
odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 1 of 50

OData Extension for Data Aggregation
Version 4.0

Committee Specification Draft 03 /
Public Review Draft 03

16 July 2015

Specification URIs
This version:

http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/odata-data-
aggregation-ext-v4.0-csprd03.docx (Authoritative)
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/odata-data-
aggregation-ext-v4.0-csprd03.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/odata-data-
aggregation-ext-v4.0-csprd03.pdf

Previous version:
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs01/odata-data-aggregation-
ext-v4.0-cs01.docx (Authoritative)
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs01/odata-data-aggregation-
ext-v4.0-cs01.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs01/odata-data-aggregation-
ext-v4.0-cs01.pdf

Latest version:
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-
v4.0.docx (Authoritative)
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-
v4.0.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-
v4.0.pdf

Technical Committee:

OASIS Open Data Protocol (OData) TC

Chairs:
Ralf Handl (ralf.handl@sap.com), SAP AG
Ram Jeyaraman (Ram.Jeyaraman@microsoft.com), Microsoft

Editors:
Ralf Handl (ralf.handl@sap.com), SAP AG
Hubert Heijkers (hubert.heijkers@nl.ibm.com), IBM
Gerald Krause (gerald.krause@sap.com), SAP AG
Michael Pizzo (mikep@microsoft.com), Microsoft
Martin Zurmuehl (martin.zurmuehl@sap.com), SAP AG

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

 OData Aggregation ABNF Construction Rules Version 4.0: http://docs.oasis-
open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/abnf/odata-aggregation-abnf.txt

http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/odata-data-aggregation-ext-v4.0-csprd03.docx
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/odata-data-aggregation-ext-v4.0-csprd03.docx
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/odata-data-aggregation-ext-v4.0-csprd03.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/odata-data-aggregation-ext-v4.0-csprd03.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/odata-data-aggregation-ext-v4.0-csprd03.pdf
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/odata-data-aggregation-ext-v4.0-csprd03.pdf
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs01/odata-data-aggregation-ext-v4.0-cs01.docx
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs01/odata-data-aggregation-ext-v4.0-cs01.docx
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs01/odata-data-aggregation-ext-v4.0-cs01.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs01/odata-data-aggregation-ext-v4.0-cs01.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs01/odata-data-aggregation-ext-v4.0-cs01.pdf
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs01/odata-data-aggregation-ext-v4.0-cs01.pdf
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.docx
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.docx
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.pdf
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.pdf
https://www.oasis-open.org/committees/odata/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:Ram.Jeyaraman@microsoft.com
http://www.microsoft.com/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:hubert.heijkers@nl.ibm.com
http://www.ibm.com/
mailto:gerald.krause@sap.com
http://www.sap.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:martin.zurmuehl@sap.com
http://www.sap.com/
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/abnf/odata-aggregation-abnf.txt
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/abnf/odata-aggregation-abnf.txt

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 2 of 50

 OData Aggregation ABNF Test Cases: http://docs.oasis-open.org/odata/odata-data-
aggregation-ext/v4.0/csprd03/abnf/odata-aggregation-testcases.xml

 OData Aggregation Vocabulary: http://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/csprd03/vocabularies/Org.OData.Aggregation.V1.xml

Related work:

This specification is related to:

 OData Version 4.0. Edited by Michael Pizzo, Ralf Handl, and Martin Zurmuehl. A multi-part
Work Product that includes:

o OData Version 4.0 Part 1: Protocol. Latest version. http://docs.oasis-
open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html

o OData Version 4.0 Part 2: URL Conventions. Latest version. http://docs.oasis-
open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html

o OData Version 4.0 Part 3: Common Schema Definition Language (CSDL). Latest
version. http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html

o OData ABNF Construction Rules Version 4.0. 30 October 2014. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/abnf/odata-abnf-construction-
rules.txt

o OData ABNF Test Cases. 30 October 2014. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/abnf/

o OData Core Vocabulary. 30 October 2014. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/Org.OData.Core.V1.x
ml.

o OData Measures Vocabulary. 30 October 2014. http://docs.oasis-
open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/Org.OData.Measures.
V1.xml

 OData JSON Format Version 4.0. Edited by Ralf Handl, Mike Pizzo, and Mark Biamonte.
Latest version. http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-
v4.0.html

Abstract:
This specification adds basic grouping and aggregation functionality (e.g. sum, min, and max) to
the Open Data Protocol (OData) without changing any of the base principles of OData.

Status:
This document was last revised or approved by the OASIS Open Data Protocol (OData) TC on
the above date. The level of approval is also listed above. Check the “Latest version” location
noted above for possible later revisions of this document. Any other numbered Versions and
other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=odata#technical.

TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/odata/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the TC’s web page (https://www.oasis-
open.org/committees/odata/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[OData-Data-Agg-v4.0]

OData Extension for Data Aggregation Version 4.0. Edited by Ralf Handl, Hubert Heijkers, Gerald
Krause, Michael Pizzo, and Martin Zurmuehl. 16 July 2015. OASIS Committee Specification Draft
03 / Public Review Draft 03. http://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/csprd03/odata-data-aggregation-ext-v4.0-csprd03.html. Latest version: http://docs.oasis-
open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html.

http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/abnf/odata-aggregation-testcases.xml
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/abnf/odata-aggregation-testcases.xml
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/vocabularies/Org.OData.Aggregation.V1.xml
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/vocabularies/Org.OData.Aggregation.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/odata-abnf-construction-rules.txt
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/odata-abnf-construction-rules.txt
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/odata-abnf-construction-rules.txt
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/Org.OData.Measures.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/Org.OData.Measures.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/vocabularies/Org.OData.Measures.V1.xml
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/odata-data-aggregation-ext-v4.0-csprd03.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csprd03/odata-data-aggregation-ext-v4.0-csprd03.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 3 of 50

Notices

Copyright © OASIS Open 2015. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 4 of 50

Table of Contents

1 Introduction ... 6

1.1 Terminology .. 6

1.2 Normative References .. 6

1.3 Non-Normative References .. 6

1.4 Typographical Conventions .. 6

2 Overview ... 7

2.1 Definitions ... 7

2.2 Example Data Model .. 7

2.3 Example Data ... 9

2.4 Example Use Cases ... 9

3 System Query Option $apply ... 11

3.1 Transformation aggregate ... 11

3.1.1 Keyword as ... 12

3.1.2 Keyword with ... 13

3.1.3 Aggregation Methods .. 13

3.1.4 Keyword from ... 15

3.1.5 Virtual Property $count .. 16

3.2 Transformation topcount ... 16

3.3 Transformation topsum .. 17

3.4 Transformation toppercent ... 17

3.5 Transformation bottomcount ... 18

3.6 Transformation bottomsum ... 18

3.7 Transformation bottompercent .. 19

3.8 Transformation identity ... 19

3.9 Transformation concat .. 19

3.10 Transformation groupby ... 20

3.10.1 Simple Grouping .. 20

3.10.2 Grouping with rollup and $all.. 21

3.11 Transformation filter .. 23

3.12 Transformation expand .. 23

3.13 Transformation search .. 24

3.14 Transformation compute ... 25

3.15 Filter Function isdefined .. 25

3.16 Evaluating $apply ... 26

3.17 Evaluating $apply as an Expand Option .. 26

3.18 ABNF for Extended URL Conventions ... 27

4 Representation of Aggregated Instances ... 28

5 Cross-Joins and Aggregation ... 29

6 Vocabulary for Data Aggregation ... 30

6.1 Aggregation Capabilities ... 30

6.2 Property Annotations .. 30

6.2.1 Groupable Properties .. 30

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 5 of 50

6.2.2 Aggregatable Properties .. 30

6.2.3 Custom Aggregates ... 31

6.2.4 Context-Defining Properties .. 31

6.2.5 Example ... 32

6.3 Hierarchies .. 32

6.3.1 Leveled Hierarchy ... 33

6.3.2 Recursive Hierarchy .. 33

6.3.3 Examples ... 33

6.4 Actions and Functions on Aggregated Entities ... 36

7 Examples .. 37

7.1 Distinct Values .. 37

7.2 Aggregation Methods .. 38

7.3 Custom Aggregates .. 41

7.4 Aliasing ... 42

7.5 Combining Transformations per Group .. 43

7.6 Model Functions as Set Transformations ... 44

7.7 Controlling Aggregation per Rollup Level ... 45

7.8 Transformation Sequences... 45

8 Conformance .. 48

Appendix A. Acknowledgments ... 49

Appendix B. Revision History .. 50

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 6 of 50

1 Introduction
This specification adds the notion of aggregation to the Open Data Protocol (OData) without changing
any of the base principles of OData. It defines semantics and a representation for aggregation of data,
especially:

 Semantics and operations for querying aggregated data,

 Results format for queries containing aggregated data,

 Vocabulary terms to annotate what can be aggregated, and how.

1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References

[OData-ABNF] OData ABNF Construction Rules Version 4.0.

See the link in "Related work" section on cover page.

[OData-Agg-ABNF] OData Aggregation ABNF Construction Rules Version 4.0.
See link in "Additional artifacts" section on cover page.

[OData-CSDL] OData Version 4.0 Part 3: CSDL.
See link in "Related work" section on cover page.

[OData-Protocol] OData Version 4.0 Part 1: Protocol.
See link in "Related work" section on cover page.

[OData-URL] OData Version 4.0 Part 2: URL Conventions.
See link in "Related work" section on cover page.

[OData-VocAggr] OData Aggregation Vocabulary.
See link in "Additional artifacts" section on cover page.

[OData-VocMeas] OData Measures Vocabulary.
See link in "Related work" section on cover page.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.

1.3 Non-Normative References

[TSQL ROLLUP] http://msdn.microsoft.com/en-us/library/bb522495.aspx

1.4 Typographical Conventions

Keywords defined by this specification use this monospaced font.

Normative source code uses this paragraph style.

Some sections of this specification are illustrated with non-normative examples.

Example 1: text describing an example uses this paragraph style

Non-normative examples use this paragraph style.

All examples in this document are non-normative and informative only.

All other text is normative unless otherwise labeled.

http://www.ietf.org/rfc/rfc2119.txt
http://msdn.microsoft.com/en-us/library/bb522495.aspx

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 7 of 50

2 Overview
Open Data (OData) services expose a data model that describes the schema of the service in terms of
the Entity Data Model (EDM, see [OData-CSDL]) and then allows for querying data in terms of this
model. The responses returned by an OData service are based on that data model and retain the
relationships between the entities in the model.

Extending the OData query features with simple aggregation capabilities avoids cluttering OData services
with an exponential number of explicitly modeled “aggregation level entities” or else restricting the
consumer to a small subset of predefined aggregations.

Adding the notion of aggregation to OData without changing any of the base principles in OData has two
aspects:

1. Means for the consumer to query aggregated data on top of any given data model (for sufficiently
capable data providers)

2. Means for the provider to annotate what data can be aggregated, and in which way, allowing
consumers to avoid asking questions that the provider cannot answer.

Implementing any of these two aspects is valuable in itself independent of the other, and implementing
both provides additional value for consumers. The descriptions provided by the provider help a consumer
understand more of the data structure looking at the service's exposed data model. The query extensions
allow the consumers to express explicitly the desired aggregation behavior for a particular query. They
also allow consumers to formulate queries that refer to the annotations as shorthand.

2.1 Definitions

This specification defines the following terms:

 Aggregatable Property – a property for which the values can be aggregated using an aggregation
method.

 Aggregation Method – a method that can be used to aggregate an aggregatable property or

expression

 Standard Aggregation Method – one of the standard aggregation methods: sum, min, max,

average, and countdistinct

 Custom Aggregation Method – a custom aggregation method that can be applied to expressions

of a specified type

 Custom Aggregate – a dynamic property that can appear in an aggregate clause

 Groupable Property – a property whose values can be used to group entities or complex type
instances for aggregation.

 Hierarchy – an arrangement of groupable properties whose values are represented as being

“above”, “below”, or “at the same level as” one another.

2.2 Example Data Model

Example 2: The following diagram shows the terms defined in the section above applied to a simple model that is
used throughout this document.

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 8 of 50

The Amount property in the Sales entity type is an aggregatable property, and the properties of the related entity
types are groupable. These can be arranged in four hierarchies:

 Product hierarchy based on groupable properties of the Category and Product entity types

 Customer hierarchy based on Country and Customer

 Time hierarchy based on Year, Month and Date

 SalesOrganization based on the recursive association to itself

In the context of Online Analytical Processing (OLAP), this model might be described in terms of a Sales “cube” with
an Amount “measure” and three “dimensions”. This document will avoid such terms, as they are heavily overloaded.

Query extensions and descriptive annotations can both be applied to normalized as well as partly or fully
denormalized schemas.

Key : Type

Property : Type

Navigation Property

Legend:

ID : String

Name : String

Country : String

Customer

Date : Date

Month : String

Quarter : String

Time

Year : Number

ID : String

Name : String

Category

ID : String

Name : String

Category

Product

Color : String

ID: String

Customer

Time

Sales

Product

Amount : Decimal

SalesOrganization

Code : String

Name : String

Currency

ID : String

Name : String

Superordinate

SalesOrganization
Currency

TaxRate : String

SalesSales

Products

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 9 of 50

Note that OData’s Entity Data Model (EDM) does not mandate a single storage model; it may be realized
as a completely conceptual model whose data structure is calculated on-the-fly for each request. The
actual "entity-relationship structure" of the model should be chosen to simplify understanding and
querying data for the target audience of a service. Different target audiences may well require differently
structured services on top of the same storage model.

2.3 Example Data

Example 3: The following sample data will be used to further illustrate the capabilities introduced by this extension.

2.4 Example Use Cases

Example 4: In the example model, one prominent use case is the relation of customers to products. The first question
that is likely to be asked is: “Which customers bought which products?”

This leads to the second more quantitative question: “Who bought how much of what?”

The answer to the second question typically is visualized as a cross-table:

 Food Non-Food

 Sugar Coffee Paper

USA USD 14 2 12 5 5

 Joe USD 6 2 4 1 1

 Sue USD 8 8 4 4

Netherlands EUR 2 2 3 3

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 10 of 50

 Sue EUR 2 2 3 3

The data in this cross-table can be written down in a shape that more closely resembles the structure of the data
model, leaving cells empty that have been aggregated away:

Customer/Country Customer/Name Product/Category/Name Product/Name Amount Currency /Code

USA Joe Non-Food Paper 1 USD

USA Joe Food Sugar 2 USD

USA Joe Food Coffee 4 USD

USA Sue Food Coffee 8 USD

USA Sue Non-Food Paper 4 USD

Netherlands Sue Food Sugar 2 EUR

Netherlands Sue Non-Food Paper 3 EUR

USA Food Sugar 2 USD

USA Food Coffee 12 USD

USA Non-Food Paper 5 USD

Netherlands Food Sugar 2 EUR

Netherlands Non-Food Paper 1 EUR

USA Joe Food 6 USD

USA Joe Non-Food 1 USD

USA Sue Food 8 USD

USA Sue Non-Food 4 USD

Netherlands Sue Food 2 EUR

Netherlands Sue Non-Food 3 EUR

USA Food 14 USD

USA Non-Food 5 USD

Netherlands Food 2 EUR

Netherlands Non-Food 3 EUR

Note that this result contains seven fully qualified aggregate values, plus fifteen rollup rows with subtotal values,
shown in bold.

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 11 of 50

3 System Query Option $apply

Aggregation behavior is triggered using the query option $apply. It takes a sequence of set

transformations, separated by forward slashes to express that they are consecutively applied, e.g. the
result of each transformation is the input to the next transformation. This is consistent with the use of
service-defined bindable and composable functions in path segments.

Unless otherwise noted, each set transformation:

 preserves the structure of the input type, so the structure of the result fits into the data model of
the service.

 does not necessarily preserve the number of instances in the result, as this will typically differ
from the number of instances in the input set.

 does not necessarily guarantee that all properties of the result instances have a well-defined
value.

So the actual (or relevant) structure of each intermediary result will resemble a projection of the original

data model that could also have been formed using the standard system query options $expand and

$select defined in [OData-Protocol], with dynamic properties representing the aggregate values. The

parameters of set transformations allow specifying how the result instances are constructed from the
input instances.

The set transformations defined by this extension are

 aggregate

 topcount

 topsum

 toppercent

 bottomcount

 bottomsum

 bottompercent

 identity

 concat

 groupby

 filter

 expand

 search

 compute

Service-defined bound functions that take an entity set as their binding parameter MAY be used as set

transformations within $apply if the type of the binding parameter matches the type of the result set of

the preceding transformation. If it returns an entity set, further transformations can follow the bound
function. The parameter syntax for bound function segments is identical to the parameter syntax for

bound functions in resource path segments or $filter expressions. See section 7.6 for an example.

If a data service that supports $apply does not support it on the collection identified by the request

resource path, it MUST fail with 501 Not Implemented and a meaningful human-readable error

message.

3.1 Transformation aggregate

The aggregate transformation takes a comma-separated list of one or more aggregate expressions as

parameters and returns a result set with a single instance, representing the aggregated value for all
instances in the input set.

An aggregate expression may be:

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 12 of 50

 an expression valid in a $filter system query option on the input set that results in a simple

value, e.g. the path to an aggregatable property, with a specified aggregation method,

 a custom aggregate,

 any of the above, followed by a from expression,

 any of the above, enclosed in parentheses and prefixed with a navigation path to related entities,

 the virtual property $count.

Any aggregate expression that specifies an aggregation method MUST define an alias for the resulting
aggregated value. The resulting instance contains one dynamic property per parameter representing the
aggregated value across all instances within the input set. If paths are present, the corresponding
navigation properties are implicitly expanded to make the properties part of the result representation.

The aggregate transformation affects the structure of the result set: An expression resulting in a simple

value and a custom aggregate corresponds to a dynamic property in a $select option. If they are

preceded by a navigation path, the corresponding $select option would be nested in one $expand

option for each navigation property in the navigation path.

3.1.1 Keyword as

Aggregate expressions can define an alias using the as keyword, followed by a SimpleIdentifier (see

[OData-CSDL, section 17.2]).

The alias will introduce a dynamic property in the aggregated result set. The introduced dynamic property
is added to the type containing the original expression or custom aggregate. The alias MUST NOT collide
with names of declared properties, custom aggregates, or other aliases in that type.

When an aggregation method is specified, an alias MUST be applied to the expression.

Example 5:

GET ~/Sales?$apply=aggregate(Amount with sum as Total)

results in

{

 "@odata.context": "$metadata#Sales(Total)",

 "value": [

 { "@odata.id": null, "Total": 24 }

]

}

Example 6:

GET ~/Sales?$apply=aggregate(Amount mul Product/TaxRate with sum as Tax)

results in

{

 "@odata.context": "$metadata#Sales(Tax)",

 "value": [

 { "@odata.id": null, "Tax": 2.08 }

]

}

If the expression is to be evaluated on related entities, the expression and its alias MUST be enclosed in
parentheses and prefixed with the navigation path to the related entities. The expression within the

parentheses MUST be an expression that could also be used in a $filter system query option on the

related entities identified by the navigation path. This syntax is intentionally similar to the syntax of

$expand with nested query options.

Example 7:

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 13 of 50

GET ~/Products?$apply=aggregate(Sales(Amount mul Product/TaxRate with sum as

Tax))

results in

{

 "@odata.context": "$metadata#Products(Sales(Tax))",

 "value": [

 { "@odata.id": null, "Sales": [{ "Tax": 2.08 }] }

]

}

An alias affects the structure of the result set: each alias corresponds to a dynamic property in a

$select option that is nested in an $expand option for each navigation property in the path of the

aliased expression.

3.1.2 Keyword with

The keyword with is used to apply an aggregation method to an aggregatable property or expression.

The property or expression being aggregated is followed by the keyword with, followed by the name of

the aggregation method to apply, followed by the keyword as and an alias.

3.1.3 Aggregation Methods

Values can be aggregated using the standard aggregation methods sum, min, max, average, and

countdistinct, or with custom aggregation methods defined by the service. Aggregate expressions

containing an aggregation method MUST define an alias for the resulting aggregate value.

Custom aggregation methods MUST use a namespace-qualified name (see [OData-ABNF]), i.e. contain
at least one dot. Dot-less names are reserved for future versions of this specification.

3.1.3.1 Standard Aggregation Method sum

The standard aggregation method sum can be applied to numeric values to return the sum of the non-null

values, or null if there are no non-null values or the input set is empty. The provider MUST choose a
single type for the property across all instances of that type in the result that is capable of representing

the aggregated values. This may require a larger integer type, Edm.Decimal with sufficient Precision

and Scale, or Edm.Double.

Example 8:

GET ~/Sales?$apply=aggregate(Amount with sum as Total)

results in

{

 "@odata.context": "$metadata#Sales(Total)",

 "value": [

 { "@odata.id": null, "Total": 24 }

]

}

3.1.3.2 Standard Aggregation Method min

The standard aggregation method min can be applied to values with a totally ordered domain to return

the smallest of the non-null values, or null if there are no non-null values or the input set is empty.

The result property will have the same type as the input property.

Example 9:

GET ~/Sales?$apply=aggregate(Amount with min as MinAmount)

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 14 of 50

results in

{

 "@odata.context": "$metadata#Sales(MinAmount)",

 "value": [

 { "@odata.id": null, "MinAmount": 1 }

]

}

3.1.3.3 Standard Aggregation Method max

The standard aggregation method max can be applied to values with a totally ordered domain to return

the largest of the non-null values, or null if there are no non-null values or the input set is empty.

The result property will have the same type as the input property

Example 10:

GET ~/Sales?$apply=aggregate(Amount with max as MaxAmount)

results in

{

 "@odata.context": "$metadata#Sales(MaxAmount)",

 "value": [

 { "@odata.id": null, "MaxAmount": 8 }

]

}

3.1.3.4 Standard Aggregation Method average

The standard aggregation method average can be applied to numeric values to return the sum of the

non-null values divided by the count of the non-null values, or null if there are no non-null values or the
input set is empty.

The provider MUST choose a single type for the property across all instances of that type in the result

that is capable of representing the aggregated values; either Edm.Double or Edm.Decimal with

sufficient Precision and Scale..

Example 11:

GET ~/Sales?$apply=aggregate(Amount with average as AverageAmount)

results in

{

 "@odata.context": "$metadata#Sales(AverageAmount)",

 "value": [

 { "@odata.id": null, "AverageAmount": 3.0 }

]

}

3.1.3.5 Standard Aggregation Method countdistinct

The aggregation method countdistinct counts the distinct values, omitting any null values. For

navigation properties, it counts the distinct entities in the union of all entities related to entities in the input
set. For collection-valued primitive properties, it counts the distinct items in the union of all collection
values in the input set.

The result property MUST have type Edm.Decimal with Scale="0" and sufficient Precision.

Example 12:

GET ~/Sales?$apply=aggregate(Product with countdistinct as DistinctProducts)

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 15 of 50

results in

{

 "@odata.context": "$metadata#Sales(DistinctProducts)",

 "value": [

 { "@odata.id": null, "DistinctProducts": 3 }

]

}

The number of instances in the input set can be counted with the virtual property $count.

3.1.4 Keyword from

The from keyword gives control over the order of aggregation across properties that are not part of the

result structure and over the aggregation methods applied in every step.

Instead of applying a single aggregation method for calculating the aggregated value of an expression
across all properties not included in the result structure, other aggregation methods to be applied when

aggregating away certain properties MAY be specified using the from keyword, followed by a property

path of a groupable property. Each groupable property MUST be followed by a with clause unless the

aggregate expression is a custom aggregate, in which case the provider-defined behavior of the custom
aggregate is used:

 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 as 𝑎𝑙𝑖𝑎𝑠

 from 𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦1 [with 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑1]

 …

from 𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑛 [with 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑𝑛]

If the from keyword is used, an alias MUST be introduced.

If the from keyword is present, first the aggregation method determined by the aggregate expression is

used to aggregate away properties that are not mentioned in a from clause and are not grouping

properties.

Then consecutively properties not part of the result are aggregated away in the order of the from clauses

and using the method specified by the from clause.

More formally, the calculation of aggregate with the from keyword is equivalent with a list of set

transformations:

groupby((𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦1, …, 𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑛),

 aggregate(𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 as 𝑡𝑚𝑝𝑎𝑙𝑖𝑎𝑠1))

/groupby((𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦2, …, 𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑛),

 aggregate(𝑡𝑚𝑝𝑎𝑙𝑖𝑎𝑠1 with 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑1 as 𝑡𝑚𝑝𝑎𝑙𝑖𝑎𝑠2))

…

/groupby((𝑔𝑟𝑜𝑢𝑝𝑎𝑏𝑙𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑛),

 aggregate(𝑡𝑚𝑝𝑎𝑙𝑖𝑎𝑠𝑛−1 with 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑𝑛−1 as 𝑡𝑚𝑝𝑎𝑙𝑖𝑎𝑠𝑛))

/aggregate(𝑡𝑚𝑝𝑎𝑙𝑖𝑎𝑠𝑛 with 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑𝑛 as 𝑎𝑙𝑖𝑎𝑠))

The order of from clauses has to be compatible with hierarchies referenced from a leveled hierarchy

annotation or specified as an unnamed hierarchy in groupby with rollup: lower nodes in a hierarchy need
to be mentioned before higher nodes in the same hierarchy. Properties not belonging to any hierarchy

can appear at any point in the from clause.

Example 13:

GET ~/Sales?$apply=aggregate(Amount with sum as DailyAverage

 from Time with average)

is equivalent to

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 16 of 50

GET ~/Sales?$apply=groupby((Time),aggregate(Amount with sum as Total))

 /aggregate(Total with average as DailyAverage)

and results in the average sales volume per day

{

 "@odata.context": "$metadata#Sales(DailyAverage)",

 "value": [

 { "@odata.id": null, "DailyAverage": 3.428571428571429 }

]

}

3.1.5 Virtual Property $count

The value of the virtual property $count is the number of instances in the input set. It MUST always

specify an alias and MUST NOT specify an aggregation method.

The result property will have type Edm.Decimal with Scale="0" and sufficient Precision.

Example 14:

GET ~/Sales?$apply=aggregate($count as SalesCount)

results in

{

 "@odata.context": "$metadata#Sales(SalesCount)",

 "value": [

 { "@odata.id": null, "SalesCount": 8 }

]

}

3.2 Transformation topcount

The topcount transformation takes two parameters.

The first parameter specifies the number of instances to return in the transformed set. It MUST be an
expression that can be evaluated on the set level and MUST result in a positive integer.

The second parameter specifies the value by which the instances are compared for determining the result
set. It MUST be an expression that can be evaluated on instances of the input set and MUST result in a
primitive numeric value.

The transformation retains the number of instances specified by the first parameter that have the highest
values specified by the second expression.

In case the value of the second expression is ambiguous, the service MUST impose a stable ordering
before determining the returned instances.

Example 15:

GET ~/Sales?$apply=topcount(2,Amount)

results in

{

 "@odata.context": "$metadata#Sales",

 "value": [

 { "ID": 3, "Amount": 4, ... },

 { "ID": 4, "Amount": 8, ... }

]

}

The result set of topcount has the same structure as the input set.

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 17 of 50

3.3 Transformation topsum

The topsum transformation takes two parameters.

The first parameter indirectly specifies the number of instances to return in the transformed set. It MUST
be an expression that can be evaluated on the set level and MUST result in a number.

The second parameter specifies the value by which the instances are compared for determining the result
set. It MUST be an expression that can be evaluated on instances of the input set and MUST result in a
primitive numeric value.

The transformation returns the minimum set of instances that have the highest values specified by the
second parameter and whose sum of these values is equal to or greater than the value specified by the
first parameter. It does not change the order of the instances in the input set.

In case the value of the second expression is ambiguous, the service MUST impose a stable ordering
before determining the returned instances.

Example 16:

GET ~/Sales?$apply=topsum(15,Amount)

results in

{

 "@odata.context": "$metadata#Sales",

 "value": [

 { "ID": 3, "Amount": 4, ... },

 { "ID": 4, "Amount": 8, ... },

 { "ID": 5, "Amount": 4, ... }

]

}

The result set of topsum has the same structure as the input set.

3.4 Transformation toppercent

The toppercent transformation takes two parameters.

The first parameter specifies the number of instances to return in the transformed set. It MUST be an
expression that can be evaluated on the set level and MUST result in a positive number less than or
equal to 100.

The second parameter specifies the value by which the instances are compared for determining the result
set. It MUST be an expression that can be evaluated on instances of the input set and MUST result in a
primitive numeric value.

The transformation returns the minimum set of instances that have the highest values specified by the
second parameter and whose cumulative total is equal to or greater than the percentage of the
cumulative total of all instances in the input set specified by the first parameter. It does not change the
order of the instances in the input set.

In case the value of the second expression is ambiguous, the service MUST impose a stable ordering
before determining the returned instances.

Example 17:

GET ~/Sales?$apply=toppercent(50,Amount)

results in

{

 "@odata.context": "$metadata#Sales",

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 18 of 50

 "value": [

 { "ID": 3, "Amount": 4, ... },

 { "ID": 4, "Amount": 8, ... }

]

}

The result set of toppercent has the same structure as the input set.

3.5 Transformation bottomcount

The bottomcount transformation takes two parameters.

The first parameter specifies the number of instances to return in the transformed set. It MUST be an
expression that can be evaluated on the set level and MUST result in a positive integer.

The second parameter specifies the value by which the instances are compared for determining the result
set. It MUST be an expression that can be evaluated on instances of the input set and MUST result in a
primitive numeric value.

The transformation retains the number of instances specified by the first parameter that have the lowest
values specified by the second parameter. It does not change the order of the instances in the input set.

In case the value of the second expression is ambiguous, the service MUST impose a stable ordering
before determining the returned instances.

Example 18:

GET ~/Sales?$apply=bottomcount(2,Amount)

results in

{

 "@odata.context": "$metadata#Sales"

 "value": [

 { "ID": 1, "Amount": 1, ... },

 { "ID": 7, "Amount": 1, ... }

]

}

The result set of bottomcount has the same structure as the input set.

3.6 Transformation bottomsum

The bottomsum transformation takes two parameters.

The first parameter indirectly specifies the number of instances to return in the transformed set. It MUST
be an expression that can be evaluated on the set level and MUST result in a number.

The second parameter specifies the value by which the instances are compared for determining the result
set. It MUST be an expression that can be evaluated on instances of the input set and MUST result in a
primitive numeric value.

The transformation returns the minimum set of instances that have the lowest values specified by the
second parameter and whose sum of these values is equal to or greater than the value specified by the
first parameter. It does not change the order of the instances in the input set.

In case the value of the second expression is ambiguous, the service MUST impose a stable ordering
before determining the returned instances.

Example 19:

GET ~/Sales?$apply=bottomsum(7,Amount)

results in

{

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 19 of 50

 "@odata.context": "$metadata#Sales",

 "value": [

 { "ID": 2, "Amount": 2, ... },

 { "ID": 6, "Amount": 2, ... },

 { "ID": 7, "Amount": 1, ... },

 { "ID": 8, "Amount": 2, ... }

]

}

The result set of bottomsum has the same structure as the input set.

3.7 Transformation bottompercent

The bottompercent transformation takes two parameters.

The first parameter indirectly specifies the number of instances to return in the transformed set. It MUST
be an expression that can be evaluated on the set level and MUST result in a positive number less than
or equal to 100.

The second parameter specifies the value by which the instances are compared for determining the result
set. It MUST be an expression that can be evaluated on instances of the input set and MUST result in a
primitive numeric value.

The transformation returns the minimum set of instances that have the lowest values specified by the
second parameter and whose cumulative total is equal to or greater than the percentage of the
cumulative total of all instances in the input set specified by the first parameter. It does not change the
order of the instances in the input set.

In case the value of the second expression is ambiguous, the service MUST impose a stable ordering
before determining the returned instances.

Example 20:

GET ~/Sales?$apply=bottompercent(50,Amount)

results in

{

 "@odata.context": "$metadata#Sales",

 "value": [

 { "ID": 1, "Amount": 1, ... },

 { "ID": 2, "Amount": 2, ... },

 { "ID": 5, "Amount": 4, ... },

 { "ID": 6, "Amount": 2, ... },

 { "ID": 7, "Amount": 1, ... },

 { "ID": 8, "Amount": 2, ... }

]

}

The result set of bottompercent has the same structure as the input set.

3.8 Transformation identity

The identity transformation returns its input set.

Example 21:

GET ~/Sales?$apply=identity

3.9 Transformation concat

The concat transformation takes two or more parameters, each of which is a sequence of set

transformations.

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 20 of 50

It applies each transformation sequence to the input set and concatenates the intermediate result sets in
the order of the parameters into the result set, preserving the ordering of the individual result sets as well
as the structure of each result instance, potentially leading to an inhomogeneously structured result set.

Example 22:

GET ~/Sales?$apply=concat(topcount(2,Amount),

 aggregate(Amount))

results in

{

 "@odata.context": "$metadata#Sales",

 "value": [

 { "ID": 4, "Amount": 8, ... },

 { "ID": 3, "Amount": 4, ... },

 { "@odata.context": "$metadata#Sales(Amount)/$entity", "Amount": 24 }

]

}

Note that two Sales entities with the second highest amount 4 exist in the input set; the entity with ID 3 is included in

the result, because the service chose to use the ID property for imposing a stable ordering.

The result set of concat has a mixed form consisting of the structures imposed by the two transformation

sequences.

3.10 Transformation groupby

The groupby transformation takes one or two parameters and

1. Splits the initial set into subsets where all instances in a subset have the same values for the
grouping properties specified in the first parameter,

2. Applies set transformations to each subset according to the second parameter, resulting in a new
set of potentially different structure and cardinality,

3. Ensures that the instances in the result set contain all grouping properties with the correct values
for the group,

4. Concatenates the intermediate result sets into one result set.

3.10.1 Simple Grouping

In its simplest form the first parameter of groupby specifies the grouping properties, a comma-separated

list of one or more single-valued property paths (paths ending in a single-valued primitive, complex, or
navigation property) that is enclosed in parentheses. The same property path SHOULD NOT appear
more than once; redundant property paths MAY be considered valid, but MUST NOT alter the meaning of
the request. If the property path leads to a single-valued navigation property, this means grouping by the
entity-id of the related entities.

The optional second parameter is a list of set transformations, separated by forward slashes to express
that they are consecutively applied. Transformations may take into account the grouping properties for

producing their result, e.g. aggregate removes properties that are used neither for grouping nor for

aggregation.

If the service is unable to group by same values for any of the specified properties, it MUST reject the
request with an error response. It MUST NOT apply any implicit rules to group instances indirectly by
another property related to it in some way.

Example 23:

GET ~/Sales?$apply=groupby((Customer/Country,Product/Name),

 aggregate(Amount with sum as Total))

results in

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 21 of 50

{

 "@odata.context": "$metadata#Sales(Customer(Country),Product(Name),Total)",

 "value": [

 { "@odata.id": null, "Customer": { "Country" : "Netherlands" },

 "Product": { "Name": "Paper" }, "Total": 3 },

 { "@odata.id": null, "Customer": { "Country": "Netherlands" },

 "Product": { "Name": "Sugar" }, "Total": 2},

 { "@odata.id": null, "Customer": { "Country: "USA" },

 "Product": { "Name": "Coffee" }, "Total": 12},

 { "@odata.id": null, "Customer": { "Country: "USA" },

 "Product": { "Name": "Paper" },"Total": 5},

 { "@odata.id": null, "Customer": { "Country: "USA" },

 "Product": { "Name": "Sugar" }, "Total": 2}

]

}

The second parameter can be omitted to request distinct value combinations of the grouping properties.

Example 24:

GET ~/Sales?$apply=groupby((Product/Name,Amount))

and result in

{

 "@odata.context": "$metadata#Sales(Product(Name),Amount)",

 "value": [

 { "@odata.id": null, "Product": { "Name": "Coffee" }, "Amount": 4 },

 { "@odata.id": null, "Product": { "Name": "Coffee" }, "Amount": 8 },

 { "@odata.id": null, "Product": { "Name": "Paper" }, "Amount": 1 },

 { "@odata.id": null, "Product": { "Name": "Paper" }, "Amount": 2 },

 { "@odata.id": null, "Product": { "Name": "Paper" }, "Amount": 4 },

 { "@odata.id": null, "Product": { "Name": "Sugar" }, "Amount": 2 }

]

}

Note that the result has the same structure, but not the same content as

GET ~/Sales?$expand=Product($select=Name)&$select=Amount

A groupby transformation affects the structure of the result set similar to $select where each grouping

property corresponds to an item in a $select clause. Grouping properties that specify navigation

properties are automatically expanded, and the specified properties of that navigation property

correspond to properties specified in a $select expand option on the expanded navigation property. The

set transformations specified in the second parameter of groupby further affect the structure as

described for each transformation; for example, the aggregate transformation adds properties for each

aggregate expression.

3.10.2 Grouping with rollup and $all

The rollup grouping operator allows requesting additional levels of aggregation in addition to the most

granular level defined by the grouping properties. It can be used instead of a property path in the first

parameter of groupby.

The rollup grouping operator has two overloads, depending on the number of parameters.

If used with one parameter, the parameter MUST be the value of the Qualifier attribute of an

annotation with term LeveledHierarchy prefixed with the navigation path leading to the annotated

entity type. This named hierarchy is used for grouping instances.

If used with two or more parameters, it defines an unnamed leveled hierarchy. The first parameter is the
root of the hierarchy defining the coarsest granularity and MUST either be a single-valued property path

or the virtual property $all. The other parameters MUST be singe-valued property paths and define

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 22 of 50

consecutively finer-grained levels of the hierarchy. This unnamed hierarchy is used for grouping
instances.

After resolving named hierarchies, the same property path MUST NOT appear more than once.

Grouping with rollup is processed for leveled hierarchies using the following equivalence relationships,

in which 𝑝𝑖 is a property path, 𝑇 is a transformation, the ellipsis stands in for zero or more property paths,

and 𝑅 stands in for zero or more rollup operators or property paths:

 groupby((rollup(𝑝1,…, 𝑝𝑛−1, 𝑝𝑛), 𝑅), 𝑇) is equivalent to

concat(groupby((𝑝1,…, 𝑝𝑛−1, 𝑝𝑛, 𝑅), 𝑇),groupby((rollup(𝑝1,…, 𝑝𝑛−1), 𝑅), 𝑇))

 groupby((rollup(𝑝1, 𝑝2), 𝑅), 𝑇) is equivalent to

concat(groupby((𝑝1, 𝑝2, 𝑅), 𝑇), groupby((𝑝1, 𝑅), 𝑇))

 groupby((rollup($all, 𝑝1), 𝑅), 𝑇) is equivalent to

concat(groupby((𝑝1, 𝑅), 𝑇),groupby((𝑅),𝑇))

 groupby((rollup($all, 𝑝1)), 𝑇) is equivalent to

concat(groupby((𝑝1), 𝑇), 𝑇)

Loosely speaking groupby with rollup splits the input set into groups using all grouping properties,

then removes the last property from one of the hierarchies and splits it again using the remaining
grouping properties. This is repeated until all of the hierarchies have been used up.

Example 25: rolling up two hierarchies, the first with two levels, the second with three levels:

(rollup(𝑝1,1, 𝑝1,2),rollup(𝑝2,1, 𝑝2,2, 𝑝2,3))

will result in the six groupings

 (𝑝1,1, 𝑝1,2, 𝑝2,1, 𝑝2,2, 𝑝2,3)

 (𝑝1,1, 𝑝1,2, 𝑝2,1, 𝑝2,2)

 (𝑝1,1, 𝑝1,2, 𝑝2,1)

 (𝑝1,1, 𝑝2,1, 𝑝2,2, 𝑝2,3)

 (𝑝1,1, 𝑝2,1, 𝑝2,2)

 (𝑝1,1, 𝑝2,1)

Note that rollup stops one level earlier than GROUP BY ROLLUP in TSQL, see [TSQL ROLLUP], unless

the virtual property $all is used as the hierarchy root level. Loosely speaking the root level is never

rolled up.

Ordering of rollup instances within detail instances is up to the service if no $orderby is given, otherwise

at the position determined by $orderby.

Example 26: answering the second question in section 2.4

GET ~/Sales?$apply=groupby((rollup(Customer/Country,Customer/Name),

 rollup(Product/Category/Name,Product/Name),

 Currency/Code),

 aggregate(Amount with sum as Total))

results in seven entities for the finest grouping level

{

"@odata.context":"$metadata#Sales(Customer(Country,Name),Product(Category(Na

me),Name),Total,Currency(Code))",

 "value": [

 { "@odata.id": null, "Customer": { "Country": "USA", "Name": "Joe" },

 "Product": { "Category": { "Name": "Non-Food" }, "Name": "Paper" },

 "Total": 1, "Currency": { "Code": "USD" }

 },

 ...

plus additional fifteen rollup entities for subtotals: five without customer name

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 23 of 50

 { "@odata.id": null, "Customer": { "Country": "USA" },

 "Product": { "Category": { "Name": "Food" }, "Name": "Sugar" },

 "Total": 2, "Currency": { "Code": "USD" }

 },

 ...

six without product name

 { "@odata.id": null, "Customer": { "Country": "USA", "Name": "Joe" },

 "Product": { "Category": { "Name": "Food" } },

 "Total": 6, "Currency": { "Code": "USD" }

 },

 ...

and four with neither customer nor product name

 { "@odata.id": null, "Customer": { "Country": "USA" },

 "Product": { "Category": { "Name": "Food" } },

 "Total": 14, "Currency": { "Code": "USD" }

 },

 ...

]

}

Note that the absence of one or more properties of the result structure imposed by the surrounding OData
context allows distinguishing rollup entities from other entities.

3.11 Transformation filter

The filter transformation takes a Boolean expression that could also be passed as a $filter system

query option to its input set and returns all instances for which this expression evaluates to true.

Example 27:

GET ~/Sales?$apply=filter(Amount gt 3)

results in

{

 "@odata.context": "$metadata#Sales",

 "value": [

 { "ID": 3, "Amount": 4, ... },

 { "ID": 4, "Amount": 8, ... },

 { "ID": 5, "Amount": 4, ... }

]

}

The result set of filter has the same structure as the input set.

3.12 Transformation expand

The expand transformation takes a navigation property path that could also be passed as a $expand

system query option as its first parameter. The optional second parameter can be either a filter

transformation that will be applied to the related entities or an expand transformation. An arbitrary

number of expand transformations can be passed as additional parameters to achieve multi-level

expansion.

The result set is the input set with the specified navigation property expanded according to the specified
expand options.

Example 28:

GET ~/Customers?$apply=expand(Sales,filter(Amount gt 3))

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 24 of 50

results in

{

 "@odata.context": "$metadata#Customers",

 "value": [

 { "ID": "C1", "Name": "Joe", "Country": "USA",

 "Sales": [{ "ID": 3, "Amount": 4, ... }]},

 { "ID": "C2", "Name": "Sue", "Country": "USA",

 "Sales": [{ "ID": 4, "Amount": 8, ... },

 { "ID": 5, "Amount": 4, ... }]},

 { "ID": "C3", "Name": "Sue", "Country": "Netherlands", "Sales": []},

 { "ID": "C4", "Name": "Luc", "Country": "France", "Sales": []}

]

}

The result has the same structure and content as

GET ~/Customers?$expand=Sales($filter=Amount gt 3)

An expand transformation affects the structure of the result set in the same way as an $expand option

for the first parameter, with nested $expand options for the optional nested expand transformations.

Example 29: nested expand transformations

GET ~/Categories?$apply=expand(Products,expand(Sales,filter(Amount gt 3)))

results in

{

 "@odata.context": "$metadata#Customers",

 "value": [

 { "ID": "PG1", "Name": "Food",

 "Products": [

 { "ID": "P1", "Name": "Sugar", "Color": "White", "Sales": [] },

 { "ID": "P2", "Name": "Coffee", "Color": "Brown",

 "Sales": [{ "ID": 3, "Amount": 4, ... },

 { "ID": 4, "Amount": 8, ... }] }

]

 },

 { "ID": "PG2", "Name": "Non-Food",

 "Products": [

 { "ID": "P3", "Name": "Paper", "Color": "White",

 "Sales": [{ "ID": 5, "Amount": 4, ... },

 { "ID": 8, "Amount": 2, ... }] },

 { "ID": "P4", "Name": "Pencil", "Color": "Black", "Sales": [] }

]

 }

]

}

3.13 Transformation search

The search transformation takes a search expression that could also be passed as a $search system

query option to its input set and returns all entities that match this search expression.

Example 30: assuming that free-text search on Sales takes the related product name into account,

GET ~/Sales?$apply=search(coffee)

results in

{

 "@odata.context": "$metadata#Sales",

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 25 of 50

 "value": [

 { "ID": 3, "Amount": 4, ... },

 { "ID": 4, "Amount": 8, ... }

]

}

The result set of search has the same structure as the input set.

3.14 Transformation compute

The compute transformation takes a comma-separated list of one or more compute expressions as

parameters.

A compute expression is an expression valid in a $filter system query option on the input set that

results in a simple value, followed by the as keyword, followed by a SimpleIdentifier (see [OData-CSDL,

section 17.2]), called an alias. This alias MUST NOT collide with names of properties in the input set or

with other aliases introduced in the same compute transformation.

The result set is constructed by copying the instances of the input set and adding one dynamic property
per compute expression to each instance of the input set. The name of the added property is alias

following the as keyword. The value of the property is the value of the compute expression evaluated on

that instance.

The values of properties copied from the input set are not changed, nor is the order of instances changed.

An alias affects the structure of the result set: each alias corresponds to a dynamic property in a

$select option that is nested in an $expand option for each navigation property in the path of the

aliased expression.

Example 31:

GET ~/Sales?$apply=compute(Amount mul Product/TaxRate as Tax)

results in

{

 "@odata.context": "$metadata#Sales",

 "value": [

 { "ID": 1, ..., "Amount": 1, "Tax": 0.14 },

 { "ID": 2, ..., "Amount": 2, "Tax": 0.12 },

 { "ID": 3, ..., "Amount": 4, "Tax": 0.24 },

 { "ID": 4, ..., "Amount": 8, "Tax": 0.48 },

 { "ID": 5, ..., "Amount": 4, "Tax": 0.56 },

 { "ID": 6, ..., "Amount": 2, "Tax": 0.12 },

 { "ID": 7, ..., "Amount": 1, "Tax": 0.14 },

 { "ID": 8, ..., "Amount": 2, "Tax": 0.28 }

]

}

3.15 Filter Function isdefined

Properties that are not explicitly mentioned in aggregate or groupby are considered to have been

aggregated away and are treated as having the null value in $filter expressions.

The filter function isdefined can be used to determine whether a property has been aggregated away.

It takes a single-valued property path as its only parameter and returns true if the property has a defined

value for the aggregated entity. A property with a defined value can still have the null value; it can
represent a grouping of null values, or an aggregation that results in a null value.

Example 32:Product has been aggregated away, causing an empty result

GET ~/Sales?$apply=aggregate(Amount with sum as Total)

 &$filter=isdefined(Product)

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 26 of 50

results in

{

 "@odata.context": "$metadata#Sales(Total)",

 "value": []

}

3.16 Evaluating $apply

The new system query option $apply is evaluated first, then the other system query options are

evaluated, if applicable, on the result of $apply in their normal order (see [OData-Protocol, section

11.2.1]). If the result is a collection, $filter, $orderby, $expand and $select work as usual on

properties that are defined on the output set after evaluating $apply.

Properties that have been aggregated away in a result entity are not represented, even if the properties

are listed in $select or $expand. In $filter they are treated as having the null value, and in

$orderby as having a value that is even lower than null, i.e. instances for which a property has been

rolled up appear before instances that have a null value for that property when ordering ascending.

On resource paths ending in /$count the system query option $apply is evaluated on the set identified

by the resource path without the /$count segment, the result is the plain-text number of items in the

result of $apply. This is similar to the combination of /$count and $filter.

The $count system query option is evaluated after $apply, the annotation @odata.count contains the

number of items in the result of $apply.

Providers MAY support $count, $top and $skip together with rollup, in which case rollup instances

are counted identically to detail instances, i.e. $skip=5 skips the first five instances, independently of

whether some of them are rollup entities.

If a provider cannot satisfy a request using $apply, it MUST respond with 501 Not Implemented and

a human-readable error message.

3.17 Evaluating $apply as an Expand Option

The new system query option $apply can be used as an expand option to inline the result of aggregating

related entities. The rules for evaluating $apply are applied in the context of the expanded navigation,

i.e. $apply is evaluated first, and other expand options on the same navigation property are evaluated

on the result of $apply.

Example 33: products with aggregated sales:

GET Products?$expand=Sales($apply=aggregate(Amount with sum as Total))

results in

{

 "@odata.context":"$metadata#Poducts(Salees(Amount)",

 "value": [

 { "Name": "Coffee", "Color": "Brown", "TaxRate": 0.06,

 "Sales": [{ "@odata.id": null, "Total": 12 }] },

 { "Name": "Paper", "Color": "White", "TaxRate": 0.14

 "Sales": [{ "@odata.id": null, "Total": 8 }] },

 { "Name": "Pencil", "Color": "Black", "TaxRate": 0.14,

 "Sales": [{ "@odata.id": null, "Total": null }] },

 { "Name": "Sugar", "Color": "White", "TaxRate": 0.06,

 "Sales": [{ "@odata.id": null, "Total": 4 }] }

]

}

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 27 of 50

3.18 ABNF for Extended URL Conventions

The normative ABNF construction rules for this specification are defined in [OData-Agg-ABNF]. They
incrementally extend the rules defined in [OData-ABNF].

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 28 of 50

4 Representation of Aggregated Instances
Aggregated instances are based on the structure of the individual instances from which they have been
calculated, so the structure of the results fits into the data model of the service.

Properties that have been aggregated away are not represented at all in the aggregated instances.

Dynamic properties introduced through an alias or with custom aggregates are represented as defined by
the response format.

Aggregated instances are logically instances of the declared type of the collection identified by the
resource path of the request. If the resource path identifies a collection of entities, the aggregated
instances are also entities. These aggregated entities can be transient or persistent. Transient entities

don’t possess an edit link or read link, and in the JSON representation are marked with "@odata.id":

null. Edit links or read links of persistent entities MUST encode the necessary information to re-retrieve

that particular aggregate value. How the necessary information is exactly encoded is not part of this
specification. Only the boundary conditions defined in [OData-Protocol], sections 4.1 and 4.2 MUST be

met.

Example 34: looking again to the sample request for getting sales amounts per product and country presented in
section 3.10.1 (Example 23):

GET ~/Sales?$apply=groupby((Customer/Country,Product/Name),

 aggregate(Amount with sum as Total))

will return corresponding metadata as shown here for a single transient aggregated entity:

{

 "@odata.context":"$metadata#Sales(Customer(Country),Product(Name),Total)",

 "value": [

 { "@odata.id": null,

 "Customer": { "Country": "Netherlands" },

 "Product": { "Name": "Paper" },

 "Total": 3

 },

 ...

]

}

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 29 of 50

5 Cross-Joins and Aggregation
OData supports querying related entities through defining navigation properties in the data model. These
navigation paths help guide simple consumers in understanding and navigating relationships.

In some cases, however, requests need to span entity sets with no predefined associations. Such

requests can be sent to the special resource $crossjoin instead of an individual entity set. The cross

join of a list of entity sets is the Cartesian product of the listed entity sets, represented as a collection of
complex type instances that have a navigation property with cardinality to-one for each participating entity
set, and queries across entity sets can be formulated using these navigation properties. See [OData-
URL] for details.

Where useful navigations exist it is beneficial to expose those as explicit navigation properties in the
model, but the ability to pose queries that span entity sets not related by an association provides a
mechanism for advanced consumers to use more flexible join conditions.

Example 35: if Sales had a string property ProductID instead of the navigation property Product, a “join” between

Sales and Products could be accessed via the $crossjoin resource

GET ~/$crossjoin(Products,Sales)

 ?$expand=Products($select=Name),Sales($select=Amount)

 &$filter=Products/ID eq Sales/ProductID

results in

{

 "@odata.context": "$metadata#Collection(Edm.ComplexType)",

 "value": [

 { "Products": { "Name": "Paper" }, "Sales": { "Amount": 1 } },

 { "Products": { "Name": "Sugar" }, "Sales": { "Amount": 2 } },

 ...

]

}

Example 36: using the $crossjoin resource for aggregate queries

GET ~/$crossjoin(Products,Sales)

 ?$apply=filter(Products/ID eq Sales/ProductID)

 /groupby((Products/Name),

 aggregate(Sales(Amount with sum as Total)))

results in

{

 "@odata.context": "$metadata#Collection(Edm.ComplexType)",

 "value": [

 { "Products": { "Name": "Coffee" }, "Sales": { "Total": 12 } },

 { "Products": { "Name": "Paper" }, "Sales": { "Total": 8 } },

 { "Products": { "Name": "Sugar" }, "Sales": { "Total": 4 } }

]

}

The entity container may be annotated in the same way as entity sets to express which aggregate queries
are supported, see section 6.

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 30 of 50

6 Vocabulary for Data Aggregation
The following terms are defined in the vocabulary for data aggregation [OData-VocAggr].

6.1 Aggregation Capabilities

The term ApplySupported can be applied to an entity container or to structured types and describes

the aggregation capabilities of the entity container or of collections of instances of the annotated
structured types. If present, it implies that instances of the annotated structured type, or of structured

types used in the annotated entity container, can contain dynamic properties as an effect of $apply even

if they do not specify the OpenType attribute, see [OData-CSDL]. The term has a complex type with the

following properties:

 The Transformations collection lists all supported set transformations. Allowed values are the

names of the standard transformations aggregate, topcount, topsum, toppercent,

bottomcount, bottomsum, bottompercent, identity, concat, groupby, filter, and

expand, or a namespace-qualified name identifying a service-defined bindable function. If

Transformations is omitted the server supports all transformations defined by this

specification.

 The CustomAggregationMethods collection lists supported custom aggregation methods.

Allowed values are namespace-qualified names identifying service-specific aggregation methods.
If omitted, no custom aggregation methods are supported.

 Rollup specifies whether the service supports no rollup, only a single rollup hierarchy, or

multiple rollup hierarchies in a groupby transformation. If omitted, multiple rollup hierarchies are

supported.

 PropertyRestrictions specifies whether all properties can be used in groupby and

aggregate. If not specified, or specified with a value of false, all properties can be grouped

and aggregated. If specified with a value of true clients have to check which properties are

tagged as Groupable or Aggregatable.

All properties of ApplySupported are optional, so it can be used as a tagging annotation to signal

unlimited support of aggregation.

Example 37: an entity container supporting everything defined in this specification.

<EntityContainer Name="SalesData">

 <Annotation Term="Aggregation.ApplySupported" />

 ...

</EntityContainer>

6.2 Property Annotations

6.2.1 Groupable Properties

If a structured type is annotated with ApplySupported or used within an entity container that is

annotated with ApplySupported, and the ApplySupported annotation has a value of true for

PropertyRestrictions, only those properties that are annotated with the tagging term Groupable

can be used in groupby.

6.2.2 Aggregatable Properties

If a structured type is annotated with ApplySupported or used within an entity container that is

annotated with ApplySupported, and the ApplySupported annotation has a value of true for

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 31 of 50

PropertyRestrictions, only those properties that are annotated with the tagging term

Aggregatable can be used in aggregate.

6.2.3 Custom Aggregates

The term CustomAggregate allows defining dynamic properties that can be used in aggregate. No

assumptions can be made on how the values of these custom aggregates are calculated, and which input
values are used.

When applied to a structured type, the annotation specifies custom aggregates that are available for
collections of instances of that structured type. When applied to an entity container, the annotation
specifies custom aggregates whose input set may span multiple entity sets within the container.

A custom aggregate is identified by the value of the Qualifier attribute when applying the term. The

value of the Qualifier attribute is the name of the dynamic property. The name MUST NOT collide with

the names of other custom aggregates of the same model element.

The value of the annotation is a string with the qualified name of a primitive type or type definition in
scope that specifies the type returned by the custom aggregate.

If the custom aggregate is associated with a structured type, the value of the Qualifier attribute MAY

be identical to the name of a declared property of the structured type. In this case, the value of the

annotation MUST have the same value as the Type attribute of the declared property. This is typically

done when the custom aggregate is used as a default aggregate for that property. In this case, the name

refers to the custom aggregate within an aggregate expression without a with clause, and to the

property in all other cases.

If the custom aggregate is associated with an entity container, the value of the Qualifier attribute

MUST NOT collide with the names of any entity sets defined in the entity container.

Example 38: Sales forecasts are modeled as a custom aggregate of the Sales entity type because it belongs there.

For the budget, there is no appropriate structured type, so it is modeled as a custom aggregate of the SalesData

entity container.

<Annotations Target="SalesModel.Sales">

 <Annotation Term="Aggregation.CustomAggregate" Qualifier="Forecast"

 String="Edm.Decimal" />

</Annotations>

<Annotations Target="SalesModel.SalesData">

 <Annotation Term="Aggregation.CustomAggregate" Qualifier="Budget"

 String="Edm.Decimal" />

</Annotations>

These custom aggregates can be used in the aggregate transformation:

GET ~/Sales?$apply=groupby((Time/Month),aggregate(Forecast))

and:

GET ~/$crossjoin(Time)?$apply=groupby((Time/Year),aggregate(Budget))

6.2.4 Context-Defining Properties

Sometimes the value of a property or custom aggregate is only well-defined within the context given by
values of other properties, e.g. a postal code together with its country, or a monetary amount together
with its currency unit. These context-defining properties can be listed with the term

ContextDefiningProperties whose type is a collection of property paths.

If present, the context-defining properties SHOULD be used as grouping properties when aggregating the
annotated property or custom aggregate, or alternatively be restricted to a single value by a pre-filter

operation. Services MAY respond with 400 Bad Request if the context-defining properties are not

sufficiently specified for calculating a meaningful aggregate value.

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 32 of 50

6.2.5 Example

Example 39: This simplified Sales entity type has a single aggregatable property Amount whose context is defined

by the Code property of the related Currency, and a custom aggregate Forecast with the same context. The Code

property of Currency is groupable. All other properties are neither groupable nor aggregatable.

<EntityType Name="Currency">

 <Key>

 <PropertyRef Name="Code" />

 </Key>

 <Property Name="Code" Type="Edm.String">

 <Annotation Term="Aggregation.Groupable" />

 </Property>

 <Property Name="Name" Type="Edm.String">

 <Annotation Term="Core.IsLanguageDependent" />

 </Property>

</EntityType>

<EntityType Name="Sales">

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Edm.String" Nullable="false" />

 <Property Name="Amount" Type="Edm.Decimal" Scale="variable">

 <Annotation Term="Aggregation.Aggregateable" />

 <Annotation Term="Aggregation.ContextDefiningProperties">

 <Collection>

 <PropertyPath>Currency/Code</PropertyPath>

 </Collection>

 </Annotation>

 </Property>

 <NavigationProperty Name="Currency" Type="SalesModel.Currency"

 Nullable="false">

 <Annotation Term="Aggregation.Groupable" />

 </NavigationProperty>

 <Annotation Term="Aggregation.CustomAggregate" Qualifier="Forecast"

 String="Edm.Decimal">

 <Annotation Term="Aggregation.ContextDefiningProperties">

 <Collection>

 <PropertyPath>Currency/Code</PropertyPath>

 </Collection>

 </Annotation>

 </Annotation>

</EntityType>

<EntityContainer Name="SalesData">

 <Annotation Term="Aggregation.ApplySupported">

 <Record>

 <PropertyValue Property="PropertyRestrictions" Bool="true" />

 </Record>

 </Annotation>

 <EntitySet Name="Sales" EntityType="SalesModel.Sales" />

 <EntitySet Name="Currencies" EntityType="SalesModel.Currency" />

</EntityContainer>

6.3 Hierarchies

A hierarchy is an arrangement of groupable properties whose values are represented as being “above”,
“below”, or “at the same level as” one another. A hierarchy can be leveled or recursive.

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 33 of 50

6.3.1 Leveled Hierarchy

A leveled hierarchy has a fixed number of levels each of which is represented by a groupable property.
The values of a lower-level property depend on the property value of the level above.

A leveled hierarchy of an entity type is described with the term LeveledHierarchy that lists the

properties used to form the hierarchy.

The order of the collection is significant: it lists the properties representing the levels, starting with the root
level (coarsest granularity) down to the lowest level of the hierarchy.

The term LeveledHierarchy can only be applied to entity types, and the applying Annotation

element MUST specify the Qualifier attribute. The value of the Qualifier attribute can be used to

reference the hierarchy in grouping with rollup.

6.3.2 Recursive Hierarchy

A recursive hierarchy organizes the values of a single groupable property as nodes of a tree structure.
This structure does not need to be as uniform as a leveled hierarchy. It is described by a complex term

RecursiveHierarchy with the properties:

 The NodeProperty contains the path to the identifier of the node.

 The ParentNavigationProperty allows navigation to the entity representing the parent node.

 The optional DistanceFromRootProperty contains the path to a property that contains the

number of edges between the node and the root node.

 The optional IsLeafProperty contains the path to a Boolean property that indicates whether

the node is a leaf of the hierarchy.

The term RecursiveHierarchy can only be applied to entity types, and the applying Annotation

element MUST specify the Qualifier attribute. The value of the Qualifier attribute can be used to

reference the hierarchy in Hierarchy Filter Functions.

6.3.2.1 Hierarchy Filter Functions

For testing the position of a given entity instance in a recursive hierarchy annotated to the entity’s type,

the Aggregation vocabulary defines functions that can be applied to any entity in $filter expressions:

 isroot returns true if and only if the value of the node property of the specified hierarchy is the

root of the hierarchy,

 isdescendant returns true if and only if the value of the node property of the specified hierarchy

is a descendant of the given parent node with a distance of less than or equal to the optionally
specified maximum distance,

 isancestor returns true if and only if the value of the node property of the specified hierarchy is

an ancestor of the given child node with a distance of less than or equal to the optionally specified
maximum distance,

 issibling returns true if and only if the value of the node property of the specified hierarchy

has the same parent node as the specified node,

 isleaf returns true if and only if the value of the node property of the specified hierarchy has no

descendants.

6.3.3 Examples

Example 40: leveled hierarchies for products and time, and a recursive hierarchy for the sales organizations

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx"

 Version="4.0">

 <edmx:Reference Uri="http://docs.oasis-open.org/odata/odata-data-aggregation-

ext/v4.0/cs01/vocabularies/Org.OData.Aggregation.V1.xml">

 <edmx:Include Alias="Aggregation"

 Namespace="Org.OData.Aggregation.V1" />

 </edmx:Reference>

http://docs.oasis-open.org/odata/ns/edmx

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 34 of 50

 <edmx:DataServices>

 <Schema xmlns="http://docs.oasis-open.org/odata/ns/edm"

 Alias="SalesModel" Namespace="org.example.odata.salesservice">

 <Annotations Target="SalesModel.Product">

 <Annotation Term="Aggregation.LeveledHierarchy"

 Qualifier="ProductHierarchy">

 <Collection>

 <PropertyPath>Category/Name</PropertyPath>

 <PropertyPath>Name</PropertyPath>

 </Collection>

 </Annotation>

 </Annotations>

 <Annotations Target="SalesModel.Time">

 <Annotation Term="Aggregation.LeveledHierarchy"

 Qualifier="TimeHierarchy">

 <Collection>

 <PropertyPath>Year</PropertyPath>

 <PropertyPath>Quarter</PropertyPath>

 <PropertyPath>Month</PropertyPath>

 </Collection>

 </Annotation>

 </Annotations>

 <Annotations Target="SalesModel.SalesOrganization">

 <Annotation Term="Aggregation.RecursiveHierarchy"

 Qualifier="SalesOrgHierarchy">

 <Record>

 <PropertyValue Property="NodeProperty"

 PropertyPath="ID" />

 <PropertyValue Property="ParentNodeProperty"

 PropertyPath="Superordinate/ID" />

 </Record>

 </Annotation>

 </Annotations>

 </Schema>

 </edmx:DataServices>

</edmx:Edmx>

The recursive hierarchy SalesOrgHierarchy can be used in functions with the $filter system query option.

Example 41: requesting all organizations below EMEA

GET ~/SalesOrganizations?

 $filter=

 $it/Aggregation.isdescendant(Hierarchy='SalesOrgHierarchy',Node='EMEA')

results in

{

 "@odata.context": "$metadata#SalesOrganizations",

 "value": [

 { "ID": "EMEA Central", "Name": "EMEA Central" },

 { "ID": "Sales Netherland", "Name": "Sales Netherland" },

 { "ID": "Sales Germany", "Name": "Sales Germany" },

 { "ID": "EMEA South", "Name": "EMEA South" },

 ...

 { "ID": "EMEA North", "Name": "EMEA North" },

 ...

]

}

Example 42: requesting just those organizations directly below EMEA

http://docs.oasis-open.org/odata/ns/edm

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 35 of 50

GET SalesOrganizations?$filter=

 $it/Aggregation.isdescendant(Hierarchy='SalesOrgHierarchy',

 Node='EMEA',MaxDistance=1)

results in

{

 "@odata.context": "$metadata#SalesOrganizations",

 "value": [

 { "ID": "EMEA Central", "Name": "EMEA Central" },

 { "ID": "EMEA South", "Name": "EMEA South" },

 { "ID": "EMEA North", "Name": "EMEA North" },

 ...

]

}

Example 43: just the lowest-level organizations

GET SalesOrganizations?$filter=

 $it/Aggregation.isleaf(Hierarchy='SalesOrgHierarchy')

results in

{

 "@odata.context": "$metadata#SalesOrganizations",

"value": [

 { "ID": "Sales Office London", "Name": "Sales Office London" },

 { "ID": "Sales Office New York", "Name": "Sales Office New York" },

 ...

]

}

Example 44: the lowest-level organizations including their superordinate's ID

GET SalesOrganizations?$filter=

 $it/Aggregation.isleaf(Hierarchy='SalesOrgHierarchy')

 &$expand=Superordinate($select=ID)

results in

{

 "@odata.context": "$metadata#SalesOrganizations(*,Superordinate(ID))",

 "value": [

 { "ID": "Sales Office London", "Name": "Sales Office London",

 "Superordinate: { "ID": "EMEA United Kingdom" } },

 { "ID": "Sales Office New York", "Name": "Sales Office New York",

 "Superordinate: { "ID": "US East" } },

 ...

]

}

Example 45: retrieving the sales IDs involving sales organizations from EMEA can be requested by

GET Sales?$select=ID&$filter=

 SalesOrganization/Aggregation.isdescendant(Hierarchy='SalesOrgHierarchy',

 Node='EMEA')

results in

{

 "@odata.context": "$metadata#Sales(ID)",

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 36 of 50

 "value": [

 { "ID": 6 },

 { "ID": 7 },

 { "ID": 8 }

]

}

6.4 Actions and Functions on Aggregated Entities

Bound actions and functions may or may not be applicable to aggregated entities. By default such
bindings are not applicable to aggregated entities. Actions or functions annotated with the term

AvailableOnAggregates are applicable to (a subset of the) aggregated entities under specific

conditions:

 The RequiredProperties collection lists all properties that must be available in the

aggregated entities; otherwise, the annotated function or action will be inapplicable.

Example 46: assume the product is an implicit input for a function bindable to Sales, then aggregating away the
product makes this function inapplicable.

Calculating a set of aggregated entities and invoking an action on them cannot be accomplished with a
single request, because the action URL cannot be constructed by the client. It is also impossible to
construct a URL that calculates a single aggregated entity and applies a function or action on it.
Consequently, applicable bound actions or functions on a single aggregated entity, or bound actions on a
collection of aggregated entities MUST be advertised in the response to make them available to clients. A
client is then able to request the aggregated entities in a first request and invoke the action or function in
a follow-up request using the advertised target URL.

Example 47: full representation of an action applicable to a collection of aggregated entities, and an action that is

applicable to one of the entities in the collection. The string <properties in $apply> is a stand-in for the list of

properties describing the shape of the result set

{

"@odata.context": "$metadata#Sales(<properties in $apply>)",

"@odata.readLink": "http://.../aggregated-stuff2143248437259843",

"#Model.ColAction": {

 "title": "Do something on this collection",

 "target": "http://.../aggregated-stuff2143248437259843/Model.ColAction"

 },

"value": [

 {

 "@odata.id": "aggregated-stuff2143248437259843-1",

 "#Model.SingleAction": {

 "title": "Do something on this entity",

 "target":

 "http://.../aggregated-stuff2143248437259843-1/Model.SingleAction"

 },

 ...

 },

 ...

]

}

Services advertising the availability of functions or actions via the term AvailableOnAggregates

MUST provide read links or edit links for aggregated entities, see section 4.

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 37 of 50

7 Examples
The following examples show some common aggregation-related questions that can be answered by
combining the transformations defined in chapter 3.

7.1 Distinct Values

Grouping without specifying a set transformation returns the distinct combination of the grouping
properties.

Example 48:

GET ~/Customers?$apply=groupby((Name))

results in

{

 "@odata.context": "$metadata#Customers(Name)",

 "value": [

 { "@odata.id": null, "Name": "Luc" },

 { "@odata.id": null, "Name": "Joe" },

 { "@odata.id": null, "Name": "Sue" }

]

}

Note that "Sue" appears only once although the customer base contains two different Sues.

Aggregation is also possible across related entities.

Example 49: customers that bought something

GET ~/Sales?$apply=groupby((Customer/Name))

results in

{

 "@odata.context": "$metadata#Sales(Customer(Name))",

 "value": [

 { "@odata.id": null, "Customer": { "Name": "Joe" } },

 { "@odata.id": null, "Customer": { "Name": "Sue" } }

]

}

The result has the same structure as a standard OData request that expands the navigation properties and selects

the data properties specified in groupby and aggregate.

GET ~/Sales?$expand=Customer($select=Name)

Note that "Luc" does not appear in the aggregated result as he hasn’t bought anything and therefore there are no
sales entities that refer/navigate to Luc.

However, even though both Sues bought products, only one "Sue" appears in the aggregate result. Including
properties that guarantee the right level of uniqueness in the grouping can repair that.

Example 50:

GET ~/Sales?$apply=groupby((Customer/Name,Customer/ID))

results in

{

 "@odata.context": "$metadata#Sales(Customer(Name,ID))",

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 38 of 50

 "value": [

 { "@odata.id": null, "Customer": { "Name": "Joe", "ID": "C1" } },

 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C2" } },

 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C3" } }

]

}

This could also have been formulated as

GET ~/Sales?$apply=groupby((Customer))

 &$expand=Customer($select=Name,ID)

Grouping by a navigation property adds the deferred representation of the navigation property to the
result structure, which then can be expanded and projected partially away using the standard query

options $expand and $select.

Note: the typical representation of a deferred navigation property is a URL “relative” to the source entity,

e.g. ~/Sales(1)/Customer. This has the benefit that this URL doesn’t change if the sales entity would

be associated to a different customer. For aggregated entities this would actually be a drawback, so the

representation MUST be the canonical URL of the target entity, i.e. ~/Customers('C1') for the first

entity in the above result.

Example 51: the first question in the motivating example in section 2.4, which customers bought which products, can
now be expressed as

GET ~Sales?$apply=groupby((Customer/Name,Customer/ID,Product/Name))

and results in

{

 "@odata.context": "$metadata#Sales(Customer(Name,ID),Product(Name))",

 "value": [

 { "@odata.id": null, "Customer": { "Name": "Joe", "ID": "C1" },

 "Product": { "Name": "Coffee"} },

 { "@odata.id": null, "Customer": { "Name": "Joe", "ID": "C1" },

 "Product": { "Name": "Paper" } },

 { "@odata.id": null, "Customer": { "Name": "Joe", "ID": "C1" },

 "Product: { "Name: "Sugar" } },

 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C2" },

 "Product: { "Name": "Coffee"} },

 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C2" },

 "Product": { "Name": "Paper" } },

 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C3" },

 "Product": { "Name": "Paper" } },

 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C3" },

 "Product": { "Name": "Sugar" } }

]

}

7.2 Aggregation Methods

The client may specify one of the predefined aggregation methods min, max, sum, average, and

countdistinct, or a custom aggregation method, to aggregate an aggregatable property. Expressions

defining an aggregate method MUST specify an alias. The aggregated values are returned in a dynamic
property whose name is determined by the alias.

Example 52:

GET ~/Products?$apply=groupby((Name),

 aggregate(Sales/Amount with sum as Total))

results in

{

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 39 of 50

 "@odata.context": "$metadata#Products(Name,Sales(Total))",

 "value": [

 { "@odata.id": null, "Name": "Coffee", "Sales": [{ "Total": 12 }] },

 { "@odata.id": null, "Name": "Paper", "Sales": [{ "Total": 8 }] },

 { "@odata.id": null, "Name": "Pencil", "Sales": [{ "Total": null }] },

 { "@odata.id": null, "Name": "Sugar", "Sales": [{ "Total": 4 }] }

]

}

Note that the base set of the request is Products, so there is a result item for product Pencil even though there

are no sales item. As aggregate returns exactly one result item even if there are no items to be aggregated, the

Sales navigation property’s value is an array with one element representing the sum over no input values, which is

null.

Example 53: careful observers will notice that the above amounts have been aggregated across currencies, which is
semantically wrong. Yet it is the correct response to the question asked, so be careful what you ask for. The
semantically meaningful question

GET ~/Products?$apply=groupby((Name,Sales/Currency/Code),

 aggregate(Sales/Amount with sum as Total))

results in

{

 "@odata.context": "$metadata#Products(Name,Sales(Total,Currency(Code)))",

 "value": [

 { "@odata.id": null, "Name": "Coffee",

 "Sales": [{ "Total": 12, "Currency": { "Code": "USD" } }] },

 { "@odata.id": null, "Name: "Paper",

 "Sales": [{ "Total": 3, "Currency": { "Code": "EUR" } },

 { "Total": 5, "Currency": { "Code": "USD" } }] },

 { "@odata.id": null, "Name: "Pencil",

 "Sales": [] },

 { "@odata.id": null, "Name: "Sugar",

 "Sales": [{ "Total": 2, "Currency": { "Code": "EUR" } },

 { "Total": 2, "Currency": { "Code": "USD" } }] }

]

}

Note that navigation properties are "expanded" in a left-outer-join fashion, starting from the target of the
aggregation request, before grouping the entities for aggregation. Afterwards the results are “folded back”
to match the cardinality of the navigation properties.

Example 54:

GET ~/Customers?$apply=groupby((Country,Sales/Product/Name))

returns the different products sold per country:

{

 "@odata.context": "$metadata#Customers(Country,Sales(Product(Name)))",

 "value": [

 { "@odata.id": null, "Country": "Netherlands",

 "Sales": [{ "Product": { "Name": "Paper" },

 { "Product": { "Name": "Sugar" }] },

 { "@odata.id": null, "Country": "USA",

 "Sales": [{ "Product": { "Name": "Coffee" },

 { "Product": { "Name": "Paper" },

 { "Product": { "Name": "Sugar" }] }

]

}

Example 55:

GET ~/Sales?$apply=groupby((Customer/Country),

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 40 of 50

 aggregate(Amount with average as AverageAmount))

results in

{

 "@odata.context": "$metadata#Sales(Customer(Country),AverageAmount)",

 "value": [

 { "@odata.id": null, "Customer": { "Country": "Netherlands" },

 "AverageAmount": 1.6666667 },

 { "@odata.id": null, "Customer": { "Country": "USA" },

 "AverageAmount": 3.8 }

]

}

If the example model would contain a list of hobbies per customer, with Hobbies a collection of strings,
the number of different hobbies across the customer base could be requested. A navigation property

followed by a /$count segment is a valid expression in the context that declares the navigation property,

so the result property is placed in the same context as the navigation property.

Example 56:

GET ~/Products?$apply=groupby((Name),aggregate(Sales/$count as SalesCount))

results in

{

 "@odata.context": "$metadata#Products(Name,SalesCount)",

 "value": [

 { "@odata.id": null, "Name": "Coffee", "SalesCount": 2 },

 { "@odata.id": null, "Name": "Paper", "SalesCount": 4 },

 { "@odata.id": null, "Name": "Pencil", "SalesCount": 0 },

 { "@odata.id": null, "Name": "Sugar", "SalesCount": 2 }

]

}

Note that this differs from the placement of an aggregated property in a related entity: the aggregated
property has the same navigation path as the original value.

Example 57: the result properties for Sales/$count and Sales(Amount…) are placed differently

GET ~/Products?$apply=groupby((Name),aggregate(Sales/$count as SalesCount,

 Sales(Amount with sum as TotalAmount)))

results in

{

 "@odata.context": "$metadata#Products(Name,SalesCount,Sales(TotalAmount))",

 "value": [

 { "@odata.id": null, "Name": "Coffee", "SalesCount": 2,

 "Sales": [{ "TotalAmount": 12 }] },

 { "@odata.id": null, "Name": "Paper", "SalesCount": 4,

 "Sales": [{ "TotalAmount": 8 }] },

 { "@odata.id": null, "Name": "Pencil", "SalesCount": 0,

 "Sales": [{ "TotalAmount": null }] },

 { "@odata.id": null, "Name": "Sugar", "SalesCount": 2,

 "Sales": [{ "TotalAmount": 4 }] }

]

}

To place the number of instances in a group next to other aggregated values, the virtual property $count

can be used:

Example 58: the result properties for Sales/$count and Sales/Amount are placed differently

GET ~/Products?$apply=groupby((Name),aggregate(Sales($count as SalesCount),

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 41 of 50

 Sales(Amount with sum as TotalAmount)))

results in

{

 "@odata.context": "$metadata#Products(Name,Sales(SalesCount,TotalAmount))",

 "value": [

 { "@odata.id": null, "Name": "Coffee",

 "Sales": [{ "SalesCount": 2, "TotalAmount": 12 }] },

 { "@odata.id": null, "Name": "Paper",

 "Sales": [{ "SalesCount": 4, "TotalAmount": 8 }] },

 { "@odata.id": null, "Name": "Pencil",

 "Sales": [{ "SalesCount": 0, "TotalAmount": null }] },

 { "@odata.id": null, "Name": "Sugar",

 "Sales": [{ "SalesCount": 2, "TotalAmount": 4 }] }

]

}

7.3 Custom Aggregates

Custom aggregates are defined through the CustomAggregate annotation. They can be associated with

either an entity type or an entity container.

A custom aggregate can be used by specifying the name of the custom aggregate in the aggregate

clause.

Example 59:

GET ~/Sales?$apply=groupby((Customer/Country),

 aggregate(Amount with sum as Actual,Forecast))

results in

{

 "@odata.context": "$metadata#Sales(Customer(Country),Actual,Forecast))",

"value": [

 { "@odata.id": null, "Customer": { "Country": "Netherlands" },

 "Actual": 5, "Forecast": 4 },

 { "@odata.id": null, "Customer": { "Country": "USA" },

 "Actual": 19, "Forecast": 21 }

]

}

The introduced dynamic properties MUST always be in the same set as the original property.

Example 60:

GET ~/Products?$apply=groupby((Name),

 aggregate(Sales(Amount with sum as Actual),

 Sales/Forecast))

results in

{

 "@odata.context": "$metadata#Products(Name,Sales(Actual,Forecast))",

 "value": [

 { "@odata.id":null,"Name":"Coffee","Sales":[{"Actual":12,"Forecast":6}] },

 { "@odata.id":null,"Name":"Paper", "Sales":[{"Actual": 8,"Forecast":2}] },

 { "@odata.id":null,"Name":"Pencil","Sales":[] },

 { "@odata.id":null,"Name":"Sugar", "Sales":[{"Actual": 4,"Forecast":7}] }

]

}

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 42 of 50

When associated with an entity type a custom aggregate MAY have the same name as a property of the
entity with the same type as the type returned by the custom aggregate. This is typically done when the
aggregate is used as a default aggregate for that property.

Example 61 A custom aggregate can be defined with the same name as a property of the same type in order to
define a default aggregate for that property.

GET ~/Sales?$apply=groupby((Customer/Country),aggregate(Amount))

results in

{

 "@odata.context": "$metadata#Sales(Customer(Country),Amount)",

 "value": [

 { "@odata.id":null, "Customer":{ "Country":"Netherlands" }, "Amount": 5 },

 { "@odata.id":null, "Customer":{ "Country":"USA" }, "Amount":19 }

]

}

7.4 Aliasing

A property can be aggregated in multiple ways, each with a different alias.

Example 62:

GET ~/Sales?$apply=groupby((Customer/Country),

 aggregate(Amount with sum as Total,

 Amount with average as AvgAmt))

results in

{

 "@odata.context": "$metadata#Sales(Customer(Country),Total,AvgAmt))",

"value": [

 { "@odata.id": null, "Customer": { "Country": "Netherlands" },

 "Total": 5, "AvgAmt": 1.6666667 },

 { "@odata.id": null, "Customer": { "Country": "USA" },

 "Total": 19, "AvgAmt": 3.8 }

]

}

The introduced dynamic properties MUST always be in the same set as the original property.

Example 63:

GET ~/Products?$apply=groupby((Name),

 aggregate(Sales(Amount with sum as Total),

 Sales(Amount with average as AvgAmt)))

results in

{

 "@odata.context": "$metadata#Products(Name,Sales(Total,AvgAmt))",

 "value": [

 {"@odata.id":null,"Name":"Coffee","Sales":[{"Total": 12,"AvgAmt": 6}]},

 {"@odata.id":null,"Name":"Paper", "Sales":[{"Total": 8,"AvgAmt": 2}]},

 {"@odata.id":null,"Name":"Pencil","Sales":[{"Total":null,"AvgAmt":null}]},

 {"@odata.id":null,"Name":"Sugar", "Sales":[{"Total": 4,"AvgAmt": 2}]}

]

}

There is no hard distinction between groupable and aggregatable properties: the same property can be
aggregated and used to group the aggregated results.

Example 64:

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 43 of 50

GET ~/Sales?$apply=groupby((Amount),aggregate(Amount with sum as Total))

will return all distinct amounts appearing in sales orders and how much money was made with deals of this amount

{

 "@odata.context": "$metadata#Sales(Amount,Total)",

 "value": [

 { "@odata.id": null, "Amount": 1, "Total": 2 },

 { "@odata.id": null, "Amount": 2, "Total": 6 },

 { "@odata.id": null, "Amount": 4, "Total": 8 },

 { "@odata.id": null, "Amount": 8, "Total": 8 }

]

}

7.5 Combining Transformations per Group

Example 65: to get the best-selling product per country with sub-totals for every country, the partial results of a

transformation sequence and a groupby transformation are concatenated:

GET ~/Sales?$apply=concat(

 groupby((Customer/Country,Product/Name,Currency/Code),

 aggregate(Amount with sum as Total))

 /groupby((Customer/Country,Currency/Code),

 topcount(1,Total)),

 groupby((Customer/Country,Currency/Code),

 aggregate(Amount with sum as Total)))

results in

{

 "@odata.context":

 "$metadata#Sales(Customer(Country),Product(Name),Total,Currency(Code))",

 "value": [

 { "@odata.id": null, "Customer": { "Country": "USA" },

 "Product": { "Name": "Coffee" },

 "Total": 12, "Currency": { "Code": "USD" }

 },

 { "@odata.id": null, "Customer": { "Country": "Netherlands" },

 "Product": { "Name": "Paper" },

 "Total": 3, "Currency": { "Code": "EUR" }

 },

 { "@odata.id": null, "Customer": { "Country": "USA" },

 "Total": 19, "Currency": { "Code": "USD" }

 },

 { "@odata.id": null, "Customer": { "Country": "Netherlands" },

 "Total": 5, "Currency": { "Code": "EUR" }

 }

]

}

Example 66: transformation sequences are also useful inside groupby: To get the aggregated amount by only

considering the top two sales amounts per product and county:

GET ~/Sales?$apply=groupby((Customer/Country,Product/Name,Currency/Code),

 topcount(2,Amount)/aggregate(Amount with sum as Total))

results in

{

 "@odata.context":

 "$metadata#Sales(Customer(Country),Product(Name),Total,Currency(Code))",

 "value": [

 { "@odata.id": null, "Customer": { "Country": "Netherlands" },

 "Product": { "Name": "Paper" },

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 44 of 50

 "Total": 3, "Currency": { "Code": "EUR" }

 },

 { "@odata.id": null, "Customer": { "Country": "Netherlands" },

 "Product": { "Name": "Sugar" },

 "Total": 2, "Currency": { "Code": "EUR" }

 },

 { "@odata.id": null, "Customer": { "Country": "USA" },

 "Product": { "Name": "Coffee" },

 "Total": 12, "Currency": { "Code": "USD" }

 },

 { "@odata.id": null, "Customer": { "Country": "USA" },

 "Product": { "Name": "Paper" },

 "Total": 5, "Currency": { "Code": "USD" }

 }

]

}

7.6 Model Functions as Set Transformations

Example 67: as a variation of the example shown in the previous section, a query for returning the best-selling
product per country and the total amount of the remaining products can be formulated with the help of a model
function.

For this purpose, the model includes a definition of a TopCountAndBalance function that accepts the count for the

top entities in the given input set not to be considered for the balance:

<edm:Function Name="TopCountAndBalance"

 ReturnType="Collection(Edm.EntityType)"

 IsBound="true">

 <edm:Parameter Name="EntityCollection"

 Type="Collection(Edm.EntityType)"/>

 <edm:Parameter Name="Count" Type="Edm.Int16"/>

 <edm:Parameter Name="Property" Type="Edm.String"/>

</edm:Function>

The function takes the name of a numeric property as a parameter, retains those entities that topcount also would

retain, and replaces the remaining entities by a single aggregated entity, where only the numeric property has a
defined value being the aggregated value over those remaining entities:

GET ~/Sales?$apply=groupby((Customer/Country,Product/Name),

 aggregate(Amount with sum as Total))

 /groupby((Customer/Country),

 Self.TopCountAndBalance(Count=1,Property='Total'))

results in

{

 "@odata.context": "$metadata#Sales(Customer(Country),Product(Name),Total)",

 "value": [

 { "@odata.id": null, "Customer": { "Country": "Netherlands" },

 "Product": { "Name": "Paper" }, "Total": 3 },

 { "@odata.id": null, "Customer": { "Country": "Netherlands" },

 "Product": { "Name": "**Other**" }, "Total": 2 },

 { "@odata.id": null, "Customer": { "Country": "USA" },

 "Product": { "Name": "Coffee" }, "Total": 12 },

 { "@odata.id": null, "Customer": { "Country": "USA" },

 "Product": { "Name": "**Other**" }, "Total": 5 }

]

}

Note that these two entities get their values for the Country property from the groupby transformation,

which ensures that they contain all grouping properties with the correct values.

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 45 of 50

7.7 Controlling Aggregation per Rollup Level

Consumers may specify a different aggregation method per level for every property passed to rollup as

a hierarchy level below the root level.

Example 68: get the average of the overall amount by month per product.

Using a transformation sequence:

GET ~/Sales?$apply=groupby((Product/ID,Product/Name,Time/Month),

 aggregate(Amount with sum) as Total))

 /groupby((Product/ID,Product/Name),

 aggregate(Total with average as AverageAmount))

Using from:

GET ~/Sales?$apply=groupby((Product/ID,Product/Name),

 aggregate(Amount with sum as MonthlyAverage

 from Time/Month with average))

Example 69: for an aggregate entity set listing the total sales amounts per customer and country, the rollup shall
produce additional instances for the average total sales amount of customers per country and the average of that
average (which is a bit boring because the example data doesn’t have two countries with the same currency)

GET ~/Sales?$apply=groupby((rollup($all,Customer/Country,Customer/ID),

 Currency/Code),

 aggregate(Amount with sum as CustomerCountryAverage

 from Customer/ID with average

 from Customer/Country with average))

results in

{

 "@odata.context":

"$metadata#Sales(Customer(Country,ID),CustomerCountryAverage,Currency(Code))",

 "value": [

 { "@odata.id": null, "Customer": { "Country": "USA", "ID": "C1" },

 "CustomerCountryAverage": 7, "Currency": { "Code": "USD" }

 },

 { "@odata.id": null, "Customer": { "Country": "USA", "ID": "C2" },

 "CustomerCountryAverage": 12, "Currency": { "Code": "USD" }

 },

 { "@odata.id": null, "Customer": { "Country": "USA" },

 "CustomerCountryAverage": 9.5, "Currency": { "Code": "USD" }

 },

 { "@odata.id": null, "Customer": { "Country": "Netherlands", "ID": "C3" },

 "CustomerCountryAverage": 5, "Currency": { "Code": "EUR" }

 },

 { "@odata.id": null, "Customer": { "Country": "Netherlands" },

 "CustomerCountryAverage": 5, "Currency": { "Code": "EUR" }

 },

 { "@odata.id": null,

 "CustomerCountryAverage": 9.5, "Currency": { "Code": "USD" }

 },

 { "@odata.id": null,

 "CustomerCountryAverage": 5, "Currency": { "Code": "EUR" }

 }

]

}

7.8 Transformation Sequences

Applying aggregation first covers the most prominent use cases. The slightly more sophisticated question
"how much money is earned with small sales" requires filtering the base set before applying the

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 46 of 50

aggregation. To enable this type of question several transformations can be specified in $apply in the

order they are to be applied, separated by a forward slash.

Example 70:

GET ~/Sales?$apply=filter(Amount le 1)/aggregate(Amount with sum as Total)

means "filter first, then aggregate", and results in

{

 "@odata.context": "$metadata#Sales(Total)",

 "value": [

 { "@odata.id": null, "Total": 2 }

]

}

Using filter within $apply does not preclude using it as a normal system query option.

Example 71:

GET ~/Sales?$apply=filter(Amount le 2)/groupby((Product/Name),

 aggregate(Amount with sum as Total))

 &$filter=Total ge 4

results in

{

 "@odata.context": "$metadata#Sales(Product(Name),Total)",

 "value": [

 { "@odata.id": null, "Total": 4, "Product": { "Name": "Paper" } },

 { "@odata.id": null, "Total": 4, "Product": { "Name": "Sugar" } }

]

}

Example 72: Revisiting the Example 13 in section 3.1.4 for using the from keyword with the aggregate function, the

request

GET ~/Sales?$apply=aggregate(Amount as DailyAverage from Time with average)

could be rewritten in a more procedural way using a transformation sequence returning the same result

GET ~/Sales?$apply=groupby((Time),aggregate(Amount with sum as Total))

 /aggregate(Total with average as DailyAverage)

For further examples, consider another data model containing entity sets for cities, countries and continents and the
obvious associations between them.

Example 73: getting the population per country with

GET ~/Cities?$apply=groupby((Continent/Name,Country/Name),

 aggregate(Population with sum as TotalPopulation))

results in

{

 "@odata.context":

 "$metadata#Cities(Continent(Name),Country(Name),TotalPopulation)",

 "value": [

 { "@odata.id": null, "Continent": { "Name": "Asia" },

 "Country": { "Name": "China" }, "TotalPopulation": 692.580.000 },

 { "@odata.id": null, "Continent": { "Name": "Asia" },

 "Country": { "Name": "India" }, "TotalPopulation": 390.600.000 },

 ...

]

}

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 47 of 50

Example 74: all countries with megacities and their continents

GET ~/Cities?$apply=filter(Population ge 10000000)

 /groupby((Continent/Name,Country/Name),

 aggregate(Population with sum as TotalPopulation))

Example 75: all countries with tens of millions of city dwellers and the continents only for these countries

GET ~/Cities?$apply=groupby((Continent/Name,Country/Name),

 aggregate(Population with sum as CountryPopulation))

 /filter(CountryPopulation ge 10000000)

 /concat(identity,

 groupby((Continent/Name),

 aggregate(CountryPopulation with sum

 as TotalPopulation)))

– OR –

GET ~/Cities?$apply=groupby((Continent/Name,Country/Name),

 aggregate(Population with sum as CountryPopulation))

 /filter(CountryPopulation ge 10000000)

 /groupby((rollup(Continent/Name,Country/Name)),

 aggregate(CountryPopulation with sum

 as TotalPopulation))

Example 76: all countries with tens of millions of city dwellers and all continents with cities independent of their size

GET ~/Cities?$apply=groupby((Continent/Name,Country/Name),

 aggregate(Population with sum as CountryPopulation))

 /concat(filter(CountryPopulation ge 10000000),

 groupby((Continent/Name),

 aggregate(CountryPopulation with sum

 as TotalPopulation)))

Example 77: assuming the data model includes a sales order entity set with related sets for order items and
customers, the base set as well as the related items can be filtered before aggregation

GET ~/SalesOrders?$apply=filter(Status eq 'incomplete')

 /expand(Items,filter(not Shipped))

 /groupby((Customer/Country),

 aggregate(Items/Amount with sum as ItemAmount))

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 48 of 50

8 Conformance
Conforming services MUST follow all rules of this specification for the set transformations and
aggregation methods they support. They MUST implement all set transformations and aggregation
methods they advertise via the Custom Aggregates annotation.

Conforming clients MUST be prepared to consume a model that uses any or all of the constructs defined
in this specification, including custom aggregation methods defined by the service, and MUST ignore any
constructs not defined in this version of the specification.

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 49 of 50

Appendix A. Acknowledgments

The contributions of the OASIS OData Technical Committee members, enumerated in [OData-Protocol],
are gratefully acknowledged.

odata-data-aggregation-ext-v4.0-csprd03 16 July 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 50 of 50

Appendix B. Revision History

Revision Date Editor Changes Made

Working Draft
01

2012-11-12 Ralf Handl Translated contribution into OASIS format

Committee
Specification
Draft 01

2013-07-25 Ralf Handl

Hubert Heijkers

Gerald Krause

Michael Pizzo

Martin Zurmuehl

Switched to pipe-and-filter-style query
language based on composable set
transformations

Fleshed out examples and addressed
numerous editorial and technical issues
processed through the TC

Added Conformance section

Committee
Specification
Draft 02

2014-01-09 Ralf Handl

Hubert Heijkers

Gerald Krause

Michael Pizzo

Martin Zurmuehl

Dynamic properties used all aggregated
values.either via aliases or via custom
aggregates

Refactored annotations

