
kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 1 of 46

Key Management Interoperability
Protocol Usage Guide Version 1.0
Committee Draft 0905 / Public Review 0201

18 March 2010

5 November 2009
Specification URIs:
This Version:

http://docs.oasis-open.org/kmip/ug/v1.0/cd09cd05/kmip-ug-1.0-cd-0905.html
http://docs.oasis-open.org/kmip/ug/v1.0/cd09cd05/kmip-ug-1.0-cd-0905.doc (Authoritative)
http://docs.oasis-open.org/kmip/ug/v1.0/cd09cd05/kmip-ug-1.0-cd-0905.pdf

Previous Version:
http://docs.oasis-open.org/kmip/ug/v1.0/cd05/kmip-ug-1.0-cd-05.html
http://docs.oasis-open.org/kmip/ug/v1.0/cd05/kmip-ug-1.0-cd-05.doc
http://docs.oasis-open.org/kmip/ug/v1.0/cd05/kmip-ug-1.0-cd-05.pdf
N/A

Latest Version:
http://docs.oasis-open.org/kmip/ug/v1.0/kmip-ug-1.0.html
http://docs.oasis-open.org/kmip/ug/v1.0/kmip-ug-1.0.doc
http://docs.oasis-open.org/kmip/ug/v1.0/kmip-ug-1.0.pdf

Technical Committee:
OASIS Key Management Interoperability Protocol (KMIP) TC

Chair(s):
Robert Griffin, EMC Corporation <robert.griffin@rsa.com>
Subhash Sankuratripati, NetApp <Subhash.Sankuratripati@netapp.com>

Editor(s):
Indra Fitzgerald, HP <indra.fitzgerald@hp.com>

Related work:
This specification replaces or supersedes:

• None
This specification is related to:

• Key Management Interoperability Protocol Specification Version 1.0
• Key Management Interoperability Protocol Profiles Version 1.0
• Key Management Interoperability Protocol Use Cases Version 1.0

Declared XML Namespace(s):
None

Abstract:
This document is intended to complement the Key Management Interoperability Protocol
Specification by providing guidance on how to implement the Key Management Interoperability
Protocol (KMIP) most effectively to ensure interoperability.

Style Definition: Heading 4,H4,h4,First
Subheading: Indent: Left: 0 pt, Hanging: 36
pt, Tab stops: Not at 43.2 pt

Style Definition: Heading 3,H3,h3,Level 3
Topic Heading: Indent: Left: 0 pt, Hanging:
43.2 pt, Tab stops: 0 pt, List tab + Not at 36
pt

Field Code Changed

Field Code Changed

Field Code Changed

http://docs.oasis-open.org/kmip/ug/v1.0/cd09/kmip-ug-1.0-cd-09.html�
http://docs.oasis-open.org/kmip/ug/v1.0/cd09/kmip-ug-1.0-cd-09.doc�
http://docs.oasis-open.org/kmip/ug/v1.0/cd09/kmip-ug-1.0-cd-09.pdf�
http://docs.oasis-open.org/kmip/ug/v1.0/cd05/kmip-ug-1.0-cd-05.html�
http://docs.oasis-open.org/kmip/ug/v1.0/cd05/kmip-ug-1.0-cd-05.doc�
http://docs.oasis-open.org/kmip/ug/v1.0/cd05/kmip-ug-1.0-cd-05.pdf�
http://docs.oasis-open.org/kmip/ug/v1.0/kmip-ug-1.0.html�
http://docs.oasis-open.org/kmip/ug/v1.0/kmip-ug-1.0.doc�
http://docs.oasis-open.org/kmip/ug/v1.0/kmip-ug-1.0.pdf�
http://www.oasis-open.org/committees/kmip�
mailto:robert.griffin@rsa.com�
mailto:Subhash.Sankuratripati@netapp.com�
mailto:indra.fitzgerald@hp.com�
http://docs.oasis-open.org/kmip/spec/v1.0/cd06/kmip-spec-1.0-cd-06.doc�
http://docs.oasis-open.org/kmip/profiles/v1.0/cd04/kmip-profiles-1.0-cd-04.doc�
http://docs.oasis-open.org/kmip/usecases/v1.0/cd05/kmip-usecases-1.0-cd-05.doc�

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 2 of 46

Status:
This document was last revised or approved by the Key Management Interoperability Protocol TC
on the above date. The level of approval is also listed above. Check the “Latest Version” or
“Latest Approved Version” location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/kmip/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/kmip/ipr.php.)
The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/kmip/.

http://www.oasis-open.org/committees/kmip/�
http://www.oasis-open.org/committees/kmip/�
http://www.oasis-open.org/committees/kmip/ipr.php�
http://www.oasis-open.org/committees/kmip/ipr.php�
http://www.oasis-open.org/committees/kmip/�
http://www.oasis-open.org/committees/kmip/�

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 3 of 46

Notices
Copyright © OASIS® 20102009. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS", “KMIP” are trademarks of OASIS, the owner and developer of this specification, and
should be used only to refer to the organization and its official outputs. OASIS welcomes reference to,
and implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/trademark.php�

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 4 of 46

Table of Contents
1 Introduction .. 7

1.1 Terminology ... 7
1.2 Normative References ... 7
1.3 Non-normative References .. 10

2 Assumptions ... 11
2.1 Island of Trust .. 11
2.2 Message Security .. 11
2.3 State-less Server ... 11
2.4 Extensible Protocol .. 11
2.5 Server Policy ... 2.5
 Support for Cryptographic Objects .. 11
2.6 Support for Cryptographic Objects ... 2.6
 Client-Server Message-based Model .. 11
2.7 Client-Server Message-based Model ... 2.7
 Synchronous and Asynchronous Messages ... 12
2.8 Synchronous and Asynchronous Messages .. 2.8
 Support for “Intelligent Clients” and “Key Using Devices“ ... 12
2.9 Support for “Intelligent Clients” and “Key Using Devices“ .. 2.9
 Batched Requests and Responses ... 12
2.10 Batched Requests and Responses .. 2.10
 Reliable Message Delivery .. 12
2.11 Reliable Message Delivery ... 2.11
 Large Responses ... 12
2.12 Large Responses .. 2.12
 Key Life-cycle and Key State ... 12
2.13 Key Life-cycle and Key State ... 3
 Usage Guidelines .. 12

3 Usage Guidelines .. 3.1
 Authentication ... 13

3.1 Authentication ... 3.2
 Authorization for Revoke, Recover, Destroy and Archive Operations 13

3.1.1 Credential ... 3.3
 Using Notify and Put Operations ... 13

3.2 Authorization for Revoke, Recover, Destroy and Archive Operations 3.4
 Usage Allocation .. 14
3.3 Using Notify and Put Operations .. 3.5
 Key State and Times ... 14
3.4 Usage Allocation ... 3.6
 Template .. 15
3.5 Key State and Times .. 3.7
 Archive Operations .. 15
3.6 Template ... 3.8
 Message Extensions .. 16

3.6.1 Template Usage Examples .. 3.9
 Unique Identifiers .. 17

3.7 Archive Operations ... 3.10
 Result Message Text ... 18

Formatted: Don't adjust space between Latin
and Asian text, Tab stops: 24 pt, Left

Field Code Changed ... [1]

Field Code Changed ... [2]

Field Code Changed ... [3]

Field Code Changed ... [4]

Field Code Changed ... [5]

Field Code Changed ... [6]

Field Code Changed ... [7]

Field Code Changed ... [8]

Field Code Changed ... [9]

Field Code Changed ... [10]

Field Code Changed ... [11]

Field Code Changed ... [12]

Field Code Changed ... [13]

Field Code Changed ... [14]

Field Code Changed ... [15]

Field Code Changed ... [16]

Field Code Changed ... [17]

Formatted: TOC 2,toc2, Don't adjust space
between Latin and Asian text, Tab stops: 48 pt,
Left + Not at 24 pt

Field Code Changed ... [18]

Formatted: TOC 1,toc1, Don't adjust space
between Latin and Asian text, Tab stops: 24 pt,
Left + Not at 48 pt

Field Code Changed ... [19]

Field Code Changed ... [20]

Formatted: TOC 3,toc3, Don't adjust space
between Latin and Asian text, Tab stops: 60 pt,
Left + Not at 48 pt

Field Code Changed ... [21]

Field Code Changed ... [22]

Field Code Changed ... [23]

Field Code Changed ... [24]

Field Code Changed ... [25]

Field Code Changed ... [26]

Formatted: TOC 3,toc3, Don't adjust space
between Latin and Asian text, Tab stops: 60 pt,
Left + Not at 48 pt

Field Code Changed ... [27]

Field Code Changed ... [28]

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 5 of 46

3.8 Message Extensions ... 3.11
 Query ... 18
3.9 Unique Identifiers .. 3.12
 Canceling Asynchronous Operations .. 18
3.10 Result Message Text .. 3.13
 Multi-instance Hash ... 18
3.11 Query .. 3.14
 Returning Related Objects ... 18
3.12 Canceling Asynchronous Operations ... 3.15
 Reducing Multiple Requests through the Use of Batch ... 18
3.13 Multi-instance Hash .. 3.16
 Maximum Message Size .. 19
3.14 Returning Related Objects .. 3.17
 Using Offset in Re-key and Re-certify Operations... 19
3.15 Reducing Multiple Requests through the Use of Batch .. 3.18
 Locate Queries .. 19
3.16 Maximum Message Size ... 3.19
 ID Placeholder ... 19
3.17 Using Offset in Re-key and Re-certify Operations.. 3.20
 Key Block ... 19
3.18 Locate Queries ... 3.21
 Using Wrapped Keys with KMIP .. 20
3.19 ID Placeholder ... 3.21.1
 Encrypt-only Example with a Symmetric Key as an Encryption Key for a Get Request and
Response .. 21
3.20 21.2 ... Encrypt-only Example with a Symmetric Key Block
 as an Encryption Key for a Register Request and Response ... 22
3.21 Using Wrapped Keys with KMIP .. 3.21.3
 Encrypt-only Example with an Asymmetric Key as an Encryption Key for a Get Request and
Response .. 23

3.21.1 Encrypt4 MAC-only Example with a Symmetrican HMAC Key as an
EncryptionAuthentication Key for a Get Request and Response .. 23
3.21.2 Encrypt-only Example with a Symmetric Key as an Encryption Key for a Register
Request and Response .. 3.21.5
 Registering a Wrapped Key as an Opaque Cryptographic Object 24
3.21.3 Encrypt-only Example with an Asymmetric Key as an Encryption Key for a Get Request
and Response ... 3.22
 Object Group ... 24
3.21.4 MAC-only Example with an HMAC Key as an Authentication Key for a Get Request and
Response 3.23 ... Certify and Re-certify
 25
3.21.5 Registering a Wrapped Key as an Opaque Cryptographic Object 3.24
 Specifying Attributes during a Create Key Pair Operation .. 25

3.22 Object Group ... 3.24.1
 Example of Specifying Attributes during the Create Key Pair Operation 26
3.23 Certify and Re-certify .. 3.25
 Registering a Key Pair ... 26
3.24 Specifying Attributes during a Create Key Pair Operation ... 3.26
 Non-Cryptographic Objects ... 26

3.24.1 Example of Specifying Attributes during the Create Key Pair Operation 3.27
 Asymmetric Concepts with Symmetric Keys .. 27

Field Code Changed ... [29]

Field Code Changed ... [30]

Field Code Changed ... [31]

Field Code Changed ... [32]

Field Code Changed ... [33]

Field Code Changed ... [34]

Field Code Changed ... [35]

Field Code Changed ... [36]

Field Code Changed ... [37]

Field Code Changed ... [38]

Field Code Changed ... [39]

Formatted: TOC 2,toc2, Don't adjust space
between Latin and Asian text, Tab stops: 48 pt,
Left + Not at 72 pt

Field Code Changed ... [40]

Field Code Changed ... [41]

Field Code Changed ... [42]

Field Code Changed ... [43]

Field Code Changed ... [44]

Formatted: TOC 3,toc3, Don't adjust space
between Latin and Asian text, Tab stops: 72 pt,
Left + Not at 48 pt

Field Code Changed ... [45]

Field Code Changed ... [46]

Field Code Changed ... [47]

Formatted: TOC 2,toc2, Don't adjust space
between Latin and Asian text, Tab stops: 48 pt,
Left + Not at 72 pt

Field Code Changed ... [48]

Field Code Changed ... [49]

Field Code Changed ... [50]

Formatted: TOC 3,toc3, Don't adjust space
between Latin and Asian text, Tab stops: 72 pt,
Left + Not at 48 pt

Field Code Changed ... [51]

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 6 of 46

3.25 Registering a Key Pair .. 3.28
 Application Specific Information .. 28
3.26 Non-Cryptographic Objects .. 3.29
 Mutating Attributes ... 28
3.27 Asymmetric Concepts with Symmetric Keys .. 3.30
 Interoperable Key Naming for Tape .. 29
3.28 Application Specific Information .. 3.30.1
 Native Tape Encryption by a KMIP Client ... 30
3.29 Mutating Attributes .. 3.31
 Revocation Reason Codes .. 31
3.30 Interoperable Key Naming for Tape ... 3.32
 Certificate Renewal, Update, and Re-key ... 31

3.30.1 Native Tape Encryption by a KMIP Client .. 3.33
 Key Encoding .. 31

3.31 Revocation Reason Codes .. 3.33.1
 AES Key Encoding .. 35
3.32 Certificate Renewal, Update, and Re-key ... 3.33.2
 Triple-DES Key Encoding .. 35
3.33 Key Encoding ... 4
 Deferred KMIP Functionality .. 36

3.33.1 AES Key Encoding .. 5
 Implementation Conformance ... 36
3.33.2 Triple-DES Key Encoding .. A.
 Acronyms .. 36

3.34 Using the Same Asymmetric Key Pair in Multiple Algorithms .. B.
 Acknowledgements .. 36

4 Deferred KMIP Functionality .. C.
 Revision History .. 38
5 Implementation Conformance .. 40
A. Acronyms .. 41
B. Acknowledgements .. 43
C. Revision History .. 45

Tables
Table 1: ID Placeholder Prior to and Resulting from a KMIP Operation ... 22
Table 2: Cryptographic Usage Masks Pairs .. 30

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Formatted: TOC 2,toc2, Don't adjust space
between Latin and Asian text, Tab stops: 48 pt,
Left + Not at 72 pt

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Formatted: TOC 3,toc3, Don't adjust space
between Latin and Asian text, Tab stops: 72 pt,
Left + Not at 48 pt

Field Code Changed

Field Code Changed

Formatted: TOC 2,toc2, Don't adjust space
between Latin and Asian text, Tab stops: 48 pt,
Left + Not at 72 pt

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Formatted: TOC 2,toc2, Don't adjust space
between Latin and Asian text, Tab stops: 48 pt,
Left + Not at 24 pt

Field Code Changed

Field Code Changed

Formatted ... [52]

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Formatted ... [53]

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 7 of 46

1 Introduction 1

This Key Management Interoperability Protocol Usage Guide is intended to complement the Key 2
Management Interoperability Protocol Specification [KMIP-Spec] by providing guidance on how to 3
implement the Key Management Interoperability Protocol (KMIP) most effectively to ensure 4
interoperability. In particular, it includes the following guidance: 5
• Clarification of assumptions and requirements that drive or influence the design of KMIP and the 6

implementation of KMIP-compliant key management. 7
• Specific recommendations for implementation of particular KMIP functionality. 8
• Clarification of mandatory and optional capabilities for conformant implementations. 9
• Functionality considered for inclusion in KMIP V1.0, but deferred to subsequent versions of the 10

standard. 11
A selected set of conformance profiles and authentication suites are defined in the KMIP Profiles 12
specification [KMIP-Prof]., 13
Further assistance for implementing KMIP is provided by the KMIP Use Cases for Proof of Concept 14
Testing document [KMIP-UC] that describes a set of recommended test cases and provides the TTLV 15
(Tag/Type/Length/Value) format for the message exchanges defined by those use cases. 16

1.1 Terminology 17

For a list of terminologies refer to [KMIP-Spec]. 18

1.2 Normative References 19

[FIPS186-3] Digital Signature Standard (DSS), FIPS PUB 186-3, June 2009, 20
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf 21

[FIPS197] Advanced Encryption Standard (AES), FIPS PUB 197, November 26, 2001, 22
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf 23

[FIPS198-1] The Keyed-Hash Message Authentication Code (HMAC), FIPS PUB 198-1, July 24
2008, http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf 25

[IEEE1003-1] IEEE Std 1003.1, Standard for information technology - portable operating 26
system interface (POSIX). Shell and utilities, 2004. 27

[ISO16609] ISO, Banking -- Requirements for message authentication using symmetric 28
techniques, ISO 16609, 1991. 29

[ISO9797-1] ISO/IEC, Information technology -- Security techniques -- Message 30
Authentication Codes (MACs) -- Part 1: Mechanisms using a block cipher, 31
ISO/IEC 9797-1, 1999. 32

[KMIP-Spec] OASIS Committee Draft 1006, Key Management Interoperability Protocol 33
Specification Version 1.0, March 2010November 2009. http://docs.oasis-34
open.org/kmip/spec/v1.0/cd10cd06/kmip-spec-1.0-cd-1006.doc 35

[KMIP-Prof] OASIS Committee Draft 0504, Key Management Interoperability Protocol Profiles 36
Version 1.0, March 2010November 2009. http://docs.oasis-37
open.org/kmip/profiles/v1.0/cd05cd04/kmip-profiles-1.0-cd-0504.doc 38

[PKCS#1] RSA Laboratories, PKCS #1 v2.1: RSA Cryptography Standard, June 14, 2002, 39
http://www.rsa.com/rsalabs/node.asp?id=2125 40

[PKCS#5] RSA Laboratories, PKCS #5 v2.1: Password-Based Cryptography Standard, 41
October 5, 2006, http://www.rsa.com/rsalabs/node.asp?id=2127 42

[PKCS#7] RSA Laboratories, PKCS#7 v1.5: Cryptographic Message Syntax Standard. 43
November 1, 1993, http://www.rsa.com/rsalabs/node.asp?id=2129 44

Formatted: Hyperlink, Font color: Auto

Field Code Changed

Field Code Changed

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf�
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf�
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf�
http://docs.oasis-open.org/kmip/spec/v1.0/cd10/kmip-spec-1.0-cd-10.doc�
http://docs.oasis-open.org/kmip/spec/v1.0/cd10/kmip-spec-1.0-cd-10.doc�
http://docs.oasis-open.org/kmip/profiles/v1.0/cd05/kmip-profiles-1.0-cd-05.doc�
http://docs.oasis-open.org/kmip/profiles/v1.0/cd05/kmip-profiles-1.0-cd-05.doc�
http://www.rsa.com/rsalabs/node.asp?id=2125�
http://www.rsa.com/rsalabs/node.asp?id=2127�
http://www.rsa.com/rsalabs/node.asp?id=2129�

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 8 of 46

[PKCS#8] RSA Laboratories, PKCS#8 v1.2: Private-Key Information Syntax Standard, 45
November 1, 1993, http://www.rsa.com/rsalabs/node.asp?id=2130 46

[PKCS#10] RSA Laboratories, PKCS #10 v1.7: Certification Request Syntax Standard, May 47
26, 2000, http://www.rsa.com/rsalabs/node.asp?id=2132 48

[RFC1319] B. Kaliski, The MD2 Message-Digest Algorithm, IETF RFC 1319, Apr 1992, 49
http://www.ietf.org/rfc/rfc1319.txt 50

[RFC1320] R. Rivest, The MD4 Message-Digest Algorithm, IETF RFC 1320, Apr 1992, 51
http://www.ietf.org/rfc/rfc1320.txt 52

[RFC1321] R. Rivest, The MD5 Message-Digest Algorithm, IETF RFC 1321, Apr 1992, 53
http://www.ietf.org/rfc/rfc1321.txt 54

[RFC1421] J. Linn, Privacy Enhancement for Internet Electronic Mail: Part I: Message 55
Encryption and Authentication Procedures, ¸IETF RFC 1421, Feb 1993, 56
http://www.ietf.org/rfc/rfc1421.txt 57

[RFC1424] B. Kaliski, Privacy Enhancement for Internet Electronic Mail: Part IV: Key 58
Certification and Related Services, IETF RFC 1424, February 1993, 59
http://www.ietf.org/rfc/rfc1424.txt 60

[RFC2104] H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-Hashing for Message 61
Authentication, IETF RFC 2104,. Feb 19971007, 62
http://www.ietf.org/rfc/rfc2104.txt 63

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 64
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 65

[RFC2898] B. Kaliski, PKCS #5: Password-Based Cryptography Specification Version 2.0, 66
IETF RFC 2898, Sep 2000, http://www.ietf.org/rfc/rfc2898.txt 67

[RFC3394] J. Schaad, R. Housley, Advanced Encryption Standard (AES) Key Wrap 68
Algorithm, IETF RFC 3394, Sep 2002, http://www.ietf.org/rfc/rfc3394.txt 69

[RFC3447] J. Jonsson, B. Kaliski, Public-Key Cryptography Standards (PKCS) #1: RSA 70
Cryptography Specifications Version 2.1, IETF RFC 3447 Feb 2003, 71
http://www.ietf.org/rfc/rfc3447.txt 72

[RFC3629] F. Yergeau, UTF-8, a transformation format of ISO 10646, IETF RFC 3629, Nov 73
2003, http://www.ietf.org/rfc/rfc3629.txt 74

[RFC3647] S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu, RFC3647: Internet 75
X.509 Public Key Infrastructure Certificate Policy and Certification Practices 76
Framework, November 2003, http://www.ietf.org/rfc/rfc3647.txt 77

[RFC4210] C. Adams, S. Farrell, T. Kause and T. Mononen, RFC2510: Internet X.509 78
Public Key Infrastructure Certificate Management Protocol (CMP), September 79
2005, http://www.ietf.org/rfc/rfc4210.txt 80

[RFC4211] J. Schaad, RFC 4211: Internet X.509 Public Key Infrastructure Certificate 81
Request Message Format (CRMF), September 2005, 82
http://www.ietf.org/rfc/rfc4211.txt 83

[RFC4868] S. Kelly, S. Frankel, Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-84
512 with IPsec, IETF RFC 4868, May 2007, http://www.ietf.org/rfc/rfc4868.txt 85

[RFC4949] R. Shirey, RFC4949: Internet Security Glossary, Version 2, August 2007, 86
http://www.ietf.org/rfc/rfc4949.txt 87

[RFC5272] J. Schaad and M. Meyers, RFC5272: Certificate Management over CMS (CMC), 88
June 2008, http://www.ietf.org/rfc/rfc5272.txt 89

[RFC5280] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley and W. Polk, RFC 90
5280: Internet X.509 Public Key Infrastructure Certificate and Certificate 91
Revocation List (CRL) Profile, May 2008, http://www.ietf.org/rfc/rfc5280.txt 92

[RFC5649] R. Housley, Advanced Encryption Standard (AES) Key Wrap with Padding 93
Algorithm, IETF RFC 5649, Aug 2009, http://www.ietf.org/rfc/rfc5649.txt 94

[SP800-38A] M. Dworkin, Recommendation for Block Cipher Modes of Operation – Methods 95
and Techniques, NIST Special Publication 800-38A, Dec 2001, 96
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf 97

http://www.rsa.com/rsalabs/node.asp?id=2130�
http://www.rsa.com/rsalabs/node.asp?id=2132�
http://www.ietf.org/rfc/rfc1319.txt�
http://www.ietf.org/rfc/rfc1320.txt�
http://www.ietf.org/rfc/rfc1321.txt�
http://www.ietf.org/rfc/rfc1421.txt�
http://www.ietf.org/rfc/rfc1424.txt�
http://www.ietf.org/rfc/rfc2104.txt�
http://www.ietf.org/rfc/rfc2119.txt�
http://www.ietf.org/rfc/rfc2898.txt�
http://www.ietf.org/rfc/rfc3394.txt�
http://www.ietf.org/rfc/rfc3447.txt�
http://www.ietf.org/rfc/rfc3629.txt�
http://www.ietf.org/rfc/rfc3647.txt�
http://www.ietf.org/rfc/rfc4210.txt�
http://www.ietf.org/rfc/rfc4211.txt�
http://www.ietf.org/rfc/rfc4868.txt�
http://www.ietf.org/rfc/rfc4949.txt�
http://www.ietf.org/rfc/rfc5272.txt�
http://www.ietf.org/rfc/rfc5280.txt�
http://www.ietf.org/rfc/rfc5649.txt�
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf�

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 9 of 46

[SP800-38B] M. Dworkin, Recommendation for Block Cipher Modes of Operation: The CMAC 98
Mode for Authentication, NIST Special Publication 800-38B, May 2005, 99
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 100

[SP800-38C] M. Dworkin, Recommendation for Block Cipher Modes of Operation: the CCM 101
Mode for Authentication and Confidentiality, NIST Special Publication 800-38C, 102
May 2004, http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-103
38C_updated-July20_2007.pdf 104

[SP800-38D] M. Dworkin, Recommendation for Block Cipher Modes of Operation: 105
Galois/Counter Mode (GCM) and GMAC, NIST Special Publication 800-38D, Nov 106
2007, http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf 107

[SP800-38E] M. Dworkin, Recommendation for Block Cipher Modes of Operation: The XTS-108
AES Mode for Confidentiality on Block-Oriented Storage Devices, NIST Special 109
Publication 800-38E, Jan 2010, Aug 2009 (draft), 110
http://csrc.nist.gov/publications/nistpubsdrafts/800-38E/nistdraft-sp-800-38E.pdf 111

[SP800-56A] E. Barker, D. Johnson, and M. Smid, Recommendation for Pair-Wise Key 112
Establishment Schemes Using Discrete Logarithm Cryptography (Revised), NIST 113
Special Publication 800-56A, March 2007, 114
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-115
2007.pdf 116

[SP800-56B] E. Barker, L. Chen, A. Regenscheid, M. Smid, Recommendation for Pair-Wise 117
Key Establishment Schemes Using Integer Factorization Cryptography, NIST 118
Special Publication 800-56B, August 2009, 119
http://csrc.nist.gov/publications/nistpubs/800-56B/sp800-120
56Bhttp://csrc.nist.gov/publications/nistpubs/800-56A/SP800-121
56A_Revision1_Mar08-2007.pdf 122

[SP800-57-1] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, Recommendations for Key 123
Management - Part 1: General (Revised), NIST Special Publication 800-57 part 124
1, March 2007, http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-125
revised2_Mar08-2007.pdf 126

[SP800-67] W. Barker, Recommendation for the Triple Data Encryption Algorithm (TDEA) 127
Block Cipher, NIST Special Publication 800-67, Version 1.1, Revised 19 May 128
2008, http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf 129

[SP800-108] L. Chen, Recommendation for Key Derivation Using Pseudorandom Functions 130
(Revised), NIST Special Publication 800-108, October 2009, 131
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf 132

[X.509] International Telecommunication Union (ITU)–T, X.509: Information technology 133
– Open systems interconnection – The Directory: Public-key and attribute 134
certificate frameworks, August 2005, http://www.itu.int/rec/T-REC-X.509-200508-135
I/en 136

[X9.24-1] ANSI, X9.24: Retail Financial Services Symmetric Key Management - Part 1: 137
Using Symmetric Techniques, 2004. 138

[X9.31] ANSI, X9.31: Digital Signatures Using Reversible Public Key Cryptography for 139
the Financial Services Industry (rDSA), September 1998. 140

[X9.42] ANSI, X9-42: Public Key Cryptography for the Financial Services Industry: 141
Agreement of Symmetric Keys Using Discrete Logarithm Cryptography, 2003. 142

[X9-57] ANSI, X9-57: Public Key Cryptography for the Financial Services Industry: 143
Certificate Management, 1997. 144

[X9.62] ANSI, X9-62: Public Key Cryptography for the Financial Services Industry, The 145
Elliptic Curve Digital Signature Algorithm (ECDSA), 2005. 146

[X9-63] ANSI, X9-63: Public Key Cryptography for the Financial Services Industry, Key 147
Agreement and Key Transport Using Elliptic Curve Cryptography, 2001. 148

[X9-102] ANSI, X9-102: Symmetric Key Cryptography for the Financial Services Industry - 149
Wrapping of Keys and Associated Data, 2008. 150

Field Code Changed

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf�
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf�
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf�
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf�
http://csrc.nist.gov/publications/drafts/800-38E/draft-sp800-38E.pdf�
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf�
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf�
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf�
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf�
http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf�
http://www.itu.int/rec/T-REC-X.509-200508-I/en�

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 10 of 46

[X9 TR-31] ANSI, X9 TR-31: Interoperable Secure Key Exchange Key Block Specification for 151
Symmetric Algorithms, 2005. 152

1.3 Non-normative References 153

[KMIP-UC] OASIS Committee Draft 0905, Key Management Interoperability Protocol Use 154
Cases Version 1.0, March 2010November 2009. http://docs.oasis-155
open.org/kmip/usecases/v1.0/cd09cd05/kmip-usecases-1.0-cd-0905.doc 156

 157

Formatted: Hyperlink

Field Code Changed

Formatted: Ref, Indent: First line: 0 pt

http://docs.oasis-open.org/kmip/usecases/v1.0/cd09/kmip-usecases-1.0-cd-09.doc�
http://docs.oasis-open.org/kmip/usecases/v1.0/cd09/kmip-usecases-1.0-cd-09.doc�

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 11 of 46

2 Assumptions 158

The section describes assumptions that underlie the KMIP protocol and the implementation of clients and 159
servers that utilize the protocol. 160

2.1 Island of Trust 161

Clients may be provided key material by the server, but they only use that keying material for the 162
purposes explicitly listed in the delivery payload. Clients that ignore these instructions and use the keys in 163
ways not explicitly allowed by the server are non-compliant. There is no requirement for the key 164
management system, however, to enforce this behavior. 165

2.2 Message Security 166

KMIP relies on the chosen authentication suite as specified in [KMIP-Prof] to authenticate the client and 167
on the underlying transport protocol to provide confidentiality, integrity, message authentication and 168
protection against replay attack. KMIP offers a wrapping mechanism for the Key Value that does not rely 169
on the transport mechanism used for the messages; the wrapping mechanism is intended for importing or 170
exporting managed cryptographic objects. 171

2.3 State-less Server 172

The protocol operates on the assumption that the server is state-less, which means that there is no 173
concept of “sessions” inherent in the protocol. State-less server operation is much more reliable and 174
easier to implement than stateful operation, and is consistent with possible implementation scenarios, 175
such as web-services-based servers. This does not mean that the server itself maintains no state, only 176
that the protocol does not require this. 177

2.4 Extensible Protocol 178

The protocol provides for “private” or vendor-specific extensions, which allow for differentiation among 179
vendor implementations. However, any objects, attributes and operations included in an implementation 180
are always implemented as specified in [KMIP-Spec], regardless of whether they are optional or 181
mandatory. 182

2.5 Server Policy 183

A server is required to be conformant to KMIP and support the conformance clauses as specified in 184
[KMIP-Spec]. However, a server may refuse a server-supported operation or client-settable attribute if 185
disallowed by the server policy. 186

2.52.6 Support for Cryptographic Objects 187

The protocol supports all reasonable key management system-related cryptographic objects. This list 188
currently includes: 189

• Symmetric Keys 190
• Split (multi-part) Keys 191
• Asymmetric Key Pairs and their components 192
• Digital Certificates 193
• Derived Keys 194
• Secret Data 195
• Opaque (non-interpretable) cryptographic objects 196

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 12 of 46

2.62.7 Client-Server Message-based Model 197

The protocol operates primarily in a client-server, message-based model. This means that most protocol 198
exchanges are initiated by a client sending a request message to a server, which then sends a response 199
to the client. The protocol also provides optional mechanisms to allow for unsolicited notification of events 200
to clients using the Notify operation, and unsolicited delivery of cryptographic objects to clients using the 201
Put operation; that is, the protocol allows a “push” model, whereby the server initiates the protocol 202
exchange with either a Notify or Put operation. These Notify or Put features are optionally supported by 203
servers and clients. Clients may register in order to receive such events/notifications. Registration is 204
implementation-specific and not described in the specification. 205

2.72.8 Synchronous and Asynchronous Messages 206

The protocol allows two modes of operation. Synchronous (mandatory) operations are those in which a 207
client sends a request and waits for a response from the server. Polled Asynchronous operations 208
(optional) are those in which the client sends a request, the server responds with a “pending” status, and 209
the client polls the server for the completed response and completion status. Server implementations may 210
choose not to support the Polled Asynchronous feature of the protocol. 211

2.82.9 Support for “Intelligent Clients” and “Key Using Devices“ 212

The protocol supports intelligent clients, such as end-user workstations, which are capable of requesting 213
all of the functions of KMIP. It also allows subsets of the protocol and possible alternate message 214
representations in order to support less-capable devices, which only need a subset of the features of 215
KMIP. 216

2.92.10 Batched Requests and Responses 217

The protocol contains a mechanism for sending batched requests and receiving the corresponding 218
batched responses, to allow for higher throughput on operations that deal with a large number of entities, 219
e. g., requesting dozens or hundreds of keys from a server at one time, and performing operations in a 220
group. An option is provided to indicate whether to continue processing requests after an earlier request 221
in the batch fails or to stop processing the remaining requests in the batch. Note that there is no option to 222
treat an entire batch as atomic, that is, if a request in the batch fails, then preceding requests in the batch 223
are not undone or rolled back (see Section 3.15). A special ID Placeholder (see Section 3.19) is provided 224
in KMIP to allow related requests in a batch to be pipelined. 225

2.102.11 Reliable Message Delivery 226

The reliable message delivery function is relegated to the transport protocol, and is not part of the key 227
management protocol itself. 228

2.112.12 Large Responses 229

For requests that could result in large responses, a mechanism in the protocol allows a client to specify in 230
a request the maximum allowed size of a response. The server indicates in a response to such a request 231
that the response would have been too large and, therefore, is not returned. 232

2.122.13 Key Life-cycle and Key State 233

[KMIP-Spec] describes the key life-cycle model, based on the NIST SP 800-57 key state definitions 234
[SP800-57-1], supported by the KMIP protocol. Particular implications of the key life-cycle model in terms 235
of defining time-related attributes of objects are discussed in Section 3.5 below. 236

 237

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 13 of 46

3 Usage Guidelines 238

This section provides guidance on using the functionality described in the Key Management 239
Interoperability Protocol Specification. 240

3.1 Authentication 241

As discussed in [KMIP-Spec], a conforming KMIP implementation establishes and maintains channel 242
confidentiality and integrity, and provides assurance ofproves server authenticity for KMIP messaging. 243
Client authentication is performed according to the chosen KMIP authentication suite as specified in 244
[KMIP-Prof]. Other mechanisms for client and server authentication are possible and optional for KMIP 245
implementations. 246
KMIP implementations that support the KMIP-defined Credential Types or use other vendor-specific 247
mechanisms for authentication may use the optional Authentication field specified inside the Request 248
HeaderCredential attribute to include additional identification information. Depending on the server’s 249
configuration, the server may interpret the identity of the requestor from the Credential object, contained 250
in the Authentication structure if it is not provided during the channel- level authentication. For example, in 251
addition to performing mutual authentication during a SSL/TLS handshake, the client passes the 252
Credential object (e.g., a username and password) in the request. If the requestor’s username is not 253
specified inside the client certificate and is instead specified in the Credential object, the server interprets 254
the identity of the requestor from the Credential object. This supports use cases where channel- level 255
authentication authenticates a machine or service that is used by multiple users of the KMIP server. If the 256
client provides the username of the requestor in both the client certificate and the Credential object, the 257
server verifies that the usernames are the same. If they differ, the authentication fails and the server 258
returns an error. If no Credential object is included in the request, the username of the requestor is 259
expected to be provided inside the certificate. If no username is provided in the client certificate and no 260
Credential object is included in the request message, the server is expected to refuse authentication and 261
return an error. 262
If authentication is unsuccessful, and it is possible to return an “authentication not successful” error, this 263
error should be returned in preference to any other result status. This prevents status code probing by a 264
client that is not able to authenticate. 265
Server decisions regarding which operations to reject if there is insufficiently strong authentication of the 266
client are not specified in the protocol. However, see Section 3.2 for operations for which authentication 267
and authorization are particularly important. 268

3.1.1 Credential 269

[KMIP-Spec] defines the Username and Password structure for the Credential Type Username and 270
Password. The structure consists of two fields: Username and Password. Password is a recommended, 271
but optional, field, which may be excluded only if the client is authenticated using one of the 272
authentication suites defined in [KMIP-Prof]. For example, if the client performs client certificate 273
authentication during the TLS handshake, and the Authentication field is provided in the Message 274
Request, the Password field is an optional field in the Username and Password structure of the Credential 275
object. 276
 277
The Credential object is used to provide additional identification information. As described above, for 278
certain use cases, channel-level authentication may only authenticate a machine or service that is used 279
by multiple clients of the KMIP server. The Credential object may be used in this scenario to identify 280
individual clients by specifying the username in the Username and Password structure. Depending on the 281
client’s environment, the username may be the device’s serial number, the volume name or some other 282
unique identifier. 283

Formatted: Font:

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 14 of 46

Multiple clients should not be authenticated using the same channel-level authentication credential (e.g., 284
the same client certificate). The Credential object may be used to authenticate individual clients by 285
requiring the Username and Password to be provided in the Credential object. 286

3.2 Authorization for Revoke, Recover, Destroy and Archive 287
Operations 288

Neither authentication nor authorization is handled by the KMIP protocol directly. In particular, the 289
Credential attribute is not guaranteed to be an authenticated identity of the requesting client. However, 290
the authentication suite, as specified in [KMIP-Prof], describes how the client identity is established for 291
KMIP-compliant implementations. This authentication is performed for all KMIP operations, with the single 292
exception of the Query operation. 293
Certain operations that may be requested by a client via KMIP, particularly Revoke, Recover, Destroy and 294
Archive, may have a significant impact on the availability of a key, on server performance and on key 295
security. When a server receives a request for one of these operations, it should ensure that the client 296
has authenticated its identity (see the Authentication Suites section in [KMIP-Prof]). The server should 297
also ensure that the client requesting the operation is an object creator, security officer or other identity 298
authorized to issue the request. It may also require additional authentication to ensure that the object 299
owner or a security officer has issued that request. Even with such authentication and authorization, 300
requests for these operations should be considered only a “hint” to the key management system, which 301
may or may not choose to act upon this request. 302

3.3 Using Notify and Put Operations 303

The Notify and Put operations are the only operations in the KMIP protocol that are initiated by the server, 304
rather than the client. As client-initiated requests are able to perform these functions (e.g., by polling to 305
request notification), these operations are optional for conforming KMIP implementations. However, they 306
provide a mechanism for optimized communication between KMIP servers and clients and have, 307
therefore, been included in [KMIP-Spec]. 308
In using Notify and Put, the following constraints and guidelines should be observed: 309

• The client registers with the server, so that the server knows how to locate the client to which a 310
Notify or Put is being sent and which events for the Notify are supported. However, such 311
registration is outside the scope of the KMIP protocol. Registration also includes a specification of 312
whether a given client supports Put and Notify, and what attributes may be included in a Put for a 313
particular client. 314

• Communication between the client and the server is properly authenticated to forestall man-in-315
the-middle attacks in which the client receives Notify or Put operations from an unauthenticated 316
server. Authentication for a particular client/server implementation is at a minimum accomplished 317
using one of the mandatory authentication mechanisms (see [KMIP-Prof]). Further strengthening 318
of the client/server communications integrity by means of signed message content and/or 319
wrapped keys is recommended. Attribute values other than “Last Change Date” should not be 320
included in a Notify to minimize risk of exposure of attribute information. 321

• In order to minimize possible divergence of key or state information between client and server as 322
a result of server-initiated communication, any client receiving Notify or Put messages returns 323
acknowledgements of these messages to the server. This acknowledgement may be at 324
communication layers below the KMIP layer, such as by using transport-level acknowledgement 325
provided in TCP/IP. 326

• For client devices that are incapable of responding to messages from the server, communication 327
with the server happens via a proxy entity that communicates with the server, using KMIP, on 328
behalf of the client. It is possible to secure communication between a proxy entity and the client 329
using other, potentially proprietary mechanisms. 330

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 15 of 46

3.4 Usage Allocation 331

Usage should be allocated and handled carefully at the client, since power outages or other types of 332
client failures (crashes) may render allocated usage lost. For example, in the case of a key being used for 333
the encryption of tapes, such a loss of the usage allocation information following a client failure during 334
encryption may result in the necessity for the entire tape backup session to be re-encrypted using a 335
different key, if the server is not able to allocate more usage. It is possible to address this through such 336
approaches as caching usage allocation information on stable storage at the client, and/or having 337
conservative allocation policies at the server (e.g., by keeping the maximum possible usage allocation per 338
client request moderate). In general, usage allocations should be as small as possible; it is preferable to 339
use multiple smaller allocation requests rather than a single larger request to minimize the likelihood of 340
unused allocation. 341

3.5 Key State and Times 342

[KMIP-Spec] provides a number of time-related attributes, including the following: 343
• Initial Date: The date and time when the managed cryptographic object was first created by or 344

registered at the server 345
• Activation Date: The date and time when the managed cryptographic object may begin to be used 346

for applying cryptographic protection to data 347
• Process Start Date: The date and time when a managed symmetric key object may begin to be 348

used for processing cryptographically protected data 349
• Protect Stop Date: The date and time when a managed symmetric key object may no longer be 350

used for applying cryptographic protection to data 351
• Deactivation Date: The date and time when the managed cryptographic object may no longer be 352

used for any purpose, except for decryption, signature verification, or unwrapping, but only under 353
extraordinary circumstances and when special permission is granted 354

• Destroy Date: The date and time when the managed cryptographic object was destroyed 355
• Compromise Occurrence Date: The date and time when the managed cryptographic object was 356

first believed to be compromised 357
• Compromise Date: The date and time when the managed cryptographic object is entered into the 358

compromised state 359
• Archive Date: The date and time when the managed object was placed in Off-Line storage 360

These attributes apply to all cryptographic objects (symmetric keys, asymmetric keys, etc) with exceptions 361
as noted in [KMIP-Spec]. However, certain of these attributes (such as the Initial Date) are not specified 362
by the client and are implicitly set by the server. 363
In using these attributes, the following guidelines should be observed: 364

• As discussed for each of these attributes in Section 3 of [KMIP-Spec], a number of these times 365
are set once and it is not possible for the client or server to modify them. However, several of the 366
time attributes (particularly the Activation Date, Protect Start Date, Process Stop Date and 367
Deactivation Date) may be set by the server and/or requested by the client. Coordination of time-368
related attributes between client and server, therefore, is primarily the responsibility of the server, 369
as it manages the cryptographic object and its state. However, special conditions related to time-370
related attributes, governing when the server accepts client modifications to time-related 371
attributes, may be negotiated by policy exchange between the client and server, outside the Key 372
Management Interoperability Protocol. 373
 374
In general, state transitions occur as a result of operational requests, such as Create, Create Key 375
Pair, Register, Activate, Revoke, and Destroy. However, clients may need to specify times in the 376
future for such things as Activation Date, Deactivation Date, Process Start Date, and Protect Stop 377
Date. 378
 379

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 16 of 46

KMIP allows clients to specify times in the past for such attributes as Activation Date and 380
Deactivation Date. This is intended primarily for clients that were disconnected from the server at 381
the time that the client performed that operation on a given key. 382

• It is valid to have a projected Deactivation Date when there is no Activation Date. This means, 383
however, that the key is not yet active, even though its projected Deactivation Date has been 384
specified. A valid Deactivation Date is greater than or equal to the Activation Date. 385

• The Protect Stop Date may be equal to, but may not be later than the Deactivation Date. 386
Similarly, the Process Start Date may be equal to, but may not precede, the Activation Date. 387
KMIP implementations should consider specifying both these attributes, particularly for symmetric 388
keys, as a key may be needed for processing protected data (e.g., decryption) long after it is no 389
longer appropriate to use it for applying cryptographic protection to data (e.g., encryption). 390

• KMIP does not allow an Active object to be destroyed with the Destroy operation. The server is 391
required to return an error, if the client invokes the Destroy operation on an Active object. To 392
destroy an Active object, clients are required to first call the Revoke operation or explicitly set the 393
Deactivation Date of the object. Once the object is in Deactivated state, clients may destroy the 394
object by calling the Destroy operation. These operations may be performed in a batch. If other 395
time-related attributes (e.g., Protect Stop Date) are set to a future date, the server should set 396
these to the Deactivation Date. 397

• If a Destroy operation is performed, resulting in the Destroy Date being set, and the object has 398
not already been deactivated, the deactivation of the object is also performed prior to the Destroy 399
operation, so that Destroy Date is greater than or equal to the Deactivation Date. If other time-400
related attributes (e.g., Protect Stop Date) are set to a future date, the server should set these to 401
the deactivation date. 402

• After a cryptographic object is destroyed, a key management server may retain certain 403
information about the object, such as the Unique Identifier. 404

KMIP allows the specification of attributes on a per-client basis, such that a server could maintain or 405
present different sets of attributes for different clients. This flexibility may be necessary in some cases, 406
such as when a server maintains the availability of a given key for some clients, even after that same key 407
is moved to an inactive state (e.g., Deactivated. deactivated state) for other clients. However, such an 408
approach might result in significant inconsistencies regarding the object state from the point of view of all 409
participating clients and should, therefore, be avoided. A server should maintain a consistent state for 410
each object, across all clients that have or are able to request that object. 411

3.6 Template 412

The usage of templates is an alternative approach for setting attributes in an operation request. Instead of 413
individually specifying each attribute, a template may be used to set any of the following attributes for a 414
managed object: 415

• Cryptographic Algorithm 416
• Cryptographic Length 417
• Cryptographic Domain Parameters 418
• Cryptographic Parameters 419
• Operation Policy Name 420
• Cryptographic Usage Mask 421
• Usage Limits 422
• Activation Date 423
• Process Start Date 424
• Protect Stop Date 425
• Deactivation Date 426
• Object Group 427

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 17 of 46

• Application Specific Information 428
• Contact Information 429
• Custom Attribute 430

In addition to these attributes, the template has attributes that are applicable to the template itself. These 431
include the attributes (Unique Identifier, Initial Date, Last Change Date, and Archive Date) set implicitly 432
after successfully completing a certain operation and attributes set by the client (Object Type and Name) 433
in the Register request. When registering a template, the Name attribute for the template should be set. It 434
is used to specify and identify the template in the Template-Attribute structure when attributes for a 435
managed object are set. 436
 437
The Template-Attribute structure allows for multiple template names and individual attributes to be 438
specified in an operation request. The structure is used in the Create, Create Key Pair, Register, Re-key, 439
Derive Key, Certify, and Re-certify operations. All of these operations with the exception of the Create 440
Key Pair operation use the Template-Attribute tag. The Create Key Pair operation uses the Common 441
Template-Attribute, Private Key Template Attribute, and Public Key Template-Attribute tags. 442
 443
Templates may be the subject of the Register, Locate, Get, Get Attributes, Get Attribute List, Add 444
Attribute, Modify Attribute, Delete Attribute, Delete Attribute, and Destroy operations. Clients are not able 445
to create a template with the Create operation; instead templates are created using the Register 446
operation. When the template is the subject of the operation, the Unique ID is used to identify the 447
template. The template name is only used to identify the template inside a Template-Attribute structure. 448

3.6.1 Template Usage Examples 449

The purpose of these examples is to illustrate how templates are used. The first example shows how a 450
template is registered. The second example shows how the newly registered template is used to create a 451
symmetric key. 452

3.6.1.1 Example of Registering a Template 453

In this example, a client registers a template by encapsulating attributes for creating a 256-bit AES key 454
with the Cryptographic Usage Mask set to Encrypt and Decrypt. 455
 456
The following is specified inside the Register Request Payload: 457

• Object Type: Template 458
• Template-Attribute: 459

– Name: Template1 460
– Cryptographic Algorithm: AES 461
– Cryptographic Length: 256 462
– Cryptographic Usage Mask: Encrypt and Decrypt 463
– Operation Policy Name: OperationPolicy1 464

The Operation Policy OperationPolicy1 applies to the AES key being created using the template. It is not 465
used to control operations on the template itself. KMIP does not allow operation policies to be specified 466
for controlling operations on the template itself. The default policy for template objects is used for this 467
purpose and is specified in the KMIP Specification. 468

3.6.1.2 Example of Creating a Symmetric Key using a Template 469

In this example, the client uses the template created in example 3.6.1 to create a 256-bit AES key. 470
 471
The following is specified in the Create Request Payload: 472

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 18 of 46

 473
• Object Type: Symmetric Key 474
• Template-Attribute: 475

– Name: Template1 476
– Attribute: 477

Name: AESkey 478

Custom Attribute: x-ID74592 479
 480
The Template-Attribute specifies both a template name and additional attributes. The Name attribute is 481
not an attribute that may be set by a template. The Name attribute set for the template applies to the 482
template itself (e.g., Template1 is the Name attribute of the Template object). The Name attribute for the 483
symmetric key is therefore specified separately under Attribute. It is possible to specify the Custom 484
Attribute inside the template; however, this particular example sets this attribute separately. 485
It is possible for a server to maintain different policy templates for different clients. As in the state 486
transitions described above, however, this practice is discouraged. 487

3.7 Archive Operations 488

When the Archive operation is performed, it is recommended that an object identifier and a minimal set of 489
attributes be retained within the server for operational efficiency. In such a case, the retained attributes 490
may include Unique Identifier and State. 491

3.8 Message Extensions 492

Any number of vendor-specific extensions may be included in the Message Extension optional structure. 493
This allows KMIP implementations to create multiple extensions to the protocol. 494

3.9 Unique Identifiers 495

For clients that require unique identifiers in a special form, out-of-band registration/configuration may be 496
used to communicate this requirement to the server. 497

3.10 Result Message Text 498

KMIP specifies the Result Status, the Result Reason and the Result Message as normative message 499
contents. For the Result Status and Result Reason, the enumerations provided in [KMIP-Spec] are the 500
normative values. The values for the Result Message text, on the other hand, are implementation-501
specific. In consideration of internationalization, it is recommended that any vendor implementation of 502
KMIP provide appropriate language support for the Return Message. How a client specifies the language 503
for Result Messages is outside the scope of the KMIP. 504

3.11 Query 505

Query does not explicitly support client requests to determine what operations require authentication. To 506
determine whether an operation requires authentication, a client should request that operation. 507

3.12 Canceling Asynchronous Operations 508

If an asynchronous operation is cancelled by the client, no information is returned by the server in the 509
result code regarding any operations that may have been partially completed. Identification and 510
remediation of partially completed operations is the responsibility of the server. 511

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 19 of 46

It is the responsibility of the server to determine when to discard the status of asynchronous operations. 512
The determination of how long a server should retain the status of an asynchronous operation is 513
implementation-dependent and not defined by KMIP. 514
Once a client has received the status on an asynchronous operation other than “pending”, any 515
subsequent request for status of that operation may return either the same status as in a previous polling 516
request or an “unavailable” response. 517

3.13 Multi-instance Hash 518

The Digest attribute contains the output of hashing a managed object, such as a key or a certificate. The 519
server always generates the SHA-256 hash value when the object is created or generated. KMIP allows 520
multiple instances of the digest attribute to be associated with the same managed object. For example, it 521
is common practice for publicly trusted CAs to publish two digests (often referred to as the fingerprint or 522
the thumbprint) of their certificate: one calculated using the SHA-1 algorithm and another using the MD-5 523
algorithm. In this case, each digest would be calculated by the server using a different hash algorithm. 524

3.14 Returning Related Objects 525

The key block is intended to return a single object, with associated attributes and other data. For those 526
cases in which multiple related objects are needed by a client, such as the private key and the related 527
certificate specified by RACF and JKS, the client should issue multiple Get requests to obtain these 528
related objects. 529

3.15 Reducing Multiple Requests through the Use of Batch 530

KMIP supports batch operations in order to reduce the number of calls between the client and server for 531
related operations. For example, Locate and Get are likely to be commonly accomplished within a single 532
batch request. 533
KMIP does not ensure that batch operations are atomic on the server side. If servers implement such 534
atomicity, the client is able to use the optional “undo” mode to request roll-back for batch operations 535
implemented as atomic transactions. However, support for “undo” mode is optional in the protocol, and 536
there is no guarantee that a server that supports “undo” mode has effectively implemented atomic 537
batches. The use of “undo”, therefore, should be restricted to those cases in which it is possible to assure 538
the client, through mechanisms outside of KMIP, of the server effectively supporting atomicity for batch 539
operations. 540

3.16 Maximum Message Size 541

When a server is processing requests in a batch, it should compare the cumulative response size of the 542
message to be returned after each request with the specified Maximum Response Size. If the message is 543
too large, it should prepare a maximum message size error response message at that point, rather than 544
continuing with operations in the batch. This increases the client’s ability to understand what operations 545
have and have not been completed. 546
When processing individual requests within the batch, the server that has encountered a Maximum 547
Response Size error should not return attribute values or other information as part of the error response. 548

3.17 Using Offset in Re-key and Re-certify Operations 549

Both the Re-key and the Re-certify operations allow the specification of an offset interval. 550
The Re-key operation allows the client to specify an offset interval for activation of the key. This offset 551
specifies the duration of time between the time the request is made and the time when the activation of 552
the key occurs. If an offset is specified, all other times for the new key are determined from the new 553
Activation Date, based on the intervals used by the previous key, i.e., from the Activation Date to the 554
Process Start Date, Protect Stop Date, etc. 555

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 20 of 46

The Re-certify operation allows the client to specify an offset interval that indicates the difference between 556
the Initial Date of the new certificate and the Activation Date of the new certificate. As with the Re-key 557
operation, all other times for the certificate are determined using the intervals used for the previous 558
certificate. 559

3.18 Locate Queries 560

It is possible to formulate Locate queries to address any of the following conditions: 561
• Exact match of a transition to a given state. Locate the key(s) with a transition to a certain state at 562

a specified time (t). 563
• Range match of a transition to a given state. Locate the key(s) with a transition to a certain state 564

at any time at or between two specified times (t and t’). 565
• Exact match of a state at a specified time. Locate the key(s) that are in a certain state at a 566

specified time (t). 567
• Match of a state during an entire time range. Locate the key(s) that are in a certain state during 568

an entire time specified with times (t and t’). Note that the Activation Date could occur at or before 569
t and that the Deactivation Date could occur at or after t’+1. 570

• Match of a state at some point during a time range. Locate the key(s) that are in a certain state at 571
some time at or between two specified times (t and t’). In this case, the transition to that state 572
could be before the start of the specified time range. 573

This is accomplished by allowing any date/time attribute to be present either once (for an exact match) or 574
at most twice (for a range match). 575
For instance, if the state we are interested in is Active, the Locate queries would be the following 576
(corresponding to the bulleted list above): 577

• Exact match of a transition to a given state: Locate (ActivationDate(t)). Locate keys with an 578
Activation Date of t. 579

• Range match of a transition to a given state: Locate (ActivationDate(t), ActivationDate(t')). Locate 580
keys with an Activation Date at or between t and t’. 581

• Exact match of a state at a specified time: Locate (ActivationDate(0), ActivationDate(t), 582
DeactivationDate(t+1), DeactivationDate(MAX_INT), CompromiseDate(t+1), 583
CompromiseDate(MAX_INT)). Locate keys in the Active state at time t, by looking for keys with a 584
transition to Active before or until t, and a transition to Deactivated or Compromised after t 585
(because we don't want the keys that have a transition to Deactivated or Compromised before t). 586
The server assumes that keys without a DeactivationDate or CompromiseDate is equivalent to 587
MAX_INT (i.e., infinite). 588

• Match of a state during an entire time range: Locate (ActivationDate(0), ActivationDate(t), 589
DeactivationDate(t'+1), DeactivationDate(MAX_INT), CompromiseDate(t'+1), 590
CompromiseDate(MAX_INT)). Locate keys in the Active state during the entire time from t to t’. 591

• Match of a state at some point during a time range: Locate (ActivationDate(0), ActivationDate(t'-592
1), DeactivationDate(t+1), DeactivationDate(MAX_INT), CompromiseDate(t+1), 593
CompromiseDate(MAX_INT)). Locate keys in the Active state at some time from t to t’, by looking 594
for keys with a transition to Active between 0 and t’-1 and exit out of Active on or after t+1. 595

The queries would be similar for Initial Date, Deactivation Date, Compromise Date and Destroy Date. 596
In the case of the Destroyed-Compromise state, there are two dates recorded: the Destroy Date and the 597
Compromise Date. For this state, the Locate operation would be expressed as follows: 598

• Exact match of a transition to a given state: Locate (CompromiseDate(t), State(Destroyed-599
Compromised)) and Locate (DestroyDate(t), State(Destroyed-Compromised)). KMIP does not 600
support the OR in the Locate request, so two requests should be issued. Locate keys that were 601
Destroyed and transitioned to the Destroyed-Compromised state at time t, and locate keys that 602
were Compromised and transitioned to the Destroyed-Compromised state at time t. 603

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 21 of 46

• Range match of a transition to a given state: Locate (CompromiseDate(t), CompromiseDate(t'), 604
State(Destroyed-Compromised)) and Locate (DestroyDate(t), DestroyDate(t'), State(Destroyed-605
Compromised)). Locate keys that are Destroyed-Compromised and were Compromised or 606
Destroyed at or between t and t’. 607

• Exact match of a state at a specified time: Locate (CompromiseDate(0), CompromiseDate(t), 608
DestroyDate(0), DestroyDate(t)); nothing else is needed, since there is no exit transition. Locate 609
keys with a Compromise Date at or before t, and with a Destroy Date at or before t. These keys 610
are, therefore, in the Destroyed-Compromised state at time t. 611

• Match of a state during an entire time range: Locate (CompromiseDate(0), CompromiseDate(t), 612
DestroyDate(0), DestroyDate(t)). Same as above. As there is no exit transition from the 613
Destroyed-Compromised state, the end of the range (t’) is irrelevant. 614

• Match of a state at some point during a time range: Locate (CompromiseDate(0), 615
CompromiseDate(t'-1), DestroyDate(0), DestroyDate(t'-1)). Locate keys with a Compromise Date 616
at or before t’-1, and with a Destroy Date at or before t’-1. As there is no exit transition from the 617
Destroyed-Compromised state, the start of the range (t) is irrelevant. 618

3.19 ID Placeholder 619

A number of operations are affected by a mechanism referred to as the ID Placeholder. This is a 620
temporary variable consisting of a single Unique Identifier that is stored inside the server for the duration 621
of executing a batch of operations. The ID Placeholder is obtained from the Unique Identifier returned by 622
certain operations; the applicable operations are identified in Table 1Table 1, along with a list of 623
operations that accept the ID Placeholder as input. 624

 Operation ID Placeholder at
the beginning of
the operation

ID Placeholder upon completion of the operation
(in case of operation failure, a batch using the ID
Placeholder stops)

Create - ID of new Object

Create Key Pair - ID of new Private Key (ID of new Public Key may be
obtained via a Locate)

Register - ID of newly registered Object

Derive Key - (multiple Unique
Identifiers may be
specified in the
request)

ID of new Symmetric Key

Locate - ID of located Object

Get ID of Object no change

Request Object ID of Object no change

Validate - -

Get Attributes
List/Modify/Add/Delete

ID of Object no change

Activate ID of Object no change

Revoke ID of Object no change

Destroy ID of Object no change

Archive/Recover ID of Object no change

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 22 of 46

Certify ID of Public Key ID of new Certificate

Re-certify ID of Certificate ID of new Certificate

Re-key ID of Symmetric
Key to be rekeyed

ID of new Symmetric Key

Obtain Lease ID of Object no change

Get Usage Allocation ID of Key no change

Check ID of Object no change

 Table 1: ID Placeholder Prior to and Resulting from a KMIP Operation 625

3.20 Key Block 626

The protocol uses the Key Block structure to transport a key to the client or server. This Key Block 627
consists of the Key Value Type, the Key Value, and the Key Wrapping Data. The Key Value Type 628
identifies the format of the Key Material, e.g., Raw format or Transparent Key structure. The Key Value 629
consists of the Key Material and optional attributes. The Key Wrapping Data provides information about 630
the wrapping key and the wrapping mechanism, and is returned only if the client requests the Key Value 631
to be wrapped by specifying the Key Wrapping Specification inside the Get Request Payload. The Key 632
Wrapping Data may also be included inside the Key Block if the client registers a wrapped key. 633
The protocol allows any attribute to be included inside the Key Value and allows these attributes to be 634
cryptographically bound to the Key Material (i.e., by signing, MACing, encrypting, or both encrypting and 635
signing/MACing the Key Value). Some of the attributes that may be included include the following: 636

• Unique Identifier – uniquely identifies the key 637
• Cryptographic Algorithm (e.g., AES, 3DES, RSA) – this attribute is either specified inside the Key 638

Block structure or the Key Value structure. 639
• Cryptographic Length (e.g., 128, 256, 2048) – this attribute is either specified inside the Key 640

Block structure or the Key Value structure 641
• Cryptographic Usage Mask– identifies the cryptographic usage of the key (e.g., Encrypt, Wrap 642

Key, Export) 643
• Cryptographic Parameters – provides additional parameters for determining how the key may be 644

used 645
– Block Cipher Mode (e.g., CBC, NISTKeyWrap, GCM) – this parameter identifies the mode of 646

operation, including block cipher-based MACs or wrapping mechanisms 647
– Padding Method (e.g., OAEP, X9.31, PSS) – identifies the padding method and if applicable 648

the signature or encryption scheme. 649
– Hashing Algorithm (e.g., SHA-256) – identifies the hash algorithm to be used with the 650

signature/encryption mechanism or Mask Generation Function; note that the different HMACs 651
are defined individually as algorithms and do not require the Hashing Algorithm parameter to 652
be set 653

– Key Role Type – Identifies the financial key role (e.g., DEK, KEK) 654
• State (e.g., Active) 655
• Dates (e.g., Activation Date, Process Start Date, Protect Stop Date) 656
• Custom Attribute – allows vendors and clients to define vendor-specific attributes; may also be 657

used to prevent replay attacks by setting a nonce 658

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 23 of 46

3.21 Using Wrapped Keys with KMIP 659

KMIP provides the option to register and get keys in wrapped format. Clients request the server to return 660
a wrapped key by including the Key Wrapping Specification in the Get Request Payload. Similarly, clients 661
register a wrapped key by including the Key Wrapping Data in the Register Request Payload. The 662
Wrapping Method identifies the type of mechanism used to wrap the key, but does not identify the 663
algorithm or block cipher mode. It is possible to determine these from the attributes set for the specified 664
Encryption Key or MAC/Signing Key. If a key has multiple Cryptographic Parameters set, clients may 665
include the applicable parameters in Key Wrapping Specification. If omitted, the server chooses the 666
Cryptographic Parameter attribute with the lowest index. 667
The Key Value includes both the Key Material and, optionally, attributes of the key; these may be 668
provided by the client in the Register Request Payload; the server only includes attributes when 669
requested in the Key Wrapping Specification of the Get Request Payload. The Key Value may be 670
encrypted, signed/MACed, or both encrypted and signed/MACed (and vice versa). In addition, clients 671
have the option to request or import a wrapped Key Block according to standards, such as ANSI TR-31, 672
or vendor-specific key wrapping methods. 673
It is important to note that if the Key Wrapping Specification is included in the Get Request Payload, the 674
Key Value may not necessarily be encrypted. If the Wrapping Method is MAC/sign, the returned Key 675
Value is in plaintext, and the Key Wrapping Data includes the MAC or Signature of the Key Value. 676
Prior to wrapping or unwrapping a key, the server should verify that the wrapping key is allowed to be 677
used for the specified purpose. For example, if the Unique ID of a symmetric key is specifiedused for key 678
encryption in the Key Wrapping Specification inside the response to a Get request, the symmetric key 679
should have the “Wrap Key” bit set in its Cryptographic Usage Mask. Similarly, if the client registers a 680
signed key, the server should verify that the Signature Key, as specified by the client inside the Key 681
Wrapper Data, has the “Verify” bit set in the Cryptographic Usage Mask. If the wrapping key is not 682
permitted to be used for the requested purpose (e.g., when the Cryptographic Usage Mask is not set), the 683
server should return the Operation Failed error. 684

3.21.1 Encrypt-only Example with a Symmetric Key as an Encryption Key 685
for a Get Request and Response 686

The client sends a Get request to obtain a key that is stored on the server. When the client sends a Get 687
request to the server, a Key Wrapping Specification may be included. If a Key Wrapping Specification is 688
included in the Get request, and a client wants the requested key and its Cryptographic Usage Mask 689
attribute to be wrapped withusing AES key wrap, the client includes the following information in the Key 690
Wrapping Specification: 691

• Wrapping Method: Encrypt 692
• Encryption Key Information 693

– Unique Key ID: Key ID of the AES wrapping key 694
– Cryptographic Parameters: The Block Cipher Mode is NISTKeyWrap (not necessary if default 695

block cipher mode for wrapping key is NISTKeyWrap) 696
• Attribute Name: Cryptographic Usage Mask 697

The server uses the Unique Key ID specified by the client to determine the attributes set for the proposed 698
wrapping key. For example, the algorithm of the wrapping key is not explicitly specified inside the Key 699
Wrapping Specification. The ; the server determines the algorithm to be used for wrapping the key by 700
identifying the Algorithm attribute set for the specified Encryption Key. 701
The Cryptographic Parameters attribute should be specified by the client if multiple instances of the 702
Cryptographic Parameters exist, and the lowest index does not correspond to the NIST key wrap mode of 703
operation. The server should verify that the AES wrapping key has NISTKeyWrap set as an allowable 704
Block Cipher Mode, and that the “Wrap Key” bit is set in the Cryptographic Usage Mask. 705
If the correct data was provided to the server, and no conflicts exist, the server AES key wraps the Key 706
Value (both the Key Material and the Cryptographic Usage Mask attribute) for the requested key 707
withusing the AES key wrap algorithm and wrapping key specified in the Encryption Key Information. The 708

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 24 of 46

wrapped key; the Key Value contains both the Key Material and the Cryptographic Usage Mask attribute, 709
and return the encrypted result (byte string) is returnedas the Key Value in the Key Block of the server’s 710
response inside the Key Value of the Key Block. 711
The Key Wrapping Data of the Key Block in the Get Response Payload includes the same data as 712
specified in the Key Wrapping Specification of the Get Request Payload except for the Attribute Name. 713

3.21.2 Encrypt-only Example with a Symmetric Key as an Encryption Key 714
for a Register Request and Response 715

The client sends a Register request to the server and includes the wrapped key and the Uniqueunique ID 716
of the wrapping key inside the Request Payload. The wrapped key is provided to the server inside the 717
Key Block. The Key Block includes the Key Value Type, the Key Value, and the Key Wrapping Data. The 718
Key Value Type identifies the format of the Key Material, the Key Value consists of the Key Material and 719
optional attributes that may be included to cryptographically bind the attributes to the Key Material, and 720
the Key Wrapping Data identifies the wrapping mechanism and the encryption key used to wrap the 721
object and the wrapping mechanism. 722
Similar to the example in 3.21.1 the key is wrapped using the AES key wrap. The Key Value includes four 723
attributes: Cryptographic Algorithm, Cryptographic Length, Cryptographic Parameters, and Cryptographic 724
Usage Mask. 725
The Key Wrapping Data includes the following information: 726

• Wrapping Method: Encrypt 727
• Encryption Key Information 728

– Unique Key ID: Key ID of the AES wrapping key 729
– Cryptographic Parameters: The Block Cipher Mode is NISTKeyWrap (not necessary if default 730

block cipher mode for wrapping key is NISTKeyWrap) 731
Attributes do not need to be specified in the Key Wrapping Data. When registering a wrapped Key Value 732
with attributes, clients may include these attributes inside the Key Value without specifying them inside 733
the Template-Attribute. 734
Prior to unwrapping the key, the server determines the wrapping algorithm from the Algorithm attribute set 735
for the specified Unique ID in the Encryption Key Information. The server verifies that the wrapping key 736
may be used for the specified purpose. In particular, if the client includes the Cryptographic Parameters in 737
the Encryption Key Information, the server verifies that the specified Block Cipher Mode is set for the 738
wrapping key. The server also verifies that the wrapping key has the “Unwrap Key” bit set in the 739
Cryptographic Usage Mask. 740
The Register Response Payload includes the Unique ID of the newly registered key and an optional list of 741
attributes that were implicitly set by the server. 742

3.21.3 Encrypt-only Example with an Asymmetric Key as an Encryption 743
Key for a Get Request and Response 744

The client sends a Get request to obtain a key (either symmetric or asymmetric) that is stored on the 745
server. When the client sends a Get request to the server, a Key Wrapping Specification may be 746
included. If a Key Wrapping Specification is included, and the key is to be wrapped with an RSA public 747
key using the OAEP encryption scheme, the client includes the following information in the Key Wrapping 748
Specification. Note that for this example, attributes for the requested key are not requested. 749

• Wrapping Method: Encrypt 750
• Encryption Key Information 751

– Unique Key ID: Key ID of the RSA public key 752
– Cryptographic Parameters: 753

Padding Method: OAEP 754
Hashing Algorithm: SHA-256 755

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 25 of 46

The Cryptographic Parameters attribute is specified by the client if multiple instances of Cryptographic 756
Parameters exist for the wrapping key, and the lowest index does not correspond to the associated 757
padding method. The server should verify that the specified Cryptographic Parameters in the Key 758
Wrapping Specification and the “Wrap Key” bit in the Cryptographic Usage Mask are set for the 759
corresponding wrapping key. 760
The Key Wrapping Data returned by the server in the Key Block of the Get Response Payload includes 761
the same data as specified in the Key Wrapping Specification of the Get Request Payload. 762
For both OAEP and PSS, KMIP currently assumes that the Hashing Algorithm specified in the 763
Cryptographic Parameters of the Get request is used for both the Mask Generation Function (MGF) and 764
hashing data. The example above requires the server to use SHA-256 for both purposes. 765

3.21.4 MAC-only Example with an HMAC Key as an Authentication Key for 766
a Get Request and Response 767

The client sends a Get request to obtain a key that is stored on the server. When the client sends a Get 768
request to the server, a Key Wrapping Specification may be included. If a key and Custom Attribute (i.e., 769
x-Nonce) is to be MACed with HMAC SHA-256, the following Key Wrapping Specification is specified: 770

• Wrapping Method: MAC/sign 771
• MAC/Signature Key Information 772

– Unique Key ID: Key ID of the MACing key (note that the algorithm associated with this key 773
would be HMAC-256) 774

• Attribute Name: x-Nonce 775
For HMAC, no Cryptographic Parameters need to be specified, since the algorithm, including the hash 776
function, may be determined from the Algorithm attribute set for the specified MAC Key. The server 777
should verify that the HMAC key has the “MAC Generate” bit set in the Cryptographic Usage Mask. Note 778
that an HMAC key does not require the “Wrap Key” bit to be set in the Cryptographic Usage Mask. 779
The server creates an HMAC value over the Key Value if the specified MACing key may be used for the 780
specified purpose and no conflicts exist. The Key Value is returned in plaintext, and the Key Block 781
includes the following Key Wrapping Data: 782

• Wrapping Method: MAC/sign 783
• MAC/Signature Key Information 784
• Unique Key ID: Key ID of the MACing key 785
• MAC/Signature: HMAC result of the Key Value 786

In the example, the custom attribute x-Nonce was included to help clients, who are relying on the proxy 787
model, to detect replay attacks. End-clients, who communicate with the key management server, may not 788
support SSL/TLS and may not be able to rely on the message protection mechanisms provided by a 789
security protocol. An alternative approach for these clients would be to use the custom attribute may be 790
created to hold a random number, counter, nonce, date, or time. The custom attribute needs to be 791
created before requesting the server to return a wrapped key and is recommended to be set if clients 792
frequently wrap/sign the same key with the same wrapping/signing key. 793

3.21.5 Registering a Wrapped Key as an Opaque Cryptographic Object 794

Clients may want to register and store a wrapped key on the server without the server being able to 795
unwrap the key (i.e., the wrapping key is not known to the server). Instead of storing the wrapped key as 796
an opaque object, clients have the option to store the wrapped key inside the Key Block as an opaque 797
cryptographic object, i.e., the wrapped key is registered as a managed cryptographic object, but the 798
encoding of the key is unknown to the server. Registering an opaque cryptographic object allows clients 799
to set all the applicable attributes that apply to cryptographic objects (e.g., Cryptographic Algorithm and 800
Cryptographic Length), 801
Opaque cryptographic objects are set by specifying the following inside the Key Block structure: 802

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 26 of 46

• Key Format Type: Opaque 803
• Key Material: Wrapped key as a Byte String 804
The Key Wrapping Data does not need to be specified. 805

3.22 Object Group 806

The key management system may specify rules for valid group names which may be created by the 807
client. Clients are informed of such rules by a mechanism that is not specified by [KMIP-Spec]. In the 808
protocol, the group names themselves are character strings of no specified format. Specific key 809
management system implementations may choose to support hierarchical naming schemes or other 810
syntax restrictions on the names. Groups may be used to associate objects for a variety of purposes. A 811
set of keys used for a common purpose, but for different time intervals, may be linked by a common 812
Object Group. Servers may create predefined groups and add objects to them independently of client 813
requests. 814

3.23 Certify and Re-certify 815

The key management system may contain multiple embedded CAs or may have access to multiple 816
external CAs. How the server routes a certificate request to a CA is vendor-specific and outside the scope 817
of KMIP. If the server requires and supports the capability for clients to specify the CA to be used for 818
signing a Certificate Request, then this information may be provided by including the Certificate Issuer 819
attribute in the Certify or Re-certify request. 820
[KMIP-Spec] supports multiple options for submitting a certificate request to the key management server 821
within a Certify or Re-Certify operation. It is a vendor decision as to whether the key management server 822
offers certification authority (CA) functionality or proxies the certificate request onto a separate CA for 823
processing. The type of certificate request formats supported is also a vendor decision, and this may, in 824
part, be based upon the request formats supported by any CA to which the server proxies the certificate 825
requests. 826
All certificate request formats for requesting X.509 certificates specified in [KMIP-Spec] (i.e., PKCS#10, 827
PEM and CRMF) provide a means for allowing the CA to verify that the client that created the certificate 828
request possesses the private key corresponding to the public key in the certificate request. This is 829
referred to as Proof-of-Possession (POP). However, it should be noted that in the case of the CRMF 830
format, some CAs may not support the CRMF POP option, but instead rely upon the underlying certificate 831
management protocols (i.e., CMP and CMC) to provide POP. In the case where the CA does not support 832
POP via the CRMF format (including CA functionality within the key management server), an alternative 833
certificate request format (i.e., PKCS#10, PEM) would need to be used if POP needs to be verified. 834

3.24 Specifying Attributes during a Create Key Pair Operation 835

The Create Key Pair operation allows clients to specify attributes using the Common Template-Attribute, 836
Private Key Template-Attribute, and Public Key Template-Attribute. The Common Template-Attribute 837
object includes a list of attributes that apply to both the public and private key. Attributes that are not 838
common to both keys may be specified using the Private Key Template-Attribute or Public Key Template-839
Attribute. If a single-instance attribute is specified in multiple Template-Attribute objects, the server obeys 840
the following order of precedence: 841

1. Attributes specified explicitly in the Private and Public Key Template-Attribute, then 842

2. Attributes specified via templates in the Private and Public Key Template-Attribute, then 843

3. Attributes specified explicitly in the Common Template-Attribute, then 844

4. Attributes specified via templates in the Common Template-Attribute 845

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 27 of 46

3.24.1 Example of Specifying Attributes during the Create Key Pair 846
Operation 847

A client specifies several attributes in the Create Key Pair Request Payload. The Common Template-848
Attribute includes the template name RSACom and other explicitly specified common attributes: 849
Common Template-Attribute 850

• RSACom Template 851
– Cryptographic Algorithm: RSA 852
– Cryptographic Length: 2048 853
– Cryptographic Parameters: Padding Method OAEP 854
– Custom Attribute: x-Serial 1234 855
– Object Group: Key encryption group 1 856

• Attribute 857
– Cryptographic Length: 4096 858
– Cryptographic Parameters: Padding Method PKCS1 v1.5 859
– Custom Attribute: x-ID 56789 860

The Private Key Template-Attribute includes the template name RSAPriv and other explicitly-specified 861
private key attributes: 862
Private Key Template-Attribute 863

• RSAPriv Template 864
– Object Group: Key encryption group 2 865

• Attribute 866
– Cryptographic Usage Mask: Unwrap Key 867
– Name: PrivateKey1 868

The Public Key Template Attribute includes explicitly-specified public key attributes: 869
Public Key Template-Attribute 870

• Attribute 871
– Cryptographic Usage Mask: Wrap Key 872
– Name: PublicKey1 873

 874
Following the attribute precedence rule, the server creates a 4096-bit RSA key. The following client-875
specified attributes are set: 876
Private Key 877

• Cryptographic Algorithm: RSA 878
• Cryptographic Length: 4096 879
• Cryptographic Parameters: OAEP 880
• Cryptographic Parameters: PKCS1 v1.5 881
• Cryptographic Usage Mask: Unwrap Key 882
• Custom Attribute: x-Serial 1234 883
• Custom Attribute: x-ID 56789 884
• Object Group: Key encryption group 1 885
• Object Group: Key encryption group 2 886
• Name: PrivateKey1 887

Public Key 888

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 28 of 46

• Cryptographic Algorithm: RSA 889
• Cryptographic Length: 4096 890
• Cryptographic Parameters: OAEP 891
• Cryptographic Parameters: PKCS1 v1.5 892
• Cryptographic Usage Mask: Wrap Key 893
• Custom Attribute: x-Serial 1234 894
• Custom Attribute: x-ID 56789 895
• Object Group: Key encryption group 1 896
• Name: PublicKey1 897

3.25 Registering a Key Pair 898

During a Create Key Pair operation, a Link Attribute is automatically created by the server for each object 899
(i.e., a link is created from the private key to the public key and vice versa). Certain attributes are the 900
same for both objects and are set by the server while creating the key pair. The KMIP protocol does not 901
support an equivalent operation for registering a key pair. Clients are able to register the objects 902
independently and manually set the Link attributes to make the server aware that these keys are 903
associated with each other. When the Link attribute is set for both objects, the server should verify that 904
the registered objects indeed correspond to each other and apply similar restrictions as if the key pair was 905
created on the server. 906
Clients should perform the following steps when registering a key pair: 907

1. Register the public key and set all associated attributes: 908

a. Cryptographic Algorithm 909

b. Cryptographic Length 910

c. Cryptographic Usage Mask 911

2. Register the private key and set all associated attributes 912

a. Cryptographic Algorithm is the same for both public and private key 913

b. Cryptographic Length is the same for both public and private key 914

c. Cryptographic Parameters may be set; if set, the value is the same for both the public and 915
private key 916

d. Cryptographic Usage Mask is set, but does not contain the same value for both the public 917
and private key 918

e. Link is set with Link Type Public Key Link and the Linked Object Identifier of the 919
corresponding Public Key 920

f. Link is set for the Public Key with Link Type Private Key Link and the Linked Object Identifier 921
of the corresponding Private Key 922

3.26 Non-Cryptographic Objects 923

The KMIP protocol allows clients to register Secret Data objects. Secret Data objects may include 924
passwords or data that are used to derive keys. 925
KMIP defines Secret Data as cryptographic objects. Even if the object is not used for cryptographic 926
purposes, clients still set certain attributes, such as the Cryptographic Usage Mask, for this object unless 927
otherwise stated. Similarly, servers set certain attributes for this object, including the Digest, State, and 928
certain Date attributes, even if the attributes seem relevant only for cryptographic objects. 929
When registering a Secret Data object, the following attributes are set by the server: 930

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 29 of 46

• Unique Identifier 931
• Object Type 932
• Digest 933
• State 934
• Initial Date 935
• Last Change Date 936

When registering a Secret Data object for non-cryptographic purposes, the following attributes are set by 937
either the client or the server: 938

• Cryptographic Usage Mask 939

3.27 Asymmetric Concepts with Symmetric Keys 940

The Cryptographic Usage Mask attribute is intended to adequately support asymmetric concepts using 941
symmetric keys. This is fairly common practice in established crypto systems: the MAC is an example of 942
an operation where a single symmetric key is used at both ends, but policy dictates that one end may 943
only generate cryptographic tokens using this key (the MAC) and the other end may only verify tokens. 944
The security of the system fails if the verifying end is able to use the key to perform generate operations. 945
In these cases it is not sufficient to describe the usage policy on the keys in terms of cryptographic 946
primitives like “encrypt” vs. “decrypt” or “sign” vs. “verify”. There are two reasons why this is the case. 947

• In some of these operations, such as MAC generate and verify, the same cryptographic primitive 948
is used in both of the complementary operations. MAC generation involves computing and 949
returning the MAC, while MAC verification involves computing that same MAC and comparing it 950
to a supplied value to determine if they are the same. Thus, both generation and verification use 951
the “encrypt” operation, and the two usages are not able to be distinguished by considering only 952
“encrypt” vs. “decrypt”. 953

• Some operations which require separate key types use the same fundamental cryptographic 954
primitives. For example, encryption of data, encryption of a key, and computation of a MAC all 955
use the fundamental operation “encrypt”, but in many applications, securely differentiated keys 956
are used for these three operations. Simply looking for an attribute that permits “encrypt” is not 957
sufficient. 958

Allowing the use of these keys outside of their specialized purposes may compromise security. Instead, 959
specialized application-level permissions are necessary to control the use of these keys. KMIP provides 960
several pairs of such permissions in the Cryptographic Usage Mask (3.14), such as: 961

MAC GENERATE
MAC VERIFY

For cryptographic MAC operations. Although it is
possible to compose certain MACs using a series
of encrypt calls, the security of the MAC relies on
the operation being atomic and specific.

GENERATE CRYPTOGRAM
VALIDATE CRYPTOGRAM

For composite cryptogram operations such as
financial CVC or ARQC. To specify exactly which
cryptogram the key is used for it is also necessary
to specify a role for the key (see Section 3.6
“Cryptographic Parameters” in [KMIP-Spec]).

TRANSLATE ENCRYPT
TRANSLATE DECRYPT
TRANSLATE WRAP
TRANSLATE UNWRAP

To accommodate secure routing of traffic and data.
In many areas that rely on symmetric techniques
(notably, but not exclusively financial networks),
information is sent from place to place encrypted
using shared symmetric keys. When encryption
keys are changed, it is desirable for the change to
be an atomic operation, otherwise distinct unwrap-
wrap or decrypt-encrypt steps risk leaking the

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 30 of 46

plaintext data during the translation process.
TRANSLATE ENCRYPT/DECRYPT is used for
data encipherment.
TRANSLATE WRAP/UNWRAP is used for key
wrapping.

 Table 2: Cryptographic Usage Masks Pairs 962

In order to support asymmetric concepts using symmetric keys in a KMIP system, the server 963
implementation needs to be able to differentiate between clients for generate operations and clients for 964
verify operations. As indicated by Section 3 (“Attributes”) of [KMIP-Spec] there is a single key object in 965
the system to which all relevant clients refer, but when a client requests that key, the server is able to 966
choose which attributes (permissions) to send with it, based on the identity and configured access rights 967
of that specific client. There is, thus, no need to maintain and synchronize distinct copies of the symmetric 968
key – just a need to define access policy for each client or group of clients. 969
The internal implementation of this feature at the server end is a matter of choice for the vendor: storing 970
multiple key blocks with all necessary combinations of attributes or generating key blocks dynamically are 971
both acceptable approaches. 972

3.28 Application Specific Information 973

The Application Specific Information attribute is used to store data which is specific to the application(s) 974
using the object. Some examples of Application Name Space and Application Data pairs are given below. 975

• SMIME, 'someuser@company.com' 976
• TLSSSL, 'some.domain.name' 977
• Volume Identification, '123343434' 978
• File Name, 'secret.doc' 979
• Client Generated Key ID, ‘450994003' 980

The following Application Name Spaces are recommended: 981
• SMIME 982
• TLS 983
• SSL 984
• IPSEC 985
• HTTPS 986
• PGP 987
• Volume Identification 988
• File Name 989
• LTO4 990
• LIBRARY-LTO4 991

KMIP provides optional support for server-generated Application Data. Clients may request the server to 992
generate the Application Data for the client by omitting Application Data while setting or modifying the 993
Application Specific Information attribute. A server only generates the Application Data if the Application 994
Data is completely omitted from the request, and the client-specified Application Name Space is 995
recognized and supported by the server. An example for requesting the server to generate the Application 996
Data is shown below: 997

AddAttribute(UID, AppSpecInfo{AppNameSpace=’LIBRARY-LTO4’}); 998
If the server does not recognize the name space, the “Application Name Space Not Supported” error is 999
returned to the client. 1000

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 31 of 46

If the Application Data is set to null, as shown in the example below, and the Application Name Space is 1001
recognized by the server, the server does not generate the Application Data for the client. The server 1002
stores the Application Specific Information attribute with the Application Data value set to null. 1003

AddAttribute(UID, AppSpecInfo{AppNameSpace=’LIBRARY-LTO4’, AppData=null}); 1004

3.29 Mutating Attributes 1005

KMIP does not support server mutation of client-supplied attributes. If a server does not accept an 1006
attribute value that is being specified inside the request by the client, the server returns an error and 1007
specifies “Invalid Field” as Result Reason. 1008
Attributes that are not set by the client, but are implicitly set by the server as a result of the operation, may 1009
optionally be returned by the server in the operation response inside the Template–Attribute. 1010
If a client sets a time-related attribute to the current date and time (as perceived by the client), but as a 1011
result of a clock skew, the specified date of the attribute is earlier than the time perceived by the server, 1012
the server’s policy will be used to determine whether to accept the “backdated attribute”. KMIP does not 1013
require the server to fail a request if a backdated attribute is set by the client. 1014
If a server does not support backdated attributes, and cryptographic objects are expected to change state 1015
at the specified current date and time (as perceived by the client), clients are recommended to issue the 1016
operation that would implicitly set the date for the client. For example, instead of explicitly setting the 1017
Activation Date, clients could issue the Activate operation. This would require the server to set the 1018
Activation Date to the current date and time as perceived by the server. 1019
If it is not possible to set a date attribute via an operation, and the server does not support backdated 1020
attributes, clients need to take into account that potential clock skew issues may cause the server to 1021
return an error even if a date attribute is set to the client’s current date and time. 1022
For additional information, refer to the sections describing the State attribute and the Time Stamp field in 1023
[KMIP-Spec]. 1024

3.30 Interoperable Key Naming for Tape 1025

This section describes methods for creating and storing key identifiers that are interoperable across multi-1026
vendor KMIP clients. 1027

3.30.1 Native Tape Encryption by a KMIP Client 1028

This method is primarily intended to promote interoperable key naming between tape library products 1029
which already support non-KMIP key managers, where KMIP support is being added. 1030
When those existing library products become KMIP clients, a common method for naming and storing 1031
keys may be used to support moving tape cartridges between the libraries, and successfully retrieving 1032
keys, assuming that the clients have appropriate access privileges. The library clients may be from 1033
multiple vendors, and may be served by a KMIP key manager from a different vendor. 1034

3.30.1.1 Method Overview 1035

• The method uses the KMIP Application Specific Information (ASI) attribute’s Application Data field 1036
to store the key name. The ASI Application Name Space is used to identify the namespace (such 1037
as LIBRARY-LTO4). 1038

• The method also uses the tape format's Key Associated Data (KAD) fields to store the key name. 1039
Tape formats may provide both authenticated and unauthenticated storage for the KAD data. This 1040
method ensures optimum utilization of the authenticated KAD data when the tape format supports 1041
authentication. 1042

• The method supports both client-generated and server-generated key names. 1043
• The method, in many cases, is backward-compatible if tapes are returned to a non-KMIP key 1044

manager environment. 1045

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 32 of 46

• Key names stored in the KMIP server's ASI attribute are always text format. Key names stored on 1046
the KMIP client's KAD fields are always numeric format, due to space limitations of the tape 1047
format. The method basically consists of implementing a specific algorithm for converting 1048
between text and numeric formats. 1049

• The algorithm used by this conversion is reversible. 1050

3.30.1.2 Definitions 1051

• Key Associated Data (KAD). Part of the tape format. May be segmented into authenticated and 1052
unauthenticated fields. KAD usage is detailed in the SCSI SSC-3 standard from the T10 1053
organization. 1054

• Application Specific Information (ASI). A KMIP attribute. 1055
• Hexadecimal numeric characters. Case-sensitive, printable, single byte ASCII characters 1056

representing the numbers 0 through 9 and uppercase alpha A through F. (US-ASCII characters 1057
30h-39h and 41h-46h). 1058
 1059
Hexadecimal numeric characters are always paired, each pair representing a single 8-bit numeric 1060
value. A leading zero character is provided, if necessary, so that every byte in the tape’s KAD is 1061
represented by exactly 2 hexadecimal numeric characters. 1062

• N(k). The number of bytes in the tape format's combined KAD fields (both authenticated and 1063
unauthenticated). 1064

• N(a), N(u). The number of bytes in the tape format's authenticated, and unauthenticated KAD 1065
fields, respectively. 1066

3.30.1.3 Algorithm 1. Numeric to text direction (tape format’s KAD to KMIP 1067
ASI) 1068

Description: All information contained in the tape format’s KAD fields is converted to a null-terminated 1069
ASCII string consisting of hexadecimal numeric character pairs. First, the unauthenticated KAD data is 1070
converted to text. Then, the authenticated KAD data is converted and appended to the end of the string. 1071
The string is then null-terminated. 1072
 1073
Implementation Example: 1074

1. Define an input buffer sized for N(k). For LTO4, N(k) is 44 bytes (12 bytes authenticated, 32 1075
unauthenticated). 1076

2. Define an output buffer sufficient to contain a null-terminated string with a maximum length of 1077
2*N(k)+1 bytes. 1078

3. Define the standard POSIX (also known as C) locale. Each character in the string is a single-byte US-1079
ASCII character. 1080

4. Copy the tape format’s KAD data, from the unauthenticated KAD field first, to the input buffer. 1081
Effectively, the first byte (byte 0) of the input buffer is the first byte of unauthenticated KAD. Bytes 1082
from the authenticated KAD are concatenated, after the unauthenticated bytes. 1083

5. For each byte in the input buffer, convert to US-ASCII as follows: 1084

a. Convert the byte's value to exactly 2 hexadecimal numeric characters, including a leading 0 1085
where necessary. Append these 2 numeric characters to the output buffer, with the high-nibble 1086
represented by the left-most hexadecimal numeric character. 1087

b. After all byte values have been converted, null terminate the output buffer. 1088

6. When storing the string to the KMIP server, use the object’s ASI attribute’s Application Data field. 1089
Store the namespace (such as LIBRARY-LTO4) in the ASI attribute’s Application Name Space field. 1090

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 33 of 46

3.30.1.4 Algorithm 2. Text to numeric direction (KMIP ASI to tape format’s 1091
KAD) 1092

Description: Hexadecimal numeric character pairs in the null-terminated ASCII string are converted to 1093
single byte numeric values, and stored in the tape format’s KAD fields. The authenticated KAD field is 1094
populated first, from a sub-string consisting of the last 2*N(a) characters in the full string. Any remaining 1095
characters in the string are converted and stored to the unauthenticated KAD field. The null termination 1096
byte is not converted. 1097
 1098
Implementation Example: 1099

1. Obtain the key’s name from the KMIP server’s ASI attribute for that object. Copy the null terminated 1100
string to an input buffer of size 2*N(k) + 1 bytes. For LTO4, an 89 character string, including null 1101
termination, is sufficient for all possible key descriptors when names are directly referenced. 1102

2. Define output buffers for unauthenticated KAD, and authenticated KAD, of size N(u) and N(a) 1103
respectively. For LTO4, this would be 32 bytes of unauthenticated data, and 12 bytes of authenticated 1104
data. 1105

3. Define the standard POSIX (also known as C) locale. Each character in the string is a single-byte US-1106
ASCII character. 1107

4. First, populate the authenticated KAD buffer, converting a sub-string consisting of the last 2*N(a) 1108
characters of the full string, not including the null termination byte. 1109

5. When the authenticated KAD is filled, next populate the unauthenticated KAD buffer, by converting 1110
the remaining hexadecimal character pairs in the string. 1111

3.30.1.5 Example Output 1112

The following are examples illustrating some results of this method. In the following examples, the sizes 1113
of the KAD for LTO4 are used. Different tape formats may utilize different KAD sizes. 1114
 1115
Example 1. Full combined KAD 1116
 1117
This LTO4 tape’s combined KAD contains the following data (represented in hexadecimal). For LTO4, the 1118
unauthenticated KAD contains 32 bytes, and the authenticated KAD contains 12 bytes. 1119
 1120

Example 1a. Hexadecimal numeric data from a tape’s KAD. 1121
Shaded data is authenticated by the tape drive. 1122
 1123

02 04 17 11 39 43 42 36 30 41 33 34 39 31 44 33 1124
41 41 43 36 32 42 07 F6 54 54 32 36 30 38 4C 34 1125
30 30 30 39 30 35 32 38 30 34 31 32 1126

 1127
The algorithm converts the numeric KAD data to the following 89 character null-terminated string for 1128
storage in the Application Data field of a KMIP object's Application Specific Information attribute. The ASI 1129
Application Name Space contains “LIBRARY-LTO4”. 1130
 1131

Example 1b. Text string from KMIP ASI Application Data. 1132
Shaded characters are derived from authenticated data. The null character is represented as 1133
<null> 1134
 1135

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 34 of 46

0204171139434236304133343931443341414336324207F65454323630384C3430303039303531136
23830343132<null> 1137
 1138
Example 1c. The hexadecimal values of the 89 US-ASCII characters in string 1b, from the KMIP 1139
ASI Application Data. Note: these values are always in the range 30h-39h, or in the range 41h-1140
46h, or the 0h null. 1141
30 32 30 34 31 37 31 31 33 39 34 33 34 32 33 36 33 30 34 31 33 33 33 34 33 39 33 31 34 34 33 1142
33 34 31 34 31 34 33 33 36 33 32 34 32 30 37 46 36 35 34 35 34 33 32 33 36 33 30 33 38 34 43 1143
33 34 33 30 33 30 33 30 33 39 33 30 33 35 33 32 33 38 33 30 33 34 33 31 33 32 00 1144

 1145
For the reverse transformation, a client would retrieve the string in 1b from the server, derive the numeric 1146
values shown in 1a, and store them to the tape format's KAD data. First, the sub-string containing the 1147
right-most 24 characters of the full 1b string are used to derive the 12-byte authenticated KAD. The 1148
remaining characters are used to derive the 32-byte unauthenticated KAD. 1149
 1150
Example 2. Authenticated KAD only 1151
This LTO4 tape’s KAD contains the following data (represented in hexadecimal), all 12 bytes obtained 1152
from the authenticated KAD field. There is no unauthenticated KAD data. 1153
 1154

Example 2a. Hexadecimal numeric data from a tape's KAD. 1155
Shaded data is authenticated. 1156
 1157
17 48 33 C6 20 42 10 A7 E8 05 F8 C7 1158

The algorithm converts the numeric KAD data to the following 24 character null-terminated string, for 1159
storage in the Application Data field of a KMIP object's Application Specific Information attribute. 1160
 1161

Example 2b. Text string from KMIP ASI Application Data. 1162
Shaded characters are derived from authenticated data. The null character is represented as 1163
<null> 1164
 1165
174833C6204210A7E805F8C7<null> 1166

 1167
For the reverse transformation, a client would derive the numeric values in 2a, and store them to the tape 1168
format's KAD data. The right-most 24 characters of the string in 2b are used to derive the 12 byte 1169
authenticated KAD. In this example, there is no unauthenticated KAD data. 1170
 1171
Example 3. Partially filled authenticated KAD originating from a non-KMIP method 1172
This LTO4 tape’s KAD contains the following data (represented in hexadecimal). The unauthenticated 1173
KAD contains 10 bytes, and the authenticated KAD contains 8 bytes. 1174
 1175
Since the authenticated KAD was not filled, but the unauthenticated data was populated, the method 1176
creating this key name is potentially not backward-compatible with the KMIP key naming method. See 1177
backward-compatibility assessment, below. 1178
 1179

Example 3a. Hexadecimal numeric data from a non-KMIP tape's KAD. 1180
Shaded data is authenticated. 1181
 1182
02 04 17 11 39 43 42 36 30 41 30 30 30 39 30 35 1183

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 35 of 46

32 38 1184
 1185
The algorithm converts the numeric KAD data to the following 36 character null-terminated string, for 1186
storage in the Application Data field of a KMIP object's Application Specific Information attribute. 1187
 1188

Example 3b. Text string from KMIP ASI Application Data. 1189
Shaded characters are derived from authenticated data. The null character is represented as 1190
<null> 1191
 1192
020417113943423630413030303930353238<null> 1193

 1194
For the reverse transformation, a client would derive the same numeric values shown in 3a, and store 1195
them to the tape's KAD. But their storage locations within the KAD now differs (see 3c). The right-most 24 1196
characters from the text string in 3b are used to derive the 12-byte authenticated KAD. The remaining 1197
characters are used to fill the 32-byte unauthenticated KAD. 1198
 1199

Example 3c. Hexadecimal numeric data from a tape's KAD. 1200
Shaded data is authenticated. 1201
 1202
02 04 17 11 39 43 42 36 30 41 30 30 30 39 30 35 1203
32 38 1204

3.30.1.6 Backward-compatibility assessment 1205

Where all the following conditions exist, a non-KMIP solution may encounter compatibility issues during 1206
the Read and Appended Write use cases. 1207

1. The tape format supports authenticated KAD, but the non-KMIP solution does not use, or only 1208
partially uses, the authenticated KAD field. 1209

2. The non-KMIP solution is sensitive to data position within the combined KAD. 1210

3. The media was written in a KMIP environment, using this method, then moved to the non-KMIP 1211
environment. 1212

3.31 Revocation Reason Codes 1213

The enumerations for the Revocation Reason attribute specified in KMIP (see table 9.1.3.2.17 in [KMIP-1214
Spec]) are aligned with the Reason Code specified in X.509 and referenced in RFC 5280 with the 1215
following exceptions. The certificateHold and removeFromCRL reason codes have been excluded from 1216
[KMIP-Spec], since this version of KMIP does not support certificate suspension (putting a certificate 1217
hold) or unsuspension (removing a certificate from hold). The aaCompromise reason code has been 1218
excluded from [KMIP-Spec] since it only applies to attribute certificates, and, at this point of time, attribute 1219
certificates are considered out-of-scope for [KMIP-Spec]. The priviledgeWithdrawn reason code is 1220
included in [KMIP-Spec] since it may be used for either attribute or public key certificates. In the context 1221
of its use within KMIP it is assumed to only apply to public key certificates. 1222

3.32 Certificate Renewal, Update, and Re-key 1223

The process of generating a new certificate to replace an existing certificate may be referred to by 1224
multiple terms, based upon what data within the certificate is changed when the new certificate is created. 1225
In all situations, the new certificate includes a new serial number and new validity dates. [KMIP-Spec] 1226
uses the following terminology which is aligned with the definitions found in IETF RFCs [RFC3647]3647 1227
and [RFC4949]4949: 1228

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 36 of 46

• Certificate Renewal: The issuance of a new certificate to the subject without changing the subject 1229
public key or other information (except the serial number and certificate validity dates) in the 1230
certificate. 1231

• Certificate Update: The issuance of a new certificate, due to changes in the information in the 1232
certificate other than the subject public key. 1233

• Certificate Rekey: The generation of a new key pair for the subject and the issuance of a new 1234
certificate that certifies the new public key. 1235

The current KMIP Specification supports certificate renewals using the Re-Certify operation and certificate 1236
updates using the Certify operation. Support for certificate rekey is not currently supported by KMIP, since 1237
certificate rekey requires the ability to rekey an asymmetric key pair a capability not currently supported 1238
by KMIP. Support for rekey of asymmetric key pairs, along with certificate rekey, may be considered for a 1239
future KMIP release. 1240

3.33 Key Encoding 1241

Two parties receiving the same key as a Key BYTE STRING make use of the key in exactly the same 1242
way in order to interoperate. To ensure that, it is necessary to define a correspondence between the 1243
abstract syntax of Key and the notation in the standard algorithm description that defines how the key is 1244
used. The next sections establish that correspondence for the algorithms AES [FIPS197] and Triple-DES 1245
[SP800-67][SP800-67]. 1246

3.33.1 AES Key Encoding 1247

[FIPS197] section 5.2, titled Key Expansion, uses the input key as an array of bytes indexed starting at 0. 1248
The first byte of the Key becomes the key byte in AES that is labeled index 0 in [FIPS197] and the other 1249
key bytes follow in index order. 1250
Proper parsing and key load of the contents of the Key for AES is determined by using the following Key 1251
byte string to generate and match the key expansion test vectors in [FIPS197] Appendix A for the 128-bit 1252
(16 byte) AES Cipher Key: 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C. 1253

3.33.2 Triple-DES Key Encoding 1254

A Triple-DES key consists of three keys for the cryptographic engine (Key1, Key2, and Key3) that are 1255
each 64 bits (even though only 56 are used); the three keys are also referred to as a key bundle (KEY) 1256
[SP800-67][SP800-67]. A key bundle may employ either two or three mutually independent keys. When 1257
only two are employed (called two-key Triple-DES), then Key1 = Key3. 1258
Each key in a Triple-DES key bundle is expanded into a key schedule according to a procedure defined in 1259
[SP800-67][SP800-67] Appendix A. That procedure numbers the bits in the key from 1 to 64, with 1260
number 1 being the left-most, or most significant bit. The first byte of the Key is bits 1 through 8 of Key1, 1261
with bit 1 being the most significant bit. The second byte of the Key is bits 9 through 16 of Key1, and so 1262
forth, so that the last byte of the KEY is bits 57 through 64 of Key3 (or Key2 for two-key Triple-DES). 1263
Proper parsing and key load of the contents of Key for Triple-DES is determined by using the following 1264
Key byte string to generate and match the key expansion test vectors in [SP800-67][SP800-67] Appendix 1265
B for the key bundle: 1266
Key1 = 0123456789ABCDEF 1267
Key2 = 23456789ABCDEF01 1268
Key3 = 456789ABCDEF0123 1269

3.34 Using the Same Asymmetric Key Pair in Multiple Algorithms 1270

There are mathematical relationships between certain asymmetric cryptographic algorithms such as the 1271
Digital Signature Algorithm (DSA) and Diffie-Hellman (DH) and their elliptic curve equivalents ECDSA and 1272
ECDH that allow the same asymmetric key pair to be used in both algorithms. In addition, one will notice 1273
overlaps in the key format used to represent the asymmetric key pair for each algorithm type. 1274

Formatted: Ref term, Font: Not Bold, English
(U.S.)

Formatted: Ref term, Font: Not Bold, English
(U.S.)

Formatted: Ref term, Font: Not Bold, English
(U.S.)

Formatted: Ref term, Font: Not Bold, English
(U.S.)

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 37 of 46

Even though a single key pair may be used in multiple algorithms, the KMIP Specification has chosen to 1275
specify separate key formats for representing the asymmetric key pair for use in each algorithm. This 1276
approach keeps KMIP in line with the reference standards (e.g., NIST FIPS 186-3 [FIPS186-3], ANSI 1277
X9.42 [X9.42], etc) from which the key formats for DSA, DH, ECDSA, etc. are obtained and the best 1278
practice documents (e.g., NIST SP800-57 part 1 [SP800-57-1], NIST SP800-56A [SP800-56A], etc) 1279
which recommend that a key pair only be used for one purpose. 1280

Formatted: Indent: Left: 0 pt, First line: 0 pt,
Don't adjust space between Latin and Asian text

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 38 of 46

4 Deferred KMIP Functionality 1281

The KMIP Specification is currently missing items that have been judged candidates for future inclusion in 1282
the specification. These items currently include: 1283

• Registration of Clients. This would allow in-band registration and management of clients, which 1284
currently may only be registered and/or managed using off-line mechanisms. 1285

• Client-requested specification of additional clients that are allowed to use a key. This requires 1286
coordinated identities between the client and server, and as such, is deferred until registration of 1287
clients is addressed. 1288

• Registration of Notifications. This would allow clients to specify, using an in-band mechanism, 1289
information and events that they wish to be notified of, and what mechanisms should be used for 1290
such notifications, possibly including the configuration of pushed cryptographic material. This 1291
functionality would assume the Registration of Clients as a prerequisite. 1292

• Key Migration. This would standardize the migration of keys from one HSM to another, using 1293
mechanisms already in the protocol or ones added for this purpose. 1294

• Server to Server key management. This would extend the protocol to support communication 1295
between key management servers in different key management domains, for purposes of 1296
exporting and importing cryptographic material and potentially policy information. 1297

• Multiple derived keys. This would allow the creation of multiple derived keys from one or more 1298
input keys. Note, however, that the current version of KMIP provides the capability to derive 1299
multiple keys and initialization vectors by creating a Secret Data object and specifying a 1300
cryptographic length equal to the total length of the derived objects. 1301

• XML encoding. Expression of KMIP in XML rather than in tag/type/length/value may be 1302
considered for the future. 1303

• Specification of Mask Generation Function. KMIP does not currently allow clients to specify the 1304
Mask Generation Function and assumes that encryption or signature schemes, such as OAEP or 1305
PSS, use MGF1 with the hash function as specified in the Cryptographic Parameters attribute. 1306
Client specification of MGFs may be considered for the future. 1307

• Certificate creation without client-provided Certificate Request. This would allow clients to request 1308
the server to perform the Certify or Re-certify operation from the specified key pair IDs without 1309
providing a Certificate Request. 1310

• Server monitoring of client status. This would enable the transfer of information about the client 1311
and its cryptographic module to the server. This information would enable the server to generate 1312
alarms and/or disallow requests from a client running component versions with known 1313
vulnerabilities. 1314

• Symmetric key pairs. Only a subset of the cryptographic usage bits of the Cryptographic Usage 1315
Mask attribute may be permitted for keys distributed to a particular client. KMIP does not currently 1316
address how to securely assign and determine the applicable cryptographic usage for a client. 1317

• Hardware-protected attribute. This attribute would allow clients and servers to determine if a key 1318
may only be processed inside a secure cryptographic device, such as an HSM. If this attribute is 1319
set, the key may only exist in cleartext within a secure hardware device, and all security-relevant 1320
attributes are bound to it in such a way that they may not be modified outside of such a secure 1321
device. 1322

• Alternative profiles for key establishment. Less capable end-clients may not be able to support 1323
TLS and should use a proxy to communicate with the key management system. The KMIP 1324
protocol does not currently support alternative profiles, nor does it allow end-clients relying on the 1325
proxy model to securely establish a key with the server. 1326

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 39 of 46

• Attribute mutation. The possibility for the server to use attribute values different than requested by 1327
the client if these values are not suitable for the server, and return these values in the response, 1328
instead of failing the request. 1329

• Cryptographic Domain Parameters. KMIP allows a limited number of parameters to be specified 1330
during a Create Key Pair operation. Additional parameters may be considered for the future. 1331

• Re-key support for other cryptographic objects. The Re-key operation is currently restricted to 1332
symmetric keys. Applying Re-key to other cryptographic objects, such as asymmetric keys and 1333
certificates, may be considered for the future. 1334

• Certificate Suspension/Unsuspension. KMIP does not currently support certificate suspension 1335
(putting a certificate on hold) or unsuspension (removing a certificate from hold). Adding support 1336
for certificate suspension/unsuspension into KMIP may be considered for the future. 1337

• Namespace registration. Establishing a registry for namespaces may be considered for the 1338
future. 1339

• Registering extensions to KMIP enumerations. Establishing a registry for extensions to defined 1340
KMIP enumerations, such as in support of profiles specific to IEEE P1619.3 or other 1341
organizations, may be considered for the future. 1342

In addition to the functionality listed above, the KMIP TC is interested in establishing a C&A (certification 1343
and accreditation) process for independent validation of claims of KMIP conformance. Defining and 1344
establishing this process is a candidate for work by the KMIP TC after V1.0. 1345

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 40 of 46

5 Implementation Conformance 1346

This document is intended to be informational only and as such has no conformance clauses. The 1347
conformance requirements for the KMIP Specificationspecification can be found in the "KMIP 1348
Specification" document itself, at the URL noted on the cover page of this document. 1349

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 41 of 46

A. Acronyms 1350

The following abbreviations and acronyms are used in this document: 1351

3DES - Triple Data Encryption Standard specified in ANSI X9.52 1352

AES - Advanced Encryption Standard specified in FIPS 197 1353

ANSI - American National Standards Institute 1354

ARQC - Authorization Request Cryptogram 1355

ASCII - American Standard Code for Information Interchange 1356

CA - Certification Authority 1357

CBC - Cipher Block Chaining specified in NIST SP 800-38A 1358

CMC - Certificate Management Messages over CMS specified in RFC 5275 1359

CMP - Certificate Management Protocol specified in RFC 4210 1360

CRL - Certificate Revocation List specified in RFC 5280 1361

CRMF - Certificate Request Message Format specified in RFC 4211 1362

CVC - Card Verification Code 1363

DES - Data Encryption Standard specified in FIPS 46-3 1364

DEK - Data Encryption Key 1365

DH - Diffie-Hellman specified in ANSI X9.42 1366

FIPS - Federal Information Processing Standard 1367

GCM - Galois/Counter Mode specified in NIST SP 800-38D 1368

HMAC - Keyed-Hash Message Authentication Code specified in FIPS 198-1 1369

HSM - Hardware Security Module 1370

HTTP - Hyper Text Transfer Protocol 1371

HTTP(S) - Hyper Text Transfer Protocol (Secure socket) 1372

ID - Identification 1373

IP - Internet Protocol 1374

IPSec - Internet Protocol Security 1375

JKS - Java Key Store 1376

KEK - Key Encryption Key 1377

KMIP - Key Management Interoperability Protocol 1378

LTO4 - Linear Tape-Open 4 1379

MAC - Message Authentication Code 1380

MD5 - Message Digest 5 Algorithm specified in RFC 1321 1381

MGF - Mask Generation Function 1382

NIST - National Institute of Standards and Technology 1383

OAEP - Optimal Asymmetric Encryption Padding specified in PKCS#1 1384

PEM - Privacy Enhanced Mail specified in RFC 1421 1385

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 42 of 46

PGP - Pretty Good Privacy specified in RFC 1991 1386

PKCS - Public-Key Cryptography Standards 1387

POP - Proof of Possession 1388

POSIX - Portable Operating System Interface 1389

PSS - Probabilistic Signature Scheme specified in PKCS#1 1390

RACF - Remote Access Control Facility 1391

RSA - Rivest, Shamir, Adelman (an algorithm) 1392

SHA - Secure Hash Algorithm specified in FIPS 180-2 1393

SP - Special Publication 1394

SSL - Secure Sockets Layer 1395

S/MIME - Secure/Multipurpose Internet Mail Extensions 1396

TCP - Transport Control Protocol 1397

TLS - Transport Layer Security 1398

TTLV - Tag, Type, Length, Value 1399

URI - Uniform Resource Identifier 1400

X.509 - Public Key Certificate specified in RFC 5280 1401

XML - Extensible Markup Language 1402

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 43 of 46

B. Acknowledgements 1403

The following individuals have participated in the creation of this specification and are gratefully 1404
acknowledged: 1405

Original Authors of the initial contribution: 1406
David Babcock, HP 1407
Steven Bade, IBM 1408
Paolo Bezoari, NetApp 1409
Mathias Björkqvist, IBM 1410
Bruce Brinson, EMC 1411
Christian Cachin, IBM 1412
Tony Crossman, Thales/nCipher 1413
Stan Feather, HP 1414
Indra Fitzgerald, HP 1415
Judy Furlong, EMC 1416
Jon Geater, Thales/nCipher 1417
Bob Griffin, EMC 1418
Robert Haas, IBM 1419
Timothy Hahn, IBM 1420
Jack Harwood, EMC 1421
Walt Hubis, LSI 1422
Glen Jaquette, IBM 1423
Jeff Kravitz, IBM 1424
Michael McIntosh, IBM 1425
Brian Metzger, HP 1426
Anthony Nadalin, IBM 1427
Elaine Palmer, IBM 1428
Joe Pato, HP 1429
René Pawlitzek, IBM 1430
Subhash Sankuratripati, NetApp 1431
Mark Schiller, HP 1432
Martin Skagen, Brocade 1433
Marcus Streets, Thales/nCipher 1434
John Tattan, EMC 1435
Karla Thomas, Brocade 1436
Marko Vukolić , IBM 1437
Steve Wierenga, HP 1438

Participants: 1439
Mike Allen, PGP Corporation 1440
Gordon Arnold, IBM 1441
Todd Arnold, IBM 1442
Matthew Ball, Oracle CorporationSun Microsystems 1443
Elaine Barker, NIST 1444
Peter Bartok, Venafi, Inc. 1445
Mathias BjörkqvistBjorkqvist, IBM 1446
Kevin Bocek, Thales e-Security 1447
Kelley Burgin, National Security Agency 1448
Jon Callas, PGP Corporation 1449
Tom Clifford, Symantec Corp. 1450
Graydon Dodson, Lexmark International Inc. 1451
Chris Dunn, SafeNet, Inc. 1452
Paul Earsy, SafeNet, Inc. 1453
Stan Feather, Hewlett-PackardHP 1454
Indra Fitzgerald, Hewlett-PackardHP 1455

Formatted: Check spelling and grammar

Formatted: Body Text, Indent: First line: 36
pt

Formatted: Check spelling and grammar

Formatted: Check spelling and grammar

Formatted: Check spelling and grammar

Formatted: Check spelling and grammar

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 44 of 46

Alan Frindell, SafeNet, Inc. 1456
Judith Furlong, EMC Corporation 1457
Jonathan Geater, Thales e-Security 1458
Robert Griffin, EMC Corporation 1459
Robert Haas, IBM 1460
Thomas Hardjono, M.I.T. 1461
Kurt Heberlein, 3PAR, Inc. 1462
Marc Hocking, BeCrypt Ltd. 1463
Larry Hofer, Emulex Corporation 1464
Brandon Hoff, Emulex Corporation 1465
Walt Hubis, LSI Corporation 1466
Wyllys Ingersoll, Oracle CorporationSun Microsystems 1467
Jay Jacobs, Target Corporation 1468
Glen Jaquette, IBM 1469
Scott Kipp, Brocade Communications Systems, Inc. 1470
David Lawson, Emulex Corporation 1471
Hal Lockhart, Oracle Corporation 1472
Robert Lockhart, Thales e-Security 1473
Shyam Mankala, EMC Corporation 1474
Upendra Mardikar, PayPal Inc. 1475
Marc Massar, Individual 1476
Don McAlister, Associate 1477
Hyrum Mills, Mitre Corporation 1478
Bob Nixon, Emulex Corporation 1479
Landon Curt Noll, Cisco Systems, Inc. 1480
René Pawlitzek, IBM 1481
Rob Philpott, EMC Corporation 1482
Scott Rea, Individual 1483
Bruce Rich, IBM 1484
Scott Rotondo, Oracle CorporationSun Microsystems 1485
Saikat Saha, Vormetric, Inc. 1486
Anil Saldhana, Red Hat 1487
Subhash Sankuratripati, NetApp 1488
Mark Schiller, Hewlett-PackardHP 1489
Jitendra Singh, Brocade Communications Systems, Inc. 1490
Servesh Singh, EMC Corporation 1491
Terence Spies, Voltage Security 1492
Sandy Stewart, Oracle CorporationSun Microsystems 1493
Marcus Streets, Thales e-Security 1494
Brett Thompson, SafeNet, Inc. 1495
Benjamin Tomhave, Individual 1496
Sean Turner, IECA, Inc. 1497
Paul Turner, Venafi, Inc. 1498
Marko VukolićVukolic, IBM 1499
Rod Wideman, Quantum Corporation 1500
Steven Wierenga, Hewlett-PackardHP 1501
Peter Yee, EMC Corporation 1502
Krishna Yellepeddy, IBM 1503
Peter Zelechoski, Election Systems & SoftwareAssociate 1504
Grace Zhang, Skyworth TTG Holdings Limited 1505

Formatted: Check spelling and grammar

Formatted: Body Text, Indent: First line: 36
pt

Formatted: Check spelling and grammar

Formatted: Check spelling and grammar

Formatted: Body Text, Indent: First line: 36
pt

Formatted: Check spelling and grammar

Formatted: Body Text, Indent: First line: 36
pt

Formatted: Check spelling and grammar

Formatted: Body Text, Indent: First line: 36
pt

Formatted: Check spelling and grammar

Formatted: German (Switzerland), Check
spelling and grammar

Formatted: Check spelling and grammar

Formatted: Check spelling and grammar

Formatted: Body Text, Indent: First line: 36
pt

Formatted: Check spelling and grammar

Formatted: Check spelling and grammar

Formatted: Body Text, Indent: First line: 36
pt

Formatted: Check spelling and grammar

Formatted: Check spelling and grammar

Formatted: Body Text, Indent: First line: 36
pt

Formatted: Check spelling and grammar

Formatted: Check spelling and grammar

Formatted: Check spelling and grammar

Formatted: Check spelling and grammar

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 45 of 46

C. Revision History 1506

Revision Date Editor Changes Made

ed-0.98 2009-04-29 Indra Fitzgerald Initial conversion of input document to OASIS format.

ed-0.98 2009-07-28 Indra Fitzgerald Added clarifications, examples, and deferred items.

ed-0.98 2009-09-08 Indra Fitzgerald Added approved proposals and incorporated Elaine
Barker’s comments.

ed-0.98 2009-09-23 Indra Fitzgerald Removed KMIP Profiles section and incorporated the
Interoperable Key Naming for Tape proposal.

ed-0.98 2009-09-24 Indra Fitzgerald Removed the Conformance section; added additional
Certificate Request and POP text to Certify and Re-certify;
added the Revocation Reason Codes section.

draft-01 2009-10-07 Indra Fitzgerald Incorporated the Certificate Renewal, Update, Re-key
proposal, the Key Encoding proposal; removed normative
words “must”, “shall”, “required”, “will”, and “can”; added
Create Key Pair example; updated the references and
acronyms list; incorporated comments from RobertH and
SubhashS; updated the Authentication section; added
minor edits and clarifications.

draft-02 2009-10-09 Indra Fitzgerald Incorporated Rod Wideman’s comments on the language.
Changed the heading indentation, paragraph style, and list
styles according to the OASIS template guidelines. Added
additional references. Replaced the TBDs. Added a use-
case for registering a wrapped key as an opaque
cryptographic object.

draft-03 2009-10-21 Indra Fitzgerald Added the list of participants to Appendix B. Clarified the
Authentication section (section 3.1) and added examples.
Modified the title page. Performed minor editorial changes.

draft-04 2009-11-06 Indra Fitzgerald Incorporated Elaine’s comments.
This is the tentative revision for public review.

draft-05 2009-11-09 Indra Fitzgerald Minor edits to the reference sections.

draft-06 2010-02-24 Indra Fitzgerald Addressed public review comments. Clarified how
templates work (section 3.6). Added Judy Furlong’s
proposal on using the same asymmetric key pair in
multiple algorithms (section 3.34).

draft-07 2010-03-04 Indra Fitzgerald Clarified that the Destroy operation cannot destroy Active
objects (section 3.5).

draft-08 2010-03-17 Indra Fitzgerald Added the Server Policy section (2.5). Added the
Credential section (3.1.1) to the Authentication section.
Replaced SSL/TLS with TLS. Updated the participant list.
Other minor edits.

draft-09 2010-03-18 Indra Fitzgerald Renamed Role Type to Key Role Type. Updated the
participant list.

kmip-ug-1.0-cd-09 18 March 201005 5 November 2009
Copyright © OASIS® 2010.2009. All Rights Reserved. Page 46 of 46

 1507

Page 4: [1] Change Unknown

Field Code Changed

Page 4: [1] Change Unknown

Field Code Changed

Page 4: [2] Change Unknown

Field Code Changed

Page 4: [2] Change Unknown

Field Code Changed

Page 4: [3] Change Unknown

Field Code Changed

Page 4: [3] Change Unknown

Field Code Changed

Page 4: [4] Change Unknown

Field Code Changed

Page 4: [4] Change Unknown

Field Code Changed

Page 4: [5] Change Unknown

Field Code Changed

Page 4: [5] Change Unknown

Field Code Changed

Page 4: [6] Change Unknown

Field Code Changed

Page 4: [6] Change Unknown

Field Code Changed

Page 4: [7] Change Unknown

Field Code Changed

Page 4: [7] Change Unknown

Field Code Changed

Page 4: [8] Change Unknown

Field Code Changed

Page 4: [8] Change Unknown

Field Code Changed

Page 4: [9] Change Unknown

Field Code Changed

Page 4: [10] Change Unknown

Field Code Changed

Page 4: [10] Change Unknown

Field Code Changed

Page 4: [11] Change Unknown

Field Code Changed

Page 4: [11] Change Unknown

Field Code Changed

Page 4: [12] Change Unknown

Field Code Changed

Page 4: [12] Change Unknown

Field Code Changed

Page 4: [13] Change Unknown

Field Code Changed

Page 4: [13] Change Unknown

Field Code Changed

Page 4: [14] Change Unknown

Field Code Changed

Page 4: [14] Change Unknown

Field Code Changed

Page 4: [15] Change Unknown

Field Code Changed

Page 4: [15] Change Unknown

Field Code Changed

Page 4: [16] Change Unknown

Field Code Changed

Page 4: [16] Change Unknown

Field Code Changed

Page 4: [17] Change Unknown

Field Code Changed

Field Code Changed

Page 4: [18] Change Unknown

Field Code Changed

Page 4: [18] Change Unknown

Field Code Changed

Page 4: [19] Change Unknown

Field Code Changed

Page 4: [19] Change Unknown

Field Code Changed

Page 4: [20] Change Unknown

Field Code Changed

Page 4: [20] Change Unknown

Field Code Changed

Page 4: [21] Change Unknown

Field Code Changed

Page 4: [21] Change Unknown

Field Code Changed

Page 4: [22] Change Unknown

Field Code Changed

Page 4: [22] Change Unknown

Field Code Changed

Page 4: [23] Change Unknown

Field Code Changed

Page 4: [23] Change Unknown

Field Code Changed

Page 4: [24] Change Unknown

Field Code Changed

Page 4: [24] Change Unknown

Field Code Changed

Page 4: [25] Change Unknown

Field Code Changed

Page 4: [25] Change Unknown

Page 4: [26] Change Unknown

Field Code Changed

Page 4: [26] Change Unknown

Field Code Changed

Page 4: [27] Change Unknown

Field Code Changed

Page 4: [27] Change Unknown

Field Code Changed

Page 4: [28] Change Unknown

Field Code Changed

Page 4: [28] Change Unknown

Field Code Changed

Page 4: [29] Change Unknown

Field Code Changed

Page 4: [29] Change Unknown

Field Code Changed

Page 4: [30] Change Unknown

Field Code Changed

Page 4: [30] Change Unknown

Field Code Changed

Page 4: [31] Change Unknown

Field Code Changed

Page 4: [31] Change Unknown

Field Code Changed

Page 4: [32] Change Unknown

Field Code Changed

Page 4: [32] Change Unknown

Field Code Changed

Page 4: [33] Change Unknown

Field Code Changed

Page 4: [33] Change Unknown

Field Code Changed

Page 4: [34] Change Unknown

Field Code Changed

Page 4: [35] Change Unknown

Field Code Changed

Page 4: [35] Change Unknown

Field Code Changed

Page 4: [36] Change Unknown

Field Code Changed

Page 4: [36] Change Unknown

Field Code Changed

Page 4: [37] Change Unknown

Field Code Changed

Page 4: [37] Change Unknown

Field Code Changed

Page 4: [38] Change Unknown

Field Code Changed

Page 4: [38] Change Unknown

Field Code Changed

Page 4: [39] Change Unknown

Field Code Changed

Page 4: [39] Change Unknown

Field Code Changed

Page 4: [40] Change Unknown

Field Code Changed

Page 4: [40] Change Unknown

Field Code Changed

Page 4: [41] Change Unknown

Field Code Changed

Page 4: [41] Change Unknown

Field Code Changed

Page 4: [42] Change Unknown

Field Code Changed

Field Code Changed

Page 4: [43] Change Unknown

Field Code Changed

Page 4: [43] Change Unknown

Field Code Changed

Page 4: [44] Change Unknown

Field Code Changed

Page 4: [44] Change Unknown

Field Code Changed

Page 4: [45] Change Unknown

Field Code Changed

Page 4: [45] Change Unknown

Field Code Changed

Page 4: [46] Change Unknown

Field Code Changed

Page 4: [46] Change Unknown

Field Code Changed

Page 4: [47] Change Unknown

Field Code Changed

Page 4: [47] Change Unknown

Field Code Changed

Page 4: [48] Change Unknown

Field Code Changed

Page 4: [48] Change Unknown

Field Code Changed

Page 4: [49] Change Unknown

Field Code Changed

Page 4: [49] Change Unknown

Field Code Changed

Page 4: [50] Change Unknown

Field Code Changed

Page 4: [50] Change Unknown

Page 4: [51] Change Unknown

Field Code Changed

Page 4: [51] Change Unknown

Field Code Changed

Page 6: [52] Formatted fitzgeri 4/8/2010 9:47:00 AM

TOC 3,toc3, Don't adjust space between Latin and Asian text, Tab stops: 72 pt, Left + Not at 24 pt

Page 6: [53] Formatted fitzgeri 4/8/2010 9:47:00 AM

TOC 2,toc2, Don't adjust space between Latin and Asian text, Tab stops: 48 pt, Left + Not at 24 pt

	1 Introduction
	1.1 Terminology
	1.2 Normative References
	1.3 Non-normative References

	2 Assumptions
	2.1 Island of Trust
	2.2 Message Security
	2.3 State-less Server
	2.4 Extensible Protocol
	2.5 Server Policy
	2.6 Support for Cryptographic Objects
	2.7 Client-Server Message-based Model
	2.8 Synchronous and Asynchronous Messages
	2.9 Support for “Intelligent Clients” and “Key Using Devices“
	2.10 Batched Requests and Responses
	2.11 Reliable Message Delivery
	2.12 Large Responses
	2.13 Key Life-cycle and Key State

	3 Usage Guidelines
	3.1 Authentication
	3.1.1 Credential

	3.2 Authorization for Revoke, Recover, Destroy and Archive Operations
	3.3 Using Notify and Put Operations
	3.4 Usage Allocation
	3.5 Key State and Times
	3.6 Template
	3.6.1 Template Usage Examples
	3.6.1.1 Example of Registering a Template
	3.6.1.2 Example of Creating a Symmetric Key using a Template

	3.7 Archive Operations
	3.8 Message Extensions
	3.9 Unique Identifiers
	3.10 Result Message Text
	3.11 Query
	3.12 Canceling Asynchronous Operations
	3.13 Multi-instance Hash
	3.14 Returning Related Objects
	3.15 Reducing Multiple Requests through the Use of Batch
	3.16 Maximum Message Size
	3.17 Using Offset in Re-key and Re-certify Operations
	3.18 Locate Queries
	3.19 ID Placeholder
	3.20 Key Block
	3.21 Using Wrapped Keys with KMIP
	3.21.1 Encrypt-only Example with a Symmetric Key as an Encryption Key for a Get Request and Response
	3.21.2 Encrypt-only Example with a Symmetric Key as an Encryption Key for a Register Request and Response
	3.21.3 Encrypt-only Example with an Asymmetric Key as an Encryption Key for a Get Request and Response
	3.21.4 MAC-only Example with an HMAC Key as an Authentication Key for a Get Request and Response
	3.21.5 Registering a Wrapped Key as an Opaque Cryptographic Object

	3.22 Object Group
	3.23 Certify and Re-certify
	3.24 Specifying Attributes during a Create Key Pair Operation
	3.24.1 Example of Specifying Attributes during the Create Key Pair Operation

	3.25 Registering a Key Pair
	3.26 Non-Cryptographic Objects
	3.27 Asymmetric Concepts with Symmetric Keys
	3.28 Application Specific Information
	3.29 Mutating Attributes
	3.30 Interoperable Key Naming for Tape
	3.30.1 Native Tape Encryption by a KMIP Client
	3.30.1.1 Method Overview
	3.30.1.2 Definitions
	3.30.1.3 Algorithm 1. Numeric to text direction (tape format’s KAD to KMIP ASI)
	3.30.1.4 Algorithm 2. Text to numeric direction (KMIP ASI to tape format’s KAD)
	3.30.1.5 Example Output
	3.30.1.6 Backward-compatibility assessment

	3.31 Revocation Reason Codes
	3.32 Certificate Renewal, Update, and Re-key
	3.33 Key Encoding
	3.33.1 AES Key Encoding
	3.33.2 Triple-DES Key Encoding

	3.34 Using the Same Asymmetric Key Pair in Multiple Algorithms

	4 Deferred KMIP Functionality
	5 Implementation Conformance

