
[image: image1.png]OASIS)

OBIX Version 1.1

Committee Specification Draft 02
19 December 2013
Specification URIs

This version:

http://docs.oasis-open.org/obix/obix/v1.1/csd02/obix-v1.1-csd02.pdf (Authoritative)
http://docs.oasis-open.org/obix/obix/v1.1/csd02/obix-v1.1-csd02.html
http://docs.oasis-open.org/obix/obix/v1.1/csd02/obix-v1.1-csd02.doc
Previous version:

http://docs.oasis-open.org/obix/obix/v1.1/csprd01/obix-v1.1-csprd01.pdf (Authoritative)
http://docs.oasis-open.org/obix/obix/v1.1/csprd01/obix-v1.1-csprd01.html
http://docs.oasis-open.org/obix/obix/v1.1/csprd01/obix-v1.1-csprd01.doc
Latest version:

http://docs.oasis-open.org/obix/obix/v1.1/obix-v1.1.pdf (Authoritative)
http://docs.oasis-open.org/obix/obix/v1.1/obix-v1.1.html
http://docs.oasis-open.org/obix/obix/v1.1/obix-v1.1.doc
Technical Committee:

OASIS Open Building Information Exchange (oBIX) TC
Chair:

Toby Considine (toby.considine@unc.edu), University of North Carolina at Chapel Hill
Editor:

Craig Gemmill (craig.gemmill@tridium.com), Tridium, Inc.
Additional artifacts:

This prose specification is one component of a Work Product that also includes:
· XML schemas: http://docs.oasis-open.org/obix/obix/v1.1/csd02/schemas/
Related work:

This specification replaces or supersedes:
· oBIX 1.0. 5 December 2006. OASIS Committee Specification 01. https://www.oasis-open.org/committees/download.php/21812/obix-1.0-cs-01.pdf.

This specification is related to:
· Bindings for OBIX: REST Bindings Version 1.0. Edited by Craig Gemmill and Markus Jung. Latest version. http://docs.oasis-open.org/obix/obix-rest/v1.0/obix-rest-v1.0.html.

· Bindings for OBIX: SOAP Bindings Version 1.0. Edited by Markus Jung. Latest version. http://docs.oasis-open.org/obix/obix-soap/v1.0/obix-soap-v1.0.html.

· Encodings for OBIX: Common Encodings Version 1.0. Edited by Marcus Jung. Latest version. http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-encodings-v1.0.html.
· Bindings for OBIX: Web Socket Bindings Version 1.0. Edited by Matthias Hub. Latest version. http://docs.oasis-open.org/obix/obix-websocket/v1.0/obix-websocket-v1.0.html.
Abstract:

This document specifies an object model used for machine-to-machine (M2M) communication. Companion documents will specify the protocol bindings and encodings for specific cases.
Status:

This document was last revised or approved by the OASIS Open Building Information Exchange (oBIX) TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/obix/.
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/obix/ipr.php).
Citation format:

When referencing this specification the following citation format should be used:
[OBIX-v1.1]
OBIX Version 1.1. Edited by Craig Gemmill. 19 December 2013. OASIS Committee Specification Draft 02. http://docs.oasis-open.org/obix/obix/v1.1/csd02/obix-v1.1-csd02.html. Latest version: http://docs.oasis-open.org/obix/obix/v1.1/obix-v1.1.html.
Notices
Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/policies-guidelines/trademark for above guidance.

Table of Contents
81
Introduction

81.1 Terminology

81.2 Normative References

81.3 Non-Normative References

91.4 Namespace

91.5 Naming Conventions

91.6 Editing Conventions

91.7 Language Conventions

101.8 Architectural Considerations

101.8.1 Information Model

101.8.2 Interactions

101.8.3 Normalization

111.8.4 Foundation

111.9 Changes from Version 1.0

122
Quick Start [non-normative]

143
Architecture

143.1 Object Model

143.2 Encodings

153.3 URIs

153.4 REST

153.5 Contracts

163.6 Extensibility

174
Object Model

174.1 obj

184.1.1 Null

184.1.2 Facets

184.1.3 displayName

194.1.4 display

194.1.5 icon

194.1.6 min

194.1.7 max

194.1.8 precision

204.1.9 range

204.1.10 status

214.1.11 tz

214.1.12 unit

214.1.13 writable

214.1.14 of

214.1.15 in

224.1.16 out

224.2 Core Types

224.2.1 val

244.2.2 list

254.2.3 ref

254.2.4 err

254.2.5 op

254.2.6 feed

265
Lobby

265.1 About

275.2 Batch

285.3 WatchService

285.4 Server Metadata

285.4.1 Models

285.4.2 Encodings

295.4.3 Bindings

295.4.4 Versioning [non-normative]

306
Naming

306.1 Name

306.2 Href

306.3 URI Normalization

316.4 Fragment URIs

327
Contracts

327.1 Contract Terminology

327.2 Contract List

337.3 Is Attribute

337.4 Contract Inheritance

337.4.1 Structure vs Semantics

337.4.2 Overriding Defaults

347.4.3 Attributes and Facets

347.5 Override Rules

347.6 Multiple Inheritance

357.6.1 Flattening

357.6.2 Mixins

367.7 Contract Compatibility

367.8 Lists and Feeds

398
Operations

409
Object Composition

409.1 Containment

409.2 References

409.3 Extents

419.3.1 Inlining Extents

419.4 Alternate Hierarchies

4310
Networking

4310.1 Service Requests

4310.1.1 Read

4310.1.2 Write

4410.1.3 Invoke

4410.1.4 Delete

4410.2 Errors

4510.3 Localization

4611
Core Contract Library

4611.1 Nil

4611.2 Range

4611.3 Weekday

4611.4 Month

4711.5 Units

4912
Watches

4912.1 Client Polled Watches

4912.2 Server Pushed Watches

5012.3 WatchService

5012.4 Watch

5112.4.1 Watch.add

5112.4.2 Watch.remove

5212.4.3 Watch.pollChanges

5212.4.4 Watch.pollRefresh

5212.4.5 Watch.lease

5212.4.6 Watch.delete

5212.5 Watch Depth

5312.6 Feeds

5413
Points

5413.1 Writable Points

5514
History

5514.1 History Object

5614.2 History Queries

5614.2.1 HistoryFilter

5714.2.2 HistoryQueryOut

5714.2.3 HistoryRecord

5714.2.4 History Query Examples

5814.2.5 Compact Histories

6014.3 History Rollups

6014.3.1 HistoryRollupIn

6014.3.2 HistoryRollupOut

6014.3.3 HistoryRollupRecord

6114.3.4 Rollup Calculation

6214.4 History Feeds

6214.5 History Append

6214.5.1 HistoryAppendIn

6214.5.2 HistoryAppendOut

6315
Alarming

6315.1 Alarm States

6315.1.1 Alarm Source

6415.1.2 StatefulAlarm and AckAlarm

6415.2 Alarm Contracts

6415.2.1 Alarm

6415.2.2 StatefulAlarm

6415.2.3 AckAlarm

6515.2.4 PointAlarms

6515.3 AlarmSubject

6515.4 Alarm Feed Example

6716
Security

6716.1 Error Handling

6716.2 Permission-based Degradation

6817
Conformance

6817.1 Conditions for a Conforming OBIX Server

6817.1.1 Lobby

6817.1.2 Bindings

6817.1.3 Encodings

6817.1.4 Contracts

6817.2 Conditions for a Conforming OBIX Client

6917.2.1 Encoding

6917.2.2 Naming

6917.2.3 Contracts

70Appendix A.
Acknowledgments

71Appendix B.
Revision History

Table of Figures

18Figure 4‑1 The OBIX primitive object hierarchy.

Table of Tables

11Table 1-1. Problem spaces for OBIX.

12Table 1-2. Normalization concepts in OBIX.

12Table 1-3. Changes from Version 1.0.

15Table 3-1. Design philosophies and principles for OBIX.

19Table 4-1. Base properties of OBIX Object type.

21Table 4-2. Status enumerations in OBIX.

23Table 4-3. Value Object types.

33Table 7-1. Problems addressed by Contracts.

33Table 7-2. Contract terminology.

34Table 7-3. Explicit and Implicit Contracts.

36Table 7-4. Contract inheritance.

44Table 10-1. Network model for OBIX.

44Table 10-2. OBIX Service Requests.

45Table 10-3. OBIX Error Contracts.

49Table 11-1. OBIX Unit composition.

55Table 13-1. Base Point types.

56Table 14-1. Features of OBIX Histories.

57Table 14-2. Properties of obix:History.

58Table 14-3. Properties of obix:HistoryFilter.

62Table 14-4. Properties of obix:HistoryRollupRecord.

63Table 14-5. Calculation of OBIX History rollup values.

64Table 15-1. Alarm states in OBIX.

65Table 15-2. Alarm lifecycle states in OBIX.

68Table 16-1. Security concepts for OBIX.

1 Introduction
OBIX is designed to provide access to the embedded software systems which sense and control the world around us. Historically, integrating to these systems required custom low level protocols, often custom physical network interfaces. The rapid increase in ubiquitous networking and the availability of powerful microprocessors for low cost embedded devices is now weaving these systems into the very fabric of the Internet. Generically the term M2M for Machine-to-Machine describes the transformation occurring in this space because it opens a new chapter in the development of the Web - machines autonomously communicating with each other. The OBIX specification lays the groundwork for building this M2M Web using standard, enterprise-friendly technologies like XML, HTTP, and URIs.
1.1 Terminology
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC2119.

1.2 Normative References

PNG
W3C Recommendation, “PNG (Portable Network Graphics) Specification”, 1 October 1996. http://www.w3.org/TR/REC-png-multi.html.
RFC2119
Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.

RFC2246
Dierks, T., Allen, C., “Transport Layer Security (TLS) Protocol Version 1.0”, IETF RFC 2246, January 1999. http://www.ietf.org/rfc/rfc2246.txt.
RFC3986
Berners-Lee, T., Fielding, R., Masinter, L., “Uniform Resource Identifier (URI): Generic Syntax”, IETF RFC 3986, January 2005. http://www.ietf.org/rfc/rfc3986.txt.
SI Units
International System of Units (SI), NIST Reference, http://physics.nist.gov/cuu/Units/units.html.
SOA-RM
Reference Model for Service Oriented Architecture 1.0, October 2006. OASIS Standard. http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf.
WS-Calendar
WS-Calendar Version 1.0, 30 July 2011. OASIS Committee Specification, http://docs.oasis-open.org/ws-calendar/ws-calendar/v1.0/ws-calendar-1.0-spec.html.
WSDL
Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., “Web Services Description Language (WSDL), Version 1.1”, W3C Note, 15 March 2001. http://www.w3.org/TR/wsdl.
XLINK
DeRose, S., Maler, E., Orchard, D., Walsh, N. “XML Linking Language (XLink) Version 1.1”, May 2010. http://www.w3.org/TR/xlink11/ .

XPOINTER
DeRose, S., Maler, E., Daniel Jr., R., “XPointer xpointer() Scheme”, December 2002. http://www.w3.org/TR/xptr-xpointer/.

XML Schema
Biron, P.V., Malhotra, A., “XML Schema Part 2: Datatypes Second Edition”, October 2004. http://www.w3.org/TR/xmlschema-2/.
ZoneInfo DB
IANA Time Zone Database, 24 September 2013 (latest version), http://www.iana.org/time-zones.
1.3 Non-Normative References
Casing
Capitalization Styles, Microsoft Developer Network, September, 2013. http://msdn.microsoft.com/en-us/library/x2dbyw72(v=vs.71).aspx.

OBIX REST
Bindings for OBIX: REST Bindings Version 1.0. Edited by Craig Gemmill and Markus Jung. Latest version. http://docs.oasis-open.org/obix/obix-rest/v1.0/obix-rest-v1.0.html.
OBIX SOAP
Bindings for OBIX: SOAP Bindings Version 1.0. Edited by Markus Jung. Latest version. http://docs.oasis-open.org/obix/obix-soap/v1.0/obix-soap-v1.0.html.
OBIX Encodings
Encodings for OBIX: Common Encodings Version 1.0. Edited by Marcus Jung. Latest version. http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-encodings-v1.0.html.
OBIX WebSockets
Bindings for OBIX: Web Socket Bindings Version 1.0. Edited by Matthias Hub. Latest version. http://docs.oasis-open.org/obix/obix-websocket/v1.0/obix-websocket-v1.0.html.
RDDL 2.0
Jonathan Borden, Tim Bray, eds. “Resource Directory Description Language (RDDL) 2.0,” January 2004.
http://www.openhealth.org/RDDL/20040118/rddl-20040118.html.
REST
Fielding, R.T., “Architectural Styles and the Design of Network-based Software Architectures”, Dissertation, University of California at Irvine, 2000. http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
SOAP
Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., Nielsen, H., Karmarkar, A., Lafon, Y., “SOAP Version 1.2 (Second Edition)”, W3C Recommendation 27 April 2007. http://www.w3.org/TR/soap12/.

UML
Unified Modeling Language (UML), Version 2.2, Object Management Group, February, 2009. http://www.omg.org/technology/documents/formal/uml.htm .
XML-ns
W3C Recommendation, “Namespaces in XML”, 14 January 1999. http://www.w3.org/TR/1999/REC-xml-names-19990114/.
1.4 Namespace
If an implementation is using the XML Encoding according to the OBIX Encodings specification document, the XML namespace URI (see XML-ns) that MUST be used is:

http://docs.oasis-open.org/obix/ns/201310

Dereferencing the above URI will produce the Resource Directory Description Language (RDDL 2.0) document that describes this namespace.

1.5 Naming Conventions

Where XML is used, for the names of elements and the names of attributes within XSD files, the names follow the Lower Camel Case convention (see Casing for a description of Camel Case), with all names starting with a lower case letter.

1.6 Editing Conventions

For readability, Element names in tables appear as separate words. In the Schema, they follow the rules as described in Section 1.5.

Terms defined in this specification or used from specific cited references are capitalized; the same term not capitalized has its normal English meaning.

All sections explicitly noted as examples are informational and SHALL NOT be considered normative.

All UML and figures are illustrative and SHALL NOT be considered normative.

1.7 Language Conventions

Although several different encodings may be used for representing OBIX data, the most common is XML. Therefore many of the concepts in OBIX are strongly tied to XML concepts. Data objects are represented in XML by XML documents. It is important to distinguish the usage of the term document in this context from references to this specification document. When “this document” is used, it references this specification document. When “OBIX document” or “XML document” is used, it references an OBIX object, encoded in XML, as per the convention for this (specification) document. When used in the latter context, this could equally be understood to mean an OBIX object encoded in any of the other possible encoding mechanisms.

When expressed in XML, there is a one-to-one-mapping between Objects and elements. Objects are the fundamental abstraction used by the OBIX data model. Elements are how those Objects are expressed in XML syntax. This specification uses the term Object and sub-Object, although one can equivalently substitute the term element and sub-element when referencing the XML representation. The term child is used to describe an Object that is contained by another Object, and is semantically equivalent to the term sub-Object. The two terms are used interchangeably throughout this specification.
1.8 Architectural Considerations

Table 1-1 illustrates the problem space OBIX attempts to address. Each of these concepts is covered in the subsequent sections of the specification as shown.

	Concept
	Solution
	Covered in Sections

	Information Model
	Representing M2M information in a standard syntax – originally XML but expanded to other technologies
	4, 5, 6, 8, 9

	Interactions
	transferring M2M information over a network
	10

	Normalization
	developing standard representations for common M2M features: points, histories, and alarms
	11, 12, 13, 14, 15

	Foundation
	providing a common kernel for new standards
	7, 11

Table 1-1. Problem spaces for OBIX.
1.8.1 Information Model
OBIX defines a common information model to represent diverse M2M systems and an interaction model for their communications. The design philosophy of OBIX is based on a small but extensible data model which maps to a simple fixed syntax. This core model and its syntax are simple enough to capture entirely in one illustration, which is done in Figure 4-1. The object model’s extensibility allows for the definition of new abstractions through a concept called Contracts. Contracts are flexible and powerful enough that they are even used to define the majority of the conformance rules in this specification.

1.8.2 Interactions
Once we have a way to represent M2M information in a common format, the next step is to provide standard mechanisms to transfer it over networks for publication and consumption. OBIX breaks networking into two pieces: an abstract request/response model and a series of protocol bindings which implement that model. In Version 1.1 of OBIX, the two goals are accomplished in separate documents: this core specification defines the core model, while several protocol bindings designed to leverage existing Web Service infrastructureare described in companion documents to this specification.

1.8.3 Normalization

There are a few concepts which have broad applicability in systems which sense and control the physical world. Version 1.1 of OBIX provides a normalized representation for three of these, described in Table 1-2.

	Concept
	Description

	Points
	Representing a single scalar value and its status – typically these map to sensors, actuators, or configuration variables like a setpoint

	Histories
	Modeling and querying of time sampled point data. Typically edge devices collect a time stamped history of point values which can be fed into higher level applications for analysis

	Alarms
	Modeling, routing, and acknowledgment of alarms. Alarms indicate a condition which requires notification of either a user or another application

Table 1-2. Normalization concepts in OBIX.
1.8.4 Foundation

The requirements and vertical problem domains for M2M systems are immensely broad – too broad to cover in one single specification. OBIX is deliberately designed as a fairly low level specification, but with a powerful extension mechanism based on Contracts. The goal of OBIX is to lay the groundwork for a common object model and XML syntax which serves as the foundation for new specifications. It is hoped that a stack of specifications for vertical domains can be built upon OBIX as a common foundation.

1.9 Changes from Version 1.0

Changes to this specification since the initial version 1.0 are listed in Table 1-3 below, along with a brief description.
	Add date, time primitive types and tz Facet to the core object model.

	Add binary encoding – Note this is now part of the Encodings for OBIX document.

	Add support for History Append operation.

	Add HTTP content negotiation – Note this is now part of the OBIX REST document.

	Add the of attribute to the ref element type and specify usage of the is attribute for ref.

	Add metadata inclusion for alternate hierarchies (tagging).

	Add compact history record encoding.

	Add support for alternate history formats.

	Add support for concise encoding of long Contract Lists.

	Add Delete request semantics.

	Clean up references and usage in text, add tables and Table of Tables, capitalization of important words.

	Add conformance clauses.

	Move Lobby earlier in document and add Bindings, Encodings, and Models sections.

Table 1-3. Changes from Version 1.0.
2 Quick Start [non-normative]
This chapter is for those eager to jump right into OBIX in all its angle bracket glory. The best way to begin is to take a simple example that anybody is familiar with – the staid thermostat. Let’s assume we have a very simple thermostat. It has a temperature sensor which reports the current space temperature and it has a setpoint that stores the desired temperature. Let’s assume our thermostat only supports a heating mode, so it has a variable that reports if the furnace should currently be on. Let’s take a look at what our thermostat might look like in OBIX XML:

<obj href="http://myhome/thermostat">

 <real name="spaceTemp" unit="obix:units/fahrenheit" val="67.2"/>

 <real name="setpoint" unit="obix:units/fahrenheit" val="72.0"/>

 <bool name="furnaceOn" val="true"/>

</obj>

The first thing to notice is the Information Model: there are three element types – obj, real, and bool. The root obj element models the entire thermostat. Its href attribute identifies the URI for this OBIX document. The thermostat Object has three child Objects, one for each of the thermostat’s variables. The real Objects store our two floating point values: space temperature and setpoint. The bool Object stores a boolean variable for furnace state. Each sub-element contains a name attribute which defines the role within the parent. Each sub-element also contains a val attribute for the current value. Lastly we see that we have annotated the temperatures with an attribute called unit so we know they are in Fahrenheit, not Celsius (which would be one hot room). The OBIX specification defines several of these annotations which are called Facets.
How did we obtain this Object? The OBIX specification leverages commonly available networking technologies and concepts for defining Interactions between devices. The thermostat implements an OBIX Server, and we can use an OBIX Client to issue a request for the thermostat’s data, by specifying its uri. This concept is well understood in the world of M2M so OBIX requires no new knowledge to implement.

In real life, we wish to represent Normalized information from devices. In most cases sensor and actuator variables (called Points) imply more semantics than a simple scalar value. In the example of our thermostat, in addition to the current space temperature, it also reports the setpoint for desired temperature and whether it is trying to command the furnace on. In other cases such as alarms, it is desirable to standardize a complex data structure. OBIX captures these concepts into Contracts. Contracts allow us to tag Objects with normalized semantics and structure.

Let’s suppose our thermostat’s sensor is reading a value of -412(F? Clearly our thermostat is busted, so it should report a fault condition. Let’s rewrite the XML to include the status Facet and to provide additional semantics using Contracts:

<obj href="http://myhome/thermostat/">

 <!-- spaceTemp point -->

 <real name="spaceTemp" is="obix:Point"

 val="-412.0" status="fault"

 unit="obix:units/fahrenheit"/>

 <!-- setpoint point -->

 <real name="setpoint" is="obix:Point"

 val="72.0"

 unit="obix:units/fahrenheit"/>

 <!-- furnaceOn point -->

 <bool name="furnaceOn" is="obix:Point" val="true"/>

</obj>

Notice that each of our three scalar values are tagged as obix:Points via the is attribute. This is a standard Contract defined by OBIX for representing normalized point information. By implementing these Contracts, clients immediately know to semantically treat these objects as points.

Contracts play a pivotal role in OBIX because they provide a Foundation for building new abstractions upon the core object model. Contracts are just normal objects defined using standard OBIX. In fact, the following sections defining the core OBIX object model are expressed using Contracts. One can see how easily this approach allows for definition of the key parts of this model, or any model that builds upon this model.
3 Architecture

The OBIX architecture is based on the design philosophies and principles in Table 3-1.

	Philosophy
	Usage/Description

	Object Model
	A concise object model used to define all OBIX information

	Encodings
	Sets of rules for representing the object model in certain common formats

	URIs
	Uniform Resource Identifiers are used to identify information within the object model

	REST
	A small set of verbs is used to access objects via their URIs and transfer their state

	Contracts
	A template model for expressing new OBIX “types”

	Extensibility
	Providing for consistent extensibility using only these concepts

Table 3-1. Design philosophies and principles for OBIX.
3.1 Object Model
All information in OBIX is represented using a small, fixed set of primitives. The base abstraction for these primitives is called Object. An Object can be assigned a URI and all Objects can contain other Objects.
3.2 Encodings
A necessary feature of OBIX is a set of simple syntax rules to represent the underlying object model. XML is a widely used language with well-defined and well-understood syntax that maps nicely to the OBIX object model. The rest of this specification will use XML as the example encoding, because it is easily human-readable, and serves to clearly demonstrate the concepts presented. The syntax used is normative. Implementations using an XML encoding MUST conform to this syntax and representation of elements.

When encoding OBIX objects in XML, each of the object types map to one type of element. The Value Objects represent their data value using the val attribute (see Section 4.2.1 for a full description of Value Objects). All other aggregation is simply nesting of elements. A simple example to illustrate this concept is the Brady family from the TV show The Brady Bunch:
<obj href="http://bradybunch/people/Mike-Brady/">
 <obj name="fullName">
 <str name="first" val="Mike"/>
 <str name="last" val="Brady"/>
 </obj>
 <int name ="age" val="45"/>
 <ref name="spouse" href="/people/Carol-Brady"/>
 <list name="children">
 <ref href="/people/Greg-Brady"/>
 <ref href="/people/Peter-Brady"/>
 <ref href="/people/Bobby-Brady"/>
 <ref href="/people/Marsha-Brady"/>
 <ref href="/people/Jan-Brady"/>
 <ref href="/people/Cindy-Brady"/>
 </list>
</obj>
Note in this simple example how the href attribute specifies URI references which may be used to fetch more information about the object. Names and hrefs are discussed in detail in Section 6.

3.3 URIs

No architecture is complete without some sort of naming system. In OBIX everything is an object, so we need a way to name objects. Since OBIX is really about making information available over the web using XML, it makes sense to leverage the URI (Uniform Resource Identifier) as defined in RFC3986. URIs are the standard way to identify “resources” on the web.
Since OBIX is used to interact with control systems over the web, we use the URL to identify each resource. Just as we assume an XML encoding and a REST binding for all examples in this document, so too we assume a URL using the Hypertext Transfer Protocol (URLs beginning with http:) beginning with HTTP. This is not meant to forbid the use of secure transfer (https:) or of other protocols (ws:). Neither are the examples are meant to forbid the use of alternate ports. The URLs in examples in this specification are for illustration only. Often URIs also provide information about how to fetch their resource - that’s why they are often called URLs (Uniform Resource Locator). From a practical perspective if a vendor uses HTTP URIs to identify their objects, you can most likely just do a simple HTTP GET to fetch the OBIX document for that object. But technically, fetching the contents of a URI is a protocol binding issue discussed in later chapters.
The value of URIs are that they have numerous defined and commonly understood rules for manipulating them. For example URIs define which characters are legal and which are illegal. Of great value to OBIX is URI references which define a standard way to express and normalize relative URIs. In addition, most programming environments have libraries to manage URIs so developers don’t have to worry about managing the details of normalization.
3.4 REST
Objects identified with URIs and passed around as XML documents may sound a lot like REST – and this is intentional. REST stands for REpresentational State Transfer and is an architectural style for web services that mimics how the World Wide Web works. The WWW is basically a big web of HTML documents all hyperlinked together using URIs. Likewise, OBIX is basically a big web of XML object documents hyperlinked together using URIs. Because REST is such a key concept in OBIX, it is not surprising that a REST binding is a core part of the specification. The specification of this binding is defined in the OBIX REST document.
REST is really more of a design style, than a specification. REST is resource centric as opposed to method centric - resources being OBIX objects. The methods actually used tend to be a very small fixed set of verbs used to work generically with all resources. In OBIX all network requests boil down to four request types:
· Read: an object
· Write: an object
· Invoke: an operation
· Delete: an object
3.5 Contracts
In every software domain, patterns start to emerge where many different object instances share common characteristics. For example in most systems that model people, each person probably has a name, address, and phone number. In vertical domains we may attach domain specific information to each person. For example an access control system might associate a badge number with each person.
In object oriented systems we capture these patterns into classes. In relational databases we map them into tables with typed columns. In OBIX these patterns are modeled using a concept called Contracts, which are standard OBIX objects used as a template. Contracts provide greater flexibility than a strongly typed schema language, without the overhead of introducing new syntax. A Contract document is parsed just like any other OBIX document. In formal terms, Contracts are a combination of prototype based inheritance and mixins.
Why do we care about trying to capture these patterns? The most important use of Contracts is by the OBIX specification itself to define new standard abstractions. It is just as important for everyone to agree on normalized semantics as it is on syntax. Contracts also provide the definitions needed to map to classes in an object-oriented system, or tables in a relational database.
3.6 Extensibility
We want to use OBIX as a foundation for developing new abstractions in vertical domains. We also want to provide extensibility for vendors who implement OBIX across legacy systems and new product lines. Additionally, it is common for a device to ship as a blank slate and be completely programmed in the field. This leaves us with a mix of standards based, vendor based, and even project based extensions.
The principle behind OBIX extensibility is that anything new is defined strictly in terms of Objects, URIs, and Contracts. To put it another way - new abstractions do not introduce any new XML syntax or functionality that client code is forced to care about. New abstractions are always modeled as standard trees of OBIX objects, just with different semantics. That does not mean that higher level application code never changes to deal with new abstractions. But the core stack that deals with networking and parsing should not have to change to accommodate a new type.
This extensibility model is similar to most mainstream programming languages such as Java or C#. The syntax of the core language is fixed with a built in mechanism to define new abstractions. Extensibility is achieved by defining new class libraries using the language’s fixed syntax. This means the compiler need not be updated every time someone adds a new class.
4 Object Model
The OBIX specification is based on a small, fixed set of object types. The OBIX object model is summarized in Figure 4-1. It consists of a common base Object (obix:obj) type, and includes 16 derived types. Section 4.1 describes the associated properties called Facets that each type may have. Section 4.2 describes each of the core OBIX types, including the rules for their usage and interpretation. Additional rules defining complex behaviors such as naming and Contract inheritance are described in Sections 6 and 7. These sections are essential to a full understanding of the object model.

[image: image2.png]class diagram Obix 1.1 WD

el
st g R
+val ‘slsan = fale
 min ant .
ot soontsct= abicobj
Y) unit sl
i oontact= ot sty sting ol
ot coonuact= abicil + displaytiame “sing
et ranyURI o
o) + fcon canyURI z
s sontact e o
i oontact= abictil + name uTOKEN * min doubls
+of soontact= obicob) + null bostean + prsciion nt
+ obi OB] “ unit sl
+ status status = ok
Al sdouble =0
b i
& =
v Ll sing =
+ a amuRt
enumeration o @ e
g + vl MATOREN
datied
i
sbeTime -
don °
unschedaram | [+ o casteTime e e
Stam min dateTim min date
unched & sing Al e
ovsnidten vl st Time
o
Rartime e
vl swation= P10s ||+ val sime

Figure 4‑1 The OBIX primitive object hierarchy.
4.1 obj
The root abstraction in OBIX is Object. Every type in OBIX is a derivative of Object. Any Object or its derivatives can contain other Objects. The properties supported on Object, and therefore on any derivative type, are listed in Table 4-1.

	Property
	Description

	name
	Defines the Object’s purpose in its parent Object (discussed in Section 6). Names of Objects SHOULD be in Camel case per Casing.

	href
	Provides a URI reference for identifying the Object (discussed in Section 6).

	is
	Defines the Contracts the Object implements (discussed in Section 7).

	null
	Supports the concept of null Objects (discussed in Section 4.1.1 and in Section 7.4).

	val
	Stores the actual value of the object, used only with value-type Objects (bool, int, real, str, enum, abstime, reltime, date, time, and uri). The literal representation of values maps to XML Schema, indicated in the following sections via the “xs:” prefix.

	Facets
	A set of properties used to provide meta-data about the Object (discussed in Section 4.1.2).

Table 4-1. Base properties of OBIX Object type.
As stated in Section 3.2, the expression of Objects in an XML encoding is through XML elements. The OBIX Object type is expressed through the obj element. The properties of an Object are expressed through XML attributes of the element. The full set of rules for encoding OBIX in XML is contained in the OBIX Encodings document. The term obj as used in this specification represents an OBIX Object in general, regardless of how it is encoded.

The Contract definition of Object, as expressed by an obj element is:
<obj href="obix:obj" null="false" writable="false" status="ok" />
4.1.1 Null

All Objects support the concept of null. Null is the absence of a value, meaning that this Object has no value, has not been configured or initialized, or is otherwise not defined. Null is indicated using the null attribute with a boolean value. All Objects default null to false with the exception of enum, abstime, date, and time (since any other default would be confusing). An example of a null abstime Object is:
<abstime name=”startTime” displayName=”Start Time”/>
 Null is inherited from Contracts a little differently than other attributes. See Section 7.4.3 for details.

4.1.2 Facets
All Objects can be annotated with a predefined set of attributes called Facets. Facets provide additional meta-data about the Object. The set of available Facets is: displayName, display, icon, min, max, precision, range, status, tz, unit, writable, of, in, and out. Although OBIX predefines a number of Facets, vendors MAY add additional Facets. Vendors that wish to annotate Objects with additional Facets SHOULD use XML namespace qualified attributes.
4.1.3 displayName
The displayName Facet provides a localized human readable name of the Object stored as an xs:string:
<obj name="spaceTemp" displayName="Space Temperature"/>
Typically the displayName Facet SHOULD be a localized form of the name attribute. There are no restrictions on displayName overrides from the Contract (although it SHOULD be uncommon since displayName is just a human friendly version of name).
4.1.4 display
The display Facet provides a localized human readable description of the Object stored as an xs:string:
<bool name="occupied" val="false" display="Unoccupied"/>
There are no restrictions on display overrides from the Contract.
The display attribute serves the same purpose as Object.toString() in Java or C#. It provides a general way to specify a string representation for all Objects. In the case of value Objects (like bool or int) it SHOULD provide a localized, formatted representation of the val attribute.
4.1.5 icon
The icon Facet provides a URI reference to a graphical icon which may be used to represent the Object in an user agent:
<obj icon="/icons/equipment.png"/>
The contents of the icon attribute MUST be a URI to an image file. The image file SHOULD be a 16x16 PNG file, defined in the PNG specification. There are no restrictions on icon overrides from the Contract.
4.1.6 min
The min Facet is used to define an inclusive minimum value:
<int min="5" val="6"/>
The contents of the min attribute MUST match its associated val type. The min Facet is used with int, real , abstime, date, time, and reltime to define an inclusive lower limit of the value space. It is used with str to indicate the minimum number of Unicode characters of the string. It is used with list to indicate the minimum number of child Objects (named or unnamed). Overrides of the min Facet may only narrow the value space using a larger value. The min Facet MUST never be greater than the max Facet (although they MAY be equal).
4.1.7 max
The max Facet is used to define an inclusive maximum value:
<real max="70" val="65"/>
The contents of the max attribute MUST match its associated val type. The max Facet is used with int, real, abstime, date, time, and reltime to define an inclusive upper limit of the value space. It is used with str to indicate the maximum number of Unicode characters of the string. It is used with list to indicate the maximum number of child Objects (named or unnamed). Overrides of the max Facet may only narrow the value space using a smaller value. The max Facet MUST never be less than the min Facet (although they MAY be equal).
4.1.8 precision
The precision Facet is used to describe the number of decimal places to use for a real value:
<real precision="2" val="75.04"/>
The contents of the precision attribute MUST be xs:int. The value of the precision attribute equates to the number of meaningful decimal places. In the example above, the value of 2 indicates two meaningful decimal places: “75.04”. Typically precision is used by client applications which do their own formatting of real values. There are no restrictions on precision overrides.
4.1.9 range
The range Facet is used to define the value space of an enumeration. A range attribute is a URI reference to an obix:Range Object (see section 11.2 for the definition). It is used with the bool and enum types:
<enum range="/enums/OffSlowFast" val="slow"/>
The override rule for range is that the specified range MUST inherit from the Contract’s range. Enumerations are unusual in that specialization of an enum usually involves adding new items to the range. Technically this is widening the enum’s value space, rather than narrowing it. But in practice, adding items into the range is what we desire.
4.1.10 status
The status Facet is used to annotate an Object about the quality and state of the information:
<real val="67.2" status="alarm"/>
Status is an enumerated string value with one of the following values from Table 4-2 (ordered by priority):
	Status
	Description

	disabled
	This state indicates that the Object has been disabled from normal operation (out of service). In the case of operations and feeds, this state is used to disable support for the operation or feed.

	fault
	The fault state indicates that the data is invalid or unavailable due to a failure condition - data which is out of date, configuration problems, software failures, or hardware failures. Failures involving communications should use the down state.

	down
	The down state indicates a communication failure.

	unackedAlarm
	The unackedAlarm state indicates there is an existing alarm condition which has not been acknowledged by a user – it is the combination of the alarm and unacked states. The difference between alarm and unackedAlarm is that alarm implies that a user has already acknowledged the alarm or that no human acknowledgement is necessary for the alarm condition. The difference between unackedAlarm and unacked is that the Object has returned to a normal state.

	alarm
	This state indicates the Object is currently in the alarm state. The alarm state typically means that an Object is operating outside of its normal boundaries. In the case of an analog point this might mean that the current value is either above or below its configured limits. Or it might mean that a digital sensor has transitioned to an undesired state. See Alarming (Section 15) for additional information.

	unacked
	The unacked state is used to indicate a past alarm condition which remains unacknowledged.

	overridden
	The overridden state means the data is ok, but that a local override is currently in effect. An example of an override might be the temporary override of a setpoint from its normal scheduled setpoint.

	ok
	The ok state indicates normal status. This is the assumed default state for all Objects.

Table 4-2. Status enumerations in OBIX.
Status MUST be one of the enumerated strings above. It might be possible in the native system to exhibit multiple status states simultaneously, however when mapping to OBIX the highest priority status SHOULD be chosen – priorities are ranked from top (disabled) to bottom (ok).
4.1.11 tz
The tz Facet is used to annotate an abstime, date, or time Object with a timezone. The value of a tz attribute is a zoneinfo string identifier, as specified in the IANA Time Zone (ZoneInfo DB) database. The zoneinfo database defines the current and historical rules for each zone including its offset from UTC and the rules for calculating daylight saving time. OBIX does not define a Contract for modeling timezones, instead it just references the zoneinfo database using standard identifiers. It is up to OBIX enabled software to map zoneinfo identifiers to the UTC offset and daylight saving time rules.
The following rules are used to compute the timezone of an abstime, date, or time Object:
1. If the tz attribute is specified, set the timezone to tz;
2. Otherwise, if the Contract defines an inherited tz attribute, set the timezone to the inherited tz attribute;
3. Otherwise, set the timezone to the server’s timezone as defined by the lobby’s About.tz.
When using timezones, an implementation MUST specify the timezone offset within the value representation of an abstime or time Object. It is an error condition for the tz Facet to conflict with the timezone offset. For example, New York has a -5 hour offset from UTC during standard time and a -4 hour offset during daylight saving time:
<abstime val="2007-12-25T12:00:00-05:00" tz="America/New_York"/>
<abstime val="2007-07-04T12:00:00-04:00" tz="America/New_York"/>
4.1.12 unit
The unit Facet defines a unit of measurement in the SI Units system. A unit attribute is a URI reference to an obix:Unit Object (see section 11.5 for the Contract definition). It is used with the int and real types:
<real unit="obix:units/fahrenheit" val="67.2"/>
It is recommended that the unit Facet not be overridden if declared in a Contract. If it is overridden, then the override SHOULD use a Unit Object with the same dimensions as the Contract (it must measure the same physical quantity).
4.1.13 writable
The writable Facet specifies if this Object can be written by the client. If false (the default), then the Object is read-only. It is used with all types except op and feed:
<str name="userName" val="jsmith" writable="false"/>
<str name="fullName" val="John Smith" writable="true"/>
The writable Facet describes only the ability of clients to modify this Object’s value, not the ability of clients to add or remove children of this Object. Servers MAY allow addition or removal of child Objects independently of the writability of existing objects. If a server does not support addition or removal of Object children through writes, it MUST return an appropriate error response (see Section 10.2 for details).
4.1.14 of

The of Facet specifies the type of child Objects contained by this Object. This Facet is used with list and ref types. The use of this Facet for each case is explained with the definition of the type, in Section 4.2.2 for list and 4.2.3 for ref.

4.1.15 in

The in Facet specifies the input argument type used by this Object. This Facet is used with op and feed types. Its use is described with the definition of those types in Section 4.2.5 for op and 4.2.6 for feed.

4.1.16 out

The out Facet specifies the output argument type used by this Object. This Facet is used with the op type. Its use is described with the definition of that type in Section 4.2.5.

4.2 Core Types

OBIX defines a handful of core types which derive from Object. Certain types are allowed to have a val attribute and are called “value” types. This concept is expressed in object-oriented terms by using an “abstract” val type, and the value subtypes inheriting the val behavior from their supertype.

4.2.1 val

A special type of Object called a Value Object is used to store a piece of simple information. The val type is not directly used (it is “abstract”). It simply reflects that the type may contain a val attribute, as it is used to represent an object that has a specific value. The different Value Object types defined for OBIX are listed in Table 4-3.

	Type Name
	Usage

	bool
	stores a boolean value – true or false

	int
	stores an integer value

	real
	stores a floating point value

	str
	stores a UNICODE string

	enum
	stores an enumerated value within a fixed range

	abstime
	stores an absolute time value (timestamp)

	reltime
	stores a relative time value (duration or time span)

	date
	stores a specific date as day, month, and year

	time
	stores a time of day as hour, minutes, and seconds

	uri
	stores a Universal Resource Identifier

Table 4-3. Value Object types.
Note that any Value Object can also contain sub-Objects.
4.2.1.1 bool
The bool type represents a boolean condition of either true or false. Its val attribute maps to xs:boolean defaulting to false. The literal value of a bool MUST be “true” or “false” (the literals “1” and “0” are not allowed). The Contract definition is:
<bool href="obix:bool" is="obix:obj" val="false" null="false"/>
An example:
<bool val="true"/>
4.2.1.2 int
The int type represents an integer number. Its val attribute maps to xs:long as a 64-bit integer with a default of 0. The Contract definition is:
<int href="obix:int" is="obix:obj" val="0" null="false"/>
An example:
<int val="52"/>
4.2.1.3 real
The real type represents a floating point number. Its val attribute maps to xs:double as a IEEE 64-bit floating point number with a default of 0. The Contract definition is:
<real href="obix:real" is="obix:obj" val="0" null="false"/>
An example:
<real val="41.06"/>
4.2.1.4 str
The str type represents a string of Unicode characters. Its val attribute maps to xs:string with a default of the empty string. The Contract definition is:
<str href="obix:str" is="obix:obj" val="" null="false"/>
An example:
<str val="hello world"/>
4.2.1.5 enum
The enum type is used to represent a value which must match a finite set of values. The finite value set is called the range. The val attribute of an enum is represented as a string key using xs:string. Enums default to null. The range of an enum is declared via Facets using the range attribute. The Contract definition is:
<enum href="obix:enum" is="obix:obj" val="" null="true"/>
An example:
<enum range="/enums/OffSlowFast" val="slow"/>
In this example, the val attribute is specified, so the null attribute is implied to be false. See Section 7.4.3 for details on the inheritance of the null attribute.

4.2.1.6 abstime
The abstime type is used to represent an absolute point in time. Its val attribute maps to xs:dateTime, with the exception that it MUST contain the timezone. According to XML Schema Part 2 section 3.2.7.1, the lexical space for abstime is:
'-'? yyyy '-' mm '-' dd 'T' hh ':' mm ':' ss ('.' s+)? (zzzzzz)
Abstimes default to null. The Contract definition is:
<abstime href="obix:abstime" is="obix:obj" val="1970-01-01T00:00:00Z" null="true"/>
An example for 9 March 2005 at 1:30PM GMT:
<abstime val="2005-03-09T13:30:00Z"/>
In this example, the val attribute is specified, so the null attribute is implied to be false. See Section 7.4.3 for details on the inheritance of the null attribute.
The timezone offset is required, so the abstime can be used to uniquely relate the abstime to UTC. The optional tz Facet is used to specify the timezone as a zoneinfo identifier. This provides additional context about the timezone, if available. The timezone offset of the val attribute MUST match the offset for the timezone specified by the tz Facet, if it is also used. See the tz Facet section for more information.
4.2.1.7 reltime
The reltime type is used to represent a relative duration of time. Its val attribute maps to xs:duration with a default of 0 seconds. The Contract definition is:
<reltime href="obix:reltime" is="obix:obj" val="PT0S" null="false"/>
An example of 15 seconds:
<reltime val="PT15S"/>
4.2.1.8 date
The date type is used to represent a day in time as a day, month, and year. Its val attribute maps to xs:date. According to XML Schema Part 2 section 3.2.9.1, the lexical space for date is:
'-'? yyyy '-' mm '-' dd
Date values in OBIX MUST omit the timezone offset and MUST NOT use the trailing “Z”. Only the tz attribute SHOULD be used to associate the date with a timezone. Date Objects default to null. The Contract definition is:
<date href="obix:date" is="obix:obj" val="1970-01-01" null="true"/>
An example for 26 November 2007:
<date val="2007-11-26"/>
In this example, the val attribute is specified, so the null attribute is implied to be false. See Section 7.4.3 for details on the inheritance of the null attribute.
The tz Facet is used to specify the timezone as a zoneinfo identifier. See the tz Facet section for more information.
4.2.1.9 time
The time type is used to represent a time of day in hours, minutes, and seconds. Its val attribute maps to xs:time. According to XML Schema Part 2 section 3.2.8, the lexical space for time is the left truncated representation of xs:dateTime:
hh ':' mm ':' ss ('.' s+)?
Time values in OBIX MUST omit the timezone offset and MUST NOT use the trailing “Z”. Only the tz attribute SHOULD be used to associate the time with a timezone. Time Objects default to null. The Contract definition is:
<time href="obix:time" is="obix:obj" val="00:00:00" null="true"/>
An example for 4:15 AM:
<time val="04:15:00"/>
In this example, the val attribute is specified, so the null attribute is implied to be false. See Section 7.4.3 for details on the inheritance of the null attribute.
The tz Facet is used to specify the timezone as a zoneinfo identifier. See the tz Facet section for more information.
4.2.1.10 uri
The uri type is used to store a URI reference. Unlike a plain old str, a uri has a restricted lexical space as defined by RFC3986 and the XML Schema xs:anyURI type. OBIX servers MUST use the URI syntax described by RFC3986 for identifying resources. OBIX clients MUST be able to navigate this URI syntax. Most URIs will also be a URL, meaning that they identify a resource and how to retrieve it (typically via HTTP). The Contract definition is:
<uri href="obix:uri" is="obix:obj" val="" null="false"/>
An example for the OBIX home page:
<uri val="http://obix.org/" />
4.2.2 list
The list type is a specialized Object type for storing a list of other Objects. The primary advantage of using a list versus a generic obj is that lists can specify a common Contract for their contents using the of attribute. If specified, the of attribute MUST be a list of URIs formatted as a Contract List. The definition of list is:
<list href="obix:list" is="obix:obj" of="obix:obj"/>
An example list of strings:
<list of="obix:str">
 <str val="one"/>
 <str val="two"/>
</list>
Because lists typically have constraints on the URIs used for their child elements, they use special semantics for adding children. Lists are discussed in greater detail along with Contracts in section 7.8.

4.2.3 ref
The ref type is used to create an external reference to another OBIX Object. It is the OBIX equivalent of the HTML anchor tag. The Contract definition is:
<ref href="obix:ref " is="obix:obj"/>
A ref element MUST always specify an href attribute. A ref element SHOULD specify the type of the referenced object using the is attribute. A ref element referencing a list (is=”obix:list”) SHOULD specify the type of the Objects contained in the list using the of attribute. References are discussed in detail in section 9.2.

4.2.4 err
The err type is a special Object used to indicate an error. Its actual semantics are context dependent. Typically err Objects SHOULD include a human readable description of the problem via the display attribute. The Contract definition is:
<err href="obix:err" is="obix:obj"/>
4.2.5 op
The op type is used to define an operation. All operations take one input Object as a parameter, and return one Object as an output. The input and output Contracts are defined via the in and out attributes. The Contract definition is:
<op href="obix:op" is="obix:obj" in="obix:Nil" out="obix:Nil"/>
Operations are discussed in detail in Section 8.

4.2.6 feed
The feed type is used to define a topic for a feed of events. Feeds are used with Watches to subscribe to a stream of events such as alarms. A feed SHOULD specify the event type it fires via the of attribute. The in attribute can be used to pass an input argument when subscribing to the feed (a filter for example).
<feed href="obix:feed" is="obix:obj" in="obix:Nil" of="obix:obj"/>
Feeds are subscribed via Watches. This is discussed in Section 12.
5 Lobby

All OBIX servers MUST provide an Object which implements obix:Lobby. The Lobby Object serves as the central entry point into an OBIX server, and lists the URIs for other well-known Objects defined by the OBIX Specification. Theoretically all a client needs to know to bootstrap discovery is one URI for the Lobby instance. By convention this URI is “http://<server-ip-address>/obix”, although vendors are certainly free to pick another URI. The Lobby Contract is:
<obj href="obix:Lobby">
 <ref name="about" is="obix:About"/>
 <op name="batch" in="obix:BatchIn" out="obix:BatchOut"/>
 <ref name="watchService" is="obix:WatchService"/>
 <list name=”models” of=”obix:uri” null=”true”/>

 <list name=”encodings” of=”obix:str” null=”true”/>

 <list name=”bindings” of=”obix:str” null=”true”/>
</obj>
The Lobby instance is where implementers SHOULD place vendor-specific Objects used for data and service discovery. The standard Objects defined in the Lobby Contract are described in the following Sections.

5.1 About

The obix:About Object is a standardized list of summary information about an OBIX server. Clients can discover the About URI directly from the Lobby. The About Contract is:
<obj href="obix:About">
 <str name="obixVersion"/>
 <str name="serverName"/>
 <abstime name="serverTime"/>
 <abstime name="serverBootTime"/>
 <str name="vendorName"/>
 <uri name="vendorUrl"/>
 <str name="productName"/>
 <str name="productVersion"/>
 <uri name="productUrl"/>
 <str name="tz"/>
</obj>
The following children provide information about the OBIX implementation:
· obixVersion: specifies which version of the OBIX specification the server implements. This string MUST be a list of decimal numbers separated by the dot character (Unicode 0x2E). The current version string is “1.1”.
The following children provide information about the server itself:
· serverName: provides a short localized name for the server.
· serverTime: provides the server’s current local time.
· serverBootTime: provides the server’s start time - this SHOULD be the start time of the OBIX server software, not the machine’s boot time.
The following children provide information about the server’s software vendor:
· vendorName: the company name of the vendor who implemented the OBIX server software.
· vendorUrl: a URL to the vendor’s website.
The following children provide information about the software product running the server:
· productName: with the product name of OBIX server software.
· productUrl: a URL to the product’s website.
· productVersion: a string with the product’s version number. Convention is to use decimal digits separated by dots.
The following children provide additional miscellaneous information:
· tz: specifies a zoneinfo identifier for the server’s default timezone.
5.2 Batch
The Lobby defines a batch operation which is used to batch multiple network requests together into a single operation. Batching multiple requests together can often provide significant performance improvements over individual round-robin network requests. As a general rule, one big request will always out-perform many small requests over a network.
A batch request is an aggregation of read, write, and invoke requests implemented as a standard OBIX operation. At the protocol binding layer, it is represented as a single invoke request using the Lobby.batch URI. Batching a set of requests to a server MUST be processed semantically equivalent to invoking each of the requests individually in a linear sequence.
The batch operation inputs a BatchIn Object and outputs a BatchOut Object:
<list href="obix:BatchIn" of="obix:uri"/>
<list href="obix:BatchOut" of="obix:obj"/>
The BatchIn Contract specifies a list of requests to process identified using the Read, Write, or Invoke Contract:
<uri href="obix:Read"/>
<uri href="obix:Write">
 <obj name="in"/>
</uri>
<uri href="obix:Invoke">
 <obj name="in"/>
</uri>
The BatchOut Contract specifies an ordered list of the response Objects to each respective request. For example the first Object in BatchOut must be the result of the first request in BatchIn. Failures are represented using the err Object. Every uri passed via BatchIn for a read or write request MUST have a corresponding result obj in BatchOut with an href attribute using an identical string representation from BatchIn (no normalization or case conversion is allowed).
It is up to vendors to decide how to deal with partial failures. In general idempotent requests SHOULD indicate a partial failure using err, and continue processing additional requests in the batch. If a server decides not to process additional requests when an error is encountered, then it is still REQUIRED to return an err for each respective request not processed.
Let’s look at a simple example:
<list is="obix:BatchIn">
 <uri is="obix:Read" val="/someStr"/>
 <uri is="obix:Read" val="/invalidUri"/>
 <uri is="obix:Write" val="/someStr">
 <str name="in" val="new string value"/>
 </uri>
</list>
<list is="obix:BatchOut">
 <str href="/someStr" val="old string value"/>
 <err href="/invalidUri" is="obix:BadUriErr" display="href not found"/>
 <str href="/someStr" val="new string value">
</list>
In this example, the batch request is specifying a read request for “/someStr” and “/invalidUri”, followed by a write request to “/someStr”. Note that the write request includes the value to write as a child named “in”. The server responds to the batch request by specifying exactly one Object for each request URI. The first read request returns a str Object indicating the current value identified by “/someStr”. The second read request contains an invalid URI, so the server returns an err Object indicating a partial failure and continues to process subsequent requests. The third request is a write to “someStr”. The server updates the value at “someStr”, and returns the new value. Note that because the requests are processed in order, the first request provides the original value of “someStr” and the third request contains the new value. This is exactly what we would expect had we processed each of these requests individually.
5.3 WatchService

The WatchService is an important mechanism for providing data from a Server. As such, this specification devotes an entire Section to the description of Watches, and of the WatchService. Section 12 covers Watches in detail.

5.4 Server Metadata

Several components of the Lobby provide additional information about the server’s implementation of the OBIX specification. This is to be used by clients to allow them to tailor their interaction with the server based on mutually interoperable capabilities. The following subsections describe these components.

5.4.1 Models

Any semantic models, such as tag dictionaries, used by the Server for presenting metadata about its Objects MUST be identified in the Lobby in the models element, which is a list of uris. The name of each uri MUST be the name that is referenced by the server when presenting tags. A more descriptive name MAY be provided in the displayName Facet. The val of the uri MUST contain the reference location for this model or dictionary. For example,

<obj is=”obix:Lobby”>

{... other lobby items ...}

 <list name=”models” of=”obix:uri”>

 <uri name=”d1” displayName=”tagDict1” val=”http://example.com/tagdic”/>

 </list>

</obj>

One caveat to this behavior is that the presentation of the usage of a particular semantic model may divulge unwanted information about the server. For instance, a server that makes use of a medical tag dictionary and presents this in the Lobby may be undesirably advertising itself as an interesting target for individuals attempting to access confidential medical records. Therefore, it is recommended that servers SHOULD protect this section of the Lobby by only including it in communication to authenticated, authorized clients.

5.4.2 Encodings

Servers SHOULD include the encodings supported in the encodings Lobby Object. This is a list of uris. The name of each uri MUST be the MIME type of the encoding. The val of the uri SHOULD be a reference to the encoding specification. A more friendly name MAY be provided in the displayName attribute.

The discovery of which encoding to use for communication between a client and a server is a function of the specific binding used. Clients and servers MUST be able to support negotiation of the encoding to be used according to the binding’s error message rules. Clients SHOULD first attempt to request communication using the desired encoding, and then fall back to other encodings as required based on the encodings supported by the server.
For example, a server that supports both XML and JSON encoding as defined in the OBIX Encodings specification would have a Lobby that appeared as follows (note the displayNames used are optional):

<obj is=”obix:Lobby”>

{... other lobby items ...}

 <list name=”encodings” of=”obix:uri”>

 <uri name=”text/xml” displayName=”XML” val=”http://docs.oasis-open.org/obix/OBIX-Encodings/v1.0/csd01/OBIX-Encodings-v1.0-csd01.doc”/>

 <uri name=”application/json” displayName=”JSON” val=”http://docs.oasis-open.org/obix/OBIX-Encodings/v1.0/csd01/OBIX-Encodings-v1.0-csd01.doc”/>

 </list>

</obj>

A server that receives a request for an encoding that is not supported MUST send an UnsupportedErr response (see Section 10.2).

5.4.3 Bindings

Servers SHOULD include the available bindings supported in the bindings Lobby Object. This is a list of uris. The name of each uri SHOULD be the name of the binding as described by its corresponding specification document. The val of the uri SHOULD be a reference to the binding specification.

Servers that support multiple bindings and encodings MAY support only certain combinations of the available bindings and encodings. For example, a server may support XML encoding over the HTTP and SOAP bindings, but support JSON encoding only over the HTTP binding.

A server that receives a request for a binding/encoding pair that is not supported MUST send an UnsupportedErr response (see Section 10.2).

For example, a server that supports the SOAP and HTTP bindings as defined in the OBIX REST and OBIX SOAP specifications would have a Lobby that appeared as follows (note the displayNames used are optional):

<obj is=”obix:Lobby”>

{... other lobby items ...}

 <list name=”bindings” of=”obix:uri”>

 <uri name=”http” displayName=”HTTP Binding” val=” http://docs.oasis-open.org/obix/OBIX-REST/v1.0/csd01/OBIX-REST-v1.0-csd01.doc”/>

 <uri name=”soap” displayName=”SOAP Binding” val=” http://docs.oasis-open.org/obix/OBIX-REST/v1.0/csd01/OBIX-REST-v1.0-csd01.doc”/>

 </list>

</obj>

5.4.4 Versioning [non-normative]

Each of the subsequent subsections describes a set of uris that describe specifications to which a server is implemented. These specifications are expected to change over time, and the server implementation may not be updated at the same pace. Therefore, a server implementation MAY wish to provide versioning information with the uris that describes the date on which the specification was retrieved. This information SHOULD be included as a child element of the uri. It may be in the form of an abstime reflecting the retrieval date, or a str reflecting the version information. For example:
<obj is=”obix:Lobby”>

{... other lobby items ...}

 <list name=”bindings” of=”obix:uri”>

 <uri name=”http” displayName=”HTTP Binding” val=”http://docs.oasis-open.org/obix/OBIX-REST/v1.0/csd01/OBIX-REST-v1.0-csd01.doc”>

 <abstime name=”fetchedOn” val=”2013-11-26T3:14:15.926Z”/>

 </uri>

 <uri name=”myBinding” diaplayName=”My New Binding” val=http://example.com/my-new-binding.doc>

 <str name=”version” val=”1.2.34”/>

 </uri>

 </list>

</obj>

6 Naming

All OBIX objects have two potential identifiers: name and href. Name is used to define the role of an Object within its parent. Names are programmatic identifiers only; the displayName Facet SHOULD be used for human interaction. Naming convention is to use camel case with the first character in lowercase. The primary purpose of names is to attach semantics to sub-objects. Names are also used to indicate overrides from a Contract. A good analogy to names is the field/method names of a class in Java or C#.
Hrefs are used to attach URIs to objects. An href is always a URI reference, which means it might be a relative URI that requires normalization against a base URI. The exception to this rule is the href of the root Object in an OBIX document – this href MUST be an absolute URI, not a URI reference. This allows the root Object’s href to be used as the effective base URI (xml:base) for normalization. A good analogy is hrefs in HTML or XLink.
Some Objects may have both a name and an href, just a name, just an href, or neither. It is common for objects within a list to not use names, since most lists are unnamed sequences of objects. The OBIX specification makes a clear distinction between names and hrefs - clients MUST NOT assume any relationship between names and hrefs. From a practical perspective many vendors will likely build an href structure that mimics the name structure, but client software MUST never assume such a relationship.
6.1 Name
The name of an Object is represented using the name attribute. Names are programmatic identifiers with restrictions on their valid character set. A name SHOULD contain only ASCII letters, digits, underbar, or dollar signs. A digit MUST NOT be used as the first character. Names SHOULD use lower Camel case per Casing with the first character in lower case, as in the examples “foo”, “fooBar”, “thisIsOneLongName”. Within a given Object, all of its direct children MUST have unique names. Objects which don’t have a name attribute are called unnamed Objects. The root Object of an OBIX document SHOULD NOT specify a name attribute (but almost always has an absolute href URI).
6.2 Href
The href of an Object is represented using the href attribute. If specified, the root Object MUST have an absolute URI. All other hrefs within an OBIX document are treated as URI references which may be relative. Because the root href is always an absolute URI, it may be used as the base for normalizing relative URIs within the OBIX document. The formal rules for URI syntax and normalization are defined in RFC3986. OBIX implementations MUST follow these rules. We consider a few common cases that serve as design patterns within OBIX in Section 6.3.

As a general rule every Object accessible for a read MUST specify a URI. An OBIX document returned from a read request MUST specify a root URI. However, there are certain cases where the Object is transient, such as a computed Object from an operation invocation. In these cases there MAY not be a root URI, meaning there is no way to retrieve this particular Object again. If no root URI is provided, then the server’s authority URI is implied to be the base URI for resolving relative URI references.
6.3 URI Normalization
Vendors are free to use any URI scheme, although the recommendation is to use URIs since they have well defined normalization semantics. This section provides a summary of how URI normalization should work within OBIX client agents. The general rules are:
· If the URI starts with “scheme:” then it is a globally absolute URI
· If the URI starts with a single slash, then it is a server absolute URI
· If the URI starts with a “#”, then it is a fragment identifier (discussed in next section)
· If the URI starts with “../”, then the path must backup from the base
Otherwise the URI is assumed to be a relative path from the base URI
Some examples:
http://server/a + http://overthere/x (http://overthere/x
http://server/a + /x/y/z (http://server/x/y/z
http://server/a/b + c (http://server/a/c
http://server/a/b/ + c (http://server/a/b/c
http://server/a/b + c/d (http://server/a/c/d
http://server/a/b/ + c/d (http://server/a/b/c/d
http://server/a/b + ../c (http://server/c
http://server/a/b/ + ../c (http://server/a/c
Perhaps one of the trickiest issues is whether the base URI ends with a slash. If the base URI doesn’t end with a slash, then a relative URI is assumed to be relative to the base’s parent (to match HTML). If the base URI does end in a slash, then relative URIs can just be appended to the base. In practice, systems organized into hierarchical URIs SHOULD always specify the base URI with a trailing slash. Retrieval with and without the trailing slash SHOULD be supported with the resulting OBIX document always adding the implicit trailing slash in the root Object’s href.
6.4 Fragment URIs
It is not uncommon to reference an Object internal to an OBIX document. This is achieved using fragment URI references starting with the “#”. Let’s consider the example:
<obj href="http://server/whatever/">
 <enum name="switch1" range="#onOff" val="on"/>
 <enum name="switch2" range="#onOff" val="off"/>
 <list is="obix:Range" href="onOff">
 <obj name="on"/>
 <obj name="off"/>
 </list>
</obj>
In this example there are two Objects with a range Facet referencing a fragment URI. Any URI reference starting with “#” MUST be assumed to reference an Object within the same OBIX document. Clients SHOULD NOT perform another URI retrieval to dereference the Object. In this case the Object being referenced is identified via the href attribute.
In the example above the Object with an href of “onOff” is both the target of the fragment URI, but also has the absolute URI “http://server/whatever/onOff”. But suppose we had an Object that was the target of a fragment URI within the document, but could not be directly addressed using an absolute URI? In that case the href attribute SHOULD be a fragment identifier itself. When an href attribute starts with “#” that means the only place it can be used is within the document itself:
…
 <list is="obix:Range" href="#onOff">
…
7 Contracts
OBIX Contracts are used to define inheritance in OBIX Objects. A Contract is a template, defined as an OBIX Object, that is referenced by other Objects. These templates are referenced using the is attribute. Contracts solve several important problems in OBIX:
	Semantics
	Contracts are used to define “types” within OBIX. This lets us collectively agree on common Object definitions to provide consistent semantics across vendor implementations. For example the Alarm Contract ensures that client software can extract normalized alarm information from any vendor’s system using the exact same Object structure.

	Defaults
	Contracts also provide a convenient mechanism to specify default values. Note that when serializing Object trees to XML (especially over a network), we typically don’t allow defaults to be used in order to keep client processing simple.

	Type Export
	It is likely that many vendors will have a system built using a statically typed language like Java or C#. Contracts provide a standard mechanism to export type information in a format that all OBIX clients can consume.

Table 7-1. Problems addressed by Contracts.
The benefit of the Contract design is its flexibility and simplicity. Conceptually Contracts provide an elegant model for solving many different problems with one abstraction. We can define new abstractions using the OBIX syntax itself. Contracts also give us a machine readable format that clients already know how to retrieve and parse –the exact same syntax is used to represent both a class and an instance.
7.1 Contract Terminology
Common terms that are useful for discussing Contracts are defined in the following Table.

	Term
	Definition

	Contract
	Contracts are the templates or prototypes used as the foundation of the OBIX type system. They may contain both syntactical and semantic behaviors.

	Contract Definition
	A reusable Object definition expressed as a standard OBIX Object.

	Contract List
	A list of one or more URIs to Contract Objects. It is used as the value of the is, of, in and out attributes. The list of URIs is separated by the space character. You can think of a Contract List as a type declaration.

	Implements
	When an Object specifies a Contract in its Contract List, the Object is said to implement the Contract. This means that the Object is inheriting both the structure and semantics of the specified Contract.

	Implementation
	An Object which implements a Contract is said to be an implementation of that Contract.

Table 7-2. Contract terminology.
7.2 Contract List
The syntax of a Contract List attribute is a list of URI references to other OBIX Objects. It is used as the value of the is, of, in and out attributes. The URIs within the list are separated by the space character (Unicode 0x20). Just like the href attribute, a Contract URI can be an absolute URI, server relative, or even a fragment reference. The URIs within a Contract List may be scoped with an XML namespace prefix (see “Namespace Prefixes in Contract Lists” in the OBIX Encodings document).

7.3 Is Attribute

An Object defines the Contracts it implements via the is attribute. The value of the is attribute is a Contract List. If the is attribute is unspecified, then the following rules are used to determine the implied Contract List:
· If the Object is an item inside a list or feed, then the Contract List specified by the of attribute is used.
· If the Object overrides (by name) an Object specified in one of its Contracts, then the Contract List of the overridden Object is used.
· If all the above rules fail, then the respective primitive Contract is used. For example, an obj element has an implied Contract of obix:obj and real an implied Contract of obix:real.
Note that element names such as bool, int, or str are abbreviations for implied Contracts. However if an Object implements one of the primitive types, then it MUST use the correct OBIX type name. For example if an Object implements obix:int, then it MUST be expressed as <int/>, rather than <obj is="obix:int"/>. Therefore it is invalid to implement multiple value types - such as implementing both obix:bool and obix:int.
7.4 Contract Inheritance
7.4.1 Structure vs Semantics
Contracts are a mechanism of inheritance – they establish the classic “is a” relationship. In the abstract sense a Contract allows us to inherit a type. We can further distinguish between the explicit and implicit Contract:
	Explicit Contract
	Defines an object structure which all implementations must conform with. This can be evaluated quantitatively by examining the Object data structure.

	Implicit Contract
	Defines semantics associated with the Contract. The implicit Contract is typically documented using natural language prose. It is qualitatively interpreted, rather than quantitatively interpreted.

Table 7-3. Explicit and Implicit Contracts.
For example when we say an Object implements the Alarm Contract, we immediately know that will have a child called timestamp. This structure is in the explicit contract of Alarm and is formally defined in its encoded definition. But we also attach semantics to what it means to be an Alarm Object: that the Object is providing information about an alarm event. These subjective concepts cannot be captured in machine language; rather they can only be captured in prose.
When an Object declares itself to implement a Contract it MUST meet both the explicit Contract and the implicit Contract. An Object MUST NOT put obix:Alarm in its Contract List unless it really represents an alarm event. There isn’t much more to say about implicit Contracts other than it is recommended that a human brain be involved. So now let’s look at the rules governing the explicit Contract.
7.4.2 Overriding Defaults
A Contract’s named children Objects are automatically applied to implementations. An implementation may choose to override or default each of its Contract’s children. If the implementation omits the child, then it is assumed to default to the Contract’s value. If the implementation declares the child (by name), then it is overridden and the implementation’s value should be used. Let’s look at an example:
<obj href="/def/television">
 <bool name="power" val="false"/>
 <int name="channel" val="2" min="2" max="200"/>
</obj>
<obj href="/livingRoom/tv" is="/def/television">
 <int name="channel" val="8"/>
 <int name="volume" val="22"/>
</obj>
In this example we have a Contract Object identified with the URI “/def/television”. It has two children to store power and channel. Then we specify a living room TV instance that includes “/def/television” in its Contract List via the is attribute. In this Object, channel is overridden to 8 from its default value of 2. However since power was omitted, it is implied to default to false.
An override is always matched to its Contract via the name attribute. In the example above we knew we were overriding channel, because we declared an Object with a name of “channel”. We also declared an Object with a name of “volume”. Since volume wasn’t declared in the Contract, we assume it’s a new definition specific to this Object.
7.4.3 Attributes and Facets
Also note that the Contract’s channel Object declares a min and max Facet. These two Facets are also inherited by the implementation. Almost all attributes are inherited from their Contract including Facets, val, of, in, and out. The href attribute is never inherited. The null attribute inherits as follows:
1. If the null attribute is specified, then its explicit value is used;
2. If a val attribute is specified and null is unspecified, then null is implied to be false;
3. If neither a val attribute or a null attribute is specified, then the null attribute is inherited from the Contract;
4. If the null attribute is specified and is true, then the val attribute is ignored.
This allows us to implicitly override a null Object to non-null without specifying the null attribute.
7.5 Override Rules
Contract overrides are required to obey the implicit and explicit Contract. Implicit means that the implementation Object provides the same semantics as the Contract it implements. In the example above it would be incorrect to override channel to store picture brightness. That would break the semantic Contract.
Overriding the explicit Contract means to override the value, Facets, or Contract List. However we can never override the Object to be an incompatible value type. For example if the Contract specifies a child as real, then all implementations must use real for that child. As a special case, obj may be narrowed to any other element type.
We also have to be careful when overriding attributes to never break restrictions the Contract has defined. Technically this means we can specialize or narrow the value space of a Contract, but never generalize or widen it. This concept is called covariance. Let’s take our example from above:
<int name="channel" val="2" min="2" max="200"/>
In this example the Contract has declared a value space of 2 to 200. Any implementation of this Contract must meet this restriction. For example it would an error to override min to –100 since that would widen the value space. However we can narrow the value space by overriding min to a number greater than 2 or by overriding max to a number less than 200. The specific override rules applicable to each Facet are documented in section 4.1.2.

7.6 Multiple Inheritance

An Object’s Contract List may specify multiple Contract URIs to implement. This is actually quite common - even required in many cases. There are two topics associated with the implementation of multiple Contracts:
	Flattening
	Contract Lists SHOULD always be flattened when specified. This comes into play when a Contract has its own Contract List (Section 7.6.1).

	Mixins
	The mixin design specifies the exact rules for how multiple Contracts are merged together. This section also specifies how conflicts are handled when multiple Contracts contain children with the same name (Section 7.6.2).

Table 7-4. Contract inheritance.
7.6.1 Flattening

It is common for Contract Objects themselves to implement Contracts, just like it is common in OO languages to chain the inheritance hierarchy. However due to the nature of accessing OBIX documents over a network, we wish to minimize round trip network requests which might be required to “learn” about a complex Contract hierarchy. Consider this example:
<obj href="/A" />
<obj href="/B" is="/A" />
<obj href="/C" is="/B" />
<obj href="/D" is="/C" />
In this example if we were reading Object D for the first time, it would take three more requests to fully learn what Contracts are implemented (one for C, B, and A). Furthermore, if our client was just looking for Objects that implemented B, it would difficult to determine this just by looking at D.
Because of these issues, servers are REQUIRED to flatten their Contract inheritance hierarchy into a list when specifying the is, of, in, or out attributes. In the example above, the correct representation would be:
<obj href="/A" />
<obj href="/B" is="/A" />
<obj href="/C" is="/B /A" />
<obj href="/D" is="/C /B /A" />
This allows clients to quickly scan D’s Contract List to see that D implements C, B, and A without further requests.
Because complex servers often have a complex Contract hierarchy of Object types, the requirement to flatten the Contract hierarchy can lead to a verbose Contract List. Often many of these Contracts are from the same namespace. For example:

<obj name=”VSD1” href=”acme:VSD-1” is=”acmeObixLibrary:VerySpecificDevice1 acmeObixLibrary:VerySpecificDeviceBase acmeObixLibrary:SpecificDeviceType acmeObixLibrary:BaseDevice acmeObixLibrary:BaseObject”/>

To save space, servers MAY choose to combine the Contracts from the same namespace and present the Contract List with the namespace followed by a colon, then a brace-enclosed list of Contract names:

<real name=”writableReal” is=”obix:{Point WritablePoint}”/>

<obj name=”VSD1” href=”acme:VSD-1” is=”acmeObixLibrary:{VerySpecificDevice1 VerySpecificDeviceBase SpecificDeviceType BaseDevice BaseObject}”/>

Clients MUST be able to consume this form of the Contract List and expand it to the standard form.

7.6.2 Mixins
Flattening is not the only reason a Contract List might contain multiple Contract URIs. OBIX also supports the more traditional notion of multiple inheritance using a mixin metaphor. Consider the following example:
<obj href="acme:Device">
 <str name="serialNo"/>
</obj>
<obj href="acme:Clock" is="acme:Device">
 <op name="snooze"/>
 <int name="volume" val="0"/>
</obj>
<obj href="acme:Radio" is="acme:Device ">
 <real name="station" min="87.0" max="107.5"/>
 <int name="volume" val="5"/>
</obj>
<obj href="acme:ClockRadio" is="acme:Radio acme:Clock acme:Device"/>
In this example ClockRadio implements both Clock and Radio. Via flattening of Clock and Radio, ClockRadio also implements Device. In OBIX this is called a mixin – Clock, Radio, and Device are mixed into (merged into) ClockRadio. Therefore ClockRadio inherits four children: serialNo, snooze, volume, and station. Mixins are a form of multiple inheritance akin to Java/C# interfaces (remember OBIX is about the type inheritance, not implementation inheritance).
Note that Clock and Radio both implement Device. This inheritance pattern where two types both inherit from a base, and are themselves both inherited by a single type, is called a “diamond” pattern from the shape it takes when the class hierarchy is diagrammed. From Device, ClockRadio inherits a child named serialNo. Furthermore notice that both Clock and Radio declare a child named volume. This naming collision could potentially create confusion for what serialNo and volume mean in ClockRadio.
In OBIX we solve this problem by flattening the Contract’s children using the following rules:
1. Process the Contract definitions in the order they are listed
2. If a new child is discovered, it is mixed into the Object’s definition
3. If a child is discovered we already processed via a previous Contract definition, then the previous definition takes precedence. However it is an error if the duplicate child is not Contract compatible with the previous definition (see Section 7.7).

In the example above this means that Radio.volume is the definition we use for ClockRadio.volume, because Radio has a higher precedence than Clock (it is first in the Contract List). Thus ClockRadio.volume has a default value of “5”. However it would be invalid if Clock.volume were declared as str, since it would not be Contract compatible with Radio’s definition as an int – in that case ClockRadio could not implement both Clock and Radio. It is the server vendor’s responsibility not to create incompatible name collisions in Contracts.
The first Contract in a list is given specific significance since its definition trumps all others. In OBIX this Contract is called the Primary Contract. It is recommended that the Primary Contract implement all the other Contracts specified in the Contract List (this actually happens quite naturally by itself in many programming languages). This makes it easier for clients to bind the Object into a strongly typed class if desired. Contracts MUST NOT implement themselves nor have circular inheritance dependencies.
7.7 Contract Compatibility
A Contract List which is covariantly substitutable with another Contract List is said to be Contract compatible. Contract compatibility is a useful term when talking about mixin rules and overrides for lists and operations. It is a fairly common sense notion similar to previously defined override rules – however, instead of the rules applied to individual Facet attributes, we apply it to an entire Contract List.
A Contract List X is compatible with Contract List Y, if and only if X narrows the value space defined by Y. This means that X can narrow the set of Objects which implement Y, but never expand the set. Contract compatibility is not commutative (X is compatible with Y does not imply Y is compatible with X). Practically, this can be expressed as: X can add new URIs to Y’s list, but never take any away.
7.8 Lists and Feeds
Implementations derived from list or feed Contracts inherit the of attribute. Like other attributes we can override the of attribute, but only if Contract compatible - a server SHOULD include all of the URIs in the Contract’s of attribute, but it MAY add additional ones (see Section 7.7).

Lists and feeds also have the special ability to implicitly define the Contract List of their contents. In the following example it is implied that each child element has a Contract List of /def/MissingPerson without actually specifying the is attribute in each list item:
<list of="/def/MissingPerson">
 <obj> <str name="fullName" val="Jack Shephard"/> </obj>
 <obj> <str name="fullName" val="John Locke"/> </obj>
 <obj> <str name="fullName" val="Kate Austen"/> </obj>
</list>
If an element in the list or feed does specify its own is attribute, then it MUST be Contract compatible with the of attribute.
If an implementer wishes to specify that a list should contain references to a given type, then the server SHOULD include obix:ref in the of attribute. This MUST be the first URI in the of attribute. For example, to specify that a list should contain references to obix:History Objects (as opposed to inline History Objects):
<list name="histories" of="obix:ref obix:History"/>
In many cases a server will implement its own management of the URI scheme of the child elements of a list. For example, the href attribute of child elements may be a database key, or some other string defined by the server when the child is added. Servers will not, in general, allow clients to specify this URI during addition of child elements through a direct write to a list’s subordinate URI.
Therefore, in order to add child elements to a list which supports client addition of list elements, servers MUST support adding list elements by writing to the list URI with an Object of a type that matches the list’s Contract. Servers MUST return the written resource (including any server-assigned href) upon successful completion of the write.
For example, given a list of <real> elements, and presupposing a server-imposed URI scheme:
<list href=”/a/b” of=”obix:real” writable=”true”/>
Writing to the list URI itself will replace the entire list if the server supports this behavior:
WRITE /a/b
<list of=”obix:real”>
 <real name=”foo” val=”10.0”/>
 <real name=”bar” val=”20.0”/>
</list>
returns:
<list href=”/a/b” of=”obix:real”>
 <real name=”foo” href=”1” val=”10.0”/>
 <real name=”bar” href=”2” val=”20.0”/>
</list>
Writing a single element of type <real> will add this element to the list.
WRITE /a/b
<real name=”baz” val=”30.0”/>
returns:
<real name=”baz” href=”/a/b/3” val=”30.0”/>
while the list itself is now:

<list href=”/a/b” of=”obix:real”>
 <real name=”foo” href=”1” val=”10.0”/>
 <real name=”bar” href=”2” val=”20.0”/>
 <real name=”baz” href=”3” val=”30.0”/>
</list>
Note that if a client has the correct URI to reference a list child element, this can still be used to modify the value of the element directly:
WRITE /a/b/3
<real name=”baz2” val=”33.0”/>
returns:
<real name=”baz2” href=”/a/b/3” val=”33.0”/>
and the list has been modified to:

<list href=”/a/b” of=”obix:real”>
 <real name=”foo” href=”1” val=”10.0”/>
 <real name=”bar” href=”2” val=”20.0”/>
 <real name=”baz” href=”3” val=”33.0”/>

</list>
8 Operations
OBIX Operations are the exposed actions that an OBIX Object can be commanded to take, i.e., they are things you can invoke to “do” something to the Object. Typically object-oriented languages express this concept as the publicly accessible methods on the object. They generally map to commands rather than a variable that has continuous state. Unlike Value Objects which represent an Object and its current state, the op element merely represents the definition of an operation you can invoke.
All operations take exactly one Object as a parameter and return exactly one Object as a result. The in and out attributes define the Contract List for the input and output Objects. If you need multiple input or output parameters, then wrap them in a single Object using a Contract as the signature. For example:
<op href="/addTwoReals" in="/def/AddIn" out="obix:real"/>
<obj href="/def/AddIn">
 <real name="a"/>
 <real name="b"/>
</obj>
Objects can override the operation definition from one of their Contracts. However the new in or out Contract List MUST be Contract compatible (see Section 7.7) with the Contract’s definition.

If an operation doesn’t require a parameter, then specify in as obix:Nil. If an operation doesn’t return anything, then specify out as obix:Nil. Occasionally an operation is inherited from a Contract which is unsupported in the implementation. In this case set the status attribute to disabled.
Operations are always invoked via their own href attribute (not their parent’s href). Therefore operations SHOULD always specify an href attribute if you wish clients to invoke them. A common exception to this rule is Contract definitions themselves.
9 Object Composition
Object Composition describes how multiple OBIX Objects representing individual pieces are combined to form a larger unit. The individual pieces can be as small as the various data fields in a simple thermostat, as described in Section 2, or as large as entire buildings, each themselves composed of multiple networks of devices. All of the OBIX Objects are linked together via URIs, similar to the way that the World Wide Web is a group of HTML documents hyperlinked together through URIs These OBIX Objects may be static documents like Contracts or device descriptions. Or they may be real-time data or services.
Individual Objects are composed together in two ways to define this web. Objects may be composed together via containment or via reference.
9.1 Containment
Any OBIX Object may contain zero or more children Objects. This even includes Objects which might be considered primitives such as bool or int. All Objects are open ended and free to specify new Objects which may not be in the Object’s Contract. Containment is represented in the XML syntax by nesting the XML elements:
<obj href="/a/">
 <list name="b" href="b">
 <obj href="b/c"/>
 </list>
</obj>
In this example the Object identified by “/a” contains “/a/b”, which in turn contains “/a/b/c”. Child Objects may be named or unnamed depending on if the name attribute is specified (Section 6.1). In the example, “/a/b” is named and “/a/b/c” is unnamed. Typically named children are used to represent fields in a record, structure, or class type. Unnamed children are often used in lists.
9.2 References
To discuss references, let’s return to our World Wide Web metaphor. Although the WWW is a web of individual HTML elements like <p> and <div>, we don’t actually pass individual <p> elements around over the network. Rather we “chunk” them into HTML documents and always pass the entire document over the network. To tie it all together, we create links between documents using the <a> anchor element. These anchors serve as place holders, referencing outside documents via a URI.
An OBIX reference is basically just like an HTML anchor. It serves as placeholder to “link” to another OBIX Object via a URI. While containment is best used to model small trees of data, references may be used to model very large trees or graphs of Objects. With references we can link together all OBIX Objects on the Internet to create the OBIX Web.
As a clue to clients consuming OBIX references, the server SHOULD specify the type of the referenced Object using the is attribute. In addition, for the list element type, the server SHOULD use the of attribute to specify the type of Objects contained by the list. This allows the client to prepare the proper visualizations, data structures, etc. for consuming the Object when it accesses the actual Object. For example, a server might provide a reference to a list of available points:
<ref name=”points” is=”obix:list” of=”obix:Point”/>
9.3 Extents
Within any problem domain, the intra-model relationships can be expressed by using either containment or references. The choice changes the semantics of both the model expression as well as the method for accessing the elements within the model. The containment relationship is imbued with special semantics regarding encoding and event management. If the model is expressed through containment, then we use the term Extent to refer to the tree of children contained within that Object, down to references. Only Objects which have an href have an Extent. Objects without an href are always included within the Extent of one or more referenceable Objects which we term its Ancestors. This is demonstrated in the following example.
<obj href="/a/">
 <obj name="b" href="b">
 <obj name="c"/>
 <ref name="d" href="/d"/>
 </obj>
 <ref name="e" href="/e"/>
</obj>
In the example above, we have five Objects named ‘a’ to ‘e’. Because ‘a’ includes an href, it has an associated extent, which encompasses ‘b’ and ‘c’ by containment and ‘d’ and ‘e’ by reference. Likewise, ‘b’ has an href which results in an extent encompassing ‘c’ by containment and ‘d’ by reference. Object ‘c’ does not provide a direct href, but exists in both the ‘a’ and ‘b’ Objects’ extents. Note an Object with an href has exactly one extent, but can be nested inside multiple extents.
9.3.1 Inlining Extents

When marshaling Objects into an OBIX document, it is required that an extent always be fully inlined into the document. The only valid Objects which may be references outside the document are ref Objects. In order to allow conservation of bandwidth usage, processing time, and storage requirements, servers SHOULD use non-ref Objects only for representing primitive children which have no further extent. Refs SHOULD be used for all complex children that have further structure under them. Clients MUST be able to consume the refs and then request the referenced object if it is needed for the application. As an example, consider a server which has the following object tree, represented here with full extent:

<obj name=”MyBuilding” href=”/building/”>

 <str name=”address” val=”123 Main Street”/>

 <obj name=”Floor1”>

 <obj name=”Zone1”>

 <obj name=”Room1”/>

 </obj>

 </obj>

</obj>

When marshaled into an OBIX document to respond to a client Read request of the /building/ URI, the server SHOULD inline only the address, and use a ref for Floor1:

<obj name=”MyBuilding” href=”/building/”>

 <str name=”address” val=”123 Main Street”/>

 <ref name=”Floor1” href=”floor1”/>

</obj>

If the Object implements a Contract, then it is required that the extent defined by the Contract be fully inlined into the document (unless the Contract itself defined a child as a ref element). An example of a Contract which specifies a child as a ref is Lobby.about (Section 5.1).
9.4 Alternate Hierarchies

An OBIX Server MAY present Tags that reference additional information about each OBIX Object. If these Tags are part of a formal semantic model, e.g., Haystack, BIM, etc., then the Tags will be identified by reference to its source semantic model. The identifier for such Tags, along with the URI for the semantic model it represents, MUST be declared in the Lobby (see Section 5 for a description of the Lobby Object). A server MUST use the semicolon character (;) to indicate an alternate hierarchy. For example, a server might present tag metadata from tag dictionary d1 in presenting a particular object in its system:

<real href=”/bldg/floor1/room101/” name=”Room101” val=”70.0”>

 <ref name=”tags” href=”../room101;meta”/>

</real>

<obj name=”tags” href=”/bldg/floor1/room101;meta”>

 <obj name=”d1:temperature”/>

 <int name=”d1:roomNumber” val=”101”/>

 <uri name=”d1:vavReference” val=”/bldg/vavs/vav101”/>

 </obj>

Servers SHOULD only provide this information to clients that are properly authenticated and authorized, to avoid providing a vector for attack if usage of a particular model identifies the server as an interesting target.

The metadata SHOULD be presented using the ref element, so this additional information can be skipped during normal encoding. If a client is able to consume the metadata, it SHOULD ask for the metadata by requesting the metadata hierarchy.

OBIX Clients SHALL ignore information that they do not understand. In particular, a conformant client that is presented with Tags that it does not understand MUST ignore those Tags. No OBIX Server may require understanding of these Tags for interoperation.

10 Networking

The heart of OBIX is its object model and associated encoding. However, the primary use case for OBIX is to access information and services over a network. The OBIX architecture is based on a client/server network model, described below:
	Server
	An entity containing OBIX enabled data and services. Servers respond to requests from client over a network.

	Client
	An entity which makes requests to servers over a network to access OBIX enabled data and services.

Table 10-1. Network model for OBIX.
There is nothing to prevent a device or system from being both an OBIX client and server. However, a key tenet of OBIX is that a client is NOT REQUIRED to implement server functionality which might require a server socket to accept incoming requests.
10.1 Service Requests
All service requests made against an OBIX server can be distilled to 4 atomic operations, expressed in the following Table:
	Request
	Description

	Read
	Return the current state of an object at a given URI as an OBIX Object.

	Write
	Update the state of an existing object at a URI. The state to write is passed over the network as an OBIX Object. The new updated state is returned in an OBIX Object.

	Invoke
	Invoke an operation identified by a given URI. The input parameter and output result are passed over the network as an OBIX Object.

	Delete
	Delete the object at a given URI.

Table 10-2. OBIX Service Requests.
Exactly how these requests and responses are implemented between a client and server is called a protocol binding. The OBIX specification defines standard protocol bindings in separate companion documents. All protocol bindings MUST follow the same read, write, invoke, and delete semantics discussed next.

10.1.1 Read
The read request specifies an object’s URI and the read response returns the current state of the object as an OBIX document. The response MUST include the Object’s complete extent (see Section 9.3). Servers may return an err Object to indicate the read was unsuccessful – the most common error is obix:BadUriErr (see Section 10.2 for standard error Contracts).

10.1.2 Write

The write request is designed to overwrite the current state of an existing Object. The write request specifies the URI of an existing Object and its new desired state. The response returns the updated state of the Object. If the write is successful, the response MUST include the Object’s complete extent (see Section 9.3). If the write is unsuccessful, then the server MUST return an err Object indicating the failure.
The server is free to completely or partially ignore the write, so clients SHOULD be prepared to examine the response to check if the write was successful. Servers may also return an err Object to indicate the write was unsuccessful.
Clients are not required to include the Object’s full extent in the request. Objects explicitly specified in the request object tree SHOULD be overwritten or “overlaid” over the server’s actual object tree. Only the val attribute should be specified for a write request (outside of identification attributes such as name). The null attribute MAY also be used to set an Object to null. If the null attribute is not specified and the val attribute is specified, then it is implied that null is false. A write operation that provides Facets has unspecified behavior. When writing int or reals with units, the write value MUST be in the same units as the server specifies in read requests – clients MUST NOT provide a different unit Facet and expect the server to auto-convert (in fact the unit Facet SHOULD NOT be included in the request).
10.1.3 Invoke
The invoke request is designed to trigger an operation. The invoke request specified the URI of an op Object and the input argument Object. The response includes the output Object. The response MUST include the output Object’s complete extent (see Section 9.3). Servers MAY instead return an err Object to indicate the invocation was unsuccessful.

10.1.4 Delete
The delete request is designed to remove an existing Object from the server. The delete request specifies the URI of an existing Object. If the delete is successful, the server MUST return an empty response. If the delete is unsuccessful, the server MUST return an err Object indicating the failure.
10.2 Errors
Request errors are conveyed to clients with the err element. Any time an OBIX server successfully receives a request and the request cannot be processed, then the server SHOULD return an err Object to the client. Returning a valid OBIX document with err SHOULD be used when feasible rather than protocol specific error handling (such as an HTTP response code). Such a design allows for consistency with batch request partial failures and makes protocol binding more pluggable by separating data transport from application level error handling.
The following Table describes the base Contracts predefined for representing common errors:
	Err Contract
	Usage

	BadUriErr
	Used to indicate either a malformed URI or a unknown URI

	UnsupportedErr
	Used to indicate an a request which isn’t supported by the server implementation (such as an operation defined in a Contract, which the server doesn’t support)

	PermissionErr
	Used to indicate that the client lacks the necessary security permission to access the object or operation

Table 10-3. OBIX Error Contracts.
The Contracts for these errors are:
<err href="obix:BadUriErr"/>
<err href="obix:UnsupportedErr"/>
<err href="obix:PermissionErr"/>
If one of the above Contracts makes sense for an error, then it SHOULD be included in the err element’s is attribute. It is strongly encouraged to also include a useful description of the problem in the display attribute.
10.3 Localization

Servers SHOULD localize appropriate data based on the desired locale of the client agent. Localization SHOULD include the display and displayName attributes. The desired locale of the client SHOULD be determined through authentication or through a mechanism appropriate to the binding used. A suggested algorithm is to check if the authenticated user has a preferred locale configured in the server’s user database, and if not then fallback to the locale derived from the binding.

Localization MAY include auto-conversion of units. For example if the authenticated user has configured a preferred unit system such as English versus Metric, then the server might attempt to convert values with an associated unit facet to the desired unit system.
11 Core Contract Library
This chapter defines some fundamental Object Contracts that serve as building blocks for the OBIX specification.
11.1 Nil
The obix:Nil Contract defines a standardized null Object. Nil is commonly used for an operation’s in or out attribute to denote the absence of an input or output. The definition:
<obj href="obix:Nil" null="true"/>
11.2 Range
The obix:Range Contract is used to define a bool or enum’s range. Range is a list Object that contains zero or more Objects called the range items. Each item’s name attribute specifies the identifier used as the literal value of an enum. Item ids are never localized, and MUST be used only once in a given range. You may use the optional displayName attribute to specify a localized string to use in a user interface. The definition of Range:
<list href="obix:Range" of="obix:obj"/>
An example:
<list href="/enums/OffSlowFast" is="obix:Range">
 <obj name="off" displayName="Off"/>
 <obj name="slow" displayName="Slow Speed"/>
 <obj name="fast" displayName="Fast Speed"/>
</list>
The range Facet may be used to define the localized text of a bool value using the ids of “true” and “false”:
<list href="/enums/OnOff" is="obix:Range">
 <obj name="true" displayName="On"/>
 <obj name="false" displayName="Off"/>
</list >
11.3 Weekday
The obix:Weekday Contract is a standardized enum for the days of the week:
<enum href="obix:Weekday" range="#Range">
 <list href="#Range" is="obix:Range">
 <obj name="sunday" />
 <obj name="monday" />
 <obj name="tuesday" />
 <obj name="wednesday" />
 <obj name="thursday" />
 <obj name="friday" />
 <obj name="saturday" />
 </list>
</enum>
11.4 Month
The obix:Month Contract is a standardized enum for the months of the year:
<enum href="obix:Month" range="#Range">
 <list href="#Range" is="obix:Range">
 <obj name="january" />
 <obj name="febuary" />
 <obj name="march" />
 <obj name="april" />
 <obj name="may" />
 <obj name="june" />
 <obj name="july" />
 <obj name="august" />
 <obj name="september" />
 <obj name="october" />
 <obj name="november" />
 <obj name="december" />
 </list>
</enum>
11.5 Units
Representing units of measurement in software is a thorny issue. OBIX provides a unit framework for mathematically defining units within the object model. An extensive database of predefined units is also provided.
All units measure a specific quantity or dimension in the physical world. Most known dimensions can be expressed as a ratio of the seven fundamental dimensions: length, mass, time, temperature, electrical current, amount of substance, and luminous intensity. These seven dimensions are represented in the SI Units system respectively as kilogram (kg), meter (m), second (sec), Kelvin (K), ampere (A), mole (mol), and candela (cd).
The obix:Dimension Contract defines the ratio of the seven SI units using a positive or negative exponent:
<obj href="obix:Dimension">
 <int name="kg" val="0"/>
 <int name="m" val="0"/>
 <int name="sec" val="0"/>
 <int name="K" val="0"/>
 <int name="A" val="0"/>
 <int name="mol" val="0"/>
 <int name="cd" val="0"/>
</obj>
A Dimension Object contains zero or more ratios of kg, m, sec, K, A, mol, or cd. Each of these ratio maps to the exponent of that base SI unit. If a ratio is missing then the default value of zero is implied. For example acceleration is m/s2, which would be encoded in OBIX as:
<obj is="obix:Dimension">
 <int name="m" val="1"/>
 <int name="sec" val="-2"/>
</obj>
Units with equal dimensions are considered to measure the same physical quantity. This is not always precisely true, but is good enough for practice. This means that units with the same dimension are convertible. Conversion can be expressed by specifying the formula required to convert the unit to the dimension’s normalized unit. The normalized unit for every dimension is the ratio of SI units itself. For example the normalized unit of energy is the joule m2(kg(s-2. The kilojoule is 1000 joules and the watt-hour is 3600 joules. Most units can be mathematically converted to their normalized unit and to other units using the linear equations:

unit = dimension (scale + offset
toNormal = scalar (scale + offset
fromNormal = (scalar - offset) / scale
toUnit = fromUnit.fromNormal(toUnit.toNormal(scalar))
There are some units which don’t fit this model including logarithm units and units dealing with angles. But this model provides a practical solution for most problem spaces. Units which don’t fit this model SHOULD use a dimension where every exponent is set to zero. Applications SHOULD NOT attempt conversions on these types of units.
The obix:Unit Contract defines a unit including its dimension and its toNormal equation:
<obj href="obix:Unit">
 <str name="symbol"/>
 <obj name="dimension" is="obix:Dimension"/>
 <real name="scale" val="1"/>
 <real name="offset" val="0"/>
</obj>
The unit element contains symbol, dimension, scale, and offset sub-Objects, as described in the following Table:
	symbol
	The symbol element defines a short abbreviation to use for the unit. For example “(F” would be the symbol for degrees Fahrenheit. The symbol element SHOULD always be specified.

	dimension
	The dimension Object defines the dimension of measurement as a ratio of the seven base SI units. If omitted, the dimension Object defaults to the obix:Dimension Contract, in which case the ratio is the zero exponent for all seven base units.

	scale
	The scale element defines the scale variable of the toNormal equation. The scale Object defaults to 1.

	offset
	The offset element defines the offset variable of the toNormal equation. If omitted then offset defaults to 0.

Table 11-1. OBIX Unit composition.
The display attribute SHOULD be used to provide a localized full name for the unit based on the client’s locale. If the display attribute is omitted, clients SHOULD use symbol for display purposes.
An example for the predefined unit for kilowatt:
<obj href="obix:units/kilowatt" display="kilowatt">
 <str name="symbol" val="kW"/>
 <obj name="dimension">
 <int name="m" val="2"/>
 <int name="kg" val="1"/>
 <int name="sec" val="-3"/>
 </obj>
 <real name="scale" val="1000"/>
</obj>
Automatic conversion of units is considered a localization issue.
12 Watches
A key requirement of OBIX is access to real-time information. We wish to enable clients to efficiently receive access to rapidly changing data. However, we don’t want to require clients to implement web servers or expose a well-known IP address. In order to address this problem, OBIX provides a model for event propagation called Watches.
The Implicit Contract for Watch is described in the following lifecycle:
· The client creates a new Watch Object with the make operation on the server’s WatchService URI. The server defines a new Watch Object and provides a URI to access the new Watch.

· The client registers (and unregisters) Objects to watch using operations on the Watch Object.

· The server tracks events that occur on the Objects in the Watch.

· The client receives events from the server about changes to Objects in the Watch. The events can be polled by the client (see 12.1) or pushed by the server (see 12.2).

· The client may invoke the pollRefresh operation at any time to obtain a full list of the current value of each Object in the Watch.
· The Watch is freed, either by the explicit request of the client using the delete operation, or when the server determines the Watch is no longer being used. See Sections 12.1 and 12.2 for details on the criteria for server removal of Watches. When the Watch is freed, the Objects in it are no longer tracked by the server and the server may return any resources used for it to the system.
Watches allow a client to maintain a real-time cache of the current state of one or more Objects. They are also used to access an event stream from a feed Object. Watches also serve as the standardized mechanism for managing per-client state on the server via leases.
12.1 Client Polled Watches

When the underlying binding does not allow the server to send unsolicited messages, the Watch must be periodically polled by the client. The Implicit Contract for Watch in this scenario is extended as follows:

· The client SHOULD periodically poll the Watch URI using the pollChanges operation to obtain the events which have occurred since the last poll.
· In addition to freeing the Watch by explicit request of the client, the server MAY free the Watch if the client fails to poll for a time greater than the lease time of the Watch. See the lease property in Section 12.4.5.
12.2 Server Pushed Watches

Some bindings, for example the OBIX WebSockets binding, may allow unsolicited transmission by either the client or the server. If this is possible the standard Implicit Contract for Watch behavior is extended as follows:

· Change events are sent by the server directly to the client as unsolicited updates.

· The lease time property of the Watch MUST NOT be used for server automatic removal of the Watch. The Watch SHOULD remain active without the need for the client to invoke the pollChanges or pollRefresh operations.

· The Watch MUST be removed by the server upon termination of the underlying session between the client and server, in addition to the normal removal upon explicit client request.

· The server MUST return an empty list upon invocation of the pollChanges operation.

Watches used in servers that can push events MUST provide three additional properties for configuring the Watch behavior:

· bufferDelay: The implicit contract for bufferDelay is the period of time for which any events on watched objects will be buffered before being sent by the server in an update. Clients must be able to regulate the flow of messages from the server. A common scenario is an OBIX client application on a mobile device where the bandwidth usage is important; for example, a server sending updates every 50 milliseconds as a sensor value jitters around will cause problems. On the other hand, server devices may be constrained in terms of the available space for buffering changes. Servers are free to set a maximum value on bufferDelay through the max Facet to constrain the maximum delay before the server will report events.
· maxBufferedEvents: Servers may also use the maxBufferedEvents property to indicate the maximum number of events that can be retained before the buffer must be sent to the client to avoid missing events.
· bufferPolicy: This enum property defines the handling of the buffer on the server side when further events occur while the buffer is full. A value of violate means that the bufferDelay property is violated and the events are sent, allowing the buffer to be emptied. A value of LIFO (last-in-first-out) means that the most recently added buffer event is replaced with the new event. A value of FIFO (first-in-first-out) means that the oldest buffer event is dropped to make room for the new event.
· NOTE: A server using a bufferPolicy of either LIFO or FIFO will not send events when a buffer overrun occurs, and this means that some events will not be received by the client. It is up to the client and server to negotiate appropriate values for these three properties to ensure that events are not lost, if that is important to the application.
Note that bufferDelay MUST be writable by the client, as the client capabilities typically constrain the bandwidth usage. Server capabilities typically constrain maxBufferedEvents, and thus this is generally not writable by clients.
12.3 WatchService
The WatchService Object provides a well-known URI as the factory for creating new Watches. The WatchService URI is available directly from the Lobby Object. The Contract for WatchService:
<obj href="obix:WatchService">
 <op name="make" in="obix:Nil" out="obix:Watch"/>
</obj>
The make operation returns a new empty Watch Object as an output. The href of the newly created Watch Object can then be used for invoking operations to populate and poll the data set.
12.4 Watch
The Watch Object is used to manage a set of Objects which are subscribed by clients to receive the latest events. The Explicit Contract definitions are:
<obj href="obix:Watch">
 <reltime name="lease" min="PT0S" writable="true"/>
 <reltime name=”bufferDelay” min=”PT0S” writable=”true” null=”true”/>

 <int name=”maxBufferedEvents” null=”true”/>

 <enum name=”bufferPolicy” is=”obix:WatchBufferPolicy” null=”true”/>
 <op name="add" in="obix:WatchIn" out="obix:WatchOut"/>
 <op name="remove" in="obix:WatchIn"/>
 <op name="pollChanges" out="obix:WatchOut"/>
 <op name="pollRefresh" out="obix:WatchOut"/>
 <op name="delete"/>
</obj>
<enum href=”obix:WatchBufferPolicy” range=”#Range”>

 <list href=”#Range” is=”obix:Range”>

 <obj name=”violate” />

 <obj name=”LIFO” />

 <obj name=”FIFO” />

 </list>

</enum>

<obj href="obix:WatchIn">
 <list name="hrefs" of="obix:WatchInItem"/>
</obj>
<uri href="obix:WatchInItem">
 <obj name="in"/>
</uri>
<obj href="obix:WatchOut">
 <list name="values" of="obix:obj"/>
</obj>
Many of the Watch operations use two Contracts: obix:WatchIn and obix:WatchOut. The client identifies Objects to add and remove from the poll list via WatchIn. This Object contains a list of URIs. Typically these URIs SHOULD be server relative.
The server responds to add, pollChanges, and pollRefresh operations via the WatchOut Contract. This Object contains the list of subscribed Objects - each Object MUST specify an href URI using the exact same string as the URI identified by the client in the corresponding WatchIn. Servers MUST NOT perform any case conversions or normalization on the URI passed by the client. This allows client software to use the URI string as a hash key to match up server responses.
12.4.1 Watch.add
Once a Watch has been created, the client can add new Objects to the Watch using the add operation. The Objects returned are required to specify an href using the exact string representation input by the client. If any Object cannot be processed, then a partial failure SHOULD be expressed by returning an err Object with the respective href. Subsequent URIs MUST NOT be affected by the failure of one invalid URI. The add operation MUST never return Objects not explicitly included in the input URIs (even if there are already existing Objects in the watch list). No guarantee is made that the order of Objects in WatchOut matches the order in of URIs in WatchIn – clients must use the URI as a key for matching.
Note that the URIs supplied via WatchIn may include an optional in parameter. This parameter is only used when subscribing a Watch to a feed Object. Feeds also differ from other Objects in that they return a list of historic events in WatchOut. Feeds are discussed in detail in Section12.6.

It is invalid to add an op’s href to a Watch; the server MUST report an err.

If an attempt is made to add a URI to a Watch which was previously already added, then the server SHOULD return the current Object’s value in the WatchOut result, but treat poll operations as if the URI was only added once – polls SHOULD only return the Object once. If an attempt is made to add the same URI multiple times in the same WatchIn request, then the server SHOULD only return the Object once.
12.4.1.1 Watch Object URIs

The lack of a trailing slash in watched Object URIs can cause problems with Watches. Consider a client which adds a URI to a Watch without a trailing slash. The client will use this URI as a key in its local hashtable for the Watch. Therefore the server MUST use the URI exactly as the client specified. However, if the Object’s extent includes child Objects they will not be able to use relative URIs. It is RECOMMENDED that servers fail fast in these cases and return a BadUriErr when clients attempt to add a URI without a trailing slash to a Watch (even though they may allow it for a normal read request).
12.4.2 Watch.remove
The client can remove Objects from the watch list using the remove operation. A list of URIs is input to remove, and the Nil Object is returned. Subsequent pollChanges and pollRefresh operations MUST cease to include the specified URIs. It is possible to remove every URI in the watch list; but this scenario MUST NOT automatically free the Watch, rather normal poll and lease rules still apply. It is invalid to use the WatchInItem.in parameter for a remove operation.
12.4.3 Watch.pollChanges
Clients SHOULD periodically poll the server using the pollChanges operation. This operation returns a list of the subscribed Objects which have changed. Servers SHOULD only return the Objects which have been modified since the last poll request for the specific Watch. As with add, every Object MUST specify an href using the exact same string representation the client passed in the original add operation. The entire extent of the Object SHOULD be returned to the client if any one thing inside the extent has changed on the server side.
Invalid URIs MUST never be included in the response (only in add and pollRefresh). An exception to this rule is when an Object which is valid is removed from the URI space. Servers SHOULD indicate an Object has been removed via an err with the BadUriErr Contract.
12.4.4 Watch.pollRefresh
The pollRefresh operation forces an update of every Object in the watch list. The server MUST return every Object and its full extent in the response using the href with the exact same string representation passed by the client in the original add. Invalid URIs in the poll list SHOULD be included in the response as an err element. A pollRefresh resets the poll state of every Object, so that the next pollChanges only returns Objects which have changed state since the pollRefresh invocation.
12.4.5 Watch.lease
All Watches have a lease time, specified by the lease child. If the lease time elapses without the client initiating a request on the Watch, and the Watch is a client-polled Watch, then the server MAY expire the Watch. Every new poll request resets the lease timer. So as long as the client polls at least as often as the lease time, the server SHOULD maintain the Watch. The following requests SHOULD reset the lease timer: read of the Watch URI itself or invocation of the add, remove, pollChanges, or pollRefresh operations.
Clients may request a different lease time by writing to the lease Object (requires servers to assign an href to the lease child). The server is free to honor the request, cap the lease within a specific range, or ignore the request. In all cases the write request will return a response containing the new lease time in effect.
Servers SHOULD report expired Watches by returning an err Object with the BadUriErr Contract. As a general principle servers SHOULD honor Watches until the lease runs out (for client-polled Watches) or the client explicitly invokes delete. However, servers are free to cancel Watches as needed (such as power failure) and the burden is on clients to re-establish a new Watch.
12.4.6 Watch.delete
The delete operation can be used to cancel an existing Watch. Clients SHOULD always delete their Watch when possible to be good OBIX citizens. However servers MUST always cleanup correctly without an explicit delete when the lease expires or the session is terminated.
12.5 Watch Depth
When a Watch is put on an Object which itself has child Objects, how does a client know how “deep” the subscription goes? OBIX requires Watch depth to match an Object‘s extent (see Section 9.3). When a Watch is put on a target Object, a server MUST notify the client of any changes to any of the Objects within that target Object’s extent. If the extent includes feed Objects, they are not included in the Watch – feeds have special Watch semantics discussed in Section 12.6. This means a Watch is inclusive of all descendents within the extent except refs and feeds.
12.6 Feeds
Servers may expose event streams using the feed Object. The event instances are typed via the feed’s of attribute. Clients subscribe to events by adding the feed’s href to a Watch, optionally passing an input parameter which is typed via the feed’s in attribute. The Object returned from Watch.add is a list of historic events (or the empty list if no event history is available). Subsequent calls to pollChanges return the list of events which have occurred since the last poll.
Let’s consider a simple example for an Object which fires an event when its geographic location changes:
<obj href="/car/">
 <feed href="moved" of="/def/Coordinate"/>
<obj>
<obj href="/def/Coordinate">
 <real name="lat"/>
 <real name="long"/>
</obj>
We subscribe to the moved event feed by adding “/car/moved” to a Watch. The WatchOut will include the list of any historic events which have occurred up to this point in time. If the server does not maintain an event history this list will be empty:
<obj is="obix:WatchIn">
 <list names="hrefs">
 <uri val="/car/moved" />
 </list>
</obj>
<obj is="obix:WatchOut">
 <list names="values">
 <feed href="/car/moved" of="/def/Coordinate/" /> <!-- empty history -->
 </list>
</obj>
Now every time we call pollChanges for the Watch, the server will send us the list of event instances which have accumulated since our last poll:
<obj is="obix:WatchOut">
 <list names="values">
 <feed href="/car/moved" of="/def/Coordinate">
 <obj>
 <real name="lat" val="37.645022"/>
 <real name="long" val="-77.575851"/>
 </obj>
 <obj>
 <real name="lat" val="37.639046"/>
 <real name="long" val="-77.61872"/>
 </obj>
 </feed>
 </list>
</obj>
Note the feed’s of attribute works just like the list’s of attribute. The children event instances are assumed to inherit the Contract defined by of unless explicitly overridden. If an event instance does override the of Contract, then it MUST be Contract compatible. Refer to the rules defined in Section 7.8.

Invoking a pollRefresh operation on a Watch with a feed that has an event history, SHOULD return all the historical events as if the pollRefresh was an add operation. If an event history is not available, then pollRefresh SHOULD act like a normal pollChanges and just return the events which have occurred since the last poll.
13 Points
Anyone familiar with automation systems immediately identifies with the term Point (sometimes called tags in the industrial space). Although there are many different definitions, generally points map directly to a sensor or actuator (called Hard Points). Sometimes the concept of a Point is mapped to a configuration variable such as a software setpoint (called Soft Points). In some systems Point is an atomic value, and in others it encapsulates a great deal of status and configuration information.
The goal of OBIX is to capture a normalization representation of Points without forcing an impedance mismatch on implementers trying to make their native system OBIX accessible. To meet this requirement, OBIX defines a low level abstraction for Point - simply one of the primitive value types with associated status information. Point is basically just a marker Contract used to tag an Object as exhibiting “Point” semantics:
<obj href="obix:Point"/>

This Contract MUST only be used with the value primitive types: bool, real, enum, str, abstime, and reltime. Points SHOULD use the status attribute to convey quality information. This Table specifies how to map common control system semantics to a value type:
	Point type
	OBIX Object
	Example

	digital Point
	bool
	<bool is="obix:Point" val="true"/>

	analog Point
	real
	<real is="obix:Point" val="22" unit="obix:units/celsius"/>

	multi-state Point
	enum
	<enum is="obix:Point" val="slow"/>

Table 13-1. Base Point types.
13.1 Writable Points
Different control systems handle Point writes using a wide variety of semantics. Sometimes we write a Point at a specific priority level. Sometimes we override a Point for a limited period of time, after which the Point falls back to a default value. The OBIX specification does not attempt to impose a specific model on implementers. Rather OBIX provides a standard WritablePoint Contract which may be extended with additional mixins to handle special cases. WritablePoint defines write as an operation which takes a WritePointIn structure containing the value to write. The Contracts are:
<obj href="obix:WritablePoint" is="obix:Point">
 <op name="writePoint" in="obix:WritePointIn" out="obix:Point"/>
</obj>
<obj href="obix:WritePointIn">
 <obj name="value"/>
</obj>
It is implied that the value passed to writePoint MUST match the type of the Point. For example if WritablePoint is used with an enum, then writePoint MUST pass an enum for the value.
14 History
Most automation systems have the ability to persist periodic samples of point data to create a historical archive of a point’s value over time. This feature goes by many names including logs, trends, or histories. In OBIX, a history is defined as a list of time stamped point values. The following features are provided by OBIX histories:
	History Object
	A normalized representation for a history itself

	History Record
	A record of a point sampling at a specific timestamp

	History Query
	A standard way to query history data as Points

	History Rollup
	A standard mechanism to do basic rollups of history data

	History Append
	The ability to push new history records into a history

Table 14-1. Features of OBIX Histories.
14.1 History Object
Any Object which wishes to expose itself as a standard OBIX history implements the obix:History Contract:
<obj href="obix:History">
 <int name="count" min="0" val="0"/>
 <abstime name="start" null="true"/>
 <abstime name="end" null="true"/>
 <str name="tz" null="true"/>
 <list name=”formats” of=”obix:str” null=”true”/>
 <op name="query" in="obix:HistoryFilter" out="obix:HistoryQueryOut"/>
 <feed name="feed" in="obix:HistoryFilter" of="obix:HistoryRecord"/>
 <op name="rollup" in="obix:HistoryRollupIn" out="obix:HistoryRollupOut"/>
 <op name="append" in="obix:HistoryAppendIn" out="obix:HistoryAppendOut"/>
</obj>
The child properties of obix:History are:
	Property
	Description

	count
	The number of history records contained by the history

	start
	Provides the timestamp of the oldest record. The timezone of this abstime MUST match History.tz

	end
	Provides the timestamp of the newest record. The timezone of this abstime MUST match History.tz

	tz
	A standardized timezone identifier for the history data (see Section 4.1.11)

	formats
	Provides a list of strings describing the formats in which the server can provide the history data

	query
	The operation used to query the history to read history records

	feed
	The object used to subscribe to a real-time feed of history records

	rollup
	The operation used to perform history rollups (it is only supported for numeric history data)

	append
	The operation used to push new history records into the history

Table 14-2. Properties of obix:History.
An example of a history which contains an hour of 15 minute temperature data:
<obj href="http://x/outsideAirTemp/history/" is="obix:History">
 <int name="count" val="5"/>
 <abstime name="start" val="2005-03-16T14:00:00-05:00" tz="America/New_York"/>
 <abstime name="end" val="2005-03-16T15:00:00-05:00" tz="America/New_York"/>
 <str name="tz" val="America/New_York"/>
 <list name=”formats” of=”obix:str”>

 <str val=”text/csv”/>

 </list>
 <op name="query" href="query"/>
 <op name="rollup" href="rollup"/>
</obj>
14.2 History Queries
Every History Object contains a query operation to query the historical data. A client MAY invoke the query operation to request the data from the server as an obix:HistoryQueryOut. Alternatively, if the server is able to provide the data in a different format, such as CSV, it SHOULD list these additionally supported formats in the formats field. A client MAY then supply one of these defined formats in the HistoryFilter input query.
14.2.1 HistoryFilter
The History.query input Contract:
<obj href="obix:HistoryFilter">
 <int name="limit"
null=”true”/>
 <abstime name="start"
null="true"/>
 <abstime name="end"
null="true"/>
 <str name=”format”
null=”true”/>

 <bool name=”compact” val=”false”/>
</obj>
These fields are described in detail in this Table:
	Field
	Description

	limit
	An integer indicating the maximum number of records to return. Clients can use this field to throttle the amount of data returned by making it non-null. Servers MUST never return more records than the specified limit. However servers are free to return fewer records than the limit.

	start
	If non-null this field indicates an inclusive lower bound for the query’s time range. This value SHOULD match the history’s timezone, otherwise the server MUST normalize based on absolute time.

	end
	If non-null this field indicates an inclusive upper bound for the query’s time range. This value SHOULD match the history’s timezone, otherwise the server MUST normalize based on absolute time.

	format
	If non-null this field indicates the format that the client is requesting for the returned data. If the client uses this field the server MUST return a HistoryQueryOut with a non-null dataRef URI, or return an error if it is unable to supply the requested format. A client SHOULD use one of the formats defined in the History’s formats field when using this field in the filter.

	compact
	If non-null and true, this field indicates the client is requesting the data in the compact format described below. If false or null, the server MUST return the data in the standard format compatible with the 1.0 specification.

Table 14-3. Properties of obix:HistoryFilter.
14.2.2 HistoryQueryOut
The History.query output Contract:
<obj href="obix:HistoryQueryOut">
 <int name="count" min="0" val="0"/>
 <abstime name="start" null="true"/>
 <abstime name="end" null="true"/>
 <list name="data" of="obix:HistoryRecord" null=”true”/>
 <uri name=”dataRef” null=”true”/>
</obj>
Just like History, every HistoryQueryOut returns count, start, and end. But unlike History, these values are for the query result, not the entire history. The actual history data is stored as a list of HistoryRecords in the data field. Remember that child order is not guaranteed in OBIX, therefore it might be common to have count after data. The start, end, and data HistoryRecord timestamps MUST have a timezone which matches History.tz.
When using a client-requested format, the server MUST provide a URI that can be followed by the client to obtain the history data in the alternate format. The exact definition of this format is out of scope of this specification, but SHOULD be agreed upon by both the client and server.
14.2.3 HistoryRecord
The HistoryRecord Contract specifies a record in a history query result:
<obj href="obix:HistoryRecord">
 <abstime name="timestamp" null="true"/>
 <obj name="value" null="true"/>
</obj>
Typically the value SHOULD be one of the value types used with obix:Point.
14.2.4 History Query Examples
Let’s examine an example query from the “/outsideAirTemp/history” example above.

14.2.4.1 History Query as OBIX Objects

First let’s see how a client and server interact using the standard history query mechanism:
Client invoke request:

INVOKE http://x/outsideAirTemp/history/query
<obj name=”in” is=”obix:HistoryFilter”>

 <int name="limit" val=”5”/>
 <abstime name="start" val=”2005-03-16T14:00:00-05:00” tz="America/New_York"/>
</obj>
Server response:

<obj href="http://x/outsideAirTemp/history/query" is="obix:HistoryQueryOut">
 <int name="count" val="5"/>
 <abstime name="start" val="2005-03-16T14:00:00-05:00" tz="America/New_York"/>
 <abstime name="end" val="2005-03-16T15:00:00-05:00" tz="America/New_York"/>
 <reltime name=”interval” val=”PT15M”/>
 <list name="data" of="#RecordDef obix:HistoryRecord">
 <obj> <abstime name="timestamp" val="2005-03-16T14:00:00-05:00"/>
 <real name="value" val="40"/> </obj>
 <obj> <abstime name="timestamp" val="2005-03-16T14:15:00-05:00"/>
 <real name="value" val="42"/> </obj>
 <obj> <abstime name="timestamp" val="2005-03-16T14:30:00-05:00"/>
 <real name="value" val="43"/> </obj>
 <obj> <abstime name="timestamp" val="2005-03-16T14:45:00-05:00"/>
 <real name="value" val="47"/> </obj>
 <obj> <abstime name="timestamp" val="2005-03-16T15:00:00-05:00"/>
 <real name="value" val="44"/> </obj>
 </list>
 <obj href="#RecordDef" is="obix:HistoryRecord">
 <abstime name="timestamp" tz="America/New_York"/>
 <real name="value" unit="obix:units/fahrenheit"/>
 </obj>
</obj>
Note in the example above how the data list uses a document local Contract to define Facets common to all the records (although we still have to flatten the Contract List).
14.2.4.2 History Query as Preformatted List

Now let’s see how this might be done in a more compact format. The server in this case is able to return the history data as a CSV list.

Client invoke request:

INVOKE http://myServer/obix/outsideAirTemp/history/query
<obj name=”in” is=”obix:HistoryFilter”>

 <int name="limit" val=”5”/>
 <abstime name="start" val=”2005-03-16T14:00:00-05:00” tz="America/New_York"/>
 <str name=”format” val=”text/csv”/>

</obj>
Server response:

<obj href="http://myServer/obix/outsideAirTemp/history/query" is="obix:HistoryQueryOut">
 <int name="count" val="5"/>
 <abstime name="start" val="2005-03-16T14:00:00-05:00" tz="America/New_York"/>
 <abstime name="end" val="2005-03-16T15:00:00-05:00" tz="America/New_York"/>
 <uri name=”dataRef” val=”http://x/outsideAirTemp/history/query?text/csv”/>
</obj>

Client then reads the dataRef URI:

GET http://x/outsideAirTemp/history/query?text/csv

Server response:

2005-03-16T14:00:00-05:00,40

2005-03-16T14:15:00-05:00,42
2005-03-16T14:30:00-05:00,43
2005-03-16T14:45:00-05:00,47
2005-03-16T15:00:00-05:00,44

Note that the client’s second request is NOT an OBIX request, and the subsequent server response is NOT an OBIX document, but just arbitrarily formatted data as requested by the client – in this case text/csv. Also it is important to note that this is simply an example. While the usage of the format and dataRef properties is normative, the usage of the text/csv MIME type and how the data is actually presented is purely non-normative. It is not intended to suggest CSV as a mechanism for how the data should be formatted, as that is an agreement to be made between the client and server. The server and client are free to use any agreed-upon format, for example, one where the timestamps are inferred rather than repeated, for maximum brevity.

14.2.5 Compact Histories

When a server contains a large number of history records, it is important to be as concise as possible when retrieving the records. The HistoryRecord format is fine for small histories, but it is not uncommon for servers to contain thousands, or tens of thousands, of data points, or even more. To allow a more concise representation of the historical data, a client MAY request that the server provide the query output in a “compact” format. This is done by setting the compact attribute of the HistoryFilter Contract to true. The server MUST then respond with a CompactHistoryQueryOut if it supports compact history reporting for the referenced History, or an error if it does not.

The CompactHistoryQueryOut Contract is:

<obj href=”obix:CompactHistoryQueryOut” is=”obix:HistoryQueryOut”>

 <reltime name=”interval” null=”true”/>

 <str name=”delimiter”/>

 <list name=”data” of=”obix:CompactHistoryRecord” null=”true”/>

</obj>

Note that the data element is narrowed to require the CompactHistoryRecord type, which is defined as:

<str href=”obix:CompactHistoryRecord” is=”obix:HistoryRecord”/>

The CompactHistoryRecord Contract narrows the HistoryRecord Contract to the str element type. The semantic requirements of the Contract allow for a more compact representation of the record as an OBIX Object, although with some restrictions:

· The timestamp and value child elements MUST be null when encoded. These are determined from the val attribute.

· The val attribute of the CompactHistoryRecord MUST be a string containing a delimited list of entities matching the record definition. The delimiter MUST be included using the delimiter element of the CompactHistoryQueryOut.

· The record definition MUST be provided in an accessible URI to the client. The record definition SHOULD be provided in a document-local Contract defining the type of each item in the record, as well as any Facets that apply to every record’s fields.

· The CompactHistoryRecord MUST be interpreted by inserting each item in the delimited list contained in the val attribute into the respective child element’s val attribute.

· For histories with regular collection intervals, the timestamp field MAY be left empty, if it can be inferred by the consumer. If the timestamp field is left empty on any record, the server MUST include the interval element in the HistoryQueryOut. Consumers MUST be able to handle existence or non-existence of the timestamp field. Note that this only applies when the timestamp matches the expected value based on the collection interval of the history. If a record exists at an irregular time interval, such as for skipped records or COV histories, the timestamp MUST be included in the record.

· The interpretation of the CompactHistoryRecord MUST be identical to the interpretation of a HistoryRecord with the same list of values described as child elements.

· A consumer of the CompactHistoryRecord MAY skip the actual internal conversion of the CompactHistoryRecord into its expanded form, and use a ‘smart’ decoding process to consume the list as if it were presented in the HistoryRecord form.

14.2.5.1 CompactHistoryRecord Example

Let’s look at the same scenario as in our previous example, this time expressed using CompactHistoryRecords. The server is providing additional information with certain elements; this is reflected in the record definition at the end.

Client invoke request:

INVOKE http://x/outsideAirTemp/history/query
<obj name=”in” is=”obix:HistoryFilter”>

 <int name="limit" val=”5”/>
 <abstime name="start" val=”2005-03-16T14:00:00-05:00” tz="America/New_York"/>
 <bool name=”compact” val=”true”/>
</obj>
Server response:
<obj href="http://x/outsideAirTemp/history/query" is="obix:CompactHistoryQueryOut">
 <int name="count" val="5"/>
 <abstime name="start" val="2005-03-16T14:00:00-05:00" tz="America/New_York"/>
 <abstime name="end" val="2005-03-16T15:00:00-05:00" tz="America/New_York"/>
 <reltime name=”interval” val=”PT15M”/>

 <str name=”delimiter” val=”,”/>
 <list name="data" of="#RecordDef obix:CompactHistoryRecord">
 <str val=",40,44"/> <!-- may be inferred from start -->

 <str val=",42,45"/> <!-- regular collection, inferred -->

 <str val="2005-03-16T14:30:02-05:00,43,48"/> <!-- irregular timestamp -->

 <str val=",47,"/> <!-- inferred, dischgTemp not available -->

 <str val=",44,47"/> <!-- inferred -->

 </list>
 <obj href="#RecordDef" is="obix:CompactHistoryRecord">
 <abstime name="timestamp" tz="America/New_York"/>
 <real name="value" unit="obix:units/fahrenheit"/>
 <real name=”dischargeAirTemp” unit=”obix:units/fahrenheit”/>
 </obj>
14.3 History Rollups
Control systems collect historical data as raw time sampled values. However, most applications wish to consume historical data in a summarized form which we call rollups. The rollup operation is used to summarize an interval of time. History rollups only apply to histories which store numeric information. Attempting to query a rollup on a non-numeric history SHOULD result in an error.
14.3.1 HistoryRollupIn
The History.rollup input Contract extends HistoryFilter to add an interval parameter:
<obj href="obix:HistoryRollupIn" is="obix:HistoryFilter">
 <reltime name="interval"/>
</obj>
14.3.2 HistoryRollupOut
The History.rollup output Contract:
<obj href="obix:HistoryRollupOut">
 <int name="count" min="0" val="0"/>
 <abstime name="start" null="true"/>
 <abstime name="end" null="true"/>
 <list name="data" of="obix:HistoryRollupRecord"/>
</obj>
The HistoryRollupOut Object looks very much like HistoryQueryOut except it returns a list of HistoryRollupRecords, rather than HistoryRecords. Note: unlike HistoryQueryOut, the start for HistoryRollupOut is exclusive, not inclusive. This issue is discussed in greater detail next. The start, end, and data HistoryRollupRecord timestamps MUST have a timezone which matches History.tz.
14.3.3 HistoryRollupRecord
A history rollup returns a list of HistoryRollupRecords:
<obj href="obix:HistoryRollupRecord">
 <abstime name="start"/>
 <abstime name="end" />
 <int name="count"/>
 <real name="min" />
 <real name="max" />
 <real name="avg" />
 <real name="sum" />
</obj>
The children are defined in the Table below:
	Property
	Description

	start
	The exclusive start time of the record’s rollup interval

	end
	The inclusive end time of the record’s rollup interval

	count
	The number of records used to compute this rollup interval

	min
	The minimum value of all the records within the interval

	max
	The maximum value of all the records within the interval

	avg
	The arithmetic mean of all the values within the interval

	sum
	The summation of all the values within the interval

Table 14-4. Properties of obix:HistoryRollupRecord.
14.3.4 Rollup Calculation
The best way to understand how rollup calculations work is through an example. Let’s consider a history of meter data where we collected two hours of 15 minute readings of kilowatt values:
<obj is="obix:HistoryQueryOut">
 <int name="count" val="9">
 <abstime name="start" val="2005-03-16T12:00:00+04:00" tz="Asia/Dubai"/>
 <abstime name="end" val="2005-03-16T14:00:00+04:00" tz="Asia/Dubai"/>
 <list name="data" of="#HistoryDef obix:HistoryRecord">
 <obj> <abstime name="timestamp" val="2005-03-16T12:00:00+04:00"/>
 <real name="value" val="80"> </obj>
 <obj> <abstime name="timestamp" val="2005-03-16T12:15:00+04:00"/>
 <real name="value" val="82"></obj>
 <obj> <abstime name="timestamp" val="2005-03-16T12:30:00+04:00"/>
 <real name="value" val="90"> </obj>
 <obj> <abstime name="timestamp" val="2005-03-16T12:45:00+04:00"/>
 <real name="value" val="85"> </obj>
 <obj> <abstime name="timestamp" val="2005-03-16T13:00:00+04:00"/>
 <real name="value" val="81"> </obj>
 <obj> <abstime name="timestamp" val="2005-03-16T13:15:00+04:00"/>
 <real name="value" val="84"> </obj>
 <obj> <abstime name="timestamp" val="2005-03-16T13:30:00+04:00"/>
 <real name="value" val="91"> </obj>
 <obj> <abstime name="timestamp" val="2005-03-16T13:45:00+04:00"/>
 <real name="value" val="83"> </obj>
 <obj> <abstime name="timestamp" val="2005-03-16T14:00:00+04:00"/>
 <real name="value" val="78"> </obj>
 </list>
 <obj href="#HistoryRecord" is="obix:HistoryRecord">
 <abstime name="timestamp" tz="Asia/Dubai"/>
 <real name="value" unit="obix:units/kilowatt"/>
 <obj>
</obj>
If we were to query the rollup using an interval of 1 hour with a start time of 12:00 and end time of 14:00, the result should be:
<obj is="obix:HistoryRollupOut obix:HistoryQueryOut">
 <int name="count" val="2">
 <abstime name="start" val="2005-03-16T12:00:00+04:00 tz="Asia/Dubai"/>
 <abstime name="end" val="2005-03-16T14:00:00+04:00" tz="Asia/Dubai"/>
 <list name="data" of="obix:HistoryRollupRecord">
 <obj>
 <abstime name="start" val="2005-03-16T12:00:00+04:00"
 tz="Asia/Dubai"/>
 <abstime name="end" val="2005-03-16T13:00:00+04:00"
 tz="Asia/Dubai"/>
 <int name="count" val="4" />
 <real name="min" val="81" />
 <real name="max" val="90" />
 <real name="avg" val="84.5" />
 <real name="sum" val="338" />
 </obj>
 <obj>
 <abstime name="start" val="2005-03-16T13:00:00+04:00"
 tz="Asia/Dubai"/>
 <abstime name="end" val="2005-03-16T14:00:00+04:00"
 tz="Asia/Dubai"/>
 <int name="count" val="4" />
 <real name="min" val="78" />
 <real name="max" val="91" />
 <real name="avg" val="84" />
 <real name="sum" val="336" />
 </obj>
 </list>
</obj>
The first item to notice is that the first raw record of 80kW was never used in the rollup. This is because start time is always exclusive. The reason start time has to be exclusive is because we are summarizing discrete samples into a contiguous time range. It would be incorrect to include a record in two different rollup intervals! To avoid this problem we always make start time exclusive and end time inclusive. The following Table illustrates how the raw records were applied to rollup intervals:
	Interval Start (exclusive)
	Interval End (inclusive)
	Records Included

	2005-03-16T12:00
	2005-03-16T13:00
	82 + 90 + 85 + 81 = 338

	2005-03-16T13:00
	2005-03-16T14:00
	84 + 91 + 83 + 78 = 336

Table 14-5. Calculation of OBIX History rollup values.
14.4 History Feeds
The History Contract specifies a feed for subscribing to a real-time feed of the history records. History.feed reuses the same HistoryFilter input Contract used by History.query – the same semantics apply. When adding a History feed to a Watch, the initial result SHOULD contain the list of HistoryRecords filtered by the input parameter (the initial result should match what History.query would return). Subsequent calls to Watch.pollChanges SHOULD return any new HistoryRecords which have been collected since the last poll that also satisfy the HistoryFilter.
14.5 History Append
The History.append operation allows a client to push new HistoryRecords into a History log (assuming proper security credentials). This operation comes in handy when bi-direction HTTP connectivity is not available. For example if a device in the field is behind a firewall, it can still push history data on an interval basis to a server using the append operation.
14.5.1 HistoryAppendIn
The History.append input Contract:
<obj href="obix:HistoryAppendIn">
 <list name="data" of="obix:HistoryRecord"/>
</obj>
The HistoryAppendIn is a wrapper for the list of HistoryRecords to be inserted into the History. The HistoryRecords SHOULD use a timestamp which matches History.tz. If the timezone doesn’t match, then the server MUST normalize to its configured timezone based on absolute time. The HistoryRecords in the data list MUST be sorted by timestamp from oldest to newest, and MUST not include a timestamp equal to or older than History.end.
14.5.2 HistoryAppendOut
The History.append output Contract:
<obj href="obix:HistoryAppendOut">
 <int name="numAdded"/>
 <int name="newCount"/>
 <abstime name="newStart" null="true"/>
 <abstime name="newEnd" null="true"/>
</obj>
The output of the append operation returns the number of new records appended to the History and the new total count, start time, and end time of the entire History. The newStart and newEnd timestamps MUST have a timezone which matches History.tz.
15 Alarming
OBIX specifies a normalized model to query, Watch, and acknowledge alarms. In OBIX, an alarm indicates a condition which requires notification of either a user or another application. In many cases an alarm requires acknowledgement, indicating that someone (or something) has taken action to resolve the alarm condition. The typical lifecycle of an alarm is:
1. Source Monitoring: algorithms in a server monitor an alarm source. An alarm source is an Object with an href which has the potential to generate an alarm. Example of alarm sources might include sensor points (this room is too hot), hardware problems (disk is full), or applications (building is consuming too much energy at current energy rates)
2. Alarm Generation: if the algorithms in the server detect that an alarm source has entered an alarm condition, then an alarm record is generated. Every alarm is uniquely identified using an href and represented using the obix:Alarm Contract. Sometimes we refer to the alarm transition as off-normal.
3. To Normal: many alarm sources are said to be stateful - eventually the alarm source exits the alarm state, and is said to return to-normal. Stateful alarms implement the obix:StatefulAlarm Contract. When the source transitions to normal, we update normalTimestamp of the alarm.
4. Acknowledgement: often we require that a user or application acknowledges that they have processed an alarm. These alarms implement the obix:AckAlarm Contract. When the alarm is acknowledged, we update ackTimestamp and ackUser.
15.1 Alarm States
Alarm state is summarized with two variables:
	In Alarm
	Is the alarm source currently in the alarm condition or in the normal condition? This variable maps to the alarm status state.

	Acknowledged
	Is the alarm acknowledged or unacknowledged? This variable maps to the unacked status state.

Table 15-1. Alarm states in OBIX.
Either of these states may transition independent of the other. For example an alarm source can return to normal before or after an alarm has been acknowledged. Furthermore it is not uncommon to transition between normal and off-normal multiple times generating several alarm records before any acknowledgements occur.
Note not all alarms have state. An alarm which implements neither StatefulAlarm nor the AckAlarm Contracts is completely stateless – these alarms merely represent event. An alarm which implements StatefulAlarm but not AckAlarm will have an in-alarm state, but not acknowledgement state. Conversely an alarm which implements AckAlarm but not StatefulAlarm will have an acknowledgement state, but not in-alarm state.
15.1.1 Alarm Source
The current alarm state of an alarm source is represented using the status attribute. This attribute is discussed in Section 4.1.10. It is recommended that alarm sources always report their status via the status attribute.

15.1.2 StatefulAlarm and AckAlarm
An Alarm record is used to summarize the entire lifecycle of an alarm event. If the alarm implements StatefulAlarm it tracks transition from off-normal back to normal. If the alarm implements AckAlarm, then it also summarizes the acknowledgement. This allows for four discrete alarm states, which are described in terms of the alarm Contract properties:
	Alarm State
	alarm
	acked
	normalTimestamp
	ackTimestamp

	new unacked alarm
	true
	false
	null
	null

	acknowledged alarm
	true
	true
	null
	non-null

	unacked returned alarm
	false
	false
	non-null
	null

	acked returned alarm
	false
	true
	non-null
	non-null

Table 15-2. Alarm lifecycle states in OBIX.
15.2 Alarm Contracts
15.2.1 Alarm
The core Alarm Contract is:
<obj href="obix:Alarm">
 <ref name="source"/>
 <abstime name="timestamp"/>
</obj>
The child Objects are:
· source: the URI which identifies the alarm source. The source SHOULD reference an OBIX Object which models the entity that generated the alarm.
· timestamp: this is the time at which the alarm source transitioned from normal to off-normal and the Alarm record was created.
15.2.2 StatefulAlarm
Alarms which represent an alarm state which may transition back to normal SHOULD implement the StatefulAlarm Contract:
<obj href="obix:StatefulAlarm" is="obix:Alarm">
 <abstime name="normalTimestamp" null="true"/>
</obj>
The child Object is:
· normalTimestamp: if the alarm source is still in the alarm condition, then this field is null. Otherwise this indicates the time of the transition back to the normal condition.
15.2.3 AckAlarm
Alarms which support acknowledgment SHOULD implement the AckAlarm Contract:
<obj href="obix:AckAlarm" is="obix:Alarm">
 <abstime name="ackTimestamp" null="true"/>
 <str name="ackUser" null="true"/>
 <op name="ack" in="obix:AckAlarmIn" out="obix:AckAlarmOut"/>
</obj>
<obj href="obix:AckAlarmIn">
 <str name="ackUser" null="true"/>
</obj>
<obj href="obix:AckAlarmOut">
 <obj name="alarm" is="obix:AckAlarm obix:Alarm"/>
</obj>
The child Objects are:
· ackTimestamp: if the alarm is unacknowledged, then this field is null. Otherwise this indicates the time of the acknowledgement.
· ackUser: if the alarm is unacknowledged, then this field is null. Otherwise this field should provide a string indicating who was responsible for the acknowledgement.
The ack operation is used to programmatically acknowledge the alarm. The client may optionally specify an ackUser string via AckAlarmIn. However, the server is free to ignore this field depending on security conditions. For example a highly trusted client may be allowed to specify its own ackUser, but a less trustworthy client may have its ackUser predefined based on the authentication credentials of the protocol binding. The ack operation returns an AckAlarmOut which contains the updated alarm record. Use the Lobby.batch operation to efficiently acknowledge a set of alarms.
15.2.4 PointAlarms
It is very common for an alarm source to be an obix:Point. A respective PointAlarm Contract is provided as a normalized way to report the value which caused the alarm condition:
<obj href="obix:PointAlarm" is="obix:Alarm">
 <obj name="alarmValue"/>
</obj>
The alarmValue Object SHOULD be one of the value types defined for obix:Point in Section 13.

15.3 AlarmSubject

Servers which implement OBIX alarming MUST provide one or more Objects which implement the AlarmSubject Contract. The AlarmSubject Contract provides the ability to categorize and group the sets of alarms a client may discover, query, and watch. For instance a server could provide one AlarmSubject for all alarms and other AlarmSubjects based on priority or time of day. The Contract for AlarmSubject is:
<obj href="obix:AlarmSubject">
 <int name="count" min="0" val="0"/>
 <op name="query" in="obix:AlarmFilter" out="obix:AlarmQueryOut"/>
 <feed name="feed" in="obix:AlarmFilter" of="obix:Alarm"/>
</obj>
<obj href="obix:AlarmFilter">
 <int name="limit" null="true"/>
 <abstime name="start" null="true"/>
 <abstime name="end" null="true"/>
</obj>
<obj href="obix:AlarmQueryOut">
 <int name="count" min="0" val="0"/>
 <abstime name="start" null="true"/>
 <abstime name="end" null="true"/>
 <list name="data" of="obix:Alarm"/>
</obj>
The AlarmSubject follows the same design pattern as History. The AlarmSubject specifies the active count of alarms; however, unlike History it does not provide the start and end bounding timestamps. It contains a query operation to read the current list of alarms with an AlarmFilter to filter by time bounds. AlarmSubject also contains a feed Object which may be used to subscribe to the alarm events.
15.4 Alarm Feed Example
The following example illustrates how a feed works with this AlarmSubject:
<obj is="obix:AlarmSubject" href="/alarms/">
 <int name="count" val="2"/>
 <op name="query" href="query"/>
 <feed name="feed" href="feed" />
</obj>
The server indicates it has two open alarms under the specified AlarmSubject. If a client were to add the AlarmSubject’s feed to a watch:
<obj is="obix:WatchIn">
 <list names="hrefs"/>
 <uri val="/alarms/feed">
 <obj name="in" is="obix:AlarmFilter">
 <int name="limit" val="25"/>
 </obj>
 </uri>
 </list>
</obj>
<obj is="obix:WatchOut">
 <list names="values">
 <feed href="/alarms/feed" of="obix:Alarm">
 <obj href="/alarmdb/528" is="obix:StatefulAlarm obix:PointAlarm obix:Alarm">
 <ref name="source" href="/airHandlers/2/returnTemp"/>
 <abstime name="timestamp" val="2006-05-18T14:20:00Z"/>
 <abstime name="normalTimestamp" null="true"/>
 <real name="alarmValue" val="80.2"/>
 </obj>
 <obj href="/alarmdb/527" is="obix:StatefulAlarm obix:PointAlarm obix:Alarm">
 <ref name="source" href="/doors/frontDoor"/>
 <abstime name="timestamp" val="2006-05-18T14:18:00Z"/>
 <abstime name=" normalTimestamp" null="true"/>
 <real name="alarmValue" val="true"/>
 </obj>
 </feed>
 </list>
</obj>
The Watch returns the historic list of alarm events which is two open alarms. The first alarm indicates an out of bounds condition in AirHandler-2’s return temperature. The second alarm indicates that the system has detected that the front door has been propped open.
Now let’s fictionalize that the system detects the front door is closed, and alarm point transitions to the normal state. The next time the client polls the Watch the alarm would show up in the feed list (along with any additional changes or new alarms not shown here):
<obj is="obix:WatchOut">
 <list names="values">
 <feed href="/alarms/feed" of="obix:Alarm">>
 <obj href="/alarmdb/527" is="obix:StatefulAlarm obix:PointAlarm obix:Alarm">
 <ref name="source" href="/doors/frontDoor"/>
 <abstime name="timestamp" val="2006-05-18T14:18:00Z"/>
 <abstime name=" normalTimestamp" val="2006-05-18T14:45:00Z"/>
 <real name="alarmValue" val="true"/>
 </obj>
 </feed>
 </list>
</obj>
16 Security
Security is a broad topic that covers many issues. Some of the main concepts are listed below:

	Authentication
	Verifying a user (client) is who they claim to be

	Encryption
	Protecting OBIX documents from viewing by unauthorized entities

	Permissions
	Checking a user’s permissions before granting access to read/write Objects or invoke operations

	User Management
	Managing user accounts and permissions levels

Table 16-1. Security concepts for OBIX.
The basic philosophy of OBIX is to leave these issues outside of the specification. Authentication and encryption are left as a protocol binding issue. Privileges and user management are left as a vendor implementation issue. Although it is entirely possible to define a publicly exposed user management model through OBIX, this specification does not define any standard Contracts for user management.
16.1 Error Handling
It is expected that an OBIX server will perform authentication and utilize those user credentials for checking permissions before processing read, write, and invoke requests. As a general rule, servers SHOULD return err with the obix:PermissionErr Contract to indicate a client lacks the permission to perform a request. In particularly sensitive applications, a server may instead choose to return BadUriErr so that an untrustworthy client is unaware that a specific object even exists.
16.2 Permission-based Degradation
Servers SHOULD strive to present their object model to a client based on the privileges available to the client. This behavior is called permission based degradation. The following rules summarize effective permission based degradation:
1. If an Object cannot be read, then it SHOULD NOT be discoverable through Objects which are available.
2. Servers SHOULD attempt to group standard Contracts within the same privilege level – for example don’t split obix:History’s start and end into two different security levels such that a client might be able to read start, and not end.
3. Servers SHOULD NOT include a Contract in an Object’s is attribute if the Contract’s children are not readable to the client.
4. If an Object isn’t writable, then the writable attribute SHOULD be set to false (either explicitly or through a Contract default).
5. If an op inherited from a visible Contract cannot be invoked, then the server SHOULD set the null attribute to true to disable it.
17 Conformance
An implementation is conformant with this specification if it satisfies all of the MUST and REQUIRED level requirements defined herein for the functions implemented. Normative text within this specification takes precedence over normative outlines, which in turn take precedence over the XML Schema and WSDL descriptions, which in turn take precedence over examples.
An implementation is a conforming OBIX Server if it meets the conditions described in Section 17.1. An implementation is a conforming OBIX Client if it meets the conditions described in Section 17.2. An implementation is a conforming OBIX Server and a conforming OBIX Client if it meets the conditions of both Section 17.1 and Section 17.2.

17.1 Conditions for a Conforming OBIX Server

An implementation conforms to this specification as an OBIX Server if it meets the conditions described in the following subsections. OBIX servers MUST implement the OBIX Lobby Object.
17.1.1 Lobby
A conforming OBIX server MUST meet the following conditions to satisfy the Lobby Conformance Clause:
1. OBIX Servers MUST have an accessible Object which implements the obix:Lobby Contract.
2. The Lobby MUST provide a <ref> to an Object which implements the obix:About Contract.
3. The Lobby MUST provide a <ref> to an Object which implements the obix:WatchService Contract.
4. The Lobby MUST provide an <op> to invoke batch operations using the obix:BatchIn and obix:BatchOut Contracts.
5. The Lobby MUST provide a list of the encodings supported.

6. The Lobby MUST provide a list of the bindings supported.
17.1.2 Bindings
An implementation MUST support one of the bindings defined in the companion specifications to this specification that describe OBIX Bindings.
17.1.3 Encodings
An implementation MUST support one of the encodings defined in the companion specification to this specification, OBIX Encodings. An implementation SHOULD support the XML encoding, as this encoding is used by the majority of OBIX implementations. An implementation MUST support negotiation of the encoding to be used with a client according to the mechanism defined for the specific binding used.

An implementation MUST return values according to the rules defined in Section 4. For example, an implementation MUST encode bool Objects’ val attribute using the literals “true” and “false” only.
17.1.4 Contracts
An implementation MUST flatten Contract hierarchies when reporting them in an OBIX document, according to Section 7.6.1.
17.2 Conditions for a Conforming OBIX Client
An implementation conforms to this specification as an OBIX Client if it meets the conditions described in the following subsections.
17.2.1 Encoding
An implementation MUST support one of the encodings defined in this specification. An implementation SHOULD support the XML encoding, as this encoding is used by the majority of OBIX implementations. An implementation MUST support negotiation of which encoding to use in communicating with an OBIX server using the mechanism defined for the binding being used.
17.2.2 Naming
An implementation MUST be able to interpret and navigate URI schemes according to the general rules described in section 6.3. An implementation SHOULD be able to interpret and navigate HTTP URIs, as this is used by the majority of OBIX Server implementations.
17.2.3 Contracts
An implementation MUST be able to consume and use OBIX Contracts defined by OBIX Server implementations with which it interacts.
Appendix A. Acknowledgments
The following individuals have participated in the creation of this specification and are gratefully acknowledged:
Participants: MACROBUTTON
Ron Ambrosio, IBM

Brad Benson, Trane

Ron Bernstein, LonMark International*

Ludo Bertsch, Continental Automated Buildings Association (CABA)
Chris Bogen, US Department of Defense
Rich Blomseth, Echelon Corporation

Anto Budiardjo, Clasma Events, Inc.

Jochen Burkhardt, IBM

JungIn Choi, Kyungwon University

David Clute, Cisco Systems, Inc.*

Toby Considine, University of North Carolina at Chapel Hill

William Cox, Individual

Robert Dolin, Echelon Corporation

Marek Dziedzic, Treasury Board of Canada, Secretariat

Brian Frank, SkyFoundry
Craig Gemmill, Tridium, Inc.

Matthew Giannini, Tridium, Inc.
Markus Jung, Vienna University of Technology

Christopher Kelly, Cisco Systems
Wonsuk Ko, Kyungwon University

Perry Krol, TIBCO Software Inc.

Corey Leong, Individual

Ulf Magnusson, Schneider Electric

Brian Meyers, Trane

Jeremy Roberts, LonMark International

Thorsten Roggendorf, Echelon Corporation

Anno Scholten, Individual

John Sublett, Tridium, Inc.

Dave Uden, Trane

Ron Zimmer, Continental Automated Buildings Association (CABA)*

Rob Zivney, Hirsch Electronics Corporation

Appendix B. Revision History
	Revision
	Date
	Editor
	Changes Made

	wd-0.1
	14 Jan 03
	Brian Frank
	Initial version

	wd-0.2
	22 Jan 03
	Brian Frank
	

	wd-0.3
	30 Aug 04
	Brian Frank
	Move to Oasis, SysService

	wd-0.4
	2 Sep 04
	Brian Frank
	Status

	wd-0.5
	12 Oct 04
	Brian Frank
	Namespaces, Writes, Poll

	wd-0.6
	2 Dec 04
	Brian Frank
	Incorporate schema comments

	wd-0.7
	17 Mar 05
	Brian Frank
	URI, REST, Prototypes, History

	wd-0.8
	19 Dec 05
	Brian Frank
	Contracts, Ops

	wd-0.9
	8 Feb 06
	Brian Frank
	Watches, Alarming, Bindings

	wd-0.10
	13 Mar 06
	Brian Frank
	Overview, XML, clarifications

	wd-0.11
	20 Apr 06
	Brian Frank
	10.1 sections, ack, min/max

	wd-0.11.1
	28 Apr 06
	Aaron Hansen
	WSDL Corrections

	wd-0.12
	22 May 06
	Brian Frank
	Status, feeds, no deltas

	wd-0.12.1
	29 Jun 06
	Brian Frank
	Schema, stdlib corrections

	obix-1.0-cd-02
	30 Jun 06
	Aaron Hansen
	OASIS document format compliance.

	obix-1.0-cs-01
	18 Oct 06
	Brian Frank
	Public review comments

	wd-obix.1.1.1
	26 Nov 07
	Brian Frank
	Fixes, date, time, tz

	wd-obix.1.1.2
	11 Nov 08
	Craig Gemmill
(from Aaron Hansen)
	Add iCalendar scheduling

	wd-obix-1.1.3
	10 Oct 09
	Brian Frank
	Remove Scheduling chapter
Rev namespace to 1.1
Add Binary Encoding chapter

	wd-obix-1.1.4
	12 Nov 09
	Brian Frank
	MUST, SHOULD, MAY
History.tz, History.append
HTTP Content Negotiation

	oBIX-1-1-spec-wd05
	01 Jun 10
	Toby Considine
	Updated to current OASIS Templates, requirements

	oBIX-1-1-spec-wd06
	08 Jun 10
	Brad Benson
	Custom facets within binary encoding

	oBIX-1-1-spec-wd07
	03 Mar 2013
	Craig Gemmill
	Update to current OASIS templates, fixes

	oBIX-1-1-spec-wd08
	27 Mar 2013
	Craig Gemmill
	Changes from feedback

	obix-v1.1-wd09
	23 Apr 2013
	Craig Gemmill
	Update to new OASIS template
Add of attribute to obix:ref
Define additional list semantics
Clarify writable w.r.t. add/remove of children
Add deletion semantics
Add encoding negotiation

	obix-v1.1-wd10
	08 May 2013
	Craig Gemmill
	Add CompactHistoryRecord

Add preformatted History query

Add metadata for alternate hierarchies (tagging)

	obix-v1.1-wd11
	13 Jun 2013
	Craig Gemmill
	Modify compact histories per TC feedback

	obix-v1.1-wd12
	27 Jun 2013
	Craig Gemmill
	Add delimiter, interval to compact histories

	obix-v1.1-wd13
	8 July 2013
	Toby Considine
	Replaced object diagram w/ UML
Updated references to other OBIX artifacts

	obix-v1.1-CSPRD01
	11 July 2013
	Paul Knight
	Public Review Draft 1

	obix-v1.1-wd14
	16 Sep 2013
	Craig Gemmill
	Addressed some comments from PR01; Section 4 rework

	obix-v1.1-wd15
	30 Sep 2013
	Craig Gemmill
	Addressed most of PR01 comments

	obix-v1.1-wd16
	16 Oct 2013
	Craig Gemmill
	Finished first round of PR01 comments

	obix-v1.1-wd17
	30 Oct 2013
	Craig Gemmill
	Reworked Lobby definition, more comments fixed

	obix-v1.1-wd18
	13 Nov 2013
	Craig Gemmill
	Added bindings to lobby, oBIX->OBIX

	obix-v1.1-wd19
	26 Nov 2013
	Craig Gemmill
	Updated server metadata and Watch sections

	obix-v1.1-wd20
	4 Dec 2013
	Craig Gemmill
	WebSockets support for Watches

	obix-v1.1-wd21
	13 Dec 2013
	Craig Gemmill
	intermediate revision

	obix-v1.1-wd22
	17 Dec 2013
	Craig Gemmill
	More cleanup from JIRA, general Localization added

	obix-v1.1-wd23
	18 Dec 2013
	Craig Gemmill
	Replaced UML diagram

	obix-v1.1-wd24
	19 Dec 2013
	Toby Considine
	Minor error in Conformance, added bindings to conformance, swapped UML diagram

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 5 of 5
obix-v1.1-csd02

19 December 2013

Standards Track Work Product
Copyright © OASIS Open 2013. All Rights Reserved.
Page 2 of 73

