[image: Notesidebar][image:]
Key Management Interoperability Protocol Usage Guide Version 1.4
Committee Note 01
03 August 2017
Specification URIs
This version:
http://docs.oasis-open.org/kmip/ug/v1.4/cn01/kmip-ug-v1.4-cn01.docx (Authoritative)
http://docs.oasis-open.org/kmip/ug/v1.4/cn01/kmip-ug-v1.4-cn01.html
http://docs.oasis-open.org/kmip/ug/v1.4/cn01/kmip-ug-v1.4-cn01.pdf
Previous version:
http://docs.oasis-open.org/kmip/ug/v1.4/cnprd01/kmip-ug-v1.4-cnprd01.docx (Authoritative)
http://docs.oasis-open.org/kmip/ug/v1.4/cnprd01/kmip-ug-v1.4-cnprd01.html
http://docs.oasis-open.org/kmip/ug/v1.4/cnprd01/kmip-ug-v1.4-cnprd01.pdf
Latest version:
http://docs.oasis-open.org/kmip/ug/v1.4/kmip-ug-v1.4.docx (Authoritative)
http://docs.oasis-open.org/kmip/ug/v1.4/kmip-ug-v1.4.html
http://docs.oasis-open.org/kmip/ug/v1.4/kmip-ug-v1.4.pdf
Technical Committee:
OASIS Key Management Interoperability Protocol (KMIP) TC
Chairs:
Tony Cox (tony.cox@cryptsoft.com), Cryptsoft Pty Ltd.
Judith Furlong (Judith.Furlong@dell.com), Dell EMC
Editor:
Judith Furlong (Judith.Furlong@dell.com), Dell EMC
Related work:
This specification replaces or supersedes:
· Key Management Interoperability Protocol Usage Guide Version 1.3. Edited by Judith Furlong. Latest version. http://docs.oasis-open.org/kmip/ug/v1.3/kmip-ug-v1.3.html.
This specification is related to:
· Key Management Interoperability Protocol Specification Version 1.4. Edited by Tony Cox. Latest version: http://docs.oasis-open.org/kmip/spec/v1.4/kmip-spec-v1.4.html.
· Key Management Interoperability Protocol Profiles Version 1.4. Edited by Tim Hudson and Robert Lockhart. Latest version: http://docs.oasis-open.org/kmip/profiles/v1.4/kmip-profiles-v1.4.html.
· Key Management Interoperability Protocol Test Cases Version 1.4. Edited by Tim Hudson and Mark Joseph. Latest version: http://docs.oasis-open.org/kmip/testcases/v1.4/kmip-testcases-v1.4.html.
Abstract:
This document is intended to complement the Key Management Interoperability Protocol Specification by providing guidance on how to implement KMIP most effectively to ensure interoperability and to address key management usage scenarios.
Status:
This document was last revised or approved by the OASIS Key Management Interoperability Protocol (KMIP) TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document.
Technical Committee (TC) members should send comments on this document to the TC’s email list. Others should send comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/kmip/.
Citation format:
When referencing this document the following citation format should be used:
[kmip-ug-v1.4]
Key Management Interoperability Protocol Usage Guide Version 1.4. Edited by Judith Furlong. 03 August 2017. OASIS Committee Note 01. http://docs.oasis-open.org/kmip/ug/v1.4/cn01/kmip-ug-v1.4-cn01.html. Latest version: http://docs.oasis-open.org/kmip/ug/v1.4/kmip-ug-v1.4.html.

Copyright © OASIS Open 2017. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Table of Contents
1	Introduction	7
1.1 References (non-normative)	7
2	Assumptions	10
2.1 Island of Trust	10
2.2 Message Security	10
2.3 State-less Server	10
2.4 Extensible Protocol	10
2.5 Server Policy	10
2.6 Support for Cryptographic Objects	10
2.7 Client-Server Message-based Model	11
2.8 Synchronous and Asynchronous Operations	11
2.9 Support for “Intelligent Clients” and “Key Using Devices”	11
2.10 Batched Requests and Responses	11
2.11 Reliable Message Delivery	12
2.12 Large Responses	12
2.13 Key Life-cycle and Key State	12
3	Using KMIP Functionality	13
3.1 Authentication	13
3.1.1 Credential	13
3.2 Authorization for Revoke, Recover, Destroy and Archive Operations	16
3.3 Using Notify and Put Operations	17
3.4 Usage Allocation	17
3.5 Key State and Times	18
3.6 Template	19
3.6.1 Template Usage Examples	20
3.7 Archive Operations	22
3.8 Message Extensions	22
3.9 Unique Identifiers	22
3.10 Result Message Text	22
3.11 Query	22
3.11.1 Bi-directional KMIP Operation	22
3.11.2 Expansion of Query	23
3.11.3 Identifying Authenticated Operations	23
3.12 Canceling Asynchronous Operations	23
3.13 Multi-instance Hash	23
3.14 Returning Related Objects	24
3.15 Reducing Multiple Requests through the Use of Batch	24
3.16 Maximum Message Size	24
3.17 Handling Large Locate Result Sets	24
3.18 Using Offset in Re-key and Re-certify Operations	25
3.19 ID Placeholder	25
3.20 Key Block	26
3.21 Object Group	27
3.22 Certify and Re-certify	28
3.23 Specifying Attributes during a Create Key Pair or Re-key Key Pair Operation	29
3.23.1 Example of Specifying Attributes during the Create Key Pair Operation	29
3.24 Registering a Key Pair	32
3.25 Non-Cryptographic Objects	32
3.26 Asymmetric Concepts with Symmetric Keys	33
3.27 Application Specific Information	34
3.28 Mutating Attributes	35
3.29 Revocation Reason Codes	36
3.30 Certificate Renewal, Update, and Re-key	36
3.31 Key Encoding	37
3.31.1 Triple-DES Key Encoding	37
3.32 Using the Same Asymmetric Key Pair in Multiple Algorithms	38
3.33 Cryptographic Length of Asymmetric Keys	38
3.34 Discover Versions	38
3.35 Vendor Extensions	39
3.36 Certificate Revocation Lists	39
3.37 Using the “Raw” Key Format Type	39
3.38 Use of Meta-Data Only (MDO) Keys	40
3.39 Cryptographic Services	40
3.39.1 Streaming Cryptographic Services	41
3.39.2 Security Considerations for Server State Handling.	41
3.40 Passing Attestation Data	42
3.41 Split Key	43
3.42 Compromised Objects	44
3.43 Elliptic Curve Cryptography (ECC) Recommended Curve Mapping	44
3.44 Description and Comment Attributes	48
3.45 PKCS#12 Key Format	48
3.46 Galois/Counter Mode (GCM)	49
3.47 Client and Server Correlation Values	50
3.48 Extractable and Sensitive Attributes	51
4	Applying KMIP Functionality	52
4.1 Locating Keys in Specific States	52
4.2 Using Wrapped Keys with KMIP	53
4.2.1 Encrypt-only Example with a Symmetric Key as an Encryption Key for a Get Request and Response	54
4.2.2 Encrypt-only Example with a Symmetric Key as an Encryption Key for a Register Request and Response	55
4.2.3 Encrypt-only Example with an Asymmetric Key as an Encryption Key for a Get Request and Response	56
4.2.4 MAC-only Example with an HMAC Key as an Authentication Key for a Get Request and Response	57
4.2.5 Registering a Wrapped Key as an Opaque Cryptographic Object	58
4.2.6 Encoding Option for Wrapped Keys	58
4.3 Interoperable Key Naming for Tape	59
4.3.1 Native Tape Encryption by a KMIP Client	59
4.4 Registering Extension Information	63
4.5 Using KMIP for PGP Keys	64
4.6 KMIP Client Registration Models	65
4.6.1 Manual Client Registration	65
4.6.2 Automated Client Registration	66
4.6.3 Registering Sub-Clients Based on a Trusted Primary Client	67
4.7 Using One Time Pad Algorithms	67
4.8 Cryptographic Shredding (Erasure)	67
4.9 Key Shredding	68
4.10 AES-XTS Key Handling	68
5	Deprecated KMIP Functionality	70
5.1 KMIP Deprecation Rule	70
5.2 Certificate Attribute Related Fields	70
5.3 PGP Certificate and Certificate Request Types	71
5.4 Template	72
5.5 Operational Policy	72
5.6 Transparent Elliptic Curve Key Formats	72
6	Implementation Conformance	74
Appendix A.	Acknowledgments	75
Appendix B.	Acronyms	77
Appendix C.	Table of Figures and Tables	80
Appendix D.	KMIP Specification Cross Reference	81
Appendix E.	Revision History	88

[Type the document title]

This is a Non-Standards Track Work Product.
The patent provisions of the OASIS IPR Policy do not apply.[Type the document title]

	

This is a Non-Standards Track Work Product. The patent provisions of the OASIS IPR Policy do not apply.

2

kmip-ug-v1.4-cn01		03 August 2017
Non-Standards Track	Copyright © OASIS Open 2017. All Rights Reserved.	Page 18 of 89
1 [bookmark: _Toc478051739][bookmark: _Toc491258861]Introduction
[bookmark: _Toc287336979][bookmark: _Toc287337062]This Key Management Interoperability Protocol Usage Guide Version 1.4 is intended to complement the Key Management Interoperability Protocol Specification [KMIP-Spec] by providing guidance on how to implement the Key Management Interoperability Protocol (KMIP) most effectively to ensure interoperability and to address key management usage scenarios. In particular, it includes the following guidance:
· Clarification of assumptions and requirements that drive or influence the design of KMIP and the implementation of KMIP-compliant key management.
· Specific recommendations for implementation of particular KMIP functionality.
· Clarification of mandatory and optional capabilities for conformant implementations.
Descriptions of how to use KMIP functionality to address specific key management usage scenarios or to solve key management related issues. A selected set of conformance profiles and authentication suites are defined in the KMIP Profiles specification [KMIP-Prof].
Further assistance for implementing KMIP is provided by the KMIP Test Cases document [KMIP-TC] that describes a set of recommended test cases and provides the TTLV (Tag/Type/Length/Value) format for the message exchanges defined by those test cases.
1.1 [bookmark: _Toc478051740][bookmark: _Toc491258862]References (non-normative)
[bookmark: DoD5220_22M][DoD5220.22M]	National Industrial Security Program Operating Manual, February 2006 (Incorporating Change 1 March 28, 2013), http://www.dtic.mil/whs/directives/corres/pdf/522022m.pdf
[bookmark: ECC_Brainpool][ECC-Brainpool]	ECC Brainpool Standard Curves and Curve Generation v. 1.0.19.10.2005, http://www.ecc-brainpool.org/download/Domain-parameters.pdf.
[bookmark: FIPS180_4][FIPS 180-4]	Secure Hash Standard (SHS), FIPS PUB 180-4, March 2012, http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
[bookmark: FIPS186_4][FIPS 186-4]	Digital Signature Standard (DSS). FIPS PUB 186-4. July 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
[bookmark: FIPS197][FIPS 197]	Advanced Encryption Standard (AES). FIPS PUB 197. November 26, 2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
[bookmark: FIPS198_1][FIPS 198-1]	The Keyed-Hash Message Authentication Code (HMAC). FIPS PUB 198-1. July 2008. http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
[bookmark: KMIP_Prof][KMIP-Prof]	Key Management Interoperability Protocol Profiles Version 1.4. Edited by Tim Hudson and Robert Lockhart. Latest version: http://docs.oasis-open.org/kmip/profiles/v1.4/kmip-profiles-v1.4.html.
[bookmark: KMIP_Spec][KMIP-Spec]	Key Management Interoperability Protocol Specification Version 1.4. Edited by Tony Cox. Latest version: http://docs.oasis-open.org/kmip/spec/v1.4/kmip-spec-v1.4.html.
[bookmark: KMIP_TC][KMIP-TC]	Key Management Interoperability Protocol Test Cases Version 1.4. Edited by Tim Hudson and Mark Joseph. Latest version: http://docs.oasis-open.org/kmip/testcases/v1.4/kmip-testcases-v1.4.html.
[bookmark: PKCS1][PKCS#1]	RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard. June 14, 2002. http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm.
[bookmark: PKCS10][PKCS#10]	RSA Laboratories. PKCS #10 v1.7: Certification Request Syntax Standard. May 26, 2000. http://www.preserveitall.org/emc-plus/rsa-labs/standards-initiatives/pkcs10-certification-request-syntax-standard.htm.
[bookmark: RFC1321][RFC1321]	R. Rivest, The MD5 Message-Digest Algorithm, IETF RFC 1321, Apr 1992, http://www.ietf.org/rfc/rfc1321.txt
[bookmark: RFC1421][RFC1421]	J. Linn, Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and Authentication Procedures, IETF RFC 1421, Feb 1993, http://www.ietf.org/rfc/rfc1421.txt
[bookmark: RFC3647][RFC3647]	S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu. RFC3647: Internet X.509 Public Key Infrastructure Certificate Policy and Certification Practices Framework. November 2003. http://www.ietf.org/rfc/rfc3647.txt
[bookmark: RFC4210][RFC4210]	C. Adams, S. Farrell, T. Kause and T. Mononen, Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP), IETF RFC 2510, Sep 2005, http://www.ietf.org/rfc/rfc4210.txt
[bookmark: RFC4211][RFC4211]	J. Schaad, Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF), IETF RFC 4211, Sep 2005, http://www.ietf.org/rfc/rfc4211.txt
[bookmark: RFC4949][RFC4949]	R. Shirey. RFC4949: Internet Security Glossary, Version 2. August 2007. http://www.ietf.org/rfc/rfc4949.txt
[bookmark: RFC4880][bookmark: AES][RFC4880]	J. Callas, L. Donnerhacke, H. Finney, D. Shaw and R. Thayer. RFC4880: OpenPGP Message Format. November 2007. http://www.ietf.org/rfc/rfc4880.txt
[bookmark: RFC5272][RFC5272]	J. Schaad and M. Meyers, Certificate Management over CMS (CMC), IETF RFC 5272, Jun 2008, http://www.ietf.org/rfc/rfc5272.txt
[bookmark: RFC5280][RFC5280]	D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. RFC5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. May 2008. http://www.ietf.org/rfc/rfc5280.txt
[bookmark: RFC5639][RFC5639]	M. Lochter, J. Merkle, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation, IETF RFC 5639, March 2010, http://www.ietf.org/rfc/rfc5639.txt.
[RFC7292]	K. Moriarty, M. Nystrom, S. Parkinson, A. Rusch, M. Scott, PKCS#12: Personal Information Exchange Syntax v1.1, IETF RFC 7292, July 2014, https://tools.ietf.org/html/rfc7292
[bookmark: SEC2][SEC2]	SEC 2: Recommended Elliptic Curve Domain Parameters, ,http://www.secg.org/SEC2-Ver-1.0.pdf.
[bookmark: SP800_38A][SP800-38A]	M. Dworkin. Recommendation for Block Cipher Modes of Operation – Methods and Techniques. NIST Special Publication 800-38A, Dec 2001. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
[bookmark: SP800_38D][SP800-38D]	M. Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D. Nov 2007. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf.
[bookmark: SP800_38E][SP800-38E]	M. Dworkin, Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on Block-Oriented Storage Devices, NIST Special Publication 800-38E, January 2010, ,http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf.
[bookmark: SP800_56A][SP800-56A]	E. Barker, L. Chen, A. Roginsky, and M. Smid, Recommendations for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography, NIST Special Publication 800-56A Revision 2, May 2013, http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
[bookmark: SP800_57_1][SP800-57-1]	E. Barker, W. Barker, W. Burr, W. Polk and M. Smid, Recommendations for Key Management – Part 1: General (Revision 3), NIST Special Publication 800-57 Part 1 Revision 3, July 2012, http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
[bookmark: SP800_67][SP800-67]	W. Barker and E. Barker, Recommendations for the Triple Data Encryption Algorithm (TDEA) Block Cipher, NIST Special Publication 800-67 Revision 1, January 2012, http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
[bookmark: SP800_88][bookmark: _GoBack][SP800-88]	R. Kissel, A. Regenscheid, M. Scholl, K. Stine, Guidelines for Media Sanitization, NIST Special Publication 800-88 Revision 1, December 2014, http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf
[bookmark: X509][X.509]	International Telecommunications Union (ITU)-T, X.509: Information technology – Open systems interconnection – The Directory: Public-key and attribute certificate frameworks, November 2008, https://www.itu.int/rec/T-REC-X.509/recommendation.asp?lang=en&parent=T-REC-X.509-200811-S
[bookmark: X9_31][X9.31]	ANSI, X9.31: Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA). September 1998.
[bookmark: X9_42][X9.42]	ANSI, X9.42: Public Key Cryptography for the Financial Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm Cryptography. 2003.
[bookmark: X9_62][X9.62]	ANSI, X9.62: Public Key Cryptography for the Financial Services Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA), 2005.
2 [bookmark: _Toc241967930][bookmark: _Toc436836343][bookmark: _Toc441680116][bookmark: _Toc478051741][bookmark: _Toc491258863]Assumptions
The section describes assumptions that underlie the KMIP protocol and the implementation of clients and servers that utilize the protocol.
2.1 [bookmark: _Toc306185737][bookmark: _Toc323023406][bookmark: _Toc332834639][bookmark: _Toc364947824][bookmark: _Toc390438587][bookmark: _Toc405812132][bookmark: _Toc436836344][bookmark: _Toc441680117][bookmark: _Toc478051742][bookmark: _Toc491258864]Island of Trust
Clients may be provided key material by the server, but they only use that keying material for the purposes explicitly listed in the delivery payload. Clients that ignore these instructions and use the keys in ways not explicitly allowed by the server are non-compliant. There is no requirement for the key management system, however, to enforce this behavior.
2.2 [bookmark: _Toc306185738][bookmark: _Toc323023407][bookmark: _Toc332834640][bookmark: _Toc364947825][bookmark: _Toc390438588][bookmark: _Toc405812133][bookmark: _Toc436836345][bookmark: _Toc441680118][bookmark: _Toc478051743][bookmark: _Toc491258865]Message Security
[bookmark: _toc324][bookmark: Ref_obj_Attribute]KMIP relies on the chosen authentication suite as specified in [KMIP-Prof] to authenticate the client and on the underlying transport protocol to provide confidentiality, integrity, message authentication and protection against replay attack. KMIP offers a wrapping mechanism for the Key Value that does not rely on the transport mechanism used for the messages; the wrapping mechanism is intended for importing or exporting managed cryptographic objects.
2.3 [bookmark: _Toc306185739][bookmark: _Toc323023408][bookmark: _Toc332834641][bookmark: _Toc364947826][bookmark: _Toc390438589][bookmark: _Toc405812134][bookmark: _Toc436836346][bookmark: _Toc441680119][bookmark: _Toc478051744][bookmark: _Toc491258866]State-less Server
[bookmark: _toc374][bookmark: Ref_obj_Credential]The protocol operates on the assumption that the server is state-less, which means that there is no concept of “sessions” inherent in the protocol. This does not mean that the server itself maintains no state, only that the protocol does not require this.
2.4 [bookmark: _Toc306185740][bookmark: _Toc323023409][bookmark: _Toc332834642][bookmark: _Toc364947827][bookmark: _Toc390438590][bookmark: _Toc405812135][bookmark: _Toc436836347][bookmark: _Toc441680120][bookmark: _Toc478051745][bookmark: _Toc491258867]Extensible Protocol
[bookmark: _toc415][bookmark: Ref_obj_KeyBlock]The protocol provides for “private” or vendor-specific extensions, which allow for differentiation among vendor implementations. However, any objects, attributes and operations included in an implementation are always implemented as specified in [KMIP-Spec], regardless of whether they are optional or mandatory.
2.5 [bookmark: _Toc306185741][bookmark: _Toc323023410][bookmark: _Toc332834643][bookmark: _Ref361237642][bookmark: _Ref361237679][bookmark: _Toc364947828][bookmark: _Ref366846249][bookmark: _Toc390438591][bookmark: _Toc405812136][bookmark: _Toc436836348][bookmark: _Toc441680121][bookmark: _Toc478051746][bookmark: _Toc491258868]Server Policy
[bookmark: _Toc306185742][bookmark: _Toc323023411][bookmark: _Toc332834644]A server is expected to be conformant to KMIP and supports the conformance clauses as specified in [KMIP-Spec]. However, a server may refuse a server-supported operation or client-settable attribute if disallowed by the server policy (whether expressed within or outside KMIP). Such a decision by the server may reflect the trust relationship with a particular client, performance impact of the requested operation, or any of a number of other considerations.
2.6 [bookmark: _Toc364947829][bookmark: _Toc390438592][bookmark: _Toc405812137][bookmark: _Toc436836349][bookmark: _Toc441680122][bookmark: _Toc478051747][bookmark: _Toc491258869]Support for Cryptographic Objects
[bookmark: _toc494][bookmark: Ref_obj_KeyValue]The protocol supports key management system-related cryptographic objects. This list currently includes:
· Symmetric Keys
· Split (multi-part) Keys
· Asymmetric Key Pairs (Public and Private Keys)
· PGP Keys
· Certificates
· Secret Data
· [bookmark: _toc764][bookmark: Ref_obj_Transparent]Opaque (non-interpretable) cryptographic objects
2.7 [bookmark: _Toc306185743][bookmark: _Toc323023412][bookmark: _Toc332834645][bookmark: _Toc364947830][bookmark: _Toc390438593][bookmark: _Toc405812138][bookmark: _Toc436836350][bookmark: _Toc441680123][bookmark: _Toc478051748][bookmark: _Toc491258870]Client-Server Message-based Model
The protocol operates primarily in a client-server, message-based model. This means that most protocol exchanges are initiated by a client sending a request message to a server, which then sends a response to the client. The protocol also provides optional mechanisms to allow for unsolicited notification of events to clients using the Notify operation, and unsolicited delivery of cryptographic objects to clients using the Put operation; that is, the protocol allows a “push” model, whereby the server initiates the protocol exchange with either a Notify or Put operation. These Notify or Put features are optionally supported by servers and clients. Clients may register in order to receive such events/notifications. Registration is implementation-specific and not described in the specification.
2.8 [bookmark: _Toc306185744][bookmark: _Toc323023413][bookmark: _Toc332834646][bookmark: _Toc364947831][bookmark: _Toc390438594][bookmark: _Toc405812139][bookmark: _Toc436836351][bookmark: _Toc441680124][bookmark: _Toc478051749][bookmark: _Toc491258871]Synchronous and Asynchronous Operations
The protocol allows two modes of operation: synchronous and asynchronous. Synchronous (mandatory) operations are those in which a client sends a request and waits for a response from the server. Asynchronous operations (optional) are those in which the client sends a request, the server responds with a “pending” status, and the client polls the server for the completed response and completion status. Server implementations must support synchronous operations, but may choose not to support asynchronous operations.
2.9 [bookmark: _toc766][bookmark: _toc1350][bookmark: Ref_obj_TemplateAttribute][bookmark: _Toc306185745][bookmark: _Toc323023414][bookmark: _Toc332834647][bookmark: _Toc364947832][bookmark: _Toc390438595][bookmark: _Toc405812140][bookmark: _Toc436836352][bookmark: _Toc441680125][bookmark: _Toc478051750][bookmark: _Toc491258872]Support for “Intelligent Clients” and “Key Using Devices”
The protocol supports intelligent clients, such as end-user workstations, which are capable of requesting all of the functions of KMIP. It also allows subsets of the protocol and possible alternate message representations in order to support less-capable devices, which only need a subset of the features of KMIP.
2.10 [bookmark: _toc1394][bookmark: _Toc306185746][bookmark: _Toc323023415][bookmark: _Toc332834648][bookmark: _Toc364947833][bookmark: _Toc390438596][bookmark: _Toc405812141][bookmark: _Toc436836353][bookmark: _Toc441680126][bookmark: _Toc478051751][bookmark: _Toc491258873]Batched Requests and Responses
The protocol contains a mechanism for sending batched requests and receiving the corresponding batched responses, to allow for higher throughput on operations that deal with a large number of entities, e. g., requesting dozens or hundreds of keys from a server at one time, and performing operations in a group. A Batch Error Continuation option is provided to indicate whether to undo all previous successful operations once a request in the batch fails; to continue processing requests after an earlier request in the batch fails; or to stop processing the remaining requests in the batch (but not undo previously successful operations). A special ID Placeholder (see Section 3.19) is provided in KMIP to allow related requests in a batch to be pipelined.
2.11 [bookmark: _Toc306185747][bookmark: _Toc323023416][bookmark: _Toc332834649][bookmark: _Toc364947834][bookmark: _Toc390438597][bookmark: _Toc405812142][bookmark: _Toc436836354][bookmark: _Toc441680127][bookmark: _Toc478051752][bookmark: _Toc491258874]Reliable Message Delivery
[bookmark: _toc1396][bookmark: Ref_obj_Certificate]The reliable message delivery function is relegated to the transport protocol, and is not part of the key management protocol itself.
2.12 [bookmark: _Toc306185748][bookmark: _Toc323023417][bookmark: _Toc332834650][bookmark: _Toc364947835][bookmark: _Toc390438598][bookmark: _Toc405812143][bookmark: _Toc436836355][bookmark: _Toc441680128][bookmark: _Toc478051753][bookmark: _Toc491258875]Large Responses
[bookmark: _toc1437][bookmark: Ref_obj_SymmetricKey]For requests that could result in large responses, a mechanism in the protocol allows a client to specify in a request the maximum allowed size of a response or in the case of the Locate operation the maximum number of items which should be returned. {Note: KMIP 1.3 introduced enhancements to Locate that allow different parts of a larger result set to be returned please see section 3.17 for more details.} The server indicates in a response to such a request that the response would have been too large and, therefore, is not returned.
2.13 [bookmark: _Toc306185749][bookmark: _Toc323023418][bookmark: _Toc332834651][bookmark: _Toc364947836][bookmark: _Toc390438599][bookmark: _Toc405812144][bookmark: _Toc436836356][bookmark: _Toc441680129][bookmark: _Toc478051754][bookmark: _Toc491258876][bookmark: _toc1469]Key Life-cycle and Key State
[KMIP-Spec] describes the key life-cycle model, based on the [SP800-57-1] key state definitions, supported by the KMIP protocol. Particular implications of the key life-cycle model in terms of defining time-related attributes of objects are discussed in Section 3.5 below.
3 [bookmark: _Toc436836357][bookmark: _Toc441680130][bookmark: _Toc478051755][bookmark: _Toc491258877]Using KMIP Functionality
This section provides guidance on using the functionality described in the Key Management Interoperability Protocol Specification.
3.1 [bookmark: _toc4850][bookmark: _Toc306185751][bookmark: _Toc323023420][bookmark: _Toc332834653][bookmark: _Toc364947838][bookmark: _Toc390438601][bookmark: _Toc405812146][bookmark: _Toc436836358][bookmark: _Toc441680131][bookmark: _Toc478051756][bookmark: _Toc491258878]Authentication
As discussed in [KMIP-Spec], a conforming KMIP implementation establishes and maintains channel confidentiality and integrity, and provides assurance of server authenticity for KMIP messaging. Client authentication is performed according to the chosen KMIP authentication suite as specified in [KMIP-Prof]. Other mechanisms for client and server authentication are possible and optional for KMIP implementations.
[bookmark: OLE_LINK6][bookmark: OLE_LINK7]KMIP implementations that support the KMIP-defined Credential Types or use other vendor-specific mechanisms for authentication may use the optional Authentication structure specified inside the Request Header to include additional identification information. Depending on the server’s configuration, the server may interpret the identity of the requestor from the Credential structure, contained in the Authentication structure if it is not provided during the channel-level authentication. For example, in addition to performing mutual authentication during a TLS handshake, the client passes the Credential structure (e.g., a username and password) in the request. If the requestor’s username is not specified inside the client certificate and is instead specified in the Credential structure, the server interprets the identity of the requestor from the Credential structure. This supports use cases where channel-level authentication authenticates a machine or service that is used by multiple users of the KMIP server. If the client provides the username of the requestor in both the client certificate and the Credential structure, the server verifies that the usernames are the same. If they differ, the authentication fails and the server returns an error. If no Credential structure is included in the request, the username of the requestor is expected to be provided inside the certificate. If no username is provided in the client certificate and no Credential structure is included in the request message, the server is expected to refuse authentication and return an error.
If authentication is unsuccessful, and it is possible to return an “authentication not successful” error, this error should be returned in preference to any other result status. This prevents status code probing by a client that is not able to authenticate.
Server decisions regarding which operations to reject if there is insufficiently strong authentication of the client are not specified in the protocol. However, see Section 3.2 for operations for which authentication and authorization are particularly important.
3.1.1 [bookmark: _Toc306185752][bookmark: _Toc323023421][bookmark: _Toc332834654][bookmark: _Toc364947839][bookmark: _Toc390438602][bookmark: _Toc405812147][bookmark: _Toc436836359][bookmark: _Toc441680132][bookmark: _Toc478051757][bookmark: _Toc491258879]Credential
The Credential object defined in the [KMIP-Spec] is a structure used to convey information about the client, but the contents of this object are not managed by the key management server. The type of information convey within this object varies based on the type of credential. KMIP 1.2 supports three credential types: Username and Password, Device Credential and Attestation.
3.1.1.1 [bookmark: _Toc441680133]Username and Password Credential Type
[KMIP-Spec] defines the Username and Password structure for the Credential Type Username and Password. The structure consists of two fields: Username and Password. Password is a recommended, but optional, field, which may be excluded only if the client is authenticated using one of the authentication suites defined in [KMIP-Prof] For example, if the client performs client certificate authentication during the TLS handshake, and the Authentication structure is provided in the Message Request, the Password field is an optional field in the Username and Password structure of the Credential structure.
The Credential structure is used to provide additional identification information. As described above, for certain use cases, channel-level authentication may only authenticate a machine or service that is used by multiple clients of the KMIP server. The Credential structure may be used in this scenario to identify individual clients by specifying the username in the Username and Password structure.
3.1.1.2 [bookmark: _Toc441680134]Device Credential Type
The Device Credential may be used to uniquely identify back-end devices by specifying Device as the Credential Type in the Credential structure.
The Device Credential may be used in a proxy environment where the proxy authenticates with the client certificate and supports KMIP while the back-end devices may not support KMIP or TLS. An example is illustrated below:
[image:]
[bookmark: _Toc361318146][bookmark: _Toc374120792][bookmark: _Toc374120803][bookmark: _Toc269140622][bookmark: _Toc441680351][bookmark: _Toc442965978]Figure 1: Aggregator Client Example
The end device identifies itself with a device unique set of identifier values that include the device hardware serial number, the network identifier, the machine identifier, or the media identifier. For many of the self-encrypting devices there is a unique serial number assigned to the device during manufacturing. The ability to use network, machine, or media identifier explicitly should map to different device types and achieve better interoperability since different types of identifier values are explicitly enumerated. The device identifier is included for more generic usage. An optional password or shared secret may be used to further authenticate the device.
Server implementations may choose to enforce rules for uniqueness for different types of identifier values, combinations of TLS certificate used in combination with the Device Credential, and optionally enforce the use of a Device Credential password.
Four identifiers are optionally provided but are unique in aggregate:
1. Serial Number, for example the hardware serial number of the device
2. Network Identifier, for example the MAC address for Ethernet connected devices
3. Machine Identifier, for example the client aggregator identifier, such as a tape library aggregating tape drives
4. Media Identifier, for example the volume identifier used for a tape cartridge

The device identifier by choice of server policy may or may not be used in conjunction with the above identifiers to insure uniqueness.
These additional identifiers are generally useful for auditing and monitoring encryption and could according to server policy be logged or used in server implementation specific validation.
A specific example for self-encrypting tape drive and tape library would be:
1. the tape drive has a serial number that is unique for that manufacturer and the vendor has procedures for maintaining and tracking serial number usage
2. a password optionally is created and stored either on the drive or the library to help authenticate the drive
3. the tape drives may be connected via fiber channel to the library and therefore have a World Wide Name assigned
4. a machine identifier can be used to identify the tape library that is aggregating the device in question
5. the media identifier helps identify the individual media such as a tape cartridge for proof of encryption reporting

Another example using self-encrypting disk drives inside of a server would be:
1. the disk drive has a unique serial number
2. a password may be supplied by configuration of the drive or the server where the drive is located
3. the network identifier may come from the internal attachment identifier for the disk drive in the server
4. the machine identifier may come from a server’s motherboard or service processor identifier,
5. and the media identifier comes from the volume name used by the server’s operating system to identify the volume on the disk drive

Server implementations could control what devices may read and write keys and use the device credential fields to influence access control enforcement.

Another example applied to server virtualization and encryption built into virtualization would be:
1. the virtual machine instance has a unique identifier that is used for the serial number
2. the hypervisor supplies a shared secret that is used as the password to authenticate the virtual machine
3. the network identifier could be used to identify the MAC address of the physical server where the virtual machine is running
4. the machine identifier could be used to identify the hypervisor
5. the media identifier could be used to identify the storage volume used by the virtual machine

These are examples of usage and are not meant to define all device credential usage patterns nor restrict server specific implementations.
The device credentials may be explicitly added by the administrator or may be captured in line with the request and implicitly registered depending upon server policy.
When a server is not able to resolve the identifier values in the device credential to a unique client identification, it may choose to reject the request with an error code of operation failed and reason code of item not found.
3.2 [bookmark: _toc4950][bookmark: Ref_op_CreatekeyPair][bookmark: _Ref228762044][bookmark: _Toc306185753][bookmark: _Toc323023422][bookmark: _Toc332834655][bookmark: _Toc364947840][bookmark: _Toc390438603][bookmark: _Toc405812148][bookmark: _Toc436836360][bookmark: _Toc441680135][bookmark: _Toc478051758][bookmark: _Toc491258880]Authorization for Revoke, Recover, Destroy and Archive Operations
The authentication suite, as specified in [KMIP-Prof], describes how the client identity is established for KMIP-compliant implementations. This authentication is performed for all KMIP operations.
Certain operations that may be requested by a client via KMIP, particularly Revoke, Recover, Destroy and Archive, may have a significant impact on the availability of a key, on server performance and/or on key security. When a server receives a request for one of these operations, it should ensure that the client has authenticated its identity (see the Authentication Suites section in [KMIP-Prof]. The server should also ensure that the client requesting the operation is an object owner, security officer or other identity authorized to issue the request. It may also require additional authentication to ensure that the object owner or a security officer has issued that request. Even with such authentication and authorization, requests for these operations should be considered only a “hint” to the key management system, which may or may not choose to act upon this request depending on server policy.
3.3 [bookmark: _toc5112][bookmark: Ref_op_Register][bookmark: _Toc306185754][bookmark: _Toc323023423][bookmark: _Toc332834656][bookmark: _Toc364947841][bookmark: _Toc390438604][bookmark: _Toc405812149][bookmark: _Toc436836361][bookmark: _Toc441680136][bookmark: _Toc478051759][bookmark: _Toc491258881]Using Notify and Put Operations
The Notify and Put operations are operations in the KMIP protocol that are initiated by the server, rather than the client. As client-initiated requests are able to perform these functions (e.g., by polling to request notification), these operations are optional for conforming KMIP implementations. However, they provide a mechanism for optimized communication between KMIP servers and clients.
In using Notify and Put, the following constraints and guidelines should be observed:
· The client enrolls with the server, so that the server knows how to locate the client to which a Notify or Put is being sent and which events for the Notify are supported. However, such registration is outside the scope of the KMIP protocol. Registration also includes a specification of whether a given client supports Put and Notify, and what attributes may be included in a Put for a particular client.
· Communication between the client and the server is authenticated. Authentication for a particular client/server implementation is at a minimum accomplished using one of the mandatory authentication mechanisms (see [KMIP-Prof]). Further strengthening of the client/server communications integrity by means of signed message content and/or wrapped keys is recommended.
· In order to minimize possible divergence of key or state information between client and server as a result of server-initiated communication, any client receiving Notify or Put messages returns acknowledgements of these messages to the server. This acknowledgement may be at communication layers below the KMIP layer, such as by using transport-level acknowledgement provided in TCP/IP.
· For client devices that are incapable of responding to messages from the server, communication with the server happens via a proxy entity that communicates with the server, using KMIP, on behalf of the client. It is possible to secure communication between a proxy entity and the client using other, potentially proprietary mechanisms.
3.4 [bookmark: _toc5272][bookmark: _Toc306185755][bookmark: _Toc323023424][bookmark: _Toc332834657][bookmark: _Toc364947842][bookmark: _Toc390438605][bookmark: _Toc405812150][bookmark: _Toc436836362][bookmark: _Toc441680137][bookmark: _Toc478051760][bookmark: _Toc491258882]Usage Allocation
Usage should be allocated and handled carefully at the client, since power outages or other types of client failures (crashes) may render allocated usage lost. For example, in the case of a key being used for the encryption of tapes, such a loss of the usage allocation information following a client failure during encryption may result in the necessity for the entire tape backup session to be re-encrypted using a different key, if the server is not able to allocate more usage. It is possible to address this through such approaches as caching usage allocation information on stable storage at the client, and/or having conservative allocation policies at the server (e.g., by keeping the maximum possible usage allocation per client request moderate). In general, usage allocations should be as small as possible; it is preferable to use multiple smaller allocation requests rather than a single larger request to minimize the likelihood of unused allocation.
3.5 [bookmark: _toc5475][bookmark: Ref_op_DeriveKey][bookmark: _Ref228760271][bookmark: _Toc306185756][bookmark: _Toc323023425][bookmark: _Toc332834658][bookmark: _Toc364947843][bookmark: _Toc390438606][bookmark: _Toc405812151][bookmark: _Toc436836363][bookmark: _Toc441680138][bookmark: _Toc478051761][bookmark: _Toc491258883]Key State and Times
[KMIP-Spec] provides a number of time-related attributes, including the following:
· Initial Date: The date and time when the managed cryptographic object was first created by or registered at the server.
· Activation Date: The date and time when the managed cryptographic object should begin to be used for applying cryptographic protection to data.
· Process Start Date: The date and time when a managed symmetric key object should begin to be used for processing cryptographically protected data. The managed symmetric key object should not be used prior to this date.
· Protect Stop Date: The date and time when a managed symmetric key object should no longer be used for applying cryptographic protection to data
· Deactivation Date: The date and time when the managed cryptographic object should no longer be used for applying cryptographic protection (e.g., encryption, signing, wrapping, MACing, deriving). Under extraordinary circumstances and when special permission is granted the managed symmetric key object can be used for decryption, signature verification, unwrapping, or MAC verification,
· Destroy Date: The date and time when the managed cryptographic object was destroyed
· Compromise Occurrence Date: The date and time when the managed cryptographic object was first believed to be compromised.
· Compromise Date: The date and time when the managed cryptographic object was entered into the compromised state.
· Archive Date: The date and time when the managed object was placed in Off-Line storage.
These attributes apply to all cryptographic objects (symmetric keys, asymmetric keys, etc.) with exceptions as noted in [KMIP-Spec]. However, certain of these attributes (such as the Initial Date) are not specified by the client and are implicitly set by the server.
In using these attributes, the following guidelines should be observed:
· As discussed for each of these attributes in [KMIP-Spec], a number of these times are set once and it is not possible for the client or server to modify them. However, several of the time attributes (particularly the Activation Date, Protect Start Date, Process Stop Date and Deactivation Date) may be set by the server and/or requested by the client. Coordination of time-related attributes between client and server, therefore, is primarily the responsibility of the server, as it manages the cryptographic object and its state. However, special conditions related to time-related attributes, governing when the server accepts client modifications to time-related attributes, may be communicated out-of-band between the client and server outside the scope of KMIP. In general, state transitions occur as a result of operational requests, such as Create, Create Key Pair, Register, Activate, Revoke, and Destroy. However, clients may need to specify times in the future for such things as Activation Date, Deactivation Date, Process Start Date, and Protect Stop Date.
KMIP allows clients to specify times in the past for such attributes as Activation Date and Deactivation Date. This is intended primarily for clients that were disconnected from the server at the time that the client performed that operation on a given key.
· It is valid to have a projected Deactivation Date when there is no Activation Date. This means, however, that the key is not yet active, even though its projected Deactivation Date has been specified. A valid Deactivation Date is greater than or equal to the Activation Date (if the Activation Date has been set).
· The Protect Stop Date may be equal to, but may not be later than the Deactivation Date. Similarly, the Process Start Date may be equal to, but may not precede, the Activation Date. KMIP implementations should consider specifying both these attributes, particularly for symmetric keys, as a key may be needed for processing protected data (e.g., decryption) long after it is no longer appropriate to use it for applying cryptographic protection to data (e.g., encryption).
· KMIP does not allow an Active object to be destroyed with the Destroy operation. The server returns an error, if the client invokes the Destroy operation on an Active object. To destroy an Active object, clients first call the Revoke operation or explicitly set the Deactivation Date of the object. Once the object is in Deactivated state, clients may destroy the object by calling the Destroy operation. These operations may be performed in a batch. If other time-related attributes (e.g., Protect Stop Date) are set to a future date, the server should set these to the Deactivation Date.
· After a cryptographic object is destroyed, a key management server may retain certain information about the object, such as the Unique Identifier.
KMIP allows the specification of attributes on a per-client basis, such that a server could maintain or present different sets of attributes for different clients. This flexibility may be necessary in some cases, such as when a server maintains the availability of a given key for some clients, even after that same key is moved to an inactive state (e.g., Deactivated state) for other clients. However, such an approach might result in significant inconsistencies regarding the object state from the point of view of all participating clients and should, therefore, be avoided. A server should maintain a consistent state for each object, across all clients that have or are able to request that object.
3.6 [bookmark: _toc5711][bookmark: Ref_op_Certify][bookmark: _Ref255506027][bookmark: _Toc306185757][bookmark: _Toc323023426][bookmark: _Toc332834659][bookmark: _Toc364947844][bookmark: _Toc390438607][bookmark: _Toc405812152][bookmark: _Toc436836364][bookmark: _Toc441680139][bookmark: _Toc478051762][bookmark: _Toc491258884]Template
With KMIP 1.3, the Template Managed Object was deprecated and may be removed in a subsequent KMIP version. This section is retained to provide insights into KMIP 1.2 and earlier implementations. KMIP implementations should no longer use or depend upon the Template Managed Object or any Template specific handling.
The usage of templates is an alternative approach for setting attributes in an operation request. Instead of individually specifying each attribute, a template may be used to provide attribute values.
A template also has attributes that are applicable to the template itself which are referred to in the specification as associated attributes to distinguish them from the attributes that are contained within the template managed object. When registering a template, the Name attribute for the template itself must be set. It is used to identify the template in the Template-Attribute structure when attributes for a managed object are set in KMIP operations.
The Template-Attribute structure allows for multiple template names (zero or more) and individual attributes (zero or more) to be specified in an operation request. The structure is used in the Create, Create Key Pair, Register, Re-key, Re-key Key Pair, Derive Key, Certify, and Re-certify operations. All of these operations with the exception of the Create Key Pair and the Re-key Key Pair operations use the Template-Attribute tag. The Create Key Pair and the Re-key Key Pair operations use the Common Template-Attribute, Private Key Template Attribute, and Public Key Template-Attribute tags allowing specification of different attributes for the public and private managed cryptographic objects.
Templates may be the subject of the Register, Locate, Get, Get Attributes, Get Attribute List, Add Attribute, Modify Attribute, Delete Attribute, Delete Attribute, and Destroy operations. Templates are created using the Register operation. When the template is the subject of an operation, the Unique Identifier is used to identify the template. The template name is only used to identify the template when referenced inside a Template-Attribute structure.
3.6.1 [bookmark: _Toc306185758][bookmark: _Toc323023427][bookmark: _Toc332834660][bookmark: _Toc364947845][bookmark: _Toc390438608][bookmark: _Toc405812153][bookmark: _Toc436836365][bookmark: _Toc441680140][bookmark: _Toc478051763][bookmark: _Toc491258885]Template Usage Examples
The purpose of these examples is to illustrate how templates are used. The first example shows how a template is registered. The second example shows how the newly registered template is used to create a symmetric key.
3.6.1.1 [bookmark: _Toc441680141]Example of Registering a Template
In this example, a client registers a template by encapsulating attributes for creating a 256-bit AES key with the Cryptographic Usage Mask set to Encrypt and Decrypt.
The following is specified inside the Register Request Payload:
· Object Type: Template
· Template-Attribute:
· Attribute
· Attribute Name : Name
· Attribute Value: Template1
· Template
· Attribute
· Attribute Name: Cryptographic Algorithm
· Attribute Value: AES
· Attribute
· Attribute Name: Cryptographic Length
· Attribute Value: 256
· Attribute
· Attribute Name: Cryptographic Usage Mask
· Attribute Value: Encrypt and Decrypt
· Attribute
· Attribute Name: Operation Policy Name
· Attribute Value: OperationPolicy1
The Operation Policy OperationPolicy1 applies to the AES key being created using the template. It is not used to control operations on the template itself. KMIP does not allow operation policies to be specified for controlling operations on the template itself. The default policy for template objects is used for this purpose and is specified in the KMIP Specification.
3.6.1.2 [bookmark: _Toc441680142]Example of Creating a Symmetric Key using a Template
In this example, the client uses the template created in example 3.6.1 to create a 256-bit AES key.
The following is specified in the Create Request Payload:
· Object Type: Symmetric Key
· Template-Attribute:
· Name: Template1
· Attribute:
· Attribute Name: Name
· Attribute Value: AESkey
· Attribute:
· Attribute Name: x-Custom Attribute1
· Attribute Value: ID74592
The Template-Attribute structure specifies both a template name and additional associated attributes. It is possible to specify the Custom Attribute inside the template when the template is registered; however, this particular example sets this attribute separately.
3.6.1.3 [bookmark: _Toc441680143]Compatibility Note:
Versions of KMIP prior to KMIP version 1.2 contained a fixed list of attributes applicable to objects created using a template and those applicable to the template managed object. The value returned by the Get operation for a template was subject to varying interpretations. KMIP 1.2 alters this handling to provide clarification of the expected handling for templates. KMIP clients may need to be mindful of this change when registering or performing operations which refer to templates as the handling of templates in a KMIP server vary depending on the version of the KMIP protocol specified.
[bookmark: _Toc306185759][bookmark: _Toc323023428][bookmark: _Toc332834661]As the baseline server profile does not mandate (require) support for templates a KMIP client that requires support for templates cannot be guaranteed to interoperate with all servers that conform to the KMIP specification.
3.7 [bookmark: _Toc364947846][bookmark: _Toc390438609][bookmark: _Toc405812154][bookmark: _Toc436836366][bookmark: _Toc441680144][bookmark: _Toc478051764][bookmark: _Toc491258886]Archive Operations
When the Archive operation is performed, it is recommended that a unique identifier and a minimal set of attributes be retained within the server for operational efficiency. In such a case, the retained attributes may include Unique Identifier and State.
3.8 [bookmark: _Toc306185760][bookmark: _Toc323023429][bookmark: _Toc332834662][bookmark: _Toc364947847][bookmark: _Toc390438610][bookmark: _Toc405812155][bookmark: _Toc436836367][bookmark: _Toc441680145][bookmark: _Toc478051765][bookmark: _Toc491258887]Message Extensions
Any number of vendor-specific extensions may be included in the Message Extension optional structure. This allows KMIP implementations to create multiple extensions to the protocol.
3.9 [bookmark: _toc5803][bookmark: _toc5996][bookmark: Ref_op_Locate][bookmark: _Toc306185761][bookmark: _Toc323023430][bookmark: _Toc332834663][bookmark: _Toc364947848][bookmark: _Toc390438611][bookmark: _Toc405812156][bookmark: _Toc436836368][bookmark: _Toc441680146][bookmark: _Toc478051766][bookmark: _Toc491258888]Unique Identifiers
For clients that require unique identifiers in a special form, out-of-band registration/configuration may be used to communicate this requirement to the server.
3.10 [bookmark: _toc6073][bookmark: _Toc306185762][bookmark: _Toc323023431][bookmark: _Toc332834664][bookmark: _Toc364947849][bookmark: _Toc390438612][bookmark: _Toc405812157][bookmark: _Toc436836369][bookmark: _Toc441680147][bookmark: _Toc478051767][bookmark: _Toc491258889]Result Message Text
KMIP specifies the Result Status, the Result Reason and the Result Message as normative message contents. For the Result Status and Result Reason, the enumerations provided in [KMIP-Spec] are the normative values. The values for the Result Message text are implementation-specific. In consideration of internationalization, it is recommended that any vendor implementation of KMIP provide appropriate language support for the Return Message. How a client specifies the language for Result Messages is outside the scope of the KMIP.
3.11 [bookmark: _toc6201][bookmark: _Toc241568275][bookmark: _Toc241571395][bookmark: _toc6279][bookmark: _Toc306185763][bookmark: _Toc323023432][bookmark: _Toc332834665][bookmark: _Toc364947850][bookmark: _Toc390438613][bookmark: _Toc405812158][bookmark: _Toc436836370][bookmark: _Toc441680148][bookmark: _Toc478051768][bookmark: _Toc491258890]Query
3.11.1 [bookmark: _Toc436836371][bookmark: _Toc441680149][bookmark: _Toc478051769][bookmark: _Toc491258891]Bi-directional KMIP Operation
In KMIP 1.2 and earlier, Query was defined as Client-to-Server operation. As of KMIP 1.3, Query is defined as both a Client-to-Server and Server to Client operation. This change allows the KMIP server to obtain information about the KMIP clients it is supporting. Conceptually, the Client-to-Server Query and Server to Client Query operations are equivalent, but the parameters used in each of these queries may differ since some concepts are only applicable to a server or to a client.
3.11.2 [bookmark: _Toc436836372][bookmark: _Toc441680150][bookmark: _Toc478051770][bookmark: _Toc491258892]Expansion of Query
A number of enhancements to Query which allow a KMIP client to obtain a wide range of information about a KMIP server have been introduced in KMIP 1.1 and later. Starting with KMIP 1.3 the KMIP server may use Query to obtain information about a KMIP client.
Query Function values added since KMIP 1.1 include Query Extension List, Query Extension Map, Query RNGs, Query Validations, Query Profiles, Query Capabilities, and Query Client Registration Methods. These enhancements allow a KMIP client to determine which extensions a KMIP server supports (Query Extension List and Query Extension Map); which random number generators a KMIP server supports (Query RNGs); which external validations (e.g., FIPS140, Common Criteria) apply to the KMIP server(Query Validations); which KMIP Profiles from each version of the KMIP specification a KMIP server supports (Query Profiles); which optional areas of the KMIP specification and alternate behaviors a KMIP server supports (Query Capabilities); and which methods of automatic client credential registration (Query Client Registration Methods) are supported by the KMIP server.
Test cases for using these various Query functions may be found in the KMIP Test Case document [KMIP-TC].
3.11.3 [bookmark: _Toc436836373][bookmark: _Toc441680151][bookmark: _Toc478051771][bookmark: _Toc491258893]Identifying Authenticated Operations
Query does not explicitly support client requests to determine what operations require authentication. To determine whether an operation requires authentication, a client should request that operation.
3.12 [bookmark: _toc6348][bookmark: _Toc306185764][bookmark: _Toc323023433][bookmark: _Toc332834666][bookmark: _Toc364947851][bookmark: _Toc390438614][bookmark: _Toc405812159][bookmark: _Toc436836374][bookmark: _Toc441680152][bookmark: _Toc478051772][bookmark: _Toc491258894]Canceling Asynchronous Operations
If an asynchronous operation is cancelled by the client, no information is returned by the server in the result code regarding any operations that may have been partially completed. Identification and remediation of partially completed operations is the responsibility of the server.
It is the responsibility of the server to determine when to discard the status of asynchronous operations. The determination of how long a server should retain the status of an asynchronous operation is implementation-dependent and not defined by KMIP.
Once a client has received the status on an asynchronous operation other than “pending”, any subsequent request for status of that operation may return either the same status as in a previous polling request or an “unavailable” response.
3.13 [bookmark: _Toc236453388][bookmark: _Toc236454488][bookmark: _Toc236651294][bookmark: _Toc236656174][bookmark: _Toc236658633][bookmark: _toc6408][bookmark: _Toc306185765][bookmark: _Toc323023434][bookmark: _Toc332834667][bookmark: _Toc364947852][bookmark: _Toc390438615][bookmark: _Toc405812160][bookmark: _Toc436836375][bookmark: _Toc441680153][bookmark: _Toc478051773][bookmark: _Toc491258895]Multi-instance Hash
The Digest attribute contains the output of hashing a managed object, such as a key or a certificate. The server always generates the SHA-256 hash value when the object is created or generated. KMIP allows multiple instances of the digest attribute to be associated with the same managed object. For example, it is common practice for publicly trusted CAs to publish two digests (often referred to as the fingerprint or the thumbprint) of their certificate: one calculated using the SHA-1 algorithm and another using the MD5 algorithm. In this case, each digest would be calculated by the server using a different hash algorithm.
3.14 [bookmark: _toc6477][bookmark: _Toc306185766][bookmark: _Toc323023435][bookmark: _Toc332834668][bookmark: _Toc364947853][bookmark: _Toc390438616][bookmark: _Toc405812161][bookmark: _Toc436836376][bookmark: _Toc441680154][bookmark: _Toc478051774][bookmark: _Toc491258896]Returning Related Objects
The key block returns a single object, with associated attributes and other data. For those cases in which multiple related objects are needed by a client, such as the private key and the related certificate, the client should issue multiple Get requests to obtain these related objects.
3.15 [bookmark: _toc6547][bookmark: _Ref245278584][bookmark: _Toc306185767][bookmark: _Toc323023436][bookmark: _Toc332834669][bookmark: _Toc364947854][bookmark: _Toc390438617][bookmark: _Toc405812162][bookmark: _Toc436836377][bookmark: _Toc441680155][bookmark: _Toc478051775][bookmark: _Toc491258897]Reducing Multiple Requests through the Use of Batch
KMIP supports batch operations in order to reduce the number of calls between the client and server. For example, Locate and Get are likely to be commonly accomplished within a single batch request.
KMIP does not ensure that batch operations are atomic on the server side. If servers implement
such atomicity, the client is able to use the optional “undo” mode to request roll‐back for batch
operations implemented as atomic transactions. However, support for “undo” mode is optional
in the protocol, and there is no guarantee that a server that supports “undo” mode has
effectively implemented atomic batches.

With KMIP 1.4 a client can determine if a server supports the optional “undo” or the optional
“continue” mode using a Query operation with the Query Function value of Query Capability
Information and by checking the value of the Batch Undo Capability or Batch Continue Capability
fields in the response.
3.16 [bookmark: _toc6625][bookmark: _Toc306185768][bookmark: _Toc323023437][bookmark: _Toc332834670][bookmark: _Toc364947855][bookmark: _Toc390438618][bookmark: _Toc405812163][bookmark: _Toc436836378][bookmark: _Toc441680156][bookmark: _Toc478051776][bookmark: _Toc491258898]Maximum Message Size
When a server is processing requests in a batch, it should compare the cumulative response size of the message to be returned after each request with the specified Maximum Response Size. If the message is too large, it should prepare a maximum message size error response message at that point, rather than continuing with operations in the batch. This increases the client’s ability to understand what operations have and have not been completed.
When processing individual requests within the batch, the server that has encountered a Maximum Response Size error should not return attribute values or other information as part of the error response.
The Locate operation also supports the concept of a maximum item count to include in the returned list of unique identifiers.
3.17 [bookmark: _Ref412641883][bookmark: _Toc436836379][bookmark: _Toc441680157][bookmark: _Toc478051777][bookmark: _Toc491258899]Handling Large Locate Result Sets
KMIP 1.3 introduced an Offset Items field in the Locate operation, which allows a KMIP client to request different parts of a larger Locate result set from the KMIP server. As of KMIP 1.3, KMIP servers are also permitted to return the number of items in the Located Items field which match a Locate.
With the knowledge of the number of Located items and the combined use of the Offset Items and Maximum Items fields, a KMIP client is able to “page” or “browse” through a large Locate result set to find the items of interest.
The KMIP specification does not require that the results be returned in a specific order. If operations are performed between Locate requests that alter the result set that is returned by a Locate operation then items may be missed or items may be returned more than once across separate Locate requests that simply vary the offset items value. The same circumstances apply when performing separate Locate requests without an offset value.
3.18 [bookmark: _toc6696][bookmark: _Toc306185769][bookmark: _Toc323023438][bookmark: _Toc332834671][bookmark: _Toc364947856][bookmark: _Toc390438619][bookmark: _Toc405812164][bookmark: _Toc436836380][bookmark: _Toc441680158][bookmark: _Toc478051778][bookmark: _Toc491258900]Using Offset in Re-key and Re-certify Operations
The Re-key, Re-key Key Pair, and Re-certify operations allow the specification of an offset interval.
The Re-key and the Re-key Key Pair operations allow the client to specify an offset interval for activation of the key. This offset specifies the duration of time between the time the request is made and the time when the activation of the key occurs. If an offset is specified, all other times for the new key are determined from the new Activation Date, based on the intervals used by the previous key, i.e., from the Activation Date to the Process Start Date, Protect Stop Date, etc.
The Re-certify operation allows the client to specify an offset interval that indicates the difference between the Initial Date of the new certificate and the Activation Date of the new certificate. As with the Re-key operation, all other times for the certificate are determined using the intervals used for the previous certificate.
Note that in re-key operations if activation date, process start date, protect stop date and deactivation date are obtained from the existing key, and the initial date is obtained from the current time, then the deactivation/activation date/process start date/protect stop date is smaller or less than initial date. KMIP allows forward-dating of these values to prevent a contradiction (see [KMIP-Spec] section 4.4 for more details on how to set these date values).
3.19 [bookmark: _toc6785][bookmark: _toc6836][bookmark: _Ref237233499][bookmark: _Toc306185771][bookmark: _Toc323023440][bookmark: _Toc332834673][bookmark: _Toc364947857][bookmark: _Toc390438620][bookmark: _Toc405812165][bookmark: _Toc436836381][bookmark: _Toc441680159][bookmark: _Toc478051779][bookmark: _Toc491258901]ID Placeholder
A number of operations are affected by a mechanism referred to as the ID Placeholder. This is a temporary variable consisting of a single Unique Identifier that is stored inside the server for the duration of executing a batch of operations. The ID Placeholder is obtained from the Unique Identifier returned by certain operations; the applicable operations are identified in Table 1, along with a list of operations that accept the ID Placeholder as input.
	Operation
	ID Placeholder at the beginning of the operation
	ID Placeholder upon completion of the operation (in case of operation failure, a batch using the ID Placeholder stops)

	Create
	-
	ID of new Object

	Create Key Pair
	-
	ID of new Private Key (ID of new Public Key may be obtained via a Locate)

	Create Split Key
	-
	ID of the split whose Key Part Identifier is 1

	Join Split Key
	
	ID of returned object

	Register
	-
	ID of newly registered Object

	Derive Key
	- (multiple Unique Identifiers may be specified in the request)
	ID of new Symmetric Key

	Locate
	-
	ID of located Object

	Get
	ID of Object
	no change

	Validate
	-
	-

	Get Attributes List/Modify/Add/Delete
	ID of Object
	no change

	Activate
	ID of Object
	no change

	Revoke
	ID of Object
	no change

	Destroy
	ID of Object
	no change

	Archive/Recover
	ID of Object
	no change

	Certify
	ID of Public Key
	ID of new Certificate

	Re-certify
	ID of Certificate
	ID of new Certificate

	Re-key
	ID of Symmetric Key to be rekeyed
	ID of new Symmetric Key

	Re-key Key Pair
	ID of Private Key to be rekeyed
	ID of new Private Key (ID of new Public Key may be obtained via a Locate)

	Obtain Lease
	ID of Object
	no change

	Get Usage Allocation
	ID of Key
	no change

	Check
	ID of Object
	no change

[bookmark: _Ref237233236][bookmark: _Ref245032773][bookmark: _Toc301355316][bookmark: _Toc361317787][bookmark: _Toc361318147][bookmark: _Toc374120780][bookmark: _Toc374120804][bookmark: _Toc269140573][bookmark: _Toc269140623][bookmark: _Toc441680243][bookmark: _Toc441680352][bookmark: _Toc442965979]Table 1: ID Placeholder Prior to and Resulting from a KMIP Operation
3.20 [bookmark: _toc6905][bookmark: _Toc306185772][bookmark: _Toc323023441][bookmark: _Toc332834674][bookmark: _Toc364947858][bookmark: _Toc390438621][bookmark: _Toc405812166][bookmark: _Toc436836382][bookmark: _Toc441680160][bookmark: _Toc478051780][bookmark: OLE_LINK2][bookmark: OLE_LINK3][bookmark: _Toc491258902]Key Block
The protocol uses the Key Block structure to transport a key to the client or server. This Key Block consists of the Key Value Type, the Key Value, and the Key Wrapping Data. The Key Value Type identifies the format of the Key Material, e.g., Raw format or Transparent Key structure. The Key Value consists of the Key Material and optional attributes. The Key Wrapping Data provides information about the wrapping key and the wrapping mechanism, and is returned only if the client requests the Key Value to be wrapped by specifying the Key Wrapping Specification inside the Get Request Payload. The Key Wrapping Data may also be included inside the Key Block if the client registers a wrapped key.
The protocol allows any attribute to be included inside the Key Value and allows these attributes to be cryptographically bound to the Key Material (i.e., by signing, MACing, encrypting, or both encrypting and signing/MACing the Key Value). Some of the attributes that may be included include the following:
· Unique Identifier – uniquely identifies the key
· Cryptographic Algorithm (e.g., AES, 3DES, RSA) – this attribute is either specified inside the Key Block structure or the Key Value structure
· Cryptographic Length (e.g., 128, 256, 2048) – this attribute is either specified inside the Key Block structure or the Key Value structure
· Cryptographic Usage Mask– identifies the cryptographic usage of the key (e.g., Encrypt, Wrap Key, Export)
· Cryptographic Parameters – provides additional parameters for determining how the key may be used
· Block Cipher Mode (e.g., CBC, NISTKeyWrap, GCM) – this parameter identifies the mode of operation, including block cipher-based MACs or wrapping mechanisms
· Padding Method (e.g., OAEP, X9.31, PSS) – identifies the padding method and if applicable the signature or encryption scheme
· Hashing Algorithm (e.g., SHA-256) – identifies the hash algorithm to be used with the signature/encryption mechanism or Mask Generation Function; note that the different HMACs are defined individually as algorithms and do not require the Hashing Algorithm parameter to be set
· Key Role Type – Identifies the functional key role (e.g., DEK, KEK)
· State (e.g., Active)
· Dates (e.g., Activation Date, Process Start Date, Protect Stop Date)
· Custom Attribute – allows vendors and clients to define vendor-specific attributes; may also be used to prevent replay attacks by setting a nonce
3.21 [bookmark: _toc6956][bookmark: _Toc243331682][bookmark: _Toc243332655][bookmark: _Toc306185780][bookmark: _Toc323023449][bookmark: _Toc332834682][bookmark: _Toc364947859][bookmark: _Toc390438622][bookmark: _Toc405812167][bookmark: _Toc436836383][bookmark: _Toc441680161][bookmark: _Toc478051781][bookmark: _Toc491258903]Object Group
The key management system may specify rules for valid group names which may be created by the client. Clients are informed of such rules by a mechanism that is not specified by [KMIP-Spec]. In the protocol, the group names themselves are text strings of no specified format. Specific key management system implementations may choose to support hierarchical naming schemes or other syntax restrictions on the names. Groups may be used to associate objects for a variety of purposes. A set of keys used for a common purpose, but for different time intervals, may be linked by a common Object Group. Servers may create predefined groups and add objects to them independently of client requests.
KMIP allows clients to specify whether it wants a “fresh” or “default” object from a common Object Group. Fresh is an indication of whether a member of a group has been retrieved by a client with the Get operation. The value of fresh may be set as an attribute when creating or registering an object. Subsequently, the Fresh attribute is modifiable only by the server. For example, a set of symmetric keys belong to the Object Group “SymmetricKeyGroup1” and the Fresh attribute is set to true for members of the group at the time of creating or registering the member. To add a new symmetric key to the group, the Object Group attribute is set to “SymmetricKeyGroup1” and the Fresh attribute is set to true when creating or registering the symmetric key object.
The definition of a “default” object in a group is based on server policy. One example of server policy is to use round robin selection to serve a key from a group. In this case when a client requests the default key from a group, the server uses round robin selection to serve the key.
An object may be removed from a group by deleting the Object Group attribute, as long as server policy permits it. A client would need to delete each individual member of a group to remove all members of a group.
The Object Group Member flag is specified in the Locate request to indicate the type of group member to return. Object Group Member is an enumeration that can take the value Group Member Fresh or Group Member Default. Following are examples of how the Object Group Member flag is used:
When a Locate request is made by specifying the Object Group attribute (e.g., "symmetricKeyGroup1) and setting the Object Group Member flag to "Group Member Fresh", matching objects from the specified group (e.g., "symmetricKeyGroup1") have the Fresh attribute set to true. If there are no fresh objects remaining in the group, the server may generate a new object on the fly based on server policy.
When a Locate request is made by specifying the Object Group attribute (e.g., "symmetricKeyGroup2) and setting the Object Group Member flag to "Group Member Default", a default object is returned from the group. In this example, the server policy defines default to be the next key in the group "symmetricKeyGroup2”; the group has three group members whose Unique Identifiers are uuid1, uuid2, uuid3. If the client performs four consecutive batched Locate and Get operations with Object Group set to "symmetricKeyGroup2" and Object Group Member set to “Group Member Default” in the Locate request, the server returns uuid1, uuid2, uuid3, and uuid1 (restarting from the beginning with uuid1 for the fourth request) in the four Get responses.
3.22 [bookmark: _Toc306185781][bookmark: _Toc323023450][bookmark: _Toc332834683][bookmark: _Toc364947860][bookmark: _Toc390438623][bookmark: _Toc405812168][bookmark: _Toc436836384][bookmark: _Toc441680162][bookmark: _Toc478051782][bookmark: _Toc491258904]Certify and Re-certify
The key management system may contain multiple embedded CAs or may have access to multiple external CAs. How the server routes a certificate request to a CA is vendor-specific and outside the scope of KMIP. If the server requires and supports the capability for clients to specify the CA to be used for signing a Certificate Request, then this information may be provided by including the X.509 Certificate Issuer attribute in the Certify or Re-certify request.
[KMIP-Spec] supports multiple options for submitting a certificate request to the key management server within a Certify or Re-Certify operation. It is a vendor decision as to whether the key management server offers certification authority (CA) functionality or proxies the certificate request onto a separate CA for processing. The type of certificate request formats supported is also a vendor decision, and this may, in part, be based upon the request formats supported by any CA to which the server proxies the certificate requests.
All certificate request formats for requesting X.509 certificates specified in [KMIP-Spec] (i.e., PKCS#10, PEM and CRMF) provide a means for allowing the CA to verify that the client that created the certificate request possesses the private key corresponding to the public key in the certificate request. This is referred to as Proof-of-Possession (POP). However, it should be noted that in the case of the CRMF format, some CAs may not support the CRMF POP option, but instead rely upon the underlying certificate management protocols (i.e., CMP and CMC) to provide POP. In the case where the CA does not support POP via the CRMF format (including CA functionality within the key management server), an alternative certificate request format (i.e., PKCS#10, PEM) would need to be used if POP needs to be verified.
3.23 [bookmark: _Ref255506050][bookmark: _Toc306185782][bookmark: _Toc323023451][bookmark: _Toc332834684][bookmark: _Toc364947861][bookmark: _Toc390438624][bookmark: _Toc405812169][bookmark: _Toc436836385][bookmark: _Toc441680163][bookmark: _Toc478051783][bookmark: _Toc491258905]Specifying Attributes during a Create Key Pair or Re-key Key Pair Operation
The Create Key Pair and the Re-key Key Pair operations allow clients to specify attributes using the Common Template-Attribute, Private Key Template-Attribute, and Public Key Template-Attribute. The Common Template-Attribute object includes a list of attributes that apply to both the public and private key. Attributes that are not common to both keys may be specified using the Private Key Template-Attribute or Public Key Template-Attribute. If a single-instance attribute is specified in multiple Template-Attribute objects, the server obeys the following order of precedence:
1. Attributes specified explicitly in the Private and Public Key Template-Attribute, then
2. [bookmark: _Toc436836386][bookmark: _Toc441680164][bookmark: _Toc478051784]Attributes specified via templates in the Private and Public Key Template-Attribute, then
3. [bookmark: _Toc306185783][bookmark: _Toc323023452][bookmark: _Toc332834685][bookmark: _Toc364947862][bookmark: _Toc390438625][bookmark: _Toc405812170]Attributes specified explicitly in the Common Template-Attribute
3.23.1 [bookmark: _Toc491258906]Example of Specifying Attributes during the Create Key Pair Operation
A client specifies several attributes in the Create Key Pair Request Payload. The Common Template-Attribute includes explicitly specified common attributes:
Common Template-Attribute
· Attribute
· Attribute Name: Cryptographic Algorithm
· Attribute Value: RSA
· Attribute
· Attribute Name: Cryptographic Length
· Attribute Value: 2048
· Attribute
· Attribute Name: Cryptographic Parameters
· Attribute Value:
· Padding Method: OAEP
· Attribute:
· Attribute Name: x-Serial
· Attribute Value: 1234
· Attribute:
· Attribute Name: Object Group:
· Attribute Value: Key encryption group 1
· Attribute
· Attribute Name: Cryptographic Length:
· Attribute Value: 4096
· Attribute
· Attribute Name: Cryptographic Parameters
· Attribute Value:
· Padding Method: PKCS1 v1.5
· Attribute
· Attribute Name: x-ID
· Attribute Value: 56789

The Private Key Template-Attribute includes explicitly-specified private key attributes:
Private Key Template-Attribute
· Attribute
· Attribute Name: Object Group
· Attribute Value: Key encryption group 2
· Attribute
· Attribute Name: Cryptographic Usage Mask
· Attribute Value: Unwrap Key
· Attribute
· Attribute Name: Name
· Attribute Value:
· Name Value: PrivateKey1
· Name Type: Uninterpreted Text String

The Public Key Template Attribute includes explicitly-specified public key attributes:
Public Key Template-Attribute
· Attribute
· Attribute Name: Cryptographic Usage Mask
· Attribute Value: Wrap Key
· Attribute
· Attribute Name: Name
· Attribute Value:
· Name Value: PublicKey1
· Name Type: Uninterpreted Text String

Following the attribute precedence rule, the server creates a 4096-bit RSA key. The following client-specified attributes are set:
Private Key
· Cryptographic Algorithm: RSA
· Cryptographic Length: 4096
· Cryptographic Parameters:
· Padding Method: OAEP
· Cryptographic Parameters:
· Padding Method: PKCS1 v1.5
· Cryptographic Usage Mask: Unwrap Key
· x-Serial: 1234
· x-ID: 56789
· Object Group: Key encryption group 1
· Object Group: Key encryption group 2
· Name:
· Name Value: PrivateKey1
· Name Type: Uninterpreted Text String
Public Key
· Cryptographic Algorithm: RSA
· Cryptographic Length: 4096
· Cryptographic Parameters:
· Padding Method: OAEP
· Cryptographic Parameters:
· Padding Method: PKCS1 v1.5
· Cryptographic Usage Mask: Wrap Key
· x-Serial: 1234
· x-ID: 56789
· Object Group: Key encryption group 1
· Name:
· Name Value: PublicKey1
· Name Type: Uninterpreted Text String
3.24 [bookmark: _Toc306185784][bookmark: _Toc323023453][bookmark: _Toc332834686][bookmark: _Toc364947863][bookmark: _Toc390438626][bookmark: _Toc405812171][bookmark: _Toc436836387][bookmark: _Toc441680165][bookmark: _Toc478051785][bookmark: _Toc491258907]Registering a Key Pair
During a Create Key Pair or Re-key Key Pair operation, a Link Attribute is automatically created by the server for each object (i.e., a link is created from the private key to the public key and vice versa). Certain attributes are the same for both objects and are set by the server while creating the key pair. The KMIP protocol does not support an equivalent operation for registering a key pair. Clients are able to register the objects independently and manually set the Link attributes to make the server aware that these keys are associated with each other. When the Link attribute is set for both objects, the server should verify that the registered objects indeed correspond to each other and apply similar restrictions as if the key pair was created on the server.
Clients should perform the following steps when registering a key pair:
Register the public key and set all associated attributes:
a. Cryptographic Algorithm
b. Cryptographic Length
c. Cryptographic Usage Mask
4. Register the private key and set all associated attributes
a. Cryptographic Algorithm is the same for both public and private key
b. Cryptographic Length is the same for both public and private key
c. Cryptographic Parameters may be set; if set, the value is the same for both the public and private key
d. Cryptographic Usage Mask is set, but does not contain the same value for both the public and private key
e. Link is set for the Private Key with Link Type Public Key Link and the Linked Object Identifier of the corresponding Public Key
f. Link is set for the Public Key with Link Type Private Key Link and the Linked Object Identifier of the corresponding Private Key
3.25 [bookmark: _Toc306185785][bookmark: _Toc323023454][bookmark: _Toc332834687][bookmark: _Toc364947864][bookmark: _Toc390438627][bookmark: _Toc405812172][bookmark: _Toc436836388][bookmark: _Toc441680166][bookmark: _Toc478051786][bookmark: _Toc491258908]Non-Cryptographic Objects
The KMIP protocol allows clients to register Secret Data objects. Secret Data objects may include passwords or data that are used to derive keys.
KMIP defines Secret Data as cryptographic objects. Even if the object is not used for cryptographic purposes, clients may still set certain attributes, such as the Cryptographic Usage Mask, for this object unless otherwise stated. Similarly, servers set certain attributes for this object, including the Digest, State, and certain Date attributes, even if the attributes may seem relevant only for other types of cryptographic objects.
When registering a Secret Data object, the following attributes are set by the server:
· Unique Identifier
· Object Type
· Digest
· State
· Initial Date
· Last Change Date
When registering a Secret Data object for non-cryptographic purposes, the following attributes are set by either the client or the server:
· Cryptographic Usage Mask
3.26 [bookmark: _Toc306185786][bookmark: _Toc323023455][bookmark: _Toc332834688][bookmark: _Toc364947865][bookmark: _Toc390438628][bookmark: _Toc405812173][bookmark: _Toc436836389][bookmark: _Toc441680167][bookmark: _Toc478051787][bookmark: _Toc491258909]Asymmetric Concepts with Symmetric Keys
The Cryptographic Usage Mask attribute is intended to support asymmetric concepts using symmetric keys. This is common practice in established crypto systems: the MAC is an example of an operation where a single symmetric key is used at both ends, but policy dictates that one end may only generate cryptographic tokens using this key (the MAC) and the other end may only verify tokens. The security of the system fails if the verifying end is able to use the key to perform generation operations.
In these cases it is not sufficient to describe the usage policy on the keys in terms of cryptographic primitives like “encrypt” vs. “decrypt” or “sign” vs. “verify”. There are two reasons why this is the case.
· In some of these operations, such as MAC generation and verification, the same cryptographic primitive is used in both of the complementary operations. MAC generation involves computing and returning the MAC, while MAC verification involves computing that same MAC and comparing it to a supplied value to determine if they are the same. Thus, both generation and verification use the “encrypt” operation, and the two usages are not able to be distinguished by considering only “encrypt” vs. “decrypt”.
· Some operations which require separate key types use the same fundamental cryptographic primitives. For example, encryption of data, encryption of a key, and computation of a MAC all use the fundamental operation “encrypt”, but in many applications, securely differentiated keys are used for these three operations. Simply looking for an attribute that permits “encrypt” is not sufficient.
Allowing the use of these keys outside of their specialized purposes may compromise security. Instead, specialized application-level permissions are necessary to control the use of these keys. KMIP provides several pairs of such permissions in the Cryptographic Usage Mask (3.14), such as:
	MAC GENERATE
MAC VERIFY
	For cryptographic MAC operations. Although it is possible to compose certain MACs using a series of encrypt calls, the security of the MAC relies on the operation being atomic and specific.

	GENERATE CRYPTOGRAM
VALIDATE CRYPTOGRAM
	For composite cryptogram operations such as financial CVC or ARQC. To specify exactly which cryptogram the key is used for it is also necessary to specify a role for the key (see Section 3.6 “Cryptographic Parameters” in [KMIP-Spec]).

	TRANSLATE ENCRYPT
TRANSLATE DECRYPT
TRANSLATE WRAP
TRANSLATE UNWRAP
	To accommodate secure routing of traffic and data. In many areas that rely on symmetric techniques (notably, but not exclusively financial networks), information is sent from place to place encrypted using shared symmetric keys. When encryption keys are changed, it is desirable for the change to be an atomic operation, otherwise distinct unwrap-wrap or decrypt-encrypt steps risk leaking the plaintext data during the translation process.
TRANSLATE ENCRYPT/DECRYPT is used for data encipherment.
TRANSLATE WRAP/UNWRAP is used for key wrapping.

[bookmark: _Toc301355317][bookmark: _Toc361317788][bookmark: _Toc361318148][bookmark: _Toc374120781][bookmark: _Toc374120805][bookmark: _Toc269140574][bookmark: _Toc269140624][bookmark: _Toc441680244][bookmark: _Toc441680353][bookmark: _Toc442965980]Table 2: Cryptographic Usage Masks Pairs
In order to support asymmetric concepts using symmetric keys in a KMIP system, the server implementation needs to be able to differentiate between clients for generate operations and clients for verify operations. As indicated by Section 3 (“Attributes”) of [KMIP-Spec] there is a single key object in the system to which all relevant clients refer, but when a client requests that key, the server is able to choose which attributes (permissions) to send with it, based on the identity and configured access rights of that specific client. There is, thus, no need to maintain and synchronize distinct copies of the symmetric key – just a need to define access policy for each client or group of clients.
The internal implementation of this feature at the server end is a matter of choice for the vendor: storing multiple key blocks with all necessary combinations of attributes or generating key blocks dynamically are both acceptable approaches.
3.27 [bookmark: _Toc306185787][bookmark: _Toc323023456][bookmark: _Toc332834689][bookmark: _Toc364947866][bookmark: _Toc390438629][bookmark: _Toc405812174][bookmark: _Toc436836390][bookmark: _Toc441680168][bookmark: _Toc478051788][bookmark: _Toc491258910]Application Specific Information
The Application Specific Information attribute is used to store data which is specific to the application(s) using the object. Some examples of Application Namespace and Application Data pairs are given below.
· SMIME, 'someuser@company.com'
· TLS, 'some.domain.name'
· Volume Identification, '123343434'
· File Name, 'secret.doc'
· Client Generated Key ID, ‘450994003'
The following Application Namespaces are recommended:
· SMIME
· TLS
· IPSEC
· HTTPS
· PGP
· Volume Identification
· File Name
· LTO4, LTO5, and LTO6
· LIBRARY-LTO, LIBRARY-LTO4, LIBRARY-LTO5 and LIBRARY-LTO6
KMIP provides optional support for server-generated Application Data. Clients may request the server to generate the Application Data for the client by omitting Application Data while setting or modifying the Application Specific Information attribute. A server only generates the Application Data if the Application Data is completely omitted from the request, and the client-specified Application Namespace is recognized and supported by the server. An example for requesting the server to generate the Application Data is shown below:
AddAttribute(Unique ID, AppSpecInfo{AppNameSpace=’LIBRARY-LTO4’});
If the server does not recognize the namespace, the “Application Namespace Not Supported” error is returned to the client.
If the Application Data is provided, and the Application Namespace is recognized by the server, the server uses the provided Application Data, and does not generate the Application Data for the client. In the example below, the server stores the Application Specific Information attribute with the Application Data value set to null.
AddAttribute(Unique ID, AppSpecInfo{AppNameSpace=’LIBRARY-LTO4’, AppData=null});
3.28 [bookmark: _Toc306185788][bookmark: _Toc323023457][bookmark: _Toc332834690][bookmark: _Toc364947867][bookmark: _Toc390438630][bookmark: _Toc405812175][bookmark: _Toc436836391][bookmark: _Toc441680169][bookmark: _Toc478051789][bookmark: _Toc491258911]Mutating Attributes
KMIP does not support server mutation of client-supplied attributes. If a server does not accept an attribute value that is being specified inside the request by the client, the server returns an error and specifies “Invalid Field” as Result Reason.
Attributes that are not set by the client, but are implicitly set by the server as a result of the operation, may optionally be returned by the server in the operation response inside the Template–Attribute.
If a client sets a time-related attribute to the current date and time (as perceived by the client), but as a result of a clock skew, the specified date of the attribute is earlier than the time perceived by the server, the server’s policy is used to determine whether to accept the “backdated attribute”. KMIP does not require the server to fail a request if a backdated attribute is set by the client.
If a server does not support backdated attributes, and cryptographic objects are expected to change state at the specified current date and time (as perceived by the client), clients are recommended to issue the operation that would implicitly set the date for the client. For example, instead of explicitly setting the Activation Date, clients could issue the Activate operation. This would require the server to set the Activation Date to the current date and time as perceived by the server.
If it is not possible to set a date attribute via an operation, and the server does not support backdated attributes, clients need to take into account that potential clock skew issues may cause the server to return an error even if a date attribute is set to the client’s current date and time.
For additional information, refer to the sections describing the State attribute and the Time Stamp field in [KMIP-Spec].
3.29 [bookmark: _Toc306185792][bookmark: _Toc323023463][bookmark: _Toc332834693][bookmark: _Toc364947868][bookmark: _Toc390438631][bookmark: _Toc405812176][bookmark: _Toc436836392][bookmark: _Toc441680170][bookmark: _Toc478051790][bookmark: _Toc491258912]Revocation Reason Codes
The enumerations for the Revocation Reason attribute specified in KMIP (see table 9.1.3.2.19 in [KMIP-Spec]) are aligned with the Reason Code specified in [X.509] and referenced in [RFC5280] with the following exceptions. The certificateHold and removeFromCRL reason codes have been excluded from [KMIP-Spec] since KMIP does not support certificate suspension (putting a certificate hold) or unsuspension (removing a certificate from hold). The aaCompromise reason code has been excluded from [KMIP-Spec] since it only applies to attribute certificates, which are out-of-scope for [KMIP-Spec]. The privilegeWithdrawn reason code is included in [KMIP-Spec] since it may be used for either attribute or public key certificates. In the context of its use within KMIP it is assumed to only apply to public key certificates.
3.30 [bookmark: _Toc306185793][bookmark: _Toc323023464][bookmark: _Toc332834694][bookmark: _Toc364947869][bookmark: _Toc390438632][bookmark: _Toc405812177][bookmark: _Toc436836393][bookmark: _Toc441680171][bookmark: _Toc478051791][bookmark: _Toc491258913]Certificate Renewal, Update, and Re-key
The process of generating a new certificate to replace an existing certificate may be referred to by multiple terms, based upon what data within the certificate is changed when the new certificate is created. In all situations, the new certificate includes a new serial number and new validity dates [KMIP-Spec] uses the following terminology which is aligned with the definitions found in IETF [RFC3647] and [RFC4949]:
· Certificate Renewal: The issuance of a new certificate to the subject without changing the subject public key or other information (except the serial number and certificate validity dates) in the certificate.
· Certificate Update: The issuance of a new certificate, due to changes in the information in the certificate other than the subject public key.
· Certificate Rekey: The generation of a new key pair for the subject and the issuance of a new certificate that certifies the new public key.
The KMIP Specification supports certificate renewals using the Re-Certify operation and certificate updates using the Certify operation. Certificate rekey is supported through the submission of a Re-key Key Pair operation, which generates a replacement (new) key pair, followed by a Certify operation, which issues a new certificate containing the replacement (new) public key.
3.31 [bookmark: _Toc321987359][bookmark: _Toc322353404][bookmark: _Toc322950048][bookmark: _Toc322950237][bookmark: _Toc323023465][bookmark: _Toc306185794][bookmark: _Toc323023466][bookmark: _Toc332834695][bookmark: _Toc364947870][bookmark: _Toc390438633][bookmark: _Toc405812178][bookmark: _Toc436836394][bookmark: _Toc441680172][bookmark: _Toc478051792][bookmark: _Toc491258914]Key Encoding
Two parties receiving the same key as a Key Value Byte String make use of the key in exactly the same way in order to interoperate. To ensure that, it is necessary to define a correspondence between the abstract syntax of Key and the notation in the standard algorithm description that defines how the key is used. The next sections establish that correspondence for the algorithms AES [FIPS 197] and Triple-DES [SP800-67].
[bookmark: _Toc306185795][bookmark: _Toc323023467][bookmark: _Toc332834696]AES Key Encoding [FIPS 197] section 5.2, titled Key Expansion, uses the input key as an array of bytes indexed starting at 0. The first byte of the Key becomes the key byte in AES that is labeled index 0 in [FIPS 197] and the other key bytes follow in index order.
Proper parsing and key load of the contents of the Key for AES is determined by using the following Key byte string to generate and match the key expansion test vectors in [FIPS 197] Appendix A for the 128-bit (16 byte) AES Cipher Key: 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C.
3.31.1 [bookmark: _Toc306185796][bookmark: _Toc323023468][bookmark: _Toc332834697][bookmark: _Toc364947871][bookmark: _Toc390438634][bookmark: _Toc405812179][bookmark: _Toc436836395][bookmark: _Toc441680173][bookmark: _Toc478051793][bookmark: _Toc491258915]Triple-DES Key Encoding
A Triple-DES key consists of three keys for the cryptographic engine (Key1, Key2, and Key3) that are each 64 bits (even though only 56 are used); the three keys are also referred to as a key bundle (KEY) [SP800-67]. A key bundle may employ either two or three mutually independent keys. When only two are employed (called two-key Triple-DES), then Key1 = Key3.
Each key in a Triple-DES key bundle is expanded into a key schedule according to a procedure defined in [SP800-67] Appendix A. That procedure numbers the bits in the key from 1 to 64, with number 1 being the left most, or most significant bit. The first byte of the Key is bits 1 through 8 of Key1, with bit 1 being the most significant bit. The second byte of the Key is bits 9 through 16 of Key1, and so forth, so that the last byte of the KEY is bits 57 through 64 of Key3 (or Key2 for two-key Triple-DES).
Proper parsing and key load of the contents of Key for Triple-DES is determined by using the following Key byte string to generate and match the key expansion test vectors in [SP800-67] Appendix B for the key bundle:
Key1 = 0123456789ABCDEF
Key2 = 23456789ABCDEF01
[bookmark: _toc7006][bookmark: _toc7320]Key3 = 456789ABCDEF0123
3.32 [bookmark: _Ref255506079][bookmark: _Toc306185797][bookmark: _Toc323023469][bookmark: _Toc332834698][bookmark: _Toc364947872][bookmark: _Toc390438635][bookmark: _Toc405812180][bookmark: _Toc436836396][bookmark: _Toc441680174][bookmark: _Toc478051794][bookmark: _Toc491258916]Using the Same Asymmetric Key Pair in Multiple Algorithms
There are mathematical relationships between certain asymmetric cryptographic algorithms such as the Digital Signature Algorithm (DSA) and Diffie-Hellman (DH) and their elliptic curve equivalents ECDSA and ECDH that allow the same asymmetric key pair to be used in both algorithms. In addition, there are overlaps in the key format used to represent the asymmetric key pair for each algorithm type.
Even though a single key pair may be used in multiple algorithms, the KMIP Specification has chosen to specify separate key formats for representing the asymmetric key pair for use in each algorithm. This approach keeps KMIP in line with the reference standards (e.g., NIST [FIPS 186-4], ANSI [X9.42], etc.) from which the key formats are obtained and the best practice documents (e.g., NIST [SP800-57-1], NIST [SP800-56A] etc.) which recommend that a key pair only be used for one purpose.
3.33 [bookmark: _Toc306185798][bookmark: _Toc323023470][bookmark: _Toc332834699][bookmark: _Toc364947873][bookmark: _Toc390438636][bookmark: _Toc405812181][bookmark: _Toc436836397][bookmark: _Toc441680175][bookmark: _Toc478051795][bookmark: _Toc491258917]Cryptographic Length of Asymmetric Keys
The value (e.g., 2048 bits) referred to in the KMIP Cryptographic Length attribute for an asymmetric (public or private) key may be misleading, since this length only refers to certain portions of the mathematical values that comprise the key. The actual length of all the mathematical values comprising the public or the private key is longer than the referenced value. This point may be illustrated by looking at the components of a RSA public and private key.
The RSA public key is comprised of a modulus (n) and an (public) exponent (e). When one indicates that the RSA public key is 2048 bits in length that is a reference to the bit length of the modulus (n) only. So the full length of the RSA public key is actually longer than 2048 bits, since it also includes the length of the exponent (e) and the overhead of the encoding (e.g., ASN.1) of the key material.
The RSA private key is comprised of a modulus (n), the public exponent (e), the private exponent (d), prime 1 (p), prime 2 (q), exponent 1 (d mod (p-1)), exponent 2 (d mod (p-1)), and coefficient ((inverse of q) mod p). Once again the 2048 bit key length is referring only to the length of the modulus (n), so the overall length of the private key would be longer given the number of additional components which comprise the key and the overhead of encoding (e.g., ASN.1) of the key material.
KMIP implementations need to ensure they do not make assumptions about the actual length of asymmetric (public and private) key material based on the value specified in the Cryptographic Length attribute.
3.34 [bookmark: _Toc306185799][bookmark: _Toc323023471][bookmark: _Toc332834700][bookmark: _Toc364947874][bookmark: _Toc390438637][bookmark: _Toc405812182][bookmark: _Toc436836398][bookmark: _Toc441680176][bookmark: _Toc478051796][bookmark: _Toc491258918]Discover Versions
The Discover Versions operation allows clients and servers to identify a KMIP protocol version that both client and server understand. The operation was added to KMIP 1.1. KMIP 1.0 clients and servers may therefore not support this operation. If the Discover Versions request is sent to a KMIP 1.0 server and the server does not support the operation, the server returns the “Operation Not Supported” error.
 The operation addresses both the “dumb” and “smart” client scenarios. Dumb clients may simply pick the first protocol version that is returned by the server, assuming that the client provides the server with a list of supported protocol version. Smart clients may request the server to return a complete list of supported protocol versions by sending an empty request payload and picking a protocol version that is supported by both client and server.
Clients specify the protocol version in the request header and optionally provide a list of protocol versions in the request payload. If the protocol version in the request header is not specified in the request payload and the server does not support any protocol version specified in the request payload, the server returns an empty list in the response payload. In this scenario, clients are aware that the request did not result in an error and could communicate with the server using the protocol version specified in the request header.
3.35 [bookmark: _Toc306185800][bookmark: _Toc323023472][bookmark: _Toc332834701][bookmark: _Toc364947875][bookmark: _Toc390438638][bookmark: _Toc405812183][bookmark: _Toc436836399][bookmark: _Toc441680177][bookmark: _Toc478051797][bookmark: _Toc491258919]Vendor Extensions
KMIP allows for vendor extensions in a number of areas:
1. Enumerations have specific ranges which are noted as extensions
2. Item Tag values of the form 0x54xxxx are reserved for vendor extensions
3. Attributes may be defined by the client with a “x-“ prefix or by the server with a “y-“ prefix
Extensions may be used by vendors to communicate information between a KMIP client and a KMIP server that is not currently defined within the KMIP specification.
A common use of extensions is to allow for the structured definition of attributes using KMIP TTLV encoding rather than encoding vendor specific information in opaque byte strings.
3.36 [bookmark: _Toc323023476][bookmark: _Toc332834705][bookmark: _Toc364947876][bookmark: _Toc390438639][bookmark: _Toc405812184][bookmark: _Toc436836400][bookmark: _Toc441680178][bookmark: _Toc478051798][bookmark: _Toc491258920]Certificate Revocation Lists
Any Certificate Revocation List (CRL) checking which may be required for certificate-related operations such as register and re-key should be performed by the client prior to requesting the operation from a server.
3.37 [bookmark: _Toc323023477][bookmark: _Toc332834706][bookmark: _Toc364947877][bookmark: _Toc390438640][bookmark: _Toc405812185][bookmark: _Toc436836401][bookmark: _Toc441680179][bookmark: _Toc478051799][bookmark: _Toc491258921]Using the “Raw” Key Format Type
As defined in Section 2.1.3 of the KMIP Specification V1.1, the “raw” key format is intended to be used for “a key that contains only cryptographic key material, encoded as a string of bytes. The “raw” key format supports situations such as “non-KMIP-aware end-clients are aware how wrapped cryptographic objects (possibly Raw keys) from the KMIP server should be used without having to rely on the attributes provided by the Get Attributes operation” and in that regard is similar to the Opaque key format type. “Raw” key format is intended to be applied to symmetric keys and not asymmetric keys; therefore, this format is not specified in the asymmetric key profiles included in KMIP V1.1.
3.38 [bookmark: _Toc364947878][bookmark: _Toc390438641][bookmark: _Toc405812186][bookmark: _Toc436836402][bookmark: _Toc441680180][bookmark: _Toc478051800][bookmark: _Toc491258922]Use of Meta-Data Only (MDO) Keys
Meta-Data Only (MDO) keys are those Managed Key Objects for which no Key Value is present, as introduced in version 1.2 of [KMIP-Spec] MDO objects can be one of the following: Symmetric Keys, Private Keys, Split Keys, or Secret Data.
This may be a result of the KMIP client only wanting to register information (Meta-Data) about the key with a Key Management System, without having the key itself leave the client’s physical boundary. One such example could be for keys created and stored within a Hardware Security Module (HSM), with a policy that does not allow for the keys to leave its hardware. In such cases, the KMIP client will not include a Key Value within the Key Block during a Register operation, although it may optionally include a Key Value Location attribute indicating the location of the Key Value instead. For such keys, as part of the Register operation, the server will create a Key Value Present attribute and set it to false to indicate the key value is not stored on the server.
The KMIP protocol does not support the addition of a Key Value to an existing MDO key object on the server. If for some reason the client wanted to do this, it would have to carry out another Register operation and create a new managed object with the Key Value.
Finally, because there is no Key Value associated with an MDO key on the server, KMIP operations for Re-key, Re-key Key Pair and Derive Key cannot be carried out on an MDO key object. An attempt to do so will return an appropriate error as specified in the Error Handling section of [KMIP-Spec].
3.39 [bookmark: _Toc364947879][bookmark: _Toc390438642][bookmark: _Toc405812187][bookmark: _Toc436836403][bookmark: _Toc441680181][bookmark: _Toc478051801][bookmark: _Toc491258923]Cryptographic Services
KMIP supports creation and registration of managed objects and retrieval of managed objects in both plaintext and optionally wrapped with another managed object. KMIP also includes support for a subset of the operations necessary for certificate management (certifying certificate requests and validating certificate hierarchies). KMIP defines a range of Hash-based and MAC-based key derivation options.
There are certain situations in which having capability for a KMIP client to request cryptographic operations from a KMIP server is beneficial in terms of simplifying the client implementation, strengthening the integration between the key management and cryptographic operations, or improving the overall security of a solution.
KMIP 1.2 adds support for cryptographic services in the form of client-to-server operations for cryptographic services using managed objects for encryption, decryption, signature generation, signature verification, MAC generation, MAC verification, random number generation, and general hashing.
This support for cryptographic services is similar to the approach taken in KMIP for certificates. The protocol supports a base set of operations on certificates that enable a key manager to act as a proxy for a Certification Authority or in fact operate as a Certification Authority in the contexts where that is appropriate. A KMIP server supporting cryptographic services may be acting as a proxy for another cryptographic device or in fact operating as a cryptographic device in the contexts where that is appropriate.
KMIP clients and KMIP servers using cryptographic services operations should be mindful of selecting a level of protection for the communication channel (the TLS connection) that provides sufficient protection of the plaintext data included in cryptographic operations and commensurate with the security strength of the operation. There is no requirement for the KMIP server to enforce selection of a level of protection.
Similarly, server policy regarding accepting random from a client (see section 2.5 regarding server policy) should reflect the level of confidence that that server has in a particular client or all clients. Issues in the quality or integrity of random provided in RNG Seed can affect key creation, nonce and IV generation, client-server TLS session key creation, and the random delivered to clients with the RNG Retrieve Operation. KMIP, as a protocol, does not itself enforce restrictions on the quality or nature of the random provided by a client in the RNG Seed operation.
A KMIP server that supports the RNG Retrieve and RNG Seed operations may have a single RNG for the server, an RNG which is shared in an unspecified manner by KMIP clients or a separate RNG for each KMIP client. There is no requirement for the KMIP server to implement any specific RNG model.
3.39.1 [bookmark: _Toc436836404][bookmark: _Toc441680182][bookmark: _Toc478051802][bookmark: _Toc491258924]Streaming Cryptographic Services
KMIP 1.3 extended the support for cryptographic services that were added in KMIP 1.2 to allow for multi-part (streaming) operations where the data required for the operations may be provided in multiple separate requests. Each of the existing encryption, decryption, signature generation, signature verification, MAC generation, MAC verification, and general hashing operations now support additional parameters to allow for each of the stages of multi-part usage – initialization, update, and finalization.
The server returns to the client a correlation value in the first response. This correlation value is used by the client in each subsequent request for performing multi-part (streaming) operations. Each cryptographic operation has additional optional parameters in the request that enable the client to indicate which stage of multi-part usage (initialization, update, and finalization) is being requested.
A KMIP 1.3 or later client can use the Query Capability Information to determine if a KMIP 1.3 or later server supports the multi-part (streaming) operations by checking the Streaming Capability is set to true in the response to a Query operation with the Query Function value of Query Capability Information.
3.39.2 [bookmark: _Toc436836405][bookmark: _Toc441680183][bookmark: _Toc478051803][bookmark: _Toc491258925]Security Considerations for Server State Handling.
When a server is processing a correlation value either for asynchronous or multi-part (streaming) operations and matching an incoming request against server state on behalf of a client the following may be relevant to consider as part of determining whether or not to accept the specified correlation value:
· Matching TLS mutual authentication client credentials
· Matching KMIP authentication header information
· Matching link-level (network end-point) details (i.e. source address information)
· Matching TLS session identifiers
· Requiring the first and last operations to be within a specified time period
· Requiring each operations to be within a specified time period
· Re-check the access rights on all referenced managed objects
The KMIP specification does not require that any of these items are considered as the determination of which items are relevant is both server implementation and security context dependent.
3.40 [bookmark: _Toc364947880][bookmark: _Toc390438643][bookmark: _Toc405812188][bookmark: _Toc436836406][bookmark: _Toc441680184][bookmark: _Toc478051804][bookmark: _Toc491258926]Passing Attestation Data
In some scenarios the server may want assurance of the integrity of the client’s system before honoring a client’s request. Additionally, the server may want a guarantee of the freshness of the attestation computation in the integrity measurement.
Generally, the process takes four passes:
1. The client sends a request to the server which requires attestation.
2. The server returns a random nonce to the client that will be used in the attestation computation to guarantee the freshness of the measurement.
3. The client sends a request to the server which includes the measurement of the client’s system, and the measurement contains the nonce from the server.
4. The server verifies the measurement and sends the appropriate response to the client.

Passing attestation data with a client request can be achieved in KMIP as follows:
1. The client sends a request to the server with the Attestation Capable Indicator set to True in the request header.
2. If the request requires attestation, the server will return an “Attestation Required” error with a Nonce object in the response header. {If the client request fails for any reason other than “Attestation Required”, the server will not include a nonce in the error message.}
3. The client uses the nonce received from the server in the attestation computation that will be used in the measurement.
a. The client forms an Attestation Credential Object which contains either the measurement from the client or an assertion from a third party if the server is not capable or willing to verify the attestation data from the client.
b. The client then issues a request which contains the Attestation Credential Object in the request header.
4. The server validates the measurement or assertion data in the Credential Object, checks that the nonce in the Credential Object matches one sent recently by the server, then sends the appropriate response to complete the request issued by the client. {If the measurement or assertion data in the Credential Object does not validate or if the nonce does not match one sent recently by the server, the server will return an “Attestation Failed” error instead of completing the request issued by the client.}
The server needs to be capable of processing and verifying multiple Credential Objects in the same request header since Attestation Credentials do not provide the same type of authentication as the Username and Password or Device Credential.
How frequently (e.g. every request, every 100 requests, etc.) the server generates a new random nonce depends on server policy. The lifetime of the nonce once the server has sent it to the client (i.e., the timeframe in which the client must return the nonce before needs to request a fresh nonce from the server) also depends on server policy.
If the client sends a request that requires attestation but the client has not set the Attestation Capable Indicator to True, then the server will send a “Permission Denied” error and will not include a Nonce object in the response header.
3.41 [bookmark: _Toc364947881][bookmark: _Toc390438644][bookmark: _Toc405812189][bookmark: _Toc436836407][bookmark: _Toc441680185][bookmark: _Toc478051805][bookmark: _Toc491258927]Split Key
KMIP v1.0 and KMIP v1.1 allow a client to register a Split Key that was created or otherwise obtained by the client, but offer no client operations to request a Split Key be generated or recombined by the server. The Create Split Key operation and Join Split Key operation are added to KMIP v1.2 to provide a more complete set of split key functionality.
To request the server generate a split key, the client sends a Create Split Key request that includes the Split Key parameters (Split Key Parts, Split Key Threshold, Split Key Method) and desired key attributes (e.g. Object Type, Cryptographic Length). If the client supplies the Unique Identifier of an existing base key in a Create Split Key request, the server will use the supplied key in the key splitting operation instead of generating a new one. The server will respond with a list of Unique Identifiers for the newly created Split Keys.
The client may want to add link attributes to more easily locate the complete set of related Split Keys as follows. The client adds a Previous Link from the Split Key with Key Part Identifier K to the Split Key with Key Part Identifier K-1 and a Next Link to the Split Key with Key Part Identifier K+1. Denoting the value of Split Key Parts by N, the client adds a Previous Link from the Split Key with Key Part Identifier 1 to the Split Key with Key Part Identifier N and a Next Link from the Split Key with Key Part Identifier N to the Split Key with Key Part Identifier 1. If the client supplies the Unique Identifier of an existing base key in a Create Split Key request, the client may want to add a Parent Link attribute from each newly generated Split Key to the base key that was supplied in the Create Split Key request.
To request the server recombine a set of split keys, the client sends a Join Split Key request that includes the type of object to be returned (e.g. Symmetric Key, Private Key, or Secret Data) and a list of Unique Identifiers of the Split Keys to be combined. The number of Unique Identifiers in the request needs to be at least the value of Split Key Threshold in the Split Keys to ensure the server will be able to combine the keys according to the Split Key Method. The server will respond with the Unique Identifier of the key obtained by combining the provided Split Keys.
3.42 [bookmark: _Toc364947882][bookmark: _Toc390438645][bookmark: _Toc405812190][bookmark: _Toc436836408][bookmark: _Toc441680186][bookmark: _Toc478051806][bookmark: _Toc491258928]Compromised Objects
A Cryptographic Object or Opaque Object may be compromised for a variety of reasons. In KMIP, a client indicates to the server that a Cryptographic Object is to be considered compromised by performing a Revoke Operation with a Revocation Reason of Key Compromise or CA Compromise. The KMIP client should provide a Compromise Occurrence Date (if the Revocation Reason is Key Compromise or CA Compromise) and if it is unable to estimate when the compromise occurred then it should provide a Compromise Occurrence Date equal to the Initial Date.
The KMIP specification [KMIP-Spec] places no requirements on a KMIP server to perform any action on any Managed Object that references (i.e., via Link attributes) a Cryptographic Object or Opaque Object that a client has performed a Revoke operation with a Revocation Reason of Key Compromise or CA Compromise. However, KMIP users should be aware that there may be security relevant implications in continuing to use a Managed Cryptographic Object in the following circumstances:
· For a compromised Private Key, the linked Public Key and/or Certificate;
· For a compromised Public Key, the linked Private Key and/or Certificate;
· For a compromised Derived Key, the linked derived key and/or Secret Data Object
In these circumstances, it is the responsibility of the client to either check the state of the referenced Managed Object or to also perform a Revoke operation on the referenced Managed Object.
3.43 [bookmark: _Toc364947883][bookmark: _Toc390438646][bookmark: _Toc405812191][bookmark: _Toc436836409][bookmark: _Toc441680187][bookmark: _Toc478051807][bookmark: _Toc491258929]Elliptic Curve Cryptography (ECC) Recommended Curve Mapping
The KMIP Specification [KMIP-Spec] (see section 9.1.3.2.5) specifies a number of ECC recommended curves ([FIPS 186-4] [SEC2] [X9.62] [ECC-Brainpool] [RFC5639]). These recommended curves are defined in multiple source documents and in some cases, the same algorithm is known by multiple names since to the algorithm is defined in multiple documents. The following table provides a mapping of the ECC recommended curves specified in the KMIP specification [KMIP-Spec]. The table identifies the KMIP enumeration, the Object Identifier (OID) and multiples names (synonyms) for the ECC recommended curves.
	Recommended Curve Name
	KMIP Enumeration Value
	OID
	Recommended Curve Synonym(s)

	P-192
	00000001
	1.2.840.10045.3.1.1
	SECP192R1
ANSIX9P192V1

	K-163
	00000002
	1.3.132.0.1
	SECT163K1

	B-163
	00000003
	1.3.132.0.15
	SECT163R2

	P-224
	00000004
	1.3.132.0.33
	SECP224R1

	K-233
	00000005
	1.3.132.0.26
	SECT233K1

	B-233
	00000006
	1.3.132.0.27
	SECT233R1

	P-256
	00000007
	1.2.840.10045.3.1.7
	SECP256R1
ANSIX9P256V1

	K-283
	00000008
	1.3.132.0.16
	SECT283K1

	B-283
	00000009
	1.3.132.0.17
	SECT283R1

	P-384
	0000000A
	1.3.132.0.34
	SECP384R1

	K-409
	0000000B
	1.3.132.0.36
	SECT409K1

	B-409
	0000000C
	1.3.132.0.37
	SECT409R1

	P-521
	0000000D
	1.3.132.0.35
	SECP521R1

	K-571
	0000000E
	1.3.132.0.38
	SECT571K1

	B-571
	0000000F
	1.3.132.0.39
	SECT571R1

	SECP112R1
	00000010
	1.3.132.0.6
	

	SECP112R2
	00000011
	1.3.132.0.7
	

	SECP128R1
	00000012
	1.3.132.0.28
	

	SECP128R2
	00000013
	1.3.132.0.29
	

	SECP160K1
	00000014
	1.3.132.0.9
	

	SECP160R1
	00000015
	1.3.132.0.8
	

	SECP160R2
	00000016
	1.3.132.0.30
	

	SECP192K1
	00000017
	1.3.132.0.31
	

	SECP192R1
	00000001
	1.2.840.10045.3.1.1
	P-192
ANSIX9P192V1

	SECP224K1
	00000018
	1.3.132.0.32
	

	SECP224R1
	00000004
	1.3.132.0.33
	P-224

	SECP256K1
	00000019
	1.3.132.0.10
	

	SECP256R1
	00000007
	1.2.840.10045.3.1.7
	P-256
ANSIX9P256V1

	SECP384R1
	0000000A
	1.3.132.0.34
	P-384

	SECP521R1
	0000000D
	1.3.132.0.35
	P-521

	SECT113R1
	0000001A
	1.3.132.0.4
	

	SECT113R2
	0000001B
	1.3.132.0.5
	

	SECT131R1
	0000001C
	1.3.132.0.22
	

	SECT131R2
	0000001D
	1.3.132.0.23
	

	SECT163K1
	00000002
	1.3.132.0.1
	K-163

	SECT163R1
	0000001E
	1.3.132.0.2
	

	SECT163R2
	00000003
	1.3.132.0.15
	B-163

	SECT193R1
	0000001F
	1.3.132.0.24
	

	SECT193R2
	00000020
	1.3.132.0.25
	

	SECT233K1
	00000005
	1.3.132.0.26
	K-233

	SECT233R1
	00000006
	1.3.132.0.27
	B-233

	SECT239K1
	00000021
	1.3.132.0.3
	

	SECT283K1
	00000008
	1.3.132.0.16
	K-283

	SECT283R1
	00000009
	1.3.132.0.17
	B-283

	SECT409K1
	0000000B
	1.3.132.0.36
	K-409

	SECT409R1
	0000000C
	1.3.132.0.37
	B-409

	SECT571K1
	0000000E
	1.3.132.0.38
	K-571

	SECT571R1
	0000000F
	1.3.132.0.39
	B-571

	ANSIX9P192V1
	00000001
	1.2.840.10045.3.1.1
	P-192
SECP192R1

	ANSIX9P192V2
	00000022
	1.2.840.10045.3.1.2
	

	ANSIX9P192V3
	00000023
	1.2.840.10045.3.1.3
	

	ANSIX9P239V1
	00000024
	1.2.840.10045.3.1.4
	

	ANSIX9P239V2
	00000025
	1.2.840.10045.3.1.5
	

	ANSIX9P239V3
	00000026
	1.2.840.10045.3.1.6
	

	ANSIX9P256V1
	00000007
	1.2.840.10045.3.1.7
	P-256
SECP256R1

	ANSIX9C2PNB163V1
	00000027
	1.2.840.10045.3.0.1
	

	ANSIX9C2PNB163V2
	00000028
	1.2.840.10045.3.0.2
	

	ANSIX9C2PNB163V3
	00000029
	1.2.840.10045.3.0.3
	

	ANSIX9C2PNB176V1
	0000002A
	1.2.840.10045.3.0.4
	

	ANSIX9C2TNB191V1
	0000002B
	1.2.840.10045.3.0.5
	

	ANSIX9C2TNB191V2
	0000002C
	1.2.840.10045.3.0.6
	

	ANSIX9C2TNB191V3
	0000002D
	1.2.840.10045.3.0.7
	

	ANSIX9C2PNB208W1
	0000002E
	1.2.840.10045.3.0.10
	

	ANSIX9C2TNB239V1
	0000002F
	1.2.840.10045.3.0.11
	

	ANSIX9C2TNB239V2
	00000030
	1.2.840.10045.3.0.12
	

	ANSIX9C2TNB239V3
	00000031
	1.2.840.10045.3.0.13
	

	ANSIX9C2PNB272W1
	00000032
	1.2.840.10045.3.0.16
	

	ANSIX9C2PNB304W1
	00000033
	1.2.840.10045.3.0.17
	

	ANSIX9C2TNB359V1
	00000034
	1.2.840.10045.3.0.18
	

	ANSIX9C2PNB368W1
	00000035
	1.2.840.10045.3.0.19
	

	ANSIX9C2TNB431R1
	00000036
	1.2.840.10045.3.0.20
	

	BRAINPOOLP160R1
	00000037
	1.3.36.3.3.2.8.1.1.1
	

	BRAINPOOLP160T1
	00000038
	1.3.36.3.3.2.8.1.1.2
	

	BRAINPOOLP192R1
	00000039
	1.3.36.3.3.2.8.1.1.3
	

	BRAINPOOLP192T1
	0000003A
	1.3.36.3.3.2.8.1.1.4
	

	BRAINPOOLP224R1
	0000003B
	1.3.36.3.3.2.8.1.1.5
	

	BRAINPOOLP224T1
	0000003C
	1.3.36.3.3.2.8.1.1.6
	

	BRAINPOOLP256R1
	0000003D
	1.3.36.3.3.2.8.1.1.7
	

	BRAINPOOLP256T1
	0000003E
	1.3.36.3.3.2.8.1.1.8
	

	BRAINPOOLP320R1
	0000003F
	1.3.36.3.3.2.8.1.1.9
	

	BRAINPOOLP320T1
	00000040
	1.3.36.3.3.2.8.1.1.10
	

	BRAINPOOLP384R1
	00000041
	1.3.36.3.3.2.8.1.1.11
	

	BRAINPOOLP384T1
	00000042
	1.3.36.3.3.2.8.1.1.12
	

	BRAINPOOLP512R1
	00000043
	1.3.36.3.3.2.8.1.1.13
	

	BRAINPOOLP512T1
	00000044
	1.3.36.3.3.2.8.1.1.14
	

[bookmark: _Toc361318149][bookmark: _Toc374120782][bookmark: _Toc374120806][bookmark: _Toc269140575][bookmark: _Toc269140625][bookmark: _Toc441680354][bookmark: _Toc442965981]Table 3: ECC Recommended Curve Mapping
3.44 [bookmark: _Toc478051808][bookmark: _Toc491258930]Description and Comment Attributes
The Description and Comment attributes where introduced in KMIP 1.4 and are used to convey information about the purpose and use of an object.
Description is intended to be a concise imperative statement about an object (e.g. “Root Key for internal servers”). Comment is a complementary field which allows more verbose communication regarding what activity or why an activity applies to an object (e.g. “Make sure to update new internal servers with the Root key as they are brought on line”).
Both attributes are optional and their contents should be used for informational purposes and not for policy enforcement.
3.45 [bookmark: _Toc478051809][bookmark: _Toc491258931]PKCS#12 Key Format
A new key format was introduced in KMIP 1.4, the PKCS#12 (see [RFC7292]) key format. PKCS#12 was originally introduced in the early days of PKI, and is used as a keystore format and as a key and certificate exchange mechanism. The addition of PKCS#12 to KMIP as a key format type is intended as a means of admitting the basic forms of PKCS#12 into a managed environment, as well as extracting basic forms of PKCS#12 from the KMIP world to be consumed/used in existing environments and workflows.
The intent of KMIP’s PKCS#12 key format is that a PKCS#12-conformant blob can be Registered by the client, and a PKCS#12-conformant blob can be returned from a KMIP server on a Get. It is presumed that a single private key is what is being Registered (along with its related certificate or certificate chain), so the Unique Identifier that KMIP servers return on a Register PKCS#12 operation is that of the private key. It is also presumed that the client doing a Get with a key format type of PKCS#12 will be passing in the private key’s Unique Identifier, and that the KMIP server is responsible for returning a PKCS#12 blob with the referenced private key and any related certificates.
If the PKCS#12 blob being Registered has multiple private keys, then the client can indicate which ONE of them is being Registered on a particular request by specifying the PKCS#12 Friendly Name attribute. If the client does not supply the Friendly Name (a.k.a. “alias”), then the server is free to just Register the first that it finds in the PKCS#12 blob. If the client wants more than one private key within a PKCS#12 blob to be Registered from a single PKCS#12 blob, then it will have to request repeatedly with that PKCS#12 blob using a different Friendly Name for each request.
Those familiar with PKCS#12 objects, particularly those containing sensitive material such as private keys, know that such objects are usually password-protected. KMIP honors such constraints by requiring SecretData objects to be referenced and used for the normal password-based encryption (PBE) schemes employed to protect PKCS#12 objects. Hence Register requests for objects with PKCS#12 key format must supply a Link attribute with a LinkType of “PKCS#12 Password Link”, so that the server can find the SecretData object containing the password for the PKCS#12 blob being sent to the server and decrypt and verify its contents. Such a SecretData object must be in the Active state and have a Cryptographic Usage Mask that indicates “DeriveKey” for it to be used for password-based key derivation. At the end of the Register operation, one can expect the KMIP server to have decrypted and verified the contents of the PKCS#12 blob, registered the (specified or defaulted) private key, added the PKCS#12 Password Link to the SecretData in the new PrivateKey, found and Registered the certificate(s) that make up the private key’s certificate chain, and linked these Certificates from the PrivateKey via the PKCS#12 CertificateLink (the link to the first Certificate is from the PrivateKey; any subsequent Certificates would be linked by a PKCS#12 Certificate Link in the previous Certificate).
When a client issues a Get PKCS#12 key format request on a PrivateKey Unique Identifier, the KMIP server traverses all the links set up on the Register to reassemble the PKCS#12 blob and protect it with the SecretData specified on the PrivateKey PKCS#12 Password Link. If the client wants a different password on the PKCS#12 blob resulting from a Get, it should modify the PKCS#12 Password Link on the PrivateKey to a different SecretData before performing the Get. Similarly, if the client wants a different Friendly Name for the key entry in a PKCS#12 blob, it should modify the PKCS#12 Friendly Name attribute in the PrivateKey object before performing the Get.
A client can set up all this machinery by hand to be able to Get PKCS#12 key format without a corresponding Register PKCS#12 key format.
3.46 [bookmark: _Toc478051810][bookmark: _Toc491258932]Galois/Counter Mode (GCM)
[bookmark: _Toc436836410][bookmark: _Toc441680188]Galois Counter Mode (see [SP800-38D]) is a widely-adopted mode of operation for symmetric key ciphers. It is a form of authenticated encryption that is intended to provide data integrity as well as confidentiality. It is defined for block ciphers with a blocksize of 128 bits, so AES is a cipher that would qualify for usage in GCM mode. Like all other counter modes, GCM requires a unique initialization vector for each encryption stream (as counter mode effectively turns a block cipher into a stream cipher). The data integrity portion of the algorithm produces a fixed-length Tag value that may be truncated to a specific Tag length. Decryption will fail unless the Tag value computes correctly for the length specified. KMIP has documented GCM as a Mode of Operation for Cipher for quite a while. However, although one could specify GCM as a mode, the specification was silent about Tag usage until KMIP 1.4, when the Tag Length was added to CryptographicParameters and the AuthenticatedTagLength field was added to the Encrypt and Decrypt remote cryptographic interfaces, thus allowing the Tag to be explicitly exposed for validation. The GCM algorithm always calculates a 128-bit Tag, but the length that is validated is allowed to vary from 8 to 128 bits long, although NIST recommendations (and some cryptographic implementations) restrict the Tag length to 96-128 bits.
GCM also supports Authenticated Encryption Additional Data (AEAD). This means that one can validate not only the ciphertext, but some amount of additional data as well. Such support was unspecified in KMIP until KMIP 1.4, when the AuthenticatedEncryptionAdditionalData field was added to the Encrypt and Decrypt remote cryptographic interfaces, thus allowing the application invoking the service to supply data on the Encrypt that would modulate the resulting Tag, and forcing the application to supply the identical data on the Decrypt. If the Tag does not validate due to some combination of invalid IV or incorrect additional data or invalid ciphertext or invalid tag, GCM decryption is required to fail. The application using this feature of GCM is required to supply all the additional data before any of either the plaintext on Encrypt or the ciphertext on Decrypt (if the operation is a multistep operation).
Given that KMIP does not specify anything regarding GCM’s Tag or AEAD prior to KMIP 1.4, applications are strongly discouraged from using this mode with pre-1.4 KMIP clients or servers, as cross-vendor interoperability is uncertain at best.
3.47 [bookmark: _Toc478051811][bookmark: _Toc491258933]Client and Server Correlation Values
The Client Correlation Value can be used by a client to provide additional, non-critical information to a server. The value need not be unique. The server should the log value and be able to identify log records that contain a given Client Correlation Value. An example use of the Client Correlation value is to track the KMIP test case number used when performing interoperability testing by the KMIP Technical Committee.
The Server Correlation Value is generated by a server and used to uniquely identify each request. The value should be globally unique and should be logged by the server for each request. The server provides the value to the client within the response to each KMIP operation and the client should store the value in its log. Ideally both the client and server should locate log records that contain a given Server Correlation Value so that the workflow associated with each request may be traced across client and server.
3.48 [bookmark: _Toc478051812][bookmark: _Toc491258934]Extractable and Sensitive Attributes
KMIP 1.4 adds several new attributes which can be used to indicate the sensitivity of a cryptographic object and whether a cryptographic object may leave the server. These attributes are modeled after similar attributes within PKCS#11.
The Sensitive attribute is used to specify whether a cryptographic object can only leave the KMIP server (via the Get operation) in wrapped (encrypted) form.
The Always Sensitive attribute is used to track whether a cryptographic object has ever been considered sensitive during its existence within the KMIP server.
The Extractable attribute is used to control whether a cryptographic object is ever allowed to leave the KMIP server.
The Never Extractable attribute is used to track whether extraction of a cryptographic object has been restricted during its existence within the KMIP server.
4 [bookmark: _Toc478051813][bookmark: _Toc491258935]Applying KMIP Functionality
This section describes how to apply the functionality described in the Key Management Interoperability Protocol Specification to address specific key management usage scenarios or to solve key management related issues.
4.1 [bookmark: _Toc364947885][bookmark: _Toc390438648][bookmark: _Toc405812193][bookmark: _Toc436836411][bookmark: _Toc441680189][bookmark: _Toc478051814][bookmark: _Toc491258936]Locating Keys in Specific States
It is possible to formulate Locate queries to address any of the following conditions:
· Exact match of a transition to a given state. Locate the key(s) with a transition to a certain state at a specified time (t).
· Range match of a transition to a given state. Locate the key(s) with a transition to a certain state at any time at or between two specified times (t and t’).
· Exact match of a state at a specified time. Locate the key(s) that are in a certain state at a specified time (t).
· Match of a state during an entire time range. Locate the key(s) that are in a certain state during an entire time specified with times (t and t’). Note that the Activation Date could occur at or before t and that the Deactivation Date could occur at or after t’+1.
· Match of a state at some point during a time range. Locate the key(s) that are in a certain state at some time at or between two specified times (t and t’). In this case, the transition to that state could be before the start of the specified time range.
This is accomplished by allowing any date/time attribute to be present either once (for an exact match) or at most twice (for a range match).
For instance, if the state we are interested in is Active, the Locate queries would be the following (corresponding to the bulleted list above):
· Exact match of a transition to a given state: Locate (ActivationDate(t)). Locate keys with an Activation Date of t.
· Range match of a transition to a given state: Locate (ActivationDate(t), ActivationDate(t')). Locate keys with an Activation Date at or between t and t’.
· Exact match of a state at a specified time: Locate (ActivationDate(0), ActivationDate(t), DeactivationDate(t+1), DeactivationDate(MAX_INT), CompromiseDate(t+1), CompromiseDate(MAX_INT)). Locate keys in the Active state at time t, by looking for keys with a transition to Active before or until t, and a transition to Deactivated or Compromised after t (because we don't want the keys that have a transition to Deactivated or Compromised before t). The server assumes that keys without a DeactivationDate or CompromiseDate is equivalent to MAX_INT (i.e., infinite).
· Match of a state during an entire time range: Locate (ActivationDate(0), ActivationDate(t), DeactivationDate(t'+1), DeactivationDate(MAX_INT), CompromiseDate(t'+1), CompromiseDate(MAX_INT)). Locate keys in the Active state during the entire time from t to t’.
· Match of a state at some point during a time range: Locate (ActivationDate(0), ActivationDate(t'-1), DeactivationDate(t+1), DeactivationDate(MAX_INT), CompromiseDate(t+1), CompromiseDate(MAX_INT)). Locate keys in the Active state at some time from t to t’, by looking for keys with a transition to Active between 0 and t’-1 and exit out of Active on or after t+1.
The queries would be similar for Initial Date, Deactivation Date, Compromise Date and Destroy Date.
In the case of the Destroyed-Compromise state, there are two dates recorded: the Destroy Date and the Compromise Date. For this state, the Locate operation would be expressed as follows:
· Exact match of a transition to a given state: Locate (CompromiseDate(t), State(Destroyed-Compromised)) and Locate (DestroyDate(t), State(Destroyed-Compromised)). KMIP does not support the OR in the Locate request, so two requests should be issued. Locate keys that were Destroyed and transitioned to the Destroyed-Compromised state at time t, and locate keys that were Compromised and transitioned to the Destroyed-Compromised state at time t.
· Range match of a transition to a given state: Locate (CompromiseDate(t), CompromiseDate(t'), State(Destroyed-Compromised)) and Locate (DestroyDate(t), DestroyDate(t'), State(Destroyed-Compromised)). Locate keys that are Destroyed-Compromised and were Compromised or Destroyed at or between t and t’.
· Exact match of a state at a specified time: Locate (CompromiseDate(0), CompromiseDate(t), DestroyDate(0), DestroyDate(t)); nothing else is needed, since there is no exit transition. Locate keys with a Compromise Date at or before t, and with a Destroy Date at or before t. These keys are, therefore, in the Destroyed-Compromised state at time t.
· Match of a state during an entire time range: Locate (CompromiseDate(0), CompromiseDate(t), DestroyDate(0), DestroyDate(t)). Same as above. As there is no exit transition from the Destroyed-Compromised state, the end of the range (t’) is irrelevant.
· Match of a state at some point during a time range: Locate (CompromiseDate(0), CompromiseDate(t'-1), DestroyDate(0), DestroyDate(t'-1)). Locate keys with a Compromise Date at or before t’-1, and with a Destroy Date at or before t’-1. As there is no exit transition from the Destroyed-Compromised state, the start of the range (t) is irrelevant.
4.2 [bookmark: _Toc364947886][bookmark: _Toc390438649][bookmark: _Toc405812194][bookmark: _Toc436836412][bookmark: _Toc441680190][bookmark: _Toc478051815][bookmark: _Toc491258937]Using Wrapped Keys with KMIP
KMIP provides the option to register and get keys in wrapped format. Clients request the server to return a wrapped key by including the Key Wrapping Specification in the Get Request Payload. Similarly, clients register a wrapped key by including the Key Wrapping Data in the Register Request Payload.
The Wrapping Method within the Key Wrapping Data identifies the type of mechanism used to wrap the key, but does not identify the algorithm or block cipher mode. It is possible to determine these from the attributes set for the specified Encryption Key or MAC/Signing Key. If a key has multiple Cryptographic Parameters set, clients may include the applicable parameters in Key Wrapping Specification. If omitted, the server chooses the Cryptographic Parameter attribute with the lowest index.
The Key Value includes both the Key Material and, optionally, attributes of the key; these may be provided by the client in the Register Request Payload; the server only includes attributes when requested in the Key Wrapping Specification of the Get Request Payload. The Key Value may be encrypted, signed/MACed, or both encrypted and signed/MACed (and vice versa). In addition, clients have the option to request or import a wrapped Key Block according to standards, such as ANSI TR-31, or vendor-specific key wrapping methods.
It is important to note that if the Key Wrapping Specification is included in the Get Request Payload, the Key Value may not necessarily be encrypted. If the Wrapping Method is MAC/sign, the returned Key Value is in plaintext, and the Key Wrapping Data includes the MAC or Signature of the Key Value.
KMIP 1.4, add a Key Wrap Type parameter to the Get operation. This parameter may be used to determine how a key that was registered as a wrapped key is returned to a client. Specifying a value of Not Wrapped ensures that the server returns the unwrapped key value. A value of As Registered can be used to retrieve the key value as it was provided in the Register operation. In the latter case, the wrapping key need not be known to the server. If no Key Wrap Type is provided, then the server may choose to return the key either wrapped or unwrapped. A Get operation may use both a Key Wrap Type and a Wrapping Key Specification, in which case the Key Wrap Type is processed as if there was no Wrapping Key Specification, and the result is then wrapped as specified.
Prior to wrapping or unwrapping a key, the server should verify that the wrapping key is allowed to be used for the specified purpose. For example, if the Unique ID of a symmetric key is specified in the Key Wrapping Specification inside the Get request, the symmetric key should have the “Wrap Key” bit set in its Cryptographic Usage Mask. Similarly, if the client registers a signed key, the server should verify that the Signature Key, as specified by the client inside the Key Wrapping Data, has the “Verify” bit set in the Cryptographic Usage Mask. If the wrapping key is not permitted to be used for the requested purpose (e.g., when the Cryptographic Usage Mask is not set), the server should return the Operation Failed result status.
4.2.1 [bookmark: _Toc364947887][bookmark: _Toc390438650][bookmark: _Toc405812195][bookmark: _Toc436836413][bookmark: _Toc441680191][bookmark: _Toc478051816][bookmark: _Toc491258938]Encrypt-only Example with a Symmetric Key as an Encryption Key for a Get Request and Response
The client sends a Get request to obtain a key that is stored on the server. When the client sends a Get request to the server, a Key Wrapping Specification may be included. If a Key Wrapping Specification is included in the Get request, and a client wants the requested key and its Cryptographic Usage Mask attribute to be wrapped with AES key wrap, the client includes the following information in the Key Wrapping Specification:
· Wrapping Method: Encrypt
· Encryption Key Information
· Unique Key ID: Key ID of the AES wrapping key
· Cryptographic Parameters: The Block Cipher Mode is NISTKeyWrap (not necessary if default block cipher mode for wrapping key is NISTKeyWrap)
· Attribute Name: Cryptographic Usage Mask
The server uses the Unique Key ID specified by the client to determine the attributes set for the proposed wrapping key. For example, the algorithm of the wrapping key is not explicitly specified inside the Key Wrapping Specification. The server determines the algorithm to be used for wrapping the key by identifying the Algorithm attribute set for the specified Encryption Key.
The Cryptographic Parameters attribute should be specified by the client if multiple instances of the Cryptographic Parameters exist, and the lowest index does not correspond to the NIST key wrap mode of operation. The server should verify that the AES wrapping key has NISTKeyWrap set as an allowable Block Cipher Mode, and that the “Wrap Key” bit is set in the Cryptographic Usage Mask.
If the correct data was provided to the server, and no conflicts exist, the server AES key wraps the Key Value (both the Key Material and the Cryptographic Usage Mask attribute) for the requested key with the wrapping key specified in the Encryption Key Information. The wrapped key (byte string) is returned in the server’s response inside the Key Value of the Key Block.
The Key Wrapping Data of the Key Block in the Get Response Payload includes the same data as specified in the Key Wrapping Specification of the Get Request Payload except for the Attribute Name.
4.2.2 [bookmark: _Toc364947888][bookmark: _Toc390438651][bookmark: _Toc405812196][bookmark: _Toc436836414][bookmark: _Toc441680192][bookmark: _Toc478051817][bookmark: _Toc491258939]Encrypt-only Example with a Symmetric Key as an Encryption Key for a Register Request and Response
The client sends a Register request to the server and includes the wrapped key and the Unique ID of the wrapping key inside the Request Payload. The wrapped key is provided to the server inside the Key Block. The Key Block includes the Key Value Type, the Key Value, and the Key Wrapping Data. The Key Value Type identifies the format of the Key Material, the Key Value consists of the Key Material and optional attributes that may be included to cryptographically bind the attributes to the Key Material, and the Key Wrapping Data identifies the wrapping mechanism and the encryption key used to wrap the object and the wrapping mechanism.
Similar to the example in 4.2.1 the key is wrapped using the AES key wrap. The Key Value includes four attributes: Cryptographic Algorithm, Cryptographic Length, Cryptographic Parameters, and Cryptographic Usage Mask.
The Key Wrapping Data includes the following information:
· Wrapping Method: Encrypt
· Encryption Key Information
· Unique Key ID: Key ID of the AES wrapping key
· Cryptographic Parameters: The Block Cipher Mode is NISTKeyWrap (not necessary if default block cipher mode for wrapping key is NISTKeyWrap)
Attributes do not need to be specified in the Key Wrapping Data. When registering a wrapped Key Value with attributes, clients may include these attributes inside the Key Value without specifying them inside the Template-Attribute.
Prior to unwrapping the key, the server determines the wrapping algorithm from the Algorithm attribute set for the specified Unique ID in the Encryption Key Information. The server verifies that the wrapping key may be used for the specified purpose. In particular, if the client includes the Cryptographic Parameters in the Encryption Key Information, the server verifies that the specified Block Cipher Mode is set for the wrapping key. The server also verifies that the wrapping key has the “Unwrap Key” bit set in the Cryptographic Usage Mask.
The Register Response Payload includes the Unique ID of the newly registered key and an optional list of attributes that were implicitly set by the server.
4.2.3 [bookmark: _Toc364947889][bookmark: _Toc390438652][bookmark: _Toc405812197][bookmark: _Toc436836415][bookmark: _Toc441680193][bookmark: _Toc478051818][bookmark: _Toc491258940]Encrypt-only Example with an Asymmetric Key as an Encryption Key for a Get Request and Response
The client sends a Get request to obtain a key (either symmetric or asymmetric) that is stored on the server. When the client sends a Get request to the server, a Key Wrapping Specification may be included. If a Key Wrapping Specification is included, and the key is to be wrapped with an RSA public key using the OAEP encryption scheme, the client includes the following information in the Key Wrapping Specification. Note that for this example, attributes for the requested key are not requested.
· Wrapping Method: Encrypt
· Encryption Key Information
· Unique Key ID: Key ID of the RSA public key
· Cryptographic Parameters:
Padding Method: OAEP
Hashing Algorithm: SHA-256
The Cryptographic Parameters attribute is specified by the client if multiple instances of Cryptographic Parameters exist for the wrapping key, and the lowest index does not correspond to the associated padding method. The server should verify that the specified Cryptographic Parameters in the Key Wrapping Specification and the “Wrap Key” bit in the Cryptographic Usage Mask are set for the corresponding wrapping key.
The Key Wrapping Data returned by the server in the Key Block of the Get Response Payload includes the same data as specified in the Key Wrapping Specification of the Get Request Payload.
For KMIP versions prior to 1.4, KMIP assumed, for both OAEP and PSS, that the Hashing Algorithm specified in the Cryptographic Parameters of the Get request is used for both the Mask Generation Function (MGF) and hashing data. KMIP 1.4 introduces the Mask Generator and Mask Generator Hashing Algorithm enumerations, which allows the Mask Generation Function (MGF) and associated algorithm to be explicitly specified. If Mask Generator Hashing Algorithm is omitted then the value specified for Hashing Algorithm is assumed (e.g. pre-KMIP 1.4 behavior).
The example above assumes the same algorithm (SHA-256) is used for both the Mask Generation Function (MGF) and hashing data.
4.2.4 [bookmark: _Toc364947890][bookmark: _Toc390438653][bookmark: _Toc405812198][bookmark: _Toc436836416][bookmark: _Toc441680194][bookmark: _Toc478051819][bookmark: _Toc491258941]MAC-only Example with an HMAC Key as an Authentication Key for a Get Request and Response
The client sends a Get request to obtain a key that is stored on the server. When the client sends a Get request to the server, a Key Wrapping Specification may be included. If a key and Custom Attribute (i.e., x-Nonce) is to be MACed with HMAC SHA-256, the following Key Wrapping Specification is specified:
· Wrapping Method: MAC/sign
· MAC/Signature Key Information
· Unique Key ID: Key ID of the MACing key (note that the algorithm associated with this key would be HMAC-SHA256)
· Attribute Name: x-Nonce
For HMAC, no Cryptographic Parameters need to be specified, since the algorithm, including the hash function, may be determined from the Algorithm attribute set for the specified MAC Key. The server should verify that the HMAC key has the “MAC Generate” bit set in the Cryptographic Usage Mask. Note that an HMAC key does not require the “Wrap Key” bit to be set in the Cryptographic Usage Mask.
The server creates an HMAC value over the Key Value if the specified MACing key may be used for the specified purpose and no conflicts exist. The Key Value is returned in plaintext, and the Key Block includes the following Key Wrapping Data:
· Wrapping Method: MAC/sign
· MAC/Signature Key Information
· Unique Key ID: Key ID of the MACing key
· MAC/Signature: HMAC result of the Key Value
In the example, the custom attribute x-Nonce was included to help clients, who are relying on the proxy model, to detect replay attacks. End-clients, who communicate with the key management server, may not support TLS and may not be able to rely on the message protection mechanisms provided by a security protocol. An alternative approach for these clients would be to use the custom attribute to hold a random number, counter, nonce, date, or time. The custom attribute needs to be created before requesting the server to return a wrapped key and is recommended to be set if clients frequently wrap/sign the same key with the same wrapping/signing key.
4.2.5 [bookmark: _Toc364947891][bookmark: _Toc390438654][bookmark: _Toc405812199][bookmark: _Toc436836417][bookmark: _Toc441680195][bookmark: _Toc478051820][bookmark: _Toc491258942]Registering a Wrapped Key as an Opaque Cryptographic Object
Clients may want to register and store a wrapped key on the server without the server being able to unwrap the key (i.e., the wrapping key is not known to the server). Instead of storing the wrapped key as an opaque object, clients have the option to store the wrapped key inside the Key Block as an opaque cryptographic object, i.e., the wrapped key is registered as a managed cryptographic object, but the encoding of the key is unknown to the server. Registering an opaque cryptographic object allows clients to set all the applicable attributes that apply to cryptographic objects (e.g., Cryptographic Algorithm and Cryptographic Length),
Opaque cryptographic objects are set by specifying the following inside the Key Block structure:
· Key Format Type: Opaque
· Key Material: Wrapped key as a Byte String
The Key Wrapping Data does not need to be specified.
4.2.6 [bookmark: _Toc364947892][bookmark: _Toc390438655][bookmark: _Toc405812200][bookmark: _Toc436836418][bookmark: _Toc441680196][bookmark: _Toc478051821][bookmark: _Toc491258943]Encoding Option for Wrapped Keys
KMIP provides the option to specify the Encoding Option inside the Key Wrapping Specification and Key Wrapping Data. This option allows users to Get or Register the Key Value in a non-TTLV encoded format. This may be desirable in a proxy environment, where the end-client is not KMIP-aware.
The Encoding Option is only available if no attributes are specified inside the Key Value. The server returns the Encoding Option Error if both the Encoding Option and Attribute Names are specified inside the Key Wrapping Specification. Similarly, the server is expected to return the Encoding Option Error when registering a wrapped object with attributes inside the Key Value and the Encoding Option is set in the Key Wrapping Data. If no Encoding Option is specified, KMIP assumes that the Key Value is TTLV-encoded. Thus, by default, the complete TTLV-encoded Key Value content, as shown in the example below, is wrapped:
Key Material 	|| Byte String || Length || Key Material Value
420043 	|| 08 	 || 00000010 || 0123456789ABCDEF0123456789ABCDEF
Some end-clients may not understand or have the space for anything more than the actual key material (i.e., 0123456789ABCDEF0123456789ABCDEF in the above example). To wrap only the Key Material value during a Get operation, the Encoding Option (00001 for no encoding) should be specified inside the Key Wrapping Specification. The same Encoding Option should be specified in the Key Wrapping Data when returning the non-TTLV encoded wrapped object inside the Get Response Payload or when registering a wrapped object in non-TTLV encoded format.
It is important to be aware of the risks involved when excluding the attributes from the Key Value. Binding the attributes to the key material in certain environments is essential to the security of the end-client. An untrusted proxy could change the attributes (provided separately via the Get Attributes operation) that determine how the key is being used (e.g., Cryptographic Usage). Including the attributes inside the Key Value and cryptographically binding it to the Key Material could prevent potential misuse of the cryptographic object and may prevent a replay attack if, for example, a nonce is included as a custom attribute. The exclusion of attributes and therefore the usage of the Encoding Option are only recommended in at least one of the following scenarios:
1. End-clients are registered with the KMIP server and are communicating with the server directly (i.e., the TLS connection is between the server and client).
2. The environment is controlled and non-KMIP-aware end-clients are aware how wrapped cryptographic objects (possibly Raw keys) from the KMIP server should be used without having to rely on the attributes provided by the Get Attributes operation.
3. The wrapped cryptographic object consists of attributes inside the Key Material value. These attributes are not interpreted by the KMIP server, but are understood by the end-client. This may be the case if the Key Format Type is opaque or vendor-specific.
4. The proxy communicating with the KMIP server on behalf of the end-client is considered to be trusted and is operating in a secure environment.
Registering a wrapped object without attributes is not recommended in a proxy environment, unless scenario 4 is met.
4.3 [bookmark: _Toc364947893][bookmark: _Toc390438656][bookmark: _Toc405812201][bookmark: _Toc436836419][bookmark: _Toc441680197][bookmark: _Toc478051822][bookmark: _Toc491258944]Interoperable Key Naming for Tape
This section describes methods and provides examples for creating and storing key identifiers that are interoperable across multi-vendor KMIP clients, using the KMIP Tape Library Profile Version 1.0.
4.3.1 [bookmark: _Toc364947894][bookmark: _Toc390438657][bookmark: _Toc405812202][bookmark: _Toc436836420][bookmark: _Toc441680198][bookmark: _Toc478051823][bookmark: _Toc491258945]Native Tape Encryption by a KMIP Client
A common method for naming and retrieving keys is needed to support moving tape cartridges between 2 or more KMIP-compliant tape libraries that are all registered with the same KMIP key manager.
4.3.1.1 [bookmark: _Toc441680199]Method Overview
The method uses the KMIP Tape Library Profile. This profile specifies use of the KMIP Application Specific Information (ASI) attribute. The method supports both client-generated and server-generated key identifiers.
The key identifier is a KMIP string, composed of hexadecimal numeric characters. This string of characters is unique within a chosen namespace. Methods of generating the string are determined by policy. The LIBRARY-LTO namespace is preferred for maximum interoperability.
A compressed (numeric) transformation of the identifier string is stored in the tape format’s Key Associated Data. This allows for future retrieval of the key for decryption.
Interoperability is achieved by a) standardized algorithms to map byte values between the numeric (KAD) and text (ASI) representations of the identifier; and b) standardized ordering of bytes within the KAD so the identifier can be re-assembled in the correct sequence by other compliant implementations. Examples of the algorithms are provided below.
4.3.1.2 [bookmark: _Toc441680200]Definitions
Key Associated Data (KAD): Part of the tape format. May be segmented into authenticated and unauthenticated fields. KAD usage is detailed in the SCSI SSC-3 standard from the T10 organization.
Application Specific Information (ASI): A KMIP attribute.
Hexadecimal numeric characters: Case-sensitive, printable, single byte ASCII characters representing the numbers 0 through 9 and uppercase alpha A through F. (US-ASCII characters 30h-39h and 41h-46h).

Hexadecimal numeric characters are always paired, each pair representing a single 8-bit numeric value. A leading zero character is provided, if necessary, so that every byte in the tape’s KAD is represented by exactly 2 hexadecimal numeric characters.
N(k): The number of bytes in the tape format combined KAD fields (both authenticated and unauthenticated).
N(a), N(u): The number of bytes in the tape formats authenticated, and unauthenticated KAD fields, respectively.
4.3.1.3 [bookmark: _Toc441680201] Implementation Example of Algorithm 1. Key identifier string to numeric direction (Converting the ASI string to tape format’s KAD)
Refer to the KMIP Tape profile for algorithm 1.
This algorithm is associated with writing the KAD, typically to allow future retrieval of a key. An example implementation is as follows.
1. The client creates a key identifier or obtains one from the server. The identifier is a KMIP string of hexadecimal numeric characters. Copy the string to an input buffer of size 2*N(k) bytes. For LTO4, an 88 character string is sufficient to represent any key name stored directly in the KAD fields. For LTO5, a 184 character string is sufficient to represent any key name stored directly in the KAD fields.
2. Define output buffers for unauthenticated KAD, and authenticated KAD, of size N(u) and N(a) respectively. For LTO4, this would be 32 bytes of unauthenticated data, and 12 bytes of authenticated data. For LTO5, this would be 32 bytes of unauthenticated data and 60 bytes of authenticated data.
3. Define the standard POSIX (also known as C) locale. Each character in the string is a single-byte US-ASCII character.
4. First, populate the authenticated KAD buffer, converting a sub-string consisting of the last (rightmost) 2*N(a) characters of the key identifier string.
5. When the authenticated KAD is filled, next populate the unauthenticated KAD buffer, by converting the remaining hexadecimal character pairs (if any) of the identifier string.
4.3.1.4 [bookmark: _Toc441680202]Implementation Example of Algorithm 2. Numeric to key identifier string direction (Converting tape format’s KAD to ASI string)
This algorithm is associated with reading the KAD, typically in preparation for retrieving a key. An example implementation is as follows
1. Define an input buffer sized for N(k). For LTO4, N(k) is 44 bytes (12 bytes authenticated, 32 unauthenticated). For LTO5, N(k) is 92 bytes (60 bytes authenticated, 32 bytes unauthenticated).
2. Define an output buffer sufficient to contain a string with a maximum length of 2*N(k) bytes.
3. Define the standard POSIX (also known as C) locale. Each character in the string is a single-byte US-ASCII character.
4. First, copy the tape format’s unauthenticated KAD data (if any) to the input buffer. Next, bytes from the authenticated KAD are concatenated, after the unauthenticated bytes. In many implementations the unauthenticated KAD is empty, and in those cases the entire input buffer will be populated with bytes from authenticated KAD.
5. For each byte in the input buffer, convert to US-ASCII as follows:
6. Convert the byte's value to exactly 2 hexadecimal numeric characters, including a leading 0 where necessary. Append these 2 numeric characters to the output buffer, with the high-nibble represented by the left-most hexadecimal numeric character.
4.3.1.5 [bookmark: _Toc441680203]Usage Example
The following usage example will create a key identifier which can be stored in ASI. The identifier will then be translated for storage into a tape format’s KAD, using algorithm 1. Both LTO4 and LTO5 examples of KAD contents are provided.
The reverse translation from KAD bytes to the KMIP key identifier is not shown, but would be accomplished via algorithm 2. This re-constructed key identifier string would be used to Locate the key via ASI.
Example of creating a key identifier. Implementation-specific material is used to generate a key identifier. The content of this material is based on server or client policy. An example of a text string which could be used to generate a KMIP key identifier for tape is as follows.
SN123456_MFR:XYZ INC_BAR12345_TM20131234
This example is a set of 40 characters which will be used to create a KMIP key identifier for use as specified in the KMIP Tape Profile. Every 8th character is bold.
This set of characters is suitable as a key identifier for either LTO4 or LTO5, since it will fit within the smaller 44 character KAD space of LTO4.
The corresponding KMIP key identifier, which is a string of hexadecimal numeric character pairs, is shown below. This string will be stored in ASI Application Data.
53 4E 31 32 33 34 35 36 5F 4D 46 52 3A 58 59 5A 20 49 4E 43 5F 42 41 52
 31 32 33 34 35 5F 54 4D 32 30 31 33 31 32 33 34
Spaces are shown for to improve readability, but are NOT part of the ASI string. Every 8th hexadecimal numeric pair is bold.
Note the identifier has exactly 2x more characters than the material used to generate the KMIP key identifier.
Translating the key identifier to KAD bytes (LTO4). The corresponding KAD content, for use with an LTO4 tape cartridge is shown in the following figure.

[bookmark: _Toc374120796][bookmark: _Toc374120807][bookmark: _Toc269140626][bookmark: _Toc441680355][bookmark: _Toc442965982]Figure 2: KAD Content for LTO4
Each square is 1 byte (8 bits). Each square contains the 8 bit value which represents a pair of hexadecimal numeric characters in the KMIP key identifier string.
Every 8th byte of KAD is shaded.
The KAD was populated by converting the rightmost 24 characters (12 character pairs) of the identifier string into bytes of authenticated KAD. The remaining characters of the identifier were written to unauthenticated KAD.
Translating the key identifier to KAD bytes (LTO5). The corresponding KAD for use with an LTO5 and later tape cartridge is shown in the following figure.

[bookmark: _Toc374120797][bookmark: _Toc374120808][bookmark: _Toc269140627][bookmark: _Toc441680356][bookmark: _Toc442965983]Figure 3: KAD Content for LTO5
Each square is 1 byte (8 bits). Each square contains the 8 bit value which represents a pair of hexadecimal numeric characters in the key identifier string.
Every 8th byte of KAD is shaded.
The KAD was populated by converting the rightmost 80 characters (40 character pairs) of the identifier string into bytes of authenticated KAD. The unauthenticated KAD is not used because all of the data fits within authenticated KAD.
4.4 [bookmark: _Toc364947896][bookmark: _Toc390438659][bookmark: _Toc405812204][bookmark: _Toc436836421][bookmark: _Toc441680204][bookmark: _Toc478051824][bookmark: _Toc491258946]Registering Extension Information
As tag values and their interpretation for the most part should be known for a client and server to meaningfully use an extension, the following registration procedure should be used.
1. Document the Extensions including:
a. Extension Tag, Extension Name, Extension Type values to be reserved
b. A brief description of the purpose of the Extension
c. Example use case messages (requests and responses)
d. Example Guidance
2. Send the Document to the KMIP TC requesting review
3. Request a KMIP TC ballot on accepting the reservation of the Extension
It is anticipated that a template document may be produced for this registration process.
4.5 [bookmark: _Toc364947897][bookmark: _Ref366846393][bookmark: _Toc390438660][bookmark: _Toc405812205][bookmark: _Toc436836422][bookmark: _Toc441680205][bookmark: _Toc478051825][bookmark: _Toc491258947]Using KMIP for PGP Keys
PGP, both as vendor product and as standard, provides a rich environment for key management that addresses significant use cases related to such areas as secure exchange of email, documents and other resources. Although KMIP is by no means required for support of PGP environments, it can provide a valuable mechanism for movement of PGP keys between a particular PGP environment, such as Symantec Encryption Management Server (SEMS, née PGP Universal), and another key management environment.
KMIP does not attempt to represent the full range of functionality in PGP environments. However, the use cases related to movement of PGP keys across environments, described in the KMIP Use Cases document, can be supported by taking advantage both of the PGP-specific capabilities in KMIP, such as the PGP Key object introduced in KMIP V1.2, and of KMIP messages, objects, operations and attributes in general.
In order to support the PGP use cases, KMIP V1.2 introduces new capabilities:
· PGP Key managed object
· Alternative Name attribute
· Enhancements to Link attribute
The PGP Key managed object contains a PGP key (specified in [RFC4880]) as an opaque blob. KMIP compliant servers do not need to understand the fine structure of PGP keys. The intention here is that PGP-enabled clients be able to discover the PGP Key managed cryptographic objects by searching for one of the various names contained within the block. The Alternative Name attribute can be used to specify one or more names (e.g. User IDs) that are attached to the PGP Key object. The PGP-enabled clients are expected to digest the PGP Key object and properly assign these Alternative Name attributes on to the cryptographic managed object. The KMIP server does not have to do this work.
Internally, PGP keys may contain many public-private key pairs, each tied to a specific type of encryption operations (one key for signing, one for encryption, and one to tie the other two together in a trust relationship is one typical arrangement.) The Link attribute supports new values that enable the description of this set of PGP Key relationships. The new values are parent, child, previous and next. For example, the private and public keys associated with a PGP Key can be pointed to from the PGP Key with the “child” link attribute. Additional Decryption Keys (ADK) can be pointed to from the PGP Key with the “child” link attribute and can be point to each other with the “previous” and “next” link attributes. In this way, the link attributes can be used to define the structural relationships required to establish the web of trust for a PGP Key.
As mentioned above, KMIP does not attempt to represent all the information about PGP keys that would be managed within a PGP implementation. For example, policies such as algorithms supported, by a PGP key are not expressed within KMIP. Instead, KMIP enables the specification of these attributes, if necessary, as information enclosed within the opaque value defined for a given PGP key. This information would be handled by security administration and out-of-band coordination between the PGP environments that participate in the KMIP exchanges related to PGP keys.
KMIP complaint servers are not expected to be able to create PGP Key objects from scratch. PGP-enabled clients will do the key creation and pass the resulting information up to KMIP.
4.6 [bookmark: _Toc364947898][bookmark: _Toc390438661][bookmark: _Toc405812206][bookmark: _Toc436836423][bookmark: _Toc441680206][bookmark: _Toc478051826][bookmark: _Toc491258948]KMIP Client Registration Models
There are several common approaches to registering KMIP clients with KMIP servers:
· Manual client registration within a single trust boundary
· Automatic client registration across multiple trust boundaries
· Configuring a KMIP Server for use with Automatic Client Registration
The goal of these approaches is to establish the KMIP-interoperable secure channel or channels between KMIP servers and clients, such as a mutually-authenticated TLS channel.
In order to support the goal of establishing an interoperable approach to establishing this channel, this section provides more detailed information about these approaches to client registration.
In a further step towards interoperability KMIP 1.3 added a new Query Function, Client Registration Methods, which provides a client a means to determine which automated client registrations method(s) a KMIP server supports. Although a KMIP server is not required to support any automated registration method. Reflecting common usage for KMIP, all three of the scenarios described below discuss the use of X.509 certificates for trust establishment; other mechanisms may be used instead but are not described here. Similarly, all three scenarios describe the establishment of a mutually-authenticated TLS connection as the basis trusted exchange of KMIP messages, corresponding to the published KMIP authentication suite profiles; other authentication mechanisms can be used with KMIP, but are not described here.
4.6.1 [bookmark: _Toc364947899][bookmark: _Ref366846278][bookmark: _Ref366846298][bookmark: _Ref366846313][bookmark: _Ref366846330][bookmark: _Ref366846349][bookmark: _Toc390438662][bookmark: _Toc405812207][bookmark: _Toc436836424][bookmark: _Toc441680207][bookmark: _Toc478051827][bookmark: _Toc491258949]Manual Client Registration
In this approach, there is no assumption of pre-population of authentication credentials in the client, such as by installing an X.509 certificate into a tape library or drive during the manufacturing process. Rather, a credential is propagated out-of-band to the client administrator, who installs it into the client environment. The credential is then used on initial and subsequent contact between the client and server systems.
This registration model often entails the server administrator creating a package that contains 1) X.509 certificate that the client will use to identify itself to the server when creating a TLS mutually-authenticated session; 2) information about the X.509 certificate that will be presented by the server to the client during negotiation of the mutual authentication, enabling the client to verify the server identity; and 3) possibly additional information that can be included in the credential of the KMIP message sent across the established channel, such as to provide finer granularity for particular drives within a tape library. As indicated, the use of this package of materials takes place during two phases: first during the establishment of the TLS secure channel; second during the transmission of KMIP messages. The server administrator must have configured the server to recognize the X.509 certificate presented by the client, to present the correct X.509 certificate of its own to the client in return and to recognize the additional information provided in the credential object in the KMIP message, if any.
In this model, KMIP is not used to transmit the X.509 certificate and server information used in establishing the secure channel. There is nothing to prevent KMIP being used to send this information; but commonly this is done using mechanisms other than KMIP, nor is there any expectation that KMIP is a required or default mechanism for propagating the credential and the information. The distribution mechanism, therefore, may well vary across vendors.
The use of additional information as the credential in the KMIP message is also neither required nor a default. Inclusion of such a credential in the package distributed to the client administrator and in one or more KMIP messages is also, therefore, likely to vary across vendors.
4.6.2 [bookmark: _Toc364947900][bookmark: _Ref366846340][bookmark: _Ref366846355][bookmark: _Ref366846363][bookmark: _Toc390438663][bookmark: _Toc405812208][bookmark: _Toc436836425][bookmark: _Toc441680208][bookmark: _Toc478051828][bookmark: _Toc491258950]Automated Client Registration
In this approach the credential used to establish a mutually-authenticated TLS connection is not provided in the package provided by the server administrator. Instead, the establishment of trust between the client and server is accomplished by some other mechanism.
Starting with KMIP 1.3, a client may use the Query Function, Client Registration Methods, to identify which automated client registrations method(s) a KMIP server supports. Methods included in the enumeration are Unspecified, Server Pre-generated, Server On-demand, Client Generated and Client Registered. Test cases which cover how to use the Client Registration Method Query Function and implement the referenced automated client registration methods are included in the KMIP Test Cases document [KMIP-TC].
One example of a Server Pre-generated method is having an X.509 certificate installed in a client device during the manufacturing process. This certificate is then used as a bootstrap mechanism for the subsequent exchange of the kind of information exchanged between client administrator and server administrator in section 4.6.1.
There will often be configuration activity for the client device based on information, such as a Service ID, received from the server administrator. Once the client administrator initiates auto-registration, the client device sends the X.509 certificate to the server, for example in order to use it to establish an initial TLS session. The server then sends the equivalent of the registration packet in section 4.6.1 above to the client and the client returns the certificate to be used for establishing the secure TLS channel with the server.
In this model, administrator intervention may be required to determine whether the initial client certificate should be accepted. The scenario above assumes that the return of the server’s packet of registration is immediate and automatic; alternatively, the return of the packet of information may be done manually by the server administrator, as in section 4.6.1 above; or the return of the packet of server information may be done by the server, but only after that action has been approved by an administrator.
As discussed in section 4.6.1, KMIP can be used by the client in sending the X.509 certificates to the server. However, this is not required. If it is sent to the server using a KMIP register operation, the server must be able to distinguish that this operation is intended not only to register the cryptographic object, but also to initiate the registration of the client as a legitimate participant in KMIP message exchange.
4.6.3 [bookmark: _Toc364947901][bookmark: _Toc390438664][bookmark: _Toc405812209][bookmark: _Toc436836426][bookmark: _Toc441680209][bookmark: _Toc478051829][bookmark: _Toc491258951]Registering Sub-Clients Based on a Trusted Primary Client
Another model is to register sub-clients of a trusted client. In this model, the establishment of trust between the client and server can be accomplished using either of the approaches in section 4.6.1 or 4.6.2. However, the server may also send additional information to the client, such as a “tenant identifier”, which it will have to provide to sub-clients for them to use they attempt to register individually. The individual sub-clients would follow a registration model such as that described in section 4.6.2, but would also provide the tenant identifier along with the X.509 certificate so that the server can decide whether to accept the client, based on such criteria as (for example) the TCP/IP address of the sub-client relative to that of the primary client.
This approach can be used for tiered clients that need to be grouped based on their association with a larger trusted entity, but that also need individual identities and trust relationships established based on those identities.
KMIP can be used for sending both the client certificate and the tenant identifier to the server.
4.7 [bookmark: _Toc436836427][bookmark: _Toc441680210][bookmark: _Toc478051830][bookmark: _Toc491258952]Using One Time Pad Algorithms
As of KMIP 1.3, One Time Pad is added to the Cryptographic Algorithm enumeration allowing for One Time Pad algorithms to be used within the context of KMIP. One Time Pads can be used for cryptographic operations where the key material is either not known to the KMIP server or the KMIP server is not willing to provide that information to the KMIP client. Test cases and examples which demonstrate the usage of the One Time Pad algorithm in combination with the cryptographic operations may be found the KMIP Test Cases document [KMIP-TC].
4.8 [bookmark: _Toc436836428][bookmark: _Toc441680211][bookmark: _Toc478051831][bookmark: _Toc491258953]Cryptographic Shredding (Erasure)
Cryptographic (Crypto) Shredding, which is also referred to as Cryptographic Erasure) is the deletion of a cryptographic key in order to render data encrypted with that key unrecoverable. Cryptographic shredding may be supported with KMIP via the Client-to-Server Destroy operation and via the Server-to-Client Notify operation.
If key material used to encrypt data is only persisted (stored) at the KMIP server and not at the encryption point (KMIP client is co-located with or a proxy to the encryption point) then cryptographic shredding may be achieved by sending a KMIP Destroy request to the KMIP server. How the KMIP server destroys the key and whether the server choices to retain meta-data about the deleted key is a vendor implementation decision and outside of the scope of KMIP. Please see section 4.9 regarding options for determining the type of key deletion a KMIP server or a KMIP client supports.
If the key material is persisted at the encryption point (in addition to the at the KMIP server) then the KMIP server may use the (optional) Notify operation with the Destroy Date attribute included to inform the KMIP client (co-located with or a proxy to the encryption point) that the key has been deleted. Upon receipt of this notification the KMIP Client (and encryption point) could be programmed to destroy any copy of the key that it has stored. Note that KMIP does not require that either a KMIP Server or KMIP client to support the Notify operation nor does KMIP require that a KMIP client behave in a specific manner based on a notification. This example just demonstrates how Notify could be used to facilitate key destruction and cryptographic shredding. The method the KMIP client uses to destroy the key and whether to maintain meta-data for the key is a vendor implementation and is also out of scope of KMIP.
4.9 [bookmark: _Ref415062128][bookmark: _Toc436836429][bookmark: _Toc441680212][bookmark: _Toc478051832][bookmark: _Toc491258954]Key Shredding
Key destruction is eliminating a cryptographic key so that it is no longer accessible for use in a cryptographic function (e.g. NIST [SP800-57-1] Destroy state). Key shredding is taking the destruction process a step further so that the cryptographic key is destroyed using a methods where the key is no only inaccessible from the cryptographic application in which the key was used, but that the key is not recoverable using forensics methods outside of the cryptographic application. This type of destruction method normally follows a data sanitization method such as overwriting key with random data (e.g. [DoD5220.22M] NIST [SP800-88]). KMIP does not impose any requirements on the methods a KMIP client or KMIP server uses to destroy a key. However, starting with KMIP 1.3 it is possible to query the type of destruction methods that a KMIP client or KMIP server support by using the Query Capabilities function within the Query operation. The Capability Information object which is returned in the Query response may contain the Shredding Algorithm which specifies the supported destruction method.
4.10 [bookmark: _Toc478051833][bookmark: _Toc491258955]AES-XTS Key Handling
AES-XTS[footnoteRef:1] is an implementation of the AES encryption algorithm with the XTS (XEX (XOR Encrypt XOR) Tweakable Block Cipher with Ciphertext Stealing) cipher mode (see [SP800-38E]). What is unique about the XTS mode is that it requires the use of two AES keys. AES-XTS 512 requires two 256-bit AES keys while AES-XTS 256 requires two 128-bit AES keys. [1: Also referred to as XTS-AES]

While KMIP has supported the XTS block cipher mode since KMIP 1.0, there has been no guidance around how the two AES keys associated with XTS mode were created and associated. This has resulted in different, non-interoperable KMIP implementations.
[bookmark: Ref_op__ServerClient]With KMIP 1.4, AES-XTS profiles (AX-M-1-14 & AX-M-2-14) and associated test cases have been defined (see [KMIP-Prof]). KMIP implementations should treat the required XTS keys as two distinct keys (e.g. two 256-bit AES keys). KMIP operations (e.g. Create, Register, Get) associated with these two keys are batched within the profile to logically keep the handling of these associated keys together. A simple custom attribute (X-ID) is used to specify a naming convention that associates the two AES keys. The Link attribute (with Link Types of Next Link and Previous Link) is used to associate the two AES keys with one another on the KMIP server.
5 [bookmark: _Toc436836430][bookmark: _Toc441680213][bookmark: _Toc478051834][bookmark: _Toc491258956]Deprecated KMIP Functionality
This section describes KMIP functionality that has been deprecated.
Use of deprecated functionality is discouraged since such functionality may be dropped in a future release of the [KMIP-Spec].
5.1 [bookmark: _Toc364947903][bookmark: _Toc390438666][bookmark: _Toc405812211][bookmark: _Toc436836431][bookmark: _Toc441680214][bookmark: _Toc478051835][bookmark: _Toc491258957]KMIP Deprecation Rule
Items in the normative KMIP Specification [KMIP-Spec] document can be marked deprecated in any document version, but will be removed only in a major version. Similarly, conformance clauses or other normative information in the KMIP Profiles [KMIP-Prof] document can be deprecated in any document version, but removed only in a major version. Information in the non-normative KMIP Usage Guide [this document] and KMIP Test Cases [KMIP-TC] documents may be removed in any document version.
5.2 [bookmark: _Toc364947904][bookmark: _Toc390438667][bookmark: _Toc405812212][bookmark: _Toc436836432][bookmark: _Toc441680215][bookmark: _Toc478051836][bookmark: _Toc491258958]Certificate Attribute Related Fields
The KMIP v1.0 Certificate Identifier, Certificate Subject and Certificate Issuer attributes are populated from values found within X.509 public key or PGP certificates. In KMIP v1.0 these fields were encoded as Text String, but the values of these fields are obtained from certificates which are ASN.1 (X.509) or octet (PGP) encoded. In KMIP v1.1, the data type associated with these fields was changed from Text String to Byte String so that the values of these fields parsed from the certificates can be preserved and no conversion from the encoded values into a text string is necessary.
Since these certificate-related attributes and associated fields were included as part of the v1.0 KMIP specification and that there may be implementations supporting these attributes using the Text String encoding, a decision was made to deprecate these attributes in KMIP v1.1 and replace them with newly named attributes and fields. As part of this change, separate certificate-related attributes for X.509 certificates were introduced.
Table 4 provides a list of the deprecated certificate-related attributes and fields along with their corresponding tag value.
	Deprecated Attribute/Field
	Deprecated Tag Value

	Certificate Identifier
	420014

	Certificate Issuer
	420015

	Certificate Issuer Alternative Name
	420016

	Certificate Issuer Distinguished Name
	420017

	Certificate Subject
	42001A

	Certificate Subject Alternative Name
	42001B

	Certificate Subject Distinguished Name
	42001C

	Issuer
	42003B

	Serial Number
	420087

[bookmark: _Toc374120785][bookmark: _Toc374120809][bookmark: _Toc269140578][bookmark: _Toc269140628][bookmark: _Toc441680357][bookmark: _Toc442965984]Table 4: Deprecated Certificate Related Attributes and Fields
Table 5 provides a mapping of v1.0 to v1.1 certificate attributes and fields.
	Deprecated V1.0 Attribute
	Deprecated V1.0 Field
	New V1.1 Attribute
	New V1.1 Field

	Certificate Identifier
	Issuer
	X.509 Certificate Identifier
	Issuer Distinguished Name

	
	Serial Number
	
	Certificate Serial Number

	Certificate Issuer

	Certificate Issuer Distinguished Name
	X.509 Certificate Issuer

	Issuer Distinguished Name

	
	Certificate Issuer Alternative Name
	
	Issuer Alternative Name

	Certificate Subject
	Certificate Subject Distinguished Name
	X.509 Certificate Subject
	Subject Distinguished Name

	
	Certificate Subject Alternative Name
	
	Subject Alternative Name

[bookmark: _Toc374120786][bookmark: _Toc374120810][bookmark: _Toc269140579][bookmark: _Toc269140629][bookmark: _Toc441680358][bookmark: _Toc442965985]Table 5: Mapping of v1.0 to v1.1 Certificate Related Attributes and Fields
5.3 [bookmark: _Toc364947905][bookmark: _Toc390438668][bookmark: _Toc405812213][bookmark: _Toc436836433][bookmark: _Toc441680216][bookmark: _Toc478051837][bookmark: _Toc491258959]PGP Certificate and Certificate Request Types
KMIP 1.0 and 1.1 included support for PGP via a PGP Certificate Type and associated PGP Certificate Request Type. However the certificate concept, which is typically associated with X.509 public key certificates, is not well suited for describing PGP keys and associated credentials as specified in [RFC4880]. For example, PGP may associate multiple asymmetric key pairs and associated public key certificates to the same subject, while a X.509 certificate associates a single public key to a subject. As a result of these differences it was difficult to apply the X.509 public key certificate structure and attributes to PGP credentials in a meaningful way.
KMIP 1.2 introduces changes and additions to KMIP that allow PGP usage scenarios as specified in [RFC4880] to be better supported within KMIP. (See Section 4.5 for more information.) These changes include the deprecation of the PGP Certificate Type and PGP Certificate Request Type concepts and the introduction of a new PGP Key managed cryptographic object.
Table 6 lists the PGP Certificate Type enumeration which has been deprecated as of KMIP 1.2.
	Certificate Type

	Name
	Value

	PGP
	00000002 (deprecated)

[bookmark: _Toc374120787][bookmark: _Toc374120811][bookmark: _Toc269140580][bookmark: _Toc269140630][bookmark: _Toc441680359][bookmark: _Toc442965986]Table 6: Deprecated PGP Certificate Type
Table 7 lists the PGP Certificate Request Type enumeration which has been deprecated as of KMIP 1.2
	Certificate Request Type

	Name
	Value

	PGP
	00000004 (deprecated)

[bookmark: _Toc374120788][bookmark: _Toc374120812][bookmark: _Toc269140581][bookmark: _Toc269140631][bookmark: _Toc441680360][bookmark: _Toc442965987]Table 7: Deprecated PGP-Certificate Request Type
5.4 [bookmark: _Toc436836434][bookmark: _Toc441680217][bookmark: _Toc478051838][bookmark: _Toc491258960]Template
As of KMIP 1.3, the Template Managed Object is deprecated and may be removed in subsequent versions of KMIP. In addition, using Name within Template-Attribute to refer to a Template Managed Object is also deprecated.
KMIP implementations should no longer use or depend upon the Template Managed Object or any Template specific handling. KMIP implementations should migrate to using individual attributes in operations which currently support use of a Template.
5.5 [bookmark: _Toc436836435][bookmark: _Toc441680218][bookmark: _Toc478051839][bookmark: _Toc491258961]Operational Policy
As of KMIP 1.3, all aspects of Operational Policy have been deprecated and may be removed in subsequent versions of KMIP. Specifically the Operational Policy Name attribute, the Default Operational Policy for Secret Objects, the Default Operational Policy for Certificates and Public Key Objects and the Default Operational Policy for Template Objects are deprecated. Additionally the requirement for a key management system to implement at least one Default Operational Policy has been relaxed (made optional).
KMIP implementations should no longer use or depend upon any Operation Policy handling in KMIP implementations.
5.6 [bookmark: _Toc436836436][bookmark: _Toc441680219][bookmark: _Toc478051840][bookmark: _Toc491258962]Transparent Elliptic Curve Key Formats
In KMIP 1.2 and earlier versions there were separate Transparent EC key format types (public and private) for each supported elliptic curve algorithm (i.e., ECDSA, ECDH, ECMQV). As of KMIP 1.3 these algorithm specific Transparent EC key format types are deprecated and are being replaced by generic Transparent EC key format types (public and private). Implementations using the algorithm specific Transparent EC key format types should migrate to use the generic Transparent EC key format types introduced in KMIP 1.3.
Table 8 provides a mapping of the deprecated algorithm specific Transparent EC key format types and their KMIP 1.3 generic Transparent EC key format type replacements.
	Deprecated Algorithm Specific Transparent EC Key Format
	Deprecated Algorithm Specific Transparent EC Key Format Type Enumeration
	Replacement Generic Transparent EC Key Format
	Replacement Generic Transparent EC Key Format Type Enumeration

	Transparent ECDSA Private Key
	0000000E
	Transparent EC Private Key
	00000014

	Transparent ECDSA Public Key
	0000000F
	Transparent EC Public Key
	00000015

	Transparent ECDH Private Key
	00000010
	Transparent EC Private Key
	00000014

	Transparent ECDH Public Key
	00000011
	Transparent EC Public Key
	00000015

	Transparent ECMQV Private Key
	00000012
	Transparent EC Private Key
	00000014

	Transparent ECMQV Public Key
	00000013
	Transparent EC Public Key
	00000015

[bookmark: _Toc441680361][bookmark: _Toc442965988]Table 8: Transparent EC Key Format Type Mapping

6 [bookmark: _Toc436836437][bookmark: _Toc441680220][bookmark: _Toc478051841][bookmark: _Toc491258963]Implementation Conformance
This document is intended to be informational only and as such has no conformance clauses. The conformance requirements may be found in the KMIP Specification [KMIP-Spec] and the KMIP Profiles [KMIP-Prof] document.
Appendix A. [bookmark: _Toc436836438][bookmark: _Toc441680221][bookmark: _Toc478051842][bookmark: _Toc491258964]Acknowledgments
The following individuals have participated in the creation of this specification and are gratefully acknowledged:
[bookmark: _Toc323645843]Participants:	
Anthony Berglas, Cryptsoft
Justin Corlett, Cryptsoft
Tony Cox, Cryptsoft
Tim Hudson, Cryptsoft
Bruce Rich, Cryptsoft
Greg Scott, Cryptsoft
Magda Zdunkiewicz, Cryptsoft
Judith Furlong, Dell
Michael Phillips, Dell
Lina Baquero, Fornetix
Jeff Bartell, Fornetix
Stephen Edwards, Fornetix
Gary Gardner, Fornetix
Heather Stevens, Fornetix
Gerald Stueve, Fornetix
Charles White, Fornetix
Alex Downey, Futurex
Hannah Lee, Hancom Secure, Inc.
Indra Fitzgerald, Hewlett Packard Enterprise (HPE)
Christopher Hillier, Hewlett Packard Enterprise (HPE)
Matt Suh, Hewlett Packard Enterprise (HPE)
Nathan Turajski, Hewlett Packard Enterprise (HPE)
Steve Wierenga, Hewlett Packard Enterprise (HPE)
Rinkesh Bansal, IBM
Mathias Bjorkqvist, IBM
Kevin Driver, IBM
Prashant Mestri, IBM
Krishna Yellepeddy, IBM
Andre Bereza, KRYPTUS
Tim Chevalier, NetApp
Hai-May Chao, Oracle
Valerie Fenwick, Oracle
Susan Gleeson, Oracle
Hal Lockhart, Oracle
Saikat Saha, Oracle
Radhika Siravara, Oracle
Mark Joseph, P6R, Inc
Jim Susoy, P6R, Inc
John Leiseboer, QuintessenceLabs Pty Ltd.
David Featherstone, SafeNet, Inc.
Joseph Brand, Semper Fortis Solutions
Chris Skiscim, Semper Fortis Solutions
Kathy Kriese, Symantec Corp.
Robert Lockhart, Thales e-Security
Steve He, Vormetric, Inc.
Peter Tsai, Vormetric, Inc.
Joshua Zhu, Vormetric, Inc.

Appendix B. [bookmark: _Toc436836439][bookmark: _Toc441680222][bookmark: _Toc478051843][bookmark: _Toc491258965]Acronyms
The following abbreviations and acronyms are used in this document:
	Item
	Description

	3DES
	Triple Data Encryption Standard

	ADK
	Additional Decryption Key

	AES
	Advanced Encryption Standard specified in [FIPS 197]

	ANSI
	American National Standards Institute

	ARQC
	Authorization Request Cryptogram

	ASCII
	American Standard Code for Information Interchange

	ASI
	Application Specific Information

	ASN.1
	Abstract Syntax Notation One

	CA
	Certification Authority

	CBC
	Cipher Block Chaining specified in [SP800-38A]

	CMC
	Certificate Management Messages over CMS specified in [RFC5272]

	CMP
	Certificate Management Protocol specified in [RFC4210]

	CRL
	Certificate Revocation List specified in [X.509]

	CRMF
	Certificate Request Message Format specified in [RFC4211]

	CVC
	Card Verification Code

	DEK
	Data Encryption Key

	DH
	Diffie-Hellman specified in [X9.42]

	DSA
	Digital Signature Algorithm specified in [FIPS 186-4]

	DSS
	Digital Signature Standard

	ECC
	Elliptic Curve Cryptography

	ECDH
	Elliptic Curve Diffie Hellman

	ECDSA
	Elliptic Curve Digital Signature Algorithm

	FIPS
	Federal Information Processing Standard

	GCM
	Galois/Counter Mode specified in [SP800-38D]

	HMAC
	Keyed-Hash Message Authentication Code specified in [FIPS 198-1]

	HSM
	Hardware Security Module

	HTTP
	Hyper Text Transfer Protocol

	HTTPS
	Hyper Text Transfer Protocol (Secure socket)

	ID
	Identification

	IP
	Internet Protocol

	IPSec
	Internet Protocol Security

	ITU
	International Telecommunication Union

	KAD
	Key Associated Data

	KEK
	Key Encryption Key

	KMIP
	Key Management Interoperability Protocol

	LTO4
	Linear Tape-Open, Generation 4

	LTO5
	Linear Tape-Open, Generation 5

	LTO6
	Linear Tape-Open, Generation 6

	MAC
	Message Authentication Code

	MD5
	Message Digest 5 Algorithm specified in [RFC1321]

	MDO
	Meta-Data Only

	MGF
	Mask Generation Function

	NIST
	National Institute of Standards and Technology

	OAEP
	Optimal Asymmetric Encryption Padding specified in [PKCS#1]

	OID
	Object Identifier

	PEM
	Privacy Enhanced Mail specified in [RFC1421]

	PGP
	OpenPGP specified in [RFC4880]

	PKCS
	Public-Key Cryptography Standards

	POP
	Proof of Possession

	POSIX
	Portable Operating System Interface

	PSS
	Probabilistic Signature Scheme specified in [PKCS#1]

	RNG
	Random Number Generator

	RSA
	Rivest, Shamir, Adelman (an algorithm)

	SEMS
	Symantec Encryption Management Server

	SHA
	Secure Hash Algorithm specified in [FIPS 180-4]

	SP
	Special Publication

	SMIME
	Secure Multipurpose Internet Mail Extensions

	TCP
	Transport Control Protocol

	TDEA
	Triple Data Encryption Algorithm

	TLS
	Transport Layer Security

	TTLV
	Tag, Type, Length, Value

	URI
	Uniform Resource Identifier

Appendix C. [bookmark: _Toc436836440][bookmark: _Toc441680223][bookmark: _Toc478051844][bookmark: _Toc491258966]Table of Figures and Tables
Table of Figures
Figure 1: Aggregator Client Example	14
Figure 2: KAD Content for LTO4	62
Figure 3: KAD Content for LTO5	63

Table of Tables

Table 1: ID Placeholder Prior to and Resulting from a KMIP Operation	26
Table 2: Cryptographic Usage Masks Pairs	34
Table 3: ECC Recommended Curve Mapping	48
Table 4: Deprecated Certificate Related Attributes and Fields	71
Table 5: Mapping of v1.0 to v1.1 Certificate Related Attributes and Fields	71
Table 6: Deprecated PGP Certificate Type	72
Table 7: Deprecated PGP-Certificate Request Type	72
Table 8: Transparent EC Key Format Type Mapping	73

Appendix D. [bookmark: _Toc478051845][bookmark: _Toc491258967]KMIP Specification Cross Reference
	Reference Term
	KMIP 1.0
	KMIP 1.1
	KMIP 1.2
	KMIP 1.3
	KMIP 1.4

	1 Introduction
	
	

	Non-Normative References
	1.3
	1.3
	1.3
	1.3
	1.3

	Normative References
	1.2
	1.2
	1.2
	1.2
	1.2

	Terminology
	1.1
	1.1
	1.1
	1.1
	1.1

	
	
	
	
	
	

	2 Objects
	
	

	Attribute
	2.1.1
	2.1.1
	2.1.1
	2.1.1
	2.1.1

	Authenticated Encryption Additional Data
	
	
	
	
	2.1.22

	Authenticated Encryption Tag
	
	
	
	
	2.1.23

	Base Objects
	2.1
	2.1
	2.1
	2.1
	2.1

	Capability Information
	-
	-
	-
	-
	2.1.21

	Certificate
	2.2.1
	2.2.1
	2.2.1
	2.2.1
	2.2.1

	Correlation Value
	-
	-
	-
	-
	2.1.15

	Credential
	2.1.2
	2.1.2
	2.1.2
	2.1.2
	2.1.2

	Data
	-
	-
	2.1.10
	2.1.10
	2.1.10

	Data Length
	-
	-
	2.1.11
	2.1.11
	2.1.11

	Extension Information
	-
	2.1.9
	2.1.9
	2.1.9
	2.1.9

	Final Indicator
	-
	-
	-
	-
	2.1.17

	Init Indicator
	-
	-
	-
	-
	2.1.16

	Key Block
	2.1.3
	2.1.3
	2.1.3
	2.1.3
	2.1.3

	Key Value
	2.1.4
	2.1.4
	2.1.4
	2.1.4
	2.1.4

	Key Wrapping Data
	2.1.5
	2.1.5
	2.1.5
	2.1.5
	2.1.5

	Key Wrapping Specification
	2.1.6
	2.1.6
	2.1.6
	2.1.6
	2.1.6

	MAC Data
	-
	-
	2.1.13
	2.1.13
	2.1.13

	Managed Objects
	2.2
	2.2
	2.2
	2.2
	2.2

	Nonce
	-
	-
	2.1.14.
	2.1.14.
	2.1.14

	Opaque Object
	2.2.8
	2.2.8
	2.2.8
	2.2.8
	2.2.8

	PGP Key
	-
	-
	2.2.9
	2.2.9
	2.2.9

	Private Key
	2.2.4
	2.2.4
	2.2.4
	2.2.4
	2.2.4

	Profile Information
	-
	-
	-
	-
	2.1.19

	Public Key
	2.2.3
	2.2.3
	2.2.3
	2.2.3
	2.2.3

	RNG Parameters
	-
	-
	-
	-
	2.1.18

	Secret Data
	2.2.7
	2.2.7
	2.2.7
	2.2.7
	2.2.7

	Signature Data
	-
	-
	2.1.12
	2.1.12
	2.1.12

	Split Key
	2.2.5
	2.2.5
	2.2.5
	2.2.5
	2.2.5

	Symmetric Key
	2.2.2
	2.2.2
	2.2.2
	2.2.2
	2.2.2

	Template
	2.2.6
	2.2.6
	2.2.6
	2.2.6
	2.2.6

	Template-Attribute Structures
	2.1.8
	2.1.8
	2.1.8
	2.1.8
	2.1.8

	Transparent DH Private Key
	2.1.7.6
	2.1.7.6
	2.1.7.6
	2.1.7.6
	2.1.7.6

	Transparent DH Public Key
	2.1.7.7
	2.1.7.7
	2.1.7.7
	2.1.7.7
	2.1.7.7

	Transparent DSA Private Key
	2.1.7.2
	2.1.7.2
	2.1.7.2
	2.1.7.2
	2.1.7.2

	Transparent DSA Public Key
	2.1.7.3
	2.1.7.3
	2.1.7.3
	2.1.7.3
	2.1.7.3

	Transparent EC Private Key
	-
	-
	-
	2.1.7.14
	2.1.7.14

	Transparent EC Public Key
	-
	-
	-
	2.1.7.15
	2.1.7.15

	Transparent ECDH Private Key
	2.1.7.10
	2.1.7.10
	2.1.7.10
	2.1.7.10
	2.1.7.10

	Transparent ECDH Public Key
	2.1.7.11
	2.1.7.11
	2.1.7.11
	2.1.7.11
	2.1.7.11

	Transparent ECDSA Private Key
	2.1.7.8
	2.1.7.8
	2.1.7.8
	2.1.7.8
	2.1.7.8

	Transparent ECDSA Public Key
	2.1.7.9
	2.1.7.9
	2.1.7.9
	2.1.7.9
	2.1.7.9

	Transparent ECMQV Private Key
	2.1.7.12
	2.1.7.12
	2.1.7.12
	2.1.7.12
	2.1.7.12

	Transparent ECMQV Public Key
	2.1.7.13
	2.1.7.13
	2.1.7.13
	2.1.7.13
	2.1.7.13

	Transparent Key Structures
	2.1.7
	2.1.7
	2.1.7
	2.1.7
	2.1.7

	Transparent RSA Private Key
	2.1.7.4
	2.1.7.4.
	2.1.7.4
	2.1.7.4
	2.1.7.4

	Transparent RSA Public Key
	2.1.7.5
	2.1.7.5
	2.1.7.5
	2.1.7.5
	2.1.7.5

	Transparent Symmetric Key
	2.1.7.1
	2.1.7.1
	2.1.7.1
	2.1.7.1
	2.1.7.1

	Validation Information
	-
	-
	-
	-
	2.1.20

	
	
	
	
	
	

	3 Attributes
	
	

	Activation Date
	3.19
	3.24
	3.24
	3.24
	3.24

	Alternative Name
	-
	-
	3.40
	3.40
	3.40

	Always Sensitive
	
	
	
	
	3.49

	Application Specific Information
	3.30
	3.36
	3.36.
	3.36
	3.36

	Archive Date
	3.27
	3.32
	3.32
	3.32
	3.32

	Attributes
	3
	3
	3
	3
	3

	Certificate Identifier
	3.9
	3.13.
	3.13
	3.13
	3.13

	Certificate Issuer
	3.11
	3.15
	3.15
	3.15
	3.15

	Certificate Length
	-
	3.9
	3.9
	3.9
	3.9

	Certificate Subject
	3.10
	3.14
	3.14
	3.14
	3.14

	Certificate Type
	3.8
	3.8
	3.8
	3.8
	3.8

	Comment
	-
	-
	-
	-
	3.47

	Compromise Date
	3.25
	3.30
	3.30
	3.30
	3.30

	Compromise Occurrence Date
	3.24
	3.29
	3.29
	3.29
	3.29

	Contact Information
	3.31
	3.37
	3.37
	3.37
	3.37

	Cryptographic Algorithm
	3.4
	3.4
	3.4
	3.4
	3.4

	Cryptographic Domain Parameters
	3.7
	3.7
	3.7
	3.7
	3.7

	Cryptographic Length
	3.5
	3.5
	3.5
	3.5
	3.5

	Cryptographic Parameters
	3.6
	3.6.
	3.6
	3.6
	3.6

	Cryptographic Usage Mask
	3.14
	3.19.
	3.19
	3.19
	3.19

	Custom Attribute
	3.33
	3.39
	3.39
	3.39
	3.39

	Deactivation Date
	3.22
	3.27
	3.27
	3.27
	3.27

	Default Operation Policy
	3.13.2
	3.18.2
	3.18.2
	3.18.2
	3.18.2

	Default Operation Policy for Certificates and Public Key Objects
	3.13.2.2
	3.18.2.2
	3.18.2.2
	3.18.2.2
	3.18.2.2

	Default Operation Policy for Secret Objects
	3.13.2.1
	3.18.2.1
	3.18.2.1
	3.18.2.1
	3.18.2.1

	Default Operation Policy for Template Objects
	3.13.2.3
	3.18.2.3
	3.18.2.3
	3.18.2.3
	3.18.2.3

	Description
	-
	-
	-
	-
	3.46

	Destroy Date
	3.23
	3.28
	3.28
	3.28
	3.28

	Digest
	3.12
	3.17
	3.17
	3.17
	3.17

	Digital Signature Algorithm
	-
	3.16.
	3.16.
	3.16.
	3.16

	Extractable
	
	
	
	
	3.50

	Fresh
	-
	3.34
	3.34
	3.34
	3.34

	Initial Date
	3.18
	3.23
	3.23
	3.23
	3.23

	Key Value Location
	-
	-
	3.42
	3.42
	3.42

	Key Value Present
	-
	-
	3.41
	3.41
	3.41

	Last Change Date
	3.32
	3.38
	3.38
	3.38
	3.38

	Lease Time
	3.15
	3.20
	3.20
	3.20
	3.20

	Link
	3.29
	3.35
	3.35
	3.35
	3.35

	Name
	3.2
	3.2
	3.2
	3.2
	3.2

	Never Extractable
	
	
	
	
	3.51

	Object Group
	3.28
	3.33
	3.33
	3.33
	3.33

	Object Type
	3.3
	3.3
	3.3
	3.3
	3.3

	Operation Policy Name
	3.13
	3.18
	3.18
	3.18
	3.18

	Operations outside of operation policy control
	3.13.1
	3.18.1
	3.18.1
	3.18.1
	3.18.1

	Original Creation Date
	-
	-
	3.43
	3.43
	3.43

	PKCS#12 Friendly Name
	-
	-
	-
	-
	3.45

	Process Start Date
	3.20
	3.25
	3.25
	3.25
	3.25

	Protect Stop Date
	3.21
	3.26
	3.26
	3.26
	3.26

	Random Number Generator
	-
	-
	-
	3.44
	3.44

	Revocation Reason
	3.26
	3.31
	3.31
	3.31
	3.31

	State
	3.17
	3.22
	3.22
	3.22
	3.22

	Sensitive
	
	
	
	
	3.48

	Unique Identifier
	3.1
	3.1
	3.1
	3.1
	3.1

	Usage Limits
	3.16
	3.21
	3.21
	3.21
	3.21

	X.509 Certificate Identifier
	-
	3.10
	3.10
	3.10
	3.10

	X.509 Certificate Issuer
	-
	3.12
	3.12
	3.12
	3.12

	X.509 Certificate Subject
	-
	3.11
	3.11
	3.11
	3.11

	
	
	
	
	
	

	4 Client-to-Server Operations
	
	

	Activate
	4.18
	4.19
	4.19
	4.19
	4.19

	Add Attribute
	4.13
	4.14
	4.14
	4.14
	4.14

	Archive
	4.21
	4.22
	4.22
	4.22
	4.22

	Cancel
	4.25
	4.27
	4.27
	4.27
	4.27

	Certify
	4.6
	4.7
	4.7
	4.7
	4.7

	Check
	4.9
	4.10
	4.10
	4.10
	4.10

	Create
	4.1
	4.1
	4.1
	4.1
	4.1

	Create Key Pair
	4.2
	4.2
	4.2
	4.2
	4.2

	Create Split Key
	-
	-
	4.38
	4.38
	4.38

	Decrypt
	-
	-
	4.30
	4.30
	4.30

	Delete Attribute
	4.15
	4.16
	4.16
	4.16
	4.16

	Derive Key
	4.5
	4.6
	4.6
	4.6
	4.6

	Destroy
	4.20
	4.21
	4.21
	4.21
	4.21

	Discover Versions
	-
	4.26
	4.26
	4.26
	4.26

	Encrypt
	-
	-
	4.29
	4.29
	4.29

	Export
	
	
	
	
	4.40

	Get
	4.10
	4.11
	4.11
	4.11
	4.11

	Get Attribute List
	4.12
	4.13
	4.13
	4.13
	4.13

	Get Attributes
	4.11
	4.12
	4.12
	4.12
	4.12

	Get Usage Allocation
	4.17
	4.18
	4.18
	4.18
	4.18

	Hash
	-
	-
	4.37
	4.37
	4.37

	Import
	
	
	
	
	4.41

	Join Split Key
	-
	-
	4.39
	4.39
	4.39

	Locate
	4.8
	4.9
	4.9
	4.9
	4.9

	MAC
	-
	-
	4.33
	4.33
	4.33

	MAC Verify
	-
	-
	4.34
	4.34
	4.34

	Modify Attribute
	4.14
	4.15
	4.15
	4.15
	4.15

	Obtain Lease
	4.16
	4.17
	4.17
	4.17
	4.17

	Poll
	4.26
	4.28
	4.28
	4.28
	4.28

	Query
	4.24
	4.25
	4.25
	4.25
	4.25

	Re-certify
	4.7
	4.8
	4.8
	4.8
	4.8

	Recover
	4.22
	4.23
	4.23
	4.23
	4.23

	Register
	4.3
	4.3
	4.3
	4.3
	4.3

	Re-key
	4.4
	4.4
	4.4
	4.4
	4.4

	Re-key Key Pair
	-
	4.5
	4.5
	4.5
	4.5

	Revoke
	4.19
	4.20
	4.20
	4.20
	4.20

	RNG Retrieve
	-
	-
	4.35
	4.35
	4.35

	RNG Seed
	-
	-
	4.36
	4.36
	4.36

	Sign
	-
	-
	4.31
	4.31
	4.31

	Signature Verify
	-
	-
	4.32
	4.32
	4.32

	Validate
	4.23
	4.24
	4.24
	4.24
	4.24

	
	
	
	
	
	

	5 Server-to-Client Operations
	
	

	Notify
	5.1
	5.1
	5.1
	5.1
	5.1

	Put
	5.2
	5.2
	5.2
	5.2
	5.2

	Query
	-
	-
	-
	5.3
	5.3

	
	
	
	
	
	

	6 Message Contents
	
	

	Asynchronous Correlation Value
	6.8
	6.8
	6.8
	6.8
	6.8

	Asynchronous Indicator
	6.7
	6.7
	6.7
	6.7
	6.7

	Attestation Capable Indicator
	-
	-
	6.17
	6.17
	6.17

	Authentication
	6.6
	6.6
	6.6
	6.6
	6.6

	Batch Count
	6.14
	6.14
	6.14
	6.14
	6.14

	Batch Error Continuation Option
	6.13
	6.13
	6.13
	6.13
	6.13

	Batch Item
	6.15
	6.15
	6.15
	6.15
	6.15

	Batch Order Option
	6.12
	6.12
	6.12
	6.12
	6.12

	Client Correlation Value
	
	
	
	
	6.18

	Maximum Response Size
	6.3
	6.3
	6.3
	6.3
	6.3

	Message Extension
	6.16
	6.16
	6.16
	6.16
	6.16

	Operation
	6.2
	6.2
	6.2
	6.2
	6.2

	Protocol Version
	6.1
	6.1
	6.1
	6.1
	6.1

	Result Message
	6.11
	6.11
	6.11
	6.11
	6.11

	Result Reason
	6.10
	6.10
	6.10
	6.10
	6.10

	Result Status
	6.9
	6.9
	6.9
	6.9
	6.9

	Server Correlation Value
	
	
	
	
	6.19

	Time Stamp
	6.5
	6.5
	6.5
	6.5
	6.5

	Unique Batch Item ID
	6.4
	6.4
	6.4
	6.4
	6.4

	
	
	
	
	
	

	7 Message Format
	
	
	
	
	

	Message Structure
	7.1
	7.1
	7.1
	7.1
	7.1

	Operations
	7.2
	7.2
	7.2
	7.2
	7.2

	
	
	
	
	
	

	8 Authentication
	
	

	Authentication
	8
	8
	8
	8
	8

	
	
	
	
	
	

	9 Message Encoding
	
	

	Alternative Name Type Enumeration
	-
	-
	9.1.3.2.34
	9.1.3.2.34
	9.1.3.2.34

	Attestation Type Enumeration
	-
	-
	9.1.3.2.36
	9.1.3.2.36
	9.1.3.2.36

	Batch Error Continuation Option Enumeration
	9.1.3.2.29
	9.1.3.2.30
	9.1.3.2.30
	9.1.3.2.30
	9.1.3.2.30

	Bit Masks
	9.1.3.3
	9.1.3.3
	9.1.3.3
	9.1.3.3
	9.1.3.3

	Block Cipher Mode Enumeration
	9.1.3.2.13
	9.1.3.2.14
	9.1.3.2.14
	9.1.3.2.14
	9.1.3.2.14

	Cancellation Result Enumeration
	9.1.3.2.24
	9.1.3.2.25
	9.1.3.2.25
	9.1.3.2.25
	9.1.3.2.25

	Certificate Request Type Enumeration
	9.1.3.2.21
	9.1.3.2.22
	9.1.3.2.22
	9.1.3.2.22
	9.1.3.2.22

	Certificate Type Enumeration
	9.1.3.2.6
	9.1.3.2.6
	9.1.3.2.6
	9.1.3.2.6
	9.1.3.2.6

	Client Registration Method Enumeration
	-
	-
	-
	9.1.3.2.47
	9.1.3.2.47

	Credential Type Enumeration
	9.1.3.2.1
	9.1.3.2.1
	9.1.3.2.1
	9.1.3.2.1
	9.1.3.2.1

	Cryptographic Algorithm Enumeration
	9.1.3.2.12
	9.1.3.2.13
	9.1.3.2.13
	9.1.3.2.13
	9.1.3.2.13

	Cryptographic Usage Mask
	9.1.3.3.1
	9.1.3.3.1
	9.1.3.3.1
	9.1.3.3.1
	9.1.3.3.1

	Defined Values
	9.1.3
	9.1.3
	9.1.3
	9.1.3
	9.1.3

	Derivation Method Enumeration
	9.1.3.2.20
	9.1.3.2.21
	9.1.3.2.21
	9.1.3.2.21
	9.1.3.2.21

	Destroy Action Enumeration
	-
	-
	-
	9.1.3.2.44
	9.1.3.2.44

	Digital Signature Algorithm Enumeration
	-
	9.1.3.2.7
	9.1.3.2.7
	9.1.3.2.7
	9.1.3.2.7

	DRBG Algorithm Enumeration
	-
	-
	-
	9.1.3.2.38
	9.1.3.2.38

	Encoding Option Enumeration
	-
	9.1.3.2.32
	9.1.3.2.32
	9.1.3.2.32
	9.1.3.2.32

	Enumerations
	9.1.3.2
	9.1.3.2
	9.1.3.2
	9.1.3.2
	9.1.3.2

	Examples
	9.1.2
	9.1.2
	9.1.2
	9.1.2
	9.1.2

	FIPS186 Variation Enumeration
	-
	-
	-
	9.1.3.2.39
	9.1.3.2.39

	Hashing Algorithm Enumeration
	9.1.3.2.15
	9.1.3.2.16
	9.1.3.2.16
	9.1.3.2.16
	9.1.3.2.16

	Item Length
	9.1.1.3
	9.1.1.3
	9.1.1.3
	9.1.1.3
	9.1.1.3

	Item Tag
	9.1.1.1
	9.1.1.1
	9.1.1.1
	9.1.1.1
	9.1.1.1

	Item Type
	9.1.1.2
	9.1.1.2
	9.1.1.2
	9.1.1.2
	9.1.1.2

	Item Value
	9.1.1.4
	9.1.1.4
	9.1.1.4
	9.1.1.4
	9.1.1.4

	Key Compression Type Enumeration
	9.1.3.2.2
	9.1.3.2.2
	9.1.3.2.2
	9.1.3.2.2
	9.1.3.2.2

	Key Format Type Enumeration
	9.1.3.2.3
	9.1.3.2.3
	9.1.3.2.3
	9.1.3.2.3
	9.1.3.2.3

	Key Role Type Enumeration
	9.1.3.2.16
	9.1.3.2.17
	9.1.3.2.17
	9.1.3.2.17
	9.1.3.2.17

	Key Value Location Type Enumeration
	-
	-
	9.1.3.2.35
	9.1.3.2.35
	9.1.3.2.35

	Key Wrap Type Enumeration
	
	
	
	
	9.1.3.2.48

	Link Type Enumeration
	9.1.3.2.19
	9.1.3.2.20
	9.1.3.2.20
	9.1.3.2.20
	9.1.3.2.20

	Mask Generator Enumeration
	
	
	
	
	9.1.3.2.49

	Name Type Enumeration
	9.1.3.2.10
	9.1.3.2.11
	9.1.3.2.11
	9.1.3.2.11
	9.1.3.2.11

	Object Group Member Enumeration
	-
	9.1.3.2.33
	9.1.3.2.33
	9.1.3.2.33
	9.1.3.2.33

	Object Type Enumeration
	9.1.3.2.11
	9.1.3.2.12
	9.1.3.2.12
	9.1.3.2.12
	9.1.3.2.12

	Opaque Data Type Enumeration
	9.1.3.2.9
	9.1.3.2.10
	9.1.3.2.10
	9.1.3.2.10
	9.1.3.2.10

	Operation Enumeration
	9.1.3.2.26
	9.1.3.2.27
	9.1.3.2.27
	9.1.3.2.27
	9.1.3.2.27

	Padding Method Enumeration
	9.1.3.2.14
	9.1.3.2.15
	9.1.3.2.15
	9.1.3.2.15
	9.1.3.2.15

	Profile Name Enumeration
	-
	-
	-
	9.1.3.2.42
	9.1.3.2.42

	Put Function Enumeration
	9.1.3.2.25
	9.1.3.2.26
	9.1.3.2.26
	9.1.3.2.26
	9.1.3.2.26

	Query Function Enumeration
	9.1.3.2.23
	9.1.3.2.24
	9.1.3.2.24
	9.1.3.2.24
	9.1.3.2.24

	Recommended Curve Enumeration
	9.1.3.2.5
	9.1.3.2.5
	9.1.3.2.5
	9.1.3.2.5
	9.1.3.2.5

	Result Reason Enumeration
	9.1.3.2.28
	9.1.3.2.29
	9.1.3.2.29
	9.1.3.2.29
	9.1.3.2.29

	Result Status Enumeration
	9.1.3.2.27
	9.1.3.2.28
	9.1.3.2.28
	9.1.3.2.28
	9.1.3.2.28

	Revocation Reason Code Enumeration
	9.1.3.2.18
	9.1.3.2.19
	9.1.3.2.19
	9.1.3.2.19
	9.1.3.2.19

	RNG Algorithm Enumeration
	-
	-
	-
	9.1.3.2.37
	9.1.3.2.37

	RNG Mode Enumeration
	-
	-
	-
	9.1.3.2.46
	9.1.3.2.46

	Secret Data Type Enumeration
	9.1.3.2.8
	9.1.3.2.9
	9.1.3.2.9
	9.1.3.2.9
	9.1.3.2.9

	Shredding Algorithm Enumeration
	-
	-
	-
	9.1.3.2.45
	9.1.3.2.45

	Split Key Method Enumeration
	9.1.3.2.7
	9.1.3.2.8
	9.1.3.2.8
	9.1.3.2.8
	9.1.3.2.8

	State Enumeration
	9.1.3.2.17
	9.1.3.2.18
	9.1.3.2.18
	9.1.3.2.18
	9.1.3.2.18

	Storage Status Mask
	9.1.3.3.2
	9.1.3.3.2
	9.1.3.3.2
	9.1.3.3.2
	9.1.3.3.2

	Tags
	9.1.3.1
	9.1.3.1
	9.1.3.1
	9.1.3.1
	9.1.3.1

	TTLV Encoding
	9.1
	9.1
	9.1
	9.1
	9.1

	TTLV Encoding Fields
	9.1.1
	9.1.1
	9.1.1
	9.1.1
	9.1.1

	Unwrap Mode Enumeration
	-
	-
	-
	9.1.3.2.43
	9.1.3.2.43

	Usage Limits Unit Enumeration
	9.1.3.2.30
	9.1.3.2.31
	9.1.3.2.31
	9.1.3.2.31
	9.1.3.2.31

	Validation Authority Type Enumeration
	-
	-
	-
	9.1.3.2.40
	9.1.3.2.40

	Validity Indicator Enumeration
	9.1.3.2.22
	9.1.3.2.23
	9.1.3.2.23
	9.1.3.2.23
	9.1.3.2.23

	Validation Type Enumeration
	-
	-
	-
	9.1.3.2.41
	9.1.3.2.41

	Wrapping Method Enumeration
	9.1.3.2.4
	9.1.3.2.4
	9.1.3.2.4
	9.1.3.2.4
	9.1.3.2.4

	XML Encoding
	9.2
	-
	-
	-
	-

	
	
	
	
	
	

	10 Transport
	
	

	Transport
	10
	10
	10
	10
	10

	11 Error Handling
	

	Activate
	11.19
	11.20
	11.20
	11.20
	11.20

	Add Attribute
	11.14
	11.15
	11.15
	11.15
	11.15

	Archive
	11.22
	11.23
	11.23
	11.23
	11.23

	Batch Items
	11.28
	11.29
	11.29
	11.41
	11.43

	Cancel
	11.26
	11.27
	11.27
	11.28
	11.28

	Certify
	11.7
	11.8
	11.8
	11.8
	11.8

	Check
	11.10
	11.11
	11.11
	11.11
	11.11

	Create
	11.2
	11.2
	11.2
	11.2
	11.2

	Create Key Pair
	11.3
	11.3
	11.3
	11.3
	11.3

	Create Split Key
	-
	-
	11.30
	11.39
	11.39

	Decrypt
	-
	-
	-
	11.31
	11.31

	Delete Attribute
	11.16
	11.17
	11.17
	11.17
	11.17

	Derive Key
	11.6
	11.7
	11.7
	11.7
	11.7

	Destroy
	11.21
	11.22
	11.22
	11.22
	11.22

	Discover Versions
	-
	-
	-
	11.27
	11.27

	Encrypt
	-
	-
	-
	11.30
	11.30

	Export
	
	
	
	
	11.41

	General
	11.1
	11.1
	11.1
	11.1
	11.1

	Get
	11.11
	11.12
	11.12
	11.12
	11.12

	Get Attributes
	11.12
	11.13
	11.13
	11.13
	11.13

	Get Attribute List
	11.13
	11.14
	11.14
	11.14
	11.14

	Get Usage Allocation
	11.18
	11.19
	11.19
	11.19
	11.19

	Hash
	-
	-
	-
	11.38
	11.38

	Import
	
	
	
	
	11.42

	Join Split Key
	-
	-
	11.31
	11.40
	11.40

	Locate
	11.9
	11.10
	11.10
	11.10
	11.10

	MAC
	-
	-
	-
	11.34
	11.34

	MAC Verify
	-
	-
	-
	11.35
	11.35

	Modify Attribute
	11.15
	11.16
	11.16
	11.16
	11.16

	Obtain Lease
	11.17
	11.18
	11.18
	11.18
	11.18

	Poll
	11.27
	11.28
	11.28
	11.29
	11.29

	Query
	11.25
	11.26
	11.26
	11.26
	11.26

	Recover
	11.23
	11.24
	11.24
	11.24
	11.24

	Register
	11.4
	11.4
	11.4
	11.4
	11.4

	Re-key
	11.5
	11.5
	11.5
	11.5
	11.5

	Re-key Key Pair
	-
	11.6
	11.6
	11.6
	11.6

	Re-certify
	11.8
	11.9
	11.9
	11.9
	11.9

	Revoke
	11.20
	11.21
	11.21
	11.21
	11.21

	RNG Retrieve
	-
	-
	-
	11.36
	11.36

	RNG Seed
	-
	-
	-
	11.37
	11.37

	Sign
	-
	-
	-
	11.32
	11.32

	Signature Verify
	-
	-
	-
	11.33
	11.33

	Validate
	11.24
	11.25
	11.25
	11.25
	11.25

	
	
	
	
	
	

	12 KMIP Server and Client Implementation Conformance
	
	

	Conformance clauses for a KMIP Server
	12.1
	-
	-
	
	

	KMIP Client Implementation Conformance
	-
	12.2
	12.2
	12.2
	12.2

	KMIP Server Implementation Conformance
	-
	12.1
	12.1
	12.1
	12.1

Appendix E. [bookmark: _Toc436836442][bookmark: _Toc441680225][bookmark: _Toc478051846][bookmark: _Toc491258968] Revision History
	Revision
	Date
	Editor
	Changes Made

	V1.4-wd01
	12/08/16
	Judy Furlong
	Moved v1.3 Usage Guide content into OASIS provided v1.4 UG Template
KMIP 1.4 Updates include:
· Updated 4.2. 3 to reference new RSA-PSS & RSA-OAEP Mask Generator and Mask Generator Hashing Algorithm enumerations
· Updated 3.15 for Query Batch Capabilities
· New section 3.44 for Description and Comment attributes.

	V1.4-wd02
	03/16/17
	Judy Furlong
	Updated Appendix D KMIP Specification Cross Reference for KMIP 1.4
Added KMIP 1.4 content for:
· Client and Server Correlation Values
· GCM/Authenticated Encryption Additional Data (AEAD)
· PKCS#12 Key Format
· Get Wrapped (Key Wrap Type)
Other editorial updates

	V1.4-wd03
	03/23/17
	Judy Furlong
	Added KMIP 1.4 content for:
· AES-XTS Handling
· Extractable and Sensitive Attributes

	V1.4-cnprd01
	3/30/17
	Judy Furlong
	Public Review Draft

	V1.4-cnd02
	7/7/17
	Judy Furlong
	Updated references and Appendix D KMIP Specification Cross Reference to align with KMIP 1.4 Specification updates post public review.
Other editorial changes.

	V1.4-cnd02a
	7/14/17
	Judy Furlong
	Fixed Section Title in 3.23.1

image2.png
OASIS [

image3.png
Server

Rules

Client 1
Client 2

Client3

KL

Proxy Client 1
A
Rules L
A|B|C —
\<
® Protocol :
Proxy Client 2 /
A
Rules B
AlB|C
C

Proxy 1
Delegators
(Encrypting

Devices)

Proxy 2
Delegators
(Encrypting

Devices)

Proxy client
authenticatestothe
serverusingthe
certificate and
establishesa TLS
session

Proxy clienthas non-
KMIP communicationto
proxy delegators

Serveris aware of end
devicesthroughthe
Device Credential

image4.emf
U

K

A

D

A

K

A

D

28 of 32 bytes utilized

33 31 34 32

32 33 30 31 35 54 4D 5F

33 31 34 32

53 34 35 36 4E 31 32 33

5F 4D 46 52 3A 5A 58 59

4E 20 43 49 42 41 5F 52

oleObject1.bin
33

31

34

32

32

33

30

31

35

54

4D

5F

33

31

34

32

53

34

35

36

4E

31

32

33

5F

4D

46

52

3A

5A

58

59

4E

20

43

49

42

41

5F

UKAD

AKAD

52

28 of 32 bytes utilized

image5.emf
A

K

A

D

U

K

A

D

53 34 35 36 4E 31 32 33

5F 4D 46 52 3A 5A 58 59

4E 20 43 49 42 41 5F 52

33 31 34 32 35 54 4D 5F

32 33 30 31 33 31 34 32

40 of 60 bytes utilized

0 of 32 bytes utilized

oleObject2.bin
5F

4D

46

52

3A

5A

58

59

4E

20

43

49

53

42

41

5F

52

33

31

34

32

35

54

4D

5F

32

33

30

31

33

31

34

32

UKAD

AKAD

34

35

36

4E

31

32

33

40 of 60 bytes utilized

0 of 32 bytes utilized

image1.png
This is aNon-Standards
Track Work Product. The
patent provisions of the
0ASIS IPR Policy do not

apply.

