
mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 1 of 81

MQTT Version 3.1.1

Committee Specification Draft 02 /
Public Review Draft 0201

10 April18 May 2014

Specification URIs
This version:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cs01/mqtt-v3.1.1-cs01.doc (Authoritative)
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cs01/mqtt-v3.1.1-cs01.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cs01/mqtt-v3.1.1-cs01.pdf

Previous version:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.doc (Authoritative)
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.pdf

Latest version:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.doc (Authoritative)
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf

Technical Committee:
OASIS Message Queuing Telemetry Transport (MQTT) TC

Chairs:
Raphael J Cohn (raphael.cohn@stormmq.com), Individual
Richard J Coppen (coppen@uk.ibm.com), IBM

Editors:
Andrew Banks (Andrew_Banks@uk.ibm.com), IBM
Rahul Gupta (rahul.gupta@us.ibm.com), IBM

Related work:

This specification is related to:

 MQTT and the NIST Cybersecurity Framework Version 1.0. Edited by Geoff Brown and
Louis-Philippe Lamoureux. Latest version: http://docs.oasis-open.org/mqtt/mqtt-nist-
cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html.

Abstract:
MQTT is a Client Server publish/subscribe messaging transport protocol. It is light weight, open,
simple, and designed so as to be easy to implement. These characteristics make it ideal for use
in many situations, including constrained environments such as for communication in Machine to
Machine (M2M) and Internet of Things (IoT) contexts where a small code footprint is required
and/or network bandwidth is at a premium.

The protocol runs over TCP/IP, or over other network protocols that provide ordered, lossless, bi-
directional connections. Its features include:

 Use of the publish/subscribe message pattern which provides one-to-many message
distribution and decoupling of applications.

 A messaging transport that is agnostic to the content of the payload.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cs01/mqtt-v3.1.1-cs01.doc
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cs01/mqtt-v3.1.1-cs01.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cs01/mqtt-v3.1.1-cs01.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.doc
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.doc
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
https://www.oasis-open.org/committees/mqtt/
mailto:raphael.cohn@stormmq.com
mailto:coppen@uk.ibm.com
http://www.ibm.com/
mailto:Andrew_Banks@uk.ibm.com
http://www.ibm.com/
mailto:rahul.gupta@us.ibm.com
http://www.ibm.com/
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 2 of 81

 Three qualities of service for message delivery:

 "At most once", where messages are delivered according to the best efforts of the
operating environment. Message loss can occur. This level could be used, for
example, with ambient sensor data where it does not matter if an individual reading is
lost as the next one will be published soon after.

 "At least once", where messages are assured to arrive but duplicates can occur.

 "Exactly once", where message are assured to arrive exactly once. This level could
be used, for example, with billing systems where duplicate or lost messages could
lead to incorrect charges being applied.

 A small transport overhead and protocol exchanges minimized to reduce network traffic.

 A mechanism to notify interested parties when an abnormal disconnection occurs.

Status:
This document was last revised or approved by the OASIS Message Queuing Telemetry
Transport (MQTT) TC on the above date. The level of approval is also listed above. Check the
“Latest version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at https://www.oasis-
open.org/committees/mqtt/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/mqtt/ipr.php).

Citation format:
When referencing this specification the following citation format should be used:

[mqtt-v3.1.1]

MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 10 April18 May 2014. OASIS
Committee Specification Draft 02 / Public Review Draft 02.01. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/cs01/mqtt-v3.1.1-cs01.html. Latest version: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/mqtt/
https://www.oasis-open.org/committees/mqtt/
https://www.oasis-open.org/committees/mqtt/ipr.php
https://www.oasis-open.org/committees/mqtt/ipr.php
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cs01/mqtt-v3.1.1-cs01.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cs01/mqtt-v3.1.1-cs01.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 3 of 81

Notices

Copyright © OASIS Open 2014. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 4 of 81

Table of Contents

1 Introduction ... 9

1.1 Organization of MQTT .. 9

1.2 Terminology .. 9

1.3 Normative references ... 10

1.4 Non normative references .. 11

1.5 Data representations .. 13

1.5.1 Bits ... 13

1.5.2 Integer data values .. 13

1.5.3 UTF-8 encoded strings .. 13

2 MQTT Control Packet format ... 16

2.1 Structure of an MQTT Control Packet .. 16

2.2 Fixed header ... 16

2.2.1 MQTT Control Packet type .. 16

2.2.2 Flags .. 17

2.2.3 Remaining Length ... 18

2.3 Variable header .. 20

2.3.1 Packet Identifier ... 20

2.4 Payload ... 21

3 MQTT Control Packets ... 23

3.1 CONNECT – Client requests a connection to a Server .. 23

3.1.1 Fixed header.. 23

3.1.2 Variable header ... 23

3.1.3 Payload .. 29

3.1.4 Response .. 30

3.2 CONNACK – Acknowledge connection request ... 31

3.2.1 Fixed header.. 31

3.2.2 Variable header ... 31

3.2.3 Payload .. 33

3.3 PUBLISH – Publish message ... 33

3.3.1 Fixed header.. 33

3.3.2 Variable header ... 35

3.3.3 Payload .. 36

3.3.4 Response .. 36

3.3.5 Actions ... 36

3.4 PUBACK – Publish acknowledgement ... 37

3.4.1 Fixed header.. 37

3.4.2 Variable header ... 37

3.4.3 Payload .. 37

3.4.4 Actions ... 37

3.5 PUBREC – Publish received (QoS 2 publish received, part 1) .. 37

3.5.1 Fixed header.. 38

3.5.2 Variable header ... 38

3.5.3 Payload .. 38

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 5 of 81

3.5.4 Actions ... 38

3.6 PUBREL – Publish release (QoS 2 publish received, part 2)... 38

3.6.1 Fixed header.. 38

3.6.2 Variable header ... 39

3.6.3 Payload .. 39

3.6.4 Actions ... 39

3.7 PUBCOMP – Publish complete (QoS 2 publish received, part 3) .. 39

3.7.1 Fixed header.. 39

3.7.2 Variable header ... 40

3.7.3 Payload .. 40

3.7.4 Actions ... 40

3.8 SUBSCRIBE - Subscribe to topics ... 40

3.8.1 Fixed header.. 40

3.8.2 Variable header ... 40

3.8.3 Payload .. 41

3.8.4 Response .. 42

3.9 SUBACK – Subscribe acknowledgement ... 43

3.9.1 Fixed header.. 44

3.9.2 Variable header ... 44

3.9.3 Payload .. 44

3.10 UNSUBSCRIBE – Unsubscribe from topics ... 45

3.10.1 Fixed header.. 45

3.10.2 Variable header ... 45

3.10.3 Payload .. 46

3.10.4 Response .. 46

3.11 UNSUBACK – Unsubscribe acknowledgement.. 47

3.11.1 Fixed header.. 47

3.11.2 Variable header ... 47

3.11.3 Payload .. 48

3.12 PINGREQ – PING request ... 48

3.12.1 Fixed header.. 48

3.12.2 Variable header ... 48

3.12.3 Payload .. 48

3.12.4 Response .. 48

3.13 PINGRESP – PING response .. 48

3.13.1 Fixed header.. 48

3.13.2 Variable header ... 49

3.13.3 Payload .. 49

3.14 DISCONNECT – Disconnect notification .. 49

3.14.1 Fixed header.. 49

3.14.2 Variable header ... 49

3.14.3 Payload .. 49

3.14.4 Response .. 49

4 Operational behavior .. 51

4.1 Storing state .. 51

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 6 of 81

4.1.1 Non normative example .. 51

4.2 Network Connections .. 52

4.3 Quality of Service levels and protocol flows ... 52

4.3.1 QoS 0: At most once delivery .. 52

4.3.2 QoS 1: At least once delivery .. 53

4.3.3 QoS 2: Exactly once delivery .. 54

4.4 Message delivery retry .. 55

4.5 Message receipt ... 56

4.6 Message ordering ... 56

4.7 Topic Names and Topic Filters ... 57

4.7.1 Topic wildcards .. 57

4.7.2 Topics beginning with $... 58

4.7.3 Topic semantic and usage .. 58

4.8 Handling errors ... 59

5 Security ... 60

5.1 Introduction ... 60

5.2 MQTT solutions: security and certification .. 60

5.3 Lightweight cryptography and constrained devices .. 61

5.4 Implementation notes ... 61

5.4.1 Authentication of Clients by the Server ... 61

5.4.2 Authorization of Clients by the Server ... 61

5.4.3 Authentication of the Server by the Client ... 61

5.4.4 Integrity of Application Messages and Control Packets .. 62

5.4.5 Privacy of Application Messages and Control Packets ... 62

5.4.6 Non-repudiation of message transmission .. 62

5.4.7 Detecting compromise of Clients and Servers .. 62

5.4.8 Detecting abnormal behaviors... 63

5.4.9 Other security considerations .. 63

5.4.10 Use of SOCKS .. 64

5.4.11 Security profiles ... 64

6 Using WebSocket as a network transport .. 65

6.1 IANA Considerations .. 65

7 Conformance .. 66

7.1 Conformance Targets ... 66

7.1.1 MQTT Server ... 66

7.1.2 MQTT Client .. 66

Appendix A. Acknowledgements (non normative) .. 68

Appendix B. Mandatory normative statements (non normative) ... 70

Appendix C. Revision history (non normative) ... 80

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 7 of 81

Table of Figures and Tables

Figure 1.1 Structure of UTF-8 encoded strings... 13
Figure 1.2 UTF-8 encoded string non normative example ... 14
Figure 2.1 – Structure of an MQTT Control Packet .. 16
Figure 2.2 - Fixed header format .. 16
Table 2.1 - Control packet types .. 16
Table 2.2 - Flag Bits ... 17
Table 2.4 Size of Remaining Length field ... 19
Figure 2.3 - Packet Identifier bytes... 20
Table 2.5 - Control Packets that contain a Packet Identifier ... 20
Table 2.6 - Control Packets that contain a Payload ... 21
Figure 3.1 – CONNECT Packet fixed header ... 23
Figure 3.2 - Protocol Name bytes ... 23
Figure 3.3 - Protocol Level byte ... 24
Figure 3.4 - Connect Flag bits .. 24
Figure 3.5 Keep Alive bytes ... 27
Figure 3.6 - Variable header non normative example .. 28
Figure 3.7 - Password bytes .. 30
Figure 3.8 – CONNACK Packet fixed header .. 31
Figure 3.9 – CONNACK Packet variable header.. 31
Table 3.1 – Connect Return code values ... 32
Figure 3.10 – PUBLISH Packet fixed header ... 33
Table 3.2 - QoS definitions ... 34
Table 3.3 - Publish Packet non normative example ... 35
Figure 3.11 - Publish Packet variable header non normative example .. 35
Table 3.4 - Expected Publish Packet response .. 36
Figure 3.12 - PUBACK Packet fixed header .. 37
Figure 3.13 – PUBACK Packet variable header ... 37
Figure 3.14 – PUBREC Packet fixed header ... 38
Figure 3.15 – PUBREC Packet variable header .. 38
Figure 3.16 – PUBREL Packet fixed header .. 38
Figure 3.17 – PUBREL Packet variable header ... 39
Figure 3.18 – PUBCOMP Packet fixed header .. 39
Figure 3.19 – PUBCOMP Packet variable header ... 40
Figure 3.20 – SUBSCRIBE Packet fixed header .. 40
Figure 3.21 - Variable header with a Packet Identifier of 10, Non normative example ... 41
Figure 3.22 – SUBSCRIBE Packet payload format .. 41
Table 3.5 - Payload non normative example .. 42
Figure 3.23 - Payload byte format non normative example .. 42
Figure 3.24 – SUBACK Packet fixed header .. 44
Figure 3.25 – SUBACK Packet variable header ... 44
Figure 3.26 – SUBACK Packet payload format .. 44
Table 3.6 - Payload non normative example .. 45
Figure 3.27 - Payload byte format non normative example .. 45
Figure 3.28 – UNSUBSCRIBE Packet Fixed header ... 45
Figure 3.29 – UNSUBSCRIBE Packet variable header .. 45
Table3.7 - Payload non normative example ... 46
Figure 3.30 - Payload byte format non normative example .. 46

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 8 of 81

Figure 3.31 – UNSUBACK Packet fixed header... 47
Figure 3.32 – UNSUBACK Packet variable header .. 47
Figure 3.33 – PINGREQ Packet fixed header .. 48
Figure 3.34 – PINGRESP Packet fixed header .. 48
Figure 3.35 – DISCONNECT Packet fixed header ... 49
Figure 4.1 – QoS 0 protocol flow diagram, non normative example ... 52
Figure 4.2 – QoS 1 protocol flow diagram, non normative example ... 53
Figure 4.3 – QoS 2 protocol flow diagram, non normative example ... 54
Figure 6.1 - IANA WebSocket Identifier ... 65

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 9 of 81

1 Introduction 1

1.1 Organization of MQTT 2

This specification is split into seven chapters: 3

 Chapter 1 - Introduction 4

 Chapter 2 - MQTT Control Packet format 5

 Chapter 3 - MQTT Control Packets 6

 Chapter 4 - Operational behavior 7

 Chapter 5 - Security 8

 Chapter 6 - Using WebSocket as a network transport 9

 Chapter 7 - Conformance Targets 10

1.2 Terminology 11

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD 12
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as 13
described in IETF RFC 2119 [RFC2119]. 14

Network Connection: 15

A construct provided by the underlying transport protocol that is being used by MQTT. 16

 It connects the Client to the Server. 17

 It provides the means to send an ordered, lossless, stream of bytes in both directions. 18

For examples see Section 4.2. 19

Application Message: 20

The data carried by the MQTT protocol across the network for the application. When Application 21

Messages are transported by MQTT they have an associated Quality of Service and a Topic Name. 22

Client: 23

A program or device that uses MQTT. A Client always establishes the Network Connection to the Server. 24
It can 25

 Publish Application Messages that other Clients might be interested in. 26

 Subscribe to request Application Messages that it is interested in receiving. 27

 Unsubscribe to remove a request for Application Messages. 28

 Disconnect from the Server. 29

Server: 30

A program or device that acts as an intermediary between Clients which publish Application Messages 31
and Clients which have made Subscriptions. A Server 32

 Accepts Network Connections from Clients. 33

 Accepts Application Messages published by Clients. 34

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html#anchor-RFC2119

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 10 of 81

 Processes Subscribe and Unsubscribe requests from Clients. 35

 Forwards Application Messages that match Client Subscriptions. 36

Subscription: 37

A Subscription comprises a Topic Filter and a maximum QoS. A Subscription is associated with a single 38
Session. A Session can contain more than one Subscription. Each Subscription within a session has a 39
different Topic Filter. 40

Topic Name: 41

The label attached to an Application Message which is matched against the Subscriptions known to the 42
Server. The Server sends a copy of the Application Message to each Client that has a matching 43
Subscription. 44

Topic Filter: 45

An expression contained in a Subscription, to indicate an interest in one or more topics. A Topic Filter can 46
include wildcard characters. 47

Session: 48

A stateful interaction between a Client and a Server. Some Sessions last only as long as the Network 49
Connection, others can span multiple consecutive Network Connections between a Client and a Server. 50

MQTT Control Packet: 51

A packet of information that is sent across the Network Connection. The MQTT specification defines 52
fourteen different types of Control Packet, one of which (the PUBLISH packet) is used to convey 53
Application Messages. 54

1.3 Normative references 55

[RFC2119] 56

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 57
1997. 58

http://www.ietf.org/rfc/rfc2119.txt 59

 60

[RFC3629] 61

Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, November 2003 62
http://www.ietf.org/rfc/rfc3629.txt 63

 64

[RFC5246] 65

Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, August 66
2008. 67

http://www.ietf.org/rfc/rfc5246.txt 68

 69

[RFC6455] 70

Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC 6455, December 2011. 71

http://www.ietf.org/rfc/rfc6455.txt 72

 73

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc6455.txt

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 11 of 81

[Unicode] 74

The Unicode Consortium. The Unicode Standard. 75

http://www.unicode.org/versions/latest/ 76

1.4 Non normative references 77

[RFC793] 78

Postel, J. Transmission Control Protocol. STD 7, IETF RFC 793, September 1981. 79
http://www.ietf.org/rfc/rfc793.txt 80

 81

[AES] 82

Advanced Encryption Standard (AES) (FIPS PUB 197). 83
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf 84

 85

[DES] 86

Data Encryption Standard (DES). 87
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf 88
 89

[FIPS1402] 90

Security Requirements for Cryptographic Modules (FIPS PUB 140-2) 91

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf 92
 93

[IEEE 802.1AR] 94

IEEE Standard for Local and metropolitan area networks - Secure Device Identity 95
http://standards.ieee.org/findstds/standard/802.1AR-2009.html 96
 97

[ISO29192] 98

ISO/IEC 29192-1:2012 Information technology -- Security techniques -- Lightweight cryptography -- Part 99
1: General 100
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=56425 101
 102

[MQTT NIST] 103

MQTT supplemental publication, MQTT and the NIST Framework for Improving Critical Infrastructure 104
Cybersecurity 105
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html 106
 107

[MQTTV31] 108

MQTT V3.1 Protocol Specification. 109

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html 110

 111

[NISTCSF] 112

Improving Critical Infrastructure Cybersecurity Executive Order 13636 113
http://www.nist.gov/itl/upload/preliminary-cybersecurity-framework.pdf 114

http://www.unicode.org/versions/latest/
http://www.ietf.org/rfc/rfc793.txt
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://standards.ieee.org/findstds/standard/802.1AR-2009.html
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=56425
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://www.nist.gov/itl/upload/preliminary-cybersecurity-framework.pdf

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 12 of 81

 115

[NIST7628] 116

NISTIR 7628 Guidelines for Smart Grid Cyber Security 117
http://www.nist.gov/smartgrid/upload/nistir-7628_total.pdf 118

 119

[NSAB] 120

NSA Suite B Cryptography 121
http://www.nsa.gov/ia/programs/suiteb_cryptography/ 122

 123

[PCIDSS] 124

PCI-DSS Payment Card Industry Data Security Standard 125
https://www.pcisecuritystandards.org/security_standards/ 126

 127

[RFC1928] 128

Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and L. Jones, "SOCKS Protocol Version 5", RFC 129
1928, March 1996. 130

http://www.ietf.org/rfc/rfc1928.txt 131

 132

[RFC4511] 133

Sermersheim, J., Ed., "Lightweight Directory Access Protocol (LDAP): The Protocol", RFC 4511, June 134
2006. 135

http://www.ietf.org/rfc/rfc4511.txt 136

 137

[RFC5077] 138

Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig, "Transport Layer Security (TLS) Session 139
Resumption without Server-Side State", RFC 5077, January 2008. 140

http://www.ietf.org/rfc/rfc5077.txt 141

 142

[RFC5280] 143

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key 144
Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, May 2008. 145

http://www.ietf.org/rfc/rfc5280.txt 146

 147

[RFC6066] 148

Eastlake 3rd, D., "Transport Layer Security (TLS) Extensions: Extension Definitions", RFC 6066, January 149
2011. 150

http://www.ietf.org/rfc/rfc6066.txt 151

http://www.ietf.org/rfc/rfc6066.txt 152

 153

[RFC6749] 154

http://www.nist.gov/smartgrid/upload/nistir-7628_total.pdf
http://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.pcisecuritystandards.org/security_standards/
http://www.ietf.org/rfc/rfc1928.txt
http://www.ietf.org/rfc/rfc4511.txt
http://www.ietf.org/rfc/rfc5077.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc6066.txt

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 13 of 81

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, October 2012. 155

http://www.ietf.org/rfc/rfc6749.txt 156

 157

[RFC6960] 158

Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., and C. Adams, "X.509 Internet Public 159
Key Infrastructure Online Certificate Status Protocol - OCSP", RFC 6960, June 2013. 160
http://www.ietf.org/rfc/rfc6960.txt 161
 162

[SARBANES] 163

Sarbanes-Oxley Act of 2002. 164
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm 165

 166

[USEUSAFEHARB] 167

U.S.-EU Safe Harbor 168
http://export.gov/safeharbor/eu/eg_main_018365.asp 169

1.5 Data representations 170

1.5.1 Bits 171

Bits in a byte are labeled 7 through 0. Bit number 7 is the most significant bit, the least significant bit is 172
assigned bit number 0. 173

1.5.2 Integer data values 174

Integer data values are 16 bits in big-endian order: the high order byte precedes the lower order byte. 175
This means that a 16-bit word is presented on the network as Most Significant Byte (MSB), followed by 176
Least Significant Byte (LSB). 177

1.5.3 UTF-8 encoded strings 178

Text fields in the Control Packets described later are encoded as UTF-8 strings. UTF-8 [RFC3629] is an 179

efficient encoding of Unicode [Unicode] characters that optimizes the encoding of ASCII characters in 180

support of text-based communications. 181

 182

Each of these strings is prefixed with a two byte length field that gives the number of bytes in a UTF-8 183
encoded string itself, as illustrated in Figure 1.1 Structure of UTF-8 encoded strings below. Consequently 184
there is a limit on the size of a string that can be passed in one of these UTF-8 encoded string 185
components; you cannot use a string that would encode to more than 65535 bytes. 186

 187

Unless stated otherwise all UTF-8 encoded strings can have any length in the range 0 to 65535 bytes. 188

Figure 1.1 Structure of UTF-8 encoded strings 189

Bit 7 6 5 4 3 2 1 0

byte 1 String length MSB

byte 2 String length LSB

http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6960.txt
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm
http://export.gov/safeharbor/eu/eg_main_018365.asp

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 14 of 81

byte 3 …. UTF-8 Encoded Character Data, if length > 0.

 190

The character data in a UTF-8 encoded string MUST be well-formed UTF-8 as defined by the Unicode 191
specification [Unicode] and restated in RFC 3629 [RFC3629]. In particular this data MUST NOT include 192
encodings of code points between U+D800 and U+DFFF. If a Server or Client receives a Control Packet 193
containing ill-formed UTF-8 it MUST close the Network Connection [MQTT-1.4.05.3-1]. 194
 195
A UTF-8 encoded string MUST NOT include an encoding of the null character U+0000. If a receiver 196
(Server or Client) receives a Control Packet containing U+0000 it MUST close the Network 197
Connection [MQTT-1.4.05.3-2]. 198
 199

The data SHOULD NOT include encodings of the Unicode [Unicode] code points listed below. If a 200

receiver (Server or Client) receives a Control Packet containing any of them it MAY close the Network 201
Connection: 202
 203
U+0001..U+001F control characters 204
U+007F..U+009F control characters 205

Code points defined in the Unicode specification [Unicode] to be non-characters (for example U+0FFFF) 206

 207
A UTF-8 encoded sequence 0xEF 0xBB 0xBF is always to be interpreted to mean U+FEFF ("ZERO 208
WIDTH NO-BREAK SPACE") wherever it appears in a string and MUST NOT be skipped over or stripped 209
off by a packet receiver [MQTT-1.4.05.3-3]. 210

 211

1.5.3.1 Non normative example 212

For example, the string A𪛔 which is LATIN CAPITAL Letter A followed by the code point 213

U+2A6D4 (which represents a CJK IDEOGRAPH EXTENSION B character) is encoded as 214
follows: 215

 216

Figure 1.2 UTF-8 encoded string non normative example 217

Bit 7 6 5 4 3 2 1 0

byte 1 String Length MSB (0x00)

 0 0 0 0 0 0 0 0

byte 2 String Length LSB (0x05)

 0 0 0 0 0 1 0 1

byte 3 ‘A’ (0x41)

 0 1 0 0 0 0 0 1

byte 4 (0xF0)

 1 1 1 1 0 0 0 0

byte 5 (0xAA)

 1 0 1 0 1 0 1 0

byte 6 (0x9B)

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 15 of 81

 1 0 0 1 1 0 1 1

byte 7 (0x94)

 1 0 0 1 0 1 0 0

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 16 of 81

2 MQTT Control Packet format 218

2.1 Structure of an MQTT Control Packet 219

The MQTT protocol works by exchanging a series of MQTT Control Packets in a defined way. This 220
section describes the format of these packets. 221

An MQTT Control Packet consists of up to three parts, always in the following order as illustrated in 222
Figure 2.1 - Structure of an MQTT Control Packet. 223

 224

Figure 2.1 – Structure of an MQTT Control Packet 225

Fixed header, present in all MQTT Control Packets

Variable header, present in some MQTT Control Packets

Payload, present in some MQTT Control Packets

2.2 Fixed header 226

Each MQTT Control Packet contains a fixed header. Figure 2.2 - Fixed header format illustrates the fixed 227
header format. 228

 229

Figure 2.2 - Fixed header format 230

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type Flags specific to each MQTT Control
Packet type

byte 2… Remaining Length

 231

2.2.1 MQTT Control Packet type 232

Position: byte 1, bits 7-4. 233

Represented as a 4-bit unsigned value, the values are listed in Table 2.1 - Control packet types. 234

 235

Table 2.1 - Control packet types 236

Name Value Direction of
flow

Description

Reserved 0 Forbidden Reserved

CONNECT 1 Client to Server Client request to connect to Server

CONNACK 2 Server to Client Connect acknowledgment

PUBLISH 3 Client to Server Publish message

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 17 of 81

 or

Server to Client

PUBACK 4 Client to Server

 or

Server to Client

Publish acknowledgment

PUBREC 5 Client to Server

 or

Server to Client

Publish received (assured delivery part 1)

PUBREL 6 Client to Server

 or

Server to Client

Publish release (assured delivery part 2)

PUBCOMP 7 Client to Server

 or

Server to Client

Publish complete (assured delivery part 3)

SUBSCRIBE 8 Client to Server Client subscribe request

SUBACK 9 Server to Client Subscribe acknowledgment

UNSUBSCRIBE 10 Client to Server Unsubscribe request

UNSUBACK 11 Server to Client Unsubscribe acknowledgment

PINGREQ 12 Client to Server PING request

PINGRESP 13 Server to Client PING response

DISCONNECT 14 Client to Server Client is disconnecting

Reserved 15 Forbidden Reserved

 237

2.2.2 Flags 238

The remaining bits [3-0] of byte 1 in the fixed header contain flags specific to each MQTT Control Packet 239
type as listed in the Table 2.2 - Flag Bits below. Where a flag bit is marked as “Reserved” in Table 2.2 - 240
Flag Bits, it is reserved for future use and MUST be set to the value listed in that table [MQTT-2.2.2-1]. If 241
invalid flags are received, the receiver MUST close the Network Connection [MQTT-2.2.2-2]. See Section 242
4.8 for details about handling errors. 243

 244

 Table 2.2 - Flag Bits 245

Control Packet Fixed header flags Bit 3 Bit 2 Bit 1 Bit 0

CONNECT Reserved 0 0 0 0

CONNACK Reserved 0 0 0 0

PUBLISH Used in MQTT 3.1.1 DUP
1
 QoS

2
 QoS

2
 RETAIN

3

PUBACK Reserved 0 0 0 0

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 18 of 81

PUBREC Reserved 0 0 0 0

PUBREL Reserved 0 0 1 0

PUBCOMP Reserved 0 0 0 0

SUBSCRIBE Reserved 0 0 1 0

SUBACK Reserved 0 0 0 0

UNSUBSCRIBE Reserved 0 0 1 0

UNSUBACK Reserved 0 0 0 0

PINGREQ Reserved 0 0 0 0

PINGRESP Reserved 0 0 0 0

DISCONNECT Reserved 0 0 0 0

 246

DUP
1
 = Duplicate delivery of a PUBLISH Control Packet 247

QoS
2
 = PUBLISH Quality of Service 248

RETAIN
3
 = PUBLISH Retain flag 249

See Section 3.3.1 for a description of the DUP, QoS, and RETAIN flags in the PUBLISH Control Packet. 250

2.2.3 Remaining Length 251

Position: starts at byte 2. 252

 253

The Remaining Length is the number of bytes remaining within the current packet, including data in the 254
variable header and the payload. The Remaining Length does not include the bytes used to encode the 255
Remaining Length. 256

 257

The Remaining Length is encoded using a variable length encoding scheme which uses a single byte for 258
values up to 127. Larger values are handled as follows. The least significant seven bits of each byte 259
encode the data, and the most significant bit is used to indicate that there are following bytes in the 260
representation. Thus each byte encodes 128 values and a "continuation bit". The maximum number of 261
bytes in the Remaining Length field is four. 262

 263

Non normative comment 264

For example, the number 64 decimal is encoded as a single byte, decimal value 64, hexadecimal 265
0x40. The number 321 decimal (= 65 + 2*128) is encoded as two bytes, least significant first. The 266
first byte is 65+128 = 193. Note that the top bit is set to indicate at least one following byte. The 267
second byte is 2. 268

 269

Non normative comment 270

This allows applications to send Control Packets of size up to 268,435,455 (256 MB). The 271
representation of this number on the wire is: 0xFF, 0xFF, 0xFF, 0x7F. 272

Table 2.4 shows the Remaining Length values represented by increasing numbers of bytes. 273

 274

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 19 of 81

Table 2.4 Size of Remaining Length field 275

Digits From To

1 0 (0x00) 127 (0x7F)

2 128 (0x80, 0x01) 16 383 (0xFF, 0x7F)

3 16 384 (0x80, 0x80, 0x01) 2 097 151 (0xFF, 0xFF, 0x7F)

4 2 097 152 (0x80, 0x80, 0x80, 0x01) 268 435 455 (0xFF, 0xFF, 0xFF, 0x7F)

 276

Non normative comment 277

The algorithm for encoding a non negative integer (X) into the variable length encoding scheme is 278
as follows: 279

 do 280

 encodedByte = X MOD 128 281

 X = X DIV 128 282

 // if there are more data to encode, set the top bit of this byte 283

 if (X > 0) 284

 encodedByte = encodedByte OR 128 285

 endif 286

 'output' encodedByte 287

 while (X > 0) 288

 289

Where MOD is the modulo operator (% in C), DIV is integer division (/ in C), and OR is bit-wise or 290

(| in C). 291

 292

Non normative comment 293

The algorithm for decoding the Remaining Length field is as follows: 294

 295

 multiplier = 1 296

 value = 0 297

 do 298

 encodedByte = 'next byte from stream' 299

 value += (encodedByte AND 127) * multiplier 300

 multiplier *= 128 301

 if (multiplier > 128*128*128) 302

 throw Error(Malformed Remaining Length) 303

 while ((encodedByte AND 128) != 0) 304

 305

where AND is the bit-wise and operator (& in C). 306

 307

When this algorithm terminates, value contains the Remaining Length value. 308

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 20 of 81

2.3 Variable header 309

Some types of MQTT Control Packets contain a variable header component. It resides between the fixed 310
header and the payload. The content of the variable header varies depending on the Packet type. The 311
Packet Identifier field of variable header is common in several packet types. 312

2.3.1 Packet Identifier 313

Figure 2.3 - Packet Identifier bytes 314

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 315

The variable header component of many of the Control Packet types includes a 2 byte Packet Identifier 316
field. These Control Packets are PUBLISH (where QoS > 0), PUBACK, PUBREC, PUBREL, PUBCOMP, 317
SUBSCRIBE, SUBACK, UNSUBSCRIBE, UNSUBACK. 318

 319

SUBSCRIBE, UNSUBSCRIBE, and PUBLISH (in cases where QoS > 0) Control Packets MUST contain a 320
non-zero 16-bit Packet Identifier [MQTT-2.3.1-1]. Each time a Client sends a new packet of one of these 321
types it MUST assign it a currently unused Packet Identifier [MQTT-2.3.1-2]. If a Client re-sends a 322
particular Control Packet, then it MUST use the same Packet Identifier in subsequent re-sends of that 323
packet. The Packet Identifier becomes available for reuse after the Client has processed the 324
corresponding acknowledgement packet. In the case of a QoS 1 PUBLISH this is the corresponding 325
PUBACK; in the case of QoS 2 it is PUBCOMP. For SUBSCRIBE or UNSUBSCRIBE it is the 326
corresponding SUBACK or UNSUBACK [MQTT-2.3.1-3]. The same conditions apply to a Server when it 327
sends a PUBLISH with QoS > 0 [MQTT-2.3.1-4]. 328

 329

A PUBLISH Packet MUST NOT contain a Packet Identifier if its QoS value is set to 0 [MQTT-2.3.1.--5]. 330

 331

A PUBACK, PUBREC or PUBREL Packet MUST contain the same Packet Identifier as the PUBLISH 332
Packet that was originally sent [MQTT-2.3.1-6]. Similarly SUBACK and UNSUBACK MUST contain the 333
Packet Identifier that was used in the corresponding SUBSCRIBE and UNSUBSCRIBE Packet 334
respectively [MQTT-2.3.1-7]. 335

 336

Control Packets that require a Packet Identifier are listed in Table 2.5 - Control Packets that contain a 337
Packet Identifier. 338

Table 2.5 - Control Packets that contain a Packet Identifier 339

Control Packet Packet Identifier field

CONNECT NO

CONNACK NO

PUBLISH YES (If QoS > 0)

PUBACK YES

PUBREC YES

PUBREL YES

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 21 of 81

PUBCOMP YES

SUBSCRIBE YES

SUBACK YES

UNSUBSCRIBE YES

UNSUBACK YES

PINGREQ NO

PINGRESP NO

DISCONNECT NO

 340

The Client and Server assign Packet Identifiers independently of each other. As a result, Client Server 341
pairs can participate in concurrent message exchanges using the same Packet Identifiers. 342

 343

Non normative comment 344

It is possible for a Client to send a PUBLISH Packet with Packet Identifier 0x1234 and then 345
receive a different PUBLISH with Packet Identifier 0x1234 from its Server before it receives a 346
PUBACK for the PUBLISH that it sent. 347

 348

 Client Server 349
 PUBLISH Packet Identifier=0x1234--- 350
 --PUBLISH Packet Identifier=0x1234 351
 PUBACK Packet Identifier=0x1234--- 352
 --PUBACK Packet Identifier=0x1234 353

2.4 Payload 354

Some MQTT Control Packets contain a payload as the final part of the packet, as described in Chapter 3. 355
In the case of the PUBLISH packet this is the Application Message. Table 2.6 - Control Packets that 356
contain a Payload lists the Control Packets that require a Payload. 357

Table 2.6 - Control Packets that contain a Payload 358

Control Packet Payload

CONNECT Required

CONNACK None

PUBLISH Optional

PUBACK None

PUBREC None

PUBREL None

PUBCOMP None

SUBSCRIBE Required

SUBACK Required

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 22 of 81

UNSUBSCRIBE Required

UNSUBACK None

PINGREQ None

PINGRESP None

DISCONNECT None

 359

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 23 of 81

3 MQTT Control Packets 360

3.1 CONNECT – Client requests a connection to a Server 361

After a Network Connection is established by a Client to a Server, the first Packet sent from the Client to 362
the Server MUST be a CONNECT Packet [MQTT-3.1.0-1]. 363

 364

A Client can only send the CONNECT Packet once over a Network Connection. The Server MUST 365
process a second CONNECT Packet sent from a Client as a protocol violation and disconnect the Client 366
[MQTT-3.1.0-2]. See section 4.8 for information about handling errors. 367

 368

The payload contains one or more encoded fields. They specify a unique Client identifier for the Client, a 369
Will topic, Will Message, User Name and Password. All but the Client identifier are optional and their 370
presence is determined based on flags in the variable header. 371

3.1.1 Fixed header 372

Figure 3.1 – CONNECT Packet fixed header 373

Bit 7 6 5 4 3 2 1 0

Bbyte 1 MQTT Control Packet type (1) Reserved

 0 0 0 1 0 0 0 0

Bbyte 2… Remaining Length

 374

Remaining Length field 375

Remaining Length is the length of the variable header (10 bytes) plus the length of the Payload. It is 376
encoded in the manner described in section 2.2.3. 377

3.1.2 Variable header 378

The variable header for the CONNECT Packet consists of four fields in the following order: Protocol 379
Name, Protocol Level, Connect Flags, and Keep Alive. 380

3.1.2.1 Protocol Name 381

Figure 3.2 - Protocol Name bytes 382

 Description 7 6 5 4 3 2 1 0

Protocol Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (4) 0 0 0 0 0 1 0 0

byte 3 ‘M’ 0 1 0 0 1 1 0 1

byte 4 ‘Q’ 0 1 0 1 0 0 0 1

byte 5 ‘T’ 0 1 0 1 0 1 0 0

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 24 of 81

byte 6 ‘T’ 0 1 0 1 0 1 0 0

 383

The Protocol Name is a UTF-8 encoded string that represents the protocol name “MQTT”, capitalized as 384
shown. The string, its offset and length will not be changed by future versions of the MQTT specification. 385

 386

If the protocol name is incorrect the Server MAY disconnect the Client, or it MAY continue processing the 387
CONNECT packet in accordance with some other specification. In the latter case, the Server MUST NOT 388
continue to process the CONNECT packet in line with this specification [MQTT-3.1.2-1]. 389

 390

Non normative comment 391

Packet inspectors, such as firewalls, could use the Protocol Name to identify MQTT traffic. 392

3.1.2.2 Protocol Level 393

Figure 3.3 - Protocol Level byte 394

 Description 7 6 5 4 3 2 1 0

Protocol Level

byte 7 Level(4) 0 0 0 0 0 1 0 0

 395

The 8 bit unsigned value that represents the revision level of the protocol used by the Client. The value of 396
the Protocol Level field for the version 3.1.1 of the protocol is 4 (0x04). The Server MUST respond to the 397
CONNECT Packet with a CONNACK return code 0x01 (unacceptable protocol level) and then disconnect 398
the Client if the Protocol Level is not supported by the Server [MQTT-3.1.2-2]. 399

3.1.2.3 Connect Flags 400

The Connect Flags byte contains a number of parameters specifying the behavior of the MQTT 401
connection. It also indicates the presence or absence of fields in the payload. 402

Figure 3.4 - Connect Flag bits 403

Bit 7 6 5 4 3 2 1 0

 User Name
Flag

Password
Flag

Will Retain Will QoS Will Flag Clean
Session

Reserved

Bbyte 8 X X X X X X X 0

The Server MUST validate that the reserved flag in the CONNECT Control Packet is set to zero and 404
disconnect the Client if it is not zero [MQTT-3.1.2-3]. 405

3.1.2.4 Clean Session 406

Position: bit 1 of the Connect Flags byte. 407

 408
This bit specifies the handling of the Session state. 409
 410
The Client and Server can store Session state to enable reliable messaging to continue across a 411
sequence of Network Connections. This bit is used to control the lifetime of the Session state. 412

 413

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 25 of 81

If CleanSession is set to 0, the Server MUST resume communications with the Client based on state from 414
the current Session (as identified by the Client identifier). If there is no Session associated with the Client 415
identifier the Server MUST create a new Session. The Client and Server MUST store the Session after 416
the Client and Server are disconnected [MQTT-3.1.2-4]. After the disconnection of a Session that had 417
CleanSession set to 0, the Server MUST store further QoS 1 and QoS 2 messages that match any 418
subscriptions that the client had at the time of disconnection as part of the Session state [MQTT-3.1.2-5]. 419
It MAY also store QoS 0 messages that meet the same criteria. 420

 421

If CleanSession is set to 1, the Client and Server MUST discard any previous Session and start a new 422
one. This Session lasts as long as the Network Connection. State data associated with this Session 423
MUST NOT be reused in any subsequent Session [MQTT-3.1.2-6]. 424

 425

The Session state in the Client consists of: 426

 QoS 1 and QoS 2 messages which have been sent to the Server, but have not been completely 427
acknowledged. 428

 QoS 2 messages which have been received from the Server, but have not been completely 429
acknowledged. 430

 431

The Session state in the Server consists of: 432

 The existence of a Session, even if the rest of the Session state is empty. 433

 The Client’s subscriptions. 434

 QoS 1 and QoS 2 messages which have been sent to the Client, but have not been completely 435
acknowledged. 436

 QoS 1 and QoS 2 messages pending transmission to the Client. 437

 QoS 2 messages which have been received from the Client, but have not been completely 438
acknowledged. 439

 Optionally, QoS 0 messages pending transmission to the Client. 440

 441

Retained messages do not form part of the Session state in the Server, they MUST NOT be deleted when 442
the Session ends [MQTT-3.1.2.7]. 443

 444

See Section 4.1 for details and limitations of stored state. 445

 446

When CleanSession is set to 1 the Client and Server need not process the deletion of state atomically. 447

 448

Non normative comment 449

Consequently, in the event of a failure to connect the Client should repeat its attempts to connect 450
with CleanSession set to 1, until it connects successfully. 451

 452

Non normative comment 453

Typically, a Client will always connect using CleanSession set to 0 or CleanSession set to 1 and 454
not swap between the two values. The choice will depend on the application. A Client using 455
CleanSession set to 1 will not receive old Application Messages and has to subscribe afresh to 456
any topics that it is interested in each time it connects. A Client using CleanSession set to 0 will 457
receive all QoS 1 or QoS 2 messages that were published while it was disconnected. Hence, to 458
ensure that you do not lose messages while disconnected, use QoS 1 or QoS 2 with 459
CleanSession set to 0. 460

https://tools.oasis-open.org/issues/browse/MQTT-3

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 26 of 81

 461

Non normative comment 462

When a Client connects with CleanSession set to 0, it is requesting that the Server maintain its 463
MQTT session state after it disconnects. Clients should only connect with CleanSession set to 0, 464
if they intend to reconnect to the Server at some later point in time. When a Client has determined 465
that it has no further use for the session it should do a final connect with CleanSession set to 1 466
and then disconnect. 467

3.1.2.5 Will Flag 468

Position: bit 2 of the Connect Flags. 469

 470
If the Will Flag is set to 1 this indicates that, if the Connect request is accepted, a Will Message MUST be 471
stored on the Server and associated with the Network Connection. The Will Message MUST be published 472
when the Network Connection is subsequently closed unless the Will Message has been deleted by the 473
Server on receipt of a DISCONNECT Packet [MQTT-3.1.2-8]. 474

Situations in which the Will Message is published include, but are not limited to: 475

 An I/O error or network failure detected by the Server. 476

 The Client fails to communicate within the Keep Alive time. 477

 The Client closes the Network Connection without first sending a DISCONNECT Packet. 478

 The Server closes the Network Connection because of a protocol error. 479

 480

If the Will Flag is set to 1, the Will QoS and Will Retain fields in the Connect Flags will be used by the 481
Server, and the Will Topic and Will Message fields MUST be present in the payload [MQTT-3.1.2-9]. 482

The Will Message MUST be removed from the stored Session state in the Server once it has been 483
published or the Server has received a DISCONNECT packet from the Client [MQTT-3.1.2-10]. 484

If the Will Flag is set to 0 the Will QoS and Will Retain fields in the Connect Flags MUST be set to zero 485
and the Will Topic and Will Message fields MUST NOT be present in the payload [MQTT-3.1.2-11]. 486

If the Will Flag is set to 0, a Will Message MUST NOT be published when this Network Connection ends 487
[MQTT-3.1.2-12]. 488

 489

The Server SHOULD publish Will Messages promptly. In the case of a Server shutdown or failure the 490
server MAY defer publication of Will Messages until a subsequent restart. If this happens there might be a 491
delay between the time the server experienced failure and a Will Message being published. 492

3.1.2.6 Will QoS 493

Position: bits 4 and 3 of the Connect Flags. 494

 495
These two bits specify the QoS level to be used when publishing the Will Message. 496

 497

If the Will Flag is set to 0, then the Will QoS MUST be set to 0 (0x00) [MQTT-3.1.2-13]. 498

If the Will Flag is set to 1, the value of Will QoS can be 0 (0x00), 1 (0x01), or 2 (0x02). It MUST NOT be 3 499
(0x03) [MQTT-3.1.2-14]. 500

3.1.2.7 Will Retain 501

Position: bit 5 of the Connect Flags. 502

 503
This bit specifies if the Will Message is to be Retained when it is published. 504

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 27 of 81

 505

If the Will Flag is set to 0, then the Will Retain Flag MUST be set to 0 [MQTT-3.1.2-15]. 506

If the Will Flag is set to 1: 507

 If Will Retain is set to 0, the Server MUST publish the Will Message as a non-retained message 508
[MQTT-3.1.2-16]. 509

 If Will Retain is set to 1, the Server MUST publish the Will Message as a retained message 510
[MQTT-3.1.2-17]. 511

3.1.2.8 User Name Flag 512

Position: bit 7 of the Connect Flags. 513

 514
If the User Name Flag is set to 0, a user name MUST NOT be present in the payload [MQTT-3.1.2-18]. 515

If the User Name Flag is set to 1, a user name MUST be present in the payload [MQTT-3.1.2-19]. 516

3.1.2.9 Password Flag 517

Position: bit 6 of the Connect Flags byte. 518

 519
If the Password Flag is set to 0, a password MUST NOT be present in the payload [MQTT-3.1.2-20]. 520

If the Password Flag is set to 1, a password MUST be present in the payload [MQTT-3.1.2-21]. 521

If the User Name Flag is set to 0, the Password Flag MUST be set to 0 [MQTT-3.1.2-22]. 522

3.1.2.10 Keep Alive 523

Figure 3.5 Keep Alive bytes 524

Bit 7 6 5 4 3 2 1 0

byte 9 Keep Alive MSB

byte 10 Keep Alive LSB

 525

The Keep Alive is a time interval measured in seconds. Expressed as a 16-bit word, it is the maximum 526
time interval that is permitted to elapse between the point at which the Client finishes transmitting one 527
Control Packet and the point it starts sending the next. It is the responsibility of the Client to ensure that 528
the interval between Control Packets being sent does not exceed the Keep Alive value. In the absence of 529
sending any other Control Packets, the Client MUST send a PINGREQ Packet [MQTT-3.1.2-23]. 530

 531

The Client can send PINGREQ at any time, irrespective of the Keep Alive value, and use the PINGRESP 532
to determine that the network and the Server are working. 533

 534

If the Keep Alive value is non-zero and the Server does not receive a Control Packet from the Client 535
within one and a half times the Keep Alive time period, it MUST disconnect the Network Connection to the 536
Client as if the network had failed [MQTT-3.1.2-24]. 537

 538

If a Client does not receive a PINGRESP Packet within a reasonable amount of time after it has sent a 539
PINGREQ, it SHOULD close the Network Connection to the Server. 540

 541

A Keep Alive value of zero (0) has the effect of turning off the keep alive mechanism. This means that, in 542
this case, the Server is not required to disconnect the Client on the grounds of inactivity. 543

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 28 of 81

Note that a Server is permitted to disconnect a Client that it determines to be inactive or non-responsive 544
at any time, regardless of the Keep Alive value provided by that Client. 545

 546

Non normative comment 547

The actual value of the Keep Alive is application specific; typically this is a few minutes. The 548
maximum value is 18 hours 12 minutes and 15 seconds. 549

3.1.2.11 Variable header non normative example 550

Figure 3.6 - Variable header non normative example 551

 Description 7 6 5 4 3 2 1 0

Protocol Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (4) 0 0 0 0 0 1 0 0

byte 3 ‘M’ 0 1 0 0 1 1 0 1

byte 4 ‘Q’ 0 1 0 1 0 0 0 1

byte 5 ‘T’ 0 1 0 1 0 1 0 0

byte 6 ‘T’ 0 1 0 1 0 1 0 0

Protocol Level

 Description 7 6 5 4 3 2 1 0

byte 7 Level (4) 0 0 0 0 0 1 0 0

Connect Flags

byte 8

User Name Flag (1)

Password Flag (1)

Will Retain (0)

Will QoS (01)

Will Flag (1)

Clean Session (1)

Reserved (0)

1

1

0

0

1

1

1

0

Keep Alive

byte 9 Keep Alive MSB (0) 0 0 0 0 0 0 0 0

byte 10 Keep Alive LSB (10) 0 0 0 0 1 0 1 0

 552

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 29 of 81

3.1.3 Payload 553

The payload of the CONNECT Packet contains one or more length-prefixed fields, whose presence is 554
determined by the flags in the variable header. These fields, if present, MUST appear in the order Client 555
Identifier, Will Topic, Will Message, User Name, Password [MQTT-3.1.3-1]. 556

3.1.3.1 Client Identifier 557

The Client Identifier (ClientId) identifies the Client to the Server. Each Client connecting to the Server has 558
a unique ClientId. The ClientId MUST be used by Clients and by Servers to identify state that they hold 559
relating to this MQTT Session between the Client and the Server [MQTT-3.1.3-2]. 560

 561

The Client Identifier (ClientId) MUST be present and MUST be the first field in the CONNECT packet 562
payload [MQTT-3.1.3-3]. 563

 564

The ClientId MUST be a UTF-8 encoded string as defined in Section 1.5.3 [MQTT-3.1.3-4]. 565
 566
The Server MUST allow ClientIds which are between 1 and 23 UTF-8 encoded bytes in length, and that 567
contain only the characters 568

"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" [MQTT-3.1.3-5]. 569

 570

The Server MAY allow ClientId’s that contain more than 23 encoded bytes. The Server MAY allow 571
ClientId’s that contain characters not included in the list given above. 572
 573
A Server MAY allow a Client to supply a ClientId that has a length of zero bytes, however if it does so the 574
Server MUST treat this as a special case and assign a unique ClientId to that Client. It MUST then 575
process the CONNECT packet as if the Client had provided that unique ClientId [MQTT-3.1.3-6]. 576
 577
If the Client supplies a zero-byte ClientId, the Client MUST also set CleanSession to 1 [MQTT-3.1.3-7]. 578
 579
If the Client supplies a zero-byte ClientId with CleanSession set to 0, the Server MUST respond to the 580
CONNECT Packet with a CONNACK return code 0x02 (Identifier rejected) and then close the Network 581
Connection [MQTT-3.1.3-8]. 582
 583
If the Server rejects the ClientId it MUST respond to the CONNECT Packet with a CONNACK return code 584
0x02 (Identifier rejected) and then close the Network Connection [MQTT-3.1.3-9]. 585

 586

Non normative comment 587

A Client implementation could provide a convenience method to generate a random ClientId. Use 588
of such a method should be actively discouraged when the CleanSession is set to 0. 589

3.1.3.2 Will Topic 590

If the Will Flag is set to 1, the Will Topic is the next field in the payload. The Will Topic MUST be a UTF-8 591
encoded string as defined in Section 1.5.3 [MQTT-3.1.3-10]. 592

3.1.3.3 Will Message 593

If the Will Flag is set to 1 the Will Message is the next field in the payload. The Will Message defines the 594
Application Message that is to be published to the Will Topic as described in Section 3.1.2.5. This field 595
consists of a two byte length followed by the payload for the Will Message expressed as a sequence of 596
zero or more bytes. The length gives the number of bytes in the data that follows and does not include the 597
2 bytes taken up by the length itself. 598

 599

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 30 of 81

When the Will Message is published to the Will Topic its payload consists only of the data portion of this 600
field, not the first two length bytes. 601

3.1.3.4 User Name 602

If the User Name Flag is set to 1, this is the next field in the payload. The User Name MUST be a UTF-8 603
encoded string as defined in Section 1.5.3 [MQTT-3.1.3-11]. It can be used by the Server for 604
authentication and authorization. 605

3.1.3.5 Password 606

If the Password Flag is set to 1, this is the next field in the payload. The Password field contains 0 to 607
65535 bytes of binary data prefixed with a two byte length field which indicates the number of bytes used 608
by the binary data (it does not include the two bytes taken up by the length field itself). 609

Figure 3.7 - Password bytes 610

Bit 7 6 5 4 3 2 1 0

byte 1 Data length MSB

byte 2 Data length LSB

byte 3 …. Data, if length > 0.

 611

3.1.4 Response 612

Note that a Server MAY support multiple protocols (including earlier versions of this protocol) on the same 613
TCP port or other network endpoint. If the Server determines that the protocol is MQTT 3.1.1 then it 614
validates the connection attempt as follows. 615

 616

1. If the Server does not receive a CONNECT Packet within a reasonable amount of time after the 617
Network Connection is established, the Server SHOULD close the connection. 618
 619

2. The Server MUST validate that the CONNECT Packet conforms to section 3.1 and close the 620
Network Connection without sending a CONNACK if it does not conform [MQTT-3.1.4-1]. 621
 622

3. The Server MAY check that the contents of the CONNECT Packet meet any further restrictions 623
and MAY perform authentication and authorization checks. If any of these checks fail, it SHOULD 624
send an appropriate CONNACK response with a non-zero return code as described in section 3.2 625
and it MUST close the Network Connection. 626

 627

If validation is successful the Server performs the following steps. 628

 629

1. If the ClientId represents a Client already connected to the Server then the Server MUST 630
disconnect the existing Client [MQTT-3.1.4-2]. 631

 632

2. The Server MUST perform the processing of CleanSession that is described in section 3.1.2.4 633
[MQTT-3.1.4-3]. 634

 635

3. The Server MUST acknowledge the CONNECT Packet with a CONNACK Packet containing a 636
zero return code [MQTT-3.1.4-4]. 637

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 31 of 81

 638

4. Start message delivery and keep alive monitoring. 639

 640

Clients are allowed to send further Control Packets immediately after sending a CONNECT Packet; 641
Clients need not wait for a CONNACK Packet to arrive from the Server. If the Server rejects the 642
CONNECT, it MUST NOT process any data sent by the Client after the CONNECT Packet [MQTT-3.1.4-643
5]. 644
 645

Non normative comment 646
Clients typically wait for a CONNACK Packet, However, if the Client exploits its freedom to send 647
Control Packets before it receives a CONNACK, it might simplify the Client implementation as it 648
does not have to police the connected state. The Client accepts that any data that it sends before it 649
receives a CONNACK packet from the Server will not be processed if the Server rejects the 650
connection. 651

3.2 CONNACK – Acknowledge connection request 652

The CONNACK Packet is the packet sent by the Server in response to a CONNECT Packet received 653
from a Client. The first packet sent from the Server to the Client MUST be a CONNACK Packet [MQTT-654
3.2.0-1]. 655

 656

If the Client does not receive a CONNACK Packet from the Server within a reasonable amount of time, 657
the Client SHOULD close the Network Connection. A "reasonable" amount of time depends on the type of 658
application and the communications infrastructure. 659

3.2.1 Fixed header 660

The fixed header format is illustrated in Figure 3.8 – CONNACK Packet fixed header. 661

Figure 3.8 – CONNACK Packet fixed header 662

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet Type (2) Reserved

 0 0 1 0 0 0 0 0

byte 2 Remaining Length (2)

 0 0 0 0 0 0 1 0

 663

Remaining Length field 664

This is the length of the variable header. For the CONNACK Packet this has the value 2. 665

3.2.2 Variable header 666

The variable header format is illustrated in Figure 3.9 – CONNACK Packet variable header. 667

Figure 3.9 – CONNACK Packet variable header 668

 Description 7 6 5 4 3 2 1 0

Connect Acknowledge Flags Reserved SP
1

byte 1 0 0 0 0 0 0 0 X

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 32 of 81

Connect Return code

byte 2 X X X X X X X X

3.2.2.1 Connect Acknowledge Flags 669

Byte 1 is the "Connect Acknowledge Flags". Bits 7-1 are reserved and MUST be set to 0. 670
 671
Bit 0 (SP

1
) is the Session Present Flag. 672

3.2.2.2 Session Present 673

Position: bit 0 of the Connect Acknowledge Flags. 674
 675
If the Server accepts a connection with CleanSession set to 1, the Server MUST set Session Present to 0 676
in the CONNACK packet in addition to setting a zero return code in the CONNACK packet [MQTT-3.2.2-677
1]. 678
 679
If the Server accepts a connection with CleanSession set to 0, the value set in Session Present depends 680
on whether the Server already has stored Session state for the supplied client ID. If the Server has stored 681
Session state, it MUST set Session Present to 1 in the CONNACK packet [MQTT-3.2.2-2]. If the Server 682
does not have stored Session state, it MUST set Session Present to 0 in the CONNACK packet. This is in 683
addition to setting a zero return code in the CONNACK packet [MQTT-3.2.2-3]. 684
 685
The Session Present flag enables a Client to establish whether the Client and Server have a consistent 686
view about whether there is already stored Session state. 687
 688
Once the initial setup of a Session is complete, a Client with stored Session state will expect the Server to 689
maintain its stored Session state. In the event that the value of Session Present received by the Client 690
from the Server is not as expected, the Client can choose whether to proceed with the Session or to 691
disconnect. The Client can discard the Session state on both Client and Server by disconnecting, 692
connecting with Clean Session set to 1 and then disconnecting again. 693
 694
If a server sends a CONNACK packet containing a non-zero return code it MUST set Session Present to 695
0 [MQTT-3.2.2-4]. 696

 697

3.2.2.3 Connect Return code 698

Byte 2 in the Variable header. 699

 700

The values for the one byte unsigned Connect Return code field are listed in Table 3.1 – Connect Return 701
code values. If a well formed CONNECT Packet is received by the Server, but the Server is unable to 702
process it for some reason, then the Server SHOULD attempt to send a CONNACK packet containing the 703
appropriate non-zero Connect return code from this table. If a server sends a CONNACK packet 704
containing a non-zero return code it MUST then close the Network Connection [MQTT-3.2.2-5]. 705

Table 3.1 – Connect Return code values 706

Value Return Code Response Description

0 0x00 Connection Accepted Connection accepted

1 0x01 Connection Refused, unacceptable
protocol version

The Server does not support the level of the
MQTT protocol requested by the Client

2 0x02 Connection Refused, identifier rejected The Client identifier is correct UTF-8 but not

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 33 of 81

allowed by the Server

3 0x03 Connection Refused, Server unavailable The Network Connection has been made but
the MQTT service is unavailable

4 0x04 Connection Refused, bad user name or
password

The data in the user name or password is
malformed

5 0x05 Connection Refused, not authorized The Client is not authorized to connect

6-255 Reserved for future use

 707

If none of the return codes listed in Table 3.1 – Connect Return code values are deemed applicable, then 708
the Server MUST close the Network Connection without sending a CONNACK [MQTT-3.2.2-6]. 709

3.2.3 Payload 710

The CONNACK Packet has no payload. 711

3.3 PUBLISH – Publish message 712

A PUBLISH Control Packet is sent from a Client to a Server or from Server to a Client to transport an 713
Application Message. 714

3.3.1 Fixed header 715

Figure 3.10 – PUBLISH Packet fixed header illustrates the fixed header format: 716

Figure 3.10 – PUBLISH Packet fixed header 717

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (3) DUP flag QoS level RETAIN

 0 0 1 1 X X X X

byte 2 Remaining Length

 718

3.3.1.1 DUP 719

Position: byte 1, bit 3. 720

If the DUP flag is set to 0, it indicates that this is the first occasion that the Client or Server has attempted 721
to send this MQTT PUBLISH Packet. If the DUP flag is set to 1, it indicates that this might be re-delivery 722
of an earlier attempt to send the Packet. 723

 724

The DUP flag MUST be set to 1 by the Client or Server when it attempts to re-deliver a PUBLISH Packet 725
[MQTT-3.3.1.-1]. The DUP flag MUST be set to 0 for all QoS 0 messages [MQTT-3.3.1-2]. 726

 727

The value of the DUP flag from an incoming PUBLISH packet is not propagated when the PUBLISH 728
Packet is sent to subscribers by the Server. The DUP flag in the outgoing PUBLISH packet is set 729
independently to the incoming PUBLISH packet, its value MUST be determined solely by whether the 730
outgoing PUBLISH packet is a retransmission [MQTT-3.3.1-3]. 731

 732

Non normative comment 733

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 34 of 81

The recipient of a Control Packet that contains the DUP flag set to 1 cannot assume that it has 734
seen an earlier copy of this packet. 735

 736

Non normative comment 737

It is important to note that the DUP flag refers to the Control Packet itself and not to the 738
Application Message that it contains. When using QoS 1, it is possible for a Client to receive a 739
PUBLISH Packet with DUP flag set to 0 that contains a repetition of an Application Message that 740
it received earlier, but with a different Packet Identifier. Section 2.3.1 provides more information 741
about Packet Identifiers. 742

3.3.1.2 QoS 743

Position: byte 1, bits 2-1. 744

This field indicates the level of assurance for delivery of an Application Message. The QoS levels are 745
listed in the Table 3.2 - QoS definitions, below. 746

 747

Table 3.2 - QoS definitions 748

QoS value Bit 2 bit 1 Description

0 0 0 At most once delivery

1 0 1 At least once delivery

2 1 0 Exactly once delivery

- 1 1 Reserved – must not be used

A PUBLISH Packet MUST NOT have both QoS bits set to 1. If a Server or Client receives a PUBLISH 749
Packet which has both QoS bits set to 1 it MUST close the Network Connection [MQTT-3.3.1-4]. 750

3.3.1.3 RETAIN 751

Position: byte 1, bit 0. 752

 753

This flag is only used on the PUBLISH Packet. 754

 755

If the RETAIN flag is set to 1, in a PUBLISH Packet sent by a Client to a Server, the Server MUST store 756
the Application Message and its QoS, so that it can be delivered to future subscribers whose 757
subscriptions match its topic name [MQTT-3.3.1-5]. When a new subscription is established, the last 758
retained message, if any, on each matching topic name MUST be sent to the subscriber [MQTT-3.3.1-6]. 759
If the Server receives a QoS 0 message with the RETAIN flag set to 1 it MUST discard any message 760
previously retained for that topic. It SHOULD store the new QoS 0 message as the new retained 761
message for that topic, but MAY choose to discard it at any time - if this happens there will be no retained 762
message for that topic [MQTT-3.3.1-7]. See Section 4.1 for more information on storing state. 763

 764

When sending a PUBLISH Packet to a Client the Server MUST set the RETAIN flag to 1 if a message is 765
sent as a result of a new subscription being made by a Client [MQTT-3.3.1-8]. It MUST set the RETAIN 766
flag to 0 when a PUBLISH Packet is sent to a Client because it matches an established subscription 767
regardless of how the flag was set in the message it received [MQTT-3.3.1-9]. 768

 769

A PUBLISH Packet with a RETAIN flag set to 1 and a payload containing zero bytes will be processed as 770
normal by the Server and sent to Clients with a subscription matching the topic name. Additionally any 771

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 35 of 81

existing retained message with the same topic name MUST be removed and any future subscribers for 772
the topic will not receive a retained message [MQTT-3.3.1-10]. “As normal” means that the RETAIN flag is 773
not set in the message received by existing Clients. A zero byte retained message MUST NOT be stored 774
as a retained message on the Server [MQTT-3.3.1-11]. 775

 776

If the RETAIN flag is 0, in a PUBLISH Packet sent by a Client to a Server, the Server MUST NOT store 777
the message and MUST NOT remove or replace any existing retained message [MQTT-3.3.1-12]. 778

 779

Non normative comment 780

Retained messages are useful where publishers send state messages on an irregular basis. A 781
new subscriber will receive the most recent state. 782

 783

Remaining Length field 784

 This is the length of variable header plus the length of the payload. 785

3.3.2 Variable header 786

The variable header contains the following fields in the order: Topic Name, Packet Identifier. 787

3.3.2.1 Topic Name 788

The Topic Name identifies the information channel to which payload data is published. 789

 790

The Topic Name MUST be present as the first field in the PUBLISH Packet Variable header. It MUST be 791
a UTF-8 encoded string [MQTT-3.3.2-1] as defined in section 1.5.3. 792

The Topic Name in the PUBLISH Packet MUST NOT contain wildcard characters [MQTT-3.3.2-2]. 793

The Topic Name in a PUBLISH Packet sent by a Server to a subscribing Client MUST match the 794
Subscription’s Topic Filter according to the matching process defined in Section 4.7 [MQTT-3.3.2-3]. 795
However, since the Server is permitted to override the Topic Name, it might not be the same as the Topic 796
Name in the original PUBLISH Packet. 797

3.3.2.2 Packet Identifier 798

The Packet Identifier field is only present in PUBLISH Packets where the QoS level is 1 or 2. Section 799
2.3.1 provides more information about Packet Identifiers. 800

3.3.2.3 Variable header non normative example 801

Figure 3.11 - Publish Packet variable header non normative example illustrates an example variable 802
header for the PUBLISH Packet briefly described in Table 3.3 - Publish Packet non normative example. 803

Table 3.3 - Publish Packet non normative example 804

Field Value

Topic Name a/b

Packet Identifier 10

 805

Figure 3.11 - Publish Packet variable header non normative example 806

 Description 7 6 5 4 3 2 1 0

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 36 of 81

Topic Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 ‘a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ‘b’ (0x62) 0 1 1 0 0 0 1 0

Packet Identifier

byte 6 Packet Identifier MSB (0) 0 0 0 0 0 0 0 0

byte 7 Packet Identifier LSB (10) 0 0 0 0 1 0 1 0

 807

3.3.3 Payload 808

The Payload contains the Application Message that is being published. The content and format of the 809
data is application specific. The length of the payload can be calculated by subtracting the length of the 810
variable header from the Remaining Length field that is in the Fixed Header. It is valid for a PUBLISH 811
Packet to contain a zero length payload. 812

3.3.4 Response 813

The receiver of a PUBLISH Packet MUST respond according to Table 3.4 - Expected Publish Packet 814
response as determined by the QoS in the PUBLISH Packet [MQTT-3.3.4-1]. 815

Table 3.4 - Expected Publish Packet response 816

QoS Level Expected Response

QoS 0 None

QoS 1 PUBACK Packet

QoS 2 PUBREC Packet

 817

3.3.5 Actions 818

The Client uses a PUBLISH Packet to send an Application Message to the Server, for distribution to 819
Clients with matching subscriptions. 820

 821

The Server uses a PUBLISH Packet to send an Application Message to each Client which has a 822
matching subscription. 823

 824

When Clients make subscriptions with Topic Filters that include wildcards, it is possible for a Client’s 825
subscriptions to overlap so that a published message might match multiple filters. In this case the Server 826
MUST deliver the message to the Client respecting the maximum QoS of all the matching subscriptions 827
[MQTT-3.3.5-1]. In addition, the Server MAY deliver further copies of the message, one for each 828
additional matching subscription and respecting the subscription’s QoS in each case. 829

 830

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 37 of 81

The action of the recipient when it receives a PUBLISH Packet depends on the QoS level as described in 831
Section 4.3. 832

 833

If a Server implementation does not authorize a PUBLISH to be performed by a Client; it has no way of 834
informing that Client. It MUST either make a positive acknowledgement, according to the normal QoS 835
rules, or close the Network Connection [MQTT-3.3.5-2]. 836

3.4 PUBACK – Publish acknowledgement 837

A PUBACK Packet is the response to a PUBLISH Packet with QoS level 1. 838

3.4.1 Fixed header 839

Figure 3.12 - PUBACK Packet fixed header 840

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (4) Reserved

 0 1 0 0 0 0 0 0

byte 2 Remaining Length (2)

 0 0 0 0 0 0 1 0

 841

Remaining Length field 842

This is the length of the variable header. For the PUBACK Packet this has the value 2. 843

3.4.2 Variable header 844

This contains the Packet Identifier from the PUBLISH Packet that is being acknowledged. 845

Figure 3.13 – PUBACK Packet variable header 846

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 847

3.4.3 Payload 848

The PUBACK Packet has no payload. 849

3.4.4 Actions 850

This is fully described in Section 4.3.2. 851

3.5 PUBREC – Publish received (QoS 2 publish received, part 1) 852

A PUBREC Packet is the response to a PUBLISH Packet with QoS 2. It is the second packet of the QoS 853
2 protocol exchange. 854

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 38 of 81

3.5.1 Fixed header 855

Figure 3.14 – PUBREC Packet fixed header 856

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (5) Reserved

 0 1 0 1 0 0 0 0

byte 2 Remaining Length (2)

 0 0 0 0 0 0 1 0

 857

Remaining Length field 858

This is the length of the variable header. For the PUBREC Packet this has the value 2. 859

3.5.2 Variable header 860

The variable header contains the Packet Identifier from the PUBLISH Packet that is being acknowledged. 861

Figure 3.15 – PUBREC Packet variable header 862

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 863

3.5.3 Payload 864

The PUBREC Packet has no payload. 865

3.5.4 Actions 866

This is fully described in Section 4.3.3. 867

3.6 PUBREL – Publish release (QoS 2 publish received, part 2) 868

A PUBREL Packet is the response to a PUBREC Packet. It is the third packet of the QoS 2 protocol 869
exchange. 870

3.6.1 Fixed header 871

Figure 3.16 – PUBREL Packet fixed header 872

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (6) Reserved

 0 1 1 0 0 0 1 0

byte 2 Remaining Length (2)

 0 0 0 0 0 0 1 0

 873

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 39 of 81

Bits 3,2,1 and 0 of the fixed header in the PUBREL Control Packet are reserved and MUST be set to 874
0,0,1 and 0 respectively. The Server MUST treat any other value as malformed and close the Network 875
Connection [MQTT-3.6.1-1]. 876

 877

Remaining Length field 878

This is the length of the variable header. For the PUBREL Packet this has the value 2. 879

3.6.2 Variable header 880

The variable header contains the same Packet Identifier as the PUBREC Packet that is being 881
acknowledged. 882

Figure 3.17 – PUBREL Packet variable header 883

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 884

3.6.3 Payload 885

The PUBREL Packet has no payload. 886

3.6.4 Actions 887

This is fully described in Section 4.3.3. 888

3.7 PUBCOMP – Publish complete (QoS 2 publish received, part 3) 889

 890

The PUBCOMP Packet is the response to a PUBREL Packet. It is the fourth and final packet of the QoS 891
2 protocol exchange. 892

3.7.1 Fixed header 893

Figure 3.18 – PUBCOMP Packet fixed header 894

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (7) Reserved

 0 1 1 1 0 0 0 0

byte 2 Remaining Length (2)

 0 0 0 0 0 0 1 0

 895

Remaining Length field 896

This is the length of the variable header. For the PUBCOMP Packet this has the value 2. 897

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 40 of 81

3.7.2 Variable header 898

The variable header contains the same Packet Identifier as the PUBREL Packet that is being 899
acknowledged. 900

Figure 3.19 – PUBCOMP Packet variable header 901

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 902

3.7.3 Payload 903

The PUBCOMP Packet has no payload. 904

3.7.4 Actions 905

This is fully described in Section 4.3.3. 906

3.8 SUBSCRIBE - Subscribe to topics 907

The SUBSCRIBE Packet is sent from the Client to the Server to create one or more Subscriptions. Each 908
Subscription registers a Client’s interest in one or more Topics. The Server sends PUBLISH Packets to 909
the Client in order to forward Application Messages that were published to Topics that match these 910
Subscriptions. The SUBSCRIBE Packet also specifies (for each Subscription) the maximum QoS with 911
which the Server can send Application Messages to the Client. 912

3.8.1 Fixed header 913

Figure 3.20 – SUBSCRIBE Packet fixed header 914

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (8) Reserved

 1 0 0 0 0 0 1 0

byte 2 Remaining Length

 915

Bits 3,2,1 and 0 of the fixed header of the SUBSCRIBE Control Packet are reserved and MUST be set to 916
0,0,1 and 0 respectively. The Server MUST treat any other value as malformed and close the Network 917
Connection [MQTT-3.8.1-1]. 918

 919

Remaining Length field 920

This is the length of variable header (2 bytes) plus the length of the payload. 921

3.8.2 Variable header 922

The variable header contains a Packet Identifier. Section 2.3.1 provides more information about Packet 923
Identifiers. 924

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 41 of 81

3.8.2.1 Variable header non normative example 925

Figure 3.21 shows a variable header with Packet Identifier set to 10. 926

Figure 3.21 - Variable header with a Packet Identifier of 10, Non normative example 927

 Description 7 6 5 4 3 2 1 0

Packet Identifier

byte 1 Packet Identifier MSB (0) 0 0 0 0 0 0 0 0

byte 2 Packet Identifier LSB (10) 0 0 0 0 1 0 1 0

 928

3.8.3 Payload 929

The payload of a SUBSCRIBE Packet contains a list of Topic Filters indicating the Topics to which the 930
Client wants to subscribe. The Topic Filters in a SUBSCRIBE packet payload MUST be UTF-8 encoded 931
strings as defined in Section 1.5.3 [MQTT-3.8.3-1]. A Server SHOULD support Topic filters that contain 932
the wildcard characters defined in Section 4.7.1. If it chooses not to support topic filters that contain 933
wildcard characters it MUST reject any Subscription request whose filter contains them [MQTT-3.8.3-2]. 934
Each filter is followed by a byte called the Requested QoS. This gives the maximum QoS level at which 935
the Server can send Application Messages to the Client. 936

 937

The payload of a SUBSCRIBE packet MUST contain at least one Topic Filter / QoS pair. A SUBSCRIBE 938
packet with no payload is a protocol violation [MQTT-3.8.3-3]. See section 4.8 for information about 939
handling errors. 940

 941

The requested maximum QoS field is encoded in the byte following each UTF-8 encoded topic name, and 942
these Topic Filter / QoS pairs are packed contiguously. 943

 944

Figure 3.22 – SUBSCRIBE Packet payload format 945

Description 7 6 5 4 3 2 1 0

Topic Filter

byte 1 Length MSB

byte 2 Length LSB

bytes 3..N Topic Filter

Requested QoS

 Reserved QoS

byte N+1 0 0 0 0 0 0 X X

 946

The upper 6 bits of the Requested QoS byte are not used in the current version of the protocol. They are 947
reserved for future use. The Server MUST treat a SUBSCRIBE packet as malformed and close the 948
Network Connection if any of Reserved bits in the payload are non-zero, or QoS is not 0,1 or 2 [MQTT-3-949
8.3-4]. 950

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 42 of 81

3.8.3.1 Payload non normative example 951

Figure 3.23 - Payload byte format non normative example shows the payload for the SUBSCRIBE 952
Packet briefly described in Table 3.5 - Payload non normative example. 953

 954

Table 3.5 - Payload non normative example 955

Topic Name “a/b”

Requested QoS 0x01

Topic Name “c/d”

Requested QoS 0x02

Figure 3.23 - Payload byte format non normative example 956

 Description 7 6 5 4 3 2 1 0

Topic Filter

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 ‘a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ‘b’ (0x62) 0 1 1 0 0 0 1 0

Requested QoS

byte 6 Requested QoS(1) 0 0 0 0 0 0 0 1

Topic Filter

byte 7 Length MSB (0) 0 0 0 0 0 0 0 0

byte 8 Length LSB (3) 0 0 0 0 0 0 1 1

byte 9 ‘c’ (0x63) 0 1 1 0 0 0 1 1

byte 10 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 11 ‘d’ (0x64) 0 1 1 0 0 1 0 0

Requested QoS

byte 12 Requested QoS(2) 0 0 0 0 0 0 1 0

 957

3.8.4 Response 958

When the Server receives a SUBSCRIBE Packet from a Client, the Server MUST respond with a 959
SUBACK Packet [MQTT-3.8.4-1]. The SUBACK Packet MUST have the same Packet Identifier as the 960
SUBSCRIBE Packet that it is acknowledging [MQTT-3.8.4-2]. 961

 962

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 43 of 81

The Server is permitted to start sending PUBLISH packets matching the Subscription before the Server 963
sends the SUBACK Packet. 964

 965

If a Server receives a SUBSCRIBE Packet containing a Topic Filter that is identical to an existing 966
Subscription’s Topic Filter then it MUST completely replace that existing Subscription with a new 967
Subscription. The Topic Filter in the new Subscription will be identical to that in the previous Subscription, 968
although its maximum QoS value could be different. Any existing retained messages matching the Topic 969
Filter MUST be re-sent, but the flow of publications MUST NOT be interrupted [MQTT-3.8.4-3]. 970

 971

Where the Topic Filter is not identical to any existing Subscription’s filter, a new Subscription is created 972
and all matching retained messages are sent. 973

 974

If a Server receives a SUBSCRIBE packet that contains multiple Topic Filters it MUST handle that packet 975
as if it had received a sequence of multiple SUBSCRIBE packets, except that it combines their responses 976
into a single SUBACK response [MQTT-3.8.4-4]. 977

 978

The SUBACK Packet sent by the Server to the Client MUST contain a return code for each Topic 979
Filter/QoS pair. This return code MUST either show the maximum QoS that was granted for that 980
Subscription or indicate that the subscription failed [MQTT-3.8.4-5]. The Server might grant a lower 981
maximum QoS than the subscriber requested. The QoS of Payload Messages sent in response to a 982
Subscription MUST be the minimum of the QoS of the originally published message and the maximum 983
QoS granted by the Server. The server is permitted to send duplicate copies of a message to a 984
subscriber in the case where the original message was published with QoS 1 and the maximum QoS 985
granted was QoS 0 [MQTT-3.8.4-6]. 986

 987

Non normative examples 988
 989
If a subscribing Client has been granted maximum QoS 1 for a particular Topic Filter, then a QoS 990
0 Application Message matching the filter is delivered to the Client at QoS 0. This means that at 991
most one copy of the message is received by the Client. On the other hand a QoS 2 Message 992
published to the same topic is downgraded by the Server to QoS 1 for delivery to the Client, so 993
that Client might receive duplicate copies of the Message. 994
 995

If the subscribing Client has been granted maximum QoS 0, then an Application Message 996
originally published as QoS 2 might get lost on the hop to the Client, but the Server should never 997
send a duplicate of that Message. A QoS 1 Message published to the same topic might either get 998
lost or duplicated on its transmission to that Client. 999

 1000

Non normative comment 1001

Subscribing to a Topic Filter at QoS 2 is equivalent to saying "I would like to receive Messages 1002
matching this filter at the QoS with which they were published". This means a publisher is 1003
responsible for determining the maximum QoS a Message can be delivered at, but a subscriber is 1004
able to require that the Server downgrades the QoS to one more suitable for its usage. 1005

3.9 SUBACK – Subscribe acknowledgement 1006

A SUBACK Packet is sent by the Server to the Client to confirm receipt and processing of a SUBSCRIBE 1007
Packet. 1008

 1009

A SUBACK Packet contains a list of return codes, that specify the maximum QoS level that was granted 1010
in each Subscription that was requested by the SUBSCRIBE. 1011

https://tools.oasis-open.org/issues/browse/MQTT-3
https://tools.oasis-open.org/issues/browse/MQTT-3
https://tools.oasis-open.org/issues/browse/MQTT-3

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 44 of 81

3.9.1 Fixed header 1012

Figure 3.24 – SUBACK Packet fixed header 1013

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (9) Reserved

 1 0 0 1 0 0 0 0

byte 2 Remaining Length

 1014

Remaining Length field 1015

This is the length of variable header (2 bytes) plus the length of the payload. 1016

3.9.2 Variable header 1017

The variable header contains the Packet Identifier from the SUBSCRIBE Packet that is being 1018
acknowledged. Figure 3.25 - variable header format below illustrates the format of the variable header. 1019

Figure 3.25 – SUBACK Packet variable header 1020

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

3.9.3 Payload 1021

The payload contains a list of return codes. Each return code corresponds to a Topic Filter in the 1022
SUBSCRIBE Packet being acknowledged. The order of return codes in the SUBACK Packet MUST 1023
match the order of Topic Filters in the SUBSCRIBE Packet [MQTT-3.9.3-1]. 1024

 1025

Figure 3.26 - Payload format below illustrates the Return Code field encoded in a byte in the Payload. 1026

Figure 3.26 – SUBACK Packet payload format 1027

Bit 7 6 5 4 3 2 1 0

 Return Code

byte 1 X 0 0 0 0 0 X X

 1028

Allowed return codes: 1029

0x00 - Success - Maximum QoS 0 1030
0x01 - Success - Maximum QoS 1 1031
0x02 - Success - Maximum QoS 2 1032
0x80 - Failure 1033

 1034

SUBACK return codes other than 0x00, 0x01, 0x02 and 0x80 are reserved and MUST NOT be 1035
used [MQTT-3.9.3-2]. 1036

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 45 of 81

3.9.3.1 Payload non normative example 1037

Figure 3.27 - Payload byte format non normative example shows the payload for the SUBACK 1038
Packet briefly described in Table 3.6 - Payload non normative example. 1039

Table 3.6 - Payload non normative example 1040

Success - Maximum QoS 0 0

Success - Maximum QoS 2 2

Failure 128

Figure 3.27 - Payload byte format non normative example 1041

 Description 7 6 5 4 3 2 1 0

byte 1 Success - Maximum QoS 0 0 0 0 0 0 0 0 0

byte 2 Success - Maximum QoS 2 0 0 0 0 0 0 1 0

byte 3 Failure 1 0 0 0 0 0 0 0

 1042

3.10 UNSUBSCRIBE – Unsubscribe from topics 1043

An UNSUBSCRIBE Packet is sent by the Client to the Server, to unsubscribe from topics. 1044

3.10.1 Fixed header 1045

Figure 3.28 – UNSUBSCRIBE Packet Fixed header 1046

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (10) Reserved

 1 0 1 0 0 0 1 0

byte 2 Remaining Length

 1047

Bits 3,2,1 and 0 of the fixed header of the UNSUBSCRIBE Control Packet are reserved and MUST be set 1048
to 0,0,1 and 0 respectively. The Server MUST treat any other value as malformed and close the Network 1049
Connection [MQTT-3.10.1-1]. 1050

 1051

Remaining Length field 1052

This is the length of variable header (2 bytes) plus the length of the payload. 1053

3.10.2 Variable header 1054

The variable header contains a Packet Identifier. Section 2.3.1 provides more information about Packet 1055
Identifiers. 1056

Figure 3.29 – UNSUBSCRIBE Packet variable header 1057

Bit 7 6 5 4 3 2 1 0

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 46 of 81

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 1058

3.10.3 Payload 1059

The payload for the UNSUBSCRIBE Packet contains the list of Topic Filters that the Client wishes to 1060
unsubscribe from. The Topic Filters in an UNSUBSCRIBE packet MUST be UTF-8 encoded strings as 1061
defined in Section 1.5.3, packed contiguously [MQTT-3.10.3-1]. 1062

The Payload of an UNSUBSCRIBE packet MUST contain at least one Topic Filter. An UNSUBSCRIBE 1063
packet with no payload is a protocol violation [MQTT-3.10.3-2]. See section 4.8 for information about 1064
handling errors. 1065

 1066

3.10.3.1 Payload non normative example 1067

Figure 3.30 - Payload byte format non normative example show the payload for the 1068
UNSUBSCRIBE Packet briefly described in Table3.7 - Payload non normative example. 1069

Table3.7 - Payload non normative example 1070

Topic Filter “a/b”

Topic Filter “c/d”

Figure 3.30 - Payload byte format non normative example 1071

 Description 7 6 5 4 3 2 1 0

Topic Filter

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 ‘a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ‘b’ (0x62) 0 1 1 0 0 0 1 0

Topic Filter

byte 6 Length MSB (0) 0 0 0 0 0 0 0 0

byte 7 Length LSB (3) 0 0 0 0 0 0 1 1

byte 8 ‘c’ (0x63) 0 1 1 0 0 0 1 1

byte 9 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 10 ‘d’ (0x64) 0 1 1 0 0 1 0 0

3.10.4 Response 1072

The Topic Filters (whether they contain wildcards or not) supplied in an UNSUBSCRIBE packet MUST be 1073
compared character-by-character with the current set of Topic Filters held by the Server for the Client. If 1074
any filter matches exactly then its owning Subscription is deleted, otherwise no additional processing 1075

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 47 of 81

occurs [MQTT-3.10.4-1]. 1076
 1077

If a Server deletes a Subscription: 1078

 It MUST stop adding any new messages for delivery to the Client [MQTT-3.10.4-2]. 1079

 It MUST complete the delivery of any QoS 1 or QoS 2 messages which it has started to send to 1080
the Client [MQTT-3.10.4-3]. 1081

 It MAY continue to deliver any existing messages buffered for delivery to the Client. 1082

 1083
The Server MUST respond to an UNSUBSUBCRIBE request by sending an UNSUBACK packet. The 1084
UNSUBACK Packet MUST have the same Packet Identifier as the UNSUBSCRIBE Packet [MQTT-1085
3.10.4-4]. Even where no Topic Subscriptions are deleted, the Server MUST respond with an 1086
UNSUBACK [MQTT-3.10.4-5]. 1087

 1088

If a Server receives an UNSUBSCRIBE packet that contains multiple Topic Filters it MUST handle that 1089
packet as if it had received a sequence of multiple UNSUBSCRIBE packets, except that it sends just one 1090
UNSUBACK response [MQTT-3.10.4-6]. 1091

3.11 UNSUBACK – Unsubscribe acknowledgement 1092

 1093

The UNSUBACK Packet is sent by the Server to the Client to confirm receipt of an UNSUBSCRIBE 1094
Packet. 1095

3.11.1 Fixed header 1096

Figure 3.31 – UNSUBACK Packet fixed header 1097

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (11) Reserved

 1 0 1 1 0 0 0 0

byte 2 Remaining Length (2)

 0 0 0 0 0 0 1 0

Remaining Length field 1098

This is the length of the variable header. For the UNSUBACK Packet this has the value 2. 1099

3.11.2 Variable header 1100

The variable header contains the Packet Identifier of the UNSUBSCRIBE Packet that is being 1101
acknowledged. 1102

Figure 3.32 – UNSUBACK Packet variable header 1103

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 1104

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 48 of 81

3.11.3 Payload 1105

The UNSUBACK Packet has no payload. 1106

 1107

3.12 PINGREQ – PING request 1108

The PINGREQ Packet is sent from a Client to the Server. It can be used to: 1109

1. Indicate to the Server that the Client is alive in the absence of any other Control Packets being 1110
sent from the Client to the Server. 1111

2. Request that the Server responds to confirm that it is alive. 1112

3. Exercise the network to indicate that the Network Connection is active. 1113

 1114

This Packet is used in Keep Alive processing, see Section 3.1.2.10 for more details. 1115

3.12.1 Fixed header 1116

Figure 3.33 – PINGREQ Packet fixed header 1117

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (12) Reserved

 1 1 0 0 0 0 0 0

byte 2 Remaining Length (0)

 0 0 0 0 0 0 0 0

 1118

3.12.2 Variable header 1119

The PINGREQ Packet has no variable header. 1120

3.12.3 Payload 1121

The PINGREQ Packet has no payload. 1122

3.12.4 Response 1123

The Server MUST send a PINGRESP Packet in response to a PINGREQ Packet [MQTT-3.12.4-1]. 1124

3.13 PINGRESP – PING response 1125

A PINGRESP Packet is sent by the Server to the Client in response to a PINGREQ Packet. It indicates 1126
that the Server is alive. 1127

 1128

This Packet is used in Keep Alive processing, see Section 3.1.2.10 for more details. 1129

3.13.1 Fixed header 1130

Figure 3.34 – PINGRESP Packet fixed header 1131

Bit 7 6 5 4 3 2 1 0

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 49 of 81

byte 1 MQTT Control Packet type (13) Reserved

 1 1 0 1 0 0 0 0

byte 2 Remaining Length (0)

 0 0 0 0 0 0 0 0

 1132

3.13.2 Variable header 1133

The PINGRESP Packet has no variable header. 1134

3.13.3 Payload 1135

The PINGRESP Packet has no payload. 1136

3.14 DISCONNECT – Disconnect notification 1137

The DISCONNECT Packet is the final Control Packet sent from the Client to the Server. It indicates that 1138
the Client is disconnecting cleanly. 1139

3.14.1 Fixed header 1140

Figure 3.35 – DISCONNECT Packet fixed header 1141

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (14) Reserved

 1 1 1 0 0 0 0 0

byte 2 Remaining Length (0)

 0 0 0 0 0 0 0 0

The Server MUST validate that reserved bits are set to zero and disconnect the Client if they are not zero 1142
[MQTT-3.14.1-1]. 1143

3.14.2 Variable header 1144

The DISCONNECT Packet has no variable header. 1145

3.14.3 Payload 1146

The DISCONNECT Packet has no payload. 1147

3.14.4 Response 1148

After sending a DISCONNECT Packet the Client: 1149

 MUST close the Network Connection [MQTT-3.14.4-1]. 1150

 MUST NOT send any more Control Packets on that Network Connection [MQTT-3.14.4-2]. 1151

 1152

On receipt of DISCONNECT the Server: 1153

 MUST discard any Will Message associated with the current connection without publishing it, as 1154
described in Section 3.1.2.5 [MQTT-3.14.4-3]. 1155

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 50 of 81

 SHOULD close the Network Connection if the Client has not already done so. 1156

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 51 of 81

4 Operational behavior 1157

4.1 Storing state 1158

It is necessary for the Client and Server to store Session state in order to provide Quality of Service 1159
guarantees. The Client and Server MUST store Session state for the entire duration of the Session 1160
[MQTT-4.1.0.-1]. A Session MUST last at least as long it has an active Network Connection [MQTT-1161
4.1.0.-2]. 1162

 1163

Retained messages do not form part of the Session state in the Server. The Server SHOULD retain such 1164
messages until deleted by a Client. 1165

 1166

Non normative comment 1167

The storage capabilities of Client and Server implementations will of course have limits in terms 1168
of capacity and may be subject to administrative policies such as the maximum time that Session 1169
state is stored between Network Connections. Stored Session state can be discarded as a result 1170
of an administrator action, including an automated response to defined conditions. This has the 1171
effect of terminating the Session. These actions might be prompted by resource constraints or for 1172
other operational reasons. It is prudent to evaluate the storage capabilities of the Client and 1173
Server to ensure that they are sufficient. 1174

 1175

Non normative comment 1176

It is possible that hardware or software failures may result in loss or corruption of Session state 1177
stored by the Client or Server. 1178

 1179

Non normative comment 1180

Normal operation of the Client of Server could mean that stored state is lost or corrupted because 1181
of administrator action, hardware failure or software failure. An administrator action could be an 1182
automated response to defined conditions. These actions might be prompted by resource 1183
constraints or for other operational reasons. For example the server might determine that based 1184
on external knowledge, a message or messages can no longer be delivered to any current or 1185
future client. 1186

 1187

Non normative comment 1188

An MQTT user should evaluate the storage capabilities of the MQTT Client and Server 1189
implementations to ensure that they are sufficient for their needs. 1190

 1191

4.1.1 Non normative example 1192

For example, a user wishing to gather electricity meter readings may decide that they need to use QoS 1 1193
messages because they need to protect the readings against loss over the network, however they may 1194
have determined that the power supply is sufficiently reliable that the data in the Client and Server can be 1195
stored in volatile memory without too much risk of its loss. 1196

Conversely a parking meter payment application provider might decide that there are no circumstances 1197
where a payment message can be lost so they require that all data are force written to non-volatile 1198
memory before it is transmitted across the network. 1199

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 52 of 81

4.2 Network Connections 1200

The MQTT protocol requires an underlying transport that provides an ordered, lossless, stream of bytes 1201
from the Client to Server and Server to Client. 1202

 1203

Non normative comment 1204

The transport protocol used to carry MQTT 3.1 was TCP/IP as defined in [RFC793]. TCP/IP can 1205
be used for MQTT 3.1.1. The following are also suitable: 1206

 TLS [RFC5246] 1207

 WebSocket [RFC6455] 1208

 1209

Connectionless network transports such as User Datagram Protocol (UDP) are not suitable on their own 1210
because they might lose or reorder data. 1211

4.3 Quality of Service levels and protocol flows 1212

MQTT delivers Application Messages according to the Quality of Service (QoS) levels defined here. The 1213
delivery protocol is symmetric, in the description below the Client and Server can each take the role of 1214
either Sender or Receiver. The delivery protocol is concerned solely with the delivery of an application 1215
message from a single Sender to a single Receiver. When the Server is delivering an Application 1216
Message to more than one Client, each Client is treated independently. The QoS level used to deliver an 1217
Application Message outbound to the Client could differ from that of the inbound Application Message. 1218

The non-normative flow diagrams in the following sections are intended to show possible implementation 1219
approaches. 1220

4.3.1 QoS 0: At most once delivery 1221

The message is delivered according to the capabilities of the underlying network. No response is sent by 1222
the receiver and no retry is performed by the sender. The message arrives at the receiver either once or 1223
not at all. 1224

 1225

In the QoS 0 delivery protocol, the Sender 1226

 MUST send a PUBLISH packet with QoS=0, DUP=0 [MQTT-4.3.1.-1]. 1227

 1228

In the QoS 0 delivery protocol, the Receiver 1229

 Accepts ownership of the message when it receives the PUBLISH packet. 1230

Figure 4.1 – QoS 0 protocol flow diagram, non normative example 1231

Sender Action Control Packet Receiver Action

PUBLISH QoS 0, DUP=0

 ---------->

 Deliver Application Message to
appropriate onward recipient(s)

http://en.wikipedia.org/wiki/User_Datagram_Protocol

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 53 of 81

4.3.2 QoS 1: At least once delivery 1232

This quality of service ensures that the message arrives at the receiver at least once. A QoS 1 PUBLISH 1233
Packet has a Packet Identifier in its variable header and is acknowledged by a PUBACK Packet. Section 1234
2.3.1 provides more information about Packet Identifiers. 1235

 1236

In the QoS 1 delivery protocol, the Sender 1237

 MUST assign an unused Packet Identifier each time it has a new Application Message to 1238
publish. 1239

 MUST send a PUBLISH Packet containing this Packet Identifier with QoS=1, DUP=0. 1240

 MUST treat the PUBLISH Packet as “unacknowledged” until it has received the corresponding 1241
PUBACK packet from the receiver. See Section 4.4 for a discussion of unacknowledged 1242
messages. 1243

[MQTT-4.3.2.-1]. 1244

The Packet Identifier becomes available for reuse once the Sender has received the PUBACK Packet. 1245

 1246

Note that a Sender is permitted to send further PUBLISH Packets with different Packet Identifiers while it 1247
is waiting to receive acknowledgements. 1248

 1249

In the QoS 1 delivery protocol, the Receiver 1250

 MUST respond with a PUBACK Packet containing the Packet Identifier from the incoming 1251
PUBLISH Packet, having accepted ownership of the Application Message 1252

 After it has sent a PUBACK Packet the Receiver MUST treat any incoming PUBLISH packet that 1253
contains the same Packet Identifier as being a new publication, irrespective of the setting of its 1254
DUP flag. 1255

[MQTT-4.3.2.-2]. 1256

 1257

Figure 4.2 – QoS 1 protocol flow diagram, non normative example 1258

Sender Action Control Packet Receiver action

Store message

Send PUBLISH QoS 1, DUP 0,
 <Packet Identifier>

---------->

 Initiate onward delivery of the
Application Message

1

 <---------- Send PUBACK <Packet
Identifier>

Discard message

1259

1
The receiver is not required to complete delivery of the Application Message before sending the 1260

PUBACK. When its original sender receives the PUBACK packet, ownership of the Application 1261
Message is transferred to the receiver. 1262

 1263

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 54 of 81

4.3.3 QoS 2: Exactly once delivery 1264

This is the highest quality of service, for use when neither loss nor duplication of messages are 1265
acceptable. There is an increased overhead associated with this quality of service. 1266

 1267

A QoS 2 message has a Packet Identifier in its variable header. Section 2.3.1 provides more information 1268
about Packet Identifiers. The receiver of a QoS 2 PUBLISH Packet acknowledges receipt with a two-step 1269
acknowledgement process. 1270

 1271

In the QoS 2 delivery protocol, the Sender 1272

 MUST assign an unused Packet Identifier when it has a new Application Message to publish. 1273

 MUST send a PUBLISH packet containing this Packet Identifier with QoS=2, DUP=0. 1274

 MUST treat the PUBLISH packet as “unacknowledged” until it has received the corresponding 1275
PUBREC packet from the receiver. See Section 4.4 for a discussion of unacknowledged 1276
messages. 1277

 MUST send a PUBREL packet when it receives a PUBREC packet from the receiver. This 1278
PUBREL packet MUST contain the same Packet Identifier as the original PUBLISH packet. 1279

 MUST treat the PUBREL packet as “unacknowledged” until it has received the corresponding 1280
PUBCOMP packet from the receiver. 1281

 MUST NOT re-send the PUBLISH once it has sent the corresponding PUBREL packet. 1282

[MQTT-4.3.3-1]. 1283

The Packet Identifier becomes available for reuse once the Sender has received the PUBCOMP Packet. 1284

 1285

Note that a Sender is permitted to send further PUBLISH Packets with different Packet Identifiers while it 1286
is waiting to receive acknowledgements. 1287

 1288

In the QoS 2 delivery protocol, the Receiver 1289

 MUST respond with a PUBREC containing the Packet Identifier from the incoming PUBLISH 1290
Packet, having accepted ownership of the Application Message. 1291

 Until it has received the corresponding PUBREL packet, the Receiver MUST acknowledge any 1292
subsequent PUBLISH packet with the same Packet Identifier by sending a PUBREC. It MUST 1293
NOT cause duplicate messages to be delivered to any onward recipients in this case. 1294

 MUST respond to a PUBREL packet by sending a PUBCOMP packet containing the same 1295
Packet Identifier as the PUBREL. 1296

 After it has sent a PUBCOMP, the receiver MUST treat any subsequent PUBLISH packet that 1297
contains that Packet Identifier as being a new publication. 1298

[MQTT-4.3.3-2]. 1299

 1300

Figure 4.3 – QoS 2 protocol flow diagram, non normative example 1301

Sender Action Control Packet Receiver Action

Store message

PUBLISH QoS 2, DUP 0
 <Packet Identifier>

 ---------->

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 55 of 81

 Method A, Store message
 or
Method B, Store <Packet
Identifier> then Initiate onward
delivery of the Application
Message

1

 PUBREC <Packet Identifier>

 <----------

Discard message, Store
PUBREC received <Packet
Identifier>

PUBREL <Packet Identifier>

 ---------->

 Method A, Initiate onward
delivery of the Application
Message

1
 then discard

message
 or
Method B, Discard <Packet
Identifier>

 Send PUBCOMP <Packet
Identifier>

 <----------

Discard stored state

1302

1
The receiver is not required to complete delivery of the Application Message before sending the 1303

PUBREC or PUBCOMP. When its original sender receives the PUBREC packet, ownership of the 1304
Application Message is transferred to the receiver. 1305

Figure 4.3 shows that there are two methods by which QoS 2 can be handled by the receiver. They 1306
differ in the point within the flow at which the message is made available for onward delivery. The 1307
choice of Method A or Method B is implementation specific. As long as an implementation chooses 1308
exactly one of these approaches, this does not affect the guarantees of a QoS 2 flow. 1309

 1310

4.4 Message delivery retry 1311

When a Client reconnects with CleanSession set to 0, both the Client and Server MUST re-send any 1312
unacknowledged PUBLISH Packets (where QoS > 0) and PUBREL Packets using their original Packet 1313
Identifiers [MQTT-4.4.0-1]. This is the only circumstance where a Client or Server is REQUIRED to 1314
redeliver messages. 1315

 1316
Non normative comment 1317
Historically retransmission of Control Packets was required to overcome data loss on some older 1318
TCP networks. This might remain a concern where MQTT 3.1.1 implementations are to be 1319
deployed in such environments. 1320

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 56 of 81

4.5 Message receipt 1321

When a Server takes ownership of an incoming Application Message it MUST add it to the Session state 1322
of those clients that have matching Subscriptions. Matching rules are defined in Section 4.7 [MQTT-4.5.0-1323
1]. 1324

Under normal circumstances Clients receive messages in response to Subscriptions they have created. A 1325
Client could also receive messages that do not match any of its explicit Subscriptions. This can happen if 1326
the Server automatically assigned a subscription to the Client. A Client could also receive messages 1327
while an UNSUBSCRIBE operation is in progress. The Client MUST acknowledge any Publish Packet it 1328
receives according to the applicable QoS rules regardless of whether it elects to process the Application 1329
Message that it contains [MQTT-4.5.0-2]. 1330

4.6 Message ordering 1331

A Client MUST follow these rules when implementing the protocol flows defined elsewhere in this chapter: 1332

 When it re-sends any PUBLISH packets, it MUST re-send them in the order in which the original 1333
PUBLISH packets were sent (this applies to QoS 1 and QoS 2 messages) [MQTT-4.6.0-1] 1334

 It MUST send PUBACK packets in the order in which the corresponding PUBLISH packets were 1335
received (QoS 1 messages) [MQTT-4.6.0-2] 1336

 It MUST send PUBREC packets in the order in which the corresponding PUBLISH packets were 1337
received (QoS 2 messages) [MQTT-4.6.0-3] 1338

 It MUST send PUBREL packets in the order in which the corresponding PUBREC packets were 1339
received (QoS 2 messages) [MQTT-4.6.0-4] 1340

 1341

A Server MUST by default treat each Topic as an "Ordered Topic". It MAY provide an administrative or 1342
other mechanism to allow one or more Topics to be treated as an "Unordered Topic" [MQTT-4.6.0-5]. 1343

 1344

When a Server processes a message that has been published to an Ordered Topic, it MUST follow the 1345
rules listed above when delivering messages to each of its subscribers. In addition it MUST send 1346
PUBLISH packets to consumers (for the same Topic and QoS) in the order that they were received from 1347
any given Client [MQTT-4.6.0-6]. 1348

 1349

Non normative comment 1350

The rules listed above ensure that when a stream of messages is published and subscribed to 1351
with QoS 1, the final copy of each message received by the subscribers will be in the order that 1352
they were originally published in, but the possibility of message duplication could result in a re-1353
send of an earlier message being received after one of its successor messages. For example a 1354
publisher might send messages in the order 1,2,3,4 and the subscriber might receive them in the 1355
order 1,2,3,2,3,4. 1356

 1357

If both Client and Server make sure that no more than one message is “in-flight” at any one time 1358
(by not sending a message until its predecessor has been acknowledged), then no QoS 1 1359
message will be received after any later one - for example a subscriber might receive them in the 1360
order 1,2,3,3,4 but not 1,2,3,2,3,4. Setting an in-flight window of 1 also means that order will be 1361
preserved even if the publisher sends a sequence of messages with different QoS levels on the 1362
same topic. 1363

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 57 of 81

4.7 Topic Names and Topic Filters 1364

4.7.1 Topic wildcards 1365

The topic level separator is used to introduce structure into the Topic Name. If present, it divides the 1366
Topic Name into multiple “topic levels”. 1367

A subscription’s Topic Filter can contain special wildcard characters, which allow you to subscribe to 1368
multiple topics at once. 1369

The wildcard characters can be used in Topic Filters, but MUST NOT be used within a Topic Name 1370
[MQTT-4.7.1-1]. 1371

4.7.1.1 Topic level separator 1372

The forward slash (‘/’ U+002F) is used to separate each level within a topic tree and provide a hierarchical 1373
structure to the Topic Names. The use of the topic level separator is significant when either of the two 1374
wildcard characters is encountered in Topic Filters specified by subscribing Clients. Topic level separators 1375
can appear anywhere in a Topic Filter or Topic Name. Adjacent Topic level separators indicate a zero 1376
length topic level. 1377

4.7.1.2 Multi-level wildcard 1378

The number sign (‘#’ U+0023) is a wildcard character that matches any number of levels within a topic. 1379
The multi-level wildcard represents the parent and any number of child levels. The multi-level wildcard 1380
character MUST be specified either on its own or following a topic level separator. In either case it MUST 1381
be the last character specified in the Topic Filter [MQTT-4.7.1-2]. 1382

 1383

Non normative comment 1384

For example, if a Client subscribes to “sport/tennis/player1/#”, it would receive messages 1385
published using these topic names: 1386

 “sport/tennis/player1” 1387

 “sport/tennis/player1/ranking” 1388

 “sport/tennis/player1/score/wimbledon” 1389

 1390

Non normative comment 1391

 “sport/#” also matches the singular “sport”, since # includes the parent level. 1392

 “#” is valid and will receive every Application Message 1393

 “sport/tennis/#” is valid 1394

 “sport/tennis#” is not valid 1395

 “sport/tennis/#/ranking” is not valid 1396

4.7.1.3 Single level wildcard 1397

The plus sign (‘+’ U+002B) is a wildcard character that matches only one topic level. 1398

 1399

The single-level wildcard can be used at any level in the Topic Filter, including first and last levels. Where 1400
it is used it MUST occupy an entire level of the filter [MQTT-4.7.1-3]. It can be used at more than one 1401
level in the Topic Filter and can be used in conjunction with the multilevel wildcard. 1402

 1403

Non normative comment 1404

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 58 of 81

For example, “sport/tennis/+” matches “sport/tennis/player1” and “sport/tennis/player2”, but not 1405
“sport/tennis/player1/ranking”. Also, because the single-level wildcard matches only a single level, 1406
“sport/+” does not match “sport” but it does match “sport/”. 1407

 1408

Non normative comment 1409

 “+” is valid 1410

 “+/tennis/#” is valid 1411

 “sport+” is not valid 1412

 “sport/+/player1” is valid 1413

 “/finance” matches “+/+” and “/+”, but not “+” 1414

4.7.2 Topics beginning with $ 1415

The Server MUST NOT match Topic Filters starting with a wildcard character (# or +) with Topic Names 1416
beginning with a $ character [MQTT-4.7.2-1]. The Server SHOULD prevent Clients from using such Topic 1417
Names to exchange messages with other Clients. Server implementations MAY use Topic Names that 1418
start with a leading $ character for other purposes. 1419

 1420

Non normative comment 1421

 $SYS/ has been widely adopted as a prefix to topics that contain Server-specific 1422
information or control APIs 1423

 Applications cannot use a topic with a leading $ character for their own purposes 1424

 1425

Non normative comment 1426

 A subscription to “#” will not receive any messages published to a topic beginning with a 1427
$ 1428

 A subscription to “+/monitor/Clients” will not receive any messages published to 1429
“$SYS/monitor/Clients” 1430

 A subscription to “$SYS/#” will receive messages published to topics beginning with 1431
“$SYS/” 1432

 A subscription to “$SYS/monitor/+” will receive messages published to 1433
“$SYS/monitor/Clients” 1434

 For a Client to receive messages from topics that begin with $SYS/ and from topics that 1435
don’t begin with a $, it has to subscribe to both “#” and “$SYS/#” 1436

4.7.3 Topic semantic and usage 1437

The following rules apply to Topic Names and Topic Filters: 1438

 All Topic Names and Topic Filters MUST be at least one character long [MQTT-4.7.3-1] 1439

 Topic Names and Topic Filters are case sensitive 1440

 Topic Names and Topic Filters can include the space character 1441

 A leading or trailing ‘/’ creates a distinct Topic Name or Topic Filter 1442

 A Topic Name or Topic Filter consisting only of the ‘/’ character is valid 1443

 Topic Names and Topic Filters MUST NOT include the null character (Unicode U+0000) 1444

[Unicode] [MQTT-4.7.3-2] 1445

 Topic Names and Topic Filters are UTF-8 encoded strings, they MUST NOT encode to more than 1446
65535 bytes [MQTT-4.7.3-3]. See Section 1.5.3 1447

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 59 of 81

There is no limit to the number of levels in a Topic Name or Topic Filter, other than that imposed by the 1448
overall length of a UTF-8 encoded string. 1449

When it performs subscription matching the Server MUST NOT perform any normalization of Topic 1450
Names or Topic Filters, or any modification or substitution of unrecognized characters [MQTT-4.7.3-4]. 1451
Each non-wildcarded level in the Topic Filter has to match the corresponding level in the Topic Name 1452
character for character for the match to succeed. 1453

 1454

Non normative comment 1455

The UTF-8 encoding rules mean that the comparison of Topic Filter and Topic Name could be 1456
performed either by comparing the encoded UTF-8 bytes, or by comparing decoded Unicode 1457
characters 1458

 1459

Non normative comment 1460

 “ACCOUNTS” and “Accounts” are two different topic names 1461

 “Accounts payable” is a valid topic name 1462

 “/finance” is different from “finance” 1463

 1464

An Application Message is sent to each Client Subscription whose Topic Filter matches the Topic Name 1465
attached to an Application Message. The topic resource MAY be either predefined in the Server by an 1466
administrator or it MAY be dynamically created by the Server when it receives the first subscription or an 1467
Application Message with that Topic Name. The Server MAY also use a security component to selectively 1468
authorize actions on the topic resource for a given Client. 1469

4.8 Handling errors 1470

 1471

Unless stated otherwise, if either the Server or Client encounters a protocol violation, it MUST close the 1472
Network Connection on which it received that Control Packet which caused the protocol violation [MQTT-1473
4.8.0-1]. 1474

A Client or Server implementation might encounter a Transient Error (for example an internal buffer full 1475
condition) that prevents successful processing of an MQTT packet. 1476

If the Client or Server encounters a Transient Error while processing an inbound Control Packet it MUST 1477
close the Network Connection on which it received that Control Packet [MQTT-4.8.0-2]. If a Server 1478
detects a Transient Error it SHOULD NOT disconnect or have any other aeffect on its interactions with 1479
any other Client. 1480

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 60 of 81

5 Security 1481

5.1 Introduction 1482

This Chapter is provided for guidance only and is Non Normative. However, it is strongly recommended 1483
that Server implementations that offer TLS [RFC5246] SHOULD use TCP port 8883 (IANA service name: 1484
secure-mqtt). 1485

 1486

There are a number of threats that solution providers should consider. For example: 1487

 Devices could be compromised 1488

 Data at rest in Clients and Servers might be accessible 1489

 Protocol behaviors could have side effects (e.g. “timing attacks”) 1490

 Denial of Service (DoS) attacks 1491

 Communications could be intercepted, altered, re-routed or disclosed 1492

 Injection of spoofed Control Packets 1493

 1494

MQTT solutions are often deployed in hostile communication environments. In such cases, 1495
implementations will often need to provide mechanisms for: 1496

 Authentication of users and devices 1497

 Authorization of access to Server resources 1498

 Integrity of MQTT Control Packets and application data contained therein 1499

 Privacy of MQTT Control Packets and application data contained therein 1500

 1501

As a transport protocol, MQTT is concerned only with message transmission and it is the implementer’s 1502
responsibility to provide appropriate security features. This is commonly achieved by using TLS 1503

[RFC5246]. 1504

 1505

In addition to technical security issues there could also be geographic (e.g. U.S.-EU SafeHarbor 1506

[USEUSAFEHARB]), industry specific (e.g. PCI DSS [PCIDSS]) and regulatory considerations (e.g. 1507

Sarbanes-Oxley [SARBANES]). 1508

5.2 MQTT solutions: security and certification 1509

An implementation might want to provide conformance with specific industry security standards such as 1510

NIST Cyber Security Framework [NISTCSF], PCI-DSS [PCIDSS]), FIPS-140-2 [FIPS1402] and NSA Suite 1511

B [NSAB]. 1512

Guidance on using MQTT within the NIST Cyber Security Framework [NISTCSF] can be found in the 1513

MQTT supplemental publication, MQTT and the NIST Framework for Improving Critical Infrastructure 1514

Cybersecurity [MQTT NIST]. The use of industry proven, independently verified and certified technologies 1515

will help meet compliance requirements. 1516

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 61 of 81

5.3 Lightweight cryptography and constrained devices 1517

Advanced Encryption Standard [AES] and Data Encryption Standard [DES] are widely adopted. 1518

 1519

ISO 29192 [ISO29192] makes recommendations for cryptographic primitives specifically tuned to perform 1520

on constrained “low end” devices. 1521

5.4 Implementation notes 1522

There are many security concerns to consider when implementing or using MQTT. The following section 1523
should not be considered a “check list”. 1524

 1525

An implementation might want to achieve some, or all, of the following: 1526

5.4.1 Authentication of Clients by the Server 1527

The CONNECT Packet contains Username and Password fields. Implementations can choose how to 1528
make use of the content of these fields. They may provide their own authentication mechanism, use an 1529

external authentication system such as LDAP [RFC4511] or OAuth [RFC6749] tokens, or leverage 1530

operating system authentication mechanisms. 1531

 1532

Implementations passing authentication data in clear text, obfuscating such data elements or requiring no 1533
authentication data should be aware this can give rise to Man-in-the-Middle and replay attacks. Section 1534
5.4.5 introduces approaches to ensure data privacy. 1535

 1536

A Virtual Private Network (VPN) between the Clients and Servers can provide confidence that data is only 1537
being received from authorized Clients. 1538

 1539

Where TLS [RFC5246] is used, SSL Certificates sent from the Client can be used by the Server to 1540

authenticate the Client. 1541

 1542

An implementation might allow for authentication where the credentials are sent in an Application 1543
Message from the Client to the Server. 1544

5.4.2 Authorization of Clients by the Server 1545

An implementation may restrict access to Server resources based on information provided by the Client 1546
such as User Name, Client Identifier, the hostname/IP address of the Client, or the outcome of 1547
authentication mechanisms. 1548

5.4.3 Authentication of the Server by the Client 1549

The MQTT protocol is not trust symmetrical: it provides no mechanism for the Client to authenticate the 1550
Server. 1551

 1552

Where TLS [RFC5246] is used, SSL Certificates sent from the Server can be used by the Client to 1553

authenticate the Server. Implementations providing MQTT service for multiple hostnames from a single IP 1554

address should be aware of the Server Name Indication extension to TLS defined in section 3 of RFC 1555

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 62 of 81

6066 [RFC6066].This allows a Client to tell the Server the hostname of the Server it is trying to connect 1556

to. 1557

 1558

An implementation might allow for authentication where the credentials are sent in an Application 1559
Message from the Server to the Client. 1560

 1561

A VPN between Clients and Servers can provide confidence that Clients are connecting to the intended 1562
Server. 1563

5.4.4 Integrity of Application Messages and Control Packets 1564

Applications can independently include hash values in their Application Messages. This can provide 1565
integrity of the contents of Publish Control Packets across the network and at rest. 1566

 1567

TLS [RFC5246] provides hash algorithms to verify the integrity of data sent over the network. 1568

 1569

The use of VPNs to connect Clients and Servers can provide integrity of data across the section of the 1570
network covered by a VPN. 1571

5.4.5 Privacy of Application Messages and Control Packets 1572

TLS [RFC5246] can provide encryption of data sent over the network. There are valid TLS cipher suites 1573

that include a NULL encryption algorithm that does not encrypt data. To ensure privacy Clients and 1574
Servers should avoid these cipher suites. 1575

 1576

An application might independently encrypt the contents of its Application Messages. This could provide 1577
privacy of the Application Message both over the network and at rest. This would not provide privacy for 1578
other properties of the Application Message such as Topic Name. 1579

 1580

Client and Server implementations can provide encrypted storage for data at rest such as Application 1581
Messages stored as part of a Session. 1582

 1583

The use of VPNs to connect Clients and Servers can provide privacy of data across the section of the 1584
network covered by a VPN. 1585

5.4.6 Non-repudiation of message transmission 1586

Application designers might need to consider appropriate strategies to achieve end to end non-1587
repudiation. 1588

5.4.7 Detecting compromise of Clients and Servers 1589

Client and Server implementations using TLS [RFC5246] should provide capabilities to ensure that any 1590

SSL certificates provided when initiating a TLS [RFC5246] connection are associated with the hostname 1591

of the Client connecting or Server being connected to. 1592

 1593

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 63 of 81

Client and Server implementations using TLS [RFC5246] can choose to provide capabilities to check 1594

Certificate Revocation Lists (CRLs [RFC5280]) and Online Certificate Status Protocol (OSCP) [RFC6960] 1595

to prevent revoked certificates from being used. 1596

 1597

Physical deployments might combine tamper-proof hardware with the transmission of specific data in 1598
Application Messages. For example a meter might have an embedded GPS to ensure it is not used in an 1599

unauthorized location. [IEEE 802.1AR] is a standard for implementing mechanisms to authenticate a 1600

device’s identity using a cryptographically bound identifier. 1601

5.4.8 Detecting abnormal behaviors 1602

Server implementations might monitor Client behavior to detect potential security incidents. For example: 1603

 Repeated connection attempts 1604

 Repeated authentication attempts 1605

 Abnormal termination of connections 1606

 Topic scanning (attempts to send or subscribe to many topics) 1607

 Sending undeliverable messages (no subscribers to the topics) 1608

 Clients that connect but do not send data 1609

 1610

Server implementations might disconnect Clients that breach its security rules. 1611

 1612

Server implementations detecting unwelcome behavior might implement a dynamic block list based on 1613
identifiers such as IP address or Client Identifier. 1614

 1615

Deployments might use network level controls (where available) to implement rate limiting or blocking 1616
based on IP address or other information. 1617

5.4.9 Other security considerations 1618

If Client or Server SSL certificates are lost or it is considered that they might be compromised they should 1619

be revoked (utilizing CRLs [RFC5280] and/or OSCP [RFC6960]). 1620

 1621

Client or Server authentication credentials, such as User Name and Password, that are lost or considered 1622
compromised should be revoked and/or reissued. 1623

 1624

In the case of long lasting connections: 1625

 Client and Server implementations using TLS [RFC5246] should allow for session renegotiation 1626

to establish new cryptographic parameters (replace session keys, change cipher suites, change 1627
authentication credentials). 1628

 Servers may disconnect Clients and require them to re-authenticate with new credentials. 1629

 1630

Constrained devices and Clients on constrained networks can make use of TLS session resumption 1631

[RFC5077], in order to reduce the costs of reconnecting TLS [RFC5246] sessions. 1632

 1633

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 64 of 81

Clients connected to a Server have a transitive trust relationship with other Clients connected to the same 1634
Server and who have authority to publish data on the same topics. 1635

5.4.10 Use of SOCKS 1636

Implementations of Clients should be aware that some environments will require the use of SOCKSv5 1637
[RFC1928] proxies to make outbound Network Connections. Some MQTT implementations could make 1638
use of alternative secured tunnels (e.g. SSH) through the use of SOCKS. Where implementations choose 1639
to use SOCKS, they should support both anonymous and user-name password authenticating SOCKS 1640
proxies. In the latter case, implementations should be aware that SOCKS authentication might occur in 1641
plain-text and so should avoid using the same credentials for connection to a MQTT Server. 1642

5.4.11 Security profiles 1643

Implementers and solution designers might wish to consider security as a set of profiles which can be 1644
applied to the MQTT protocol. An example of a layered security hierarchy is presented below. 1645

5.4.11.1 Clear communication profile 1646

When using the clear communication profile, the MQTT protocol runs over an open network with no 1647
additional secure communication mechanisms in place. 1648

5.4.11.2 Secured network communication profile 1649

When using the secured network communication profile, the MQTT protocol runs over a physical or virtual 1650
network which has security controls e.g., VPNs or physically secure network. 1651

5.4.11.3 Secured transport profile 1652

When using the secured transport profile, the MQTT protocol runs over a physical or virtual network and 1653

using TLS [RFC5246] which provides authentication, integrity and privacy. 1654

 1655

TLS [RFC5246] Client authentication can be used in addition to – or in place of – MQTT Client 1656

authentication as provided by the Username and Password fields. 1657

5.4.11.4 Industry specific security profiles 1658

It is anticipated that the MQTT protocol will be designed into industry specific application profiles, each 1659
defining a threat model and the specific security mechanisms to be used to address these threats. 1660
Recommendations for specific security mechanisms will often be taken from existing works including: 1661

 1662

[NISTCSF] NIST Cyber Security Framework 1663

[NIST7628] NISTIR 7628 Guidelines for Smart Grid Cyber Security 1664

[FIPS1402] Security Requirements for Cryptographic Modules (FIPS PUB 140-2) 1665

[PCIDSS] PCI-DSS Payment Card Industry Data Security Standard 1666

[NSAB] NSA Suite B Cryptography 1667

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 65 of 81

6 Using WebSocket as a network transport 1668

If MQTT is transported over a WebSocket [RFC6455] connection, the following conditions apply: 1669

 MQTT Control Packets MUST be sent in WebSocket binary data frames. If any other type of 1670
data frame is received the recipient MUST close the Network Connection [MQTT-6.0.0.-1]. 1671

 A single WebSocket data frame can contain multiple or partial MQTT Control Packets. The 1672
receiver MUST NOT assume that MQTT Control Packets are aligned on WebSocket frame 1673
boundaries [MQTT-6.0.0.-2]. 1674

 The client MUST include “mqtt” in the list of WebSocket Sub Protocols it offers [MQTT-6.0.0.-3]. 1675

 The WebSocket Sub Protocol name selected and returned by the server MUST be “mqtt” 1676
[MQTT-6.0.0.-4]. 1677

 The WebSocket URI used to connect the client and server has no impact on the MQTT protocol. 1678

6.1 IANA Considerations 1679

This specification requests IANA to register the WebSocket MQTT sub-protocol under the “WebSocket 1680
Subprotocol Name” registry with the following data: 1681

 1682

Figure 6.1 - IANA WebSocket Identifier 1683

Subprotocol Identifier mMqtt

Subprotocol Common Name mMqtt

Subprotocol Definition http://docs.oasis-open.org/mqtt/mqtt/v4.0/mqtt-v4.0.html

 1684

http://docs.oasis-open.org/mqtt/mqtt/v4.0/mqtt-v4.0.html

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 66 of 81

7 Conformance 1685

The MQTT specification defines conformance for MQTT Client implementations and MQTT Server 1686
implementations. 1687

 1688

An MQTT implementation MAY conform as both an MQTT Client and MQTT Server implementation. A 1689
Server that both accepts inbound connections and establishes outbound connections to other Servers 1690
MUST conform as both an MQTT Client and MQTT Server [MQTT-7.0.0-1]. 1691

 1692

Conformant implementations MUST NOT require the use of any extensions defined outside of this 1693
specification in order to interoperate with any other conformant implementation [MQTT-7.0.0-2]. 1694

7.1 Conformance Targets 1695

7.1.1 MQTT Server 1696

An MQTT Server conforms to this specification only if it satisfies all the statements below: 1697

1. The format of all Control Packets that the Server sends matches the format described in Chapter 2 and 1698
Chapter 3. 1699

2. It follows the Topic matching rules described in Section 4.7. 1700

3. It satisfies all of the MUST level requirements in the following chapters that are identified except for 1701
those that only apply to the Client: 1702

- Chapter 1 - Introduction 1703

 - Chapter 2 - MQTT Control Packet format 1704

 - Chapter 3 - MQTT Control Packets 1705

 - Chapter 4 - Operational behavior 1706

- Chapter 6 - (if MQTT is transported over a WebSocket connection) 1707

- Chapter 7 - Conformance Targets 1708

 1709

A conformant Server MUST support the use of one or more underlying transport protocols that provide an 1710
ordered, lossless, stream of bytes from the Client to Server and Server to Client [MQTT-7.1.1-1]. However 1711
conformance does not depend on it supporting any specific transport protocols. A Server MAY support 1712
any of the transport protocols listed in Section 4.2, or any other transport protocol that meets the 1713
requirements of [MQTT-7.1.1.-1]]. 1714

7.1.2 MQTT Client 1715

An MQTT Client conforms to this specification only if it satisfies all the statements below: 1716

1. The format of all Control Packets that the Client sends matches the format described in Chapter 2 and 1717
Chapter 3. 1718

2. It satisfies all of the MUST level requirements in the following chapters that are identified except for 1719
those that only apply to the Server: 1720

- Chapter 1 - Introduction 1721

 - Chapter 2 - MQTT Control Packet format 1722

- Chapter 3 - MQTT Control Packets 1723

- Chapter 4 - Operational behavior 1724

- Chapter 6 - (if MQTT is transported over a WebSocket connection) 1725

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 67 of 81

- Chapter 7 - Conformance Targets 1726

 1727

A conformant Client MUST support the use of one or more underlying transport protocols that provide an 1728
ordered, lossless, stream of bytes from the Client to Server and Server to Client [MQTT-7.1.2-1]. However 1729
conformance does not depend on it supporting any specific transport protocols. A Client MAY support any 1730
of the transport protocols listed in Section 4.2, or any other transport protocol that meets the requirements 1731
of [MQTT-7.1.2-1]. 1732

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 68 of 81

Appendix A. Acknowledgements (non normative) 1733

The TC owes special thanks to Dr Andy Stanford-Clark and Arlen Nipper as the original inventors of the 1734
MQTT protocol and for their continued support with the standardization process. 1735

 1736

The following individuals were members of the OASIS Technical Committee during the creation of this 1737
specification and their contributions are gratefully acknowledged: 1738

 Sanjay Aiyagari (VMware, Inc.) 1739

 Ben Bakowski (IBM) 1740

 Andrew Banks (IBM) 1741

 Arthur Barr (IBM) 1742

 William Bathurst (Machine-to-Machine Intelligence (M2MI) Corporation) 1743

 Ken Borgendale (IBM) 1744

 Geoff Brown (Machine-to-Machine Intelligence (M2MI) Corporation) 1745

 James Butler (Cimetrics Inc.) 1746

 Marco Carrer (Eurotech S.p.A.) 1747

 Raphael Cohn (Individual) 1748

 Sarah Cooper (Machine-to-Machine Intelligence (M2MI) Corporation) 1749

 Richard Coppen (IBM) 1750

 AJ Dalola (Telit Communications S.p.A.) 1751

 Mark Darbyshire (TIBCO Software Inc.) 1752

 Scott deDeugd (IBM) 1753

 Paul Duffy (Cisco Systems) 1754

 Phili DesAutels (LogMeIn Inc.) 1755

 John Fallows (Kaazing) 1756

 Pradeep Fernando (WSO2) 1757

 Paul Fremantle (WSO2) 1758

 Thomas Glover (Cognizant Technology Solutions) 1759

 Rahul Gupta (IBM) 1760

 Steve Huston (Individual) 1761

 Wes Johnson (Eurotech S.p.A.) 1762

 Christopher Kelley (Cisco Systems) 1763

 David Kemper (TIBCO Software Inc.) 1764

 James Kirkland (Red Hat) 1765

 Alex Kritikos (Software AG, Inc.) 1766

 Louis-P. Lamoureux (Machine-to-Machine Intelligence (M2MI) Corporation) 1767

 David Locke (IBM) 1768

 Shawn McAllister (Solace Systems) 1769

 Dale Moberg (Axway Software) 1770

 Manu Namboodiri (Machine-to-Machine Intelligence (M2MI) Corporation) 1771

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 69 of 81

 Peter Niblett (IBM) 1772

 Arlen Nipper (Individual) 1773

 Julien Niset (Machine-to-Machine Intelligence (M2MI) Corporation) 1774

 Mark Nixon (Emerson Process Management) 1775

 Nicholas O'Leary (IBM) 1776

 Sandor Palfy (LogMeIn Inc.) 1777

 Dominik Obermaier (dc-square GmbH) 1778

 Pavan Reddy (Cisco Systems) 1779

 Andrew Schofield (IBM) 1780

 Wadih Shaib (BlackBerry) 1781

 Ian Skerrett (Eclipse Foundation) 1782

 Joe Speed (IBM) 1783

 Allan Stockdill-Mander (IBM) 1784

 Gary Stuebing (Cisco Systems) 1785

 Steve Upton (IBM) 1786

 James Wert jr. (Telit Communications S.p.A.) 1787

 T. Wyatt (Individual) 1788

 SHAWN XIE (Machine-to-Machine Intelligence (M2MI) Corporation) 1789

 Dominik Zajac (dc-square GmbH) 1790

 1791

Secretary: 1792
Geoff Brown (geoff.brown@m2mi.com), M2MI 1793

 1794

mailto:geoff.brown@m2mi.com
http://www.m2mi.com/

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 70 of 81

Appendix B. Mandatory normative statements (non 1795

normative) 1796

This Appendix is non-normative and is provided as a convenient summary of the numbered conformance 1797
statements found in the main body of this document. See Chapter 7 for a definitive list of conformance 1798
requirements. 1799

Normative
Statement Number

Normative Statement

[MQTT-1.4.05.3-1] The character data in a UTF-8 encoded string MUST be well-formed UTF-8 as
defined by the Unicode specification [][Unicode] and restated in RFC 3629 [RFC
3629RFC3629]. In particular this data MUST NOT include encodings of code
points between U+D800 and U+DFFF. If a receiver (Server or Client) receives a
Control Packet containing ill-formed UTF-8 it MUST close the Network
Connection.

[MQTT-1.4.05.3-2] A UTF-8 encoded string MUST NOT include an encoding of the null character
U+0000. If a receiver (Server or Client) receives a Control Packet containing
U+0000 it MUST close the Network Connection.

[MQTT-1.4.05.3-3] A UTF-8 encoded sequence 0xEF 0xBB 0xBF is always to be interpreted to
mean U+FEFF ("ZERO WIDTH NO-BREAK SPACE") wherever it appears in a
string and MUST NOT be skipped over or stripped off by a packet receiver.

[MQTT-2.2.2-1] Where a flag bit is marked as “Reserved” in ,Table 2.2 - Flag Bits, it is reserved
for future use and MUST be set to the value listed in that table.

[MQTT-2.2.2-2] If invalid flags are received, the receiver MUST close the Network Connection.

[MQTT-2.3.1-1] SUBSCRIBE, UNSUBSCRIBE, and PUBLISH (in cases where QoS > 0) Control
Packets MUST contain a non-zero 16-bit Packet Identifier.

[MQTT-2.3.1-2] Each time a Client sends a new packet of one of these types it MUST assign it a
currently unused Packet Identifier.

[MQTT-2.3.1-3] If a Client re-sends a particular Control Packet, then it MUST use the same
Packet Identifier in subsequent re-sends of that packet. The Packet Identifier
becomes available for reuse after the Client has processed the corresponding
acknowledgement packet. In the case of a QoS 1 PUBLISH this is the
corresponding PUBACK; in the case of QO2 it is PUBCOMP. For SUBSCRIBE
or UNSUBSCRIBE it is the corresponding SUBACK or UNSUBACK.

[MQTT-2.3.1-4] The same conditions [MQTT-2.3.1-3] apply to a Server when it sends a
PUBLISH with QoS >0.

[MQTT-2.3.1-5] A PUBLISH Packet MUST NOT contain a Packet Identifier if its QoS value is set
to 0.

[MQTT-2.3.1-6] A PUBACK, PUBREC or PUBREL Packet MUST contain the same Packet
Identifier as the PUBLISH Packet that was originally sent.

[MQTT-2.3.1-7] Similarly to [MQTT-2.3.1-6], SUBACK and UNSUBACK MUST contain the
Packet Identifier that was used in the corresponding SUBSCRIBE and
UNSUBSCRIBE Packet respectively.

[MQTT-3.1.0-1] After a Network Connection is established by a Client to a Server, the first Packet

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 71 of 81

sent from the Client to the Server MUST be a CONNECT Packet.

[MQTT-3.1.0-2] The Server MUST process a second CONNECT Packet sent from a Client as a
protocol violation and disconnect the Client.

[MQTT-3.1.2-1].] If the protocol name is incorrect the Server MAY disconnect the Client, or it MAY
continue processing the CONNECT packet in accordance with some other
specification. In the latter case, the Server MUST NOT continue to process the
CONNECT packet in line with this specification.

[MQTT-3.1.2-2] The Server MUST respond to the CONNECT Packet with a CONNACK return
code 0x01 (unacceptable protocol level) and then disconnect the Client if the
Protocol Level is not supported by the Server.

[MQTT-3.1.2-3] The Server MUST validate that the reserved flag in the CONNECT Control
Packet is set to zero and disconnect the Client if it is not zero.

[MQTT-3.1.2-4] If CleanSession is set to 0, the Server MUST resume communications with the
Client based on state from the current Session (as identified by the Client
identifier). If there is no Session associated with the Client identifier the Server
MUST create a new Session. The Client and Server MUST store the Session
after the Client and Server are disconnected.

[MQTT-3.1.2-5] After the disconnection of a Session that had CleanSession set to 0, the Server
MUST store further QoS 1 and QoS 2 messages that match any subscriptions
that the client had at the time of disconnection as part of the Session state.

[MQTT-3.1.2-6] If CleanSession is set to 1, the Client and Server MUST discard any previous
Session and start a new one. This Session lasts as long as the Network
Connection. State data associated with this Session MUST NOT be reused in
any subsequent Session.

[MQTT-3.1.2.7] Retained messages do not form part of the Session state in the Server, they
MUST NOT be deleted when the Session ends.

[MQTT-3.1.2-8] If the Will Flag is set to 1 this indicates that, if the Connect request is accepted, a
Will Message MUST be stored on the Server and associated with the Network
Connection. The Will Message MUST be published when the Network
Connection is subsequently closed unless the Will Message has been deleted by
the Server on receipt of a DISCONNECT Packet.

[MQTT-3.1.2-9] If the Will Flag is set to 1, the Will QoS and Will Retain fields in the Connect
Flags will be used by the Server, and the Will Topic and Will Message fields
MUST be present in the payload.

[MQTT-3.1.2-10] The Will Message MUST be removed from the stored Session state in the Server
once it has been published or the Server has received a DISCONNECT packet
from the Client.

[MQTT-3.1.2-11] If the Will Flag is set to 0 the Will QoS and Will Retain fields in the Connect Flags
MUST be set to zero and the Will Topic and Will Message fields MUST NOT be
present in the payload.

[MQTT-3.1.2-12] If the Will Flag is set to 0, a Will Message MUST NOT be published when this
Network Connection ends.

[MQTT-3.1.2-13] If the Will Flag is set to 0, then the Will QoS MUST be set to 0 (0x00).

[MQTT-3.1.2-14] If the Will Flag is set to 1, the value of Will QoS can be 0 (0x00), 1 (0x01), or 2
(0x02). It MUST NOT be 3 (0x03).

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 72 of 81

[MQTT-3.1.2-15] If the Will Flag is set to 0, then the Will Retain Flag MUST be set to 0.

[MQTT-3.1.2-16] If the Will Flag is set to 1 and If Will Retain is set to 0, the Server MUST publish
the Will Message as a non-retained message.

[MQTT-3.1.2-17] If the Will Flag is set to 1 and If Will Retain is set to 1, the Server MUST publish
the Will Message as a retained message.

[MQTT-3.1.2-18] If the User Name Flag is set to 0, a user name MUST NOT be present in the
payload.

[MQTT-3.1.2-19] If the User Name Flag is set to 1, a user name MUST be present in the payload.

[MQTT-3.1.2-20] If the Password Flag is set to 0, a password MUST NOT be present in the
payload.

[MQTT-3.1.2-21] If the Password Flag is set to 1, a password MUST be present in the payload.

[MQTT-3.1.2-22] If the User Name Flag is set to 0 then, the Password Flag MUST be set to 0.

[MQTT-3.1.2-23] It is the responsibility of the Client to ensure that the interval between Control
Packets being sent does not exceed the Keep Alive value .. In the absence of
sending any other Control Packets, the Client MUST send a PINGREQ Packet.

[MQTT-3.1.2-24] If the Keep Alive value is non-zero and the Server does not receive a Control
Packet from the Client within one and a half times the Keep Alive time period, it
MUST disconnect the Network Connection to the Client as if the network had
failed.

[MQTT-3.1.3-1] These fields, if present, MUST appear in the order Client Identifier, Will Topic,
Will Message, User Name, Password.

[MQTT-3.1.3-2] Each Client connecting to the Server has a unique ClientId. The ClientId MUST
be used by Clients and by Servers to identify state that they hold relating to this
MQTT connectionSession between the Client and the Server.

[MQTT-3.1.3-3] The Client Identifier (ClientId) MUST be present and MUST be the first field in
the CONNECT packet payload.

[MQTT-3.1.3-4] The ClientId MUST be a UTF-8 encoded string as defined in Section 1.5.3...

[MQTT-3.1.3-5] The Server MUST allow ClientIds which are between 1 and 23 UTF-8 encoded
bytes in length, and that contain only the characters

"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXY
Z"".

[MQTT-3.1.3-6] A Server MAY allow a Client to supply a ClientId that has a length of zero bytes.
However if it does so the Server MUST treat this as a special case and assign a
unique ClientId to that Client. It MUST then process the CONNECT packet as if
the Client had provided that unique ClientId.

[MQTT-3.1.3-7] If the Client supplies a zero-byte ClientId, the Client MUST also set
CleanSession to 1.

[MQTT-3.1.3-8] If the Client supplies a zero-byte ClientId with CleanSession set to 0, the Server
MUST respond to the CONNECT Packet with a CONNACK return code 0x02
(Identifier rejected) and then close the Network Connection.

[MQTT-3.1.3-9] If the Server rejects the ClientId it MUST respond to the CONNECT Packet with
a CONNACK return code 0x02 (Identifier rejected) and then close the Network
Connection.

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 73 of 81

[MQTT-3.1.3-10] The WillTopicWill Topic MUST be a UTF-8 encoded string as defined in

Section 1.5.3.

[MQTT-3.1.3-11] The User Name MUST be a UTF-8 encoded string as defined in Section 1.5.3.

[MQTT-3.1.4-1] The Server MUST validate that the CONNECT Packet conforms to section 3.1
and close the Network Connection without sending a CONNACK if it does not
conform.

[MQTT-3.1.4-2] If the ClientId represents a Client already connected to the Server then the
Server MUST disconnect the existing Client.

[MQTT-3.1.4-3] If CONNECT validation is successful the Server MUST perform the processing of
CleanSession MUST that is described in section .3.1.2.4.

[MQTT-3.1.4-4] If CONNECT validation is successful the Server MUST acknowledge the
CONNECT Packet with a CONNACK Packet containing a zero return code.

[MQTT-3.1.4-5] If the Server rejects the CONNECT, it MUST NOT process any data sent by the
Client after the CONNECT Packet.

[MQTT-3.2.0-1] The first packet sent from the Server to the Client MUST be a CONNACK
Packet.

[MQTT-3.2.2-1] If the Server accepts a connection with CleanSession set to 1, the Server MUST
set Session Present to 0 in the CONNACK packet in addition to setting a zero
return code in the CONNACK packet.

[MQTT-3.2.2-2] If the Server accepts a connection with CleanSession set to 0, the value set in
Session Present depends on whether the Server already has stored Session
state for the supplied client ID. If the Server has stored Session state, it MUST
set Session Present to 1 in the CONNACK packet.

[MQTT-3.2.2-3] If the Server does not have stored Session state, it MUST set Session Present to
0 in the CONNACK packet. This is in addition to setting a zero return code in the
CONNACK packet.

[MQTT-3.2.2-4] If a server sends a CONNACK packet containing a non-zero return code it MUST
set Session Present to 0.

[MQTT-3.2.2-5] If a server sends a CONNACK packet containing a non-zero return code it MUST
then close the Network Connection.

[MQTT-3.2.2-6] If none of the return codes listed in Table 3.1 – Connect Return code values are
deemed applicable, then the Server MUST close the Network Connection without
sending a CONNACK.

[MQTT-3.3.2-1] The Topic Name MUST be present as the first field in the PUBLISH Packet
Variable header. It MUST be a UTF-8 encoded string.

[MQTT-3.3.2-2] The Topic Name in the PUBLISH Packet MUST NOT contain wildcard
characters.

[MQTT-3.3.1-1] The DUP flag MUST be set to 1 by the Client or Server when it attempts to re-
deliver a PUBLISH Packet.

[MQTT-3.3.1-2] The DUP flag MUST be set to 0 for all QoS 0 messages.

[MQTT-3.3.1-3] The value of the DUP flag from an incoming PUBLISH packet is not propagated
when the PUBLISH Packet is sent to subscribers by the Server. The DUP flag in
the outgoing PUBLISH packet is set independently to the incoming PUBLISH

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 74 of 81

packet, its value MUST be determined solely by whether the outgoing PUBLISH
packet is a retransmission.

[MQTT-3.3.1-4] A PUBLISH Packet MUST NOT have both QoS bits set to 1. If a Server or Client
receives a PUBLISH Packet which has both QoS bits set to 1 it MUST close the
Network Connection.

[MQTT-3.3.1-5] If the RETAIN flag is set to 1, in a PUBLISH Packet sent by a Client to a Server,
the Server MUST store the Application Message and its QoS, so that it can be
delivered to future subscribers whose subscriptions match its topic name.

[MQTT-3.3.1-6] When a new subscription is established, the last retained message, if any, on
each matching topic name MUST be sent to the subscriber.

[MQTT-3.3.1-7] If the Server receives a QoS 0 message with the RETAIN flag set to 1 it MUST
discard any message previously retained for that topic. It SHOULD store the new
QoS 0 message as the new retained message for that topic, but MAY choose to
discard it at any time - if this happens there will be no retained message for that
topic.

[MQTT-3.3.1-8] When sending a PUBLISH Packet to a Client the Server MUST set the RETAIN
flag to 1 if a message is sent as a result of a new subscription being made by a
Client.

[MQTT-3.3.1-9] It MUST set the RETAIN flag to 0 when a PUBLISH Packet is sent to a Client
because it matches an established subscription regardless of how the flag was
set in the message it received.

[MQTT-3.3.1-10] A PUBLISH Packet with a RETAIN flag set to 1 and a payload containing zero
bytes will be processed as normal by the Server and sent to Clients with a
subscription matching the topic name. Additionally any existing retained
message with the same topic name MUST be removed and any future
subscribers for the topic will not receive a retained message.

[MQTT-3.3.1-11] A zero byte retained message MUST NOT be stored as a retained message on
the Server.

[MQTT-3.3.1-12] If the RETAIN flag is 0, in a PUBLISH Packet sent by a Client to a Server, the
Server MUST NOT store the message and MUST NOT remove or replace any
existing retained message.

[MQTT-3.3.2-1] The Topic Name MUST be present as the first field in the PUBLISH Packet
Variable header. It MUST be a UTF-8 encoded string.

[MQTT-3.3.2-2] The Topic Name in the PUBLISH Packet MUST NOT contain wildcard
characters.

[MQTT-3.3.2-3] The Topic Name in a PUBLISH Packet sent by a Server to a subscribing Client
MUST match the Subscription’s Topic Filter according to the matching process
defined in Section 4.7.

[MQTT-3.3.4-1] The receiver of a PUBLISH Packet MUST respond according to Table 3.4 -
Expected Publish Packet response as determined by the QoS in the PUBLISH
Packet.

[MQTT-3.3.5-1] The Server MUST deliver the message to the Client respecting the maximum
QoS of all the matching subscriptions.

[MQTT-3.3.5-2] If a Server implementation does not authorize a PUBLISH to be performed by a
Client; it has no way of informing that Client. It MUST either make a positive
acknowledgement, according to the normal QoS rules, or close the Network

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 75 of 81

Connection.

[MQTT-3.6.1-1] Bits 3,2,1 and 0 of the fixed header in the PUBREL Control Packet are reserved
and MUST be set to 0,0,1 and 0 respectively. The Server MUST treat any other
value as malformed and close the Network Connection.

[MQTT-3.8.1-1] Bits 3,2,1 and 0 of the fixed header of the SUBSCRIBE Control Packet are
reserved and MUST be set to 0,0,1 and 0 respectively. The Server MUST treat
any other value as malformed and close the Network Connection.

[MQTT-3.8.3-1] The Topic Filters in a SUBSCRIBE packet payload MUST be UTF-8 encoded
strings as defined in Section 1.5.3.

[MQTT-3.8.3-2] If the Server chooses not to support topic filters that contain wildcard characters
it MUST reject any Subscription request whose filter contains them.

[MQTT-3.8.3-3] The payload of a SUBSCRIBE packet MUST contain at least one Topic Filter /
QoS pair. A SUBSCRIBE packet with no payload is a protocol violation.

[MQTT-3-8.3-4] The Server MUST treat a SUBSCRIBE packet as malformed and close the
Network Connection if any of Reserved bits in the payload are non-zero, or QoS
is not 0,1 or 2.

[MQTT-3.8.4-1] When the Server receives a SUBSCRIBE Packet from a Client, the Server
MUST respond with a SUBACK Packet.

[MQTT-3.8.4-2] The SUBACK Packet MUST have the same Packet Identifier as the SUBSCRIBE
Packet that it is acknowledging.

[MQTT-3.8.4-3] A subscribe request which containsIf a Server receives a SUBSCRIBE Packet
containing a Topic Filter that is identical to an existing Subscription’s Topic Filter
then it MUST completely replaces that existing Subscription with a new
Subscription. The Topic Filter in the new Subscription will be identical to that in
the previous Subscription, although its maximum QoS value could be different.
Any existing retained messages matching the Topic Filter areMUST be re-sent,
but the flow of publications is notMUST NOT be interrupted.

[MQTT-3.8.4-4] If a Server receives a SUBSCRIBE packet that contains multiple Topic Filters it
MUST handle that packet as if it had received a sequence of multiple
SUBSCRIBE packets, except that it combines their responses into a single
SUBACK response.

[MQTT-3.8.4-5] The SUBACK Packet sent by the Server to the Client MUST contain a return
code for each Topic Filter/QoS pair. This return code MUST either show the
maximum QoS that was granted for that Subscription or indicate that the
subscription failed.

[MQTT-3.8.4-6] The Server might grant a lower maximum QoS than the subscriber requested.
The QoS of Payload Messages sent in response to a Subscription MUST be the
minimum of the QoS of the originally published message and the maximum QoS
granted by the Server. The server is permitted to send duplicate copies of a
message to a subscriber in the case where the original message was published
with QoS 1 and the maximum QoS granted was QoS 0.

[MQTT-3.9.3-1] The order of return codes in the SUBACK Packet MUST match the order of
Topic Filters in the SUBSCRIBE Packet.

[MQTT-3.9.3-2] SUBACK return codes other than 0x00, 0x01, 0x02 and 0x80 are reserved and
MUST NOT be used.

[MQTT-3.10.1-1] Bits 3,2,1 and 0 of the fixed header of the UNSUBSCRIBE Control Packet are

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 76 of 81

reserved and MUST be set to 0,0,1 and 0 respectively. The Server MUST treat
any other value as malformed and close the Network Connection.

[MQTT-3.10.3-1] The Topic Filters in an UNSUBSCRIBE packet MUST be UTF-8 encoded strings
as defined in Section 1.5.3, packed contiguously.

[MQTT-3.10.3-2] The Payload of an UNSUBSCRIBE packet MUST contain at least one Topic
Filter. An UNSUBSCRIBE packet with no payload is a protocol violation.

[MQTT-3.10.4-1] The Topic Filters (whether containing a wild-cardthey contain wildcards or not)
supplied in an UNSUBSCRIBE packet MUST be compared byte-for-
bytecharacter-by-character with the current set of Topic Filters held by the Server
for the Client. If any filter matches exactly then itits owning Subscription is
deleted, otherwise no additional processing occurs.

[MQTT-3.10.4-2] TheIf a Server sends an UNSUBACK Packet to the Client in response to an
UNSUBSCRIBE Packet, The Serverdeletes a Subscription It MUST stop adding
any new messages for delivery to the Client.

[MQTT-3.10.4-3] The Server sends an UNSUBACK Packet to the Client in response to an
UNSUBSCRIBE Packet, The ServerIf a Server deletes a Subscription It MUST
complete the delivery of any QoS 1 or QoS 2 messages which it has started to
send to the Client.

[MQTT-3.10.4-4] The Server sends an UNSUBACK Packet to the Client in response to an
UNSUBSCRIBE Packet, The Server MUST sendrespond to an
UNSUBSUBCRIBE request by sending an UNSUBACK packet. The UNSUBACK
Packet MUST have the same Packet Identifier as the UNSUBSCRIBE Packet.

[MQTT-3.10.4-5] Even where no Topic FiltersSubscriptions are deleted, the Server MUST respond
with an UNSUBACK.

[MQTT-3.10.4-6] If a Server receives an UNSUBSCRIBE packet that contains multiple Topic
Filters it MUST handle that packet as if it had received a sequence of multiple
UNSUBSCRIBE packets, except that it sends just one UNSUBACK response.

[MQTT-3.12.4-1] The Server MUST send a PINGRESP Packet in response to a PINGREQ packet.

[MQTT-3.14.1-1] The Server MUST validate that reserved bits are set to zero in DISCONNECT
Control Packet, and disconnect the Client if they are not zero.

[MQTT-3.14.4-1] After sending a DISCONNECT Packet the Client MUST close the Network
Connection.

[MQTT-3.14.4-2] After sending a DISCONNECT Packet the Client MUST NOT send any more
Control Packets on that Network Connection.

[MQTT-3.14.4-3] On receipt of DISCONNECT the Server MUST discard any Will Message
associated with the current connection without publishing it, as described in
Section 3.1.2.5.

[MQTT-4.1.0.-1] The Client and Server MUST store Session state for the entire duration of the
Session.

[MQTT-4.1.0-2] A Session MUST last at least as long it has an active Network Connection.

[MQTT-4.3.1.-1]

In the QoS 0 delivery protocol, the Sender

 MUST send a PUBLISH packet with QoS=0, DUP=0.

[MQTT-4.3.2.-1] In the QoS 1 delivery protocol, the Sender

 MUST assign an unused Packet Identifier each time it has a new

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 77 of 81

 Application Message to publish.

 MUST send a PUBLISH Packet containing this Packet Identifier with
QoS=1, DUP=0.

 MUST treat the PUBLISH Packet as "unacknowledged" until it has
received the corresponding PUBACK packet from the receiver. See
Section 4.4 for a discussion of unacknowledged messages.

[MQTT-4.3.2.-2]

In the QoS 1 delivery protocol, the Receiver

 MUST respond with a PUBACK Packet containing the Packet Identifier
from the incoming PUBLISH Packet, having accepted ownership of the
Application Message.

 After it has sent a PUBACK Packet the Receiver MUST treat any
incoming PUBLISH packet that contains the same Packet Identifier as
being a new publication, irrespective of the setting of its DUP flag.

[MQTT-4.3.3-1]

In the QoS 2 delivery protocol, the Sender

 MUST assign an unused Packet Identifier when it has a new Application
Message to publish.

 MUST send a PUBLISH packet containing this Packet Identifier with
QoS=2, DUP=0.

 MUST treat the PUBLISH packet as "unacknowledged" until it has
received the corresponding PUBREC packet from the receiver. See
Section 4.4 for a discussion of unacknowledged messages.

 MUST send a PUBREL packet when it receives a PUBREC packet from
the receiver. This PUBREL packet MUST contain the same Packet
Identifier as the original PUBLISH packet.

 MUST treat the PUBREL packet as "unacknowledged" until it has
received the corresponding PUBCOMP packet from the receiver.

 MUST NOT re-send the PUBLISH once it has sent the corresponding
PUBREL packet.

[MQTT-4.3.3-2]

In the QoS 2 delivery protocol, the Receiver

 MUST respond with a PUBREC containing the Packet Identifier from the
incoming PUBLISH Packet, having accepted ownership of the
Application Message.

 Until it has received the corresponding PUBREL packet, the Receiver
MUST acknowledge any subsequent PUBLISH packet with the same
Packet Identifier by sending a PUBREC. It MUST NOT cause duplicate
messages to be delivered to any onward recipients in this case.

 MUST respond to a PUBREL packet by sending a PUBCOMP packet
containing the same Packet Identifier as the PUBREL.

 After it has sent a PUBCOMP, the receiver MUST treat any subsequent
PUBLISH packet that contains that Packet Identifier as being a new
publication.

[MQTT-4.4.0-1] When a Client reconnects with CleanSession set to 0, both the Client and Server
MUST re-send any unacknowledged PUBLISH Packets (where QoS > 0) and
PUBREL Packets using their original Packet Identifiers.

[MQTT-4.5.0-1] When a Server takes ownership of an incoming Application Message it MUST
add it to the Session state of those clients that have matching Subscriptions.

Matching rules are defined in Section 4.7.

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 78 of 81

[MQTT-4.5.0-2] The Client MUST acknowledge any Publish Packet it receives according to the
applicable QoS rules regardless of whether it elects to process the Application
Message that it contains.

[MQTT-4.6.0-1] When it re-sends any PUBLISH packets, it MUST re-send them in the order in
which the original PUBLISH packets were sent (this applies to QoS 1 and QoS 2
messages).

[MQTT-4.6.0-2] Client MUST send PUBACK packets in the order in which the corresponding
PUBLISH packets were received (QoS 1 messages).

[MQTT-4.6.0-3] Client MUST send PUBREC packets in the order in which the corresponding
PUBLISH packets were received (QoS 2 messages).

[MQTT-4.6.0-4] Client MUST send PUBREL packets in the order in which the corresponding
PUBREC packets were received (QoS 2 messages).

[MQTT-4.6.0-5] A Server MUST by default treat each Topic as an "Ordered Topic". It MAY
provide an administrative or other mechanism to allow one or more Topics to be
treated as an "Unordered Topic".

[MQTT-4.6.0-6] When a Server processes a message that has been published to an Ordered
Topic, it MUST follow the rules listed above when delivering messages to each of
its subscribers. In addition it MUST send PUBLISH packets to consumers (for the
same Topic and QoS) in the order that they were received from any given Client.

[MQTT-4.7.1-1] The wildcard characters can be used in Topic Filters, but MUST NOT be used
within a Topic Name.

[MQTT-4.7.1-2] The multi-level wildcard character MUST be specified either on its own or
following a topic level separator. In either case it MUST be the last character
specified in the Topic Filter.

[MQTT-4.7.1-3] The single-level wildcard can be used at any level in the Topic Filter, including
first and last levels. Where it is used it MUST occupy an entire level of the filter.

[MQTT-4.7.2-1] The Server MUST NOT match Topic Filters starting with a wildcard character (#
or +) with Topic Names beginning with a $ character.

[MQTT-4.7.3-1] All Topic Names and Topic Filters MUST be at least one character long.

[MQTT-4.7.3-2] Topic Names and Topic Filters MUST NOT include the null character (Unicode
U+0000).

[MQTT-4.7.3-3] Topic Names and Topic Filters are UTF-8 encoded strings, they MUST NOT
encode to more than 65535 bytes.

[MQTT-4.7.3-4] When it performs subscription matching the Server MUST NOT perform any
normalization of Topic Names or Topic Filters, or any modification or substitution
of unrecognized characters.

[MQTT-4.8.0-1] Unless stated otherwise, if either the Server or Client encounters a protocol
violation, it MUST close the Network Connection on which it received that Control
Packet which caused the protocol violation.

[MQTT-4.8.0-2] If the Client or Server encounters a Transient Error while processing an inbound
Control Packet it MUST close the Network Connection on which it received that
Control Packet.

[MQTT-6.0.0.-1] MQTT Control Packets MUST be sent in WebSocket binary data frames. If any
other type of data frame is received the recipient MUST close the Network

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 79 of 81

Connection.

[MQTT-6.0.0.-2] A single WebSocket data frame can contain multiple or partial MQTT Control
Packets. The receiver MUST NOT assume that MQTT Control Packets are
aligned on WebSocket frame boundaries]..

[MQTT-6.0.0.-3] The client MUST include “mqtt” in the list of WebSocket Sub Protocols it offers.

[MQTT-6.0.0.-4] The WebSocket Sub Protocol name selected and returned by the server MUST
be “mqtt”.

[MQTT-7.0.0-1] A Server that both accepts inbound connections and establishes outbound
connections to other Servers MUST conform as both an MQTT Client and MQTT
Server.

[MQTT-7.0.0-2] Conformant implementations MUST NOT require the use of any extensions
defined outside of this specification in order to interoperate with any other
conformant implementation.

[MQTT-7.1.1-1] A conformant Server MUST support the use of one or more underlying transport
protocols that provide an ordered, lossless, stream of bytes from the Client to
Server and Server to Client.

[MQTT-7.1.2-1] A conformant Client MUST support the use of one or more underlying transport
protocols that provide an ordered, lossless, stream of bytes from the Client to
Server and Server to Client.

 1800

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 80 of 81

Appendix C. Revision history (non normative) 1801

 1802

Revision Date Editor Changes Made

[02] [29 April 2013] [A Banks] [Tighten up language for Connect packet]

[03] [09 May 2013] [A Banks] [Tighten up language in Section 02 Command
Message Format]

[04] [20 May 2013] [Rahul Gupta] Tighten up language for PUBLISH message

[05] [5th June 2013] [A Banks]

[Rahul Gupta]

[Issues -5,9,13]

[Formatting and language tighten up in
PUBACK, PUBREC, PUBREL, PUBCOMP
message]

[06] [20
th
 June 2013] [Rahul Gupta] [Issue – 17, 2, 28, 33]

[Formatting and language tighten up in
SUBSCRIBE, SUBACK, UNSUBSCRIBE,
UNSUBACK, PINGREQ, PINGRESP,
DISCONNECT Control Packets]

Terms Command message change to Control
Packet

Term “message” is generically used, replaced
this word accordingly with packet, publication,
subscription.

[06] [21 June 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 12,20,15, 3, 35, 34, 23, 5,
21

Resolved Issues – 32,39, 41

[07] [03 July 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 18,11,4

Resolved Issues – 26,31,36,37

[08] [19 July 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 6, 29, 45

Resolved Issues – 36, 25, 24

Added table for fixed header and payload

[09] [01 August 2013] [A Banks] Resolved Issues – 49, 53, 46, 67, 29, 66, 62,
45, 69, 40, 61, 30

[10] [10 August 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 19, 63, 57, 65, 72

Conformance section added

[11] [10 September 2013] [A Banks]

[N O'Leary &
Rahul Gupta]

Resolved Issues – 56

Updated Conformance section

[12] [18 September 2013] [Rahul Gupta]

[A Banks]

Resolved Issues – 22, 42, 81, 84, 85, 7, 8, 14,
16, Security section is added

Resolved Issue -1

mqtt-v3.1.1-cs01 18 May 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 81 of 81

[13] [27 September 2013] [A Banks] Resolved Issues – 64, 68, 76, 86, 27, 60, 82,
55, 78, 51, 83, 80

[14] [10 October 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 58, 59, 10, 89, 90, 88, 77

Resolved Issues – 94, 96, 93, 92, 95, 87, 74,
71

[15] [24 October 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 52, 97, 98, 101

Resolved Issues – 100

Added normative statement numbering and
Appendix A

[16] [21 November 2013] [A Banks] Resolved Issues -103, 104, 44

[17] [05 December 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 105, 70, 102, 106, 107, 108,
109, 110

Updated normative statement numbering and
Appendix A

[CSD04] [28

January 2014] [Rahul Gupta] Resolved Issues – 112, 114, 115, 120, 117,

134, 132, 133, 130, 131, 129

[18] [20 February 2014] [A Banks]

[Rahul Gupta]

Resolved Issues – 175, 139, 176, 166, 149,
164, 140, 154, 178, 188, 181, 155, 170, 196,
173, 157, 195, 191, 150, 179, 185, 174, 163

Resolved Issues – 135, 136, 147, 161, 169,
180, 182, 184, 189, 187

[19] [28 February 2014] [A Banks]

[Rahul Gupta]

Resolved Issues – 167, 192, 141, 138, 137,
198, 165

Resolved Issues – 199, 144, 159,

[20] [07 March 2014] [A Banks]

[Rahul Gupta]

Resolved Issues – 113, 162, 158, 146

Resolved Issues – 172, 190, 202, 201

[21] [17 March 2014] [A Banks]

[Rahul Gupta]

Resolved Issues – 151, 194, 160, 168

Resolved Issues – 205,

[22] [27 March 2014] [Rahul Gupta]

[A Banks]

Resolved Issues – 145, 186, 142

Resolved Issues – 152, 193

[23] [28 March 2014] [A Banks] Resolved Issues – 204, 148, 210, 208, 209,
171, 183, 117, 212

[24] [7 April 2014] [Rahul Gupta]

[A Banks]

Added Table of figures

Corrected Issue 209

[25] [8 May 2014] [Rahul Gupta] Resolved Issues – 213, 214

 1803

