OASIS 9

OData JSON Format for Common
Schema Definition Language (CSDL)
Version 4.0

Committee Specification Draft 01 /
Public Review Draft 01

03 December 2015

Specification URIs

This version:
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/csprd01/odata-json-csdl-v4.0-csprd01.docx
(Authoritative)
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/csprd01/odata-json-csdl-v4.0-csprd01.htmi
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/csprd01/odata-json-csdl-v4.0-csprd0l1.pdf

Previous version:
N/A

Latest version:
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/odata-json-csdl-v4.0.docx (Authoritative)
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/odata-json-csdl-v4.0.html
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/odata-json-csdl-v4.0.pdf

Technical Committee:
OASIS Open Data Protocol (OData) TC

Chairs:
Ram Jeyaraman (Ram.Jeyaraman@microsoft.com), Microsoft
Ralf Handl (ralf.handl@sap.com), SAP AG

Editors:
Ralf Handl (ralf.handl@sap.com), SAP AG
Hubert Heijkers (hubert.heijkers@nl.ibm.com), IBM
Mike Pizzo (mikep@microsoft.com), Microsoft
Martin Zurmuehl (martin.zurmuehl@sap.com), SAP AG

Additional artifacts:
This prose specification is one component of a Work Product that also includes:
e JSON schema: http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/csprd01/schema/

Related work:
This specification is related to:

e OData JSON Format Version 4.0. Latest version. http://docs.oasis-open.org/odata/odata-
json-format/v4.0/odata-json-format-v4.0.html.
e OData Version 4.0, a multi-part Work Product which includes:
e OData Version 4.0 Part 1: Protocol. Latest version. http:/docs.oasis-
open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
e OData Version 4.0 Part 2: URL Conventions. Latest version. http://docs.oasis-
open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.htmi

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 1 of 45

http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/csprd01/odata-json-csdl-v4.0-csprd01.docx
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/csprd01/odata-json-csdl-v4.0-csprd01.html
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/csprd01/odata-json-csdl-v4.0-csprd01.pdf
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/odata-json-csdl-v4.0.docx
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/odata-json-csdl-v4.0.html
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/odata-json-csdl-v4.0.pdf
https://www.oasis-open.org/committees/odata/
mailto:Ram.Jeyaraman@microsoft.com
http://www.microsoft.com/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:hubert.heijkers@nl.ibm.com
http://www.ibm.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:martin.zurmuehl@sap.com
http://www.sap.com/
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/csprd01/schema/
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
https://www.oasis-open.org/

e ObData Version 4.0 Part 3: Common Schema Definition Language (CSDL). Latest
version. http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html

e ABNF components: OData ABNF Construction Rules Version 4.0 and OData ABNF
Test Cases. 30 October 2014. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/abnf/

e Vocabulary components: OData Core Vocabulary, OData Measures Vocabulary and
OData Capabilities Vocabulary. 30 October 2014. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/

Abstract:
The Open Data Protocol (OData) for representing and interacting with structured content is
comprised of a set of specifications. This document extends the specification OData Version 4.0
Part 3: Conceptual Schema Definition Language (CSDL) by defining a JSON format for
representing OData CSDL documents. This JSON format for CSDL is based on JISON Schema.

Status:
This document was last revised or approved by the OASIS Open Data Protocol (OData) TC on
the above date. The level of approval is also listed above. Check the “Latest version” location
noted above for possible later revisions of this document. Any other numbered Versions and
other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=odata#technical.

TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/odata/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the TC’s web page (https://www.oasis-
open.org/committees/odatalipr.php).

Citation format:
When referencing this specification the following citation format should be used:

[OData-JSON-CSDL-v4.0]

OData JSON Format for Common Schema Definition Language (CSDL) Version 4.0. Edited by
Ralf Handl, Hubert Heijkers, Mike Pizzo, and Martin Zurmuehl. 03 December 2015. OASIS
Committee Specification Draft 01 / Public Review Draft 01. http://docs.oasis-
open.org/odata/odata-json-csdl/v4.0/csprd01/odata-json-csdl-v4.0-csprd01.html. Latest version:
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/odata-json-csdl-v4.0.html.

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 2 of 45

http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/csprd01/odata-json-csdl-v4.0-csprd01.html
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/csprd01/odata-json-csdl-v4.0-csprd01.html
http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/odata-json-csdl-v4.0.html

Notices

Copyright © OASIS Open 2016. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 3 of 45

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

Table of Contents

1 INEFOTUCTION ... 7
1= g T oo V2SR 7
1.2 NOrMALIVE RETEIENCESeeeiiiiei ittt et e e e s e et et e e e e e e s e s nanbaeeeeaeeesaansneeees 7
1.3 NON-NOrMative REFEIENCES ...t e e e e e e e e e e e eneeees 7
1.4 TypographiCal CONVENTIONSccuuiiiiiee e e ieciiee e e e e s s e e e e e s s s ae e et e e e s s s an e e e e eeeesssnnraeeeeeeeessnnnnrenes 8

2 JSON CSDL FOIMAE DESIGN......teieeiiitiieee ittt ettt e ettt e e ettt e ettt e e e aa bt e e e asbe e e e e aabe e e e e anbreeesanbreeeeannes 9
b2 I B 1= o [T - PSRRI 9
2.2 DESIGN PIINCIPIES ..ottt ettt e e st e e e st b et e e st e e e e e st e e e e e anbr e e e e snneeeean 9

3 Requesting the JSON CSDL FOMMAL........cccciiiiiiiiiiiee e citiie e e e e s s er e e e e e s st s e e e e e s e ssnteraeeeaeeseannns 10

4 00T T I B ToTo] U 4[] o] £ T 11
AL TYPES e 11

4.1.1 Entity Types and COmMPIEX TYPES....ccciii it 11
o A e (0] 01T 4 (1T PP O PP UUPPPPRPPPPPP 12
4.1.3 ENUMETAtION TYPES ..o eei i 20
4. 1.4 TYPE DEFINIIONS ...ttt e et e st e e e st b e e e aabb e e e e snbaeeeeanbneeaeans 21
4.2 ACHIONS AN FUNCLIONSooiiiiieeiiee ettt e e e e e e e e st e e e e e e e e s nnbeseeeeaeeseannnteneeeeaens 21
e B 1 01 11 Y2 @ | = 11 = PP 22
I 0 P 24
A5 SCRNBIMASeeiiie ettt oo oottt e e e e e sk b e b ettt e e e e e o a bbb b ettt e e e e e e nnbe b e e e e e e e e e annbrreeaaaeas 25
4.5.1 Included SChemas and AlIASESccuuuviiiiiie e e e e e s e e e e e e e e 25
4.5.2 Annotations with EXternal TArgetingeeoo ittt e e 26
4.5.3 INHNE ANNOTALIONSceiiieiiiieiie ettt e e e sttt e e e e e e s e bbb e e e e e e e e e e e aabnbreeeeeaeeeannnnenees 26
T L] (=T (= o= SRR 30
4.6.1 INCIUAEANNOLATIONSciiiiiiieite ettt ettt e e ettt e e e e s e bbb e e et e e e e e s e ababb e e e e e e e e e annnenees 31

5 EXtENSIONS 10 JSON SCREIMA ...ciiiiiiiiiiiiiie ettt e e e e s et e e e e e e s st eeeeeeseasntnreeeeaaeeeannn 32
5.1 The €dm. JSON SCREIMA ...uuuiiiiiii ittt e e e e e e s e sttt r e e e e e s s e tnteeeeeaeeesaansnnaeeeeeeeenanns 32
LA (=)Ao o £ 32
LR I o] 1 = £ 32

6 RV 2= 11T - 1o o SRR 34

7 LT E=T TS 011 Y25 35

8 CSDL EXAMPIES ...ttt ettt b e e e e e aabe e e 36
8.1 Products and Categories EXamPIeccoooi i 36
8.2 Annotations for Products and Categories EXamPIe.........ocueiiiiiiiiiiiiiiiic e 41

9 107] 01 (0] 401 F=To ot TP UUTT R PPPPPPPI 43

Appendix A. ACKNOWIEBAGMENTS ...ttt e e e e s et e e e e e e s et e e e e e e e e e e nneeees 44

Appendix B. REVISION HISTOTY ...ttt et e s e st e e e nbee e e e 45

odata-json-csdl-v4.0-csprd01 03 December 2015

Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 4 of 45

Table of Examples

Example 1: text describing an example uses this paragraph Style ... 8
Example 2: Structure of CSDL AOCUMENToiiiiiiiieiiiiii ettt s e e e aebe e e e e 11
EXample 3: DEfINILIONS ... e e e e s e s e e e e e e s s e e a e e e e e e e e s a e nnrarrraeeeeannrnraees 11
EXamPpPle 4: Product @MY TY P ... ittt ettt e e e s e e e e e e 12
Example 5: Manager entity type inheriting from EMPLoyee .. cciieer e e e 12
Example 6: Category entity type With KEY @li@Scccceiiiiiiiiiiiiii e 12
Example 7: structural and navigation properties of Supplier entity type......ccccooiiieiiiiiieiniiiee e 12
Example 8: non-nullable Boolean property with default value ... 14
Example 9: non-nullable binary property with both maxLength and byteLengthccoocviiviieiiiiinnnen, 14
Example 10: non-nullable iNtEger PrOPEILYuuuueieieiiiiieieiererereierarererererererererarerererererererarererernrarnrnrnrnrnrare 14
Example 11: non-nullable floating-point properties: string representation for -INF, INF, and NaN,.......... 14
Example 12: non-nullable decimal property with unspecified precision: no minimum and maximum........ 15
Example 13: non-nullable decimal property with specified precision, minimum and maximum................. 15
Example 14: non-nullable string property with maximum length of 40 characterscccccccvvvvvininininnnn. 15
Example 15: Non-nullable date PrOPeITYc . et e e 15
Example 16: non-nullable timestamp property with 7 fractional digits precisioncccccccvvvvvieinininennnnn. 15
Example 17: non-nullable timestamp property with 12 fractional digits precisionccccovvveiviiieennen 15
Example 18: non-nullable time property with 3 fractional digitS preciSioncccccccvvevermiernieieinininn. 16
Example 19: non-nullable guid property with default Value ... 16
Example 20: non-nullable 8-byte integer property, allowing for string representation in

| =] = 7 Ko] oY= U] o] [0 41T [S 16
Example 21: non-nullable enumMeration PrOPEILYcouuiie ittt 16
Example 22: non-nullable geography-point ProPeItYeeciieeie ittt 16
Example 23: non-nullable stream property: not part of payload in version 4.0................eevvivivivininininininnnn. 16
Example 24: non-nullable property typed with a type definition............ccoeii 17
Example 25: non-nullable primitive property with abstract type, e.g. in term definitioncccccccvvvnnnes 17
Example 26: structural properties of Supplier entity type: a string property, a nullable string property, a
complex property, and an INtEYET PIrOPEILYccceeieie e 17
Example 27: multi-valued navigation property Products with partner and on-delete constraint.............. 18
Example 28: required single-valued navigation property Category e iiiieieeee e e e 18
Example 29: nullable single-valued navigation property Country with referential constraint................... 18
Example 30: collection-valued nullable String Property TAGS . .uu e it 18
Example 31: collection-valued navigation property Products oOf Supplier entity typecccccoovvvrernnnne 19
Example 32: nullable property Price of type Edm.Decimal with precision 15 and scale 3 19
Example 33: nullable property Created of type Edm.DateTimeOf fset with precision 6 19
Example 34: nullable collection-valued ProPerty DAate S ... i iiiiiee sttt et e st ebee e e e 19
Example 35: nullable navigation Property SUDPD L@ T i i irieeiiiiee st e e 19
Example 36: enumeration type with exclusive members and annotations on members and on the type .. 20
Example 37: enumeration type With flag ValUES..........coouiiiiiiii e 20
Example 38: type definitions based on Edm. String, Edm.Decimal and Edm.DateTimeOffset 21
odata-json-csdl-v4.0-csprd01 03 December 2015

Standards Track Work Product

Copyright © OASIS Open 2016. All Rights Reserved. Page 5 of 45

Example 39: action Rejection with two overloads and function Foo with one overload an no parameters

.. 22
EXamPpPle 40: ENTILEY CONMTAINETiitiiiieiite ittt e st e e e b b et e e e et e e s aas b et e e e nbr e e e aanbreeeeaneee 23
[t L] o1 (3 I =Y g o = 1T (T o SRR 24
EXAMPIE 42: SCREIMASciiiiiiiiie ittt et e et e e s b bt e s s bt e e e e e s be e e e anbeeeeanees 25
Example 43: Alias for schema defined in the same doCUMENt...........ccuviiiiee e 25
Example 44: Included schema and alias for the included schema..........cccccccoiiiiiii e, 25
Example 45: Annotations with external targeting..........ccuueieiiiiieiiiie e 26
Example 46: annotation within an object, annotation of a non-object value, and annotation of an

=Yg T] = 11T o PP SPPRRRRP 26
Example 47: a string-valued annotation, a Boolean-valued annotation, a numeric float-valued annotation,
an infinity-valued annotation, and an integer anNOtatiONveveieeeii i e e e 26
Example 48: annotation with edm: Path dynamiC @XPreSSIONueuuerurmrmrmrmmmmnmnrnrnmnrnrninrnrnrn.. 27
Example 49: annotation with edm: Record dynamic expression, one Boolean edm: PropertyValue and
one With an edm:Collection VAIUE ...t et e e e e et e e e e e e e e e s bab s e e e eeesenaanns 27
Example 50: edm: If expression using an edm: Path expression as its condition and evaluating to one of
(U O =Y R ool i o Lol =Y o] £ =111 (0] o PP 28
Example 51: edm: 2pply expression with two edm:String expressions and one edm: Path expression as
Q2T LTS o Y7111 28
Example 52: edm: IsOf expression using an edm: Path expression as its parameter............ccccccvvvvnnnnns 28
Example 53: edm: LabeledELlement EXPIrESSIONcci ittt it iairetesrtteeesatbeeesaibeeesasbeeesaanbeeeesanbneeesanens 29
Example 54: edm: LabeledElementReference EXPreSSION ...occuui i iiiie ittt e ettt e 29
Lo L] 1L T R T Lo N =3 4 o] €= 1= [o 1S 29
Example 56: edm:Null expression with nested annotatioNSuevuieruiuinimiuiiininieie———.. 29
Example 57: edm:Null expression without nested annotationsccccvveeeiiiiiiiiiee e 29
Example 58: edm:Ur1Ref expressions with edm: String value and with edm: Path value................... 30
Example 59: unqualified static Core.Description 8S deSCripPtioN e e e 30
Lt L g 1L T I =1 =T (=T TS 30
Example 61: INCIUAEANNOLALIONS.........uuuuuutitiiuriiiiiiitererer e ere e ererarareesesesssresssssnsssnsnsnsnsnsnsnsnrnnns 31
Example 62: a schema for validating messages containing a single Product entity..........cccceevviiieernnne 34
Example 63: a schema for validating messages containing a collection of Product entities.................... 34
L= 1T 0] L= S 36
Example 65: schema Annotations contains annotations for referenced schema ODataDemo with terms
from vocabulary Some . VoCaDULATY . VI .uuiiiiiiiiiiiiiiiiieeie e e ettt et e e e s et e e e e e e s bebe e e e e e e e e aanbabeeeaaaeeeannns 41
odata-json-csdl-v4.0-csprd01 03 December 2015

Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 6 of 45

1 Introduction

OData services are described in terms of an Entity Data Model (EDM). [OData-CSDL] defines an XML
representation of the entity data model exposed by an OData service. This document defines an
alternative representation using the JavaScript Object Notation (JSON), see [RFC7159]

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

OData CSDL and JSON Schema use the term “schema” with different meaning. In addition, the JSON
Schema specifications use the term “JSON Schema” for the specifications as well as the media type, and
use “a JSON Schema” for a JSON object that conforms to the JSON Schema specifications. To avoid
confusion this document uses “JSON Schema” when referring to the JSON Schema specifications,
“*JSON Schema object” when referring to a JSON object that conforms to the JSON Schema
specifications, and “OData schema” when referring to an OData CSDL schema.

1.2 Normative References

[JS-Core] JSON Schema: core definitions and terminology.

http://tools.ietf.org/html/draft-zyp-json-schema-04.
[JS-Validation] JSON Schema: interactive and non interactive validation.

http://tools.ietf.org/html/draft-fge-json-schema-validation-00.
[OData-CSDL] OData Version 4.0 Part 3: Common Schema Definition Language (CSDL).

See link in “Related work” section on cover page.
[OData-JSON] OData JSON Format Version 4.0.

See link in “Related work” section on cover page.
[OData-Protocol] OData Version 4.0 Part 1: Protocol.

See link in “Related work” section on cover page.
[OData-URL] OData Version 4.0 Part 2: URL Conventions.

See link in "Related work" section on cover page.
[OData-VocCore] OData Core Vocabulary.

See link in "Related work" section on cover page.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.
[RFC7159] Bray, T., Ed., “The JavaScript Object Notation (JSON) Data Interchange Format”,

RFC 7159, March 2014. http://tools.ietf.org/html/rfc7159.
[ECMASCcript] ECMAScript Language Specification Edition 5,1. June 2011. Standard ECMA-
262. http://www.ecma-international.org/publications/standards/Ecma-262.htm.
[XML-Schema-2] W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, D.
Peterson, S. Gao, C. M. Sperberg-McQueen, H. S. Thompson, P. V. Biron, A.
Malhotra, Editors, W3C Recommendation, 5 April 2012,
http://www.w3.0rg/TR/2012/REC-xmischemal1-2-20120405/.
Latest version available at http://www.w3.org/TR/xmlIschemall-2/.

1.3 Non-Normative References

[JS-Site] JSON Schema Site.
http://json-schema.org/.

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 7 of 45

https://d.docs.live.net/17ea5a0da4145c51/OData/odata-json-csdl-v4.0-wd01-old.docx#rfc2119
http://tools.ietf.org/html/draft-zyp-json-schema-04
http://tools.ietf.org/html/draft-fge-json-schema-validation-00
http://www.ietf.org/rfc/rfc2119.txt
http://tools.ietf.org/html/rfc7159
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
http://www.w3.org/TR/xmlschema11-2/
http://json-schema.org/

1.4 Typographical Conventions
Keywords defined by this specification use this monospaced font.

Normative source code uses this paragraph style.

Some sections of this specification are illustrated with non-normative examples.

Example 1: text describing an example uses this paragraph style

Non-normative examples use this paragraph style.

All examples in this document are non-normative and informative only.
All other text is normative unless otherwise labeled.

odata-json-csdl-v4.0-csprd01
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved.

03 December 2015
Page 8 of 45

2 JSON CSDL Format Design

JSON, as described in [RFC7159], defines a text format for serializing structured data. Objects are
serialized as an unordered collection of name-value pairs. JSON Schema (see [JS-Site], [JS-Core], and
[JS-Validation]) is an emerging standard that defines a JSON format for describing JSON formats.

JSON Schema is extensible and allows adding keywords and formats for CSDL concepts that cannot be
translated into JSON Schema concepts.

2.1 Design Goals

The goals of guiding design principles are

JSON CSDL is valid JSON Schema

JSON CSDL can be used to by standard JSON Schema validators to validate messages from
and to the service

JSON CSDL contains the same information as the XML format for CSDL defined in
[OData-CSDL]

JSON CSDL uses JSON Schema concepts that correspond to CSDL concepts
JSON CSDL uses [OData-JSON] concepts where it goes beyond JSON Schema
JSON.parse () of JISON CSDL creates a JavaScript object graph that
o Appeals to JavaScript programmers by following common naming conventions
o Satisfies basic access patterns

o Can easily be augmented with client-side post-processing to satisfy more sophisticated
access patterns

2.2 Design Principles

To achieve the design goals the following principles were applied:

Structure-describing CSDL elements (structured types, type definitions, enumerations) are
translated into JSON Schema constructs
Attributes and child elements of structure-describing CSDL elements that cannot be translated
into JSON Schema constructs are added as extension keywords to the target JSON Schema
constructs
All other CSDL elements are translated into JSON with a consistent set of rules
o Element and attribute names in UpperCamelCase are converted to lowerCamelCase,
and uppercase attribute names are converted to lowercase
o Attributes and elements that can occur at most once within a parent become name/value
pairs
o Elements that can occur more than once within a parent and can be uniquely identified
within their parent (schemas, key properties, entity sets, ...) became a name/value pair
with pluralized name and a "dictionary" object as value containing one name/value pair
per element with the identifier as name
o Elements that can occur more than once within a parent and cannot be uniquely
identified within their parent (action overloads, function overloads, ...) become a
name/value pair with pluralized name and an array as value containing one item per child
element

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 9 of 45

3 Requesting the JSON CSDL Format

The JSON CSDL format can be requested in Metadata Document Requests (see [OData-Protocol])
using the sformat query option in the request URL with the MIME type application/schema+json,
optionally followed by format parameters.

Alternatively, this format can be requested using the Accept header with the MIME type
application/schema+7json, optionally followed by format parameters.

If specified, s format overrides any value specified in the Accept header.
Possible format parameters are:

e TEEE754Compatible
These are defined in [OData-JSON].

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 10 of 45

4 CSDL Documents

A CSDL document in JSON is represented as a JSON Schema document with additional keywords.

It must contain name/value pairs with names $schema and odata-version, and it may contain
definitions, actions, functions, terms, entityContainer, schemas, and references.

The value of $schema is a string with the canonical URL of the edm. json schema.
The value of odata-version is the string "4.0".

Example 2: Structure of CSDL document

{
"Sschema":"http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/edm.json#",
"odata-version":"4.0"
"definitions": ..,
"actions": ..,
"functions": ..,
"terms": ..,
"entityContainer": ..,
"schemas": ..,
"references": ..

4.1 Types

The definitions object contains one name/value pair per entity type, complex type, enumeration type,
and type definition, using the namespace-qualified name of the type. It uses the namespace instead of
the alias because these definitions can be reused by other CSDL documents, and aliases are document-
local, so they are meaningless for referencing documents.

Example 3: Definitions

"definitions": {
"ODataDemo.Product": ..,

"ODataDemo.Category": ..,
"ODataDemo.Supplier": ..,
"ODataDemo.Country": ..,
"ODataDemo.Address": ..,
"org.example.Employee": ..,

"org.example.Manager": ..

4.1.1 Entity Types and Complex Types

Each structured type is represented as a hame/value pair of the standard JSON Schema definitions
object. The name is the namespace-qualified name of the entity type or complex type, the value is a
JSON Schema object of type object.

The JSON Schema object may contain the standard JSON Schema name/value pairs appropriate for
type object. It will not contain the additionalProperties keyword, allowing additional properties
beyond the declared properties. This is necessary for inheritance as well as annotations and dynamic
properties, and is in line with the model versioning rules defined in [OData-Protocol].

If the structured type has a base type, the schema contains the keyword a110f whose value is an array
with a single item: a JSON Reference to the definition of the base type.

In addition it may contain name/value pairs abstract and openType, and for entity types also
mediaEntity and keys.

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 11 of 45

The abstract, openType, and mediaEntity name/value pairs have Boolean values. If not present,
their value is false. They correspond to the Abstract, OpenType, and HasStream attributes defined

in [OData-CSDL].

The value of keys is an array with one item per key property. If the key property has a key alias, the item
is an object with one name/value pair, the name is the key alias and the value is the property path name
and optionally a name/value pair alias. For abstract entity types that neither specify a base type nor a
key the value of keys is an empty array. An array is used to preserve the order of the key properties.

The JSON Schema object may contain annotations.

Example 4: Product entity type

"ODataDemo.Product": {
"type":"object",
"mediaEntity":true,
"keys": [

"ID"
1,

"properties": ..,

}

Example 5: Manager entity type inheriting from Employee

"org.example.Manager": {
"type":"object",
"allOof": [
{
"Sref":"#/definitions/org.example.Employee"
}
1,

}

Example 6: category entity type with key alias

"org.example.Categoryl8": ({
"type": "object",
"keys": [
{
"EntityInfoID": "Info/ID"
}
1,

4.1.2 Properties

Each structural property and navigation property is represented as a name/value pair of the standard
JSON Schema properties object. The name is the property name; the value is a JSON Schema object

describing the allowed values of the property.
The JSON Schema object may contain annotations.

Example 7: structural and navigation properties of Supplier entity type

"ODataDemo.Supplier": {

ooy

"properties":{

"ID" .

8 e
"Name":...,
"Address":..,
"Concurrency":..,

odata-json-csdl-v4.0-csprd01

Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved.

03 December 2015
Page 12 of 45

"Products":..

by

4.1.2.1 Primitive Properties

Primitive properties of type Edm.PrimitiveType and any of the Edm. Geo* types are represented as

JSON References to definitions in the edm. json schema.

Primitive properties of type Edm. Stream are represented as JSON References to an unfulfillable
definition in the edm. json schema as they are never represented in JSON payloads.

All other primitive properties are represented with the following JSON Schema types, formats, and
validation keywords:

OData Primitive Type JSON Schema Comment
Type Format Keywords
Edm.Binary string base64url | maxlength | OData-specific format
bytelLength | maxLength is maximum
length of string
representation, i.e.
4*ceil(MaxLength/3)
byteLength is the
maximum length of the
binary value in octets
Edm.Boolean boolean
Edm.Byte integer uint8 OData-specific format
Edm.Date string date Swagger format
Edm.DateTimeOffset | string date-time precision OData-specific keyword
Edm.Decimal number, decimal minimum OData-specific format
string ﬁiﬁTuTeof string is needed for
P IEEE754Compatible mode
precision OData-specific keywords
scale ..
precision and scale
Edm.Double number double Swagger format with
[, string] extended meaning
string is needed for -INF,
INF, and NaN
Edm.Duration string duration OData-specific format
Edm.Guid string uuid OData-specific format
Edm.Intl6 integer intlé6 OData-specific format
Edm.Int32 integer int32 Swagger format
Edm.Int64 integer, int64 Swagger format
string

string is needed for
IEEE754Compatible mode

odata-json-csdl-v4.0-csprd01
Standards Track Work Product

Copyright © OASIS Open 2016. All Rights Reserved.

03 December 2015
Page 13 of 45

OData Primitive Type JSON Schema Comment
Type Format Keywords
Edm.SByte integer int8 OData-specific format
Edm.Single number single OData-specific format
[,string] string is needed for - INF,
INF, and NaN
Edm.String string maxlength Sequence of UTF-8
characters
Edm.TimeOfDay string time precision OData-specific format
OData-specific keyword

Properties of type Edm.Decimal and Edm. Int 64 are represented as JSON strings if the format option
IEEE754Compatible=true is specified, so they have to be declared with both number and string.

Properties of type Edm.Decimal use OData-specific keywords precision and scale to represent the
corresponding type facets. In addition a numeric scale value is represented with the JISON Schema
keyword multipleOf and a value of 10°°®, The precision is represented with the maximum and
minimum keywords and a value of £(107®“°*% _ 10°®) if the scale facet has a numeric value, and
*(10P"S°" _ 1) if the scale is variable).

Properties of type Edm. Double and Edm. Single have special values for -INF, INF, and NaN that are
represented as JSON strings, so they also have to be declared with both number and string. Services
that do not support the special values -INF, INF, and NaN can omit the string keyword.

The default value of a property is represented with the JSON Schema keyword default.

Example 8: non-nullable Boolean property with default value

"BooleanValue": {
"type":"boolean",
"default":false

}

Example 9: non-nullable binary property with both maxLength and byteLength

"BinaryValue": {
"type":"string",
"format":"base64url",
"maxLength":44,
"bytelLength":31,
"default":"TORhdGE"

}

Example 10: non-nullable integer property

"IntegerValue": {
"type":"integer",
"format":"int32",
"default":-128

}

Example 11: non-nullable floating-point properties: string representation for —-INF, INF, and NaN,

"DoubleValue": {
"type": [
"number",
"string"

I

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 14 of 45

"format":"double",
"default":3.1415926535897931
by
"SingleValue": {
"typeH: [
"number",
"string"
1
"format":"single"

}

Example 12: non-nullable decimal property with unspecified precision: no minimum and maximum

"DecimalValue": {
"type": [
"number",
"string"
1,
"format":"decimal",
"scale":"variable",
"default":34.95
}

Example 13: non-nullable decimal property with specified precision, minimum and maximum

"FixedDecimalValue": {

"type": [

"number",

"string"
1,
"format":"decimal",
"precision":12,
"scale":2,
"multipleOf":0.01,
"minimum":-999999999.99,
"maximum":999999999.99

}

Example 14: non-nullable string property with maximum length of 40 characters

"StringValue": {

"type":"string",

"maxLength" :40

"default":"Say \"Hello\",\nthen go"
}

Example 15: non-nullable date property

"DateValue": {
"type":"string",
"format":"date",
"default":"2012-12-03"

}

Example 16: non-nullable timestamp property with 7 fractional digits precision

"DateTimeOffsetValue": {
"type":"string",
"format":"date-time",
"precision":7,
"default":"2012-12-03T07:16:23:00.0000000Z"
}

Example 17: non-nullable timestamp property with 12 fractional digits precision

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 15 of 45

"DurationValue": {
"type":"string",
"format":"duration",
"precision":12,
"default":"P12DT23H59M59.999999999999s"
}

Example 18: non-nullable time property with 3 fractional digits precision

"TimeOfDayValue": {
"type":"string",
"format":"time",
"precision":3,
"default":"07:59:59.999"

}

Example 19: non-nullable guid property with default value

"GuidvValue": {
"type":"string",
"format":"uuid",
"default":"1234567-8%ab-cdef-0123-456789%abcdef"
}

Example 20: non-nullable 8-byte integer property, allowing for string representation in IEEE754Compatible mode

"Int64Value": {
"type": [
"integer",
"string"
1,
"format":"int64",
"default":0
}

Example 21: non-nullable enumeration property

"ColorEnumValue": {
"anyOf": [
{
"Sref":"#/definitions/Modell.Color"
}
1,
"default":"yellow"

by

Example 22: non-nullable geography-point property

"GeographyPoint": {
"anyOf": [
{
"Sref":"http://docs.oasis-open.org/odata/odata-json—
csdl/v4.0/edm.jsonf#/definitions/Edm.GeographyPoint"
}
1,
"default": {
"type":"Point",
"coordinates": [
142.1,
64.1

}

Example 23: non-nullable stream property: not part of payload in version 4.0

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 16 of 45

"StreamValue": {
"Sref":"http://docs.oasis-open.org/odata/odata-json-—

csdl/v4.0/edm. json#/definitions/Edm.Stream"

}

Example 24: non-nullable property typed with a type definition

"TypeDefValue": {
"anyOf": [
{
"Sref":"#/definitions/Modell.IntegerDecimal"
}
1y
"default":42
}

Example 25: non-nullable primitive property with abstract type, e.g. in term definition

"PrimitiveValue": {
"Sref":"http://docs.oasis-open.org/odata/odata-json—

csdl/v4.0/edm. json#/definitions/Edm.PrimitiveType"

}

4.1.2.2 Complex Properties

Complex properties are represented as JSON References to the definition of the complex type, either as
local references for types directly defined in the CSDL document, or as external references for types
defined in referenced CSDL documents.

Example 26: structural properties of Supplier entity type: a string property, a nullable string property, a complex
property, and an integer property

"properties": {
"ID": {
"type":"string"
by
"Name" : {

"typell: [
"string",
"nullll

1

by
"Address": {
"Sref":"#/definitions/ODataDemo.Address"
b
"Concurrency": {
"type":"integer",
"format":"int32"

by

4.1.2.3 Navigation Properties

Navigation properties are represented similar to complex properties so that a standard JSON Schema
validator can validate the expanded representation of the navigation property.

Navigation properties contain a relationship name/value pair whose value is an object that may
contain name/value pairs partner, onDelete, and referentialConstraints.

The value of partner is the name of the partner navigation property. The value of onDelete is an
object with a single name/value pair action whose value is one of the values Cascade, None,
SetDefault, or SetNull defined in [OData-CSDL], section 7.3.1.

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 17 of 45

The value of referentialConstraints is an object with one name/value pair per dependent property,
using the dependend property name as name and an object as value. This object contains the
name/value pair referencedProperty whose value is the name of the principal property.

In addition this object may contain annotations.

Example 27: multi-valued navigation property Products with partner and on-delete constraint

"Products": {
"type":"array",
"items": {
"Sref":"#/definitions/ODataDemo.Product"
by
"relationship": {
"partner":"Category",
"onDelete": {
"action":"Cascade"

}

}

Example 28: required single-valued navigation property Category

"Category": {
"anyOf": [
{
"Sref":"#/definitions/ODataDemo.Category"
}
1,
"relationship":{}

}

Example 29: nullable single-valued navigation property Country with referential constraint

"Country": {
"anyOf": [
{
"Sref":"#/definitions/ODataDemo.Country"

by
{

"type":"null"
}
1,
"relationship": {
"referentialConstraints":{
"CountryName" : {
"referencedProperty":"Name"

}

4.1.2.4 Collection-Valued Properties

Collection-valued structural and navigation properties are represented as JSON Schema objects of type
array. The value of the i tems keyword is a JSON Schema object specifying the type of the items.

Example 30: collection-valued nullable string property Tags

"Tags": {
"type":"array",
"items": {

"type": [
"string",

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 18 of 45

"null"

}

Example 31: collection-valued navigation property Products of Supplier entity type

"Products": {
"type":"array",
"items": {
"Sref":"#/definitions/ODataDemo.Product"
b
"relationship": {
"partner":"Supplier"

}

4.1.2.5 Nullable Properties

Nullable properties of primitive types except Edm. Stream and Edm.Geo* are represented as an array-
valued JSON Schema type that consists of the corresponding JSON Schema primitive type(s) and the
JSON Schema null type.

Other nullable structural and navigation properties are represented as a JSON Schema object using the
anyOf keyword followed by a two-element array with a JSON Schema object for the non-null values and
a JSON Schema object for the JSON Schema null type.

Example 32: nullable property Price of type Edm. Decimal with precision 15 and scale 3

"Price":{
"type": ["number","string", "null"],
"precision":15,
"scale":3,
"multipleOf":1e-3,
"minimum":-999999999999.999,
"maximum":999999999999.999

}

Example 33: nullable property Created of type Edm. DateTimeOf fset with precision 6

"Created": {
"type": ["string","null"],
"format":"date-time",
"precision":6

}

Example 34: nullable collection-valued property Dates

"Dates": {
"typell : llarrayll ,
"items": {
"type":["string","null"],

"format":"date"
}
by

Example 35: nullable navigation property Supplier

"Supplier": {
"anyOf": [{
"Sref":"#/definitions/ODataDemo.Supplier"
boo A
"type":"null"
}

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 19 of 45

1
"relationship": {
"partner":"Products"

}

4.1.3 Enumeration Types

Each enumeration type is represented as a name/value pair of the standard JSON Schema
definitions object. The name is the namespace-qualified name of the type definition; the value is a
JSON Schema object describing the allowed values.

If the enumeration type does not allow multiple members to be selected simultaneously, the JISON
Schema object uses the enum keyword to list all defined values. The value of the enum keyword is an
array that contains a string with the member name for each enumeration member.

If the enumeration type allows multiple members to be selected simultaneously, the JSON Schema object
uses the anyOf keyword with an array value containing two JSON Schema objects: one JSON Schema
object using the enum keyword listing all explicitly defined member names, and one JSON Schema object
of type string using the pattern keyword with a regular expression for a comma-separated list of
member names or nonnegative integer values.

The numeric value of each enumeration member is represented as an annotation on the members with
the term odata.value.

The outer JSON Schema object may contain annotations. Annotations on enumeration members are
represented similar to instance annotations on properties as name/value pairs whose name is the
member name, followed by an at (@) sign, followed by the namespace-qualified term name, and optionally
followed by a hash (#) sign and the qualifier. The annotation value is represented according to the rules
defined in this specification.

Example 36: enumeration type with exclusive members and annotations on members and on the type

"org.example.ShippingMethod": {
"enum" : [
"FirstClass",
"TwoDay",
"Overnight"
I
"FirstClass@Core.Description":"Shipped with highest priority",
"TwoDay@Core.Description":"Shipped within two days",
"Overnight@Core.Description":"Shipped overnight"
"description":"Method of shipping"
}

Example 37: enumeration type with flag values

"org.example.Pattern": {
"anyOf": [
{

"enum" : [
"Plain",
"Red",
"Blue",
"Yellow",
"Solid",
"Striped",
"SolidRed",
"SolidBlue",
"SolidYellow",
"RedBlueStriped",
"RedYellowStriped",
"BlueYellowStriped"

i

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 20 of 45

br
{
"type":"string",

"pattern":"” (Plain|Red|Blue|Yellow|Solid|Striped|SolidRed|SolidBlue|SolidYello
w|RedBlueStriped|RedYellowStriped|BlueYellowStriped| [1-9] [0-
91*) (, (Plain|Red|Blue|Yellow|Solid|Striped|SolidRed|SolidBlue|SolidYellow|RedB
lueStriped|RedYellowStriped|BlueYellowStriped| [1-9] [0-9]*))*$"
}

1,

"Plain@odata.value":0,

"Red@odata.value":1,

"Blue@odata.value":2,

"Yellow@odata.value":4,

"Solid@odata.value":8,

"Striped@odata.value":16,

"SolidRed@odata.value":9,

"SolidBlue@odata.value":10,

"SolidYellow@odata.value":12,

"RedBlueStriped@odata.value":19,

"RedYellowStriped@odata.value":21,

"BlueYellowStriped@odata.value":22

4.1.4 Type Definitions

Each type definition is represented as a name/value pair of the standard JSON Schema definitions
object. The name is the namespace-qualified name of the type definition; the value is a JSON Schema
object describing the allowed values of the type definition using the same rules as primitive properties.

The JSON Schema object may contain annotations.

Example 38: type definitions based on Edm. String, Edm.Decimal and Edm.DateTimeOffset

"Modell.Text50": {
"type":"string",
"maxLength":50

by

"Modell.VariableDecimal": {
"type":"number",
"description":"A type definition"

by

"Modell .ExactTimestamp" : {
"type":"string",
"format":"date-time",
"precision":12

4.2 Actions and Functions

The actions and functions objects contain one name/value pair for each action/function name
defined in the CSDL document. The name is the namespace-qualified action/function name, the value is
an array with one action/function description object for each overload for this name. An action/function
description object has name/value pairs entitySetPath, isBound, parameters, and returnType.
Objects representing functions in addition may have an isComposable name/value pair with a Boolean
value.

The value of entitySetPath is a string.

The values of isBound and isComposable are Boolean.

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 21 of 45

The value of parameters is an array with one object per parameter. It has a name/value name for the
parameter name and a name/value pair parameterType whose value is a schema describing the
allowed parameter values. It has the same structure as the schema for a property.

The value of returnType is a schema describing the allowed return values. It has the same structure as
the schema for a property.

All objects may contain annotations.

Example 39: action Rejection with two overloads and function Foo with one overload an no parameters

"actions": {
"Modell.Rejection": [
{
"isBound":true,
"parameters": [
{
"name":"foo",
"parameterType": {
"Sref":"#/definitions/Model.One.Waldo"
}

"isBound":true,
"parameters": [
{
"name" : "bar",
"parameterType": {
"Sref":"#/definitions/Model.One.Waldo"
}

"name" : "Reason",
"parameterType": {
"type":"string"

by
"functions": {
"Modell.Foo": [
{
"parameters":[],
"returnType": {
"type":"string",
"maxLength":42
}

4.3 Entity Container

The entityContainer object may contain name/value pairs entitySets, singletons,
actionImports, and functionImports. The values of these pairs are objects with one name/value
pair per container child of that type. The name of each pair is the child's unqualified name, the value is an
object.

An object describing an entity set must have an entityType name/value pair whose value is a JSON
Reference to the entity type that is the base type of all entites in this set. It may have a

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 22 of 45

navigationPropertyBindings name/value pair. Its value is an object with one name/value pair per
navigation property that has a binding. The name is the path to the navigation property; the value is an

object with a name/value pair target whose value is the name of the target entity set.

An object describing a singleton must have a t ype name/value pair whose value is a JSON Reference to
the entity type of the singleton. It may have a navigationPropertyBindings hame/value pair with

the same structure as in objects describing an entity set.

An object describing an action import must have an action name/value pair whose value is a JSON
Reference to the action triggered by this action import. It may have an entitySet name/value pair
whose value is the name of the entity set containing the entity or entities returned by the action.

An object describing a function import must have a function name/value pair whose value is a JSON
Reference to the function triggered by this function import. It may have an entitySet name/value pair
whose value is the name of the entity set containing the entity or entities returned by the function. If the
function has no parameters, it also may have an includeInServiceDocument name/value pair with a

Boolean value.
All objects may contain annotations.

Example 40: entity container

"entityContainer": {
"name" : "DemoService",
"entitySets": {
"Products": {
"entityType": {
"Sref":"#/definitions/ODataDemo.Product"
by
"navigationPropertyBindings": {
"Category": {
"target":"Categories"
}
}
by
"Categories": {
"entityType": {
"Sref":"#/definitions/ODataDemo.Category"
by
"navigationPropertyBindings": {
"Products": {
"target":"Products"
}
}
by
"Suppliers": {
"entityType": {
"Sref":"#/definitions/ODataDemo.Supplier"
by
"navigationPropertyBindings": {
"Products": {
"target":"Products"
by
"Address/Country": {
"target":"Countries"
}
by
"@Core.OptimisticConcurrency": [
{
"Qodata.type":"#PropertyPath",
"value":"Concurrency"

]
by

"Countries": {

odata-json-csdl-v4.0-csprd01

Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved.

03 December 2015
Page 23 of 45

"entityType": {
"Sref":"#/definitions/ODataDemo.Country"
}
}
by
"singletons": {
"Contoso": {
"type": {
"Sref":"#/definitions/Self.Supplier"
by
"navigationPropertyBindings": {
"Products": {
"target":"Products"

}

}
1
"functionImports": {
"ProductsByRating": {
"entitySet":"Products",
"function": {
"Sref":"#/schemas/ODataDemo/functions/ProductsByRating"
}

4.4 Terms

The terms object contains one name/value pair per term defined within the CSDL document. The name
of each pair is the term's nhamespace-qualified name, the value is a JSON Schema object describing the
type of the term. It has the same structure as the schema for a property, and in addition may have a
name/value pair baseTerm whose value is a JSON Reference to the base term, and a name/value pair
appliesTo whose value is either a string or an array of strings specifying the model element(s) the term
can be applied to.

All term definition objects may contain annotations.

Example 41: term definition

"terms": {
"Core.IsURL": {
"anyOf": [
{
"Sref": "#/definitions/Org.OData.Core.V1.Tag"
by
{
"type": "null"
}
I
"default": true,
"appliesTo": [
"Property",
"Term"
1,
"description": "Properties and terms annotated with this term MUST contain
a valid URL",
"@Core.RequiresType": "Edm.String"
by
"Core.OptimisticConcurrency": {
"type": "array",
"items": |

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 24 of 45

"Sref": "http://docs.oasis-open.org/odata/odata-json-
csdl/v4.0/edm.json#/definitions/Edm.PropertyPath"
by
"appliesTo": "EntitySet",
"description": "Data modification requires the use of Etags. A non-empty
collection contains the set of properties that are used to compute the ETag"
by
"Y.Developer": {
"baseTerm" : {
"Sref":"#/terms/X.Person"
}s
"anyOf": [
{
"Sref":"#/definitions/Y.DeveloperType"
}

45 Schemas

The schemas object contains one name/value pair per OData schema defined or included in the CSDL
document, and one name-value pair per defined alias. The name is either the namespace of the OData
schema or the alias assigned to an OData schema. The value of an alias or an included OData schema is
a JSON Reference. The value of an OData schema defined in the document is an object that may contain
the name/value pair annotations.

It also may contain annotations.

Example 42: schemas

"schemas": {
"SomeAlias": {
"Sref":"#/schemas/Some.Model"
s
"Some.Model": {
"annotations": ..,
"@Annotation.With.Some.Term":

45.1 Included Schemas and Aliases

OData schemas that are included via a reference to a separate CSDL document as well as aliases for
OData schemas are represented as JSON References. Aliases for OData schemas defined in the same
document are local references whose URL value consists of #/schemas/ followed by the namespace of
the schema.

Example 43: Alias for schema defined in the same document

"SomeAlias": {
"Sref":"#/schemas/Some.Model"
b

Included OData schemas as well as aliases for included OData schemas are represented as JSON
References with an absolute or relative URL that locates the document defining the included OData
schema.

Example 44: Included schema and alias for the included schema

"Org.OData.Core.V1": {
"Sref":"http://vocabularies.odata.org/Org.0OData.Core.V1.json#/schemas/Org.0OD
ata.Core.V1"

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 25 of 45

br

"Core": {
"Sref":"http://vocabularies.odata.org/Org.0Data.Core.V1.json#/schemas/Org.0OD

ata.Core.V1"

by

4.5.2 Annotations with External Targeting

Annotations can appear inline within a model element, or externally as a group that targets a model
element. Annotations with external targeting are represented as an annotations name/value pair
whose value is an array of JSON objects. Each of these objects contains a target name/value pair
whose value is a string with a path expression identifying the annotated model element. In addition, each
object contains at least one annotation in the same format that is used for inline annotations.

Example 45: Annotations with external targeting

"annotations": [

{
"target":"Some.EntityType/SomeProperty",

"@x.Yy":..,

"target":"Another.EntityType",
"EX.Y":..,

by

45.3 Inline Annotations

Annotations are represented similar to instance annotations in [OData-JSON], chapter 18.

Annotations for JSON objects are name/value pairs placed within the object, the name is an at (@) sign
followed by the namespace-qualified name of the term, optionally followed by a hash (#) sign and the
qualifier of the annotation.

Annotations for JSON arrays or primitives are name/value pairs placed next to the name/value pair whose
value is the annotated array or primitive value. The name is the name of the annotated name/value pair
followed by an at (@) sign, followed by the namespace-qualified name of the term, optionally followed by a
hash (#) sign and the qualifier of the annotation.

The value of the annotation is either a plain JSON value or a JSON object.

Example 46: annotation within an object, annotation of a non-object value, and annotation of an annotation

"@Some.Term" : ..,
"Hugo@Some.Term" : ..,
"@Some.Term#SomeQualifier@Some.Term": ..

Annotations always specify an explicit value, even if the term definition specifies a default value. This is
consistent with the representation of instance annotations in JSON payloads and an intentional difference
to the XML representation of annotations.

4.5.3.1 Constant Expressions

Constant expressions edm:Bool and edm: String are represented as plain JSON values as defined in
[OData-JSON], section 7.1.

Example 47: a string-valued annotation, a Boolean-valued annotation, a numeric float-valued annotation, an infinity-
valued annotation, and an integer annotation

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 26 of 45

"@A.Binary":"TORhdGE",

"@A.Boolean" : true,

"@A.Date":"2013-10-09",
"@A.DateTimeOffset":"2000-01-01T16:00:00.000z2",
"QA.Decimal":12.34,

"@A.Duration":"P7D",

"@An.EnumMember":"Red, Striped",
"@A.Float":1.23e4,

"QA.Float#inf": "INF",
"@A.Float#minusInf":"-INF",

"QA.Float#nan":"NaN",
"@A.Guid":"86a96539-871b-45cf-b96b-93dbc235105e",
"@An.Int": 42

"@A.String":"plain text",
"QA.String#withAmp":"Fast&Furious",
"@A.String#ToBeEscaped":"A/\"good\"\r\nstory\\for\tkids",
"Q@A.TimeOfDay":"21:45:00",

4.5.3.2 Path Expressions

The expressions edm: AnnotationPath, edm:NavigationPropertyPath, edm:Path, and

edm: PropertyPath are represented similar to individual properties or operation responses in [OData-
JSON], chapter 11, as a JSON object with a name/value pair @odata.annotationPath,
@odata.path, or Godata.propertyPath whose value is a string containing the path expression.

Example 48: annotation with edm: Path dynamic expression

"@Org.OData.Measures.V1.ISOCurrency": {
"@odata.path":"Currency"

}

4.5.3.3 Collection Expressions

The dynamic expression edm:Collection is represented as a JSON array. Its items are
representations of its child expressions according to the rules defined in this specification.

4.5.3.4 Record Expressions

The dynamic expression edm:Record is represented as a JSON object. The Type attribute of the
edm:Record expression is represented as an Godata . type annotation. Each edm: PropertyValue
child element is represented as a name/value pair with the value of the Property attribute as name. Its
value expression is represented according to the rules defined in this specification.

It may also contain annotations.

Example 49: annotation with edm : Record dynamic expression, one Boolean edm: PropertyValue and one with an
edm:Collection value

"@Capabilities.UpdateRestrictions": {
"Updatable":true,
"NonUpdatableNavigationProperties": [

{
"@odata.navigationPropertyPath":"Supplier"
br

"@odata.navigationPropertyPath":"Category"
}

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 27 of 45

4.5.3.5 Comparison and Logical Operators and If Expression

The dynamic expression edm: If and the logical expressions edm:Eqg, edm:Ne, edm: Ge, edm: Gt,
edm:Le, edm:Lt, edm:And, and edm: Or are represented are represented as a JSON object with a
name/value pair Godata.if, @odata.eq etc. whose value is a JSON array with items that are
representations of the child expressions according to the rules defined in this specification.

It may also contain annotations.

Example 50: edm: I f expression using an edm: Path expression as its condition and evaluating to one of two
edm: String expressions

"Qorg.example.display.DisplayName" : {
"Qodata.if": [
{
"@Qodata.path":"IsFemale"
by
"Female",
"Male"

4.5.3.6 Expression Apply

The dynamic expression edm: Apply is represented as a JSON object with an Rodata.apply
name/value pair whose value is the function name as a string value. The child expressions are
represented as a parameterValues hame/value pair whose value is an array with items that are
representations of the child expressions according to the rules defined in this specification.

It may also contain annotations.

Example 51: edm: Apply expression with two edm:String expressions and one edm: Path expression as parameter
values

"@Some.Computed.Url": {
"Qodata.apply":{

"function":"odata.concat",
"parameterValues": [

"Products (",

{

"Qodata.path":"ID"
b

n) "

4.5.3.7 Expressions Cast and IsOf

The dynamic expressions edm:Cast and edm: IsOf are represented as JSON objects with a
name/value pair Godata.cast or @odata.isOf whose value is a string with a qualified type name. The
facet attributes are represented as name/value pairs maxLength, precision, scale, and srid. The
child expression is represented as the value of a value name/value pair according to the rules defined in
this specification.

It may also contain annotations.

Example 52: edm: IsOf expression using an edm: Path expression as its parameter

"QFor.Testing": {
"Qodata.isOf":"Edm.Binary",
"value": {

"@Qodata.path":"ImageData"

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 28 of 45

4.5.3.8 Expression LabeledElement

The dynamic expression edm: LabeledElement is represented as a JSON object with an
@odata.labeledElement name/value pair whose value is a string with the qualified name of the
labeled element. Its single child expression is represented as a value name/value pair whose value is
the representation of the child expression according to the rules defined in this specification.

It may also contain annotations.

Example 53: edm: LabeledElement expression

{
"Qodata.labeledElement":"Model.MyReusableAnnotation",
"value":..,

}

4.5.3.9 Expression LabeledElementReference

The dynamic expression edm: LabeledElementReference is represented as a JSON object with an
@odata.labeledElementReference name/value pair whose value is a string with the qualified name
of the referenced labeled element.

Example 54: edm: LabeledElementReference expression

{

"@odata.labeledElementReference":"Model.MyReusableAnnotation"

}

4.5.3.10 Expression Not

The dynamic expression edm:Not is represented as a JSON object with an @odata.not name/value
pair whose value is the representation of the child expression according to the rules defined in this
specification.

Example 55: edm: Not expression

"@Some.Term": {
"@odata.not": {
"Qodata.path":"IsHappy"
}

4.5.3.11 Expression Null

If the dynamic expression edm:Null contains annotations, it is represented as a JSON object with an
@odata.null name/value pair whose value is an object that may contain annotations.

Example 56: edm:Null expression with nested annotations

"@Some.Term": {
"Qodata.null": {
"@Within.Null": true
}
}

Example 57: edm:Null expression without nested annotations

"@Some.Term": {
"Qodata.null":{

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 29 of 45

4.5.3.12 Expression UrlRef

The dynamic expression edm: Ur1Ref is represented as a JSON object with an Qodata. type
name/value pair whose value is #Ur1Ref. Its single child expression is represented as a value
name/value pair whose value is the representation of the child expression according to the rules defined
in this specification.

Example 58: edm: UrlRef expressions with edm: St ring value and with edm: Path value

"@Good.Reference#one": {
"Qodata.urlRef":"http://www.odata.org"
by
"QGood.Reference#two": {
"Qodata.urlRef": {
"Qodata.path":"DocumentationUrl"

}

4.5.3.13 Annotation Core .Description

The annotation Core.Description (see [OData-VocCore]) semantically corresponds to the JSON
Schema keyword description, so unqualified annotations with Core . Description that have static
content are represented with this keyword. Qualified annotations and annotations with dynamic content
are represented as other annotations.

Example 59: unqualified static Core.Description as description

"org.example.Size": {

"enum": [

"s" ,

"M" ’

"L"
1,
"S@Core.Description”: "Small",
"MQ@Core.Description": "Medium",
"LQ@Core.Description": "Large",
"description": "T-Shirt Size",
"@Core.Description#alt": "Size (S, M, L)",
"@Core.LongDescription": "Size, expressed with letters familiar from e.g. T-

Shirt sizes",

by

4.6 References

The value of references is an object with one name/value pair per referenced CSDL document. The
name is the URI of the CSDL document. Its value is an object that may contain a name/value pair
includeAnnotations.

It may contain annotations.

Example 60: references

"references": {
"http://tinyurl.com/Org-OData-Measures-V1": ({
"@Some.Term" :
b
"http://somewhere/ExternalAnnotations”: {
"includeAnnotations":

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 30 of 45

4.6.1 IncludeAnnotations

The value includeAnnotations is an array of objects. Each object has a termNamespace
name/value pair and may have name/value pairs targetNamespace and qualifier. The values of

these name/value pairs are strings.

Example 61: includeAnnotations

"includeAnnotations": [{
"termNamespace": "Name.Space",
"targetNamespace": "Target.Space"

oo A
"termNamespace": "Name.Space",
"targetNamespace": "Target.Space",
"qualifier": "SomeName"

oo A
"termNamespace": "NameSpace",
"qualifier": "SomeName"

boo A
"termNamespace": "Name.Space"

}

odata-json-csdl-v4.0-csprd01

Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved.

03 December 2015
Page 31 of 45

5 Extensions to JSON Schema

5.1 The edm. json Schema

The edm. json schema is an extension of JSON Schema Draft 04, see [JS-Core]. It defines reuse types
for JSON CSDL documents as well as additional keywords.

The definitions object contains one name/value pair per OData primitive type, and one for the
standard OData error response.

For each OData primitive type the corresponding schema states the JSON Schema primitive type
(string, number, or integer) used to represent the OData primitive type, and additional restrictions on
the values: pattern for strings, minimum and maximum for integers. In addition, some types specify a
custom format.

A special case is the schema for Edm. Stream: it specifies an unfulfillable constraint on the values as
stream properties don't have an inline representation in OData 4.0.

5.2 Keywords

OData CSDL contains many concepts that cannot be translated into JSON Schema, these are
represented using the custom keywords. On the document root level these are

e actions

e entityContainer
e functions

e odata-version

e references

e schemas

e terms

JSON Schema objects of type object use the keywords

e abstract
e keys
e mediaEntity
e openType
e relationship
JSON Schema objects for primitive types may use the keywords
e Dprecision
e scale

5.3 Formats

Not all constraints on values of OData primitive types can be expressed with standard JSON Schema
means, and the format keyword of JSON Schema allows defining new values. CSDL JSON documents
use the following custom formats:

Format OData Type Comment
base64url | Edm.Binary OData-specific format
date Edm.Date Swagger format, was part of JSON Schema Draft 03
decimal Edm.Decimal OData-specific format
odata-json-csdl-v4.0-csprd01 03 December 2015

Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 32 of 45

Format OData Type Comment

double Edm.Double Swagger format extended with -INF, INF, NaN
duration Edm.Duration OData-specific format

intlé Edm.Int16 OData-specific format

int32 Edm.Int32 Swagger format

int64 Edm.Int64 Swagger format

int8 Edm.SByte OData-specific format

single Edm.Single OData-specific format

time Edm.TimeOfDay | OData-specific format, was part of JSON Schema Draft 03
uint8 Edm.Byte OData-specific format

uuid Edm.Guid OData-specific format

odata-json-csdl-v4.0-csprd01
Standards Track Work Product

Copyright © OASIS Open 2016. All Rights Reserved.

03 December 2015
Page 33 of 45

6 Validation

A JSON CSDL $metadata document contains definitions that can be used to validate request and
response messages. Depending on the context URL a small wrapper schema has to be used that refers
to the corresponding definition in the JSON $metadata document.

Example 62: a schema for validating messages containing a single Product entity

{
"Sschema":"http://json-schema.org/draft-04/schema#",

"anyOf": [

{
"Sref": "csdl-16.1.json#/definitions/ODataDemo.Product"

}

}

Example 63: a schema for validating messages containing a collection of Product entities

{
"Sschema":"http://json-schema.org/draft-04/schema#",

"type":"object",
"properties":{

"value": {
'Itype" : "array" ’
"items": {
"Sref": "csdl-16.1.json#/definitions/ODataDemo.Product"

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 34 of 45

7 Extensibility

Vocabularies and annotations already allow defining additional characteristics or capabilities of metadata
elements, such as a service, entity type, property, function, action or parameter, and [OData-CSDL]
defines which model elements can be annotated. This document specifies how these metadata
annotations are represented in JSON CSDL documents.

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 35 of 45

8 CSDL Examples

Following are two basic examples of valid OData models as represented in JSON CSDL. These
examples demonstrate many of the topics covered above. They represent the same documents as the

XML examples in chapter 16 of [OData-CSDL].

8.1 Products and Categories Example
Example 64:

{

"Sschema":"http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/edm.json#",

"odata-version":"4.0",
"definitions": {
"ODataDemo.Product": {
"type":"object",
"mediaEntity":true,
"keys": [
"ID"
1,
"properties": {
IIID":{
"type":"string"
by
"Description": {
lltype":[
"string",
"null"
1,
"@Core.IsLanguageDependent" :true
I
"ReleaseDate": {
"type":[
"string",
"null"
1,
"format":"date"
by
"DiscontinuedDate": {
lltype":[
"string",
"null"
1,
"format":"date"
b
"Rating":{
"type":[
"integer",
"null"
1,
"format":"int32"
by
"Price":{
"type":[
"number",
"string",
"null"
1,
"format":"decimal",
"multipleOf":1,

odata-json-csdl-v4.0-csprd01
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved.

03 December 2015
Page 36 of 45

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 37 of 45

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 38 of 45

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 39 of 45

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 40 of 45

"entityType": {
"Sref":"#/definitions/ODataDemo.Country"
}
}
b
"singletons": {
"Contoso": {
"type": {
"Sref":"#/definitions/ODataDemo.Supplier"
br
"navigationPropertyBindings": {
"Products": {
"target":"Products"
}
}
}
1
"functionImports": {
"ProductsByRating": {
"entitySet":"Products",
"function": {
"Sref":"#/functions/ODataDemo.ProductsByRating"

8.2 Annotations for Products and Categories Example

Example 65: schema Annotations contains annotations for referenced schema ODataDemo with terms from
vocabulary Some.Vocabulary.V1

{
"Sschema":"http://docs.oasis-open.org/odata/odata-json-csdl/v4.0/edm.json#",
"odata-version":"4.0",

"schemas" : {
"ODataDemo" : {
"Sref":"http://host/service/$Smetadata#/schemas/ODataDemo"
b
"Some.Vocabulary.V1": {
"Sref":"http://somewhere/Vocabulary/V1#/schemas/Some.Vocabulary.V1"
by
"Vocabularyl": {
"Sref":"http://somewhere/Vocabulary/V1#/schemas/Some.Vocabulary.v1"
b
"Annotations": {
"annotations": [
{
"target":"ODataDemo.Supplier",
"@Vocabularyl.EMail": {
"Qodata.null":{}
by
"@Vocabularyl.AccountID": {
"@odata.path":"ID"
by
"@Vocabularyl.Title":"Supplier Info",
"@Vocabularyl.DisplayName": {
"Qodata.apply":"odata.concat",
"parameterValues": [
{
"@odata.path":"Name"
by

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 41 of 45

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 42 of 45

9 Conformance

Conforming services MUST follow all rules of this specification document for the types, sets, functions,
actions, containers and annotations they expose.

Conforming clients MUST be prepared to consume a model that uses any or all of the constructs defined
in this specification, including custom annotations, and MUST ignore any elements or attributes not
defined in this version of the specification.

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 43 of 45

Appendix A. Acknowledgments

The contributions of the OASIS OData Technical Committee members, enumerated in [OData-Protocol],
are gratefully acknowledged.

odata-json-csdl-v4.0-csprd01 03 December 2015
Standards Track Work Product Copyright © OASIS Open 2016. All Rights Reserved. Page 44 of 45

Appendix B. Revision History

Revision

Date

Editor

Changes Made

Working Draft 01

2015-11-20

Ralf Handl

Initial version

odata-json-csdl-v4.0-csprd01

Standards Track Work Product

Copyright © OASIS Open 2016. All Rights Reserved.

03 December 2015
Page 45 of 45

