

Key Management Interoperability

Protocol Usage Guide Version 1.1

Committee Note 01

27 July 2012

Specification URIs
This version:
http://docs.oasis-open.org/kmip/ug/v1.1/cn01/kmip-ug-v1.1-cn01.doc
(Authoritative)
http://docs.oasis-open.org/kmip/ug/v1.1/cn01/kmip-ug-v1.1-cn01.html
http://docs.oasis-open.org/kmip/ug/v1.1/cn01/kmip-ug-v1.1-cn01.pdf

Previous version:
http://www.oasis-open.org/committees/download.php/44883/kmip-ug-
v1.1-cnprd01.zip

Latest version:
http://docs.oasis-open.org/kmip/ug/v1.1/kmip-ug-v1.1.doc (Authoritative)
http://docs.oasis-open.org/kmip/ug/v1.1/kmip-ug-v1.1.html
http://docs.oasis-open.org/kmip/ug/v1.1/kmip-ug-v1.1.pdf

Technical Committee:
OASIS Key Management Interoperability Protocol (KMIP) TC

Chairs:
Robert Griffin (robert.griffin@rsa.com), EMC Corporation
Subhash Sankuratripati (Subhash.Sankuratripati@netapp.com), NetApp

Editors:
Indra Fitzgerald (indra.fitzgerald@hp.com), HP
Robert Griffin (robert.griffin@rsa.com), EMC Corporation

Related work:
This document replaces or supersedes:

 Key Management Interoperability Protocol Usage Guide Version 1.0.
OASIS Committee Specification 01. 15 June 2010. http://docs.oasis-
open.org/kmip/ug/v1.0/cs01/kmip-ug-1.0-cs-01.html.

This document is related to:

 Key Management Interoperability Protocol Specification Version 1.1.
Latest version.
http://docs.oasis-open.org/kmip/spec/v1.1/kmip-spec-v1.1.html

http://docs.oasis-open.org/kmip/ug/v1.1/cn01/kmip-ug-v1.1-cn01.doc
http://docs.oasis-open.org/kmip/ug/v1.1/cn01/kmip-ug-v1.1-cn01.html
http://docs.oasis-open.org/kmip/ug/v1.1/cn01/kmip-ug-v1.1-cn01.pdf
http://www.oasis-open.org/committees/download.php/44883/kmip-ug-v1.1-cnprd01.zip
http://www.oasis-open.org/committees/download.php/44883/kmip-ug-v1.1-cnprd01.zip
http://docs.oasis-open.org/kmip/ug/v1.1/kmip-ug-v1.1.doc
http://docs.oasis-open.org/kmip/ug/v1.1/kmip-ug-v1.1.html
http://docs.oasis-open.org/kmip/ug/v1.1/kmip-ug-v1.1.pdf
http://www.oasis-open.org/committees/kmip/
mailto:robert.griffin@rsa.com
http://www.emc.com/
mailto:Subhash.Sankuratripati@netapp.com
http://www.netapp.com/
mailto:indra.fitzgerald@hp.com
http://www.hp.com/
mailto:robert.griffin@rsa.com
http://www.emc.com/
http://docs.oasis-open.org/kmip/ug/v1.0/cs01/kmip-ug-1.0-cs-01.html
http://docs.oasis-open.org/kmip/ug/v1.0/cs01/kmip-ug-1.0-cs-01.html
http://docs.oasis-open.org/kmip/spec/v1.1/kmip-spec-v1.1.html

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 2 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 Key Management Interoperability Protocol Profiles Version 1.1. Latest version.
http://docs.oasis-open.org/kmip/profiles/v1.1/kmip-profiles-v1.1.html

 Key Management Interoperability Protocol Test Cases Version 1.1. Latest version.
http://docs.oasis-open.org/kmip/testcases/v1.1/kmip-testcases-v1.1.html

Abstract:
This document is intended to complement the Key Management Interoperability

Protocol Specification by providing guidance on how to implement the Key

Management Interoperability Protocol (KMIP) most effectively to ensure

interoperability.

KMIP V1.1 enhances the KMIP V1.0 standard (established in October 2010) by

1) defining new functionality in the protocol to improve interoperability, such as a

Discover Versions operation and a Group object;

2) defining additional Test Cases for verifying and validating the new functionality;

3) providing additional information in the KMIP Usage Guide to assist in effective

implementation of KMIP in key management clients and servers; and

4) defining new profiles for establishing KMIP-compliant implementations.

The Key Management Interoperability Protocol (KMIP) is a single, comprehensive

protocol for communication between clients that request any of a wide range of

encryption keys and servers that store and manage those keys. By replacing redundant,

incompatible key management protocols, KMIP provides better data security while at

the same time reducing expenditures on multiple products.

Status:
This document was last revised or approved by the OASIS Key Management

Interoperability Protocol (KMIP) TC on the above date. The level of approval is also listed

above. Check the “Latest version” location noted above for possible later revisions of this

document.

Technical Committee members should send comments on this document to the
Technical Committee’s email list. Others should send comments to the Technical
Committee by using the “Send A Comment” button on the Technical Committee’s web
page at http://www.oasis-open.org/committees/kmip/.

Citation format:
When referencing this document the following citation format should be used:

[KMIP-UG]

Key Management Interoperability Protocol Usage Guide Version 1.1. 27 July 2012. OASIS
Committee Note 01.
http://docs.oasis-open.org/kmip/ug/v1.1/cn01/kmip-ug-v1.1-cn01.html.

http://docs.oasis-open.org/kmip/profiles/v1.1/kmip-profiles-v1.1.html
http://docs.oasis-open.org/kmip/testcases/v1.1/kmip-testcases-v1.1.html
http://www.oasis-open.org/committees/comments/index.php?wg_abbrev=kmip
http://www.oasis-open.org/committees/kmip/
http://docs.oasis-open.org/kmip/ug/v1.1/cn01/kmip-ug-v1.1-cn01.html

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 3 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Copyright © OASIS Open 2012. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the

OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be

found at the OASIS website.

This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published, and distributed, in whole or in part, without

restriction of any kind, provided that the above copyright notice and this section are

included on all such copies and derivative works. However, this document itself may not

be modified in any way, including by removing the copyright notice or references to

OASIS, except as needed for the purpose of developing any document or deliverable

produced by an OASIS Technical Committee (in which case the rules applicable to

copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to

translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS

or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and

OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT

INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

http://www.oasis-open.org/policies-guidelines/ipr

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 4 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Table of Contents
1 Introduction ... 7

1.1 Terminology ... 7

1.2 For a list of terminologies refer to [KMIP-Spec]. Normative References 7

1.3 Non-normative References.. 13

2 Assumptions... 14

2.1 Island of Trust .. 14

2.2 Message Security ... 14

2.3 State-less Server .. 14

2.4 Extensible Protocol .. 14

2.5 Server Policy .. 14

2.6 Support for Cryptographic Objects .. 14

2.7 Client-Server Message-based Model ... 15

2.8 Synchronous and Asynchronous Messages ... 15

2.9 Support for “Intelligent Clients” and “Key Using Devices“ .. 15

2.10 Batched Requests and Responses ... 15

2.11 Reliable Message Delivery ... 16

2.12 Large Responses .. 16

2.13 Key Life-cycle and Key State .. 16

3 Usage Guidelines ... 17

3.1 Authentication ... 17

3.1.1 Credential .. 17

3.2 Authorization for Revoke, Recover, Destroy and Archive Operations 20

3.3 Using Notify and Put Operations ... 21

3.4 Usage Allocation .. 21

3.5 Key State and Times... 21

3.6 Template .. 23

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 5 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3.6.1 Template Usage Examples .. 24

3.7 Archive Operations .. 25

3.8 Message Extensions ... 25

3.9 Unique Identifiers .. 25

3.10 Result Message Text .. 25

3.11 Query ... 26

3.12 Canceling Asynchronous Operations ... 26

3.13 Multi-instance Hash ... 26

3.14 Returning Related Objects ... 26

3.15 Reducing Multiple Requests through the Use of Batch .. 26

3.16 Maximum Message Size .. 27

3.17 Using Offset in Re-key and Re-certify Operations ... 27

3.18 Locate Queries ... 27

3.19 ID Placeholder .. 29

3.20 Key Block .. 30

3.21 Using Wrapped Keys with KMIP .. 31

3.21.1 Encrypt-only Example with a Symmetric Key as an Encryption Key for a Get Request

and Response ... 32

3.21.2 Encrypt-only Example with a Symmetric Key as an Encryption Key for a Register

Request and Response ... 32

3.21.3 Encrypt-only Example with an Asymmetric Key as an Encryption Key for a Get

Request and Response ... 33

3.21.4 MAC-only Example with an HMAC Key as an Authentication Key for a Get Request

and Response ... 34

3.21.5 Registering a Wrapped Key as an Opaque Cryptographic Object 35

3.21.6 Encoding Option for Wrapped Keys ... 35

3.22 Object Group ... 36

3.23 Certify and Re-certify ... 37

3.24 Specifying Attributes during a Create Key Pair or Re-key Key Pair Operation 38

3.24.1 Example of Specifying Attributes during the Create Key Pair Operation 38

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 6 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3.25 Registering a Key Pair .. 40

3.26 Non-Cryptographic Objects ... 40

3.27 Asymmetric Concepts with Symmetric Keys ... 41

3.28 Application Specific Information ... 42

3.29 Mutating Attributes ... 43

3.30 Interoperable Key Naming for Tape .. 44

3.30.1 Native Tape Encryption by a KMIP Client ... 44

3.31 Revocation Reason Codes.. 49

3.32 Certificate Renewal, Update, and Re-key .. 49

3.33 Key Encoding .. 49

3.33.1 AES Key Encoding .. 50

3.33.2 Triple-DES Key Encoding ... 50

3.34 Using the Same Asymmetric Key Pair in Multiple Algorithms ... 50

3.35 Cryptographic Length of Asymmetric Keys .. 51

3.36 Discover Versions .. 51

3.37 Vendor Extensions ... 52

3.37.1 Query Extension Information ... 52

3.37.2 Registering Extension Information ... 53

3.38 Certificate Attribute Related Fields ... 53

3.39 Certificate Revocation Lists ... 55

3.40 Using the “Raw” Key Format Type... 55

3.41 Deprecated Functionality .. 55

4 Deferred KMIP Functionality ... 56

5 Implementation Conformance .. 58

Appendix A. Acknowledgements ... 59

Appendix B. Acronyms ... 61

Appendix C. Revision History ... 63

1 Introduction 1

This Key Management Interoperability Protocol Usage Guide Version 1.1 is intended to 2

complement the Key Management Interoperability Protocol Specification [KMIP-Spec] by 3

providing guidance on how to implement the Key Management Interoperability Protocol (KMIP) 4

most effectively to ensure interoperability. In particular, it includes the following guidance: 5

 Clarification of assumptions and requirements that drive or influence the design of KMIP and 6
the implementation of KMIP-compliant key management. 7

 Specific recommendations for implementation of particular KMIP functionality. 8

 Clarification of mandatory and optional capabilities for conformant implementations. 9

 Functionality considered for inclusion in KMIP V1.1, but deferred to subsequent versions of 10
the standard. 11

A selected set of conformance profiles and authentication suites are defined in the KMIP Profiles 12

specification [KMIP-Prof]. 13

[KMIP-Prof]Further assistance for implementing KMIP is provided by the KMIP Test Cases for 14

Proof of Concept Testing document [KMIP-TC] that describes a set of recommended test cases 15

and provides the TTLV (Tag/Type/Length/Value) format for the message exchanges defined by 16

those test cases. 17

1.1 Terminology 18

1.2 For a list of terminologies refer to [KMIP-Spec]. Normative 19

References 20

[FIPS186-3] 21
 22
Digital Signature Standard (DSS), FIPS PUB 186-3, June 2009, 23

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf 24
 25
[FIPS197] 26
 27
Advanced Encryption Standard (AES), FIPS PUB 197, November 26, 2001, 28

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf 29
 30
[FIPS198-1] 31
 32
The Keyed-Hash Message Authentication Code (HMAC), FIPS PUB 198-1, July 2008, 33

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf 34
 35
[IEEE1003-1] 36
 37
IEEE Std 1003.1, Standard for information technology - portable operating system interface 38

(POSIX). Shell and utilities, 2004. 39
 40

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 8 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

[ISO16609] 41
 42
ISO, Banking -- Requirements for message authentication using symmetric techniques, ISO 43

16609, 1991. 44
 45
[ISO9797-1] 46
 47
ISO/IEC, Information technology -- Security techniques -- Message Authentication Codes 48

(MACs) -- Part 1: Mechanisms using a block cipher, ISO/IEC 9797-1, 49
1999. 50

 51

[KMIP-Spec] 52

Key Management Interoperability Protocol Specification Version 1.1.Working Draft 07. 27 53

April 2012. http://www.oasis-54

open.org/apps/org/workgroup/kmip/download.php/45731/kmip-spec-55

v1.1-wd06.doc 56

 57
[KMIP-Prof] 58
 59
Key Management Interoperability Protocol Profiles Version 1.1. Working Draft 11. 26 April 60

2012. http://www.oasis-61
open.org/apps/org/workgroup/kmip/download.php/45854/kmip-profiles-62
v1.1-wd11.docx 63

 64
[PKCS#1] 65
 66
RSA Laboratories, PKCS #1 v2.1: RSA Cryptography Standard, June 14, 2002, 67

http://www.rsa.com/rsalabs/node.asp?id=2125 68
 69
[PKCS#5] 70
 71
RSA Laboratories, PKCS #5 v2.1: Password-Based Cryptography Standard, October 5, 72

2006, http://www.rsa.com/rsalabs/node.asp?id=2127 73
 74
[PKCS#7] 75
 76
RSA Laboratories, PKCS#7 v1.5: Cryptographic Message Syntax Standard. November 1, 77

1993, http://www.rsa.com/rsalabs/node.asp?id=2129 78
 79
[PKCS#8] 80
 81
RSA Laboratories, PKCS#8 v1.2: Private-Key Information Syntax Standard, November 1, 82

1993, http://www.rsa.com/rsalabs/node.asp?id=2130 83
 84
[PKCS#10] 85
 86
RSA Laboratories, PKCS #10 v1.7: Certification Request Syntax Standard, May 26, 2000, 87

http://www.rsa.com/rsalabs/node.asp?id=2132 88

http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2129
http://www.rsa.com/rsalabs/node.asp?id=2130
http://www.rsa.com/rsalabs/node.asp?id=2132

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 9 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 89
[RFC1319] 90
 91
B. Kaliski, The MD2 Message-Digest Algorithm, IETF RFC 1319, Apr 1992, 92

http://www.ietf.org/rfc/rfc1319.txt 93
 94
[RFC1320] 95
 96
R. Rivest, The MD4 Message-Digest Algorithm, IETF RFC 1320, Apr 1992, 97

http://www.ietf.org/rfc/rfc1320.txt 98
 99
[RFC1321] 100
 101
R. Rivest, The MD5 Message-Digest Algorithm, IETF RFC 1321, Apr 1992, 102

http://www.ietf.org/rfc/rfc1321.txt 103
 104
[RFC1421] 105
 106
J. Linn, Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and 107

Authentication Procedures, IETF RFC 1421, Feb 1993, 108
http://www.ietf.org/rfc/rfc1421.txt 109

 110
[RFC1424] 111
 112
B. Kaliski, Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification and 113

Related Services, IETF RFC 1424, February 1993, 114
http://www.ietf.org/rfc/rfc1424.txt 115

 116
[RFC2104] 117
 118
H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-Hashing for Message Authentication, 119

IETF RFC 2104, Feb 1997, http://www.ietf.org/rfc/rfc2104.txt 120
 121
[RFC2119] 122
 123
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 124

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 125
 126
[RFC2253] 127
 128
M. Wahl, S. Kille, T. Howes, Lightweight Directory Access Protocol (v3): UTF-8 String 129

Representation of Distinguished Names, IETF RFC 2253, Dec 1997, 130
http://www.ietf.org/rfc/rfc2253.txt 131

 132
[RFC2898] 133
 134
B. Kaliski, PKCS #5: Password-Based Cryptography Specification Version 2.0, IETF RFC 135

2898, Sep 2000, http://www.ietf.org/rfc/rfc2898.txt 136
 137

http://www.ietf.org/rfc/rfc1319.txt
http://www.ietf.org/rfc/rfc1320.txt
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc1424.txt
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2898.txt

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 10 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

[RFC3394] 138
 139
J. Schaad, R. Housley, Advanced Encryption Standard (AES) Key Wrap Algorithm, IETF 140

RFC 3394, Sep 2002, http://www.ietf.org/rfc/rfc3394.txt 141
 142
[RFC3447] 143
 144
J. Jonsson, B. Kaliski, Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography 145

Specifications Version 2.1, IETF RFC 3447 Feb 2003, 146
http://www.ietf.org/rfc/rfc3447.txt 147

 148
[RFC3629] 149
 150
F. Yergeau, UTF-8, a transformation format of ISO 10646, IETF RFC 3629, Nov 2003, 151

http://www.ietf.org/rfc/rfc3629.txt 152
 153
[RFC3647] 154
 155
S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu, RFC3647: Internet X.509 Public Key 156

Infrastructure Certificate Policy and Certification Practices Framework, 157
November 2003, http://www.ietf.org/rfc/rfc3647.txt 158

 159
[RFC4210] 160
 161
C. Adams, S. Farrell, T. Kause and T. Mononen, RFC2510: Internet X.509 Public Key 162

Infrastructure Certificate Management Protocol (CMP), September 2005, 163
http://www.ietf.org/rfc/rfc4210.txt 164

 165
[RFC4211] 166
 167
J. Schaad, RFC 4211: Internet X.509 Public Key Infrastructure Certificate Request Message 168

Format (CRMF), September 2005, http://www.ietf.org/rfc/rfc4211.txt 169
 170
[RFC4868] 171
 172
S. Kelly, S. Frankel, Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with 173

IPsec, IETF RFC 4868, May 2007, http://www.ietf.org/rfc/rfc4868.txt 174
 175
[RFC4880] 176
 177
J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, OpenPGP Message Format, 178

IETF RFC 4880, Nov 2007, http://www.ietf.org/rfc/rfc4880.txt 179
 180
[RFC4949] 181
 182
R. Shirey, RFC4949: Internet Security Glossary, Version 2, August 2007, 183

http://www.ietf.org/rfc/rfc4949.txt 184
 185
[RFC5272] 186

http://www.ietf.org/rfc/rfc3394.txt
http://www.ietf.org/rfc/rfc3447.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3647.txt
http://www.ietf.org/rfc/rfc4210.txt
http://www.ietf.org/rfc/rfc4211.txt
http://www.ietf.org/rfc/rfc4868.txt
http://www.ietf.org/rfc/rfc4880.txt
http://www.ietf.org/rfc/rfc4949.txt

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 11 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 187
J. Schaad and M. Meyers, RFC5272: Certificate Management over CMS (CMC), June 2008, 188

http://www.ietf.org/rfc/rfc5272.txt 189
 190
[RFC5280] 191
D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley and W. Polk, RFC 5280: Internet 192

X.509 Public Key Infrastructure Certificate and Certificate Revocation 193
List (CRL) Profile, May 2008, http://www.ietf.org/rfc/rfc5280.txt 194

 195
[RFC5649] 196
 197
R. Housley, Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm, IETF 198

RFC 5649, Aug 2009, http://www.ietf.org/rfc/rfc5649.txt 199
 200
[SP800-38A] 201
 202
M. Dworkin, Recommendation for Block Cipher Modes of Operation – Methods and 203

Techniques, NIST Special Publication 800-38A, Dec 2001, 204
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf 205

 206
[SP800-38B] 207
 208
M. Dworkin, Recommendation for Block Cipher Modes of Operation: The CMAC Mode for 209

Authentication, NIST Special Publication 800-38B, May 2005, 210
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 211

 212
[SP800-38C] 213
 214
M. Dworkin, Recommendation for Block Cipher Modes of Operation: the CCM Mode for 215

Authentication and Confidentiality, NIST Special Publication 800-38C, 216
May 2004, http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-217
38C_updated-July20_2007.pdf 218

 219
[SP800-38D] 220
 221
M. Dworkin, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode 222

(GCM) and GMAC, NIST Special Publication 800-38D, Nov 2007, 223
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf 224

 225
[SP800-38E] 226
 227
M. Dworkin, Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for 228

Confidentiality on Block-Oriented Storage Devices, NIST Special 229
Publication 800-38E, Jan 2010, 230
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf 231

 232
[SP800-56A] 233
 234
E. Barker, D. Johnson, and M. Smid, Recommendation for Pair-Wise Key Establishment 235

Schemes Using Discrete Logarithm Cryptography (Revised), NIST 236

http://www.ietf.org/rfc/rfc5272.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5649.txt
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 12 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Special Publication 800-56A, March 2007, 237
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-238
56A_Revision1_Mar08-2007.pdf 239

 240
[SP800-56B] 241
 242
E. Barker, L. Chen, A. Regenscheid, M. Smid, Recommendation for Pair-Wise Key 243

Establishment Schemes Using Integer Factorization Cryptography, NIST 244
Special Publication 800-56B, August 2009, 245
http://csrc.nist.gov/publications/nistpubs/800-56B/sp800-56B.pdf 246

 247
[SP800-57-1] 248
 249
E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, Recommendations for Key 250

Management - Part 1: General (Revised), NIST Special Publication 800-251
57 part 1, March 2007, http://csrc.nist.gov/publications/nistpubs/800-252
57/sp800-57-Part1-revised2_Mar08-2007.pdf 253

 254
[SP800-67] 255
 256
W. Barker, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher, 257

NIST Special Publication 800-67, Version 1.1, Revised 19 May 2008, 258
http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf 259

 260
[SP800-108] 261
 262
L. Chen, Recommendation for Key Derivation Using Pseudorandom Functions (Revised), 263

NIST Special Publication 800-108, October 2009, 264
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf 265

 266
[X.509] 267
 268
International Telecommunication Union (ITU)–T, X.509: Information technology – Open 269

systems interconnection – The Directory: Public-key and attribute 270
certificate frameworks, August 2005, http://www.itu.int/rec/T-REC-X.509-271
200508-I/en 272

 273
[X9.24-1] 274
 275
ANSI, X9.24: Retail Financial Services Symmetric Key Management - Part 1: Using 276

Symmetric Techniques, 2004. 277
 278
[X9.31] 279
 280
ANSI, X9.31: Digital Signatures Using Reversible Public Key Cryptography for the Financial 281

Services Industry (rDSA), September 1998. 282
 283
[X9.42] 284
 285

http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56B/sp800-56B.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://www.itu.int/rec/T-REC-X.509-200508-I/en
http://www.itu.int/rec/T-REC-X.509-200508-I/en

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 13 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

ANSI, X9-42: Public Key Cryptography for the Financial Services Industry: Agreement of 286
Symmetric Keys Using Discrete Logarithm Cryptography, 2003. 287

 288
[X9-57] 289
 290
ANSI, X9-57: Public Key Cryptography for the Financial Services Industry: Certificate 291

Management, 1997. 292
 293
[X9.62] 294
 295
ANSI, X9-62: Public Key Cryptography for the Financial Services Industry, The Elliptic Curve 296

Digital Signature Algorithm (ECDSA), 2005. 297
 298
[X9-63] 299
 300
ANSI, X9-63: Public Key Cryptography for the Financial Services Industry, Key Agreement 301

and Key Transport Using Elliptic Curve Cryptography, 2001. 302
 303
[X9-102] 304
 305
ANSI, X9-102: Symmetric Key Cryptography for the Financial Services Industry - Wrapping of 306

Keys and Associated Data, 2008. 307
 308
[X9 TR-31] 309
 310
ANSI, X9 TR-31: Interoperable Secure Key Exchange Key Block Specification for Symmetric 311

Algorithms, 2005. 312

1.3 Non-normative References 313

[KMIP-TC] 314
 315
Key Management Interoperability Protocol Test Cases Version 1.1. Committee Note Draft.1 316

December 2011. http://docs.oasis-open.org/kmip/usecases/v1.1/kmip-317
usecases-v1.1-cnd01.doc 318

 319

 320

 321

http://docs.oasis-open.org/kmip/usecases/v1.1/kmip-usecases-v1.1-cnd01.doc
http://docs.oasis-open.org/kmip/usecases/v1.1/kmip-usecases-v1.1-cnd01.doc

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 14 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

2 Assumptions 322

The section describes assumptions that underlie the KMIP protocol and the implementation of 323

clients and servers that utilize the protocol. 324

2.1 Island of Trust 325

Clients may be provided key material by the server, but they only use that keying material for 326

the purposes explicitly listed in the delivery payload. Clients that ignore these instructions and 327

use the keys in ways not explicitly allowed by the server are non-compliant. There is no 328

requirement for the key management system, however, to enforce this behavior. 329

2.2 Message Security 330

KMIP relies on the chosen authentication suite as specified in [KMIP-Prof] to authenticate the 331

client and on the underlying transport protocol to provide confidentiality, integrity, message 332

authentication and protection against replay attack. KMIP offers a wrapping mechanism for the 333

Key Value that does not rely on the transport mechanism used for the messages; the wrapping 334

mechanism is intended for importing or exporting managed cryptographic objects. 335

2.3 State-less Server 336

The protocol operates on the assumption that the server is state-less, which means that there is 337

no concept of “sessions” inherent in the protocol. This does not mean that the server itself 338

maintains no state, only that the protocol does not require this. 339

2.4 Extensible Protocol 340

The protocol provides for “private” or vendor-specific extensions, which allow for differentiation 341

among vendor implementations. However, any objects, attributes and operations included in an 342

implementation are always implemented as specified in [KMIP-Spec], 343

[KMIP-Spec] regardless of whether they are optional or mandatory. 344

2.5 Server Policy 345

A server is expected to be conformant to KMIP and supports the conformance clauses as 346

specified in 347

[KMIP-Spec]. However, a server may refuse a server-supported operation or client-settable 348

attribute if disallowed by the server policy. 349

2.6 Support for Cryptographic Objects 350

The protocol supports key management system-related cryptographic objects. This list currently 351

includes: 352

 Symmetric Keys 353

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 15 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 Split (multi-part) Keys 354

 Asymmetric Key Pairs and their components 355

 Digital Certificates 356

 Derived Keys 357

 Secret Data 358

 Opaque (non-interpretable) cryptographic objects 359

2.7 Client-Server Message-based Model 360

The protocol operates primarily in a client-server, message-based model. This means that most 361

protocol exchanges are initiated by a client sending a request message to a server, which then 362

sends a response to the client. The protocol also provides optional mechanisms to allow for 363

unsolicited notification of events to clients using the Notify operation, and unsolicited delivery 364

of cryptographic objects to clients using the Put operation; that is, the protocol allows a “push” 365

model, whereby the server initiates the protocol exchange with either a Notify or Put operation. 366

These Notify or Put features are optionally supported by servers and clients. Clients may register 367

in order to receive such events/notifications. Registration is implementation-specific and not 368

described in the specification. 369

2.8 Synchronous and Asynchronous Messages 370

The protocol allows two modes of operation. Synchronous (mandatory) operations are those in 371

which a client sends a request and waits for a response from the server. Polled Asynchronous 372

operations (optional) are those in which the client sends a request, the server responds with a 373

“pending” status, and the client polls the server for the completed response and completion 374

status. Server implementations may choose not to support the Polled Asynchronous feature of 375

the protocol. 376

2.9 Support for “Intelligent Clients” and “Key Using Devices“ 377

The protocol supports intelligent clients, such as end-user workstations, which are capable of 378

requesting all of the functions of KMIP. It also allows subsets of the protocol and possible 379

alternate message representations in order to support less-capable devices, which only need a 380

subset of the features of KMIP. 381

2.10 Batched Requests and Responses 382

The protocol contains a mechanism for sending batched requests and receiving the 383

corresponding batched responses, to allow for higher throughput on operations that deal with a 384

large number of entities, e. g., requesting dozens or hundreds of keys from a server at one time, 385

and performing operations in a group. An option is provided to indicate whether to continue 386

processing requests after an earlier request in the batch fails or to stop processing the 387

remaining requests in the batch. Note that there is no option to treat an entire batch as atomic, 388

that is, if a request in the batch fails, then preceding requests in the batch are not undone or 389

rolled back (see Section 3.15). A special ID Placeholder (see Section 3.19) is provided in KMIP to 390

allow related requests in a batch to be pipelined. 391

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 16 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

2.11 Reliable Message Delivery 392

The reliable message delivery function is relegated to the transport protocol, and is not part of 393

the key management protocol itself. 394

2.12 Large Responses 395

For requests that could result in large responses, a mechanism in the protocol allows a client to 396

specify in a request the maximum allowed size of a response or in the case of the Locate 397

operation the maximum number of items which should be returned. The server indicates in a 398

response to such a request that the response would have been too large and, therefore, is not 399

returned. 400

2.13 Key Life-cycle and Key State 401

 402

[KMIP-Spec] describes the key life-cycle model, based on the NIST SP 800-57 key state 403

definitions [SP800-57-1], supported by the KMIP protocol. Particular implications of the key life-404

cycle model in terms of defining time-related attributes of objects are discussed in Section 3.5 405

below. 406

 407

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 17 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3 Usage Guidelines 408

This section provides guidance on using the functionality described in the Key Management 409

Interoperability Protocol Specification. 410

3.1 Authentication 411

As discussed in [KMIP-Spec], a conforming KMIP implementation establishes and maintains 412

channel confidentiality and integrity, and provides assurance of server authenticity for KMIP 413

messaging. Client authentication is performed according to the chosen KMIP authentication 414

suite as specified in [KMIP-Prof]. Other mechanisms for client and server authentication are 415

possible and optional for KMIP implementations. 416

KMIP implementations that support the KMIP-defined Credential Types or use other vendor-417

specific mechanisms for authentication may use the optional Authentication structure specified 418

inside the Request Header to include additional identification information. Depending on the 419

server’s configuration, the server may interpret the identity of the requestor from the 420

Credential structure, contained in the Authentication structure if it is not provided during the 421

channel-level authentication. For example, in addition to performing mutual authentication 422

during a TLS handshake, the client passes the Credential structure (e.g., a username and 423

password) in the request. If the requestor’s username is not specified inside the client certificate 424

and is instead specified in the Credential structure, the server interprets the identity of the 425

requestor from the Credential structure. This supports use cases where channel-level 426

authentication authenticates a machine or service that is used by multiple users of the KMIP 427

server. If the client provides the username of the requestor in both the client certificate and the 428

Credential structure, the server verifies that the usernames are the same. If they differ, the 429

authentication fails and the server returns an error. If no Credential structure is included in the 430

request, the username of the requestor is expected to be provided inside the certificate. If no 431

username is provided in the client certificate and no Credential structure is included in the 432

request message, the server is expected to refuse authentication and return an error. 433

If authentication is unsuccessful, and it is possible to return an “authentication not successful” 434

error, this error should be returned in preference to any other result status. This prevents status 435

code probing by a client that is not able to authenticate. 436

Server decisions regarding which operations to reject if there is insufficiently strong 437

authentication of the client are not specified in the protocol. However, see Section 3.2 for 438

operations for which authentication and authorization are particularly important. 439

3.1.1 Credential 440

 441

[KMIP-Spec] defines the Username and Password structure for the Credential Type Username 442

and Password. The structure consists of two fields: Username and Password. Password is a 443

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 18 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

recommended, but optional, field, which may be excluded only if the client is authenticated 444

using one of the authentication suites defined in [KMIP-Prof]. For example, if the client 445

performs client certificate authentication during the TLS handshake, and the Authentication 446

structure is provided in the Message Request, the Password field is an optional field in the 447

Username and Password structure of the Credential structure. 448

The Credential structure is used to provide additional identification information. As described 449

above, for certain use cases, channel-level authentication may only authenticate a machine or 450

service that is used by multiple clients of the KMIP server. The Credential structure may be used 451

in this scenario to identify individual clients by specifying the username in the Username and 452

Password structure. Alternatively, the Device Credential may be used to uniquely identify back-453

end devices by specifying Device as the Credential Type in the Credential structure. 454

The Device Credential may be used in a proxy environment where the proxy authenticates with 455

the client certificate and supports KMIP while the back-end devices may not support KMIP or 456

TLS. An example is illustrated below: 457

 458

 459

FIGURE 1: AGGREGATOR CLIENT EXAMPLE 460

The end device identifies itself with a device unique set of identifier values that include the 461

device hardware serial number, the network identifier, the machine identifier, or the media 462

identifier. For many of the self-encrypting devices there is a unique serial number assigned to 463

the device during manufacturing. The ability to use network, machine, or media identifier 464

explicitly should map to different device types and achieve better interoperability since different 465

types of identifier values are explicitly enumerated. The device identifier is included for more 466

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 19 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

generic usage. An optional password or shared secret may be used to further authenticate the 467

device. 468

 469

Server implementations may choose to enforce rules for uniqueness for different types of 470

identifier values, combinations of TLS certificate used in combination with the Device Credential, 471

and optionally enforce the use of a Device Credential password. 472

Four identifiers are optionally provided but are unique in aggregate: 473

1. Serial Number, for example the hardware serial number of the device 474
2. Network Identifier, for example the MAC address for Ethernet connected devices 475
3. Machine Identifier, for example the client aggregator identifier, such as a tape library 476

aggregating tape drives 477
4. Media Identifier, for example the volume identifier used for a tape cartridge 478

 479

The device identifier by choice of server policy may or may not be used in conjunction with the 480

above identifiers to insure uniqueness. 481

These additional identifiers are generally useful for auditing and monitoring encryption and 482

could according to server policy be logged or used in server implementation specific validation. 483

A specific example for self-encrypting tape drive and tape library would be: 484

1. the tape drive has a serial number that is unique for that manufacturer and the vendor has 485
procedures for maintaining and tracking serial number usage 486

2. a password optionally is created and stored either on the drive or the library to help 487
authenticate the drive 488

3. the tape drives may be connected via fibre channel to the library and therefore have a 489
World Wide Name assigned 490

4. a machine identifier can be used to identify the tape library that is aggregating the device 491
in question 492

5. the media identifier helps identify the individual media such as a tape cartridge for proof of 493
encryption reporting 494

 495

Another example using self-encrypting disk drives inside of a server would be: 496

1. the disk drive has a unique serial number 497
2. a password may be supplied by configuration of the drive or the server where the drive is 498

located 499
3. the network identifier may come from the internal attachment identifier for the disk drive 500

in the server 501
4. the machine identifier may come from a server’s motherboard or service processor 502

identifier, 503
5. and the media identifier comes from the volume name used by the server’s operating 504

system to identify the volume on the disk drive 505
 506

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 20 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Server implementations could control what devices may read and write keys and use the device 507

credential fields to influence access control enforcement. 508

 509

Another example applied to server virtualization and encryption built into virtualization would 510

be: 511

1. the virtual machine instance has a unique identifier that is used for the serial number 512
2. the hypervisor supplies a shared secret that is used as the password to authenticate the 513

virtual machine 514
3. the network identifier could be used to identify the MAC address of the physical server 515

where the virtual machine is running 516
4. the machine identifier could be used to identify the hypervisor 517
5. the media identifier could be used to identify the storage volume used by the virtual 518

machine 519
 520

These are examples of usage and are not meant to define all device credential usage patterns 521

nor restrict server specific implementations. 522

The device credentials may be explicitly added by the administrator or may be captured in line 523

with the request and implicitly registered depending upon server policy. 524

When a server is not able to resolve the identifier values in the device credential to a unique 525

client identification, it may choose to reject the request with an error code of operation failed 526

and reason code of item not found. 527

3.2 Authorization for Revoke, Recover, Destroy and Archive Operations 528

The authentication suite, as specified in 529

[KMIP-Prof], describes how the client identity is established for KMIP-compliant 530

implementations. This authentication is performed for all KMIP operations. 531

Certain operations that may be requested by a client via KMIP, particularly Revoke, Recover, 532

Destroy and Archive, may have a significant impact on the availability of a key, on server 533

performance and/or on key security. When a server receives a request for one of these 534

operations, it should ensure that the client has authenticated its identity (see the Authentication 535

Suites section in [KMIP-Prof] 536

[KMIP-Prof]). The server should also ensure that the client requesting the operation is an object 537

owner, security officer or other identity authorized to issue the request. It may also require 538

additional authentication to ensure that the object owner or a security officer has issued that 539

request. Even with such authentication and authorization, requests for these operations should 540

be considered only a “hint” to the key management system, which may or may not choose to 541

act upon this request depending on server policy. 542

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 21 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3.3 Using Notify and Put Operations 543

The Notify and Put operations are the only operations in the KMIP protocol that are initiated by 544

the server, rather than the client. As client-initiated requests are able to perform these 545

functions (e.g., by polling to request notification), these operations are optional for conforming 546

KMIP implementations. However, they provide a mechanism for optimized communication 547

between KMIP servers and clients. 548

In using Notify and Put, the following constraints and guidelines should be observed: 549

 The client enrolls with the server, so that the server knows how to locate the client to 550
which a Notify or Put is being sent and which events for the Notify are supported. 551
However, such registration is outside the scope of the KMIP protocol. Registration also 552
includes a specification of whether a given client supports Put and Notify, and what 553
attributes may be included in a Put for a particular client. 554

 Communication between the client and the server is authenticated. Authentication for a 555
particular client/server implementation is at a minimum accomplished using one of the 556
mandatory authentication mechanisms (see [KMIP-Prof]). Further strengthening of the 557
client/server communications integrity by means of signed message content and/or 558
wrapped keys is recommended. Attribute values other than “Last Change Date” should 559
not be included in a Notify to minimize risk of exposure of attribute information. 560

 In order to minimize possible divergence of key or state information between client and 561
server as a result of server-initiated communication, any client receiving Notify or Put 562
messages returns acknowledgements of these messages to the server. This 563
acknowledgement may be at communication layers below the KMIP layer, such as by 564
using transport-level acknowledgement provided in TCP/IP. 565

 For client devices that are incapable of responding to messages from the server, 566
communication with the server happens via a proxy entity that communicates with the 567
server, using KMIP, on behalf of the client. It is possible to secure communication 568
between a proxy entity and the client using other, potentially proprietary mechanisms. 569

3.4 Usage Allocation 570

Usage should be allocated and handled carefully at the client, since power outages or other 571

types of client failures (crashes) may render allocated usage lost. For example, in the case of a 572

key being used for the encryption of tapes, such a loss of the usage allocation information 573

following a client failure during encryption may result in the necessity for the entire tape backup 574

session to be re-encrypted using a different key, if the server is not able to allocate more usage. 575

It is possible to address this through such approaches as caching usage allocation information on 576

stable storage at the client, and/or having conservative allocation policies at the server (e.g., by 577

keeping the maximum possible usage allocation per client request moderate). In general, usage 578

allocations should be as small as possible; it is preferable to use multiple smaller allocation 579

requests rather than a single larger request to minimize the likelihood of unused allocation. 580

3.5 Key State and Times 581

 582

[KMIP-Spec] provides a number of time-related attributes, including the following: 583

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 22 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 Initial Date: The date and time when the managed cryptographic object was first created 584
by or registered at the server 585

 Activation Date: The date and time when the managed cryptographic object may begin to 586
be used for applying cryptographic protection to data 587

 Process Start Date: The date and time when a managed symmetric key object may begin 588
to be used for processing cryptographically protected data 589

 Protect Stop Date: The date and time when a managed symmetric key object may no 590
longer be used for applying cryptographic protection to data 591

 Deactivation Date: The date and time when the managed cryptographic object may no 592
longer be used for any purpose, except for decryption, signature verification, or 593
unwrapping, but only under extraordinary circumstances and when special permission is 594
granted 595

 Destroy Date: The date and time when the managed cryptographic object was destroyed 596

 Compromise Occurrence Date: The date and time when the managed cryptographic 597
object was first believed to be compromised 598

 Compromise Date: The date and time when the managed cryptographic object is entered 599
into the compromised state 600

 Archive Date: The date and time when the managed object was placed in Off-Line 601
storage 602

These attributes apply to all cryptographic objects (symmetric keys, asymmetric keys, etc) with 603

exceptions as noted in [KMIP-Spec]. However, certain of these attributes (such as the Initial 604

Date) are not specified by the client and are implicitly set by the server. 605

In using these attributes, the following guidelines should be observed: 606

 As discussed for each of these attributes in [KMIP-Spec], a number of these times are 607
set once and it is not possible for the client or server to modify them. However, several of 608
the time attributes (particularly the Activation Date, Protect Start Date, Process Stop Date 609
and Deactivation Date) may be set by the server and/or requested by the client. 610
Coordination of time-related attributes between client and server, therefore, is primarily 611
the responsibility of the server, as it manages the cryptographic object and its state. 612
However, special conditions related to time-related attributes, governing when the server 613
accepts client modifications to time-related attributes, may be communicated out-of-band 614
between the client and server outside the scope of KMIP. 615
 616
In general, state transitions occur as a result of operational requests, such as Create, 617
Create Key Pair, Register, Activate, Revoke, and Destroy. However, clients may need to 618
specify times in the future for such things as Activation Date, Deactivation Date, Process 619
Start Date, and Protect Stop Date. 620
 621
KMIP allows clients to specify times in the past for such attributes as Activation Date and 622
Deactivation Date. This is intended primarily for clients that were disconnected from the 623
server at the time that the client performed that operation on a given key. 624

 It is valid to have a projected Deactivation Date when there is no Activation Date. This 625
means, however, that the key is not yet active, even though its projected Deactivation 626
Date has been specified. A valid Deactivation Date is greater than or equal to the 627
Activation Date (if the Activation Date has been set). 628

 The Protect Stop Date may be equal to, but may not be later than the Deactivation Date. 629
Similarly, the Process Start Date may be equal to, but may not precede, the Activation 630
Date. KMIP implementations should consider specifying both these attributes, particularly 631
for symmetric keys, as a key may be needed for processing protected data (e.g., 632

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 23 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

decryption) long after it is no longer appropriate to use it for applying cryptographic 633
protection to data (e.g., encryption). 634

 KMIP does not allow an Active object to be destroyed with the Destroy operation. The 635
server returns an error, if the client invokes the Destroy operation on an Active object. To 636
destroy an Active object, clients first call the Revoke operation or explicitly set the 637
Deactivation Date of the object. Once the object is in Deactivated state, clients 638
may destroy the object by calling the Destroy operation. These operations may be 639
performed in a batch. If other time-related attributes (e.g., Protect Stop Date) are set to a 640
future date, the server should set these to the Deactivation Date. 641

 After a cryptographic object is destroyed, a key management server may retain certain 642
information about the object, such as the Unique Identifier. 643

KMIP allows the specification of attributes on a per-client basis, such that a server could 644

maintain or present different sets of attributes for different clients. This flexibility may be 645

necessary in some cases, such as when a server maintains the availability of a given key for some 646

clients, even after that same key is moved to an inactive state (e.g., Deactivated state) for other 647

clients. However, such an approach might result in significant inconsistencies regarding the 648

object state from the point of view of all participating clients and should, therefore, be avoided. 649

A server should maintain a consistent state for each object, across all clients that have or are 650

able to request that object. 651

3.6 Template 652

The usage of templates is an alternative approach for setting attributes in an operation request. 653

Instead of individually specifying each attribute, a template may be used to set any of the 654

following attributes for a managed object: 655

 Cryptographic Algorithm 656

 Cryptographic Length 657

 Cryptographic Domain Parameters 658

 Cryptographic Parameters 659

 Operation Policy Name 660

 Cryptographic Usage Mask 661

 Certificate Length 662

 Digital Signature Algorithm 663

 Usage Limits 664

 Activation Date 665

 Process Start Date 666

 Protect Stop Date 667

 Deactivation Date 668

 Object Group 669

 Application Specific Information 670

 Contact Information 671

 Custom Attribute 672

In addition to these attributes, the template has attributes that are applicable to the template 673

itself. These include the attributes (Unique Identifier, Initial Date, Last Change Date, and Archive 674

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 24 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Date) set implicitly after successfully completing a certain operation and attributes set by the 675

client (Object Type and Name) in the Register request. When registering a template, the Name 676

attribute for the template should be set. It is used to specify and identify the template in the 677

Template-Attribute structure when attributes for a managed object are set. 678

The Template-Attribute structure allows for multiple template names and individual attributes 679

to be specified in an operation request. The structure is used in the Create, Create Key Pair, 680

Register, Re-key, Re-key Key Pair, Derive Key, Certify, and Re-certify operations. All of these 681

operations with the exception of the Create Key Pair and the Re-key Key Pair operations use the 682

Template-Attribute tag. The Create Key Pair and the Re-key Key Pair operations use the 683

Common Template-Attribute, Private Key Template Attribute, and Public Key Template-684

Attribute tags. 685

Templates may be the subject of the Register, Locate, Get, Get Attributes, Get Attribute List, 686

Add Attribute, Modify Attribute, Delete Attribute, Delete Attribute, and Destroy operations. 687

Clients are not able to create a template with the Create operation; instead templates are 688

created using the Register operation. When the template is the subject of the operation, the 689

Unique ID is used to identify the template. The template name is only used to identify the 690

template inside a Template-Attribute structure. 691

3.6.1 Template Usage Examples 692

The purpose of these examples is to illustrate how templates are used. The first example shows 693

how a template is registered. The second example shows how the newly registered template is 694

used to create a symmetric key. 695

3.6.1.1 Example of Registering a Template 696

In this example, a client registers a template by encapsulating attributes for creating a 256-bit 697

AES key with the Cryptographic Usage Mask set to Encrypt and Decrypt. 698

The following is specified inside the Register Request Payload: 699

 Object Type: Template 700

 Template-Attribute: 701

 Name: Template1 702

 Cryptographic Algorithm: AES 703

 Cryptographic Length: 256 704

 Cryptographic Usage Mask: Encrypt and Decrypt 705

 Operation Policy Name: OperationPolicy1 706

The Operation Policy OperationPolicy1 applies to the AES key being created using the template. 707

It is not used to control operations on the template itself. KMIP does not allow operation 708

policies to be specified for controlling operations on the template itself. The default policy for 709

template objects is used for this purpose and is specified in the KMIP Specification. 710

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 25 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3.6.1.2 Example of Creating a Symmetric Key using a Template 711

In this example, the client uses the template created in example 3.6.1 to create a 256-bit AES 712

key. 713

The following is specified in the Create Request Payload: 714

 Object Type: Symmetric Key 715

 Template-Attribute: 716

 Name: Template1 717

 Attribute: 718

Name: AESkey 719

Custom Attribute: x-ID74592 720

The Template-Attribute structure specifies both a template name and additional attributes. The 721

Name attribute is not an attribute that may be set by a template. The Name attribute set for the 722

template applies to the template itself (e.g., Template1 is the Name attribute of the Template 723

object). The Name attribute for the symmetric key is therefore specified separately under 724

Attribute. It is possible to specify the Custom Attribute inside the template when the template is 725

registered; however, this particular example sets this attribute separately. 726

3.7 Archive Operations 727

When the Archive operation is performed, it is recommended that a unique identifier and a 728

minimal set of attributes be retained within the server for operational efficiency. In such a case, 729

the retained attributes may include Unique Identifier and State. 730

3.8 Message Extensions 731

Any number of vendor-specific extensions may be included in the Message Extension optional 732

structure. This allows KMIP implementations to create multiple extensions to the protocol. 733

3.9 Unique Identifiers 734

For clients that require unique identifiers in a special form, out-of-band 735

registration/configuration may be used to communicate this requirement to the server. 736

3.10 Result Message Text 737

KMIP specifies the Result Status, the Result Reason and the Result Message as normative 738

message contents. For the Result Status and Result Reason, the enumerations provided in 739

[KMIP-Spec] are the normative values. The values for the Result Message text are 740

implementation-specific. In consideration of internationalization, it is recommended that any 741

vendor implementation of KMIP provide appropriate language support for the Return Message. 742

How a client specifies the language for Result Messages is outside the scope of the KMIP. 743

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 26 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3.11 Query 744

Query does not explicitly support client requests to determine what operations require 745

authentication. To determine whether an operation requires authentication, a client should 746

request that operation. 747

3.12 Canceling Asynchronous Operations 748

If an asynchronous operation is cancelled by the client, no information is returned by the server 749

in the result code regarding any operations that may have been partially completed. 750

Identification and remediation of partially completed operations is the responsibility of the 751

server. 752

It is the responsibility of the server to determine when to discard the status of asynchronous 753

operations. The determination of how long a server should retain the status of an asynchronous 754

operation is implementation-dependent and not defined by KMIP. 755

Once a client has received the status on an asynchronous operation other than “pending”, any 756

subsequent request for status of that operation may return either the same status as in a 757

previous polling request or an “unavailable” response. 758

3.13 Multi-instance Hash 759

The Digest attribute contains the output of hashing a managed object, such as a key or a 760

certificate. The server always generates the SHA-256 hash value when the object is created or 761

generated. KMIP allows multiple instances of the digest attribute to be associated with the same 762

managed object. For example, it is common practice for publicly trusted CAs to publish two 763

digests (often referred to as the fingerprint or the thumbprint) of their certificate: one 764

calculated using the SHA-1 algorithm and another using the MD5 algorithm. In this case, each 765

digest would be calculated by the server using a different hash algorithm. 766

3.14 Returning Related Objects 767

The key block returns a single object, with associated attributes and other data. For those cases 768

in which multiple related objects are needed by a client, such as the private key and the related 769

certificate, the client should issue multiple Get requests to obtain these related objects. 770

3.15 Reducing Multiple Requests through the Use of Batch 771

KMIP supports batch operations in order to reduce the number of calls between the client and 772

server. For example, Locate and Get are likely to be commonly accomplished within a single 773

batch request. 774

KMIP does not ensure that batch operations are atomic on the server side. If servers implement 775

such atomicity, the client is able to use the optional “undo” mode to request roll-back for batch 776

operations implemented as atomic transactions. However, support for “undo” mode is optional 777

in the protocol, and there is no guarantee that a server that supports “undo” mode has 778

effectively implemented atomic batches. The use of “undo”, therefore, should be restricted to 779

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 27 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

those cases in which it is possible to assure the client, through mechanisms outside of KMIP, of 780

the server effectively supporting atomicity for batch operations. 781

3.16 Maximum Message Size 782

When a server is processing requests in a batch, it should compare the cumulative response size 783

of the message to be returned after each request with the specified Maximum Response Size. If 784

the message is too large, it should prepare a maximum message size error response message at 785

that point, rather than continuing with operations in the batch. This increases the client’s ability 786

to understand what operations have and have not been completed. 787

When processing individual requests within the batch, the server that has encountered a 788

Maximum Response Size error should not return attribute values or other information as part of 789

the error response. 790

The Locate operation also supports the concept of a maximum item count to include in the 791

returned list of unique identifiers. 792

3.17 Using Offset in Re-key and Re-certify Operations 793

The Re-key, Re-key Key Pair, and Re-certify operations allow the specification of an offset 794

interval. 795

The Re-key and the Re-key Key Pair operations allow the client to specify an offset interval for 796

activation of the key. This offset specifies the duration of time between the time the request is 797

made and the time when the activation of the key occurs. If an offset is specified, all other times 798

for the new key are determined from the new Activation Date, based on the intervals used by 799

the previous key, i.e., from the Activation Date to the Process Start Date, Protect Stop Date, etc. 800

The Re-certify operation allows the client to specify an offset interval that indicates the 801

difference between the Initial Date of the new certificate and the Activation Date of the new 802

certificate. As with the Re-key operation, all other times for the certificate are determined using 803

the intervals used for the previous certificate. 804

Note that in re-key operations if activation date, process start date, protect stop date and 805

deactivation date are obtained from the existing key, and the initial date is obtained from the 806

current time, then the deactivation/activation date/process start date/protect stop date is 807

smaller or less than initial date. KMIP allows back-dating of these values to prevent this 808

contradiction (see KMIP-Spec 3.22 and KMIP-UG 3.5 and 3.29). 809

 810

3.18 Locate Queries 811

It is possible to formulate Locate queries to address any of the following conditions: 812

 Exact match of a transition to a given state. Locate the key(s) with a transition to a certain 813
state at a specified time (t). 814

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 28 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 Range match of a transition to a given state. Locate the key(s) with a transition to a 815
certain state at any time at or between two specified times (t and t’). 816

 Exact match of a state at a specified time. Locate the key(s) that are in a certain state at 817
a specified time (t). 818

 Match of a state during an entire time range. Locate the key(s) that are in a certain state 819
during an entire time specified with times (t and t’). Note that the Activation Date could 820
occur at or before t and that the Deactivation Date could occur at or after t’+1. 821

 Match of a state at some point during a time range. Locate the key(s) that are in a certain 822
state at some time at or between two specified times (t and t’). In this case, the transition 823
to that state could be before the start of the specified time range. 824

This is accomplished by allowing any date/time attribute to be present either once (for an exact 825

match) or at most twice (for a range match). 826

For instance, if the state we are interested in is Active, the Locate queries would be the 827

following (corresponding to the bulleted list above): 828

 Exact match of a transition to a given state: Locate (ActivationDate(t)). Locate keys with 829
an Activation Date of t. 830

 Range match of a transition to a given state: Locate (ActivationDate(t), ActivationDate(t')). 831
Locate keys with an Activation Date at or between t and t’. 832

 Exact match of a state at a specified time: Locate (ActivationDate(0), ActivationDate(t), 833
DeactivationDate(t+1), DeactivationDate(MAX_INT), CompromiseDate(t+1), 834
CompromiseDate(MAX_INT)). Locate keys in the Active state at time t, by looking for 835
keys with a transition to Active before or until t, and a transition to Deactivated or 836
Compromised after t (because we don't want the keys that have a transition to 837
Deactivated or Compromised before t). The server assumes that keys without a 838
DeactivationDate or CompromiseDate is equivalent to MAX_INT (i.e., infinite). 839

 Match of a state during an entire time range: Locate (ActivationDate(0), ActivationDate(t), 840
DeactivationDate(t'+1), DeactivationDate(MAX_INT), CompromiseDate(t'+1), 841
CompromiseDate(MAX_INT)). Locate keys in the Active state during the entire time from 842
t to t’. 843

 Match of a state at some point during a time range: Locate (ActivationDate(0), 844
ActivationDate(t'-1), DeactivationDate(t+1), DeactivationDate(MAX_INT), 845
CompromiseDate(t+1), CompromiseDate(MAX_INT)). Locate keys in the Active state at 846
some time from t to t’, by looking for keys with a transition to Active between 0 and t’-1 847
and exit out of Active on or after t+1. 848

The queries would be similar for Initial Date, Deactivation Date, Compromise Date and Destroy 849

Date. 850

In the case of the Destroyed-Compromise state, there are two dates recorded: the Destroy Date 851

and the Compromise Date. For this state, the Locate operation would be expressed as follows: 852

 Exact match of a transition to a given state: Locate (CompromiseDate(t), 853
State(Destroyed-Compromised)) and Locate (DestroyDate(t), State(Destroyed-854
Compromised)). KMIP does not support the OR in the Locate request, so two requests 855
should be issued. Locate keys that were Destroyed and transitioned to the Destroyed-856
Compromised state at time t, and locate keys that were Compromised and transitioned to 857
the Destroyed-Compromised state at time t. 858

 Range match of a transition to a given state: Locate (CompromiseDate(t), 859
CompromiseDate(t'), State(Destroyed-Compromised)) and Locate (DestroyDate(t), 860

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 29 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

DestroyDate(t'), State(Destroyed-Compromised)). Locate keys that are Destroyed-861
Compromised and were Compromised or Destroyed at or between t and t’. 862

 Exact match of a state at a specified time: Locate (CompromiseDate(0), 863
CompromiseDate(t), DestroyDate(0), DestroyDate(t)); nothing else is needed, since there 864
is no exit transition. Locate keys with a Compromise Date at or before t, and with a 865
Destroy Date at or before t. These keys are, therefore, in the Destroyed-Compromised 866
state at time t. 867

 Match of a state during an entire time range: Locate (CompromiseDate(0), 868
CompromiseDate(t), DestroyDate(0), DestroyDate(t)). Same as above. As there is no exit 869
transition from the Destroyed-Compromised state, the end of the range (t’) is irrelevant. 870

 Match of a state at some point during a time range: Locate (CompromiseDate(0), 871
CompromiseDate(t'-1), DestroyDate(0), DestroyDate(t'-1)). Locate keys with a 872
Compromise Date at or before t’-1, and with a Destroy Date at or before t’-1. As there is 873
no exit transition from the Destroyed-Compromised state, the start of the range (t) is 874
irrelevant. 875

3.19 ID Placeholder 876

A number of operations are affected by a mechanism referred to as the ID Placeholder. This is a 877

temporary variable consisting of a single Unique Identifier that is stored inside the server for the 878

duration of executing a batch of operations. The ID Placeholder is obtained from the Unique 879

Identifier returned by certain operations; the applicable operations are identified in Table 1, 880

along with a list of operations that accept the ID Placeholder as input. 881

 Operation ID Placeholder at

the beginning of

the operation

ID Placeholder upon completion of the operation

(in case of operation failure, a batch using the ID

Placeholder stops)

Create - ID of new Object

Create Key Pair - ID of new Private Key (ID of new Public Key may be

obtained via a Locate)

Register - ID of newly registered Object

Derive Key - (multiple Unique

Identifiers may be

specified in the

request)

ID of new Symmetric Key

Locate - ID of located Object

Get ID of Object no change

Validate - -

Get Attributes

List/Modify/Add/Delete

ID of Object no change

Activate ID of Object no change

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 30 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Revoke ID of Object no change

Destroy ID of Object no change

Archive/Recover ID of Object no change

Certify ID of Public Key ID of new Certificate

Re-certify ID of Certificate ID of new Certificate

Re-key ID of Symmetric

Key to be rekeyed

ID of new Symmetric Key

Re-key Key Pair ID of Private Key

to be rekeyed

ID of new Private Key (ID of new Public Key may be

obtained via a Locate)

Obtain Lease ID of Object no change

Get Usage Allocation ID of Key no change

Check ID of Object no change

 TABLE 1: ID PLACEHOLDER PRIOR TO AND RESULTING FROM A KMIP OPERATION 882

3.20 Key Block 883

The protocol uses the Key Block structure to transport a key to the client or server. This Key 884

Block consists of the Key Value Type, the Key Value, and the Key Wrapping Data. The Key Value 885

Type identifies the format of the Key Material, e.g., Raw format or Transparent Key structure. 886

The Key Value consists of the Key Material and optional attributes. The Key Wrapping Data 887

provides information about the wrapping key and the wrapping mechanism, and is returned 888

only if the client requests the Key Value to be wrapped by specifying the Key Wrapping 889

Specification inside the Get Request Payload. The Key Wrapping Data may also be included 890

inside the Key Block if the client registers a wrapped key. 891

The protocol allows any attribute to be included inside the Key Value and allows these attributes 892

to be cryptographically bound to the Key Material (i.e., by signing, MACing, encrypting, or both 893

encrypting and signing/MACing the Key Value). Some of the attributes that may be included 894

include the following: 895

 Unique Identifier – uniquely identifies the key 896

 Cryptographic Algorithm (e.g., AES, 3DES, RSA) – this attribute is either specified inside 897
the Key Block structure or the Key Value structure 898

 Cryptographic Length (e.g., 128, 256, 2048) – this attribute is either specified inside the 899
Key Block structure or the Key Value structure 900

 Cryptographic Usage Mask– identifies the cryptographic usage of the key (e.g., Encrypt, 901
Wrap Key, Export) 902

 Cryptographic Parameters – provides additional parameters for determining how the key 903
may be used 904

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 31 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 Block Cipher Mode (e.g., CBC, NISTKeyWrap, GCM) – this parameter identifies the 905
mode of operation, including block cipher-based MACs or wrapping mechanisms 906

 Padding Method (e.g., OAEP, X9.31, PSS) – identifies the padding method and if 907
applicable the signature or encryption scheme 908

 Hashing Algorithm (e.g., SHA-256) – identifies the hash algorithm to be used with 909
the signature/encryption mechanism or Mask Generation Function; note that the 910
different HMACs are defined individually as algorithms and do not require the 911
Hashing Algorithm parameter to be set 912

 Key Role Type – Identifies the financial key role (e.g., DEK, KEK) 913

 State (e.g., Active) 914

 Dates (e.g., Activation Date, Process Start Date, Protect Stop Date) 915

 Custom Attribute – allows vendors and clients to define vendor-specific attributes; may 916
also be used to prevent replay attacks by setting a nonce 917

3.21 Using Wrapped Keys with KMIP 918

KMIP provides the option to register and get keys in wrapped format. Clients request the server 919

to return a wrapped key by including the Key Wrapping Specification in the Get Request 920

Payload. Similarly, clients register a wrapped key by including the Key Wrapping Data in the 921

Register Request Payload. The Wrapping Method identifies the type of mechanism used to wrap 922

the key, but does not identify the algorithm or block cipher mode. It is possible to determine 923

these from the attributes set for the specified Encryption Key or MAC/Signing Key. If a key has 924

multiple Cryptographic Parameters set, clients may include the applicable parameters in Key 925

Wrapping Specification. If omitted, the server chooses the Cryptographic Parameter attribute 926

with the lowest index. 927

The Key Value includes both the Key Material and, optionally, attributes of the key; these may 928

be provided by the client in the Register Request Payload; the server only includes attributes 929

when requested in the Key Wrapping Specification of the Get Request Payload. The Key Value 930

may be encrypted, signed/MACed, or both encrypted and signed/MACed (and vice versa). In 931

addition, clients have the option to request or import a wrapped Key Block according to 932

standards, such as ANSI TR-31, or vendor-specific key wrapping methods. 933

It is important to note that if the Key Wrapping Specification is included in the Get Request 934

Payload, the Key Value may not necessarily be encrypted. If the Wrapping Method is MAC/sign, 935

the returned Key Value is in plaintext, and the Key Wrapping Data includes the MAC or Signature 936

of the Key Value. 937

Prior to wrapping or unwrapping a key, the server should verify that the wrapping key is allowed 938

to be used for the specified purpose. For example, if the Unique ID of a symmetric key is 939

specified in the Key Wrapping Specification inside the Get request, the symmetric key should 940

have the “Wrap Key” bit set in its Cryptographic Usage Mask. Similarly, if the client registers a 941

signed key, the server should verify that the Signature Key, as specified by the client inside the 942

Key Wrapping Data, has the “Verify” bit set in the Cryptographic Usage Mask. If the wrapping 943

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 32 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

key is not permitted to be used for the requested purpose (e.g., when the Cryptographic Usage 944

Mask is not set), the server should return the Operation Failed result status. 945

3.21.1 Encrypt-only Example with a Symmetric Key as an Encryption Key for 946

a Get Request and Response 947

The client sends a Get request to obtain a key that is stored on the server. When the client 948

sends a Get request to the server, a Key Wrapping Specification may be included. If a Key 949

Wrapping Specification is included in the Get request, and a client wants the requested key and 950

its Cryptographic Usage Mask attribute to be wrapped with AES key wrap, the client includes the 951

following information in the Key Wrapping Specification: 952

 Wrapping Method: Encrypt 953

 Encryption Key Information 954

 Unique Key ID: Key ID of the AES wrapping key 955

 Cryptographic Parameters: The Block Cipher Mode is NISTKeyWrap (not necessary if 956
default block cipher mode for wrapping key is NISTKeyWrap) 957

 Attribute Name: Cryptographic Usage Mask 958

The server uses the Unique Key ID specified by the client to determine the attributes set for the 959

proposed wrapping key. For example, the algorithm of the wrapping key is not explicitly 960

specified inside the Key Wrapping Specification. The server determines the algorithm to be used 961

for wrapping the key by identifying the Algorithm attribute set for the specified Encryption Key. 962

The Cryptographic Parameters attribute should be specified by the client if multiple instances of 963

the Cryptographic Parameters exist, and the lowest index does not correspond to the NIST key 964

wrap mode of operation. The server should verify that the AES wrapping key has NISTKeyWrap 965

set as an allowable Block Cipher Mode, and that the “Wrap Key” bit is set in the Cryptographic 966

Usage Mask. 967

If the correct data was provided to the server, and no conflicts exist, the server AES key wraps 968

the Key Value (both the Key Material and the Cryptographic Usage Mask attribute) for the 969

requested key with the wrapping key specified in the Encryption Key Information. The wrapped 970

key (byte string) is returned in the server’s response inside the Key Value of the Key Block. 971

The Key Wrapping Data of the Key Block in the Get Response Payload includes the same data as 972

specified in the Key Wrapping Specification of the Get Request Payload except for the Attribute 973

Name. 974

3.21.2 Encrypt-only Example with a Symmetric Key as an Encryption Key for 975

a Register Request and Response 976

The client sends a Register request to the server and includes the wrapped key and the Unique 977

ID of the wrapping key inside the Request Payload. The wrapped key is provided to the server 978

inside the Key Block. The Key Block includes the Key Value Type, the Key Value, and the Key 979

Wrapping Data. The Key Value Type identifies the format of the Key Material, the Key Value 980

consists of the Key Material and optional attributes that may be included to cryptographically 981

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 33 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

bind the attributes to the Key Material, and the Key Wrapping Data identifies the wrapping 982

mechanism and the encryption key used to wrap the object and the wrapping mechanism. 983

Similar to the example in 3.21.1 the key is wrapped using the AES key wrap. The Key Value 984

includes four attributes: Cryptographic Algorithm, Cryptographic Length, Cryptographic 985

Parameters, and Cryptographic Usage Mask. 986

The Key Wrapping Data includes the following information: 987

 Wrapping Method: Encrypt 988

 Encryption Key Information 989

 Unique Key ID: Key ID of the AES wrapping key 990

 Cryptographic Parameters: The Block Cipher Mode is NISTKeyWrap (not necessary if 991
default block cipher mode for wrapping key is NISTKeyWrap) 992

Attributes do not need to be specified in the Key Wrapping Data. When registering a wrapped 993

Key Value with attributes, clients may include these attributes inside the Key Value without 994

specifying them inside the Template-Attribute. 995

Prior to unwrapping the key, the server determines the wrapping algorithm from the Algorithm 996

attribute set for the specified Unique ID in the Encryption Key Information. The server verifies 997

that the wrapping key may be used for the specified purpose. In particular, if the client includes 998

the Cryptographic Parameters in the Encryption Key Information, the server verifies that the 999

specified Block Cipher Mode is set for the wrapping key. The server also verifies that the 1000

wrapping key has the “Unwrap Key” bit set in the Cryptographic Usage Mask. 1001

The Register Response Payload includes the Unique ID of the newly registered key and an 1002

optional list of attributes that were implicitly set by the server. 1003

3.21.3 Encrypt-only Example with an Asymmetric Key as an Encryption Key 1004

for a Get Request and Response 1005

The client sends a Get request to obtain a key (either symmetric or asymmetric) that is stored on 1006

the server. When the client sends a Get request to the server, a Key Wrapping Specification may 1007

be included. If a Key Wrapping Specification is included, and the key is to be wrapped with an 1008

RSA public key using the OAEP encryption scheme, the client includes the following information 1009

in the Key Wrapping Specification. Note that for this example, attributes for the requested key 1010

are not requested. 1011

 Wrapping Method: Encrypt 1012

 Encryption Key Information 1013

 Unique Key ID: Key ID of the RSA public key 1014

 Cryptographic Parameters: 1015

Padding Method: OAEP 1016

Hashing Algorithm: SHA-256 1017

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 34 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

The Cryptographic Parameters attribute is specified by the client if multiple instances of 1018

Cryptographic Parameters exist for the wrapping key, and the lowest index does not correspond 1019

to the associated padding method. The server should verify that the specified Cryptographic 1020

Parameters in the Key Wrapping Specification and the “Wrap Key” bit in the Cryptographic 1021

Usage Mask are set for the corresponding wrapping key. 1022

The Key Wrapping Data returned by the server in the Key Block of the Get Response Payload 1023

includes the same data as specified in the Key Wrapping Specification of the Get Request 1024

Payload. 1025

For both OAEP and PSS, KMIP assumes that the Hashing Algorithm specified in the Cryptographic 1026

Parameters of the Get request is used for both the Mask Generation Function (MGF) and 1027

hashing data. The example above requires the server to use SHA-256 for both purposes. 1028

3.21.4 MAC-only Example with an HMAC Key as an Authentication Key for a 1029

Get Request and Response 1030

The client sends a Get request to obtain a key that is stored on the server. When the client 1031

sends a Get request to the server, a Key Wrapping Specification may be included. If a key and 1032

Custom Attribute (i.e., x-Nonce) is to be MACed with HMAC SHA-256, the following Key 1033

Wrapping Specification is specified: 1034

 Wrapping Method: MAC/sign 1035

 MAC/Signature Key Information 1036

 Unique Key ID: Key ID of the MACing key (note that the algorithm associated with 1037
this key would be HMAC-SHA256) 1038

 Attribute Name: x-Nonce 1039

For HMAC, no Cryptographic Parameters need to be specified, since the algorithm, including the 1040

hash function, may be determined from the Algorithm attribute set for the specified MAC Key. 1041

The server should verify that the HMAC key has the “MAC Generate” bit set in the Cryptographic 1042

Usage Mask. Note that an HMAC key does not require the “Wrap Key” bit to be set in the 1043

Cryptographic Usage Mask. 1044

The server creates an HMAC value over the Key Value if the specified MACing key may be used 1045

for the specified purpose and no conflicts exist. The Key Value is returned in plaintext, and the 1046

Key Block includes the following Key Wrapping Data: 1047

 Wrapping Method: MAC/sign 1048

 MAC/Signature Key Information 1049

 Unique Key ID: Key ID of the MACing key 1050

 MAC/Signature: HMAC result of the Key Value 1051

In the example, the custom attribute x-Nonce was included to help clients, who are relying on 1052

the proxy model, to detect replay attacks. End-clients, who communicate with the key 1053

management server, may not support TLS and may not be able to rely on the message 1054

protection mechanisms provided by a security protocol. An alternative approach for these 1055

clients would be to use the custom attribute to hold a random number, counter, nonce, date, or 1056

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 35 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

time. The custom attribute needs to be created before requesting the server to return a 1057

wrapped key and is recommended to be set if clients frequently wrap/sign the same key with 1058

the same wrapping/signing key. 1059

3.21.5 Registering a Wrapped Key as an Opaque Cryptographic Object 1060

Clients may want to register and store a wrapped key on the server without the server being 1061

able to unwrap the key (i.e., the wrapping key is not known to the server). Instead of storing the 1062

wrapped key as an opaque object, clients have the option to store the wrapped key inside the 1063

Key Block as an opaque cryptographic object, i.e., the wrapped key is registered as a managed 1064

cryptographic object, but the encoding of the key is unknown to the server. Registering an 1065

opaque cryptographic object allows clients to set all the applicable attributes that apply to 1066

cryptographic objects (e.g., Cryptographic Algorithm and Cryptographic Length), 1067

Opaque cryptographic objects are set by specifying the following inside the Key Block structure: 1068

 Key Format Type: Opaque 1069

 Key Material: Wrapped key as a Byte String 1070

The Key Wrapping Data does not need to be specified. 1071

3.21.6 Encoding Option for Wrapped Keys 1072

KMIP provides the option to specify the Encoding Option inside the Key Wrapping Specification 1073

and Key Wrapping Data. This option allows users to Get or Register the Key Value in a non-TTLV 1074

encoded format. This may be desirable in a proxy environment, where the end-client is not 1075

KMIP-aware. 1076

 1077

The Encoding Option is only available if no attributes are specified inside the Key Value. The 1078

server returns the Encoding Option Error if both the Encoding Option and Attribute Names are 1079

specified inside the Key Wrapping Specification. Similarly, the server is expected to return the 1080

Encoding Option Error when registering a wrapped object with attributes inside the Key Value 1081

and the Encoding Option is set in the Key Wrapping Data. If no Encoding Option is specified, 1082

KMIP assumes that the Key Value is TTLV-encoded. Thus, by default, the complete TTLV-1083

encoded Key Value content, as shown in the example below, is wrapped: 1084

Key Material || Byte String || Length || Key Material 1085
Value 1086

420043 || 08 || 00000010 || 1087
0123456789ABCDEF0123456789ABCDEF 1088

Some end-clients may not understand or have the space for anything more than the actual key 1089

material (i.e., 0123456789ABCDEF0123456789ABCDEF in the above example). To wrap only the 1090

Key Material value during a Get operation, the Encoding Option (00001 for no encoding) should 1091

be specified inside the Key Wrapping Specification. The same Encoding Option should be 1092

specified in the Key Wrapping Data when returning the non-TTLV encoded wrapped object 1093

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 36 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

inside the Get Response Payload or when registering a wrapped object in non-TTLV encoded 1094

format. 1095

It is important to be aware of the risks involved when excluding the attributes from the Key 1096

Value. Binding the attributes to the key material in certain environments is essential to the 1097

security of the end-client. An untrusted proxy could change the attributes (provided separately 1098

via the Get Attributes operation) that determine how the key is being used (e.g., Cryptographic 1099

Usage). Including the attributes inside the Key Value and cryptographically binding it to the Key 1100

Material could prevent potential misuse of the cryptographic object and may prevent a replay 1101

attack if, for example, a nonce is included as a custom attribute. The exclusion of attributes and 1102

therefore the usage of the Encoding Option are only recommended in at least one of the 1103

following scenarios: 1104

1. End-clients are registered with the KMIP server and are communicating with the server 1105
directly (i.e., the TLS connection is between the server and client). 1106

2. The environment is controlled and non-KMIP-aware end-clients are aware how wrapped 1107
cryptographic objects (possibly Raw keys) from the KMIP server should be used without 1108
having to rely on the attributes provided by the Get Attributes operation. 1109

3. The wrapped cryptographic object consists of attributes inside the Key Material value. These 1110
attributes are not interpreted by the KMIP server, but are understood by the end-client. This 1111
may be the case if the Key Format Type is opaque or vendor-specific. 1112

4. The proxy communicating with the KMIP server on behalf of the end-client is considered to 1113
be trusted and is operating in a secure environment. 1114

Registering a wrapped object without attributes is not recommended in a proxy environment, 1115

unless scenario 4 is met. 1116

3.22 Object Group 1117

The key management system may specify rules for valid group names which may be created by 1118

the client. Clients are informed of such rules by a mechanism that is not specified by [KMIP-1119

Spec]. In the protocol, the group names themselves are text strings of no specified format. 1120

Specific key management system implementations may choose to support hierarchical naming 1121

schemes or other syntax restrictions on the names. Groups may be used to associate objects for 1122

a variety of purposes. A set of keys used for a common purpose, but for different time intervals, 1123

may be linked by a common Object Group. Servers may create predefined groups and add 1124

objects to them independently of client requests. 1125

KMIP allows clients to specify whether it wants a “fresh” or “default” object from a common 1126

Object Group. Fresh is an indication of whether a member of a group has been retrieved by a 1127

client with the Get operation. The value of fresh may be set as an attribute when creating or 1128

registering an object. Subsequently, the Fresh attribute is modifiable only by the server. For 1129

example, a set of symmetric keys belong to the Object Group “SymmetricKeyGroup1” and the 1130

Fresh attribute is set to true for members of the group at the time of creating or registering the 1131

member. To add a new symmetric key to the group, the Object Group attribute is set to 1132

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 37 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

“SymmetricKeyGroup1” and the Fresh attribute is set to true when creating or registering the 1133

symmetric key object. 1134

The definition of a “default” object in a group is based on server policy. One example of server 1135

policy is to use round robin selection to serve a key from a group. In this case when a client 1136

requests the default key from a group, the server uses round robin selection to serve the key. 1137

An object may be removed from a group by deleting the Object Group attribute, as long as 1138

server policy permits it. A client would need to delete each individual member of a group to 1139

remove all members of a group. 1140

The Object Group Member flag is specified in the Locate request to indicate the type of group 1141

member to return. Object Group Member is an enumeration that can take the value Group 1142

Member Fresh or Group Member Default. Following are examples of how the Object Group 1143

Member flag is used: 1144

When a Locate request is made by specifying the Object Group attribute (e.g., 1145

"symmetricKeyGroup1) and setting the Object Group Member flag to "Group Member Fresh", 1146

matching objects from the specified group (e.g., "symmetricKeyGroup1") have the Fresh 1147

attribute set to true. If there are no fresh objects remaining in the group, the server may 1148

generate a new object on the fly based on server policy. 1149

When a Locate request is made by specifying the Object Group attribute (e.g., 1150

"symmetricKeyGroup2) and setting the Object Group Member flag to "Group Member Default", 1151

a default object is returned from the group. In this example, the server policy defines default to 1152

be the next key in the group "symmetricKeyGroup2”; the group has three group members 1153

whose Unique Identifiers are uuid1, uuid2, uuid3. If the client performs four consecutive 1154

batched Locate and Get operations with Object Group set to "symmetricKeyGroup2" and Object 1155

Group Member set to “Group Member Default” in the Locate request, the server returns uuid1, 1156

uuid2, uuid3, and uuid1 (restarting from the beginning with uuid1 for the fourth request) in the 1157

four Get responses. 1158

3.23 Certify and Re-certify 1159

The key management system may contain multiple embedded CAs or may have access to 1160

multiple external CAs. How the server routes a certificate request to a CA is vendor-specific and 1161

outside the scope of KMIP. If the server requires and supports the capability for clients to 1162

specify the CA to be used for signing a Certificate Request, then this information may be 1163

provided by including the Certificate Issuer attribute in the Certify or Re-certify request. 1164

[KMIP-Spec] supports multiple options for submitting a certificate request to the key 1165

management server within a Certify or Re-Certify operation. It is a vendor decision as to 1166

whether the key management server offers certification authority (CA) functionality or proxies 1167

the certificate request onto a separate CA for processing. The type of certificate request formats 1168

supported is also a vendor decision, and this may, in part, be based upon the request formats 1169

supported by any CA to which the server proxies the certificate requests. 1170

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 38 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

All certificate request formats for requesting X.509 certificates specified in [KMIP-Spec] (i.e., 1171

PKCS#10, PEM and CRMF) provide a means for allowing the CA to verify that the client that 1172

created the certificate request possesses the private key corresponding to the public key in the 1173

certificate request. This is referred to as Proof-of-Possession (POP). However, it should be noted 1174

that in the case of the CRMF format, some CAs may not support the CRMF POP option, but 1175

instead rely upon the underlying certificate management protocols (i.e., CMP and CMC) to 1176

provide POP. In the case where the CA does not support POP via the CRMF format (including CA 1177

functionality within the key management server), an alternative certificate request format (i.e., 1178

PKCS#10, PEM) would need to be used if POP needs to be verified. 1179

3.24 Specifying Attributes during a Create Key Pair or Re-key Key Pair 1180

Operation 1181

The Create Key Pair and the Re-key Key Pair operations allow clients to specify attributes using 1182

the Common Template-Attribute, Private Key Template-Attribute, and Public Key Template-1183

Attribute. The Common Template-Attribute object includes a list of attributes that apply to both 1184

the public and private key. Attributes that are not common to both keys may be specified using 1185

the Private Key Template-Attribute or Public Key Template-Attribute. If a single-instance 1186

attribute is specified in multiple Template-Attribute objects, the server obeys the following 1187

order of precedence: 1188

1. Attributes specified explicitly in the Private and Public Key Template-Attribute, then 1189

2. Attributes specified via templates in the Private and Public Key Template-Attribute, then 1190

3. Attributes specified explicitly in the Common Template-Attribute, then 1191

4. Attributes specified via templates in the Common Template-Attribute 1192

3.24.1 Example of Specifying Attributes during the Create Key Pair Operation 1193

A client specifies several attributes in the Create Key Pair Request Payload. The Common 1194

Template-Attribute includes the template name RSACom and other explicitly specified common 1195

attributes: 1196

Common Template-Attribute 1197

 RSACom Template 1198

 Cryptographic Algorithm: RSA 1199

 Cryptographic Length: 2048 1200

 Cryptographic Parameters: Padding Method OAEP 1201

 Custom Attribute: x-Serial 1234 1202

 Object Group: Key encryption group 1 1203

 Attribute 1204

 Cryptographic Length: 4096 1205

 Cryptographic Parameters: Padding Method PKCS1 v1.5 1206

 Custom Attribute: x-ID 56789 1207

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 39 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

The Private Key Template-Attribute includes the template name RSAPriv and other explicitly-1208

specified private key attributes: 1209

Private Key Template-Attribute 1210

 RSAPriv Template 1211

 Object Group: Key encryption group 2 1212

 Attribute 1213

 Cryptographic Usage Mask: Unwrap Key 1214

 Name: PrivateKey1 1215

The Public Key Template Attribute includes explicitly-specified public key attributes: 1216

Public Key Template-Attribute 1217

 Attribute 1218

 Cryptographic Usage Mask: Wrap Key 1219

 Name: PublicKey1 1220

 1221

Following the attribute precedence rule, the server creates a 4096-bit RSA key. The following 1222

client-specified attributes are set: 1223

Private Key 1224

 Cryptographic Algorithm: RSA 1225

 Cryptographic Length: 4096 1226

 Cryptographic Parameters: OAEP 1227

 Cryptographic Parameters: PKCS1 v1.5 1228

 Cryptographic Usage Mask: Unwrap Key 1229

 Custom Attribute: x-Serial 1234 1230

 Custom Attribute: x-ID 56789 1231

 Object Group: Key encryption group 1 1232

 Object Group: Key encryption group 2 1233

 Name: PrivateKey1 1234

Public Key 1235

 Cryptographic Algorithm: RSA 1236

 Cryptographic Length: 4096 1237

 Cryptographic Parameters: OAEP 1238

 Cryptographic Parameters: PKCS1 v1.5 1239

 Cryptographic Usage Mask: Wrap Key 1240

 Custom Attribute: x-Serial 1234 1241

 Custom Attribute: x-ID 56789 1242

 Object Group: Key encryption group 1 1243

 Name: PublicKey1 1244

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 40 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3.25 Registering a Key Pair 1245

During a Create Key Pair or Re-key Key Pair operation, a Link Attribute is automatically created 1246

by the server for each object (i.e., a link is created from the private key to the public key and 1247

vice versa). Certain attributes are the same for both objects and are set by the server while 1248

creating the key pair. The KMIP protocol does not support an equivalent operation for 1249

registering a key pair. Clients are able to register the objects independently and manually set the 1250

Link attributes to make the server aware that these keys are associated with each other. When 1251

the Link attribute is set for both objects, the server should verify that the registered objects 1252

indeed correspond to each other and apply similar restrictions as if the key pair was created on 1253

the server. 1254

Clients should perform the following steps when registering a key pair: 1255

1. Register the public key and set all associated attributes: 1256

a. Cryptographic Algorithm 1257

b. Cryptographic Length 1258

c. Cryptographic Usage Mask 1259

2. Register the private key and set all associated attributes 1260

a. Cryptographic Algorithm is the same for both public and private key 1261

b. Cryptographic Length is the same for both public and private key 1262

c. Cryptographic Parameters may be set; if set, the value is the same for both the public 1263
and private key 1264

d. Cryptographic Usage Mask is set, but does not contain the same value for both the 1265
public and private key 1266

e. Link is set for the Private Key with Link Type Public Key Link and the Linked Object 1267
Identifier of the corresponding Public Key 1268

f. Link is set for the Public Key with Link Type Private Key Link and the Linked Object 1269
Identifier of the corresponding Private Key 1270

3.26 Non-Cryptographic Objects 1271

The KMIP protocol allows clients to register Secret Data objects. Secret Data objects may include 1272

passwords or data that are used to derive keys. 1273

KMIP defines Secret Data as cryptographic objects. Even if the object is not used for 1274

cryptographic purposes, clients may still set certain attributes, such as the Cryptographic Usage 1275

Mask, for this object unless otherwise stated. Similarly, servers set certain attributes for this 1276

object, including the Digest, State, and certain Date attributes, even if the attributes may seem 1277

relevant only for other types of cryptographic objects. 1278

When registering a Secret Data object, the following attributes are set by the server: 1279

 Unique Identifier 1280

 Object Type 1281

 Digest 1282

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 41 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 State 1283

 Initial Date 1284

 Last Change Date 1285

When registering a Secret Data object for non-cryptographic purposes, the following attributes 1286

are set by either the client or the server: 1287

 Cryptographic Usage Mask 1288

3.27 Asymmetric Concepts with Symmetric Keys 1289

The Cryptographic Usage Mask attribute is intended to support asymmetric concepts using 1290

symmetric keys. This is common practice in established crypto systems: the MAC is an example 1291

of an operation where a single symmetric key is used at both ends, but policy dictates that one 1292

end may only generate cryptographic tokens using this key (the MAC) and the other end may 1293

only verify tokens. The security of the system fails if the verifying end is able to use the key to 1294

perform generate operations. 1295

In these cases it is not sufficient to describe the usage policy on the keys in terms of 1296

cryptographic primitives like “encrypt” vs. “decrypt” or “sign” vs. “verify”. There are two reasons 1297

why this is the case. 1298

 In some of these operations, such as MAC generate and verify, the same cryptographic 1299
primitive is used in both of the complementary operations. MAC generation involves 1300
computing and returning the MAC, while MAC verification involves computing that same 1301
MAC and comparing it to a supplied value to determine if they are the same. Thus, both 1302
generation and verification use the “encrypt” operation, and the two usages are not able 1303
to be distinguished by considering only “encrypt” vs. “decrypt”. 1304

 Some operations which require separate key types use the same fundamental 1305
cryptographic primitives. For example, encryption of data, encryption of a key, and 1306
computation of a MAC all use the fundamental operation “encrypt”, but in many 1307
applications, securely differentiated keys are used for these three operations. Simply 1308
looking for an attribute that permits “encrypt” is not sufficient. 1309

Allowing the use of these keys outside of their specialized purposes may compromise security. 1310

Instead, specialized application-level permissions are necessary to control the use of these keys. 1311

KMIP provides several pairs of such permissions in the Cryptographic Usage Mask (3.14), such 1312

as: 1313

MAC GENERATE

MAC VERIFY

For cryptographic MAC operations. Although it is

possible to compose certain MACs using a series

of encrypt calls, the security of the MAC relies on

the operation being atomic and specific.

GENERATE CRYPTOGRAM

VALIDATE CRYPTOGRAM

For composite cryptogram operations such as
financial CVC or ARQC.
To specify exactly which
cryptogram the key is
used for it is also
necessary to specify a
role for the key (see
Section 3.6

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 42 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

“Cryptographic
Parameters” in

[KMIP-Spec]).

TRANSLATE ENCRYPT

TRANSLATE DECRYPT

TRANSLATE WRAP

TRANSLATE UNWRAP

To accommodate secure routing of traffic and

data. In many areas that rely on symmetric

techniques (notably, but not exclusively financial

networks), information is sent from place to

place encrypted using shared symmetric keys.

When encryption keys are changed, it is desirable

for the change to be an atomic operation,

otherwise distinct unwrap-wrap or decrypt-

encrypt steps risk leaking the plaintext data

during the translation process.

TRANSLATE ENCRYPT/DECRYPT is used for data

encipherment.

TRANSLATE WRAP/UNWRAP is used for key

wrapping.

 TABLE 2: CRYPTOGRAPHIC USAGE MASKS PAIRS 1314

In order to support asymmetric concepts using symmetric keys in a KMIP system, the server 1315

implementation needs to be able to differentiate between clients for generate operations and 1316

clients for verify operations. As indicated by Section 3 (“Attributes”) of 1317

[KMIP-Spec] there is a single key object in the system to which all relevant clients refer, but 1318

when a client requests that key, the server is able to choose which attributes (permissions) to 1319

send with it, based on the identity and configured access rights of that specific client. There is, 1320

thus, no need to maintain and synchronize distinct copies of the symmetric key – just a need to 1321

define access policy for each client or group of clients. 1322

The internal implementation of this feature at the server end is a matter of choice for the 1323

vendor: storing multiple key blocks with all necessary combinations of attributes or generating 1324

key blocks dynamically are both acceptable approaches. 1325

3.28 Application Specific Information 1326

The Application Specific Information attribute is used to store data which is specific to the 1327

application(s) using the object. Some examples of Application Namespace and Application Data 1328

pairs are given below. 1329

 SMIME, 'someuser@company.com' 1330

 TLS, 'some.domain.name' 1331

 Volume Identification, '123343434' 1332

 File Name, 'secret.doc' 1333

 Client Generated Key ID, ‘450994003' 1334

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 43 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

The following Application Namespaces are recommended: 1335

 SMIME 1336

 TLS 1337

 IPSEC 1338

 HTTPS 1339

 PGP 1340

 Volume Identification 1341

 File Name 1342

 LTO4 and LTO5 1343

 LIBRARY-LTO4 and LIBRARY-LTO5 1344

KMIP provides optional support for server-generated Application Data. Clients may request the 1345

server to generate the Application Data for the client by omitting Application Data while setting 1346

or modifying the Application Specific Information attribute. A server only generates the 1347

Application Data if the Application Data is completely omitted from the request, and the client-1348

specified Application Namespace is recognized and supported by the server. An example for 1349

requesting the server to generate the Application Data is shown below: 1350

AddAttribute(Unique ID, AppSpecInfo{AppNameSpace=’LIBRARY-LTO4’}); 1351

If the server does not recognize the namespace, the “Application Namespace Not Supported” 1352

error is returned to the client. 1353

If the Application Data is set to null, as shown in the example below, and the Application 1354

Namespace is recognized by the server, the server does not generate the Application Data for 1355

the client. The server stores the Application Specific Information attribute with the Application 1356

Data value set to null. 1357

AddAttribute(Unique ID, AppSpecInfo{AppNameSpace=’LIBRARY-LTO4’, AppData=null}); 1358

3.29 Mutating Attributes 1359

KMIP does not support server mutation of client-supplied attributes. If a server does not accept 1360

an attribute value that is being specified inside the request by the client, the server returns an 1361

error and specifies “Invalid Field” as Result Reason. 1362

Attributes that are not set by the client, but are implicitly set by the server as a result of the 1363

operation, may optionally be returned by the server in the operation response inside the 1364

Template–Attribute. 1365

If a client sets a time-related attribute to the current date and time (as perceived by the client), 1366

but as a result of a clock skew, the specified date of the attribute is earlier than the time 1367

perceived by the server, the server’s policy is used to determine whether to accept the 1368

“backdated attribute”. KMIP does not require the server to fail a request if a backdated attribute 1369

is set by the client. 1370

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 44 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

If a server does not support backdated attributes, and cryptographic objects are expected to 1371

change state at the specified current date and time (as perceived by the client), clients are 1372

recommended to issue the operation that would implicitly set the date for the client. For 1373

example, instead of explicitly setting the Activation Date, clients could issue the Activate 1374

operation. This would require the server to set the Activation Date to the current date and time 1375

as perceived by the server. 1376

If it is not possible to set a date attribute via an operation, and the server does not support 1377

backdated attributes, clients need to take into account that potential clock skew issues may 1378

cause the server to return an error even if a date attribute is set to the client’s current date and 1379

time. 1380

For additional information, refer to the sections describing the State attribute and the Time 1381

Stamp field in [KMIP-Spec]. 1382

. 1383

3.30 Interoperable Key Naming for Tape 1384

This section describes methods for creating and storing key identifiers that are interoperable 1385

across multi-vendor KMIP clients. 1386

3.30.1 Native Tape Encryption by a KMIP Client 1387

This method is primarily intended to promote interoperable key naming between tape library 1388

products which already support non-KMIP key managers, where KMIP support is being added. 1389

When those existing library products become KMIP clients, a common method for naming and 1390

storing keys may be used to support moving tape cartridges between the libraries, and 1391

successfully retrieving keys, assuming that the clients have appropriate access privileges. The 1392

library clients may be from multiple vendors, and may be served by a KMIP key manager from a 1393

different vendor. 1394

3.30.1.1 Method Overview 1395

 The method uses the KMIP Application Specific Information (ASI) attribute’s Application 1396
Data field to store the key name. The ASI Application Namespace is used to identify the 1397
namespace (such as LIBRARY-LTO4 or LIBRARY-LTO5). 1398

 The method also uses the tape format's Key Associated Data (KAD) fields to store the 1399
key name. Tape formats may provide both authenticated and unauthenticated storage for 1400
the KAD data. This method ensures optimum utilization of the authenticated KAD data 1401
when the tape format supports authentication. 1402

 The method supports both client-generated and server-generated key names. 1403

 The method, in many cases, is backward-compatible if tapes are returned to a non-KMIP 1404
key manager environment. 1405

 Key names stored in the KMIP server's ASI attribute are always ASCIIformat. Key names 1406
stored on the KMIP client's KAD fields are always numeric format, due to space 1407
limitations of the tape format. The method basically consists of implementing a specific 1408
algorithm for converting between text and numeric formats. 1409

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 45 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 The algorithm used by this conversion is reversible. 1410

3.30.1.2 Definitions 1411

 Key Associated Data (KAD). Part of the tape format. May be segmented into 1412
authenticated and unauthenticated fields. KAD usage is detailed in the SCSI SSC-3 1413
standard from the T10 organization. 1414

 Application Specific Information (ASI). A KMIP attribute. 1415

 Hexadecimal numeric characters. Case-sensitive, printable, single byte ASCII characters 1416
representing the numbers 0 through 9 and uppercase alpha A through F. (US-ASCII 1417
characters 30h-39h and 41h-46h). 1418
 1419
Hexadecimal numeric characters are always paired, each pair representing a single 8-bit 1420
numeric value. A leading zero character is provided, if necessary, so that every byte in 1421
the tape’s KAD is represented by exactly 2 hexadecimal numeric characters. 1422

 N(k). The number of bytes in the tape format's combined KAD fields (both authenticated 1423
and unauthenticated). 1424

 N(a), N(u). The number of bytes in the tape format's authenticated, and unauthenticated 1425
KAD fields, respectively. 1426

3.30.1.3 Algorithm 1. Numeric to text direction (tape format’s KAD to KMIP ASI) 1427

Description: All information contained in the tape format’s KAD fields is converted to a null-1428

terminated ASCII string consisting of hexadecimal numeric character pairs. First, the 1429

unauthenticated KAD data is converted to text. Then, the authenticated KAD data is converted 1430

and appended to the end of the string. The string is then null-terminated. 1431

Implementation Example: 1432

1. Define an input buffer sized for N(k). For LTO4, N(k) is 44 bytes (12 bytes authenticated, 32 1433
unauthenticated). For LTO5, N(k) is 92 bytes (60 bytes authenticated, 32 bytes 1434
unauthenticated). 1435

2. Define an output buffer sufficient to contain a null-terminated string with a maximum length 1436
of 2*N(k)+1 bytes. 1437

3. Define the standard POSIX (also known as C) locale. Each character in the string is a 1438
single-byte US-ASCII character. 1439

4. Copy the tape format’s KAD data, from the unauthenticated KAD field first, to the input 1440
buffer. Effectively, the first byte (byte 0) of the input buffer is the first byte of unauthenticated 1441
KAD. Bytes from the authenticated KAD are concatenated, after the unauthenticated bytes. 1442

5. For each byte in the input buffer, convert to US-ASCII as follows: 1443

a. Convert the byte's value to exactly 2 hexadecimal numeric characters, including a leading 1444
0 where necessary. Append these 2 numeric characters to the output buffer, with the 1445
high-nibble represented by the left-most hexadecimal numeric character. 1446

b. After all byte values have been converted, null terminate the output buffer. 1447

6. When storing the string to the KMIP server, use the object’s ASI attribute’s Application Data 1448
field. Store the namespace (such as LIBRARY-LTO4) in the ASI attribute’s Application 1449
Namespace field. 1450

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 46 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3.30.1.4 Algorithm 2. Text to numeric direction (KMIP ASI to tape format’s KAD) 1451

Description: Hexadecimal numeric character pairs in the null-terminated ASCII string are 1452

converted to single byte numeric values, and stored in the tape format’s KAD fields. The 1453

authenticated KAD field is populated first, from a sub-string consisting of the last 2*N(a) 1454

characters in the full string. Any remaining characters in the string are converted and stored to 1455

the unauthenticated KAD field. The null termination byte is not converted. 1456

 1457

Implementation Example: 1458

1. Obtain the key’s name from the KMIP server’s ASI attribute for that object. Copy the null 1459
terminated string to an input buffer of size 2*N(k) + 1 bytes. For LTO4, an 89 character 1460
string, including null termination, is sufficient to represent any key name stored directly in the 1461
KAD fields. For LTO5, a 195 character string, including null termination, is sufficient to 1462
represent any key name stored directly in the KAD fields.. 1463

2. Define output buffers for unauthenticated KAD, and authenticated KAD, of size N(u) and 1464
N(a) respectively. For LTO4, this would be 32 bytes of unauthenticated data, and 12 bytes of 1465
authenticated data. For LTO5, this would be 32 bytes of unauthenticated data and 60 bytes 1466
of authenticated data. 1467

3. Define the standard POSIX (also known as C) locale. Each character in the string is a 1468
single-byte US-ASCII character. 1469

4. First, populate the authenticated KAD buffer, converting a sub-string consisting of the last 1470
2*N(a) characters of the full string, not including the null termination byte. 1471

5. When the authenticated KAD is filled, next populate the unauthenticated KAD buffer, by 1472
converting the remaining hexadecimal character pairs in the string. 1473

3.30.1.5 Example Output 1474

The following are examples illustrating some results of this method. In the following examples, 1475

the sizes of the KAD for LTO4 are used. Different tape formats may utilize different KAD sizes. 1476

Example 1. Full combined KAD for LTO4 1477

This LTO4 tape’s combined KAD contains the following data (represented in hexadecimal). For 1478

LTO4, the unauthenticated KAD contains 32 bytes, and the authenticated KAD contains 12 bytes. 1479

Example 1a. Hexadecimal numeric data from a tape’s KAD. 1480

Shaded data is authenticated by the tape drive. 1481

02 04 17 11 39 43 42 36 30 41 33 34 39 31 44 33 1482

41 41 43 36 32 42 07 F6 54 54 32 36 30 38 4C 34 1483

30 30 30 39 30 35 32 38 30 34 31 32 1484

The algorithm converts the numeric KAD data to the following 89 character null-terminated 1485

string for storage in the Application Data field of a KMIP object's Application Specific 1486

Information attribute. The ASI Application Namespace contains “LIBRARY-LTO4”. 1487

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 47 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Example 1b. Text string from KMIP ASI Application Data. 1488

Shaded characters are derived from authenticated data. The null character is 1489

represented as <null> 1490

0204171139434236304133343931443341414336324207F65454323630384C3430303031491

93035323830343132<null> 1492

Example 1c. The hexadecimal values of the 89 US-ASCII characters in string 1b, from the 1493

KMIP ASI Application Data. Note: these values are always in the range 30h-39h, or in the 1494

range 41h-46h, or the 0h null. 1495

30 32 30 34 31 37 31 31 33 39 34 33 34 32 33 36 33 30 34 31 33 33 33 34 33 39 33 31 34 1496

34 33 33 34 31 34 31 34 33 33 36 33 32 34 32 30 37 46 36 35 34 35 34 33 32 33 36 33 30 1497

33 38 34 43 33 34 33 30 33 30 33 30 33 39 33 30 33 35 33 32 33 38 33 30 33 34 33 31 33 1498

32 00 1499

For the reverse transformation, a client would retrieve the string in 1b from the server, derive 1500

the numeric values shown in 1a, and store them to the tape format's KAD data. First, the sub-1501

string containing the right-most 24 characters of the full 1b string are used to derive the 12-byte 1502

authenticated KAD. The remaining characters are used to derive the 32-byte unauthenticated 1503

KAD. 1504

Example 2. Authenticated KAD only, for LTO4 1505

This LTO4 tape’s KAD contains the following data (represented in hexadecimal), all 12 bytes 1506

obtained from the authenticated KAD field. There is no unauthenticated KAD data. 1507

Example 2a. Hexadecimal numeric data from a tape's KAD. 1508

Shaded data is authenticated. 1509

 1510

17 48 33 C6 20 42 10 A7 E8 05 F8 C7 1511

The algorithm converts the numeric KAD data to the following 24 character null-terminated 1512

string, for storage in the Application Data field of a KMIP object's Application Specific 1513

Information attribute. 1514

Example 2b. Text string from KMIP ASI Application Data. 1515

Shaded characters are derived from authenticated data. The null character is 1516

represented as <null> 1517

174833C6204210A7E805F8C7<null> 1518

For the reverse transformation, a client would derive the numeric values in 2a, and store them 1519

to the tape format's KAD data. The right-most 24 characters of the string in 2b are used to 1520

derive the 12 byte authenticated KAD. In this example, there is no unauthenticated KAD data. 1521

Example 3. Partially filled authenticated KAD originating from a non-KMIP method, for LTO4 1522

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 48 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

This LTO4 tape’s KAD contains the following data (represented in hexadecimal). The 1523

unauthenticated KAD contains 10 bytes, and the authenticated KAD contains 8 bytes. 1524

Since the authenticated KAD was not filled, but the unauthenticated data was populated, the 1525

method creating this key name is potentially not backward-compatible with the KMIP key 1526

naming method. See backward-compatibility assessment, below. 1527

Example 3a. Hexadecimal numeric data from a non-KMIP tape's KAD. 1528

Shaded data is authenticated. 1529

02 04 17 11 39 43 42 36 30 41 30 30 30 39 30 35 1530

32 38 1531

 1532

The algorithm converts the numeric KAD data to the following 36 character null-terminated 1533

string, for storage in the Application Data field of a KMIP object's Application Specific 1534

Information attribute. 1535

Example 3b. Text string from KMIP ASI Application Data. 1536

Shaded characters are derived from authenticated data. The null character is 1537

represented as <null> 1538

020417113943423630413030303930353238<null> 1539

For the reverse transformation, a client would derive the same numeric values shown in 3a, and 1540

store them to the tape's KAD. But their storage locations within the KAD now differs (see 3c). 1541

The right-most 24 characters from the text string in 3b are used to derive the 12-byte 1542

authenticated KAD. The remaining characters are used to fill the 32-byte unauthenticated KAD. 1543

Example 3c. Hexadecimal numeric data from a tape's KAD. 1544

Shaded data is authenticated. 1545

02 04 17 11 39 43 42 36 30 41 30 30 30 39 30 35 1546

32 38 1547

3.30.1.6 Backward-compatibility assessment 1548

Where all the following conditions exist, a non-KMIP solution may encounter compatibility 1549

issues during the Read and Appended Write use cases. 1550

1. The tape format supports authenticated KAD, but the non-KMIP solution does not use, or 1551
only partially uses, the authenticated KAD field. 1552

2. The non-KMIP solution is sensitive to data position within the combined KAD. 1553

3. The media was written in a KMIP environment, using this method, then moved to the non-1554
KMIP environment. 1555

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 49 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

3.31 Revocation Reason Codes 1556

The enumerations for the Revocation Reason attribute specified in KMIP (see table 9.1.3.2.19 in 1557

[KMIP-Spec]) are aligned with the Reason Code specified in X.509 and referenced in RFC 5280 1558

with the following exceptions. The certificateHold and removeFromCRL reason codes have been 1559

excluded from 1560

[KMIP-Spec], since this version of KMIP does not support certificate suspension (putting a 1561

certificate hold) or unsuspension (removing a certificate from hold). The aaCompromise reason 1562

code has been excluded from 1563

[KMIP-Spec] since it only applies to attribute certificates, which are out-of-scope for 1564

[KMIP-Spec]. The priviledgeWithdrawn reason code is included in 1565

[KMIP-Spec] since it may be used for either attribute or public key certificates. In the context of 1566

its use within KMIP it is assumed to only apply to public key certificates. 1567

3.32 Certificate Renewal, Update, and Re-key 1568

The process of generating a new certificate to replace an existing certificate may be referred to 1569

by multiple terms, based upon what data within the certificate is changed when the new 1570

certificate is created. In all situations, the new certificate includes a new serial number and new 1571

validity dates. 1572

[KMIP-Spec] uses the following terminology which is aligned with the definitions found in 1573
IETF RFCs [RFC3647] 1574

[RFC3647] and [RFC4949]: 1575

 Certificate Renewal: The issuance of a new certificate to the subject without changing 1576
the subject public key or other information (except the serial number and certificate 1577
validity dates) in the certificate. 1578

 Certificate Update: The issuance of a new certificate, due to changes in the information 1579
in the certificate other than the subject public key. 1580

 Certificate Rekey: The generation of a new key pair for the subject and the issuance of a 1581
new certificate that certifies the new public key. 1582

The KMIP Specification supports certificate renewals using the Re-Certify operation and 1583

certificate updates using the Certify operation. Certificate rekey is supported through the 1584

submission of a Re-key Key Pair operation, which generates a replacement (new) key pair, 1585

followed by a Certify operation, which issues a new certificate containing the replacement (new) 1586

public key. 1587

3.33 Key Encoding 1588

Two parties receiving the same key as a Key Value Byte String make use of the key in 1589
exactly the same way in order to interoperate. To ensure that, it is 1590
necessary to define a correspondence between the abstract syntax of 1591
Key and the notation in the standard algorithm description that defines 1592
how the key is used. The next sections establish that correspondence for 1593
the algorithms AES 1594

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 50 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

[FIPS197] and Triple-DES 1595
[SP800-67]. 1596

3.33.1 AES Key Encoding 1597

 1598
[FIPS197] section 5.2, titled Key Expansion, uses the input key as an array of bytes indexed 1599

starting at 0. The first byte of the Key becomes the key byte in AES that 1600
is labeled index 0 in 1601

[FIPS197] and the other key bytes follow in index order. 1602

Proper parsing and key load of the contents of the Key for AES is determined by using the 1603
following Key byte string to generate and match the key expansion test 1604
vectors in 1605

[FIPS197] Appendix A for the 128-bit (16 byte) AES Cipher Key: 2B 7E 15 16 28 AE D2 A6 AB F7 1606

15 88 09 CF 4F 3C. 1607

3.33.2 Triple-DES Key Encoding 1608

A Triple-DES key consists of three keys for the cryptographic engine (Key1, Key2, and Key3) that 1609

are each 64 bits (even though only 56 are used); the three keys are also referred to as a key 1610

bundle (KEY) 1611

[SP800-67]. A key bundle may employ either two or three mutually independent keys. When 1612

only two are employed (called two-key Triple-DES), then Key1 = Key3. 1613

Each key in a Triple-DES key bundle is expanded into a key schedule according to a procedure 1614

defined in 1615

[SP800-67] Appendix A. That procedure numbers the bits in the key from 1 to 64, with number 1 1616

being the left-most, or most significant bit. The first byte of the Key is bits 1 through 8 of Key1, 1617

with bit 1 being the most significant bit. The second byte of the Key is bits 9 through 16 of Key1, 1618

and so forth, so that the last byte of the KEY is bits 57 through 64 of Key3 (or Key2 for two-key 1619

Triple-DES). 1620

Proper parsing and key load of the contents of Key for Triple-DES is determined by using the 1621

following Key byte string to generate and match the key expansion test vectors in 1622

[SP800-67] Appendix B for the key bundle: 1623

Key1 = 0123456789ABCDEF 1624

Key2 = 23456789ABCDEF01 1625

Key3 = 456789ABCDEF0123 1626

3.34 Using the Same Asymmetric Key Pair in Multiple Algorithms 1627

There are mathematical relationships between certain asymmetric cryptographic algorithms 1628

such as the Digital Signature Algorithm (DSA) and Diffie-Hellman (DH) and their elliptic curve 1629

equivalents ECDSA and ECDH that allow the same asymmetric key pair to be used in both 1630

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 51 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

algorithms. In addition, there are overlaps in the key format used to represent the asymmetric 1631

key pair for each algorithm type. 1632

Even though a single key pair may be used in multiple algorithms, the KMIP Specification has 1633
chosen to specify separate key formats for representing the asymmetric 1634
key pair for use in each algorithm. This approach keeps KMIP in line with 1635
the reference standards (e.g., NIST FIPS 186-3 [FIPS186-3], ANSI 1636
X9.42 1637

[X9.42], etc) from which the key formats are obtained and the best practice documents (e.g., 1638
NIST SP800-57 part 1 1639

[SP800-57-1], NIST SP800-56A 1640
[SP800-56A], etc) which recommend that a key pair only be used for one purpose. 1641

3.35 Cryptographic Length of Asymmetric Keys 1642

The value (e.g., 2048 bits) referred to in the KMIP Cryptographic Length attribute for an 1643

asymmetric (public or private) key may be misleading, since this length only refers to certain 1644

portions of the mathematical values that comprise the key. The actual length of all the 1645

mathematical values comprising the public or the private key is longer than the referenced 1646

value. This point may be illustrated by looking at the components of a RSA public and private 1647

key. 1648

The RSA public key is comprised of a modulus (n) and an (public) exponent (e). When one 1649

indicates that the RSA public key is 2048 bits in length that is a reference to the bit length of the 1650

modulus (n) only. So the full length of the RSA public key is actually longer than 2048 bits, since 1651

it also includes the length of the exponent (e) and the overhead of the encoding (e.g., ASN.1) of 1652

the key material. 1653

The RSA private key is comprised of a modulus (n), the public exponent (e), the private exponent 1654

(d), prime 1 (p), prime 2 (q), exponent 1 (d mod (p-1)), exponent 2 (d mod (p-1)), and coefficient 1655

((inverse of q) mod p). Once again the 2048 bit key length is referring only to the length of the 1656

modulus (n), so the overall length of the private key would be longer given the number of 1657

additional components which comprise the key and the overhead of encoding (e.g., ASN.1) of 1658

the key material. 1659

KMIP implementations need to ensure they do not make assumptions about the actual length of 1660

asymmetric (public and private) key material based on the value specified in the Cryptographic 1661

Length attribute. 1662

3.36 Discover Versions 1663

The Discover Versions operation allows clients and servers to identify a KMIP protocol version 1664

that both client and server understand. The operation was added to KMIP 1.1. KMIP 1.0 clients 1665

and servers may therefore not support this operation. If the Discover Versions request is sent to 1666

a KMIP 1.0 server and the server does not support the operation, the server returns the 1667

“Operation Not Supported” error. 1668

 The operation addresses both the “dumb” and “smart” client scenarios. Dumb clients may 1669

simply pick the first protocol version that is returned by the server, assuming that the client 1670

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 52 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

provides the server with a list of supported protocol version. Smart clients may request the 1671

server to return a complete list of supported protocol versions by sending an empty request 1672

payload and picking a protocol version that is supported by both client and server. 1673

Clients specify the protocol version in the request header and optionally provide a list of 1674

protocol versions in the request payload. If the protocol version in the request header is not 1675

specified in the request payload and the server does not support any protocol version specified 1676

in the request payload, the server returns an empty list in the response payload. In this scenario, 1677

clients are aware that the request did not result in an error and could communicate with the 1678

server using the protocol version specified in the request header. 1679

3.37 Vendor Extensions 1680

KMIP allows for vendor extensions in a number of areas: 1681

1. Enumerations have specific ranges which are noted as extensions 1682

2. Item Tag values of the form 0x54xxxx are reserved for vendor extensions 1683

3. Attributes may be defined by the client with a “x-“ prefix or by the server with a “y-“ prefix 1684

This section covers only item 2. 1685

Extensions may be used by vendors to communicate information between a KMIP client and a 1686

KMIP server that is not currently defined within the KMIP specification. 1687

A common use of extensions is to allow for the structured definition of attributes using KMIP 1688

TTLV encoding rather than encoding vendor specific information in opaque byte strings. 1689

3.37.1 Query Extension Information 1690

The Extension Information structure added to KMIP 1.1 and the Query Extension List and Query 1691

Extension Map functions of the Query Operation provide a mechanism for a KMIP client to be 1692

able to determine which extensions a KMIP server supports. 1693

A client may request the list of Extensions supported by a KMIP 1.1 server by specifying the 1694

Query Extension List value in the Query Function field. This provides the names of the supported 1695

extensions. 1696

Example output: 1697

 Extension Information 1698

 Extension Name: ACME LOCATION 1699

 Extension Information 1700

 Extension Name: ACME ZIP CODE 1701

 1702

A client may request the details of Extensions supported by a KMIP 1.1 server by specifying the 1703

Query Extension Map value in the Query Function field. This provides the names of the 1704

supported extensions. 1705

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 53 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Example output: 1706

 Extension Information 1707

 Extension Name: ACME LOCATION 1708

 Extension Tag: 0x54AA01 1709

 Extension Type: Text String 1710

 Extension Information 1711

 Extension Name: ACME ZIP CODE 1712

 Extension Tag: 0x54AA02 1713

 Extension Type: Integer 1714

3.37.2 Registering Extension Information 1715

As tag values and their interpretation for the most part should be known for a client and server 1716

to meaningfully use an extension, the following registration procedure should be used. 1717

1. Document the Extensions including: 1718

a. Extension Tag, Extension Name, Extension Type values to be reserved 1719

b. A brief description of the purpose of the Extension 1720

c. Example use case messages (requests and responses) 1721

d. Example Guidance 1722

2. Send the Document to the KMIP TC requesting review 1723

3. Request a KMIP TC ballot on accepting the reservation of the Extension 1724

It is anticipated that a template document may be produced for this registration process. 1725

3.38 Certificate Attribute Related Fields 1726

The KMIP v1.0 Certificate Identifier, Certificate Subject and Certificate Issuer attributes are 1727

populated from values found within X.509 public key or PGP certificates. In KMIP v1.0 these 1728

fields are encoded as Text String, but the values of these fields are obtained from certificates 1729

which are ASN.1 (X.509) or octet (PGP) encoded. In KMIP v1.1, the data type associated with 1730

these fields is being changed from Text String to Byte String so that the values of these fields 1731

parsed from the certificates can be preserved and no conversion from the encoded values into a 1732

text string is necessary. 1733

Since these certificate-related attributes and associated fields were included as part of the v1.0 1734

KMIP specification and that there may be implementations supporting these attributes using the 1735

Text String encoding, a decision was made to deprecate these attributes in KMIP v1.1 and 1736

replace them with newly named attributes and fields. As part of this change, separate 1737

certificate-related attributes for X.509 certificates are being introduced. Certificate attributes 1738

for PGP certificates may be introduced in a subsequent (post v1.1) release of KMIP. 1739

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 54 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Table 3 provides a list of the deprecated certificate-related attributes and fields with their 1740

corresponding tag value. 1741

 1742

Deprecated Attribute/Field Deprecated Tag Value

Certificate Identifier 420014

Certificate Issuer 420015

Certificate Issuer Alternative
Name

420016

Certificate Issuer Distinguished
Name

420017

Certificate Subject 42001A

Certificate Subject Alternative
Name

42001B

Certificate Subject
Distinguished Name

42001C

Issuer 42003B

Serial Number 420087

 1743

TABLE 3: DEPRECATED CERTIFICATE RELATED ATTRIBUTES AND FIELDS 1744

 1745

 1746

Table 4 provides a mapping of v1.0 to v1.1 certificate attributes and fields. 1747

 1748

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 55 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Deprecated V1.0
Attribute

Deprecated V1.0
Field

New V1.1 Attribute New V1.1 Field

Certificate Identifier Issuer X.509 Certificate
Identifier

Issuer Distinguished
Name

Serial Number Certificate Serial
Number

Certificate Issuer

Certificate Issuer
Distinguished Name

X.509 Certificate
Issuer

Issuer Distinguished
Name

Certificate Issuer
Alternative Name

Issuer Alternative
Name

Certificate Subject Certificate Subject
Distinguished Name

X.509 Certificate
Subject

Subject
Distinguished Name

Certificate Subject
Alternative Name

Subject Alternative
Name

 1749

TABLE 4: MAPPING OF V1.0 TO V1.1 CERTIFICATE RELATED ATTRIBUTES AND FIELDS 1750

3.39 Certificate Revocation Lists 1751

Any Certificate Revocation List (CRL) checking which may be required for certificate-related 1752

operations such as register and re-key should be performed by the client prior to requesting the 1753

operation from a server. 1754

 1755

3.40 Using the “Raw” Key Format Type 1756

As defined in Section 2.1.3 of the KMIP Specification V1.1, the “raw” key format is intended to 1757

be used for “a key that contains only cryptographic key material, encoded as a string of bytes.” 1758

 As discussed in Section 3.21.6 of the Usage Guide, the “raw” key format supports situations 1759

such as “non-KMIP-aware end-clients are aware how wrapped cryptographic objects (possibly 1760

Raw keys) from the KMIP server should be used without having to rely on the attributes 1761

provided by the Get Attributes operation” and in that regard is similar to the Opaque key format 1762

type. “Raw” key format is intended to be applied to symmetric keys and not asymmetric keys; 1763

therefore, this format is not specified in the asymmetric key profiles included in KMIP V1.1. 1764

 1765

3.41 Deprecated Functionality 1766

Use of deprecated functionality, as described in Section 3.39, is discouraged since such 1767

functionality may be dropped in a future release of the KMIP standard. 1768

 1769

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 56 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

4 Deferred KMIP Functionality 1770

The KMIP Specification is currently missing items that have been judged candidates for future 1771

inclusion in the specification. These items currently include: 1772

 Registration of Clients. This would allow in-band registration and management of clients, 1773
which currently may only be registered and/or managed using off-line mechanisms. 1774

 Client-requested specification of additional clients that are allowed to use a key. This 1775
requires coordinated identities between the client and server, and as such, is deferred 1776
until registration of clients is addressed. 1777

 Registration of Notifications. This would allow clients to specify, using an in-band 1778
mechanism, information and events that they wish to be notified of, and what 1779
mechanisms should be used for such notifications, possibly including the configuration of 1780
pushed cryptographic material. This functionality would assume the Registration of 1781
Clients as a prerequisite. 1782

 Key Migration. This would standardize the migration of keys from one HSM to another, 1783
using mechanisms already in the protocol or ones added for this purpose. 1784

 Server to Server key management. This would extend the protocol to support 1785
communication between key management servers in different key management domains, 1786
for purposes of exporting and importing cryptographic material and potentially policy 1787
information. 1788

 Multiple derived keys. This would allow the creation of multiple derived keys from one or 1789
more input keys. Note, however, that the current version of KMIP provides the capability 1790
to derive multiple keys and initialization vectors by creating a Secret Data object and 1791
specifying a cryptographic length equal to the total length of the derived objects. 1792

 XML encoding. Expression of KMIP in XML rather than in tag/type/length/value may be 1793
considered for the future. 1794

 Specification of Mask Generation Function. KMIP does not currently allow clients to 1795
specify the Mask Generation Function and assumes that encryption or signature 1796
schemes, such as OAEP or PSS, use MGF1 with the hash function as specified in the 1797
Cryptographic Parameters attribute. Client specification of MGFs may be considered for 1798
the future. 1799

 Server monitoring of client status. This would enable the transfer of information about the 1800
client and its cryptographic module to the server. This information would enable the 1801
server to generate alarms and/or disallow requests from a client running component 1802
versions with known vulnerabilities. 1803

 Symmetric key pairs. Only a subset of the cryptographic usage bits of the Cryptographic 1804
Usage Mask attribute may be permitted for keys distributed to a particular client. KMIP 1805
does not currently address how to securely assign and determine the applicable 1806
cryptographic usage for a client. 1807

 Hardware-protected attribute. This attribute would allow clients and servers to determine 1808
if a key may only be processed inside a secure cryptographic device, such as an HSM. If 1809
this attribute is set, the key may only exist in cleartext within a secure hardware device, 1810
and all security-relevant attributes are bound to it in such a way that they may not be 1811
modified outside of such a secure device. 1812

 Alternative profiles for key establishment. Less capable end-clients may not be able to 1813
support TLS and should use a proxy to communicate with the key management system. 1814
The KMIP protocol does not currently define alternative profiles, nor does it allow end-1815
clients relying on the proxy model to securely establish a key with the server. 1816

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 57 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

 Attribute mutation. The possibility for the server to use attribute values different than 1817
requested by the client if these values are not suitable for the server, and return these 1818
values in the response, instead of failing the request. 1819

 Cryptographic Domain Parameters. KMIP allows a limited number of parameters to be 1820
specified during a Create Key Pair operation. Additional parameters may be considered 1821
for the future. 1822

 Certificate Suspension/Unsuspension. KMIP does not currently support certificate 1823
suspension (putting a certificate on hold) or unsuspension (removing a certificate from 1824
hold). Adding support for certificate suspension/unsuspension into KMIP may be 1825
considered for the future. 1826

 Namespace registration. Establishing a registry for namespaces may be considered for 1827
the future. 1828

 Registering extensions to KMIP enumerations. Establishing a registry for extensions to 1829
defined KMIP enumerations, such as in support of profiles specific to IEEE P1619.3 or 1830
other organizations, may be considered for the future. 1831

In addition to the functionality listed above, the KMIP TC is interested in establishing a C&A 1832

(certification and accreditation) process for independent validation of claims of KMIP 1833

conformance. Defining and establishing this process is a candidate for work by the KMIP TC after 1834

V1.1. 1835

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 58 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

5 Implementation Conformance 1836

This document is intended to be informational only and as such has no conformance clauses. 1837

The conformance requirements for the KMIP Specification can be found in the "KMIP 1838

Specification" document itself, at the URL noted in the “Normative References” section of this 1839

document. 1840

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 59 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Appendix A. Acknowledgements 1841

The following individuals have participated in the creation of this specification and are gratefully 1842
acknowledged: 1843

Original Authors of the initial contribution: 1844
David Babcock, HP 1845
Steven Bade, IBM 1846
Paolo Bezoari, NetApp 1847
Mathias Björkqvist, IBM 1848
Bruce Brinson, EMC 1849
Christian Cachin, IBM 1850
Tony Crossman, Thales/nCipher 1851
Stan Feather, HP 1852
Indra Fitzgerald, HP 1853
Judy Furlong, EMC 1854
Jon Geater, Thales/nCipher 1855
Bob Griffin, EMC 1856
Robert Haas, IBM 1857
Timothy Hahn, IBM 1858
Jack Harwood, EMC 1859
Walt Hubis, LSI 1860
Glen Jaquette, IBM 1861
Jeff Kravitz, IBM 1862
Michael McIntosh, IBM 1863
Brian Metzger, HP 1864
Anthony Nadalin, IBM 1865
Elaine Palmer, IBM 1866
Joe Pato, HP 1867
René Pawlitzek, IBM 1868
Subhash Sankuratripati, NetApp 1869
Mark Schiller, HP 1870
Martin Skagen, Brocade 1871
Marcus Streets, Thales/nCipher 1872
John Tattan, EMC 1873
Karla Thomas, Brocade 1874
Marko Vukolić , IBM 1875
Steve Wierenga, HP 1876

Participants in KMIP Usage Guide V1.1 1877
Hal Aldridge, Sypris Electronics 1878
Mike Allen, Symantec 1879
Gordon Arnold, IBM 1880
Todd Arnold, IBM 1881
Matthew Ball, Oracle Corporation 1882
Elaine Barker, NIST 1883
Peter Bartok, Venafi, Inc. 1884
Mathias Björkqvist, IBM 1885
Kelley Burgin, National Security Agency 1886
John Clark, Hewlett-Packard 1887
Tom Clifford, Symantec Corp. 1888
Graydon Dodson, Lexmark International Inc. 1889
Chris Dunn, SafeNet, Inc. 1890
Michael Duren, Sypris Electronics 1891
Paul Earsy, SafeNet, Inc. 1892

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 60 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Stan Feather, Hewlett-Packard 1893
Indra Fitzgerald, Hewlett-Packard 1894
Alan Frindell, SafeNet, Inc. 1895
Judith Furlong, EMC Corporation 1896
Jonathan Geater, Thales e-Security 1897
Susan Gleeson, Oracle 1898
Robert Griffin, EMC Corporation 1899
Paul Grojean, Individual 1900
Robert Haas, IBM 1901
Thomas Hardjono, M.I.T. 1902
Steve He, Vormetric Inc. 1903
Kurt Heberlein, Hewlett-Packard 1904
Joel Hockey, Cryptsoft Pty Ltd. 1905
Larry Hofer, Emulex Corporation 1906
Brandon Hoff, Emulex Corporation 1907
Walt Hubis, NetApp 1908
Tim Hudson, Cryptsoft Pty Ltd. 1909
Jay Jacobs, Target Corporation 1910
Glen Jaquette, IBM 1911
Scott Kipp, Brocade Communications Systems, Inc. 1912
Kathy Kriese, Symantec Corporation 1913
David Lawson, Emulex Corporation 1914
John Leiseboer, Quintenssence Labs 1915
Hal Lockhart, Oracle Corporation 1916
Robert Lockhart, Thales e-Security 1917
Anne Luk, Cryptsoft Pty Ltd. 1918
Shyam Mankala, EMC Corporation 1919
Upendra Mardikar, PayPal Inc. 1920
Luther Martin, Voltage Security 1921
Hyrum Mills, Mitre Corporation 1922
Bob Nixon, Emulex Corporation 1923
René Pawlitzek, IBM 1924
John Peck, IBM 1925
Rob Philpott, EMC Corporation 1926
Denis Pochuev, SafeNet, Inc. 1927
Ajai Puri, SafeNet Inc. 1928
Peter Reed, SafeNet Inc. 1929
Bruce Rich, IBM 1930
Warren Robbins, Credant Systems 1931
Saikat Saha, SafeNet, Inc. 1932
Subhash Sankuratripati, NetApp 1933
Mark Schiller, Hewlett-Packard 1934
Brian Spector, Certivox 1935
Terence Spies, Voltage Security 1936
Marcus Streets, Thales e-Security 1937
Kiran Thota, VMware 1938
Sean Turner, IECA, Inc. 1939
Paul Turner, Venafi, Inc. 1940
Marko Vukolić, EURECOM 1941
Rod Wideman, Quantum Corporation 1942
Steven Wierenga, Hewlett-Packard 1943
Peter Yee, EMC Corporation 1944
Krishna Yellepeddy, IBM 1945
Michael Yoder, Vormetric. Inc. 1946
Peter Zelechoski, Election Systems & Software 1947
Magda Zdunkiewicz, Cryptsoft 1948

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 61 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Appendix B. Acronyms 1949

The following abbreviations and acronyms are used in this document: 1950

3DES - Triple Data Encryption Standard specified in ANSI X9.52 1951

AES - Advanced Encryption Standard specified in FIPS 197 1952

ANSI - American National Standards Institute 1953

ARQC - Authorization Request Cryptogram 1954

ASCII - American Standard Code for Information Interchange 1955

CA - Certification Authority 1956

CBC - Cipher Block Chaining specified in NIST SP 800-38A 1957

CMC - Certificate Management Messages over CMS specified in RFC 5275 1958

CMP - Certificate Management Protocol specified in RFC 4210 1959

CRL - Certificate Revocation List specified in RFC 5280 1960

CRMF - Certificate Request Message Format specified in RFC 4211 1961

CVC - Card Verification Code 1962

DES - Data Encryption Standard specified in FIPS 46-3 1963

DEK - Data Encryption Key 1964

DH - Diffie-Hellman specified in ANSI X9.42 1965

FIPS - Federal Information Processing Standard 1966

GCM - Galois/Counter Mode specified in NIST SP 800-38D 1967

HMAC - Keyed-Hash Message Authentication Code specified in FIPS 198-1 1968

HSM - Hardware Security Module 1969

HTTP - Hyper Text Transfer Protocol 1970

HTTP(S) - Hyper Text Transfer Protocol (Secure socket) 1971

ID - Identification 1972

IP - Internet Protocol 1973

IPSec - Internet Protocol Security 1974

KEK - Key Encryption Key 1975

KMIP - Key Management Interoperability Protocol 1976

LTO4 - Linear Tape-Open, Generation 4 1977

LTO5 - Linear Tape-Open, Generation 5 1978

MAC - Message Authentication Code 1979

MD5 - Message Digest 5 Algorithm specified in RFC 1321 1980

MGF - Mask Generation Function 1981

NIST - National Institute of Standards and Technology 1982

OAEP - Optimal Asymmetric Encryption Padding specified in PKCS#1 1983

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 62 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

PEM - Privacy Enhanced Mail specified in RFC 1421 1984

PGP - OpenPGP specified in RFC 4880 1985

PKCS - Public-Key Cryptography Standards 1986

POP - Proof of Possession 1987

POSIX - Portable Operating System Interface 1988

PSS - Probabilistic Signature Scheme specified in PKCS#1 1989

RSA - Rivest, Shamir, Adelman (an algorithm) 1990

SHA - Secure Hash Algorithm specified in FIPS 180-2 1991

SP - Special Publication 1992

S/MIME - Secure/Multipurpose Internet Mail Extensions 1993

TCP - Transport Control Protocol 1994

TLS - Transport Layer Security 1995

TTLV - Tag, Type, Length, Value 1996

URI - Uniform Resource Identifier 1997

UTF-8 - Universal Transformation Format 8-bit specified in RFC 3629 1998

X.509 - Public Key Certificate specified in RFC 5280 1999

XML - Extensible Markup Language 2000

This is a Non-Standards Track Work Product.

The patent provisions of the OASIS IPR Policy do not apply.

kmip-ug-v1.1-cn01 27 July 2012
Non-Standards Track Copyright © OASIS Open 2012. All Rights Reserved. Page 63 of 63

[T
yp

e
th

e
d

o
cu

m
en

t
ti

tl
e]

Appendix C. Revision History 2001

Revision Date Editor Changes Made

wd-01 2011-07-26 Indra Fitzgerald Incorporated the following proposals: Supporting Rekey

of Asymmetric Key Pairs within KMIP, Encoding Options

for Key Wrap, Discover Versions, Vendor Extensions,

Cryptographic Length of Asymmetric Keys, and Text String

Representation of Distinguished Names. Extended the

multi-vendor interoperability method to include LTO5.

Incorporated Usage Guide comments.

wd-02 2011-08-10 Indra Fitzgerald Incorporated the Device Credential and Group proposal.

Removed the Text String Representation of Distinguished

Names section.

wd-03 2011-08-17 Indra Fitzgerald Performed minor editorial changes.

wd-04 2011-10-7 Robert Griffin Added new participant list and other minor editorial

changes.

wd-05 2011-10-19 Robert Griffin Converted to new OASIS template for non-standard-track

document.

wd-06 2011-12-1 Robert Griffin Incorporates new text from

“v3KMIP1.1CertAttributeUpdateProposal.docx”

wd-07 2011-12-20 Robert Griffin Editorial corrections to references and formatting.

cnd-01 2012-1-4 OASIS admin Committee Note Draft for Public Review

wd-08 2012-4-4 Robert Griffin Incorporate comments from public review

wd-09 2012-4-16 Robert Griffin Incorporate comments from KMIP TC

wd-10 2012-4-26 Robert Griffin Removed attribute index text, as voted by KMIP TC and

updated contributors’ list

 2002

