
obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 1 of 23

Encodings for oBIX: Common
Encodings Version 1.0

Committee Specification Draft 01 /
Public Review Draft 01

11 July 2013

Specification URIs
This version:

http://docs.oasis-open.org/obix/obix-encodings/v1.0/csprd01/obix-encodings-v1.0-csprd01.pdf
(Authoritative)
http://docs.oasis-open.org/obix/obix-encodings/v1.0/csprd01/obix-encodings-v1.0-csprd01.html
http://docs.oasis-open.org/obix/obix-encodings/v1.0/csprd01/obix-encodings-v1.0-csprd01.doc

Previous version:

N/A

Latest version:
http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-encodings-v1.0.pdf (Authoritative)
http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-encodings-v1.0.html
http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-encodings-v1.0.doc

Technical Committee:

OASIS Open Building Information Exchange (oBIX) TC

Chair:

Toby Considine (toby.considine@unc.edu), University of North Carolina at Chapel Hill

Editor:
Markus Jung (mjung@auto.tuwien.ac.at), Institute of Computer Aided Automation, Vienna
University of Technology

Related work:
This specification is related to:

 oBIX Version 1.1. 11 July 2013. OASIS Committee Specification Draft 01 / Public Review
Draft 01. http://docs.oasis-open.org/obix/obix/v1.1/csprd01/obix-v1.1-csprd01.html.

 Bindings for oBIX: REST Bindings Version 1.0. 11 July 2013. OASIS Committee Specification
Draft 01 / Public Review Draft 01. http://docs.oasis-open.org/obix/obix-rest/v1.0/csprd01/obix-
rest-v1.0-csprd01.html.

 Bindings for oBIX: SOAP Bindings Version 1.0. 11 July 2013. OASIS Committee
Specification Draft 01 / Public Review Draft 01. http://docs.oasis-open.org/obix/obix-
soap/v1.0/csprd01/obix-soap-v1.0-csprd01.html.

Abstract:
This document specifies different encodings for oBIX objects adhering to the oBIX object model.
oBIX provides the core information model and interaction pattern for communication with building
control systems. Specific implementations of oBIX must choose how to encode oBIX Information.
The core specification describes an XML encoding, which is used in all examples in that
document. This document specifies common alternate encodings, including CoAP, EXI, and
JSON.

http://docs.oasis-open.org/obix/obix-encodings/v1.0/csprd01/obix-encodings-v1.0-csprd01.pdf
http://docs.oasis-open.org/obix/obix-encodings/v1.0/csprd01/obix-encodings-v1.0-csprd01.html
http://docs.oasis-open.org/obix/obix-encodings/v1.0/csprd01/obix-encodings-v1.0-csprd01.doc
http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-encodings-v1.0.pdf
http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-encodings-v1.0.html
http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-encodings-v1.0.doc
http://www.oasis-open.org/committees/obix/
mailto:toby.considine@unc.edu
http://www.unc.edu/
mailto:mjung@auto.tuwien.ac.at
http://www.auto.tuwien.ac.at/
http://www.tuwien.ac.at/
http://www.tuwien.ac.at/
http://docs.oasis-open.org/obix/obix/v1.1/csprd01/obix-v1.1-csprd01.html
http://docs.oasis-open.org/obix/obix-rest/v1.0/csprd01/obix-rest-v1.0-csprd01.html
http://docs.oasis-open.org/obix/obix-rest/v1.0/csprd01/obix-rest-v1.0-csprd01.html
http://docs.oasis-open.org/obix/obix-soap/v1.0/csprd01/obix-soap-v1.0-csprd01.html
http://docs.oasis-open.org/obix/obix-soap/v1.0/csprd01/obix-soap-v1.0-csprd01.html

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 2 of 23

Status:
This document was last revised or approved by the OASIS Open Building Information Exchange
(oBIX) TC on the above date. The level of approval is also listed above. Check the “Latest
version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/obix/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/obix/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[oBIX-Encodings]

Encodings for oBIX: Common Encodings Version 1.0. 11 July 2013. OASIS Committee
Specification Draft 01 / Public Review Draft 01. http://docs.oasis-open.org/obix/obix-
encodings/v1.0/csprd01/obix-encodings-v1.0-csprd01.html.

http://www.oasis-open.org/committees/comments/index.php?wg_abbrev=obix
http://www.oasis-open.org/committees/obix/
http://www.oasis-open.org/committees/obix/
http://www.oasis-open.org/committees/obix/ipr.php
http://www.oasis-open.org/committees/obix/ipr.php
http://docs.oasis-open.org/obix/obix-encodings/v1.0/csprd01/obix-encodings-v1.0-csprd01.html
http://docs.oasis-open.org/obix/obix-encodings/v1.0/csprd01/obix-encodings-v1.0-csprd01.html

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 3 of 23

Notices

Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

http://www.oasis-open.org/policies-guidelines/ipr
http://www.oasis-open.org/
http://www.oasis-open.org/policies-guidelines/trademark

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 4 of 23

Table of Contents

1 Introduction ... 6

1.1 Terminology .. 6

1.2 Normative References .. 6

1.3 Non-Normative References .. 6

2 XML Encoding .. 7

2.1 Design Philosophy .. 7

2.2 XML Syntax... 7

2.3 XML Encoding .. 7

2.4 XML Decoding .. 8

2.5 XML Namespace .. 8

2.6 Namespace Prefixes in Contract Lists .. 8

3 oBIX Binary ... 9

3.1 Binary Overview .. 9

3.2 Binary Constants .. 9

3.3 Value Encodings ... 10

3.3.1 Bool Encodings ... 10

3.3.2 Int Encodings ... 10

3.3.3 Real Encodings ... 11

3.3.4 Str Encodings .. 11

3.3.5 Abstime Encodings .. 12

3.3.6 Reltime Encodings .. 12

3.3.7 Time Encodings ... 12

3.3.8 Date Encodings ... 13

3.3.9 Status Encodings .. 13

3.4 Facets ... 13

3.4.1 Custom Facets .. 14

3.5 Children ... 14

4 JSON encoding .. 16

4.1 Object and value encoding rules .. 17

4.1.1 Bool encoding .. 17

4.1.2 Int encoding ... 17

4.1.3 Real encoding.. 17

4.1.4 Other types and facets .. 17

4.2 XML Namespace .. 18

4.3 Examples .. 18

4.4 MIME Type.. 18

5 EXI encoding .. 19

5.1 EXI options.. 19

5.1.1 Alignment options .. 19

5.1.2 Preservation options .. 19

5.2 Non-schema-informed EXI ... 19

5.3 Schema-informed EXI ... 19

5.4 MIME types ... 20

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 5 of 23

6 Conformance .. 21

Appendix A. Acknowledgments ... 22

Appendix B. Revision History .. 23

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 6 of 23

1 Introduction 1

This document specifies the encodings for oBIX. 2

1.1 Terminology 3

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 4
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be 5
interpreted as described in RFC2119 Bradner, S., “Key words for use in RFCs 6
to Indicate Requirement Levels”, BCP 14, RFC 2119, March 1997. 7
http://www.ietf.org/rfc/rfc2119.txt. 8

oBIX. 9

1.2 Normative References 10

RFC2119 Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 11
14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt. 12

oBIX oBIX Version 1.1. 13
See link in “Related work” section on cover page. 14

EXI J. Schneider, T. Kamiya, Efficient XML Interchange (EXI) Format 1.0, W3C 15
Recommendation, 10 March 2011 16

RFC4627 Crockford, D., „The application/json Media type for JavaScript Object Notation 17
(JSON), RFC, 4627, July 2007 18

 19

1.3 Non-Normative References 20

REST RT Fielding Architectural Styles and the Design of Network-based Software 21
Architectures, Dissertation, University of California at Irvine, 2000, 22
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm 23

EXI MR Y. Doi, EXI Messaging Requirements, IETF Internet-Draft, 25 February 2013 24

EXI BP M. Cokus, D. Vogelheim, Efficient XML Interchange (EXI) Best Practices, W3C 25
Working Draft, 19 December 2007 26

http://www.ietf.org/rfc/rfc2119.txt
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 7 of 23

2 XML Encoding 27

This chapter specifies how the oBIX object model is encoded in XML. 28

2.1 Design Philosophy 29

Since there are many different approaches to developing an XML syntax, it is worthwhile to provide a bit 30
of background to how the oBIX XML syntax was designed. Historically in M2M systems, non-standard 31
extensions have been second class citizens at best, but usually opaque. One of the design principles of 32
oBIX is to embrace vertical domain and vendor specific extensions, so that all data and services have a 33
level playing field. 34

 35

In order to achieve this goal, the XML syntax is designed to support a small, fixed schema for all oBIX 36
documents. If a client agent understands this very simple syntax, then the client is guaranteed access to 37
the server’s object tree regardless of whether those objects implement standard or non-standard 38
contracts. 39

 40

Higher level semantics are captured via contracts. Contracts “tag” an object with a type and can be 41
applied dynamically. This is very useful for modeling systems which are dynamically configured in the 42
field. What is important is that contracts are optionally understood by clients. Contracts do not affect the 43
XML syntax nor are clients required to use them for basic access to the object tree. Contracts are merely 44
an abstraction which is layered cleanly above the object tree and its fixed XML syntax. 45

2.2 XML Syntax 46

The oBIX XML syntax maps very closely to the abstract object model. The syntax is summarized: 47

 Every oBIX object maps to exactly one XML element; 48

 An object’s children are mapped as children XML elements; 49

 The XML element name maps to the built-in object type; 50

 Everything else about an object is represented as XML attributes; 51

The object model figure in Chapter 4 of the oBIX core specification [oBIX] illustrates the valid XML 52

elements and their respective attributes. Note the val object is simply an abstract base type for the 53

objects which support the val attribute - there is no val element. 54

2.3 XML Encoding 55

The following rules apply to encoding oBIX documents: 56

 oBIX documents MUST be well formed XML; 57

 oBIX documents SHOULD begin with XML Declaration specifying their encoding; 58

 It is RECOMMENDED to use UTF-8 encoding without a byte order mark; 59

 oBIX documents MUST NOT include a Document Type Declaration – oBIX documents cannot 60
contain an internal or external subset; 61

 oBIX documents SHOULD include an XML Namespace definition. Convention is to declare the 62
default namespace of the document to “http://obix.org/ns/schema/1.1”. If oBIX is embedded 63
inside another type of XML document, then the convention is to use “o” as the namespace prefix. 64
Note that the prefix “obix” SHOULD NOT be used (see Section 2.6). 65

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 8 of 23

2.4 XML Decoding 66

The following rules apply to decoding of oBIX documents: 67

 MUST conform to XML processing rules as defined by XML 1.1; 68

 Documents which are not well formed XML MUST be rejected; 69

 Parsers are not required to understand a Document Type Declaration; 70

 Any unknown element MUST be ignored regardless of its XML namespace 71

 Any unknown attribute MUST be ignored regardless of its XML namespace 72

 73

The basic rule of thumb is: strict in what you generate, and liberal in what you accept. oBIX parsers are 74
required to ignore elements and attributes which they do not understand. However an oBIX parser MUST 75
never accept an XML document which isn’t well formed (such as mismatched tags). 76

2.5 XML Namespace 77

XML namespaces for standards within the oBIX umbrella should conform to the following pattern: 78

http://obix.org/ns/{spec}/{version} 79

 80

The XML namespace for oBIX version 1.1 is: 81

http://obix.org/ns/schema/1.1 82

All XML in this document is assumed to have this namespace unless otherwise explicitly stated. 83

2.6 Namespace Prefixes in Contract Lists 84

XML namespace prefixes defined within an oBIX document may be used to prefix the URIs of a contract 85
list. If a URI within a contract list starts with string matching a defined XML prefix followed by the “:” colon 86
character, then the URI is normalized by replacing the prefix with its namespace value. This rule also 87

applies to the href attribute as a convenience for defining contract themselves. 88

 89

The XML namespace prefix of “obix” is predefined. This prefix is used for all the oBIX defined contracts. 90
The “obix” prefix is literally translated into “http://obix.org/def/”. For example the URI “obix:bool” is 91
translated to “http://obix.org/def/bool”. Documents SHOULD NOT define an XML namespace using the 92
prefix “obix” which collides with the predefined “obix” prefix – if it is defined, then it is superseded by the 93
predefined value of “http://obix.org/def/”. All oBIX defined contracts are accessible via their HTTP URI 94
using the HTTP binding (at least they should be one day). 95

 96

An example oBIX document with XML namespace prefixes normalized: 97

<obj xmlns:acme="http://acme.com/def/" href="acme:CustomPoint" 98
 is="acme:Point obix:Point"/> 99
 100
<obj href="http://acme.com/def/CustomPoint" 101
 is="http://acme.com/def/Point http://obix.org/def/Point"/> 102

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 9 of 23

3 oBIX Binary 103

In addition to the XML encoding, a binary encoding is defined for the oBIX data model. The binary 104
encoding allows oBIX objects to be serialized with higher compression using less computing resources. 105
The use case for binary encoding is targeted for severely constrained edge devices and sensor networks 106
such as 6LoWPANs. When possible, an XML encoding SHOULD always be preferred over a binary 107
encoding. 108

Full fididelty with oBIX object model is maintained with the binary encoding. All object types and facets 109
are preserved. However XML extensions such as custom namespaces, elements, and attributes are not 110
address by the binary encoding. The oBIX binary encoding is based strictly on the obix data model itself, 111
not its XML InfoSet. 112

3.1 Binary Overview 113

The oBIX data model is comprised of 16 object types (elements in XML) and 19 facets (attributes in 114
XML). The oBIX binary encoding is based on assigning a numeric code to each object type and to each 115
facet type. We format these codes using a byte header with the bits structured as: 116

7654 3210 117
MCCC CCVV 118

The top most bit M is the more flag, it is used to indicate more facets follow. Bits 6 through 2 are used to 119
store a 5-bit numeric code for object types and facet types. The bottom 2 bits are used to indicate a 2-bit 120
numeric code for how the value of the object or facet is encoded. 121

The binary grammar is defined according to the following BNF productions: 122

<obj> := <objHeader> [objVal] (facet)* [children] 123
<facet> := <facetHeader> [facetVal] | 124
 <facetHeader> <string> <value> 125
<children> := (<obj>)* 126

All documents start with a one byte objHeader structured as a MCCCCCVV bitmask. The 5-bit C mask 127
indicates an Obj Code specified in Binary Constants table. If the object type contains a value encoding 128
(specified in the Obj Value column), then the 2-bit V mask indicates how the following bytes are used to 129
encode the “val” attribute. If the objHeader has the more bit set, then one or more facet productions 130
follow. Facets are encoded with a one byte header using the same MCCCCCVV bitmask, except the 5-bit 131
C mask indicates a Facet Code (not an Obj Code). The facet value is encoded using the 2-bit V mask. If 132
one of the facets includes the hasChildren code, then one or more child objects follow terminated by the 133
endChildren object code. 134

3.2 Binary Constants 135

The following table enumerates the Obj Codes and Facet Codes which are encoded into 5-bits in the 136
MCCCCCVV bitmask. The Obj Value and Facet Value columns specifies how to interpret the 2-bit V code 137
for the value encoding. 138

Numeric Code Constant Obj Code Obj Value Facet Code Facet Value

1 << 2 0x04 obj none hasChildren none

2 << 2 0x08 bool bool name str

3 << 2 0x0C int int href str

4 << 2 0x10 real real is str

5 << 2 0x14 str str of str

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 10 of 23

6 << 2 0x18 enum str in str

7 << 2 0x1C uri str out str

8 << 2 0x20 abstime abstime null bool

9 << 2 0x24 reltime reltime icon str

10 << 2 0x28 date date displayName str

11 << 2 0x2C time time display str

12 << 2 0x30 list none writable bool

13 << 2 0x34 op none min obj specific

14 << 2 0x38 feed none max obj specific

15 << 2 0x3C ref none unit str

16 << 2 0x40 err none precision int

17 << 2 0x44 childrenEnd none range str

18 << 2 0x48 tz str

19 << 2 0x4C status-0 status-0

20 << 2 0x50 status-1 status-1

21 << 2 0x54 customFacet facet specific

 139

3.3 Value Encodings 140

Each obj type and facet type may have an associated value encoding. For example, to encode the 141
precision facet we must specify the facet code 0x40 plus the value of that facet which happens to be an 142
integer. The object types bool, int, enum, real, str, uri, abstime, reltime, date, and time are always implied 143
to have their value encoded (equivalent to the val attribute in XML). 144

3.3.1 Bool Encodings 145

The following boolean encodings are supported: 146

Constant Encoding Description

0 false Indicates false value

1 true Indicates true value

The boolean encodings are fully specified in the 2-bit V mask. No extra bytes are required. Examples: 147

 <bool val="false"/> => 08 148
 <bool val="true"/> => 09 149

The obj code for bool is 0x08. In the case of false we bit-wise OR this with a value code of 0, so the 150
complete encoding is the single byte 0x08. When val is true, we bitwise OR 0x08 with 0x01 with a result 151
of 0x09. 152

3.3.2 Int Encodings 153

The following integer encodings are supported: 154

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 11 of 23

Constant Encoding Description

0 u1 Unsigned 8-bit integer value

1 u2 Unsigned 16-bit integer value

2 s4 Signed 32-bit integer value

3 s8 Signed 64-bit integer value

Integers between 0 and 255 can be encoded in one byte. Larger numbers require 2, 4, or 8 bytes. 155
Numbers outside of the 64-bit range are not supported. Examples: 156

<int val="34"/> => 0C 22 157
<int val="2093 "/> => 0D 08 2D 158
<int val="76000"/> => 0E 00 01 28 E0 159
<int val="-300"/> => 0E FF FF FE D4 160
<int val="12345678901"/> => 0F 00 00 00 02 DF DC 1C 35 161

The obj code for int is 0x0C. In first example, the value can be encoded as an unsigned 8-bit number, so 162
we mask 0x0C with the value code 0x00 and then encode 34 using one byte. The second example is a 163
u2 encoding, so we mask 0x0C with value code 0x01 to get 0x0D and then use two additional bytes to 164
encode 2093 as a 16-bit unsigned integer. The other examples illustrate how values would be encoded in 165
s4 and s8. Encoders SHOULD select the encoding type which results in the fewest number of bytes. 166

3.3.3 Real Encodings 167

The following real encodings are supported: 168

Constant Encoding Description

0 f4 32-bit IEEE floating point value

1 f8 64-bit IEEE floating point value

Examples: 169

<real val="75.3"/> => 10 42 96 99 9A 170
<real val="15067.059"/> => 11 40 CD 6D 87 8D 4F DF 3B 171

3.3.4 Str Encodings 172

The following str encodings are supported: 173

Constant Encoding Description

0 utf8 null terminated UTF-8 string

1 prev u2 index of previously encoded string

String encoding are used for many obj and facet values. Every time a string value is encoded within a 174
given document, it is assigned a zero based index number. The first string encoded as utf8 is assigned 175
zero, the second one, and so on. If subsequent string values have the exact same value, then the prev 176
value encoding is used to reference the previous string via its index number. This requires binary 177
decoders to keep track of all strings during decoding, since later occurrences in the document might 178
reference that string. 179

Simple example which illustrates a null terminated string: 180

<str val="obix"/> => 14 6F 62 69 78 00 181
 182

Complex example which illustrates two strings with the same value: 183

<obj> 184
 <str val="abc"/> 185
 <str val="abc"/> 186
</obj> => 84 04 14 61 62 63 00 15 00 00 44 187

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 12 of 23

The first byte 0x84 is the obj code masked with the more bit The next byte 0x04 is the hasChildren 188
marker which indicates that children objects follow (covered further in section 3.5). The next byte is the 189
0x14 str obj code masked with the 0x00 utf8 value code followed by the 61 62 63 00 encoding of “abc”. 190
The next byte 0x15 is the str obj type 0x14 masked with the 0x01 prev value code, followed by the u2 191
encoding of index zero which references string value zero “abc”. The last byte 0x44 is the end of children 192
marker. 193

3.3.5 Abstime Encodings 194

The following abstime encodings are supported: 195

Constant Encoding Description

0 sec signed 32-bit number of seconds since epoch

1 ns signed 64-bit number of nanoseconds since epoch

The epoch for oBIX timestamps is defined as midnight 1 January 2000 UTC. Times before the epoch are 196
represented as negative numbers. Encoding with seconds provides a range of +/-68 years. The 197
nanosecond encoding provides a range of +/-292 years. Timestamps outside of this range are not 198
supported. Examples: 199

<abstime val="2000-01-30T00:00:00Z"/> => 20 00 26 3B 80 200
<abstime val="1999-12-01T00:00:00Z"/> => 20 FF D7 21 80 201
<abstime val="2009-10-20T13:00:00-04:00"/> => 20 12 70 A9 10 202
<abstime val="2009-10-20T13:00:00.123Z"/> => 21 04 4B 10 30 8D 78 F4 C0 203

The first example is encoded as 0x00263B80 which equates to 29x24x60x60 seconds since the oBIX 204
epoch. The second example illustrates a negative number seconds for a timestamp before the epoch. 205
The last example illustrates a 64-bit nanosecond encoding. 206

3.3.6 Reltime Encodings 207

The following reltime encodings are supported: 208

Constant Encoding Description

0 sec signed 32-bit number of seconds

1 ns signed 64-bit number of nanoseconds

Consistent with the abstime encoding, both a second and nanosecond encoding are provided. No support 209
is provided for ambiguous periods such as 1 month which don’t map to a fixed number of seconds. 210
Examples: 211

<reltime val="PT5M"/> => 24 00 00 01 2C 212
<reltime val="PT0.123S"/> => 25 00 00 00 00 07 54 D4 C0 213

3.3.7 Time Encodings 214

The following time encodings are supported: 215

Constant Encoding Description

0 sec unsigned 32-bit number of seconds since midnight

1 ns unsigned 64-bit number of nanoseconds since midnight

The time encoding works similar to reltime using a number of seconds or nanoseconds since midnight. 216
Examples: 217

<time val="04:30:00"/> => 2C 00 00 3F 48 218
<time val="04:30:00.123"/> => 2D 00 00 0E BB E2 93 A4 C0 219

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 13 of 23

3.3.8 Date Encodings 220

The following date encodings are supported: 221

Constant Encoding Description

0 yymd u2 year, u1 month 1-12, u1 day 1-31

Dates are encoded using four bytes. The year is encoded as a common era year via a 16-bit integer, the 222
month as a 8-bit integer between 1 and 12, and the day as an 8-bit integer between 1 and 31. Examples: 223

 <date val="2009-10-20"/> => 28 07 D9 0A 14 224

3.3.9 Status Encodings 225

The following status encodings are supported: 226

Constant Encoding Description

0 status-0-disabled disabled status

1 status-0-fault fault status

2 status-0-down down status

3 status-0-unacked-alarm unackedAlarm status

0 status-1-alarm alarm status

1 status-1-unacked unacked status

2 status-1-overridden overridden status

The status facet is encoded inline to avoid consuming an extra byte. Since there are eight status values, 227
but only 2-bits for the value encoding we use two different facet codes to give us the required range. The 228
ok status is implied by omitting the status facet. Examples: 229

<obj status="ok"/> => 04 230
<obj status="disabled"/> => 84 4C // 0x4C | 0x00 231
<obj status="fault"/> => 84 4D // 0x4C | 0x01 232
<obj status="down"/> => 84 4E // 0x4C | 0x02 233
<obj status="unackedAlarm"/> => 84 4F // 0x4C | 0x03 234
<obj status="alarm"/> => 84 50 // 0x50 | 0x00 235
<obj status="unacked"/> => 84 51 // 0x50 | 0x01 236
<obj status="overridden"/> => 84 52 // 0x50 | 0x02 237

The first example illustrates the ok status, the entire document is encoded with the one byte obj type code 238
of 0x40. The rest of the examples start with 0x84 which represents the obj type code masked with the 239
more bit. Status values from disabled to unackedAlarm use facet code status-0 and from alarm to 240
overridden use facet code status-1. It is illegal for a single object to define both the status-0 and status-1 241
facet codes. 242

 243

3.4 Facets 244

Facets are encoded according to the value type as specified in the Binary Constants section. The 245
min/max facet value types are implied by their containing object which must match the object value with 246
exception of str which uses integers for min/max. Some examples: 247

<list name="foo"/> => B0 08 66 6F 6F 00 248
<list name="foo" displayName="Foo"/> => B0 88 66 6F 6F 00 28 46 6F 6F 00 249
<int val="3" min="0" max="100"/> => 8C 03 B4 00 38 64 250
<obj href="p4.2"/> => 84 0C 70 34 2E 32 00 251

Note that a string of multiple facets is indicated by masking the 0x80 more bit into the object/facet 252
headers. 253

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 14 of 23

 254

3.4.1 Custom Facets 255

The following extension encodings are supported: 256

Constant Encoding Description

0 extension Facet name encoded as string value object, followed
by value object containing value associated with
facet.

Custom facets are facets which are not specified by this standard but rather supplied by a particular 257
implementation. Custom facets will include two objects immediately following the header byte: a string 258
object, specifying the name of the facet, and a value object, specifying the value associated with the 259
facet. 260

Both the string and value objects associated with the facet must provide a value, and neither object may 261
supply additional facets or contain any child objects. Additionally, the value object associated with the 262
facet must be one of the following object types: 263

 bool 264

 int 265

 real 266

 str 267

 enum 268

 uri 269

 abstime 270

 reltime 271

 date 272

 time 273

Other types for the value object are not supported. 274

 275

Examples: 276

<int val="34" my:int=”50”/> => 8C 22 54 14 6D 79 3A 69 6E 6F 00 0C 32 277
<bool val=”false” my:bool=”true”/> => 88 54 14 6D 79 3A 69 6E 74 00 09 278
<bool val=”true” my:str=”hi!”/> => 89 54 14 6D 79 3A 73 74 72 00 14 68 69 21 00 279

 280

3.5 Children 281

The special facet code hasChildren and the special object code endChildren are used to encode nested 282
children objects. Let’s look at a simple example: 283

<obj> <bool val="false"/> </obj> => 84 04 08 44 284

Let’s examine each byte: the first byte 0x84 is the mask of obj type code 0x04 with the 0x80 more bit 285
indicating a facet follows. The 0x04 facet code indicates the obj has children. The next byte is interpreted 286
as the beginning of a new object, which is the bool object code 0x08. Since the more bit is not set on the 287
bool object, there are no more facets. The next byte is the endChildren object code indicating we’ve 288
reached the end of the children objects for obj. It serves a similar purpose as the end tag in XML. 289

Technically the hasChildren facet could have additional facets following it by setting the more bit. 290
However, this specification requires that the hasChildren facet is always declared last within a given 291
object’s facet list. This makes it an encoding error to have the more bit set on the hasChildren facet code. 292

Let’s look a more complicated example with multiple nested children: 293

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 15 of 23

<list href="xyz"> 294
 <bool val="false"/> 295
 <obj><int val="255"/></obj> 296
</list> => B0 8C 78 79 7A 00 04 08 84 04 0C FF 44 44 297
 298
<list> => B0 // 0x80 | 0x30 299
href="xyz" => 8C 78 79 7A 00 // 0x80 | 0x0C | 0x00 + x + y + z 300
hasChildren => 04 301
<bool val="false"/> => 08 302
<obj> => 84 // 0x80 | 0x04 303
hasChildren => 04 304
<int val="255" => 0C FF // 0x0C | 0x00 + u1 of 255 305
endChildren </obj> => 44 306
endChildren </list> => 44 307

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 16 of 23

4 JSON encoding 308

The Java script object notation is a lightweight, text-based, language-independent data interchange 309
format. It is derived from the object literals of JavaScript, as defined in the ECMAScript Programming 310
Language Standard (ECMA) [RFC4627]. 311

JSON uses two structures for representing information: 312

 A collection of name/value pairs 313

 An ordered list of values 314

In JSON an object is an unordered set of name/value pairs and the encoding of an object starts with a left 315
brace and ends with a right brace. A colon is used to separate the name and the value and a comma 316
separates multiple name/value pairs. The JSON encoding of oBIX is inspired by JSONML, which provides 317
a lossless two-way conversation between JSON and XML. A Java reference implementation can be 318
found here

1
. 319

The following grammar is used to represent oBIX objects: 320

 321

element 322
= '{' tag-identifier ',' attribute-list ', “nodes”:[' element-list ']}' 323
| '{' tag-identifier ',' attribute-list '}' 324
| '{' tag-identifier ', “nodes”:['element-list ']}' 325
| '{' tag-identifier '}' 326
| string 327
; 328
 329
tag-identifier 330
= "tag":tag-name 331
; 332
 333
tag-name 334
= string 335
; 336
 337
attribute-list 338
= attribute ',' attribute-list 339
| attribute 340
; 341
 342
attribute 343
= attribute-name ':' attribute-value 344
; 345
 346
attribute-name 347
= string 348
; 349
 350
attribute-value 351
= string 352
| number 353

1
 http://json.org/java/

http://json.org/java/

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 17 of 23

| 'true' 354
| 'false' 355
; 356
 357
element-list 358
= element ',' element-list 359
| element 360
; 361

4.1 Object and value encoding rules 362

Objects MUST be encoded according to the grammar given above. The oBIX object is encoded as JSON 363
object which an unordered list of name/value pairs. The object type which is used as element name in 364
XML is encoded as a name/value pair using “tag” as name and the object type as string value. 365

The XML and JSON representation of a simple obj: 366

<obj/>  {“tag”:”obj”} 367

The attributes of an object are mapped to name value/pairs: 368

<obj name=”myName” href=”/myHref”>  {“tag”:”obj”, “name”:”myName”, “href”:”/myHref”/> 369

If objects have an extent, the children objects contained in this extend are mapped to a name/value pair 370
using “nodes” as name and an ordered array of objects as value. 371

The XML representation of an object with extend is mapped to the JSON representation as shown in the 372
examples below. 373

XML: 374

<obj href=”/a/”> 375
 <obj name=”b” href=”b”> 376
 <obj name=”c”/> 377
 <ref name=”d” href=”d”/> 378
 </obj> 379
</obj> 380

JSON: 381

{“tag”:”obj”, “href”:”/a/”, “nodes”:[382
 {“tag”,”obj”, “name”:”b”, “href”:”b”}, “nodes”:[383
 {“tag”,”obj”, “name”, “c”}, 384
 {“tag”,”ref”, “name”, “d”, “href”:”d”}, 385
] 386
 }] 387
} 388

4.1.1 Bool encoding 389

The xs:boolean val attribute of the bool object is mapped to the true or false literals of JSON. 390

<bool val=”true”/>  {“tag”:”bool”, “val”:true} 391

4.1.2 Int encoding 392

The xs:long val attribute of the int object is mapped to the number representation of JSON. 393

<int val=”5”/>  {“tag”:”int”, “val”:5} 394

4.1.3 Real encoding 395

The xs:long val attribute of the int object is mapped to the number representation of JSON. 396

<real val=”5.5”/>  {“tag”:”real”, “val”:5.5} 397

4.1.4 Other types and facets 398

All other types and facets are mapped to name/value pairs using JSON string representation. Facets are 399
mapped to name/value pairs as described by the rules above. 400

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 18 of 23

4.2 XML Namespace 401

If namespace information should be preserved in the JSON encoding, namespace prefixes SHOULD be 402
normalized before the object is encoded to JSON as shown in the examples below: 403

Object with namespace prefixes in use: 404

<obj xmlns:acme="http://acme.com/def/" href="acme:CustomPoint" 405
 is="acme:Point obix:Point"/> 406

Object with normalized namespace information: 407

<obj href="http://acme.com/def/CustomPoint" 408
 is="http://acme.com/def/Point http://obix.org/def/Point"/> 409

JSON encoded object with normalized namespace information: 410

{tag:”obj”, href:”http://acme.com/def/CustomPoint”, is:”http://acme.com/def/Point 411
http://obix.org/def/Point”} 412

 413

4.3 Examples 414

The following examples illustrate the JSON encoding: 415

 416

Example – oBIX About: 417

XML: 418

<obj name="about"> 419
 <str name="obixVersion" val="1.1"/> 420
 <str name="serverName" val="obix"/> 421
 <abstime name="serverTime" val="2006-02-08T09:40:55.000+05:00:00Z"/> 422
 <abstime name="serverBootTime" val="2006-02-08T09:33:31.980+05:00:00Z"/> 423
 <str name="vendorName" val="Acme, Inc."/> 424
 <uri name="vendorUrl" val="http://www.acme.com"/> 425
 <str name="productName" val="Acme oBIX Server"/> 426
 <str name="productVersion" val="1.0.3"/> 427
 <uri name="productUrl" val="http://www.acme.com/obix"/> 428
</obj> 429

 430

JSON: 431

{“tag”:”obj”, “name”:”about”, “nodes”:[432
 {“tag”:”str”, “name”:”obixVersion”, “val”:”1.1”}, 433
 {“tag”:”str”, “name”:”serverName”, “val”:”obix”}, 434
 {“tag”:”abstime”, “name”:”serverTime”, “val”:”2006-02-08T09:40:55.000+05:00:00Z”}, 435
 {“tag”:”abstime”, “name”:”serverBootTime”, “val”:”2006-02-436
08T09:33:31.980+05:00:00Z”}, 437
 {“tag”:”str”,”name”:”vendorName”, “val”:”Acme, Inc.”}, 438
 {“tag”:”uri”,”name”:”vendorURL”, “val”:“http://www.acme.com“}, 439
 {“tag”:”str”,”name”:”productName”, “val”:”Acme oBIX Server”}, 440
 {“tag”:”str”,”name”:”productVersion”,”val”:”1.0.3”}, 441
 {“tag”:”uri”,”name”:”prodctUrl”,”val”:”http://www.acme.com/obix”} 442
]} 443

4.4 MIME Type 444

If a client wants to use JSON encoding it MUST use the JSON MIME type application/json 445

according to [RFC4627]. 446

http://www.acme.com/

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 19 of 23

5 EXI encoding 447

The Efficient XML Interchange [EXI] format is a very compact representation for XML which aims at 448
providing high performance and significantly reduced bandwidth requirements for XML based protocols. It 449
uses a grammar driven approach based on entropy encoding which can be used with schema information 450
but also without any schema information. 451

5.1 EXI options 452

EXI provides several encoding options that communicating parties need to agree upon in order to ensure 453
interoperability. 454

If EXI encoding is used for oBIX the following options MUST be used by a client and server 455
implementation. 456

5.1.1 Alignment options 457

In contrast to XML EXI is by default bit-packed, which means the information is stored in the most 458
compact representation as possible, regardless of possible byte boundaries. This allows for example to 459
store 8 Boolean values into one single Byte, versus 8 Bytes with a single character representing the 460
value, e.g. ‘T’ or ‘F’. Even worse if a textual representation like ‘true’ or ‘false’ is used, 4 to 5 Bytes are 461
used for representing the Boolean value. 462

EXI defines 4 options for alignment: compress, preCompress, byteAligned and bitPacked. 463

In order to have the best possible compression for oBIX bitPacked alignment MUST be used. 464

5.1.2 Preservation options 465

EXI implementation may provide preservation options specifying which type of XML information should be 466
remained in the EXI representation, like comments, programming instructions, document type 467
declarations and namespace. 468

For oBIX only name space declarations MUST be preserved. Every other non-relevant information MAY 469
be omitted. 470

5.2 Non-schema-informed EXI 471

EXI can be used without any schema information about the XML infoset that shall be encoded. This has 472
the advantage that no schema information is required at the decoders site, but comes with the 473
disadvantage of being less efficient and providing only a limited compression for small payloads. 474

5.3 Schema-informed EXI 475

Schema-informed EXI allows making the encoding most efficient even for small payload sizes. Within 476
constrained environments schema-informed EXI SHALL be used to in order to have the best compression 477
effect. With object encoders and decoders even the performance penalty of processing XML structures in 478
memory can be avoided. 479

For schema-informed the normative obix.xsd schema file representing the oBIX 1.1 object model MUST 480
be used in order to provide interoperability among different vendor implementations. 481

For content negotiation and to determine if schema-informed or non-schema-informed EXI encoding 482
should be used either an out-of-band agreement between a client and server need to be done or the EXI 483
best practices [EXI BP] or the guidelines in [EXI MR] need to be followed. 484

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 20 of 23

5.4 MIME types 485

If a client wants to use EXI encoding it MUST use the MIME type application/exi for EXI without 486

schema information and the MIME type application/x-obix-exi for schema-informed 487

representation. 488

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 21 of 23

6 Conformance 489

An implementation is compliant with this specification if it implements all MUST or REQUIRED level 490
requirements. An implementation MUST specify its supported encodings. 491

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 22 of 23

Appendix A. Acknowledgments 492

The following individuals have participated in the creation of this specification and are gratefully 493
acknowledged: 494

Participants: 495
Ron Ambrosio, IBM 496
Brad Benson, Trane 497
Ron Bernstein, LonMark International* 498
Ludo Bertsch, Continental Automated Buildings Association (CABA) 499
Chris Bogen, US Department of Defense 500
Rich Blomseth, Echelon Corporation 501
Anto Budiardjo, Clasma Events, Inc. 502
Jochen Burkhardt, IBM 503
JungIn Choi, Kyungwon University 504
David Clute, Cisco Systems, Inc.* 505
Toby Considine, University of North Carolina at Chapel Hill 506
William Cox, Individual 507
Robert Dolin, Echelon Corporation 508
Marek Dziedzic, Treasury Board of Canada, Secretariat 509
Brian Frank, SkyFoundry 510
Craig Gemmill, Tridium, Inc. 511
Matthew Giannini, Tridium, Inc. 512
Harald Hofstätter, Institute of Computer Aided Automation, Vienna University of Technology 513
Markus Jung, Institute of Computer Aided Automation, Vienna University of Technology 514
Christopher Kelly, Cisco Systems 515
Wonsuk Ko, Kyungwon University 516
Perry Krol, TIBCO Software Inc. 517
Corey Leong, Individual 518
Ulf Magnusson, Schneider Electric 519
Brian Meyers, Trane 520
Jeremy Roberts, LonMark International 521
Thorsten Roggendorf, Echelon Corporation 522
Anno Scholten, Individual 523
John Sublett, Tridium, Inc. 524
Dave Uden, Trane 525
Ron Zimmer, Continental Automated Buildings Association (CABA)* 526
Robert Zach, Institute of Computer Aided Automation 527
Rob Zivney, Hirsch Electronics Corporation 528
Markus Jung, Vienna University of Technology 529

 530

obix-encodings-v1.0-csprd01 11 July 2013
Standards Track Work Product Copyright © OASIS Open 2013. All Rights Reserved. Page 23 of 23

Appendix B. Revision History 531

 532

Revision Date Editor Changes Made

wd01 26 Mar 13 Markus Jung Initial creation with XML and Binary encoding
taken from the oBIX 1.1 WD07 working draft.

wd02 24 Apr 13 Markus Jung First draft JSON and EXI encoding.

wd03 22 May 13 Markus Jung Added JSON section on handling XML
namespaces, shorter JSON names.

wd04 13 Jun 13 Markus Jung Refined the use of examples (normative/non
normative), EXI content negotiation.

wd05 28 Jun 13 Markus Jung Updated reference section

Wd06 8 Jul 13 Toby Considine Updated acknowledgements

 533

 534

