a flat array of added, deleted, or changed entities, along with added or deleted links.

OData 4.01 delta payloads MAY include expanded navigation properties inline. Related single entities are
represented as either an added/changed entity, an entity reference, a deleted entity, or a null value (if no
entity is related as the outcome of the change). Collection-valued navigation properties are represented
either as a delta representation or as a full representation of the collection.

If the expanded navigation property represents a delta, it MUST be represented as an array-valued
annotation delta on the navigation property. Added/changed entities or entity
references are added to the collection. Deleted entities MAY be specified in a nested delta representation
to represent entities no longer part of the collection. If the deleted entity specifies a reason as deleted,
then the entity is both removed from the collection and deleted, otherwise it is removed from the collection
and only deleted if the navigation property is a containment navigation property. The array MUST NOT
contain added or deleted links.

Example 32: 4.01 delta response customers with expanded orders represented inline as a delta

1. Customer 'BOTTM"
a. ContactName was changed to "Susan Halvenstern"
b. Order 10645 was added

2. Customer 'ALFKI"
a. Order 10643 was removed

3. Customer 'ANTON' was deleted

{
"Qcontext":"http://host/service/Smetadata#Customers/Sdelta",
"@Qcount":3,
"value":

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 38 of 65



"@id":"Customers ('BOTTM') ",
"ContactName" :"Susan Halvenstern",
"Orders@delta™: [

{

"@id":"Orders (10645)"

}

"@id":"Customers ('ALFKI'") ",
"Orders@delta™: [
{
"Qcontext":"#0rders/SdeletedEntity",
"@removed": {
"reason": "changed"
by
"@id":"Orders (10643)"
}

"Qcontext":"#Customers/SdeletedEntity",
"@removed": {
"reason": "deleted"
by
"@id":"Customers ("ANTON') "
}
1y
"@deltalLink": "Customers?Sexpand=0Orders&Sdeltatoken=8015"
}

If the expanded navigation property is a full representation of the collection, it MUST be represented as
an expanded navigation property, and its array value represents the full set of entities related according to
that relationship and satisfying any specified expand options. Members of the array MUST be
represented as added/changed entities or entity references and MUST NOT include added links, deleted
links, or deleted entities. Any entity not represented in the collection has either been removed, deleted, or
changed such that it no longer satisfies the expand options in the defining query. In any case, clients
SHOULD NOT receive additional notifications for such removed entities.

15.3 Deleted Entity

Deleted entities in JSON are returned as deleted-entity objects. Delta responses MUST contain a
deleted-entity object for each deleted entity, including deleted expanded entities that are not related
through a containment navigation property. The service MAY additionally include expanded entities
related through a containment navigation property in which case it MUST include those in any returned
count of enumerated changes.

The representation of deleted-entity objects differs between OData 4.0 and OData 4.01.
In OData 4.0 payloads the deleted-entity object MUST include the following properties, regardless of the
specified metadata value:
o lonsinhen- context — the context URL fragment MUST be # {entity-
set}/$deletedEntity, where {entity-set} is the entity set of the deleted entity

e id-Theid of the deleted entity (same as the id returned or computed when calling GET on
resource), which may be absolute or relative

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 39 of 65



In OData 4.0 payloads the deleted-entity object MAY include the following optional property, regardless of
the specified metadata value, and MAY include annotationsannetations:

e reason — either deleted, if the entity was deleted (destroyed), or changed if the entity was
removed from membership in the result (i.e., due to a data change).

Example 33: deleted entity in OData 4.0 response — note that id is a property, not an-annetation

{
"@Qcontext":"#Customers/SdeletedEntity",
"reason":"deleted",
"id":"Customers ('ANTON'")"

}

In OData 4.01 payloads the deleted-entity object MUST include the following properties, regardless of the
specified metadata value:

. removedAnnoetation—removed;, Whose value is an object that MAY contain a
property named reason. If present, the value of reason MUST be either deleted if the entity
was deleted (destroyed), or changed if the entity was removed from membership in the result
either due to change in value such that the entity no longer matches the defining query or
because the entity was removed from the collection. The object MAY include
annotationsannetatiens;, and clients SHOULD NOT error due to the presence of additional
properties that MAY be defined by future versions of this specification. For ordered payloads, the

annotation—remrevad removed MUST immediately follow the context
annetation , if present, otherwise it MUST be the first property in the deleted
entity.

s Annetation id or all of the entity’s key fields. The id annetation

MUST appear if any of the entity's key fields are omitted from the response or the
entity-id is not identical to the canonical URL of the entity. For ordered payloads, the

annotation id, if present, MUST immediately follow the
removed-annotation—
For full metadata the context annotation MUST be included. It also MUST be

included if the entity set of the deleted entity cannot be determined from the surrounding context.

The deleted-entity object MAY include additional properties of the entity, as well as
annotationsannetatiens;, and MAY include related entities, related deleted entities, or a delta or full
representation of a related collection of entities, to represent related entities that have been modified or
deleted.

Example 34: deleted entity in OData 4.01 response with id annetation (prefixed with an @)

{
"@context":"#Customers/$deletedEntity",
"@removed" : {
"reason":"deleted",
"@myannoation.deletedBy":"Mario"
by
"@id":"Customers ("ANTON') "
}

Example 35: entity removed OData 4.01 response without id arnretation and instead all key fields
(1D is the single key field of Customer)

{
"Qremoved":{},
"ID":"ANTON"

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 40 of 65



15.4 Added Link

Links within a delta response are represented as link objects.

Delta responses MUST contain a link object for each added link that corresponds to a Sexpand path in
the initial request.

The link object MUST include the following properties, regardless of the specified metadata value, and
MAY include annotationsannetations:

e context —the context URL fragment MUST be #{entity-set}/$1link, where {entity-
set} is the entity set containing the source entity

e source — The id of the entity from which the relationship is defined, which may be absolute or
relative

e relationship — The path from the source object to the navigation property which MAY traverse
one or more complex properties, type cast segments, or members of ordered collections

e target — The id of the related entity, which may be absolute or relative

15.5 Deleted Link

Deleted links within a delta response are represented as deleted-link objects.

Delta responses MUST contain a deleted-link object for each deleted link that corresponds to a Sexpand
path in the initial request, unless either of the following is true:

e The source or target entity has been deleted
e The maximum cardinality of the related entity is one and there is a subsequent link object that
specifies the same source and relationship.

The deleted-link object MUST include the following properties, regardless of the specified metadata
value, and MAY include annotationsannetations:

e context —the context URL fragment MUST be #{entity-set}/$deletedLink, where
{entity-set} isthe entity set containing the source entity

e source — The id of the entity from which the relationship is defined, which may be absolute or
relative

e relationship — The path from the source object to the navigation property which MAY traverse
one or more complex properties, type cast segments, or members of ordered collections

e target — The id of the related entity for multi-valued navigation properties, which may be
absolute or relative. For delta payloads that do not specify an Obata-Version header value of
4.0, the target MAY be omitted for single-valued navigation properties.

15.6 Update a Collection of Entities

The body of a PATCH request to a URL identifying a collection of entities is a JSON object. It MUST
contain the context anneotation with a string value of #S$delta, and it MUST contain

an array-valued property named value containing all added, changed, or deleted entities, as well as
added or deleted links between entities.

Example 36: 4.01 delta response customers with expanded orders represented inline as a delta

1. Add customer 'EASTC"
2. Change ContactName of customer '"AROUT"
3. Delete customer 'ANTON'
4. Change customer 'ALFKI'":
a. Create order 11011
b. Add link to existing order 10692
c. Change ShippedDate of related order 10835
d. Delete link to order 10643
5. Add link between customer 'ANATR' and order 10643
6. Delete link between customer 'DUMON' and order 10311

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 41 of 65



odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 42 of 65




16 Bound Function

A bound function is advertised via a name/value pair where the name is a hash (#) character followed by
the namespace- or alias-qualified name of the function. The namespace or alias MUST be defined or the
namespace referenced in the metadata document of the service, see [OData-CSDLJSON] or [OData-
CSDLXML]. A specific function overload can be advertised by appending the parentheses-enclosed,
comma-separated list of non-binding parameter names to the qualified function name, see rule
qualifiedFunctionName in [OData-ABNF].

A function that is bound to a single structured type MAY be advertised within the JSON object
representing that structured type.

Functions that are bound to a collection MAY be advertised within the JSON object containing the
collection. If the collection is the top-level response, the function advertisement name/value pair is placed
next to the value name/value pair representing the collection. If the collection is nested within an
instance of a structured type, then in 4.01 payloads the name of the function advertisement is prepended
with the name of the collection-valued property and is placed next to the collection-valued property,
expanded navigation property, or navigationLink annotation , If present. 4.0
payloads MUST NOT advertise functions prefixed with property names.

If the function is available, the value of the advertisement is an object. OData 4.01 services MAY
advertise the non-availability of the function with the value null.

If nietadata=full is requested, each value object MUST have at least the two name/value pairs title
and target. It MAY contain annotations. The order of the name/value pairs MUST be considered
insignificant.

The target name/value pair contains a URL. Clients MUST be able to invoke the function or the specific
function overload by passing the parameter values via query options for parameter aliases that are
identical to the parameter name preceded by an at (@) sign. Clients MUST check if the obtained URL
already contains a query part and appropriately precede the parameters either with an ampersand (&) or
a question mark (?).

The title namel/value pair contains the function or action title as a string.

If ntetadata=minimal is requested, the target name/value pair MUST be included if its value differs
from the canonical function or action URL.

Example 37: minimal representation of a function where all overloads are applicable

{
"@Qcontext": "http://host/service/Smetadata#Employees/Sentity",
"#Model.RemainingVacation": {},

}

Example 38: full representation of a specific overload with parameter alias for the Year parameter

{

"@Qcontext": "http://host/service/Smetadata#Employees/Sentity",
"#Model.RemainingVacation (Year)": {

"title": "Remaining vacation from year.",

"target": "Employees (2)/RemainingVacation (Year=Q@Year)"

by
}

Example 39: full representation in a collection

{
"@context": "http://host/service/Smetadata#Employees",
"#Model.RemainingVacation": {
"title": "Remaining Vacation",

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 43 of 65


https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html#sec_ParameterAliases

"target": "Managers (22)/Employees/RemainingVacation"
}y

"value": [ ... ]

}

Example 40: full representation in a nested collection

{

"@context": "http://host/service/$metadata#Employees/Sentity",

"Qtype": "Model.Manager",

"ID":22,

"Employees#RemainingVacation": {
"title": "RemainingVacation",
"target": "Managers (22) /Employees/RemainingVacation"

}

}
odata-json-format-v4.01-csprd05 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 44 of 65



17Bound Action

A bound action is advertised via a name/value pair where the name is a hash (#) character followed by
the namespace- or alias-qualified name of the action. The namespace or alias MUST be defined or the
namespace referenced in the metadata document of the service, see [OData-CSDLJSON] or [OData-
CSDLXML].

An action that is bound to a single structured type is advertised within the JSON object representing that
structured type.

Actions that are bound to a collection MAY be advertised within the JSON object containing the collection.
If the collection is the top-level response, the action advertisement name/value pair is placed next to the
value name/value pair representing the collection. If the collection is nested within an instance of a
structured type, then in 4.01 payloads the name of the action advertisement is prepended with the name
of the collection-valued property and is placed next to the name/value pair representing the collection-
valued property, expanded navigation property, or navigationLink annotation , if
present. 4.0 payloads MUST NOT advertise actions prefixed with property hames.

If the action is available, the value of the advertisement is an object. OData 4.01 services MAY advertise
the non-availability of the action with the value null.

If nietadata=full is requested, each value object MUST have at least the two name/value pairs title
and target. It MAY contain annotations. The order of these name/value pairs MUST be considered
insignificant.

The target name/value pair contains a bound function or action URL.

The title name/value pair contains the function or action title as a string.

If nietadata=minimal is requested, the target name/value pair MUST be included if its value differs
from the canonical function or action URL.

Example 41: minimal representation in an entity

{
"@Qcontext": "http://host/service/Smetadata#leaveRequests/$entity",
"#Model.Approve": {},

}

Example 42: full representation in an entity:

{

"@Qcontext": "http://host/service/Smetadata#leaveRequests/S$Sentity",
"#Model.Approve": {

"title": "Approve Leave Request",

"target": "LeaveRequests (2)/Approve"

by
}

Example 43: full representation in a collection

{

"Qcontext": "http://host/service/$metadata#leaveRequests",
"#Model.Approve": {

"title": "Approve All Leave Requests",

"target": "Employees (22) /Model .Manager/LeaveRequests/Approve"
}s
"value": [ ... ]

}

Example 44: full representation in a nested collection

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 45 of 65



"@context": "http://host/service/S$Smetadata#Employees/Sentity",
"@type": "Model.Manager",
"ID":22,

"LeaveRequests#Model .Approve": {

"title": "Approve All Leave Requests",
"target": "Employees (22) /Model .Manager/LeaveRequests/Approve"
}
}
odata-json-format-v4.01-csprd05 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 46 of 65



18 Action Invocation

Action parameter values are encoded in a single JSON object in the request body.

Each non-binding parameter value is encoded as a separate name/value pair in this JSON object. The
name is the name of the parameter. The value is the parameter value in the JSON representation
appropriate for its type. Entity typed parameter values MAY include a subset of the properties, or just the
entity reference, as appropriate to the action.

Non-binding parameters that are nullable or annotated with the term Core.OptionalParameter

defined in [OData-VocCore] MAY be omitted from the request body. If an omitted parameter is not
annotated (and thus nullable), it MUST be interpreted as having the null value. If it is annotated and the

annotation specifies a befaultValue, the omitted parameter is interpreted as having that default value.
If omitted and the annotation does not specify a default value, the service is free on how to interpret the
omitted parameter. Note: a nullable non-binding parameter is equivalent to being annotated as optional
with a default value of null.Example 45Any-parametervalues-netspecifiedinthe ISON-objeetare
assumed-to-havethe—==11-value:

St

"paraml": 42,

"param2": {
"Street": "One Microsoft Way",
"Zip": 98052
by
"param3": [ 1, 42, 99 ],
"param4": null

In order to invoke an action with no non-binding parameters, the client passes an empty JSON object in
the body of the request. 4.01 Services MUST also support clients passing an empty request body for this
case.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 47 of 65


https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#OptionalParameter

19Batch Requests and Responses

19.1 Batch Request

A JSON batch request body consists of a single JSON object that MUST contain the name/value pair
requests and MAY contain annotations. Fhe-value-of requestsisan-array-of request-objects,-each
representing-an-ndividualreguest!t does not contain the context control information.

The value of requests is an array of request objects, each representing an individual request. Note: an
individual request MUST NOT itself be a batch request.

A request object MUST contain the name/value pairs id, method and url, and it MAY contain the
name/value pairs atomicityGroup, dependsOn, if, headers, and body.

The value of id is a string containing the request identifier of the individual request, see [OData-
Protocol]. It MUST NOT be identical to the value of any other request identifier nor any
atomicityGroup within the batch request.

Note: the id name/value pair corresponds to the Content-1ID header in the multipart batch format
specified in [OData-Protocol].

The value of method is a string that MUST contain one of the literals delete, get, patch, post, or
put. These literals are case-insensitive.

The value of url is a string containing the individual request URL. The URL MAY be an absolute path
(starting with a forward slash /) which is appended to scheme, host, and port of the batch request URL,
or a relative path (not starting with a forward slash /).

If the first segment of a relative path starts with a $ character and is not identical to the name of a top-
level system resource (Sbatch, Scrossjoin, $all, Sentity, Sroot, $id, Smetadata, or other
system resources defined according to the OData-Version of the protocol specified in the request),
then this first segment is replaced with the URL of the entity created by or returned from a preceding
request whose id value is identical to the value of the first segment with the leading $ character
removed. The id of this request MUST be specified in the dependsOn namel/value pair.

Otherwise, the relative path is resolved relative to the batch request URL (i.e. relative to the service root).

The value of atomicityGroup is a string whose content MUST NOT be identical to any value of id
within the batch request, and which MUST satisfy the rule request-id in [OData-ABNF]. All request
objects with the same value for atomicityGroup MUST be adjacent in the requests array. These
requests are processed as an atom|c operat|on and MUST e|ther aII succeed

Note: the atomicity group is a generalization of the change set in the multipart batch format specified in
[OData-Protocol].

The value of dependsOn is an array of strings whose values MUST be values of either id or
atomicityGroup of preceding request objects; forward references are not allowed. If a request
depends on another request that is part of a different atomicity group, the atomicity group MUST be listed
in dependsOn. #In the absence of the optional i £ member a request fails;-then-allthat depends on other
requests depending-on-or atomicity groups is only executed if those requests were executed successfully,
i.e. with a 2xx response code. If one of the requests it MUST returnadepends on has failed, the
dependent request is not executed and a response with status code of 424 Failed Dependency IS
returned for it as part of the batch response.

The if member can specify an alternative condition for executing the dependent request. Its value MUST
be URL expression (see [OData-URL]) that evaluates to a Boolean value. The URL expression syntax is
extended and additionally allows

e S<content-id>/Ssucceeded to check if the referenced request has succeeded

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 48 of 65



e S<content-id> to reference the response body of the referenced request
e S<content-id>/<path> to reference a part of the response body

Services SHOULD advertise support of the i £ member by specifying the property
RequestDependencyConditionsSupported inthe Capabilities.BatchSupport term applied to
the entity container, see [OData-VocCap]. If a service does not support request dependencies, the
dependent request MUST fail with 424 Failed Dependency, and if the dependent request is part of an
atomicity group, all requests in that group fail with 424 Failed Dependency with no changes applied.

The value of headers is an object whose name/value pairs represent request headers. The name of
each pair MUST be the lower-case header name; the value is a string containing the header-encoded
value of the header.

whose value is the media type.

The value of body can be null, which is equivalent to not specifying the body name/value pair.

For media type application/json or one of its subtypes, optionally with format parameters, the value
of body is JSON.

For media types of top-level type text, for example text/plain, the value of body is a string
containing the value of the request body.

For all other media types the value of body is a string containing the base64url-encoded value of the
request body. In this case the body content can be compressed or chunked if this is correctly reflected in
the Transfer-Encoding header.

A body MUST NOT be specified if the method is get or delete.

Example 46: a batch request that contains the following individual requests in the order listed
1. A query request
2. An atomicity group that contains the following requests:
e Insert entity
e Update entity
3. A second query request

Note: For brevity, in the example, request bodies are excluded in favor of English descriptions inside <> brackets and
OData-Version headers are omitted.

POST /service/$batch HTTP/1.1
Host: host

OData-Version: 4.01
Content-Type: application/json
Content-Length: ##4#

{

"requests": [

{
"id": "0o",
"method": "get",
"url": "/service/Customers ('ALFKI'")"

by

{
"id": "l",

odata-json-format-v4.01-csprd05 21 June 2019

Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 49 of 65


https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#BatchSupport

"atomicityGroup": "groupl",
"dependsOn": " o" 1,
"method": "patch",

"url": "/service/Customers ('ALFKI')",
"headers": ({
"Prefer": "return=minimal"

by
"body": <JSON representation of changes to Customer ALFKI>

"id": "2",

"atomicityGroup": "groupl",
"method": "post",

"url": "/service/Customers",

"body": <JSON representation of a new Customer entity>

"id": "3",

"dependsOn": [ "groupl" 1],
"method": "get",

"url": "/service/Products"

19.2 Referencing New Entities

The entity returned by a preceding request can be referenced in the request URL of subsequent requests.

Example 47: a batch request that contains the following operations in the order listed:

Insert a new entity (with id = 1)

Insert a second new entity (references request with id = 1)

POST /service/S$batch HTTP/1.1

Host:

host

OData-Version: 4.01
Content-Type: application/json
Content-Length: ###

{

"requests": [
{
llid": "lll,
"method": "post",
"url": "/service/Customers",

"body": <JSON representation of a new Customer entity>

"id". "2",

"dependsOn": [ "1" ]

"method": "post",

"url": "$1/Orders",

"body": <JSON representation of a new Order>

19.3 Referencing an ETag

Example 48: a batch request that contains the following operations in the order listed:

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 50 of 65



e  Get an Employee (with id=1)
e Update the salary only if the employee has not changed

POST /service/$batch HTTP/1.1
Host: host

OData-Version: 4.01
Content-Type: application/json
Content-Length: ###

{
"requests": [
{
"id": "l",
"method": "get",
"url": "/service/Employees (0)"
"headers": {
"accept": "application/json"

}

"id": "2",
"dependsOn": [ "1" ],
"method": "patch",
"url": "/service/Employees (0)",
"headers": {
"if-match": "$1"
}o
"body" : {
"Salary": 75000
}
}
]
}

19.4 Processing a Batch Request

All requests in an atomicity group represent a single change unit-se-a. A service MUST successfully
process and apply all the requests in the atomicity group or else apply none of them. It is up to the service
implementation to define rollback semantics to undo any requests within an atomicity group that may
have been applred before another request in that same atom|C|ty group faﬂedand—thereby—apply%h%a#—

The service MAY process the individual requests and atomicity groups within a batch request-in

any order that is compatible with the dependencies
expressed with the dependsOn hame/value pair-and-MAY-process-independent-individual
requests and atomicity groups in
parallel. Clients that are only interested in completely successful batch responses MAY specify the
preference continue-on-error=false to indicate that the service need not spend cycles on further
processing once an error occurs in one of the dependency chains.

The service MUST include the id name/value pair in each response object with the value of the request
identifier that the client specified in the corresponding request, so clients can correlate requests and
responses.

19.5 Batch Response

A JSON batch response body consists of a single JSON object that MUST contain the name/value pair
responses and MAY contain annotations.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 51 of 65



The value of responses is an array of response objects, each representing an individual response.

A JSON batch response MAY be a partial resultr-which-case-itMUST-eontain containing the nextLink
annetatiencontrol information. This allows services to chunk results into manageable pieces, or to return
results for already processed requests and continue processing the remaining individual requests while
waiting for the client to fire a GET request to the next link.

In a response to a batch request using the multipart format defined in [OData-Protocol] the response
objects MUST appear in the same order as required for multipart batch responses because the
Content-ID header is not required outside of change sets. Response objects corresponding to requests
that specify a Content-ID header MUST contain the id name/value pair, and the value of id MUST be
the value of the Content-1D header of the corresponding request. This is necessarily the case for
requests contained within a change set. Responses to requests within a change set MUST contain the
atomicityGroup name/value pair with a value common within a change set and unigue across change
sets.

In a response to a batch request using the JSON batch request format specified in the preceding section
the response objects MAY appear in any order, and each response object MUST contain the id
name/value pair with the same value as in the corresponding request object. If the corresponding request
object contains the atomicityGroup hame/value pair, it MUST also be present in the response object
with the same value.

Fhe-valuelf any response within an atomicity group returns a failure code, all requests within that
atomicity group are considered failed, regardless of their individual returned status is-a-code. The service
MAY return 424 Failed Dependency for statements within an atomicity group that fail or are not
attempted due to other failures within the same atomicity group.

A response object MUST contain the name/value pair status whose value is a humber whese-value-is
representing the HTTP status code of the response to the individual request.

The response object MAY contain the name/value efpair headers whose value is an object whesewith

name/value pairs representrepresenting response headers. The name of each pair MUST be the lower-
case header name; the value is a string containing the header-encoded value of the header.

The response object MAY contain the name/value pair body which follows the same rules as within
request objectsThe value-of bedy-is-eithera-JSON-object-or-a-string,-depending-on-the-media-type

If the media type is not exactly equal to application/json (i.e. itis a subtype or has format
parameters), the headers object MUST contain a name/value pair with the name content-type whose
value is the media type.

Relative URLs in a response object follow the rules for relative URLs based on the request URL of the
corresponding request. Especially: URLS in responses MUST NOT contain s-prefixed request identifiers.

Example 49: referencing the batch request example 46 above, assume all the requests except the final query request
succeed. In this case the response would be

{
"responses": [
{
llidll: IIOII,
"status": 200,
"body": <JSON representation of the Customer entity with key ALFKI>

llidll : lllll,
"status": 204

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 52 of 65



"id": "2",
"status": 201,
"headers": ({
"location": "http://host/service.svc/Customer ('POIUY")"

}s
"body": <JSON representation of the new Customer entity>

"id": "3",
"status": 404,
"body": <Error message>

19.6 Asynchronous Batch Requests

A batch request that specifies the respond-async preference MAY be executed asynchronously. This
means that the “outer” batch request is executed asynchronously; this preference does not automatically
cascade down to the individual requests within the batch. After successful execution of the batch request
the response to the batch request is returned in the body of a response to an interrogation request
against the status monitor resource URL, see section “Asynchronous Requests” in [OData-Protocol].

A service MAY return interim results to an asynchronously executing batch. It does this by responding
with 200 OK to a GET request to the monitor resource and including a nextLink-annetation

in the JSON batch response, thus signaling that the response is only a partial result. A
subsequent GET request to the next link MAY resultina 202 Accepted response with a location
header pointing to a new status monitor resource.

Example 50: referencing the example 46 above again, assume that the request is sent with the respond-async
preference. This results in a 202 response pointing to a status monitor resource:

HTTP/1.1 202 Accepted
Location: http://service-root/async-monitor-0
Retry-After: ###

When interrogating the monitor URL only the first request in the batch has finished processing and all the remaining
requests are still being processed. The service signals that asynchronous processing is “finished” and returns a
partial result with the first response and a next link. The client did not explicitly accept application/http, So the
response is “unwrapped” and only indicates with the AsyncResult header that it is a response to a status monitor
resource:

HTTP/1.1 200 Ok

AsyncResult: 200
OData-Version: 4.01
Content-Length: ####
Content-Type: application/json

{
"responses": [
{
"id": "0o",
"status": 200,
"body": <JSON representation of the Customer entity with key ALFKI>
1,
"@nextLink": "...?$skiptoken=YmFO0Y2gx"
}

Client makes a GET request to the next link and receives a 202 response with the location of a new monitor resource.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 53 of 65



HTTP/1.1 202 Accepted
Location: http://service-root/async-monitor-1
Retry-After: ###

After some time a GET request to the monitor resource returns the remainder of the result.

HTTP/1.1 200 Ok

AsyncResult: 200
OData-Version: 4.01
Content-Length: ####
Content-Type: application/json

{
"responses": [
{
"id" : "l",
"status": 204
o

"id": "2",
"status": 201,
"headers": {
"location": "http://host/service.svc/Customer ('POIUY')"

y
"body": <JSON representation of the new Customer entity>

"id": "3",
"status": 404,
"body": <Error message>

}

In addition to the above interaction pattern individual requests within a batch MAY be executed
asynchronously if they specify the respond-async preference and if the service responds with a JSON
batch response. In this case the response array contains a response object for each asynchronously
executed individual request with a status of 202, a 1location header pointing to an individual status
monitor resource, and optionally a retry-after header. If an individual request depends on a request
that is executed asynchronously, then the dependent request is also executed asynchronously even if it
does not specify the respond-async preference. If the dependent request is part of an atomicity group,
all requests in that atomicity group are also executed asynchronously, and each gets its individual 202
response object with an individual monitor resource. It's the service’s responsibility to guarantee atomicity
and correct sequence of execution.

Example 51: the first individual request is processed asynchronously, the second synchronously, the batch itself is
processed synchronously

HTTP/1.1 200 OK

OData-Version: 4.01
Content-Length: ####
Content-Type: application/json

{
"responses": [

{
"id": "o",
"status": 202,
"headers": ({

"location": "http://service-root/async-monitor-0Q"

}

}y

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 54 of 65



odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 55 of 65



20Instance Annotations

Annotations are an extensibility mechanism that allows services and clients to include information other
than the raw data in the request or response. Annotations-are-used-to-nelude-controlinformation-in-many
payloads:

Annotations are name/value pairs that have an at (@) and a dot (.) as part of the name. The part after the
at" sign (@) is the annotation identifier. It consists of the namespace or alias of the schema that defines
the term, followed by a dot (.), followed by the name of the term, optionally followed by a hash (#) and a
qualifier. The namespace or alias MUST be defined in the metadata document, see [OData-CSDLJSON]

[OData-CSDLXML].

The nomespococralias odata is reserved for future extensions of the protocol and
format. Custom annotations are-annotations-that have a namespace or alias that is
different from odata.

Annotations can be applied to any name/value pair in a JSON payload that represents a value of any type
from the entity data model-{see-).. Clients should never error due to an unexpected annotation in a JSON
payload.

Annotations are always expressed as name/value pairs. For entity data model constructs represented as
JSON objects the annotation name/value pairs are placed within the object; for constructs represented as
JSON arrays or primitives they are placed next to the annotated model construct. When annotating a
payload that represents a single primitive or collection value, the annotations for the value appear next to
the value property and are not prefixed with a property name.

Example 52:
{
"@Qcontext": "http://host/service/Smetadata#Customers",
"@Qcom.example.customer.setkind": "VIPs",
"value": [

{
"Qcom.example.display.highlight": true,

"ID": "ALFKI",
"CompanyName@com.example.display.style": { "title": true, "order": 1 },
"CompanyName": "Alfreds Futterkiste",

"Orders@com.example.display.style#simple": { "order": 2 }

20.1 Annotate a JSON Object

When annotating a name/value pair for which the value is represented as a JSON object, each annotation
is placed within the object and represented as a single name/value pair.

The name always starts with the "at" sign (@), followed by the annotation identifier.

The value MUST be an appropriate value for the annotation.

20.2 Annotate a JSON Array or Primitive

When annotating a name/value pair for which the value is represented as a JSON array or primitive
value, each annotation that applies to this name/value pair MUST be represented as a single name/value
pair and placed immediately prior to the annotated name/value pair, with the exception of the nextLink

collectionAnnotations-annetation which can appear immediately before or
after the collection-itannetates.

The name is the same as the name of the property or name/value pair being annotated, followed by the
at” sign (@), followed by the annotation identifier.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 56 of 65



The value MUST be an appropriate value for the annotation.

20.3 Annotate a Primitive Value within a JSON Array

Individual primitive elements within a JSON array can be annotated by applying the
collectionAnnotations control information to the array containing the primitive member.

The control information must come with other annotations or control information immediately before or
after the collection valued property. The name of the property representing the control information is the
same as the name of the collection-valued property, followed by the “at” sign (@), followed by the
collectionAnnotations identifier.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 57 of 65



Error Handling

error response in-stream error within a
success payload

21 Error Response

The error response MUST be a single JSON object. This object MUST have a single name/value pair

named error. The value must be aJSON object.

“his object MUST contain name/value pairs with the names code and message, and it
MAY contain name/value pairs with the names target, details, and innererror.

The value for the code namelvalue pair is a language-independent string. Its value is a
service-defined error code. This code serves as a sub-status for the HTTP error code specified in the
response.

The value for the message namelvalue pair MUST-beis a human-readable , language-
dependentrepresentation-of the error. The Content-Language

header MUST contain the language code from [RFC5646] corresponding to the language in which the
value for message is written.

The value for the target namel/value pair is the target of the
partiedlar-error (for example, the name of the property in error).

The value for the details namelvalue pair MUST be an array of JSON objects that MUST contain
name/value pairs for code and message, and MAY contain a name/value pair for target, as described
above.

The value for the innererror name/value pair MUST be an object. The contents of this object are
service-defined. Usually this object contains information that will help debug the service.

Service implementations SHOULD carefully consider which information to include in production
environments in-erderto guard against potential security concerns around information disclosure.

Error responses MAY contain annotations in any of its JSON objects.

Example 53:
{
"error": {

"COde" . “5—94_— ll,

"message": "Unsupported functionality",

"target": "query",

"details": [
{
"code": "361 W
"target": "S$search",
"message": "$search query option not supported"
}

1y

"innererror": {
"trace": [...],
"context": {...}

}
}
}

In-Stream Error

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 58 of 65



serialization and thus omitting (among others) the end-object character of the top-level JISON object in the
response.

Services MAY include the header OData-Error as a trailing header if supported by the transport
protocol (e.g. with HTTP/1.1 and chunked transfer encoding, or with HTTP/2), see [OData-Protocol].
The value of the Obata-Error trailing header is an OData error object as defined in the preceding
chapter, represented in a header-appropriate way:

e All optional whitespace (indentation and line breaks) is removed, especially (in hex notation) 09,
0A and 0D

e Control characters (00 to 1F and 7F) and Unicode characters beyond 00FF within JSON strings
are encoded as \uxxXxx or \uxxXxx\uXxxx (see [RFC8259], section 7)

Example 54: note that this is one HTTP header line without any line breaks or optional whitespace

OData-error: {"code":"errl23","message":"Unsupported
functionality","target":"query", "details":[{"code":"forty-
two","target":"S$Ssearch", "message":"Ssearch query option not supported"}]}

21.3 Error Information in a Success Payload

Services may return error information within a success payload; for example, if the client has specified the
continue-on-error preference.

21.3.1 Primitive Value Errors

Primitive values that are in error are annotated with the Core.ValueException term, see [OData-

VocCore]. In this case, the payload MAY include an approximation of the value and MAY specify a string
representation of the exact value in the value property of the annotation.

21.3.2 Structured Type Errors

Structured types that are in error can be represented within a success payload only if the client has
specified the continue-on-error preference. Such items are annotated with the

Core.ResourceException term, see [OData-VocCore]. The annotation MAY include a retryLink
property that can be used by the client to attempt to re-fetch the resource.

21.3.3 Collection Errors

Collections within a success payload can contain primitive values that are in error, or structured values
that are in error, if the client has specified the continue-on-error preference. Such elements are
annotated as described above. Primitive elements within a collection are annotated using the
collectionAnnotations control information.

Services can return partial collections within a success payload, for example, if they encounter an error
while retrieving the collection and the client has specified the continue-on-error preference. In this
case, the service MUST include a nextLink. The nextLink_ can be used to attempt retrieving the
remaining members of the collection and could return an error indicating that the remaining members are
not available.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 59 of 65



22 Extensibility

Implementations can add instance annotations of the form @namespace. termname or
property@namespace.termname to any JSON object, where property MAY or MAY NOT match the
name of a name/value pair within the JSON object. However, the namespace MUST NOT start with
odata and SHOULD NOT be required to be understood by the receiving party in order to correctly
interpret the rest of the payload as the receiving party MUST ignore unknown annotations not defined in
this version of the OData JSON Specification.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 60 of 65



23Security Considerations

This specification raises no security issues.

This section is provided as a service to the application developers, information providers, and users of
OData version 4.0 giving some references to starting points for securing OData services as specified.
OData is a REST-full multi-format service that depends on other services and thus inherits both sides of
the coin, security enhancements and concerns alike from the latter.

For JSON-relevant security implications please cf. at least the relevant subsections of [RFC8259] as
starting point.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 61 of 65



24 Conformance

Conforming clients MUST be prepared to consume a service that uses any or all of the constructs defined
in this specification. The exception to this are the constructs defined in Delta Response, which are only
required for clients that request changes.

In order to be a conforming consumer of the OData JSON format, a client or service:

1. MUST either:
a. understand metadata=minimal (section 3.1.1) or
b. explicitly specify metadata=none (section 3.1.3) or metadata=full (section 3.1.2) in the
request (client)
2. MUST be prepared to consume a response with full metadata
3. MUST be prepared to receive all data types (section 7.1)
a. defined in this specification (client)
b. exposed by the service (service)
4. MUST interpret all odata control information defined according to the 0OData-Version header of
the payload (section 4.5)
5. MUST be prepared to receive any annotations,-including-custom-annotations-and-odata control
information not defined in the OData-Version header of the payload (section 21.2)
6. MUST NOT require streaming=true in the Content-Type header (section 4.4)
7. MUST be a conforming consumer of the OData 4.0 JSON format, for payloads with an Obata-
Version header value of 4. 0.
a. MUST acceptthe odata. prefix, where defined, on format parameters and control information
b. MUST accept the # prefix in @Qodata. type values
c. MUST be prepared to handle binding through the use of the @odata.bind property in payloads
to a PATCH, PUT, or POST request
d. MUST accept TargetId withinin a deleted link for a relationship with a maximum cardinality of
one
e. MUST accept the string values -INF, INF, and NaN for single and double values
f.  MUST support property annotations that appear immediately before or after the property they
annotate
8. MAY be a conforming consumer of the OData 4.01 JSON format, for payloads with an Obata-
Version header value of 4.01.
a. MUST be prepared to interpret control information with or without the odata. prefix
b. MUST be prepared for Godata. type primitive values with or without the # prefix
c. MUST be prepared to handle binding through inclusion of an entity reference within a collection-
valued navigation property in the body of a PATCH, PUT, or POST request
d. MUST be prepared for Target1d to be included or omitted in a deleted link for a relationship
with a maximum cardinality of one
e. MUST accept the string values -INF, INF, and NaN for decimal values with floating scale
f.  MUST be prepared to handle related entities inline within a delta payload as well as a nested
delta representation for the collection
g. MUST be prepared to handle decimal values written in exponential notation

In order to be a conforming producer of the OData JSON format, a client or service:

9. MUST support generating OData 4.0 JSON compliant payloads with an OData-Version header
value of 4. 0.
a. MUST NOT omit the odata. prefix from format parameters or control information
b. MUST NOT omit the # prefix from Qodata.type values
¢c. MUST NOT include entity values or entity references within a collection-valued navigation
property in the body of a PATCH, PUT, or POST request

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 62 of 65



d. MUST NOT return decimal values written in exponential notation unless the
ExponentialDecimals format parameter is specified.
e. MUST NOT advertise available actions or functions using name/value pairs prefixed with a
property name
f.  MUST NOT return a null value for name/value pairs representing actions or functions that are
not available
g. MUST NOT represent numeric value exceptions for values other than single and double values
using the string values -INF, INF, and NaN
10. MAY support generating OData 4.01 JSON compliant payloads for requests with an Obata-
Version header value of 4.01.
MUST return property annotations immediately before the property they annotate
SHOULD omit the odata. prefix from format parameters and odata control information
SHOULD omit the # prefix from @type primitive values
MAY include inline related entities or nested delta collections within a delta payload
MAY include TargetId within a deleted link for a relationship with a maximum cardinality of 1
MAY return decimal values written in exponential notation
MAY represent numeric value exceptions for decimal values with floating scale using the string
values -INF, INF, and NaN

@~ooo0 o

In addition, in order to conform to the OData JSON format, a service:

11. MUST comply with one of the conformance levels defined in [OData-Protocol]

12. MUST support the application/json media type in the Accept header (section 3)

13. MUST return well-formed JSON payloads

14. MUST support odata.metadata=full (section 3.1.2)

15. MUST include the odata.nextLink arnetation in partial results for entity
collections (section 4.5.5)

16. MUST support entity instances with external metadata (section 4.5.1)

17. MUST support properties with externally defined data types (section 4.5.3)

18. MUST NOT violate any other aspects of this OData JSON specification

19. SHOULD support the $format system query option (section 3)

20. MAY support the odata.streaming=true parameter in the Accept header (section 4.4)

21. MAY return full metadata regardless of odata.metadata (section 3.1.2)

22. MUST NOT omit null or default values unless the omit-values preference is specified in the
Prefer request header and the omit-values preference is included in the Preference-Applied
response header

23. MUST return OData JSON 4.0-compliant responses for requests with an OData-MaxVersion
header value of 4.0

24. MUST support OData JSON 4.0-compliant payloads in requests with an OData-Version header
value of 4.0

25. MUST support returning, in the final response to an asynchronous request, the application/json
payload that would have been returned had the operation completed synchronously, wrapped in an
application/http message

In addition, in order to comply with the OData 4.01 JSON format, a service:

26. SHOULD return the OData JSON 4.01 format for requests with an OData-MaxVersion header
value of 4.01

27. MUST support the OData JSON 4.01 format in request payloads for requests with an OData-
Version header value of 4.01

28. MUST honor the odata.etag annetation within PUT, PATCH or DELETE payloads,
if specified

29. MUST support returning, in the final response to an asynchronous request, the application/json
payload that would have been returned had the operation completed synchronously

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 63 of 65



Appendix A. Acknowledgments

The contributions of the OASIS OData Technical Committee members, enumerated in [OData-Protocol],
are gratefully acknowledged.

odata-json-format-v4.01-csprd05 21 June 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 64 of 65



Appendix B. Revision History

Revision Date Editor Changes Made

Working Draft 2016-06-22 | Michael Pizzo Import material from OData 4.0 Errata 3

01 Ralf Handl JSON document and initial application of 4.01

features

Committee 2016-12-08 | Michael Pizzo Integrated 4.01 features

Specification Ralf Handl

Draft 01

Committee 2017-06-08 | Michael Pizzo Integrated more 4.01 features, especially:

gpef(tzlggatlon Ralf Hand| e Update of a collection of entities
ra e JSON Batch format

Committee 2017-09-22 | Michael Pizzo Incorporated review feedback

Specification Ralf Handl

Draft 03

Committee 2017-11-10 | Michael Pizzo Incorporated review feedback

Specification Ralf Handl Changed default of continue-on-error

Draft 04

Committee 2017-12-19 | Michael Pizzo Non-Material Changes

Specification Ralf Handl

01

Committee 2019-06-21 | Michael Pizzo In-stream errors

W Ralf Handl Conditional request dependencies in batch

Dratt Yo

requests
Optional action parameters

Update of media links of stream properties

Representing error information in success
responses with continue-on-error

odata-json-format-v4.01-csprd05
Standards Track Work Product

Copyright © OASIS Open 2019. All Rights Reserved.

21 June 2019
Page 65 of 65




