
Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 1 of 80

Identity Metasystem Interoperability
Version 1.0

OASIS Standard

1 July 2009

Specification URIs:
This Version:

http://docs.oasis-open.org/imi/identity/v1.0/os/identity-1.0-spec-os.html
http://docs.oasis-open.org/imi/identity/v1.0/os/identity-1.0-spec-os.doc (Authoritative)
http://docs.oasis-open.org/imi/identity/v1.0/os/identity-1.0-spec-os.pdf

Previous Version:
http://docs.oasis-open.org/imi/identity/v1.0/cs/identity-1.0-spec-cs-01.html
http://docs.oasis-open.org/imi/identity/v1.0/cs/identity-1.0-spec-cs-01.doc (Authoritative)
http://docs.oasis-open.org/imi/identity/v1.0/cs/identity-1.0-spec-cs-01.pdf

Latest Version:
http://docs.oasis-open.org/imi/identity/v1.0/identity.html
http://docs.oasis-open.org/imi/identity/v1.0/identity.doc
http://docs.oasis-open.org/imi/identity/v1.0/identity.pdf

Technical Committee:
OASIS Identity Metasystem Interoperability (IMI) TC

Chair(s):
Marc Goodner
Anthony Nadalin

Editor(s):

Michael B. Jones
Michael McIntosh

Related work:
This specification replaces or supersedes:

 None

This specification is related to:

 WS-Trust

 WS-SecurityPolicy

 WS-Addressing

Declared XML Namespace(s):

http://docs.oasis-open.org/imi/ns/identity-200810
http://schemas.xmlsoap.org/ws/2005/05/identity
http://schemas.xmlsoap.org/ws/2006/02/addressingidentity
http://schemas.xmlsoap.org/ws/2007/01/identity

Abstract:
This document is intended for developers and architects who wish to design identity systems and
applications that interoperate using the Identity Metasystem Interoperability specification.

http://docs.oasis-open.org/imi/identity/v1.0/os/identity-1.0-spec-os.html
http://docs.oasis-open.org/imi/identity/v1.0/os/identity-1.0-spec-os.doc
http://docs.oasis-open.org/imi/identity/v1.0/os/identity-1.0-spec-os.pdf
http://docs.oasis-open.org/imi/identity/v1.0/cs/identity-1.0-spec-cs-01.html
http://docs.oasis-open.org/imi/identity/v1.0/cs/identity-1.0-spec-cs-01.doc
http://docs.oasis-open.org/imi/identity/v1.0/cs/identity-1.0-spec-cs-01.pdf
http://docs.oasis-open.org/imi/identity/v1.0/identity.html
http://docs.oasis-open.org/imi/identity/v1.0/identity.doc
http://docs.oasis-open.org/imi/identity/v1.0/identity.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=imi
http://docs.oasis-open.org/imi/ns/identity-200810
http://schemas.xmlsoap.org/ws/2005/05/identity
http://schemas.xmlsoap.org/ws/2006/02/addressingidentity
http://schemas.xmlsoap.org/ws/2007/01/identity

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 2 of 80

An Identity Selector and the associated identity system components allow users to manage their
Digital Identities from different Identity Providers, and employ them in various contexts to access
online services. In this specification, identities are represented to users as “Information Cards”.
Information Cards can be used both at applications hosted on Web sites accessed through Web
browsers and rich client applications directly employing Web services.

This specification also provides a related mechanism to describe security-verifiable identity for
endpoints by leveraging extensibility of the WS-Addressing specification. This is achieved via
XML [XML 1.0] elements for identity provided as part of WS-Addressing Endpoint References.
This mechanism enables messaging systems to support multiple trust models across networks
that include processing nodes such as endpoint managers, firewalls, and gateways in a transport-
neutral manner.

Status:

This document was last revised or approved by the Identity Metasystem Interoperability TC on
the above date. The level of approval is also listed above. Check the “Latest Version” or “Latest
Approved Version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee‟s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee‟s web page at http://www.oasis-
open.org/committees/imi/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/imi/ipr.php.

The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/imi/.

http://www.oasis-open.org/committees/imi/
http://www.oasis-open.org/committees/imi/
http://www.oasis-open.org/committees/imi/ipr.php
http://www.oasis-open.org/committees/imi/ipr.php
http://www.oasis-open.org/committees/imi/
http://www.oasis-open.org/committees/imi/

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 3 of 80

Notices

Copyright © OASIS® 2008-2009. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of
OASIS, the owner and developer of this specification, and should be used only to refer to the organization
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications,
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/who/trademark.php

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 4 of 80

Table of Contents

1 Introduction ... 7

1.1 Notational Conventions ... 7

1.2 Namespaces ... 7

1.3 Schema .. 9

1.4 Terminology .. 9

1.5 Normative References .. 10

1.6 Non-Normative References .. 12

2 Relying Party Interactions... 13

2.1 Expressing Token Requirements of Relying Party .. 13

2.1.1 Issuer of Tokens .. 13

2.1.2 Type of Proof Key in Issued Tokens .. 14

2.1.3 Claims in Issued Tokens ... 14

2.2 Expressing Privacy Policy of Relying Party .. 15

2.3 Employing Relying Party STSs ... 17

3 Identity Provider Interactions .. 17

3.1 Information Card ... 17

3.1.1 Information Card Format ... 17

3.1.2 Issuing Information Cards .. 25

3.2 Identity Provider Policy ... 27

3.2.1 Require Information Card Provisioning .. 27

3.2.2 Policy Metadata Location .. 27

3.3 Token Request and Response ... 27

3.3.1 Information Card Reference .. 28

3.3.2 Claims and Other Token Parameters .. 28

3.3.3 Token Scope ... 28

3.3.4 Client Pseudonym ... 29

3.3.5 Proof Key for Issued Token ... 30

3.3.6 Display Token .. 35

3.3.7 Token References ... 36

4 Authenticating to Identity Provider .. 36

4.1 Username and Password Credential .. 37

4.2 Kerberos v5 Credential ... 37

4.3 X.509v3 Certificate Credential .. 37

4.4 Self-issued Token Credential .. 38

5 Faults.. 38

5.1 Relying Party .. 39

5.2 Identity Provider .. 39

5.2.1 Identity Provider Custom Error Messages ... 40

6 Information Cards Transfer Format .. 41

6.1 Pre-Encryption Transfer Format ... 41

6.1.1 PIN Protected Card ... 43

6.1.2 Computing the ic:IssuerId .. 44

6.1.3 Computing the ic:IssuerName ... 45

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 5 of 80

6.1.4 Creating the ic:HashSalt .. 45

6.2 Post-Encryption Transfer Format .. 45

7 Simple Identity Provider Profile .. 47

7.1 Self-Issued Information Card .. 47

7.2 Self-Issued Token Characteristics .. 47

7.3 Self-Issued Token Encryption ... 51

7.4 Self-Issued Token Signing Key ... 52

7.4.1 Processing Rules... 53

7.5 Claim Types .. 55

7.5.1 First Name ... 55

7.5.2 Last Name ... 55

7.5.3 Email Address ... 55

7.5.4 Street Address ... 55

7.5.5 Locality Name or City .. 55

7.5.6 State or Province ... 56

7.5.7 Postal Code ... 56

7.5.8 Country .. 56

7.5.9 Primary or Home Telephone Number .. 56

7.5.10 Secondary or Work Telephone Number .. 56

7.5.11 Mobile Telephone Number .. 56

7.5.12 Date of Birth .. 57

7.5.13 Gender .. 57

7.5.14 Private Personal Identifier ... 57

7.5.15 Web Page .. 57

7.6 The PPID Claim .. 57

7.6.1 Relying Party Identifier and Relying Party PPID Seed... 58

7.6.2 PPID .. 60

7.6.3 Friendly Identifier ... 60

8 Relying Parties without Certificates .. 61

8.1 Relying Party Identifier and Relying Party PPID Seed .. 61

8.2 AppliesTo Information ... 61

8.3 Token Signing and Encryption .. 62

9 Using WS-SecurityPolicy 1.2 and WS-Trust 1.3 ... 62

9.1 Overview of Differences .. 62

9.2 Identity Selector Differences ... 62

9.3 Security Token Service Differences .. 63

10 Browser Behavior with Information Cards .. 64

10.1 Basic Protocol Flow when using an Information Card at a Web Site .. 64

10.2 Protocol Flow with Relying Party STS .. 65

10.3 User Perspective and Examples ... 66

10.4 Browser Perspective ... 67

10.5 Web Site Perspective ... 67

11 Invoking an Identity Selector from a Web Page .. 68

11.1 Syntax Alternatives: OBJECT and XHTML tags .. 68

11.1.1 OBJECT Syntax Examples .. 68

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 6 of 80

11.1.2 XHTML Syntax Example ... 69

11.2 Identity Selector Invocation Parameters ... 70

11.2.1 issuer ... 70

11.2.2 issuerPolicy ... 70

11.2.3 tokenType .. 70

11.2.4 requiredClaims .. 70

11.2.5 optionalClaims ... 70

11.2.6 privacyUrl .. 70

11.2.7 privacyVersion ... 70

11.3 Data Types for Use with Scripting ... 70

11.4 Detecting and Utilizing an Information Card-enabled Browser.. 71

11.5 Behavior within Frames .. 71

11.6 Invocation Using the Document Object Model (DOM) .. 71

11.7 Auditing, Non-Auditing, and Auditing-Optional Cards ... 71

12 Endpoint Reference wsai:Identity Property... 72

12.1 Default Value .. 72

12.2 Identity Representation ... 72

12.2.1 DNS Name .. 72

12.2.2 Service Principal Name ... 72

12.2.3 User Principal Name .. 72

12.2.4 KeyInfo .. 73

12.2.5 Security Token... 73

12.2.6 Security Token Reference ... 74

13 Security Considerations.. 75

13.1 Protection of Information Cards by Identity Selectors ... 75

13.2 Relying Parties Without Certificates .. 75

13.3 Endpoint References .. 75

14 Conformance .. 76

A. HTTPS POST Sample Contents .. 77

B. Acknowledgements .. 80

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 7 of 80

1 Introduction 1

The Identity Metasystem Interoperability specification prescribes a subset of the mechanisms defined in 2
[WS-Trust 1.2], [WS-Trust 1.3], [WS-SecurityPolicy 1.1], [WS-SecurityPolicy 1.2], and [WS-3
MetadataExchange] to facilitate the integration of Digital Identity into an interoperable token issuance and 4
consumption framework using the Information Card Model. It documents the Web interfaces utilized by 5
browsers and Web applications that utilize the Information Card Model. Finally, it extends WS-6
Addressing‟s endpoint reference by providing identity information about the endpoint that can be verified 7
through a variety of security means, such as https or the wealth of WS-Security specifications. 8

This profile constrains the schema elements/extensions used by the Information Card Model, and 9
behaviors for conforming Relying Parties, Identity Providers, and Identity Selectors. 10

1.1 Notational Conventions 11

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 12
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 13
in [RFC 2119]. 14

This specification uses the following syntax to define outlines for assertions: 15

 The syntax appears as an XML instance, but values in italics indicate data types instead of literal 16
values. 17

 Characters are appended to elements and attributes to indicate cardinality: 18

o "?" (0 or 1) 19

o "*" (0 or more) 20

o "+" (1 or more) 21

 The character "|" is used to indicate a choice between alternatives. 22

 The characters "(" and ")" are used to indicate that contained items are to be treated as a group 23
with respect to cardinality or choice. 24

 The characters "[" and "]" are used to call out references and property names. 25

 Ellipses (i.e., "...") indicate points of extensibility. Additional children and/or attributes MAY be 26
added at the indicated extension points but MUST NOT contradict the semantics of the parent 27
and/or owner, respectively. By default, if a receiver does not recognize an extension, the receiver 28
SHOULD ignore the extension; exceptions to this processing rule, if any, are clearly indicated 29
below. 30

 XML namespace prefixes (see Table 2) are used to indicate the namespace of the element being 31
defined. 32

Elements and Attributes defined by this specification are referred to in the text of this document using 33
XPath 1.0 expressions. Extensibility points are referred to using an extended version of this syntax: 34

 An element extensibility point is referred to using {any} in place of the element name. This 35
indicates that any element name can be used, from any namespace other than the namespace of 36
this specification. 37

 An attribute extensibility point is referred to using @{any} in place of the attribute name. This 38
indicates that any attribute name can be used, from any namespace other than the namespace of 39
this specification. 40

Extensibility points in the exemplar might not be described in the corresponding text. 41

1.2 Namespaces 42

Table 1 lists the XML namespaces that are used in this document. 43

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 8 of 80

Prefix XML Namespace Specification(s)

ds http://www.w3.org/2000/09/xmldsig# XML Digital Signatures

ic http://schemas.xmlsoap.org/ws/2005/05/identity This document

ic07 http://schemas.xmlsoap.org/ws/2007/01/identity Namespace for additional

elements also defined by

this document

ic08 http://docs.oasis-open.org/imi/ns/identity-200810 Namespace for new

elements defined by this

document

S May refer to either http://schemas.xmlsoap.org/soap/envelope or

http://www.w3.org/2003/05/soap-envelope since both may be

used

SOAP

S11 http://schemas.xmlsoap.org/soap/envelope SOAP 1.1 [SOAP 1.1]

S12 http://www.w3.org/2003/05/soap-envelope SOAP 1.2 [SOAP 1.2]

saml urn:oasis:names:tc:SAML:1.0:assertion SAML 1.0

sp May refer to either

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy or

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702 since

both may be used

WS-SecurityPolicy

sp11 http://schemas.xmlsoap.org/ws/2005/07/securitypolicy WS-SecurityPolicy 1.1

[WS-SecurityPolicy 1.1]

sp12 http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702 WS-SecurityPolicy 1.2

[WS-SecurityPolicy 1.2]

wsa http://www.w3.org/2005/08/addressing WS-Addressing [WS-

Addressing]

wsai http://schemas.xmlsoap.org/ws/2006/02/addressingidentity Addressing Identity

extension for WS-

Addressing also defined

by this document

wsdl May refer to either http://schemas.xmlsoap.org/wsdl/ or

http://www.w3.org/TR/wsdl20 since both may be used

Web Services Description

Language

wsdl11 http://schemas.xmlsoap.org/wsdl/ Web Services Description

Language [WSDL 1.1]

wsdl20 http://www.w3.org/TR/wsdl20 Web Services Description

Language [WSDL 2.0]

wsp http://schemas.xmlsoap.org/ws/2004/09/policy WS-Policy [WS-Policy]

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0.xsd

WS-Security Extensions

[WS-Security]

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 9 of 80

wst May refer to either http://schemas.xmlsoap.org/ws/2005/02/trust

or http://docs.oasis-open.org/ws-sx/ws-trust/200512 since both

may be used

WS-Trust

wst12 http://schemas.xmlsoap.org/ws/2005/02/trust WS-Trust 1.2 [WS-Trust

1.2]

wst13 http://docs.oasis-open.org/ws-sx/ws-trust/200512 WS-Trust 1.3 [WS-Trust

1.3]

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd

WS-SecurityUtility

wsx http://schemas.xmlsoap.org/ws/2004/09/mex WS-MetadataExchange

[WS-MetadataExchange]

xs http://www.w3.org/2001/XMLSchema XML Schema [Part 1, 2]

Note that the versions identified in the above table supersede versions identified in referenced 44
specifications. 45

1.3 Schema 46

A copy of the XML Schemas for this document can be found at: 47

http://docs.oasis-open.org/imi/identity/200810/identity.xsd 48
http://docs.oasis-open.org/imi/identity/200810/addr-identity.xsd 49
http://docs.oasis-open.org/imi/identity/200810/claims.xsd 50
http://docs.oasis-open.org/imi/identity/200810/identity2007.xsd 51

1.4 Terminology 52

The following definitions establish the terminology and usage in this document. 53

Information Card Model – The “Information Card Model” refers to the use of Information Cards 54
containing metadata for obtaining Digital Identity claims from Identity Providers and then conveying them 55
to Relying Parties under user control. 56

Information Card – An Information Card provides a visual representation of a Digital Identity for the end 57

user. Information Cards contain a reference to an IP/STS that issues Security Tokens containing the 58
Claims for that Digital Identity. 59

Digital Identity – A “Digital Identity” is a set of Claims made by one party about another party. 60

Claim – A “Claim” is a piece of information about a Subject that an Identity Provider asserts about that 61

Subject. 62

Subject – A “Subject” is an individual or entity about whom claims are made by an Identity Provider. 63

Service Requester – The term “Service Requester” means software acting on behalf of a party who 64
wants to obtain a service through a digital network. 65

Relying Party – The term “Relying Party” (RP) means a network entity providing the desired service, and 66
relying upon Digital Identity. 67

Identity Provider – The term “Identity Provider” (IP) means a network entity providing the Digital Identity 68
claims used by a Relying Party. 69

Security Token Service – The term “Security Token Service” (STS) refers to a WS-Trust endpoint. 70

Identity Provider Security Token Service – The term “Identity Provider Security Token Service” 71

(IP/STS) refers to the Security Token Service run by an Identity Provider to issue tokens. 72

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 10 of 80

Relying Party Security Token Service – The term “Relying Party Security Token Service” (RP/STS) 73
refers to a Security Token Service run by a Relying Party to accept and issue tokens. 74

Identity Selector – The term “Identity Selector” (IS) refers to a software component available to the 75
Service Requester through which the user controls and dispatches her Digital Identities. 76

Trust Identity – A trust identity is a verifiable claim about a principal (e.g. name, identity, key, group, 77

privilege, capability, etc). 78

Security Token – A security token represents a collection of claims. 79

Signed Security Token – A signed security token is a security token that is asserted and 80

cryptographically endorsed by a specific authority (e.g. an X.509 certificate, a Kerberos ticket, or a self-81

issued Information Card). 82

Unsigned Security Token – An unsigned security token is a security token that is not cryptographically 83

endorsed by a specific authority (e.g. a security token backed by shared secrets such as usernames and 84

passwords). 85

Proof-of-Possession – The proof-of-possession information is data that is used in a proof process to 86

demonstrate the sender's knowledge of information that should only be known to the claiming sender of a 87

security token. 88

Integrity – Integrity is the process by which it is guaranteed that information is not modified in transit. 89

Confidentiality – Confidentiality is the process by which data is protected such that only authorized 90

actors or security token owners can view the data 91

Digest – A digest is a cryptographic checksum of an octet stream. 92

Signature - A signature is a cryptographic binding of a proof-of-possession and a digest. This covers 93

both symmetric key-based and public key-based signatures. Consequently, non-repudiation is not always 94

achieved. 95

Certificate – Uses of the term certificate in this specification refer to X.509 certificates unless otherwise 96

qualified. Usage of certificates is dictated by the underlying protocols, e.g. HTTPS or WS-Security, except 97

where noted. 98

1.5 Normative References 99

[DOM] 100

“Document Object Model (DOM)”, November 2000. http://www.w3.org/DOM/ 101

[EV Cert] 102

CA / Browser Forum, “Guidelines for the Issuance and Management of Extended Validation 103
Certificates, Version 1.1”, April 2008. http://cabforum.org/EV_Certificate_Guidelines_V11.pdf 104

[HTTP] 105

R. Fielding et al., “IETF RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1”, June 1999. 106
http://www.ietf.org/rfc/rfc2616.txt 107

[HTTPS] 108

E. Rescorla, “RFC 2818: HTTP over TLS”, May 2000. http://www.ietf.org/rfc/rfc2818.txt 109

[RFC 1274] 110

P. Barker and S. Kille, “RFC 1274: The COSINE and Internet X.500 Schema”, November 1991. 111
http://www.ietf.org/rfc/rfc1274.txt 112

[RFC 2119] 113

S. Bradner, “RFC 2119: Key words for use in RFCs to Indicate Requirement Levels”, March 1997. 114
http://www.ietf.org/rfc/rfc2119.txt 115

http://www.w3.org/DOM/
http://cabforum.org/EV_Certificate_Guidelines_V11.pdf
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc1274.txt
http://www.ietf.org/rfc/rfc2119.txt

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 11 of 80

[RFC 2256] 116

M. Wahl, “RFC 2256: A Summary of the X.500(96) User Schema for use with LDAPv3”, 117
December 1997. http://www.ietf.org/rfc/rfc2256.txt 118

[RFC 2459] 119

R. Housley, W. Ford, W. Polk, and D. Solo, “RFC 2459: Internet X.509 Public Key Infrastructure - 120
Certificate and CRL Profile”, January 1999. http://www.ietf.org/rfc/rfc2459.txt 121

[RFC 2898] 122

B. Kaliski, “PKCS #5: Password-Based Cryptography Specification, Version 2.0”, September 123
2000. http://www.ietf.org/rfc/rfc2898.txt 124

[RFC 3066] 125

H. Alvestrand, “Tags for the Identification of Languages”, January 2001. 126
http://www.faqs.org/rfcs/rfc3066.html 127

[SOAP 1.1] 128

W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000. 129
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ 130

[SOAP 1.2] 131

M. Gudgin, et al., “SOAP Version 1.2 Part 1: Messaging Framework”, June 2003. 132
http://www.w3.org/TR/soap12-part1/ 133

[URI] 134

T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax," 135
RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998. 136
http://www.ietf.org/rfc/rfc2396.txt 137

[WS-Addressing] 138

W3C Recommendation, “Web Service Addressing (WS-Addressing)”, 9 May 2006. 139
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/ 140

[WS-MetadataExchange] 141

“Web Services Metadata Exchange (WS-MetadataExchange), Version 1.1”, August 2006. 142
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf 143

[WSDL 1.1] 144

W3C Note, "Web Services Description Language (WSDL 1.1)," 15 March 2001. 145
http://www.w3.org/TR/wsdl 146

 [WSDL 2.0] 147

“Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language”, June 2007. 148
http://www.w3.org/TR/wsdl20 149

[WS-Policy] 150

“Web Services Policy Framework (WS-Policy), Version 1.2”, March 2006. 151
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf 152

[WS-Security] 153

A. Nadalin et al., “Web Services Security: SOAP Message Security 1.0”, May 2004. 154
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf 155

 [WS-SecurityPolicy 1.1] 156

“Web Services Security Policy Language (WS-SecurityPolicy), Version 1.1”, July 2005. 157
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf 158

http://www.ietf.org/rfc/rfc2256.txt
http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2898.txt
http://www.faqs.org/rfcs/rfc3066.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/soap12-part1/
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 12 of 80

[WS-SecurityPolicy 1.2] 159

OASIS, “WS-SecurityPolicy 1.2”, July 2007. http://docs.oasis-open.org/ws-sx/ws-160
securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf 161

[WS-Trust 1.2] 162

“Web Services Trust Language (WS-Trust)”, February 2005. 163
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf 164

[WS-Trust 1.3] 165

OASIS, “WS-Trust 1.3”, March 2007. http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-166
1.3-os.pdf 167

[XML 1.0] 168

W3C Recommendation, “Extensible Markup Language (XML) 1.0 (Fourth Edition)”, September 169
2006. http://www.w3.org/TR/xml/ 170

[XMLDSIG] 171

Eastlake III, D., Reagle, J., and Solo, D., “XML-Signature Syntax and Processing”, March 2002. 172
http://www.ietf.org/rfc/rfc3275.txt 173

[XMLENC] 174

Imamura, T., Dillaway, B., and Simon, E., “XML Encryption Syntax and Processing”, August 175
2002. http://www.w3.org/TR/xmlenc-core/ 176

[XML Schema, Part 1] 177

H. Thompson et al., “XML Schema Part 1: Structures”, May 2001. 178
http://www.w3.org/TR/xmlschema-1/ 179

[XML Schema, Part 2] 180

P. Biron et al., “XML Schema Part 2: Datatypes”, May 2001. http://www.w3.org/TR/xmlschema-2/ 181

1.6 Non-Normative References 182

[Addressing-Ext] 183

J. Alexander et al., “Application Note: Web Services Addressing Endpoint References and 184
Identity”, July 2008. http://schemas.xmlsoap.org/ws/2006/02/addressingidentity 185

[ISIP] 186

A. Nanda and M. Jones, “Identity Selector Interoperability Profile V1.5”, July 2008. 187
http://www.microsoft.com/downloads/details.aspx?FamilyID=b94817fc-3991-4dd0-8e85-188
b73e626f6764&DisplayLang=en 189

[ISIP Guide] 190

Microsoft Corporation and Ping Identity Corporation, “An Implementer‟s Guide to the Identity 191
Selector Interoperability Profile V1.5”, July 2008. 192
http://www.microsoft.com/downloads/details.aspx?FamilyID=b94817fc-3991-4dd0-8e85-193
b73e626f6764&DisplayLang=en 194

[ISIP Web Guide] 195

M. Jones, “A Guide to Using the Identity Selector Interoperability Profile V1.5 within Web 196
Applications and Browsers”, July 2008. 197
http://www.microsoft.com/downloads/details.aspx?FamilyID=b94817fc-3991-4dd0-8e85-198
b73e626f6764&DisplayLang=en 199

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://www.w3.org/TR/xml/
http://www.ietf.org/rfc/rfc3275.txt
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://schemas.xmlsoap.org/ws/2006/02/addressingidentity
http://www.microsoft.com/downloads/details.aspx?FamilyID=b94817fc-3991-4dd0-8e85-b73e626f6764&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=b94817fc-3991-4dd0-8e85-b73e626f6764&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=b94817fc-3991-4dd0-8e85-b73e626f6764&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=b94817fc-3991-4dd0-8e85-b73e626f6764&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=b94817fc-3991-4dd0-8e85-b73e626f6764&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=b94817fc-3991-4dd0-8e85-b73e626f6764&DisplayLang=en

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 13 of 80

2 Relying Party Interactions 200

This section defines the constructs used by a Relying Party Web service for specifying and conveying its 201
Security Token requirements to the Service Requester. 202

2.1 Expressing Token Requirements of Relying Party 203

A Relying Party specifies its Security Token requirements as part of its Security Policy using the primitives 204
and assertions defined in WS-SecurityPolicy. The primary construct in the Security Policy of the Relying 205
Party used to specify its requirement for a Security Token from an Identity Provider is the 206

sp:IssuedToken policy assertion. The basic form of the issued token policy assertion as defined in WS-207

SecurityPolicy is as follows. 208

<sp:IssuedToken sp:Usage="xs:anyURI" sp:IncludeToken="xs:anyURI" 209
 xmlns:sp="..." xmlns:wsa="..." xmlns:wsp="..." ...> 210
 <sp:Issuer> 211
 wsa:EndpointReference | xs:any 212
 </sp:Issuer> 213
 <sp:RequestSecurityTokenTemplate> 214
 ... 215
 </sp:RequestSecurityTokenTemplate> 216
 <wsp:Policy> 217
 ... 218
 </wsp:Policy> 219
 ... 220
</sp:IssuedToken> 221

The attributes and elements listed in the schema fragment above are described in WS-SecurityPolicy. 222

The ensuing subsections describe special parameters added by this profile as extensions to the 223
sp:IssuedToken policy assertion that convey additional instructions to the Identity Selector available to 224

the Service Requester. 225

2.1.1 Issuer of Tokens 226

The sp:IssuedToken/sp:Issuer element in an issued token policy specifies the issuer for the 227

requested token. More specifically, it SHOULD contain the endpoint reference of an Identity Provider STS 228
that can issue the requested token. 229

A Relying Party MUST specify the issuer for a requested token in one of the following ways: 230

 Indicate a specific issuer by specifying the issuer‟s endpoint as the value of the 231
sp:Issuer/wsa:Address element. 232

 Indicate that the issuer is unspecified by omitting the sp:Issuer element, which means that the 233

Service Requester should determine the appropriate issuer for the requested token with help from 234

the user if necessary. 235

When requiring a specific issuer, a Relying Party MAY specify that it will accept self-issued Security 236

Tokens by using the special URI below as the value of the wsa:Address element within the endpoint 237

reference for the issuer. 238

URI: 239

http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self 240

Following is an example of using this URI within an issued token policy. 241

Example: 242

<sp:IssuedToken xmlns:sp="..." xmlns:wsa="..." ...> 243
 <sp:Issuer> 244
 <wsa:Address> 245

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 14 of 80

 http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self 246
 </wsa:Address> 247
 </sp:Issuer> 248
 ... 249
</sp:IssuedToken> 250

A Relying Party MAY specify the value of the sp:Issuer/wsa:Address element in policy as a “logical 251

name” of the token issuer instead of an actual network address where the token is issued. An Identity 252

Selector SHOULD resolve the logical name to an appropriate endpoint for the token issuer by matching 253

the issuer name in Information Cards available to it. 254

If a Relying Party specifies the token issuer as a network endpoint in policy, then it MUST also specify the 255

location of issuer metadata from where the issuer‟s policy metadata can be obtained. This is done using 256

the mechanism defined in [WS-Addressing] for embedding metadata within an endpoint reference. The 257

following example shows a token policy where the issuer endpoint and its corresponding metadata 258

location are specified. 259

Example: 260

<sp:IssuedToken xmlns:sp="..." xmlns:wsa="..." xmlns:wsx="..." ...> 261
 <sp:Issuer> 262
 <wsa:Address>http://contoso.com/sts</wsa:Address> 263
 <wsa:Metadata> 264
 <wsx:Metadata> 265
 <wsx:MetadataSection 266
 Dialect="http://schemas.xmlsoap.org/ws/2004/09/mex"> 267
 <wsx:MetadataReference> 268
 <wsa:Address>https://contoso.com/sts/mex</wsa:Address> 269
 </wsx:MetadataReference> 270
 </wsx:MetadataSection> 271
 </wsx:Metadata> 272
 </wsa:Metadata> 273
 </sp:Issuer> 274
 ... 275
</sp:IssuedToken> 276

2.1.2 Type of Proof Key in Issued Tokens 277

If no explicit key type is specified by the Relying Party, then an Identity Selector SHOULD request an 278

asymmetric key token from the Identity Provider to maximize user privacy and security. 279

A Relying Party MAY explicitly request the use of an asymmetric or symmetric key in the requested token 280

by using the wst:KeyType element within its issued token policy assertion. The key type URIs are 281

defined in [WS-Trust]. The following example illustrates the use of this element in the Relying Party‟s 282

Security Policy to request a symmetric key in the issued token. 283

Example: 284

<sp:IssuedToken xmlns:sp="..." xmlns:wst="..."> 285
 <sp:RequestSecurityTokenTemplate> 286
 <wst:KeyType> 287
 http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey 288
 </wst:KeyType> 289
 </sp:RequestSecurityTokenTemplate> 290
</sp:IssuedToken> 291

2.1.3 Claims in Issued Tokens 292

The claims requirement of a Relying Party can be expressed in its token policy by using the optional 293

wst:Claims parameter defined in [WS-Trust 1.2] and [WS-Trust 1.3]. However, the wst:Claims 294

parameter has an open content model. This profile defines the ic:ClaimType element for use as a child 295

of the wst:Claims element. A Relying Party MAY use this element to specify an individual claim type 296

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 15 of 80

requested. Further, each requested claim MAY be specified as being required or optional. Multiple 297

ic:ClaimType elements can be included to specify multiple claim types requested. 298

The outline for the ic:ClaimType element is as follows: 299

Syntax: 300

<ic:ClaimType Uri="xs:anyURI" Optional="xs:boolean"? xmlns:ic="..." /> * 301

The following describes the attributes and elements listed in the schema outlined above: 302

/ic:ClaimType 303

Indicates the requested claim type. 304

/ic:ClaimType/@Uri 305

The unique identifier of the requested claim type. 306

/ic:ClaimType/@Optional 307

Indicates if the claim can be absent in the Security Token. By default, any requested claim type is 308
a required claim and MUST be present in the issued Security Token. 309

Two <ic:ClaimType> elements refer to the same claim type if and only if the values of their XML 310

attribute named Uri are equal in a case-sensitive string comparison. 311

When the ic:ClaimType element is used within the wst:Claims parameter in a token policy to specify 312

claims requirement, the wst:Dialect attribute on the wst:Claims element MUST be qualified with the 313

URI value below. 314

Dialect URI: 315

http://schemas.xmlsoap.org/ws/2005/05/identity 316

The above dialect URI value indicates that the specified claim elements are to be processed according to 317

this profile. 318

Following is an example of using this assertion within an issued token policy to require two claim types 319

where one claim type is optional. 320

Example: 321

<sp:IssuedToken xmlns:sp="..." xmlns:wst="..." xmlns:ic="..." ...> 322
 ... 323
 <sp:RequestSecurityTokenTemplate> 324
 ... 325
 <wst:Claims 326
 Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity"> 327
 <ic:ClaimType 328
 Uri="http://.../ws/2005/05/identity/claims/givenname"/> 329
 <ic:ClaimType 330
 Uri="http://.../ws/2005/05/identity/claims/surname" 331
 Optional="true" /> 332
 </wst:Claims> 333
 </sp:RequestSecurityTokenTemplate> 334
 ... 335
</sp:IssuedToken> 336

This profile also defines a standard set of claim types for common personal information about users that 337

may be requested by Relying Party Web services in Security Tokens and supported by any Identity 338

Provider. These standard claim types are defined in Section 7.5. 339

2.2 Expressing Privacy Policy of Relying Party 340

A Relying Party Web service SHOULD publish its “Privacy Policy”. Users might decide to release tokens 341

and interact further with that service based on its Privacy Policy. No assumptions are made regarding the 342

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 16 of 80

format and content of the Privacy Policy and an Identity Selector is NOT REQUIRED to parse, interpret or 343

act on the Privacy Policy programmatically. 344

To express the location of its privacy statement, a Web service MUST use the optional policy assertion 345

ic:PrivacyNotice defined below: 346

Syntax: 347

<ic:PrivacyNotice Version="xs:unsignedInt"? xmlns:ic="..."> 348
 xs:anyURI 349
</ic:PrivacyNotice> 350

The following describes the attributes and elements listed in the schema outlined above: 351

/ic:PrivacyNotice 352

This element is used to express the location of the privacy statement of a Web service. 353

/ic:PrivacyNotice/@Version 354

This optional attribute provides a version number for the privacy statement allowing changes in its 355
content to be reflected as a change in the version number. If present, it MUST have a minimum 356
value of 1. 357

Following is an example of using this policy element to express the location of the privacy statement of a 358

Web service. 359

Example: 360

<wsp:Policy xmlns:wsp="..." xmlns:ic="..."> 361
 ... 362

<ic:PrivacyNotice Version="1"> 363
 http://www.contoso.com/privacy 364
</ic:PrivacyNotice> 365

 ... 366
</wsp:Policy> 367

An Identity Selector MUST be able to accept a privacy statement location specified as an URL using the 368

[HTTP] scheme (as illustrated above) or the [HTTPS] scheme. 369

Because the Privacy Policy assertion points to a “privacy statement” that applies to a service endpoint, 370

the assertion MUST apply to [Endpoint Policy Subject]. In other words, a policy expression containing the 371

Privacy Policy assertion MUST be attached to a wsdl:binding in the metadata for the service. 372

Further, when an Identity Selector can only render the privacy statement document in a limited number of 373

document formats (media types), it MAY use the HTTP request-header field “Accept” in its HTTP GET 374

request to specify the media-types it can accept. For example, the following request-header specifies that 375

the client will accept the Privacy Policy only as a plain text or a HTML document. 376

Accept: text/plain, text/html 377

Similarly, if an Identity Selector wants to obtain the privacy statement in a specific language, it MAY use 378

the HTTP request-header field “Accept-Language” in its HTTP GET request to specify the languages it is 379

willing to accept. For example, the following request-header specifies that the client will accept the 380

Privacy Policy only in Danish. 381

Accept-Language: da 382

A Web service, however, is NOT REQUIRED to be able to fulfill the document format and language 383

requests of an Identity Selector. It MAY publish its privacy statement in a fixed set of document formats 384

and languages. 385

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 17 of 80

2.3 Employing Relying Party STSs 386

The Security Policy of a Relying Party MAY require that an issued token be obtained from a Relying Party 387

STS. This can create a chain of STSs. The Identity Selector MUST follow the RP/STS chain, contacting 388

each referenced STS, resolving its Policy statements and continuing to the STS it refers to. 389

When following a chain of STSs, when an STS with an 390

ic:RequireFederatedIdentityProvisioning declaration is encountered as per Section 3.2.1, this 391

informs the Identity Selector that the STS is an IP/STS and therefore ends the STS chain, rather than a 392

member of the RP/STS chain. Furthermore, if an RP or RP/STS provides an incomplete Security Policy, 393

such as no issuer or no required claims, the Identity Selector MUST be invoked so a card and requested 394

claims can be selected by the user, enabling a Request for Security Token (RST) to be constructed and 395

sent to the selected IP/STS. 396

The RP/STS‟s Policy is used for card matching. If the RP/STS requests a private personal identifier 397

(PPID) claim (see Section 7.5.14), the RP/STS‟s certificate is used for calculating PPID, Signing Key, and 398

Client Pseudonym (see Section 3.3.4) values – not the certificate of the Relying Party. This enables a 399

single RP/STS to service multiple Relying Parties while always receiving the same PPID value for a given 400

user from the Identity Selector. 401

Identity Selectors MUST enable users to make Relying Party trust decisions based on the identity of the 402

Relying Party, possibly including displaying attributes from its certificate. By trusting the RP, the user is 403

implicitly trusting the chain of RP/STSs that the RP employs. 404

Each RP/STS endpoint MUST provide a certificate. This certificate MAY be communicated either via 405

Transport (such as HTTPS) or Message (such as WS-Security) Security. If Message Security is 406

employed, transports not providing security (such as HTTP) MAY be used. 407

Like IP/STSs, RP/STSs publish endpoint metadata. This metadata MAY be retrieved via 408

either WS-MetadataExchange or HTTPS GET in the same manner that IP/STS metadata can 409

be, as described in Section 3.1.1.2. 410

Like IP/STSs, no changes to the syntax used to specify metadata locations occurs when 411

RP/STS metadata is published by the Relying Party STS as a page retrievable using HTTPS 412

GET. Relying Parties and Identity Providers MAY consequently support either or both 413

retrieval methods for the same metadata addresses. 414

3 Identity Provider Interactions 415

This section defines the constructs used by an Identity Selector for interacting with an Identity Provider to 416

obtain Information Cards, and to request and obtain Security Tokens. 417

3.1 Information Card 418

An Information Card represents a Digital Identity of a Subject that can be issued by an Identity Provider. It 419

is an artifact containing metadata that represents the token issuance relationship between an Identity 420

Provider and a Subject, and provides a visual representation of the Digital Identity. Multiple Digital 421

Identities for a Subject from the same Identity Provider are represented by different Information Cards. 422

Subjects may obtain an Information Card from an Identity Provider, and may have a collection of 423

Information Cards from various Identity Providers. 424

3.1.1 Information Card Format 425

An Information Card is represented as a signed XML document that is issued by an Identity Provider. The 426

XML schema for an Information Card is defined below: 427

Syntax: 428

<ic:InformationCard xml:lang="xs:language" 429

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 18 of 80

 xmlns:ic="..." xmlns:ic07="..." ...> 430
 <ic:InformationCardReference> ... </ic:InformationCardReference> 431
 <ic:CardName> xs:string </ic:CardName> ? 432
 <ic:CardImage MimeType="xs:string"> xs:base64Binary </ic:CardImage> ? 433
 <ic:Issuer> xs:anyURI </ic:Issuer> 434
 <ic:TimeIssued> xs:dateTime </ic:TimeIssued> 435
 <ic:TimeExpires> xs:dateTime </ic:TimeExpires> ? 436
 <ic:TokenServiceList> ... </ic:TokenServiceList> 437
 <ic:SupportedTokenTypeList> ... </ic:SupportedTokenTypeList> ? 438
 <ic:SupportedClaimTypeList> ... </ic:SupportedClaimTypeList> ? 439
 <ic:RequireAppliesTo ...> ... </ic:RequireAppliesTo> ? 440
 <ic:PrivacyNotice ...> ... </ic:PrivacyNotice> ? 441
 <ic07:RequireStrongRecipientIdentity /> ? 442
 <ic07:IssuerInformation> ... </ic07:IssuerInformation> * 443
 ... 444
</ic:InformationCard> 445

The following describes the attributes and elements listed in the schema outlined above: 446

/ic:InformationCard 447

An Information Card issued by an Identity Provider. 448

/ic:InformationCard/@xml:lang 449

A required language identifier, using the language codes specified in [RFC 3066], in which the 450
content of localizable elements have been localized. 451

/ic:InformationCard/ic:InformationCardReference 452

This required element provides a specific reference for the Information Card by which it can be 453
uniquely identified within the scope of an issuer. This reference MUST be included by an Identity 454
Selector in all token requests sent to the Identity Provider based on that Information Card. The 455
detailed schema of this element is defined in Section 3.1.1.1. 456

/ic:InformationCard/ic:CardName 457

This optional element provides a friendly textual name for the issued Information Card. The 458
content of this element MAY be localized in a specific language. 459

/ic:InformationCard/ic:CardImage 460

This optional element contains a base64 encoded inline image that provides a graphical image 461
for the issued Information Card. It SHOULD contain an image within the size range of 60 pixels 462
wide by 40 pixels high and 240 pixels wide by 160 pixels high. It is RECOMMENDED that the 463
image have an aspect ratio of 3:2 and the image size be 120 by 80 pixels. 464

/ic:InformationCard/ic:CardImage/@MimeType 465

This required attribute provides a MIME type specifying the format of the included card image. 466

This value MUST be one of the five image formats: image/jpeg, image/gif, image/bmp, 467

image/png, or image/tiff. 468

/ic:InformationCard/ic:Issuer 469

This required element provides a logical name for the issuer of the Information Card. If a Relying 470
Party specifies a token issuer by its logical name, then the content of this element MUST be used 471
to match the requested token issuer with an Information Card. 472

/ic:InformationCard/ic:TimeIssued 473

This required element provides the date and time when the Information Card was issued. 474

/ic:InformationCard/ic:TimeExpires 475

This optional element provides the date and time after which the Information Card SHOULD be 476
treated as expired and invalid. 477

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 19 of 80

/ic:InformationCard/ic:TokenServiceList 478

This required element provides an ordered list of Security Token Service (IP/STS) endpoints, and 479
corresponding credential descriptors (implying the REQUIRED authentication mechanisms), 480
where tokens can be requested. Each service endpoint MUST be tried in order by the Service 481
Requester when requesting tokens. 482

/ic:InformationCard/ic:SupportedTokenTypeList 483

This optional element contains the list of token types that are offered by the Identity Provider. 484

/ic:InformationCard/ic:SupportedClaimTypeList 485

This optional element contains the list of claim types that are offered by the Identity Provider. 486

/ic:InformationCard/ic:RequireAppliesTo 487

This optional element indicates that token requests MUST include information identifying the 488
Relying Party where the issued token will be used. The Relying Party information MUST be 489

included as the content of a wsp:AppliesTo element in the token request. 490

/ic:InformationCard/ic:PrivacyNotice 491

This optional element provides the location of the privacy statement of the Identity Provider. 492

/ic:InformationCard/ic07:RequireStrongRecipientIdentity 493

This optional element informs the Identity Selector that it MUST only allow the card to be used at 494
a Relying Party that presents a cryptographically protected identity, for example, an X.509v3 495
certificate. 496

/ic:InformationCard/ic07:IssuerInformation 497

This optional element provides information from the card issuer about the card that can be 498
displayed by the Identity Selector user interface. 499

.../ic:InformationCard/@{any} 500

This is an extensibility point to allow additional attributes to be specified. While an Identity 501
Selector MAY ignore any extensions it does not recognize it SHOULD preserve those that it does 502

not recognize and emit them in the respective ic:InformationCard element of an 503

ic:RoamingStore when representing the card in the Information Cards Transfer Format in 504

Section 6.1. 505

.../ic:InformationCard/{any} 506

This is an extensibility point to allow additional metadata elements to be specified. While an 507
Identity Selector MAY ignore any extensions it does not recognize it SHOULD preserve those that 508
it does not recognize and emit them in the respective ic:InformationCard element of an 509

ic:RoamingStore when representing the card in the Information Cards Transfer Format in 510

Section 6.1. 511

3.1.1.1 Information Card Reference 512

Every Information Card issued by an Identity Provider MUST have a unique reference by which it can be 513

identified within the scope of the Identity Provider. This reference is included in all token requests sent to 514

the Identity Provider based on that Information Card. 515

The card reference MUST be expressed using the following schema element within an Information Card. 516

Syntax: 517

<ic:InformationCardReference xmlns:ic="..."> 518
 <ic:CardId> xs:anyURI </ic:CardId> 519
 <ic:CardVersion> xs:unsignedInt </ic:CardVersion> 520
</ic:InformationCardReference> 521

The following describes the attributes and elements listed in the schema outlined above: 522

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 20 of 80

.../ic:InformationCardReference 523

A specific reference for an Information Card. 524

.../ic:InformationCardReference/ic:CardId 525

This required element provides a unique identifier in the form of a URI for the specific Information 526
Card. The identifier provider MUST be able to identify the specific Information Card based on this 527
identifier. 528

.../ic:InformationCardReference/ic:CardVersion 529

This required element provides a versioning epoch for the Information Card issuance 530
infrastructure used by the Identity Provider. The minimum value for this field MUST be 1. Note 531
that it is possible to include version information in CardId as it is a URI, and can have hierarchical 532
content. However, it is specified as a separate value to allow the Identity Provider to change its 533
issuance infrastructure, and thus its versioning epoch, independently without changing the CardId 534
of all issued Information Cards. For example, when an Identity Provider makes a change to the 535
supported claim types or any other policy pertaining to the issued cards, the version number 536
allows the Identity Provider to determine if the Information Card needs to be refreshed. The 537
version number is assumed to be monotonically increasing. If two Information Cards have the 538
same CardId value but different CardVersion values, then the one with a higher numerical 539
CardVersion value SHOULD be treated as being more up-to-date. 540

3.1.1.2 Token Service Endpoints and Authentication Mechanisms 541

Every Information Card issued by an Identity Provider MUST include an ordered list of IP/STS endpoints, 542

and the corresponding credential type to be used, for requesting tokens. The list MUST be in a 543

decreasing order of preference. Identity Selectors SHOULD attempt to use the endpoints in the order 544

listed, using the first endpoint in the list for which the metadata is retrievable and the endpoint is 545

reachable. For each endpoint, the credential type implicitly determines the authentication mechanism to 546

be used. Each credential descriptor is personalized for the user to allow an Identity Selector to 547

automatically locate the credential once the user has selected an Information Card. 548

Further, each IP/STS endpoint reference in the Information Card MUST include the Security Policy 549

metadata for that endpoint. The policy metadata MAY be specified as a metadata location within the 550

IP/STS endpoint reference. If a metadata location URL is specified, it MUST use the [HTTPS] transport. 551

An Identity Selector MAY retrieve the Security Policy it will use to communicate with the IP/STS from that 552

metadata location using the mechanism specified in [WS-MetadataExchange]. 553

The ordered list of token service endpoints MUST be expressed using the following schema element 554

within an Information Card. 555

Syntax: 556

<ic:TokenServiceList xmlns:ic="..." xmlns:wsa="..."> 557
 (<ic:TokenService> 558
 <wsa:EndpointReference> ... </wsa:EndpointReference> 559
 <ic:UserCredential> 560
 <ic:DisplayCredentialHint> xs:string </ic:DisplayCredentialHint> ? 561
 (562
 <ic:UsernamePasswordCredential>...</ic:UsernamePasswordCredential> | 563
 <ic:KerberosV5Credential>...</ic:KerberosV5Credential> | 564
 <ic:X509V3Credential>...</ic:X509V3Credential> | 565
 <ic:SelfIssuedCredential>...</ic:SelfIssuedCredential> | ... 566
) 567
 </ic:UserCredential> 568
 </ic:TokenService>) + 569
</ic:TokenServiceList> 570

The following describes the attributes and elements listed in the schema outlined above: 571

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 21 of 80

.../ic:TokenServiceList 572

This required element provides an ordered list of Security Token Service endpoints (in decreasing 573
order of preference), and the corresponding credential types, for requesting tokens. Each service 574
endpoint MUST be tried in order by a Service Requester. 575

.../ic:TokenServiceList/ic:TokenService 576

This required element describes a single token issuing endpoint. 577

.../ic:TokenServiceList/ic:TokenService/wsa:EndpointReference 578

This required element provides the endpoint reference for a single token issuing endpoint. For the 579
Self-issued Identity Provider, the special address value defined in Section 2.1.1 MAY be used. 580

The wsai:Identity extension element (see Section 12) for endpoint references MAY be used 581

to include the protection token for this endpoint to secure communications with it. 582

.../ic:TokenServiceList/ic:TokenService/ic:UserCredential 583

This required element indicates the credential type to use to authenticate to the token issuing 584
endpoint. 585

.../ic:TokenServiceList/ic:TokenService/ic:UserCredential/ic:DisplayCredentialHint 586

This optional element provides a hint (string) to be displayed to the user to prompt for the correct 587
credential (e.g. a hint to insert the right smart card). The content of this element MAY be localized 588
in a specific language. 589

.../ic:TokenServiceList/ic:TokenService/ic:UserCredential/<credential descriptor> 590

This required element provides an unambiguous descriptor for the credential to use for 591
authenticating to the token issuing endpoint. The schema to describe the credential is specific to 592
each credential type. This profile defines the schema elements 593
ic:UsernamePasswordCredential, ic:KerberosV5Credential, 594

ic:X509V3Credential or ic:SelfIssuedCredential later in Section 4 corresponding to 595

username/password, Kerberos v5, X.509v3 certificate and self-issued token based credential 596
types. Other credential types MAY be introduced via the extensibility point defined in the schema 597
within this element. 598

Alternatively, Identity Providers MAY publish metadata for Information Cards as WSDL documents that 599

can be retrieved by Identity Selectors via HTTPS GET operations on URLs using the HTTPS scheme. An 600

endpoint‟s metadata URL is communicated to Identity Selectors in a token service 601

wsx:MetadataReference element in an Information Card using exactly the same syntax as when WS-602

MetadataExchange is employed to retrieve the metadata. No change occurs in the card. 603

The metadata documents published via HTTPS GET SHOULD contain the WSDL for the endpoint as the 604

top-level element of the document without any SOAP or WS-MetadataExchange elements enclosing it. 605

Identity Providers MAY publish endpoint metadata via both the HTTPS GET and WS-MetadataExchange 606

methods at the same metadata location. If they publish the metadata via multiple mechanisms, the 607

metadata delivered via both mechanisms SHOULD be the same. Likewise, Identity Selectors MAY 608

attempt to retrieve metadata via multiple mechanisms, either in sequence or in parallel. 609

The following example illustrates an Identity Provider with two endpoints for its IP/STS, one requiring 610

Kerberos (higher priority) and the other requiring username/password (lower priority) as its authentication 611

mechanism. Further, each endpoint also includes its policy metadata location as a URL using the 612

[HTTPS] scheme. 613

Example: 614

<ic:TokenServiceList xmlns:ic="..." xmlns:wsa="..." xmlns:wsai="..." 615
 xmlns:wsx="..."> 616
 <ic:TokenService> 617
 <wsa:EndpointReference> 618
 <wsa:Address>http://contoso.com/sts/kerb</wsa:Address> 619

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 22 of 80

 <wsai:Identity> 620
 <wsai:Spn>host/corp-sts.contoso.com</wsai:Spn> 621
 </wsai:Identity> 622
 <wsa:Metadata> 623
 <wsx:Metadata> 624
 <wsx:MetadataSection 625
 Dialect="http://schemas.xmlsoap.org/ws/2004/09/mex"> 626
 <wsx:MetadataReference> 627
 <wsa:Address>https://contoso.com/sts/kerb/mex</wsa:Address> 628
 </wsx:MetadataReference> 629
 </wsx:MetadataSection> 630
 </wsx:Metadata> 631
 </wsa:Metadata> 632
 </wsa:EndpointReference> 633
 <ic:UserCredential> 634
 <ic:KerberosV5Credential /> 635
 </ic:UserCredential> 636
 </ic:TokenService> 637
 <ic:TokenService> 638
 <wsa:EndpointReference> 639
 <wsa:Address>http://contoso.com/sts/pwd</wsa:Address> 640
 <wsa:Metadata> 641
 <wsx:Metadata> 642
 <wsx:MetadataSection 643
 Dialect="http://schemas.xmlsoap.org/ws/2004/09/mex"> 644
 <wsx:MetadataReference> 645
 <wsa:Address>https://contoso.com/sts/pwd/mex</wsa:Address> 646
 </wsx:MetadataReference> 647
 </wsx:MetadataSection> 648
 </wsx:Metadata> 649
 </wsa:Metadata> 650
 </wsa:EndpointReference> 651
 <ic:UserCredential> 652
 <ic:UsernamePasswordCredential> 653
 <ic:Username>Zoe</ic:Username> 654
 </ic:UsernamePasswordCredential> 655
 </ic:UserCredential> 656
 </ic:TokenService> 657
</ic:TokenServiceList> 658

3.1.1.3 Token Types Offered 659

Every Information Card issued by an Identity Provider SHOULD include an unordered list of token types 660

that can be issued by the Identity Provider. The set of token types offered by the Identity Provider MUST 661

be expressed using the following schema element within an Information Card. 662

Syntax: 663

<ic:SupportedTokenTypeList xmlns:ic="..." xmlns:wst="..."> 664
 <wst:TokenType> xs:anyURI </wst:TokenType> + 665
</ic:SupportedTokenTypeList> 666

The following describes the attributes and elements listed in the schema outlined above: 667

.../ic:SupportedTokenTypeList 668

This optional element contains the set of token types offered by the Identity Provider. 669

.../ic:SupportedTokenTypeList/wst:TokenType 670

This required element indicates an individual token type that is offered. 671

The following example illustrates an Identity Provider that offers both SAML 1.1 and SAML 2.0 tokens. 672

Example: 673

<ic:SupportedTokenTypeList xmlns:ic="..." xmlns:wst="..."> 674

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 23 of 80

 <wst:TokenType>urn:oasis:names:tc:SAML:1.0:assertion</wst:TokenType> 675
 <wst:TokenType>urn:oasis:names:tc:SAML:2.0:assertion</wst:TokenType> 676
</ic:SupportedTokenTypeList> 677

3.1.1.4 Claim Types Offered 678

Every Information Card issued by an Identity Provider SHOULD include an unordered list of claim types 679

that can be issued by the Identity Provider. The set of claim types offered by the Identity Provider MUST 680

be expressed using the following schema element within an Information Card. 681

Syntax: 682

<ic:SupportedClaimTypeList xmlns:ic="..."> 683
 (<ic:SupportedClaimType Uri="xs:anyURI"> 684
 <ic:DisplayTag> xs:string </ic:DisplayTag> ? 685
 <ic:Description> xs:string </ic:Description> ? 686
 </ic:SupportedClaimType>) + 687
</ic:SupportedClaimTypeList> 688

The following describes the attributes and elements listed in the schema outlined above: 689

.../ic:SupportedClaimTypeList 690

This optional element contains the set of claim types offered by the Identity Provider. 691

.../ic:SupportedClaimTypeList/ic:SupportedClaimType 692

This required element indicates an individual claim type that is offered. 693

.../ic:SupportedClaimTypeList/ic:SupportedClaimType/@Uri 694

This required attribute provides the unique identifier (URI) of this individual claim type offered. 695

.../ic:SupportedClaimTypeList/ic:SupportedClaimType/ic:DisplayTag 696

This optional element provides a friendly name for this individual claim type. The content of this 697
element MAY be localized in a specific language. 698

.../ic:SupportedClaimTypeList/ic:SupportedClaimType/ic:Description 699

This optional element provides a description of the semantics for this individual claim type. The 700
content of this element MAY be localized in a specific language. 701

The following example illustrates an Identity Provider that offers two claim types. 702

Example: 703

<ic:SupportedClaimTypeList xmlns:ic="..."> 704
 <ic:SupportedClaimType Uri=".../ws/2005/05/identity/claims/givenname"> 705
 <ic:DisplayTag>Given Name</DisplayTag> 706
 </ic:SupportedClaimType> 707
 <ic:SupportedClaimType Uri=".../ws/2005/05/identity/claims/surname"> 708
 <ic:DisplayTag>Last Name</DisplayTag> 709
 </ic:SupportedClaimType> 710
</ic:SupportedClaimTypeList> 711

3.1.1.5 Requiring Token Scope Information 712

An Identity Selector, by default, SHOULD NOT convey information about the Relying Party where an 713

issued token will be used (i.e., target scope) when requesting Security Tokens. This helps safeguard user 714

privacy. However, an Identity Provider MAY override that behavior. 715

Every Information Card issued by an Identity Provider MAY include a requirement that token requests 716

include token scope information identifying the Relying Party where the token will be used. The 717

requirement to submit token scope information MUST be expressed using the following schema element 718

within an Information Card. 719

Syntax: 720

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 24 of 80

<ic:RequireAppliesTo Optional="xs:boolean" xmlns:ic="..." /> ? 721

The following describes the attributes and elements listed in the schema outlined above: 722

.../ic:RequireAppliesTo 723

This optional element indicates a requirement for a token requester to submit token scope 724
information in the request. Absence of this element in an Information Card means that the token 725
requester MUST NOT submit any token scope information. 726

.../ic:RequireAppliesTo/@Optional 727

This optional attribute indicates whether the token scope information is required or is optional by 728
the Identity Provider. An attribute value of “true” indicates that the token scope information is not 729
required, but will be accepted by the Identity Provider if submitted. An attribute value of “false” 730
(default) indicates that the token scope information is required. 731

The following example illustrates the use of this element. 732

Example: 733

<ic:RequireAppliesTo Optional="true" xmlns:ic="..." /> 734

If token scope information is required by an Identity Provider, an Identity Selector MUST include the 735

Relying Party identity as the content of the wsp:AppliesTo element in the token request. The actual 736

behavior of an Identity Selector vis-à-vis the possible requirements that can be expressed by the above 737

element is specified in Section 3.3.3. 738

3.1.1.6 Privacy Policy Location 739

Every Information Card issued by an Identity Provider SHOULD include a pointer to the privacy statement 740

of the Identity Provider. The location of the privacy statement MUST be expressed using the following 741

schema element within an Information Card. 742

Syntax: 743

<ic:PrivacyNotice Version="xs:unsignedInt" xmlns:ic="..." /> ? 744

The following describes the attributes and elements listed in the schema outlined above: 745

.../ic:PrivacyNotice 746

This optional element provides the location of the privacy statement of the Identity Provider. 747

.../ic:PrivacyNotice/@Version 748

This optional attribute indicates a version number that tracks changes in the content of the 749
privacy statement. This field MUST have a minimum value of 1 when present. 750

The following example illustrates the use of this element. 751

Example: 752

<ic:PrivacyNotice Version="1" xmlns:ic="..."> 753
http://www.contoso.com/privacynotice 754

</ic:PrivacyNotice> 755

An Identity Selector MUST be able to accept a privacy statement location specified as an URL using the 756

[HTTP] scheme (as illustrated above) or the [HTTPS] scheme. 757

3.1.1.7 Prohibiting Use at Relying Parties Not Identified by a Cryptographically 758

Protected Identity 759

Information Cards issuers MAY specify that a card MUST NOT be used at Relying Parties that do not 760

present a cryptographically protected identity, such as an X.509v3 certificate. This would typically be 761

done when the issuer determines that the use of HTTP without Message Security would not provide a 762

sufficiently secure environment for the use of the card. 763

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 25 of 80

Syntax: 764

<ic07:RequireStrongRecipientIdentity xmlns:ic07="..." /> ? 765

.../ic07:RequireStrongRecipientIdentity 766

This optional element informs the Identity Selector that it MUST only allow the card to be used at 767
a Relying Party that presents a cryptographically protected identity, such as an X.509v3 768
certificate. 769

3.1.1.8 Providing Custom Data to Display with the Card 770

Card issuers MAY supply a set of information about the card that MAY be displayed by the Identity 771

Selector user interface. 772

Syntax: 773

<ic07:IssuerInformation xmlns:ic07="..."> 774
 <ic07:IssuerInformationEntry> 775
 <ic07:EntryName> xs:string </ic07:EntryName> 776
 <ic07:EntryValue> xs:string </ic07:EntryValue> 777
 </ic07:IssuerInformationEntry> + 778
</ic07:IssuerInformation> 779

The following describes the attributes and elements listed in the schema outlined above: 780

.../ic07:IssuerInformation 781

This optional element provides a set of information from the card issuer about the card that can 782
be displayed by the Identity Selector user interface. 783

.../ic07:IssuerInformation/IssuerInformationEntry 784

This required element provides one item of information about the card. 785

.../ic07:IssuerInformation/IssuerInformationEntry/EntryName 786

This required element provides the name of one item of information about the card. 787

.../ic07:IssuerInformation/IssuerInformationEntry/EntryValue 788

This required element provides the value of one item of information about the card. 789

The following example illustrates the use of this feature. 790

Example: 791

<ic07:IssuerInformation xmlns:ic07="..."> 792
 <ic07:IssuerInformationEntry> 793
 <ic07:EntryName>Customer Service</ic07:EntryName> 794
 <ic07:EntryValue>+1-800-CONTOSO</ic07:EntryValue> 795
 </ic07:IssuerInformationEntry> 796
 <ic07:IssuerInformationEntry> 797
 <ic07:EntryName>E-mail Contact</ic07:EntryName> 798
 <ic07:EntryValue>cardhelp@contoso.com</ic07:EntryValue> 799
 </ic07:IssuerInformationEntry> 800
</ic07:IssuerInformation> 801

3.1.2 Issuing Information Cards 802

An Identity Provider can issue Information Cards to its users using any out-of-band mechanism that is 803

mutually suitable. 804

In order to provide the assurance that an Information Card is indeed issued by the Identity Provider 805

expected by the user, the Information Card MUST be carried inside a digitally signed envelope that is 806

signed by the Identity Provider. For this, the “enveloping signature” construct (see [XMLDSIG]) MUST be 807

used where the Information Card is included in the ds:Object element. The signature on the digitally 808

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 26 of 80

signed envelope provides data origin authentication assuring the user that it came from the right Identity 809

Provider. 810

The specific profile of XML digital signatures [XMLDSIG] that is RECOMMENDED for signing the 811

envelope carrying the Information Card is as follows. Usage of other algorithms is not described. 812

 Use enveloping signature format when signing the Information Card XML document. 813

 Use a single ds:Object element within the signature to hold the ic:InformationCard 814

element that represents the issued Information Card. The ds:Object/@Id attribute provides a 815

convenient way for referencing the Information Card from the ds:SignedInfo/ds:Reference 816

element within the signature. 817

 Use RSA signing and verification with the algorithm identifier given by the URI 818

http://www.w3.org/2000/09/xmldsig#rsa-sha1. 819

 Use exclusive canonicalization with the algorithm identifier given by the URI 820

http://www.w3.org/2001/10/xml-exc-c14n#. 821

 Use SHA1 digest method for the data elements being signed with the algorithm identifier 822

http://www.w3.org/2000/09/xmldsig#sha1. 823

 There MUST NOT be any other transforms used in the enveloping signature for the Information 824

Card other than the ones listed above. 825

 The ds:KeyInfo element MUST be present in the signature carrying the signing key information 826

in the form of an X.509 v3 certificate or a X.509 v3 certificate chain specified as one or more 827
ds:X509Certificate elements within a ds:X509Data element. 828

The following example shows an enveloping signature carrying an Information Card that is signed by the 829

Identity Provider using the format outlined above. Note that whitespace (newline and space character) is 830

included in the example only to improve readability; they might not be present in an actual 831

implementation. 832

Example: 833

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#"> 834
 <SignedInfo> 835
 <CanonicalizationMethod 836
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" /> 837
 <SignatureMethod 838
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" /> 839
 <Reference URI="#_Object_InformationCard"> 840
 <Transforms> 841
 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" /> 842
 </Transforms> 843
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" /> 844
 <DigestValue> ... </DigestValue> 845
 </Reference> 846
 </SignedInfo> 847
 <SignatureValue> ... </SignatureValue> 848
 <KeyInfo> 849
 <X509Data> 850
 <X509Certificate> ... </X509Certificate> 851
 </X509Data> 852
 </KeyInfo> 853
 <Object Id="_Object_InformationCard"> 854
 <ic:InformationCard 855
 xmlns:ic="http://schemas.xmlsoap.org/ws/2005/05/identity" 856
 xml:lang="en-us"> 857
 [Information Card content] 858
 </ic:InformationCard> 859
 </Object> 860
</Signature> 861

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 27 of 80

An Identity Selector MUST verify the enveloping signature. The ic:InformationCard element can 862

then be extracted and stored in the Information Card collection. 863

3.2 Identity Provider Policy 864

This section specifies additional policy elements and requirements introduced by this profile for an IP/STS 865

policy metadata. 866

3.2.1 Require Information Card Provisioning 867

In the Information Card Model, an Identity Provider requires provisioning in the form of an Information 868

Card issued by it which represents the provisioned identity of the user. In order to enable an Identity 869

Selector to learn that such pre-provisioning is necessary before token requests can be made, the Identity 870

Provider MUST provide an indication in its policy. 871

An Identity Provider issuing Information Cards MUST specify this provisioning requirement in its policy 872

using the following schema element. 873

Syntax: 874

<ic:RequireFederatedIdentityProvisioning xmlns:ic="..." /> 875

The following describes the attributes and elements listed in the schema outlined above: 876

.../ic:RequireFederatedIdentityProvisioning 877

This element indicates a requirement that one or more Information Cards, representing identities 878
that can be federated, MUST be pre-provisioned before token requests can be made to the 879
Identity Provider. 880

The following example illustrates the use of this policy element. 881

Example: 882

<wsp:Policy xmlns:wsp="..." xmlns:ic="..." xmlns:sp="..."> 883
 ... 884

<ic:RequireFederatedIdentityProvisioning /> 885
<sp:SymmetricBinding> 886
 ... 887
</sp:SymmetricBinding> 888

 ... 889
</wsp:Policy> 890

3.2.2 Policy Metadata Location 891

In the Information Card Model, an Identity Provider MUST make the Security Policy metadata for its 892

IP/STS endpoints available. If a metadata location is used for this purpose, the location URL MUST use 893

the [HTTPS] scheme. An Identity Selector MAY retrieve the Security Policy it will use to communicate with 894

the IP/STS from that metadata location using the mechanism specified in [WS-MetadataExchange]. 895

3.3 Token Request and Response 896

For any given Information Card, an Identity Selector can obtain a Security Token from the IP/STS for that 897

Information Card. Tokens MUST be requested using the “Issuance Binding” mechanism described in 898

[WS-Trust 1.2] and [WS-Trust 1.3]. This section specifies additional constraints and extensions to the 899

token request and response messages between the Identity Selector and the IP/STS. 900

The WS-Trust protocol requires that a token request be submitted by using the 901

wst:RequestSecurityToken element in the request message, and that a token response be sent 902

using the wst:RequestSecurityTokenResponse element in the response message. This profile 903

refers to the “Request Security Token” message as RST and the “Request Security Token Response” 904

message as RSTR in short. 905

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 28 of 80

The WS-Trust protocol allows for a token response to provide multiple tokens by using the 906

wst:RequestSecurityTokenResponseCollection element in the response message. This profile, 907

however, requires that an Identity Provider MUST NOT use the 908

wst:RequestSecurityTokenResponseCollection element in the response. The token response 909

MUST consist of a single wst:RequestSecurityTokenResponse element. 910

3.3.1 Information Card Reference 911

When requesting a Security Token from the IP/STS, an Identity Selector MUST include the Information 912

Card reference in the body of the RST message as a top-level element information item. The 913

ic:InformationCardReference element in the Information Card, including all of its [children], 914

[attributes] and [in-scope namespaces], MUST be copied as an immediate child of the RST element in the 915

message as follows. 916

The following example illustrates the Information Card reference included in a RST message. 917

Example: 918

<wst:RequestSecurityToken xmlns:wst="..." xmlns:ic="..."> 919
 ... 920
 <ic:InformationCardReference> 921
 <ic:CardId>http://xyz.com/CardId/d795621fa01d454285f9</ic:CardId> 922
 <ic:CardVersion>1</ic:CardVersion> 923
 </ic:InformationCardReference> 924
 ... 925
</wst:RequestSecurityToken> 926

The IP/STS MAY fault with ic:InformationCardRefreshRequired to signal to the Service 927

Requester that the Information Card needs to be refreshed. 928

3.3.2 Claims and Other Token Parameters 929

A Relying Party‟s requirements of claims and other token parameters are expressed in its policy using the 930

sp:RequestSecurityTokenTemplate parameter within the sp:IssuedToken policy assertion (see 931

Section 2.1). If all token parameters are acceptable to the Identity Selector, it MUST copy the content of 932

this element (i.e. all of its [children] elements) into the body of the RST message as top-level element 933

information items. However, if optional claims are requested by the Relying Party, requests for optional 934

claims not selected by the user MUST NOT be copied into the RST message. 935

3.3.3 Token Scope 936

The WS-Trust protocol allows a token requester to indicate the target where the issued token will be used 937

(i.e., token scope) by using the optional element wsp:AppliesTo in the RST message. By default, an 938

Identity Selector SHOULD NOT send token scope information to the Identity Provider in token requests to 939

protect user privacy. In other words, the element wsp:AppliesTo is absent in the RST message. 940

However, if the Identity Provider requires it (see the modes of the ic:RequireAppliesTo element 941

described in Section 3.1.1.5), or if the Relying Party‟s token policy includes the wsp:AppliesTo element 942

in the sp:RequestSecurityTokenTemplate parameter, then an Identity Selector MUST include token 943

scope information in its token request as per the behavior summarized in the following table. 944

<RequireAppliesTo> mode in

Information Card

<AppliesTo> element

present in RP policy

Resulting behavior of Identity

Selector

Mandatory Yes Send <AppliesTo> value from RP

policy in token request to IP.

Mandatory No Send the RP endpoint to which token

will be sent as the value of

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 29 of 80

<AppliesTo> in token request to IP.

Optional Yes Send <AppliesTo> value from RP

policy in token request to IP.

Optional No Do not send <AppliesTo> in token

request to IP.

Not present Yes Fail

Not present No Do not send <AppliesTo> in token

request to IP.

The following example illustrates the token scope information included in a RST message when it is sent 945

to the Identity Provider. 946

Example: 947

<wst:RequestSecurityToken xmlns:wst="..." xmlns:wsp="..." xmlns:wsa="..." 948
 xmlns:wsai="..." xmlns:ds="..."> 949
 <wsp:AppliesTo> 950
 <wsa:EndpointReference> 951
 <wsa:Address>http://ip.fabrikam.com</wsa:Address> 952
 <wsai:Identity> 953
 <ds:KeyInfo> 954
 <ds:X509Data> 955
 <ds:X509Certificate>...</ds:X509Certificate> 956
 </ds:X509Data> 957
 </ds:KeyInfo> 958
 </wsai:Identity> 959
 </wsa:EndpointReference> 960
 </wsp:AppliesTo> 961
 ... 962
</wst:RequestSecurityToken> 963

3.3.4 Client Pseudonym 964

A private personal identifier (PPID) claim, defined in Section 7.5.14, identifies a Subject to a Relying Party 965

in a way such that a Subject‟s PPID at one Relying Party cannot be correlated with the Subject‟s PPID at 966

another Relying Party. If an Identity Provider offers the PPID claim type then it MUST generate values for 967

the claim that have this prescribed privacy characteristic using data present in the RST request. 968

When a Relying Party requests a PPID claim, an Identity Selector MUST provide a Client Pseudonym 969

value via an ic:PPID element in the RST request that can be used by the IP/STS as input when 970

computing the PPID claim value in the issued token. The Client Pseudonym SHOULD be produced as 971

described in Section 3.3.4.1. It is RECOMMENDED that the IP/STS combine this Client Pseudonym 972

value with information specific to the entity to which the card was issued as well as a secret known only 973

by the IP/STS and pass the combination through a cryptographically non-invertible function, such as a 974

cryptographic hash function, to generate the PPID claim value sent in the token. Alternatively, when 975

target scope information is sent in the token request using the wsp:AppliesTo element, the IP/STS 976

MAY instead choose to use that information to generate an appropriate PPID value. 977

When Client Pseudonym information is included by an Identity Selector in a token request, it MUST be 978

sent using the following schema element. 979

Syntax: 980

<ic:ClientPseudonym xmlns:ic="..."> 981
 <ic:PPID> xs:base64Binary </ic:PPID> 982
</ic:ClientPseudonym> 983

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 30 of 80

The following describes the attributes and elements listed in the schema outlined above: 984

.../ic:ClientPseudonym 985

This optional top-level element contains the Client Pseudonym information item. 986

.../ic:ClientPseudonym/ic:PPID 987

This optional element contains the Client Pseudonym value that the client has submitted for use 988
in computing the PPID claim value for the issued token. The IP/STS MAY use this value as the 989
input (a seed) to a custom cryptographically non-invertible function, with the result used as the 990
PPID claim value in the issued token. 991

The following example illustrates the Client Pseudonym information sent in a RST message. 992

Example: 993

<wst:RequestSecurityToken xmlns:wst="..." xmlns:ic="..."> 994
 <ic:ClientPseudonym> 995
 <ic:PPID>MIIEZzCCA9CgAwIBAgIQEmtJZc0=</ic:PPID> 996
 </ic:ClientPseudonym > 997
 ... 998
</wst:RequestSecurityToken> 999

When the target scope information is not sent in the token request to an IP/STS, the Identity Provider 1000

MUST NOT record any Client Pseudonym values included in the RST message. It likewise MUST NOT 1001

record the PPID claim value that it generates. 1002

3.3.4.1 PPID 1003

When a token request for a PPID claim is sent to an IP/STS, an Identity Selector SHOULD compute the 1004

Client Pseudonym PPID information it sends in the RST message as follows: 1005

 Construct the RP PPID Seed as described in Section 7.6.1. 1006

 Decode the base64 encoded value of the ic:HashSalt element of the Information Card (see 1007

Section 6.1) to obtain SaltBytes. 1008

 Decode the base64 encoded value of the ic:MasterKey element of the Information Card (see 1009

Section 6.1) to obtain MasterKeyBytes. 1010

 Hash the concatenation of MasterKeyBytes, RP PPID Seed, and SaltBytes using the SHA256 1011

hash function to obtain the Client Pseudonym PPID value. 1012

Client Pseudonym PPID = SHA256 (MasterKeyBytes + RP PPID Seed + SaltBytes) 1013

 Convert Client Pseudonym PPID to a base64 encoded string and send as the value of the 1014
ic:PPID element in the RST request. 1015

3.3.5 Proof Key for Issued Token 1016

An issued token can have a symmetric proof key (symmetric key token), an asymmetric proof key 1017

(asymmetric key token), or no proof key (bearer token). If no key type is specified in the Relying Party 1018

policy, then an Identity Selector SHOULD request an asymmetric key token from the IP/STS by default. 1019

The optional wst:KeyType element in the RST request indicates the type of proof key desired in the 1020

issued Security Token. The IP/STS MAY return the proof key and/or entropy towards the proof key in the 1021

RSTR response. This section describes the behaviors for how each proof key type is requested, who 1022

contributes entropy, and how the proof key is computed and returned. 1023

3.3.5.1 Symmetric Proof Key 1024

When requesting a symmetric key token, an Identity Selector MUST submit entropy towards the proof key 1025

by augmenting the RST request message as follows: 1026

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 31 of 80

 The RST SHOULD include a wst:KeyType element with one of the two following URI values, 1027

depending upon the version of WS-Trust being used: 1028

http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey 1029

http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey 1030

 The RST MUST include a wst:BinarySecret element inside a wst:Entropy element 1031

containing client-side entropy to be used as partial key material. The entropy is conveyed as raw 1032

base64 encoded bits. 1033

The size of the submitted entropy SHOULD be equal to the key size requested in the Relying Party 1034

policy. If no key size is specified by the Relying Party, then an Identity Selector SHOULD request a key at 1035

least 256-bits in size, and submit an entropy of equal size to the IP/STS. 1036

Following is a sample RST request fragment that illustrates a symmetric key token request. 1037

Example: 1038

<wst:RequestSecurityToken xmlns:wst="..."> 1039
 ... 1040
 <wst:KeyType> 1041
 http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey 1042
 </wst:KeyType> 1043
 <wst:KeySize>256</wst:KeySize> 1044
 <wst:Entropy> 1045
 <wst:BinarySecret>mQlxWxEiKOcUfnHgQpylcD7LYSkJplpE=</wst:BinarySecret> 1046
 </wst:Entropy> 1047
</wst:RequestSecurityToken> 1048

When processing the token request, the IP/STS MAY: 1049

a) accept the client entropy as the sole key material for the proof key, 1050

b) accept the client entropy as partial key material and contribute additional server-side entropy as 1051

partial key material to compute the proof key as a function of both partial key materials, or 1052

c) reject the client-side entropy and use server-side entropy as the sole key material for the proof 1053

key. 1054

For each of the cases above, the IP/STS MUST compute and return the proof key by augmenting the 1055

RSTR response message as follows. 1056

For case (a) where IP/STS accepts client entropy as the sole key material: 1057

 The RSTR MUST NOT include a wst:RequestedProofToken element. The proof key is 1058

implied and an Identity Selector MUST use the client-side entropy as the proof key. 1059

For case (b) where IP/STS accepts client entropy and contributes additional server entropy: 1060

 The RSTR MUST include a wst:BinarySecret element inside a wst:Entropy element 1061

containing the server-side entropy to be used as partial key material. The entropy is conveyed as 1062

raw base64 encoded bits. 1063

 The partial key material from the IP/STS MUST be combined (by each party) with the partial key 1064

material from the client to determine the resulting proof key. 1065

 The RSTR MUST include a wst:RequestedProofToken element containing a 1066

wst:ComputedKey element to indicate how the proof key is to be computed. It is 1067

RECOMMENDED that an Identity Selector support the P_SHA1 computed key mechanism 1068

defined in [WS-Trust 1.2] or [WS-Trust 1.3] with the particulars below. Usage of other algorithms 1069

is not described. 1070

ComputedKey Value Meaning

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 32 of 80

http://schemas.xmlsoap.org/ws/2005/

02/trust/CK/PSHA1 or

http://docs.oasis-open.org/ws-sx/ws-

trust/200512/CK/PSHA1

The key is computed using P_SHA1 from the TLS

specification to generate a bit stream using entropy

from both sides. The exact form is:

 key = P_SHA1 (EntropyREQ, EntropyRES)

Following is a sample RSTR response fragment that illustrates a token response with partial key material 1071

from the IP/STS and a computed proof key. 1072

Example: 1073

<wst:RequestSecurityTokenResponse xmlns:wst="..."> 1074
 ... 1075
 <wst:Entropy> 1076
 <wst:BinarySecret>mQlxWxEiKOcUfnHgQpylcD7LYSkJplpE=</wst:BinarySecret> 1077
 </wst:Entropy> 1078
 <wst:RequestedProofToken> 1079
 <wst:ComputedKey> 1080
 http://schemas.xmlsoap.org/ws/2005/02/trust/CK/PSHA1 1081
 </wst:ComputedKey> 1082
 </wst:RequestedProofToken> 1083
</wst:RequestSecurityTokenResponse> 1084

For case (c) where IP/STS contributes server entropy as the sole key material: 1085

 The RSTR MUST include a wst:BinarySecret element inside a 1086

wst:RequestedProofToken element containing the specific proof key to be used. The proof 1087

key is conveyed as raw base64 encoded bits. 1088

Following is a sample RSTR response fragment that illustrates a token response with fully specified proof 1089

key from the IP/STS. 1090

Example: 1091

<wst:RequestSecurityTokenResponse xmlns:wst="..."> 1092
 ... 1093
 <wst:RequestedProofToken> 1094
 <wst:BinarySecret> 1095
 mQlxWxEiKOcUfnHgQpylcDKOcUfnHg7LYSkJplpE= 1096
 </wst:BinarySecret> 1097
 </wst:RequestedProofToken> 1098
</wst:RequestSecurityTokenResponse> 1099

The following table summarizes the symmetric proof key computation rules to be used by an Identity 1100

Selector: 1101

Token Requester (Identity

Selector)

Token Issuer (IP/STS) Results

Provides entropy Uses requester entropy as

proof key

No <wst:RequestedProofToken>

element present in RSTR. Proof key

is implied.

Provides entropy Uses requester entropy and

provides additional entropy

of its own

<wst:Entropy> element present in

RSTR containing issuer supplied

entropy.

<wst:RequestedProofToken> element

present in RSTR containing computed

key mechanism.

Requestor and Issuer compute proof

key by combining both entropies

using the specified computed key

http://schemas.xmlsoap.org/ws/2005/02/trust/CK/PSHA1
http://schemas.xmlsoap.org/ws/2005/02/trust/CK/PSHA1
http://docs.oasis-open.org/ws-sx/ws-trust/200512/CK/PSHA1
http://docs.oasis-open.org/ws-sx/ws-trust/200512/CK/PSHA1

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 33 of 80

mechanism.

Provides entropy Uses own entropy as proof

key (rejects requester

entropy)

<wst:RequestedProofToken> element

present in RSTR containing the proof

key.

3.3.5.2 Asymmetric Proof Key 1102

When requesting an asymmetric key token, it is RECOMMENDED that an Identity Selector generate an 1103

ephemeral RSA key pair. Usage of other algorithms is not described. The generated RSA key pair 1104

MUST be at least 1024-bits in size for use as the proof key. It MUST submit the public key to the IP/STS 1105

by augmenting the RST request as follows: 1106

 The RST MUST include a wst:KeyType element with one of the two following URI values, 1107

depending upon the version of WS-Trust being used: 1108

http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey 1109

http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey 1110

 The RST SOAP body MUST include a wst:UseKey element containing the public key to be used 1111

as proof key in the returned token. The public key is present as a raw RSA key in the form of a 1112
ds:RSAKeyValue element inside a ds:KeyValue element. 1113

 The RST SOAP security header SHOULD include a supporting signature to prove ownership of 1114

the corresponding private key. The ds:KeyInfo element within the signature, if present, MUST 1115

include the same public key as in the wst:UseKey element in the SOAP body. 1116

 The supporting signature, if present, MUST be placed in the SOAP security header where the 1117

signature for an endorsing supporting token would be placed as per the security header layout 1118

specified in WS-SecurityPolicy. 1119

Following is a sample RST request fragment that illustrates an asymmetric key based token request 1120

containing the public key and proof of ownership of the corresponding private key. 1121

Example: 1122

<s:Envelope xmlns:s="..." xmlns:wsse="..." xmlns:ds="..." xmlns:wst="..." 1123
 ... > 1124
 <s:Header> 1125
 ... 1126
 <wsse:Security> 1127
 ... 1128
 <ds:Signature Id="_proofSignature"> 1129
 <!-- signature proving possession of submitted proof key --> 1130
 ... 1131
 <!-- KeyInfo in signature contains the submitted proof key --> 1132
 <ds:KeyInfo> 1133
 <ds:KeyValue> 1134
 <ds:RSAKeyValue> 1135
 <ds:Modulus>...</ds:Modulus> 1136
 <ds:Exponent>...</ds:Exponent> 1137
 </ds:RSAKeyValue> 1138
 </ds:KeyValue> 1139
 </ds:KeyInfo> 1140
 </ds:Signature> 1141
 </wsse:Security> 1142
 </s:Header> 1143
 <s:Body wsu:Id="req"> 1144
 <wst:RequestSecurityToken> 1145
 ... 1146
 <wst:KeyType> 1147
 http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey 1148
 </wst:KeyType> 1149

http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 34 of 80

 <wst:UseKey Sig="#_proofSignature"> 1150
 <ds:KeyInfo> 1151
 <ds:KeyValue> 1152
 <ds:RSAKeyValue> 1153
 <ds:Modulus>...</ds:Modulus> 1154
 <ds:Exponent>...</ds:Exponent> 1155
 </ds:RSAKeyValue> 1156
 </ds:KeyValue> 1157
 </ds:KeyInfo> 1158
 </wst:UseKey> 1159
 </wst:RequestSecurityToken> 1160
 </s:Body> 1161
</s:Envelope> 1162

If a supporting signature for the submitted proof key is not present in the token request, the IP/STS MAY 1163

fail the request. If a supporting signature is present, the IP/STS MUST verify the signature and MUST 1164

ensure that the public key included in the wst:UseKey element and in the supporting signature are the 1165

same. If verification succeeds and the IP/STS accepts the submitted public key for use in the issued 1166

token, then the token response MUST NOT include a wst:RequestedProofToken element. The proof 1167

key is implied and an Identity Selector MUST use the public key it submitted as the proof key. 1168

The following table summarizes the asymmetric proof key rules used by an Identity Selector: 1169

Token Requester (Identity

Selector)

Token Issuer (IP/STS) Results

Provides ephemeral public

key for use as proof key

Uses requester supplied

proof key

No <wst:RequestedProofToken>

element present in RSTR. Proof key

is implied.

3.3.5.3 No Proof Key 1170

When requesting a token with no proof key, an Identity Selector MUST augment the RST request 1171

message as follows: 1172

 The RST MUST include a wst:KeyType element with the following URI value if [WS-Trust 1.2] is 1173

being used: 1174

http://schemas.xmlsoap.org/ws/2005/05/identity/NoProofKey 1175

or the RST MUST include a wst:KeyType element with the following URI value if [WS-Trust 1.3] is 1176

being used: 1177

http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer 1178

Following is a sample RST request fragment that illustrates a bearer token request. 1179

Example: 1180

<wst:RequestSecurityToken xmlns:wst="..."> 1181
 ... 1182
 <wst:KeyType> 1183
 http://schemas.xmlsoap.org/ws/2005/05/identity/NoProofKey 1184
 </wst:KeyType> 1185
</wst:RequestSecurityToken> 1186

When processing the token request, if the IP/STS issues a SAML v1.1 bearer token then: 1187

 It MUST specify “urn:oasis:names:tc:SAML:1.0:cm:bearer” as the subject confirmation method in 1188

the token. 1189

 It SHOULD include a saml:AudienceRestrictionCondition element restricting the token 1190

to the target site URL submitted in the token request. 1191

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 35 of 80

3.3.6 Display Token 1192

An Identity Selector MAY request a Display Token – a representation of the claims carried in the issued 1193

Security Token that can be displayed in an user interface – from an IP/STS as part of the token request. 1194

To request a Display Token, the following element MUST be included in the RST message as a top-level 1195

element information item. 1196

Syntax: 1197

<ic:RequestDisplayToken xml:lang="xs:language"? xmlns:ic="..." ... /> 1198

The following describes the attributes and elements listed in the schema outlined above: 1199

/ic:RequestDisplayToken 1200

This optional element is used to request an Identity Provider to return a Display Token 1201
corresponding to the issued token. 1202

/ic:RequestDisplayToken/@xml:lang 1203

This optional attribute indicates a language identifier, using the language codes specified in [RFC 1204
3066], in which the Display Token content SHOULD be localized. 1205

An IP/STS MAY respond to a Display Token request. If it does, it MUST use the following element to 1206

return a Display Token for the issued Security Token in the RSTR message. 1207

Syntax: 1208

<ic:RequestedDisplayToken xmlns:ic="..." ...> 1209
 <ic:DisplayToken xml:lang="xs:language" ... > 1210
 [<ic:DisplayClaim Uri="xs:anyURI" ...> 1211
 <ic:DisplayTag> xs:string </ic:DisplayTag> ? 1212
 <ic:Description> xs:string </ic:Description> ? 1213
 <ic:DisplayValue> xs:string </ic:DisplayValue> ? 1214
 </ic:DisplayClaim>] + 1215
 | 1216
 [<ic:DisplayTokenText MimeType="xs:string"> 1217
 xs:string 1218
 </ic:DisplayTokenText>] 1219
 ... 1220
 </ic:DisplayToken> 1221
</ic:RequestedDisplayToken> 1222

The following describes the attributes and elements listed in the schema outlined above: 1223

/ic:RequestedDisplayToken 1224

This optional element is used to return a Display Token for the Security Token returned in the 1225
response. 1226

/ic:RequestedDisplayToken/ic:DisplayToken 1227

The returned Display Token. 1228

/ic:RequestedDisplayToken/ic:DisplayToken/@xml:lang 1229

This required attribute indicates a language identifier, using the language codes specified in [RFC 1230
3066], in which the Display Token content is localized. 1231

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayClaim 1232

This required element indicates an individual claim returned in the Security Token. 1233

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayClaim/@Uri 1234

This required attribute provides the unique identifier (URI) of the individual claim returned in the 1235
Security Token. 1236

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 36 of 80

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayClaim/ic:DisplayTag 1237

This optional element provides a friendly name for the claim returned in the Security Token. 1238

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayClaim/ic:Description 1239

This optional element provides a description of the semantics for the claim returned in the 1240
Security Token. 1241

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayClaim/ic:DisplayValue 1242

This optional element provides the displayable value for the claim returned in the Security Token. 1243

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayTokenText 1244

This optional element provides an alternative textual representation of the entire token as a whole 1245
when the token content is not suitable for display as individual claims. 1246

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayTokenText/@MimeType 1247

This required attribute provides a MIME type specifying the format of the Display Token content 1248
(e.g., “text/plain”). 1249

The following example illustrates a returned Display Token corresponding to a Security Token with two 1250

claims. 1251

Example: 1252

<ic:RequestedDisplayToken xmlns:ic="..."> 1253
 <ic:DisplayToken xml:lang="en-us"> 1254
 <ic:DisplayClaim Uri="http://.../ws/2005/05/identity/claims/givenname"> 1255
 <ic:DisplayTag>Given Name</ic:DisplayTag> 1256
 <ic:DisplayValue>John</ic:DisplayValue> 1257
 </ic:DisplayClaim> 1258
 <ic:DisplayClaim Uri="http://.../ws/2005/05/identity/claims/surname"> 1259
 <ic:DisplayTag>Last Name</ic:DisplayTag> 1260
 <ic:DisplayValue>Doe</ic:DisplayValue> 1261
 </ic:DisplayClaim> 1262
 <ic:DisplayToken> 1263
</ic:RequestedDisplayToken> 1264

3.3.7 Token References 1265

When an IP/STS returns the token requested by an Identity Selector, it MUST also include an attached 1266

and an un-attached token reference for the issued security token using the 1267

wst:RequestedAttachedReference and wst:RequestedUnattachedReference elements, 1268

respectively, in the RSTR response message. 1269

An Identity Selector is truly a conduit for the security tokens issued by an IP/STS and requested by an 1270

RP, and it should remain agnostic of the type of the security token passing through it. Furthermore, a 1271

security token issued by an IP/STS MAY be encrypted directly for the RP, thus preventing visibility into 1272

the token by the Identity Selector. However, an Identity Selector (or a client application) needs to be able 1273

to use the issued security token to perform security operations (such as signature or encryption) on a 1274

message sent to an RP and thus needs a way to reference the token both when it is attached to a 1275

message and when it is not. The attached and unattached token references returned by an IP/STS in the 1276

RSTR message provide the necessary references that can be used for this purpose. 1277

4 Authenticating to Identity Provider 1278

The Information Card schema includes the element content necessary for an Identity Provider to express 1279

what credential the user must use in order to authenticate to the IP/STS when requesting tokens. This 1280

section defines the schema used to express the credential descriptor for each supported credential type. 1281

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 37 of 80

4.1 Username and Password Credential 1282

When the Identity Provider requires a username and password as the credential type, the following 1283

credential descriptor format MUST be used in the Information Card to specify the required credential. 1284

Syntax: 1285

<ic:UserCredential xmlns:ic="..."> 1286
 <ic:UsernamePasswordCredential> 1287
 <ic:Username> xs:string </ic:Username> ? 1288
 </ic:UsernamePasswordCredential> 1289
</ic:UserCredential> 1290

The following describes the attributes and elements listed in the schema outlined above: 1291

.../ic:UsernamePasswordCredential 1292

This element indicates that a username/password credential is needed. 1293

.../ic:UsernamePasswordCredential/ic:Username 1294

This optional element provides the username part of the credential for convenience. An Identity 1295
Selector MUST prompt the user for the password. If the username is specified, then its value 1296
MUST be copied into the username token used to authenticate to the IP/STS; else an Identity 1297
Selector MUST prompt the user for the username as well. 1298

Furthermore, the actual Security Policy of the IP/STS (expressed in its WSDL) MUST include the 1299

sp:UsernameToken assertion requiring a username and password value. 1300

4.2 Kerberos v5 Credential 1301

When the Identity Provider requires a Kerberos v5 service ticket for the IP/STS as the credential type, the 1302

following credential descriptor format MUST be used in the Information Card to specify the required 1303

credential. 1304

Syntax: 1305

<ic:UserCredential xmlns:ic="..."> 1306
 <ic:KerberosV5Credential /> 1307
</ic:UserCredential> 1308

The following describes the attributes and elements listed in the schema outlined above: 1309

.../ic:KerberosV5Credential 1310

This element indicates that a Kerberos v5 credential is needed. 1311

To enable the Service Requester to obtain a Kerberos v5 service ticket for the IP/STS, the endpoint 1312

reference of the IP/STS in the Information Card or in the metadata retrieved from it MUST include a 1313

“service principal name” identity claim (i.e. a wsai:Spn element) under the wsai:Identity tag as 1314

defined in Section 12. 1315

Furthermore, the actual Security Policy of the IP/STS (expressed in its WSDL) MUST include the 1316

sp:KerberosToken assertion requiring a Kerberos service ticket. 1317

4.3 X.509v3 Certificate Credential 1318

When the Identity Provider requires an X.509 v3 certificate for the user as the credential type, where the 1319

certificate and keys are in a hardware-based smart card or a software-based certificate, the following 1320

credential descriptor format MUST be used in the Information Card to specify the required credential. 1321

Syntax: 1322

<ic:UserCredential xmlns:ic="..." xmlns:ds="..." xmlns:wsse="..."> 1323
 <ic:DisplayCredentialHint> xs:string </ic:DisplayCredentialHint> 1324
 <ic:X509V3Credential> 1325

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 38 of 80

 <ds:X509Data> 1326
 <wsse:KeyIdentifier 1327
 ValueType="http://docs.oasisopen.org/wss/oasiswss-soap-1328
messagesecurity-1.1#ThumbPrintSHA1" 1329
 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis200401-wss-1330
soap-message-security-1.0#Base64Binary"> 1331
 xs:base64binary 1332
 </wsse:KeyIdentifier> 1333
 </ds:X509Data> 1334
 </ic:X509V3Credential> 1335
</ic:UserCredential> 1336

The following describes the attributes and elements listed in the schema outlined above: 1337

.../ic:DisplayCredentialHint 1338

This optional element provides a user hint string which can be used to prompt the user, for 1339
example, to insert the appropriate smart card into the reader. 1340

.../ic:X509V3Credential 1341

This element indicates that a X.509 certificate credential is needed. 1342

.../ic:X509V3Credential/ds:X509Data/wsse:KeyIdentifier 1343

This element provides a key identifier for the X.509 certificate based on the SHA1 hash of the 1344
entire certificate content expressed as a “thumbprint.” Note that the extensibility point in the 1345
ds:X509Data element is used to add wsse:KeyIdentifier as a child element. 1346

Furthermore, the actual Security Policy of the IP/STS, expressed in its WSDL, MUST include the 1347

sp:X509Token assertion requiring an X.509v3 certificate. 1348

4.4 Self-issued Token Credential 1349

When the Identity Provider requires a self-issued token as the credential type, the following credential 1350

descriptor format MUST be used in the Information Card to specify the required credential. 1351

Syntax: 1352

<ic:UserCredential xmlns:ic="..."> 1353
 <ic:SelfIssuedCredential> 1354
 <ic:PrivatePersonalIdentifier> 1355
 xs:base64Binary 1356
 </ic:PrivatePersonalIdentifier> 1357
 </ic:SelfIssuedCredential> 1358
</ic:UserCredential> 1359

The following describes the attributes and elements listed in the schema outlined above: 1360

.../ic:SelfIssuedCredential 1361

This element indicates that a self-issued token credential is needed. 1362

.../ic:SelfIssuedCredential/ic:PrivatePersonalIdentifier 1363

This required element provides the value of the PPID claim asserted in the self-issued token 1364
used previously to register with the IP/STS (see Section 7.5.14). 1365

Furthermore, the actual Security Policy of the IP/STS (expressed in its WSDL) MUST include the 1366

sp:IssuedToken assertion requiring a self-issued token with exactly one claim, namely, the PPID. 1367

5 Faults 1368

In addition to the standard faults described in WS-Addressing, WS-Security and WS-Trust, this profile 1369

defines the following additional faults that MAY occur when interacting with an RP or an IP. The binding of 1370

the fault properties (listed below) to a SOAP 1.1 or SOAP 1.2 fault message is described in [WS-1371

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 39 of 80

Addressing]. If the optional [Detail] property for a fault includes any specified content, then the 1372

corresponding schema fragment is included in the listing below. 1373

5.1 Relying Party 1374

The following faults MAY occur when submitting Security Tokens to an RP per its Security Policy. 1375

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:RequiredClaimMissing

[Reason] A required claim is missing from the Security Token.

[Detail] [URI of missing claim]

<ic:ClaimType Uri="[Claim URI]" />

 1376

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:InvalidClaimValue

[Reason] A claim value asserted in the Security Token is invalid.

[Detail] [URI of invalid claim]
<ic:ClaimType Uri="[Claim URI]" />

5.2 Identity Provider 1377

The following faults MAY occur when requesting Security Tokens from an IP using Information Cards. 1378

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:MissingAppliesTo

[Reason] The request is missing Relying Party identity information.

[Detail] (None defined.)

 1379

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:InvalidProofKey

[Reason] Invalid proof key specified in request.

[Detail] (None defined.)

 1380

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 40 of 80

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:UnknownInformationCardReference

[Reason] Unknown Information Card reference specified in request.

[Detail] [Unknown Information Card reference]

<ic:InformationCardReference>

 <ic:CardId>[card ID]</ic:CardId>

 <ic:CardVersion>[version]</ic:CardVersion>

</ic:InformationCardReference>

 1381

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:FailedRequiredClaims

[Reason] Could not satisfy required claims in request; construction of
token failed

[Detail] [URIs of claims that could not be satisfied]

<ic:ClaimType Uri="[Claim URI]" />

...

 1382

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:InformationCardRefreshRequired

[Reason] Stale Information Card reference specified in request;
Information Card SHOULD be refreshed

[Detail] [Information Card reference that needs refreshing]

<ic:InformationCardReference>

 <ic:CardId>[card ID]</ic:CardId>

 <ic:CardVersion>[version]</ic:CardVersion>

</ic:InformationCardReference>

5.2.1 Identity Provider Custom Error Messages 1383

Identity Providers MAY return custom error messages to Identity Selectors via SOAP faults that can be 1384

displayed by the Identity Selector user interface. The error message MUST be communicated as an 1385

S:Text element within the S:Reason element of a SOAP fault message. Multiple S:Text elements 1386

MAY be returned with different xml:lang values and the Identity Selector SHOULD use the one 1387

matching the user‟s locale, if possible. 1388

Example: 1389

<s:Envelope xmlns:wsa="http://www.w3.org/2005/08/addressing" 1390
 xmlns:s="http://www.w3.org/2003/05/soap-envelope"> 1391
 <s:Header> 1392
 <wsa:Action s:mustUnderstand="1"> 1393

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 41 of 80

 http://www.w3.org/2005/08/addressing/soap/fault 1394
 </wsa:Action> 1395
 </s:Header> 1396
 <s:Body> 1397
 <s:Fault> 1398
 <s:Code> 1399
 <s:Value>s:Sender</s:Value> 1400
 </s:Code> 1401
 <s:Reason> 1402
 <s:Text xml:lang="en">Message in English ...</</s:Text> 1403
 <s:Text xml:lang="es-ES">Message in the Spanish of Spain ...</s:Text> 1404
 </s:Reason> 1405
 </s:Fault> 1406
 </s:Body> 1407
</s:Envelope> 1408

6 Information Cards Transfer Format 1409

This section defines how collections of Information Cards are transferred between Identity Selectors. The 1410

cards collection is always transferred after encrypting it with a key derived from a user specified 1411

password. Section 6.1 describes the transfer format of the collection in the clear, whereas Section 6.1.2 1412

describes the transfer format after the necessary encryption is applied. 1413

6.1 Pre-Encryption Transfer Format 1414

Each Information Card in the transfer stream will contain metadata and key material maintained by the 1415

originating Identity Selector in addition to the original Information Card metadata. If an Identity Selector 1416

includes a co-resident Self-issued Identity Provider (described in Section 7), an exported self-issued card 1417

MAY also contain any associated claims information. 1418

The XML schema used for the transfer format is defined below: 1419

Syntax: 1420

<ic:RoamingStore xmlns:ic="..."> 1421
 <ic:RoamingInformationCard> + 1422
 <ic:InformationCardMetaData> 1423
 [Information Card] 1424
 <ic:IsSelfIssued> xs:boolean </ic:IsSelfIssued> 1425
 <ic:PinDigest> xs:base64Binary </ic:PinDigest> ? 1426
 <ic:HashSalt> xs:base64Binary </ic:HashSalt> 1427
 <ic:TimeLastUpdated> xs:dateTime </ic:TimeLastUpdated> 1428
 <ic:IssuerId> xs:base64Binary </ic:IssuerId> 1429
 <ic:IssuerName> xs:string </ic:IssuerName> 1430
 <ic:BackgroundColor> xs:int </ic:BackgroundColor> 1431
 </ic:InformationCardMetaData> 1432
 <ic:InformationCardPrivateData> ? 1433
 <ic:MasterKey> xs:base64Binary </ic:MasterKey> 1434
 <ic:ClaimValueList> ? 1435
 <ic:ClaimValue Uri="xs:anyURI" ...> + 1436
 <ic:Value> xs:string </ic:Value> 1437
 </ic:ClaimValue> 1438
 </ic:ClaimValueList> 1439
 </ic:InformationCardPrivateData> 1440
 ... 1441
 </ic:RoamingInformationCard> 1442
 ... 1443
</ic:RoamingStore> 1444

The following describes the attributes and elements listed in the schema outlined above: 1445

/ic:RoamingStore 1446

The collection of Information Cards selected for transfer. 1447

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 42 of 80

/ic:RoamingStore/ic:RoamingInformationCard (one or more) 1448

An individual Information Card within the transfer stream. 1449

For brevity, the prefix string “/ic:RoamingStore/ic:RoamingInformationCard” in the element names below 1450
is shortened to “...”. 1451

.../ic:InformationCardMetaData 1452

This required element contains the metadata for an Information Card. 1453

.../ic:InformationCardMetaData/[Information Card] 1454

The original content of the Information Card as issued by the Identity Provider (described in 1455
Section 3.1.1). 1456

.../ic:InformationCardMetaData/ic:IsSelfIssued 1457

This required element indicates if the card is self-issued (“true”) or not (“false”). 1458

.../ic:InformationCardMetaData/ic:PinDigest 1459

This optional element contains a digest of the user-specified PIN information if the card is PIN-1460
protected. The digest contains the base64 encoded bytes of the SHA1 hash of the bytes of the 1461
user-specified PIN represented using Unicode encoding UTF-16LE with no byte order mark. 1462
Usage of other algorithms is not described. 1463

.../ic:InformationCardMetaData/ic:HashSalt 1464

This optional element contains a random per-card entropy value used for computing the Relying 1465
Party specific PPID claim when the card is used at a Relying Party and for computing the Client 1466
Pseudonym PPID value sent an Identity Provider. 1467

.../ic:InformationCardMetaData/ic:TimeLastUpdated 1468

This required element contains the date and time when the card was last updated. 1469

.../ic:InformationCardMetaData/ic:IssuerId 1470

This required element contains an identifier for the Identity Provider with which a self-issued 1471
credential descriptor in a card issued by that Identity Provider can be resolved to the correct self-1472
issued card. The element content SHOULD be the empty string for self-issued cards. 1473

.../ic:InformationCardMetaData/ic:IssuerName 1474

This required element contains a friendly name of the card issuer. 1475

.../ic:InformationCardMetaData/ic:BackgroundColor 1476

This required element contains the background color used to display the card image. This value 1477
is a 3-byte RGB color value in the sRGB color space used by HTML. 1478

.../ic:InformationCardMetaData/{any} 1479

This is an extensibility point to allow additional metadata to be included. 1480

.../ic:InformationCardPrivateData 1481

This required element contains the private data for an Information Card. 1482

.../ic:InformationCardPrivateData/ic:MasterKey 1483

This required element contains a base64 encoded 256-bit random number that provides a “secret 1484
key” for the Information Card. This key is used for computing the Relying Party specific PPID 1485
claim when the card is used at a Relying Party and for computing the Client Pseudonym PPID 1486
value sent to an Identity Provider. This element is present both for self-issued and managed 1487
Information Cards. 1488

.../ic:InformationCardPrivateData/ic:ClaimValueList 1489

This optional element is a container for the set of claim types and their corresponding values 1490
embodied by a self-issued card. 1491

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 43 of 80

.../ic:InformationCardPrivateData/ic:ClaimValueList/ic:ClaimValue (one or more) 1492

This required element is a container for an individual claim, i.e., a claim type and its 1493
corresponding value. 1494

.../ic:InformationCardPrivateData/ic:ClaimValueList/ic:ClaimValue/@Uri 1495

This required attribute contains a URI that identifies the specific claim type. 1496

.../ic:InformationCardPrivateData/ic:ClaimValueList/ic:ClaimValue/ic:Value 1497

This required element contains the value for an individual claim type. 1498

…/@{any} 1499

This is an extensibility point to allow additional attributes to be specified. While an Identity 1500
Selector MAY ignore any extensions it does not recognize it SHOULD preserve those that it does 1501
not recognize and emit them in the respective 1502
ic:RoamingStore/ic:RoamingInformationCard element when updating information using 1503

the Information Cards Transfer Format. 1504

…/{any} 1505

This is an extensibility point to allow additional metadata elements to be specified. While an 1506
Identity Selector MAY ignore any extensions it does not recognize it SHOULD preserve those that 1507
it does not recognize and emit them in the respective 1508
ic:RoamingStore/ic:RoamingInformationCard element when updating information using 1509

the Information Cards Transfer Format. 1510

/ic:RoamingStore/@{any} 1511

This is an extensibility point to allow additional attributes to be specified. While an Identity 1512
Selector MAY ignore any extensions it does not recognize it SHOULD preserve those that it does 1513

not recognize and emit them in the respective ic:RoamingStore element when updating 1514

information using the Information Cards Transfer Format. 1515

/ic:RoamingStore/{any} 1516

This is an extensibility point to allow additional metadata elements to be specified. While an 1517
Identity Selector MAY ignore any extensions it does not recognize it SHOULD preserve those that 1518
it does not recognize and emit them in the respective ic:RoamingStore element when 1519

updating information using the Information Cards Transfer Format. 1520

6.1.1 PIN Protected Card 1521

When an Information Card is PIN protected, in addition to storing a digest of the PIN in the card data, the 1522

master key and claim values associated with the card MUST also be encrypted with a key derived from 1523

the user-specified PIN. 1524

It is RECOMMENDED that the PKCS-5 based key derivation method be used with the input parameters 1525

summarized in the table below for deriving the encryption key from the PIN. Usage of other algorithms is 1526

not described. 1527

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 44 of 80

Key derivation method PBKDF1 per [RFC 2898] (Section 5.1)

Input parameters:

 Password UTF-8 encoded octets of PIN

 Salt 16-byte random number (actual value stored

along with master key)

 Iteration count 1000 (actual value stored along with master

key)

 Key length 32 octets

 Hash function SHA-256

The encryption method and the corresponding parameters that MUST be used are summarized in the 1528

table below. 1529

Encryption method AES-256

Parameters:

 Padding As per PKCS-7 standard

 Mode CBC

 Block size 16 bytes (as REQUIRED by AES)

In a PIN-protected card, the encrypted content of the master key and the claim value fields are described 1530

below. 1531

.../ic:InformationCardPrivateData/ic:MasterKey 1532

This element MUST contain a base64 encoded byte array comprised of the encryption 1533
parameters and the encrypted master key serialized as per the binary structure summarized in 1534
the table below. 1535

Field Offset Size (bytes)

Version (for internal use) 0 1

Salt used for key-derivation method 1 16

Iteration count used for key-derivation method 17 4

Initialization Vector (IV) used for encryption 21 16

Encrypted master key 37 master key

length

.../ic:InformationCardPrivateData/ic:ClaimValueList/ic:ClaimValue/ic:Value 1536

This element MUST contain a base64 encoded byte array comprised of the encrypted claim 1537
value. The encryption parameters used are taken from those serialized into the master key field 1538
and summarized in the table above. 1539

6.1.2 Computing the ic:IssuerId 1540

The ic:IssuerId value used for a card when representing it in the Information Cards Transfer Format 1541

SHOULD be computed as a function of the ds:KeyInfo field of the envelope digitally signed by the 1542

Identity Provider. Specifically: 1543

 Compute IP PPID Seed in the same manner as RP PPID Seed in Section 7.6.1, except that the 1544

certificate from ds:KeyInfo is used, rather than the Relying Party‟s. 1545

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 45 of 80

Use the IP PPID Seed as the ic:IssuerId value. 1546

The ic:IssuerId value SHOULD be the empty string for self-issued cards. 1547

6.1.3 Computing the ic:IssuerName 1548

The ic:IssuerName value used for a card when representing it in the Information Cards Transfer 1549

Format SHOULD be computed as a function of the ds:KeyInfo field of the envelope digitally signed by 1550

the Identity Provider. Specifically, if the certificate from ds:KeyInfo is an extended validation (EV) 1551

certificate [EV Cert], then set ic:IssuerName to the organizationName (O) field value from the 1552

certificate, otherwise set ic:IssuerName to the commonName (CN) field value from the certificate. 1553

6.1.4 Creating the ic:HashSalt 1554

A random ic:HashSalt value for a card SHOULD be created by the Identity Selector when that card is 1555

created from the ic:InformationCard data provided by an Identity Provider. 1556

6.2 Post-Encryption Transfer Format 1557

The transfer stream MUST be encrypted with a key derived from a user specified password. The XML 1558

schema used for the encrypted transfer stream is defined below: 1559

Syntax: 1560

Byte-order-mark 1561
<?xml version="1.0" encoding="utf-8"?> 1562
<ic:EncryptedStore xmlns:ic="..." xmlns:xenc="..."> 1563
 <ic:StoreSalt> xs:base64Binary </ic:StoreSalt> 1564
 <xenc:EncryptedData> 1565
 <xenc:CipherData> 1566
 <xenc:CipherValue> ... </xenc:CipherValue> 1567
 </xenc:CipherData> 1568
 </xenc:EncryptedData> 1569
</ic:EncryptedStore> 1570
... 1571

The following describes the elements listed in the XML schema outlined above: 1572

Byte-order-mark 1573

The first three bytes in the stream containing the values {0xEF, 0xBB, 0xBF} constitutes a “byte 1574
order mark”. 1575

/ic:EncryptedStore 1576

The top-level container element for the encrypted transfer stream. 1577

/ic:EncryptedStore/ic:StoreSalt 1578

This required element contains the random salt used as a parameter for the key derivation 1579
function to derive the encryption key from a user-specified password. 1580

/ic:EncryptedStore/xenc:EncryptedData/xenc:CipherData/xenc:CipherValue 1581

This element contains a base64 encoded byte array containing the ciphertext corresponding to 1582
the clear text transfer stream described in Section 6.1. 1583

@{any} 1584

This is an extensibility point to allow additional attributes to be specified. While an Identity 1585
Selector MAY ignore any extensions it does not recognize it SHOULD preserve those that it does 1586
not recognize and emit them when updating information using the Information Cards Transfer 1587
Format. 1588

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 46 of 80

{any} 1589

This is an extensibility point to allow additional metadata elements to be specified. While an 1590
Identity Selector MAY ignore any extensions it does not recognize it SHOULD preserve those that 1591
it does not recognize and emit them when updating information using the Information Cards 1592
Transfer Format. 1593

The remainder of this section describes the element content of the xenc:CipherValue element in the 1594

schema outline above. Specifically, it describes the encryption method used and the format of the 1595

encrypted content. 1596

The following table defines two symbolic constants, namely EncryptionKeySalt and IntegrityKeySalt, and 1597

their corresponding values used by the key derivation and the encryption methods described below to 1598

encrypt the transfer stream. 1599

EncryptionKeySalt { 0xd9, 0x59, 0x7b, 0x26, 0x1e, 0xd8, 0xb3,

0x44, 0x93, 0x23, 0xb3, 0x96, 0x85, 0xde,

0x95, 0xfc }

IntegrityKeySalt { 0xc4, 0x01, 0x7b, 0xf1, 0x6b, 0xad, 0x2f,

0x42, 0xaf, 0xf4, 0x97, 0x7d, 0x4, 0x68, 0x3,

0xdb }

The transfer stream content is encrypted with a key derived from a user-specified password. It is 1600

RECOMMENDED that the PKCS-5 based key derivation method be used with the input parameters 1601

summarized in the table below for deriving the key from the password. Usage of other algorithms is not 1602

described. 1603

Key derivation method PBKDF1 per [RFC 2898] (Section 5.1)

Input parameters:

 Password UTF-8 encoded octets of user-specified

password

 Salt 16-byte random number (actual value stored

in the ic:StoreSalt field)

 Iteration count 1000

 Key length 32 octets

 Hash function SHA-256

The PKCS-5 key derived as per the preceding table MUST be further hashed with a 16-byte salt using the 1604

SHA256 hash function, and the resulting value used as the encryption key. The order in which the values 1605

used MUST be hashed is as follows: 1606

Encryption Key = SHA256 (EncryptionKeySalt + PKCS5-derived-key) 1607

Further, to provide an additional integrity check at the time of import, a “hashed integrity code” MUST be 1608

computed as follows and included along with the encrypted transfer stream content. 1609

 The PKCS-5 key derived as per the preceding table MUST be further hashed with a 16-byte salt 1610

using the SHA256 hash function, and the resulting value used as the integrity key. The order in 1611

which the values used MUST be hashed is as follows: 1612

Integrity Key = SHA256 (IntegrityKeySalt + PKCS5-derived-key) 1613

 The last block of the clear text transfer stream MUST be captured and further hashed with the 1614

integrity key (IK) and the initialization vector (IV) using the SHA256 hash function, and the 1615

resulting value used as the hashed integrity code. The order in which the values used MUST be 1616

hashed is as follows: 1617

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 47 of 80

Hashed Integrity Code = SHA256 (IV + IK + Last-block-of-clear-text) 1618

The encryption method and the corresponding parameters that MUST be used to encrypt the transfer 1619

stream are summarized in the table below. 1620

Encryption method AES-256

Parameters:

 Padding As per PKCS-7 standard

 Mode CBC

 Block size 16 bytes (as REQUIRED by AES)

The element content of xenc:CipherValue MUST be a base64 encoded byte array comprised of the 1621

initialization vector used for encryption, the hashed integrity code (as described above), and the 1622

encrypted transfer stream. It MUST be serialized as per the binary structure summarized in the table 1623

below. 1624

Field Offset Size (bytes)

Initialization Vector (IV) used for encryption 0 16

Hashed integrity code 16 32

Ciphertext of transfer stream 48 Arbitrary

7 Simple Identity Provider Profile 1625

A simple Identity Provider, called the “Self-issued Identity Provider” (SIP), is one which allows users to 1626

self-assert identity in the form of self-issued tokens. An Identity Selector MAY include a co-resident Self-1627

issued Identity Provider that conforms to the Simple Identity Provider Profile defined in this section. This 1628

profile allows self-issued identities created within one Identity Selector to be used in another Identity 1629

Selector such that users do not have to reregister at a Relying Party when switching Identity Selectors. 1630

Because of the co-location there is data and metadata specific to an Identity Provider that need to be 1631

shareable between Identity Selectors. 1632

7.1 Self-Issued Information Card 1633

The ic:Issuer element within an Information Card provides a logical name for the issuer of the 1634

Information Card. An Information Card issued by a SIP (i.e., a self-issued Information Card) MUST use 1635

the special URI below as the value of the ic:Issuer element in the Information Card. 1636

URI: 1637

http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self 1638

7.2 Self-Issued Token Characteristics 1639

The self-issued tokens issued by a SIP MUST have the following characteristics: 1640

 The token type of the issued token MUST be SAML 1.1 which MUST be identified by either of the 1641

following token type URIs: 1642

o urn:oasis:names:tc:SAML:1.0:assertion, or 1643

o http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1. 1644

 It is RECOMMENDED that the signature key used in the issued token be a 2048-bit asymmetric 1645

RSA key which identifies the issuer. Usage of other algorithms is not described. 1646

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 48 of 80

 The issuer of the token, indicated by the value of the saml:Issuer attribute on the 1647

saml:Assertion root element, MUST be identified by the following URI defined in Section 2.1.1 1648

representing the issuer “self”. 1649

http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self 1650

 The issued token MUST contain the saml:Conditions element specifying: 1651

o the token validity interval using the NotBefore and NotOnOrAfter attributes, and 1652

o the saml:AudienceRestrictionCondition element restricting the token to a 1653

specific target scope (i.e., a specific recipient of the token). 1654

 The saml:NameIdentifier element SHOULD NOT be used to specify the Subject of the 1655

token. 1656

 The subject confirmation method MUST be specified as one of: 1657

o urn:oasis:names:tc:SAML:1.0:cm:holder-of-key, or 1658

o urn:oasis:names:tc:SAML:1.0:cm:bearer (for Browser based applications). 1659

 When the subject confirmation method is “holder of key”, the subject confirmation key (also 1660

referred to as the proof key) MUST be included in the token in the ds:KeyInfo child element 1661

under the saml:SubjectConfirmation element. The proof key MUST be encoded in the 1662

token as follows: 1663

o For symmetric key tokens, the proof key is encrypted to the recipient of the token in the 1664
form of a xenc:EncryptedKey child element. It is RECOMMENDED that an AES key 1665

with a default size of 256 bits be used, but a different size MAY be specified by the 1666

Relying Party. Usage of other algorithms is not described. 1667

o For asymmetric key tokens, it is RECOMMENDED that the proof key be a public RSA 1668
key value specified as a ds:RSAKeyValue child element under the ds:KeyValue 1669

element. The default size of the key is 2048 bits. Usage of other algorithms is not 1670

described. 1671

 The issued token MUST contain a single attribute statement (i.e., a single 1672

saml:AttributeStatement element) containing the subject confirmation data and the 1673

requested claims (called attributes in a SAML token). 1674

 The claim types supported by the self-issued token SHOULD include those listed in Section7.5. 1675

 The claims asserted in the saml:AttributeStatement element of the issued token MUST be 1676

named as follows using the claim type definitions in the XML schema file referenced in 1677
Section7.5. For each claim represented by a saml:Attribute element, 1678

o the AttributeName attribute is set to the NCname of the corresponding claim type 1679

defined in the XML schema file, and 1680

o the AttributeNamespace attribute is set to the target namespace of the XML schema 1681

file, namely 1682

http://schemas.xmlsoap.org/ws/2005/05/identity/claims 1683

It is RECOMMENDED that the XML digital signature [XMLDSIG] profile used to sign a self-issued token 1684

be as follows. Usage of other algorithms is not described. 1685

 Uses the enveloped signature format identified by the transform algorithm identifier 1686

“http://www.w3.org/2000/09/xmldsig#enveloped-signature”. The token signature contains a single 1687
ds:Reference containing a URI reference to the AssertionID attribute value of the root 1688

element of the SAML token. 1689

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 49 of 80

 Uses the RSA signature method identified by the algorithm identifier 1690

“http://www.w3.org/2000/09/xmldsig#rsa-sha1”. 1691

 Uses the exclusive canonicalization method identified by the algorithm identifier 1692

“http://www.w3.org/2001/10/xml-exc-c14n#” for canonicalizing the token content as well as the 1693

signature content. 1694

 Uses the SHA1 digest method identified by the algorithm identifier 1695

“http://www.w3.org/2000/09/xmldsig#sha1” for digesting the token content being signed. 1696

 No other transforms, other than the ones listed above, are used in the enveloped signature. 1697

 The ds:KeyInfo element is always present in the signature carrying the signing RSA public key 1698

in the form of a ds:RSAKeyValue child element. 1699

Following is an example of a self-issued signed Security Token containing three claims. 1700

Example: 1701

<Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion" 1702
 AssertionID="urn:uuid:08301dba-d8d5-462f-85db-dec08c5e4e17" 1703
 Issuer="http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self" 1704
 IssueInstant="2004-10-06T16:44:20.00Z" 1705
 MajorVersion="1" MinorVersion="1"> 1706
 <Conditions NotBefore="2004-10-06T16:44:20.00Z" 1707
 NotOnOrAfter="2004-10-06T16:49:20.00Z"> 1708
 <AudienceRestrictionCondition> 1709
 <Audience>http://www.relying-party.com</Audience> 1710
 </AudienceRestrictionCondition> 1711
 </Conditions> 1712
 <AttributeStatement> 1713
 <Subject> 1714
 <!-- Content here differs; see examples that follow --> 1715
 </Subject> 1716
 <Attribute AttributeName="privatepersonalidentifier" 1717
AttributeNamespace="http://schemas.xmlsoap.org/ws/2005/05/identity/claims"> 1718
 <AttributeValue> 1719
 f8301dba-d8d5a904-462f0027-85dbdec0 1720
 </AttributeValue> 1721
 </Attribute> 1722
 <Attribute AttributeName="givenname" 1723
AttributeNamespace="http://schemas.xmlsoap.org/ws/2005/05/identity/claims"> 1724
 <AttributeValue>dasf</AttributeValue> 1725
 </Attribute> 1726
 <Attribute AttributeName="emailaddress" 1727
AttributeNamespace="http://schemas.xmlsoap.org/ws/2005/05/identity/claims"> 1728
 <AttributeValue>dasf@mail.com</AttributeValue> 1729
 </Attribute> 1730
 </AttributeStatement> 1731
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#"> 1732
 <SignedInfo> 1733
 <CanonicalizationMethod 1734
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1735
 <SignatureMethod 1736
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 1737
 <Reference URI="urn:uuid:08301dba-d8d5-462f-85db-dec08c5e4e17"> 1738
 <Transforms> 1739
 <Transform 1740
 Algorithm="http://.../2000/09/xmldsig#enveloped-signature"/> 1741
 <Transform 1742
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1743
 </Transforms> 1744
 <DigestMethod 1745
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1746
 <DigestValue>vpnIyEi4R/S4b+1vEH4gwQ9iHsY=</DigestValue> 1747

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 50 of 80

 </Reference> 1748
 </SignedInfo> 1749
 <SignatureValue>...</SignatureValue> 1750
 <!-- token signing key --> 1751
 <KeyInfo> 1752
 <KeyValue> 1753
 <RSAKeyValue> 1754
 <Modulus>... utnQyEi8R/S4b+1vEH4gwR9ihsV ...</Modulus> 1755
 <Exponent>AQAB</Exponent> 1756
 </RSAKeyValue> 1757
 </KeyValue> 1758
 </KeyInfo> 1759
 </Signature> 1760
</Assertion> 1761

The content of the saml:Subject element in the self-issued token differs based on the subject 1762

confirmation method and the type of proof key used. The following examples illustrate each of the three 1763

variations of the content of this element. 1764

The following example illustrates the content of the saml:Subject element when subject confirmation 1765

method is “holder of key” using a symmetric proof key. 1766

Example: 1767

<Subject xmlns="urn:oasis:names:tc:SAML:1.0:assertion" xmlns:ds="..." 1768
 xmlns:wsse="..." xmlns:xenc="..."> 1769
 <SubjectConfirmation> 1770
 <ConfirmationMethod> 1771
 urn:oasis:names:tc:SAML:1.0:cm:holder-of-key 1772
 </ConfirmationMethod> 1773
 <ds:KeyInfo> 1774
 <!-- symmetric proof key encrypted to recipient --> 1775
 <xenc:EncryptedKey> 1776
 <xenc:EncryptionMethod 1777
 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/> 1778
 <ds:KeyInfo> 1779
 <ds:X509Data> 1780
 <wsse:KeyIdentifier 1781
 ValueType="http://docs.oasis-open.org/wss/2004/xx/oasis-2004xx-1782
wss-soap-message-security-1.1#ThumbprintSHA1"> 1783
 EdFoIaAeja85201XTzjNMVWy7532jUYtrx= 1784
 </wsse:KeyIdentifier> 1785
 </ds:X509Data> 1786
 </ds:KeyInfo> 1787
 <xenc:CipherData> 1788
 <xenc:CipherValue> 1789
 AuFhiu72+1kaJiAuFhiu72+1kaJi= 1790
 </xenc:CipherValue> 1791
 </xenc:CipherData> 1792
 </xenc:EncryptedKey> 1793
 </ds:KeyInfo> 1794
 </SubjectConfirmation> 1795
</Subject> 1796

The following example illustrates the content of the saml:Subject element when subject confirmation 1797

method is “holder of key” using an asymmetric proof key. 1798

Example: 1799

<Subject xmlns="urn:oasis:names:tc:SAML:1.0:assertion" xmlns:ds="..."> 1800
 <SubjectConfirmation> 1801
 <ConfirmationMethod> 1802
 urn:oasis:names:tc:SAML:1.0:cm:holder-of-key 1803
 </ConfirmationMethod> 1804
 <ds:KeyInfo> 1805

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 51 of 80

 <!-- asymmetric RSA public key as proof key --> 1806
 <ds:KeyValue> 1807
 <ds:RSAKeyValue> 1808
 <ds:Modulus>... FntQyKi6R/E4b+1vDH4gwS5ihsU ...</ds:Modulus> 1809
 <ds:Exponent>AQAB</ds:Exponent> 1810
 </ds:RSAKeyValue> 1811
 </ds:KeyValue> 1812
 </ds:KeyInfo> 1813
 </SubjectConfirmation> 1814
</Subject> 1815

The following example illustrates the content of the saml:Subject element when subject confirmation 1816

method is “bearer” using no proof key. 1817

Example: 1818

<Subject xmlns="urn:oasis:names:tc:SAML:1.0:assertion"> 1819
 <SubjectConfirmation> 1820
 <ConfirmationMethod> 1821
 urn:oasis:names:tc:SAML:1.0:cm:bearer 1822
 </ConfirmationMethod> 1823
 </SubjectConfirmation> 1824
</Subject> 1825

7.3 Self-Issued Token Encryption 1826

One of the goals of the Information Card Model is to ensure that any claims are exposed only to the 1827

Relying Party intended by the user. For this reason, the SIP SHOULD encrypt the self-issued token under 1828

the key of the Relying Party. This guarantees that a token intended for one Relying Party cannot be 1829

decoded by nor be meaningful to another Relying Party. As described in Section 8.3, when the Relying 1830

Party is not identified by a certificate, because no key is available for the Relying Party in this case, the 1831

token can not be encrypted, but SHOULD still be signed. 1832

When a self-issued token is encrypted, the XML encryption [XMLENC] standard MUST be used. The 1833

encryption construct MUST use encrypting the self-issued token with a randomly generated symmetric 1834

key which in turn is encrypted to the Relying Party‟s public key taken from its X.509 v3 certificate. The 1835

encrypted symmetric key MUST be placed in an xenc:EncryptedKey element within the 1836

xenc:EncryptedData element carrying the encrypted Security Token. 1837

It is RECOMMENDED that the XML encryption [XMLENC] profile that is used for encrypting the key and 1838

the token be as follows. Usage of other algorithms is not described. 1839

 Uses the RSA-OAEP key wrap method identified by the algorithm identifier 1840

“http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p” for encrypting the encryption key. 1841

 Uses the AES256 with CBC encryption method identified by the algorithm 1842

“http://www.w3.org/2001/04/xmlenc#aes256-cbc” for encrypting the token. The padding method 1843

used is as per the PKCS-7 standard in which the number of octets remaining in the last block is 1844

used as the padding octet value. 1845

 The ds:KeyInfo element is present in the encrypted key specifying the encryption key 1846

information in the form of a Security Token reference. 1847

Following is an illustration of a self-issued token encrypted to a Relying Party using the encryption 1848

structure described above. 1849

Example: 1850

<xenc:EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element" 1851
 xmlns:xenc="..." xmlns:ds="..." xmlns:wsse="..."> 1852
 <xenc:EncryptionMethod 1853
 Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" /> 1854
 <ds:KeyInfo> 1855

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 52 of 80

 <xenc:EncryptedKey> 1856
 <xenc:EncryptionMethod 1857
 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"> 1858
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1859
 </xenc:EncryptionMethod 1860
 <ds:KeyInfo> 1861
 <wsse:SecurityTokenReference> 1862
 <wsse:KeyIdentifier 1863
 ValueType="http://docs.oasis-open.org/wss/2004/xx/oasis-2004xx-1864
wss-soap-message-security-1.1#ThumbprintSHA1" 1865
 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis200401-1866
wss-soap-message-security-1.0#Base64Binary"> 1867
 +PYbznDaB/dlhjIfqCQ458E72wA= 1868
 </wsse:KeyIdentifier> 1869
 </wsse:SecurityTokenReference> 1870
 </ds:KeyInfo> 1871
 <xenc:CipherData> 1872
 <xenc:CipherValue>...Ukasdj8257Fjwf=</xenc:CipherValue> 1873
 </xenc:CipherData> 1874
 </xenc:EncryptedKey> 1875
 </ds:KeyInfo> 1876
 <xenc:CipherData> 1877
 <!-- Start encrypted Content 1878
 <Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion" 1879
 AssertionID="urn:uuid:08301dba-d8d5-462f-85db-dec08c5e4e17" ...> 1880
 ... 1881
 </Assertion> 1882
 End encrypted content --> 1883
 <xenc:CipherValue>...aKlh4817JerpZoDofy90=</xenc:CipherValue> 1884
 </xenc:CipherData> 1885
</xenc:EncryptedData> 1886

7.4 Self-Issued Token Signing Key 1887

The key used to sign a self-issued token presented to a Relying Party also represents a unique identifier 1888

for the Subject of the token. In order to prevent the key from becoming a correlation identifier across 1889

relying parties, a SIP SHOULD use a different key to sign a self-issued token for each Relying Party 1890

where the card is used. In other words, the key used to sign the self-issued token is pair-wise unique for a 1891

given Information Card and RP combination. To allow self-issued identities created by a SIP within one 1892

Identity Selector to be used in another, the signing keys used by the two SIPs SHOULD be the same. 1893

It is RECOMMENDED that the signing key be an RSA key. Usage of other algorithms is not described. 1894

This section specifies the “processing rules” that SHOULD be used by a SIP to derive the RSA key used 1895

to sign the self-issued token for a combination of an Information Card and an RP where the card is used. 1896

Each self-issued Information Card contains a 256-bit secret random number, called the “master key” (see 1897

Section 6.1), that is used as the secret entropy in deriving the token signing RSA key. (Managed 1898

Information Cards also have a master key that is used in the Client Pseudonym PPID calculation, as per 1899

Section 3.3.4.1.) 1900

Key derivation is done according to the ANSI X9.31 standard for key generation which starts with 1901

requiring the use of six random values denoted by Xp1, Xp2, Xq1, Xq2, Xp, and Xq. The processing rules 1902

described here enunciate how to transform the master key in an Information Card into the six random 1903

inputs for the X9.31 key generation process. The actual key computation algorithm in the X9.31 standard 1904

is not reproduced here. 1905

The values Xp and Xq are REQUIRED to be at least 512 bits and each independently carries the full 1906

entropy of any Information Card master key of up to 512 bits in length. The values Xp1, Xp2, Xq1, and Xq2 1907

have a length of only 100 to 121 bits and therefore will be shorter than the Information Card master key 1908

and hence cannot each independently carry the full master key entropy. The details of the X9.31 protocol, 1909

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 53 of 80

however, ensure that for reasonably sized master keys, full entropy will be achieved in the generated 1910

asymmetric key pair. 1911

7.4.1 Processing Rules 1912

This key generation mechanism can be used to generate 1024 or 2048-bit RSA keys. 1913

Notation: If H is an n-bit big-endian value, the convention H[1..p] denotes bits 1 through p in the value of 1914

H where p ≤ n, and bit-1 is the rightmost (least significant) bit whereas bit-n is the leftmost (most 1915

significant) bit in the value of H. Also, the convention X + Y denotes the concatenation of the big-endian 1916

bit value of X followed by the big-endian bit value of Y. 1917

Assume that the master key for the selected Information Card (see Section 6.1) is M and the unique RP 1918

Identifier (derived as per Section 7.6.1) is T. The following processing rules SHOULD be used to derive 1919

the inputs for the X9.31 key generation process. 1920

1. Define 32-bit DWORD constants Cn as follows: 1921

Cn = n, where n = 0,1,2,...,15 1922

2. Compute SHA-1 hash values Hn as follows: 1923

If the requested key size = 1024 bits, compute 1924

Hn = SHA1 (M + T + Cn) for n = 0,1,2,...,9 1925

If the requested key size = 2048 bits, compute 1926

Hn = SHA1 (M + T + Cn) for n = 0,1,2,...,15 1927

3. Extract the random input parameters for the X9.31 protocol as follows: 1928

For all key sizes, compute 1929

Xp1 [112-bits long] = H0[1..112] 1930

Xp2 [112-bits long] = H1[1..112] 1931

Xq1 [112-bits long] = H2[1..112] 1932

Xq2 [112-bits long] = H3[1..112] 1933

If the requested key size = 1024 bits, compute 1934

Xp [512-bits long] = H4[1..160] + H5[1..160] + H6[1..160] + H0[129..160] 1935

Xq [512-bits long] = H7[1..160] + H8[1..160] + H9[1..160] + H1[129..160] 1936

If the requested key size = 2048 bits, compute 1937

Xp [1024-bits long] = H4[1..160] + H5[1..160] + H6[1..160] + H0[129..160] + 1938

 H10[1..160] + H11[1..160] + H12[1..160] + H2[129..160] 1939

Xq [1024-bits long] = H7[1..160] + H8[1..160] + H9[1..160] + H1[129..160] + 1940

 H13[1..160] + H14[1..160] + H15[1..160] + H3[129..160] 1941

4. The X9.31 specification (Section 4.1.2) requires that the input values Xp1, Xp2, Xq1, Xq2 MUST 1942

satisfy the following conditions. 1943

 The large prime factors p1, p2, q1, and q2 are the first primes greater than their respective 1944

random Xp1, Xp2, Xq1, Xq2 input values. They are randomly selected from the set of prime 1945

numbers between 2
100

 and 2
120

, and each SHALL pass at least 27 iterations of Miller-1946

Rabin. 1947

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 54 of 80

To ensure that the lower bound of 2
100

 is met, set the 101
th
 bit of Xp1, Xp2, Xq1, Xq2 to „1‟ (i.e. 1948

Xp1[13
th
 byte] |= 0x10, Xp2[13

th
 byte] |= 0x10, Xq1[13

th
 byte] |= 0x10, Xq2[13

th
 byte] |= 0x10). 1949

5. The X9.31 specification (Section 4.1.2) requires that the input values Xp and Xq MUST satisfy the 1950

following conditions. 1951

 If the requested key size = 1024 bits, then 1952

Xp ≥ (√2)(2
511

) and Xq ≥ (√2)(2
511

) 1953

 If the requested key size = 2048 bits, then 1954

Xp ≥ (√2)(2
1023

) and Xq ≥ (√2)(2
1023

) 1955

To ensure this condition is met, set the two most significant bits of Xp and Xq to „1‟ (i.e. Xp[most 1956

significant byte] |= 0xC0, Xq[most significant byte] |= 0xC0). 1957

6. Compute 1024 or 2048-bit keys as per the X9.31 protocol using {Xp1, Xp2, Xq1, Xq2, Xp, Xq} as 1958

the random input parameters. 1959

7. Use a 32-bit DWORD size public exponent value of 65537 for the generated RSA keys. 1960

There are three conditions as follows in the X9.31 specification which, if not met, require that one or more 1961

of the input parameters MUST be regenerated. 1962

 (Section 4.1.2 of X9.31) |Xp-Xq| ≥ 2
412

 (for 1024-bit keys) or |Xp-Xq| ≥ 2
924

 (for 2048-bit keys). If 1963

not true, Xq MUST be regenerated and q recomputed. 1964

 (Section 4.1.2 of X9.31) |p-q| ≥ 2
412

 (for 1024-bit keys) or |p-q| ≥ 2
924

 (for 2048-bit keys). If not 1965

true, Xq MUST be regenerated and q recomputed. 1966

 (Section 4.1.3 of X9.31) d > 2
512

 (for 1024-bit keys) or d > 2
1024

 (for 2048-bit keys). If not true, 1967

Xq1, Xq2, and Xq MUST be regenerated and key generation process repeated. 1968

When it is necessary to regenerate an input parameter as necessitated by one or more of the conditions 1969

above, it is essential that the regeneration of the input parameter be deterministic to guarantee that all 1970

implementations of the key generation mechanism will produce the same results. Furthermore, input 1971

regeneration is a potentially unlimited process. In other words, it is possible that regeneration MUST be 1972

performed more than once. In theory, one MAY need to regenerate input parameters many times before 1973

a key that meets all of the requirements can be generated. 1974

The following processing rules MUST be used for regenerating an input parameter X of length n-bits 1975

when necessary: 1976

a. Pad the input parameter X on the right, assuming a big-endian representation, with m zero-bits 1977

where m is the smallest number which satisfies ((n+m) mod 128 = 0). 1978

b. Encrypt the padded value with the AES-128 (Electronic Code Book mode) algorithm using the 16-1979

byte constant below as the encryption key: 1980

Encryption Key

{ 0x8b, 0xe5, 0x61, 0xf5, 0xbc, 0x3e, 0x0c,

0x4e, 0x94, 0x0d, 0x0a, 0x6d, 0xdc, 0x21,

0x9d, 0xfd }

c. Use the leftmost n-bits of the result above as the REQUIRED regenerated parameter. 1981

If a regenerated parameter does not satisfy the necessary conditions, then repeat the 3-step process 1982

above (call it RegenFunction) to generate the parameter again by using the output of one iteration as 1983

input for the next iteration. In other words, if the output of the i
th
 iteration of the regeneration function 1984

above for an input parameter X is given by Xi then 1985

Xi+1 = RegenFunction (Xi) 1986

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 55 of 80

7.5 Claim Types 1987

This section specifies a set of claim (attribute) types and the corresponding URIs that is defined by this 1988

profile for some commonly used personal information. These claim types MAY be used by a SIP, in self-1989

issued tokens, or by other Identity Providers. Note that, wherever possible, the claims included here 1990

reuse and refer to the attribute semantics defined in other established industry standards that deal with 1991

personal information. A SIP SHOULD support these claim types at a minimum. Other Identity Providers 1992

MAY also support these claim types when appropriate. The URIs defined here MAY be used by a Relying 1993

Party to specify requested claims in its policy. 1994

The base XML namespace URI that is used by the claim types defined here is as follows: 1995

http://schemas.xmlsoap.org/ws/2005/05/identity/claims 1996

For convenience, an XML Schema for the claim types defined here can be found at: 1997

http://schemas.xmlsoap.org/ws/2005/05/identity/claims.xsd 1998

7.5.1 First Name 1999

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname 2000

Type: xs:string 2001

Definition: (givenName in [RFC 2256]) Preferred name or first name of a Subject. According to RFC 2002

2256: “This attribute is used to hold the part of a person‟s name which is not their surname nor middle 2003

name.” 2004

7.5.2 Last Name 2005

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname 2006

Type: xs:string 2007

Definition: (sn in [RFC 2256]) Surname or family name of a Subject. According to RFC 2256: “This is the 2008

X.500 surname attribute which contains the family name of a person.” 2009

7.5.3 Email Address 2010

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress 2011

Type: xs:string 2012

Definition: (mail in inetOrgPerson) Preferred address for the “To:” field of email to be sent to the Subject, 2013

usually of the form <user>@<domain>. According to inetOrgPerson using [RFC 1274]: “This attribute type 2014

specifies an electronic mailbox attribute following the syntax specified in RFC 822.” 2015

7.5.4 Street Address 2016

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/streetaddress 2017

Type: xs:string 2018

Definition: (street in [RFC 2256]) Street address component of a Subject‟s address information. 2019

According to RFC 2256: “This attribute contains the physical address of the object to which the entry 2020

corresponds, such as an address for package delivery.” Its content is arbitrary, but typically given as a PO 2021

Box number or apartment/house number followed by a street name, e.g. 303 Mulberry St. 2022

7.5.5 Locality Name or City 2023

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/locality 2024

Type: xs:string 2025

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 56 of 80

Definition: (l in [RFC 2256]) Locality component of a Subject‟s address information. According to RFC 2026

2256: “This attribute contains the name of a locality, such as a city, county or other geographic region.” 2027

e.g. Redmond. 2028

7.5.6 State or Province 2029

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/stateorprovince 2030

Type: xs:string 2031

Definition: (st in [RFC 2256]) Abbreviation for state or province name of a Subject‟s address information. 2032

According to RFC 2256: “This attribute contains the full name of a state or province. The values SHOULD 2033

be coordinated on a national level and if well-known shortcuts exist - like the two-letter state abbreviations 2034

in the US – these abbreviations are preferred over longer full names.” e.g. WA. 2035

7.5.7 Postal Code 2036

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/postalcode 2037

Type: xs:string 2038

Definition: (postalCode in X.500) Postal code or zip code component of a Subject‟s address information. 2039

According to X.500(2001): “The postal code attribute type specifies the postal code of the named object. 2040

If this attribute value is present, it will be part of the object‟s postal address - zip code in USA, postal code 2041

for other countries.” 2042

7.5.8 Country 2043

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/country 2044

Type: xs:string 2045

Definition: (c in [RFC 2256]) Country of a Subject. According to RFC 2256: “This attribute contains a 2046

two-letter ISO 3166 country code.” 2047

7.5.9 Primary or Home Telephone Number 2048

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/homephone 2049

Type: xs:string 2050

Definition: (homePhone in inetOrgPerson) Primary or home telephone number of a Subject. According 2051

to inetOrgPerson using [RFC 1274]: “This attribute type specifies a home telephone number associated 2052

with a person.” Attribute values SHOULD follow the agreed format for international telephone numbers, 2053

e.g. +44 71 123 4567. 2054

7.5.10 Secondary or Work Telephone Number 2055

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/otherphone 2056

Type: xs:string 2057

Definition: (telephoneNumber in X.500 Person) Secondary or work telephone number of a Subject. 2058

According to X.500(2001): “This attribute type specifies an office/campus telephone number associated 2059

with a person.” Attribute values SHOULD follow the agreed format for international telephone numbers, 2060

e.g. +44 71 123 4567. 2061

7.5.11 Mobile Telephone Number 2062

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/mobilephone 2063

Type: xs:string 2064

Definition: (mobile in inetOrgPerson) Mobile telephone number of a Subject. According to 2065

inetOrgPerson using [RFC 1274]: “This attribute type specifies a mobile telephone number associated 2066

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 57 of 80

with a person.” Attribute values SHOULD follow the agreed format for international telephone numbers, 2067

e.g. +44 71 123 4567. 2068

7.5.12 Date of Birth 2069

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/dateofbirth 2070

Type: xs:date 2071

Definition: The date of birth of a Subject in a form allowed by the xs:date data type. 2072

7.5.13 Gender 2073

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/gender 2074

Type: xs:token 2075

Definition: Gender of a Subject that can have any of these exact string values – „0‟ (meaning 2076

unspecified), „1‟ (meaning Male) or „2‟ (meaning Female). Using these values allows them to be language 2077

neutral. 2078

7.5.14 Private Personal Identifier 2079

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/privatepersonalidentifier 2080

Type: xs:base64binary 2081

Definition: A private personal identifier (PPID) that identifies the Subject to a Relying Party. The word 2082

“private” is used in the sense that the Subject identifier is specific to a given Relying Party and hence 2083

private to that Relying Party. A Subject‟s PPID at one Relying Party cannot be correlated with the 2084

Subject‟s PPID at another Relying Party. Typically, the PPID SHOULD be generated by an Identity 2085

Provider as a pair-wise pseudonym for a Subject for a given Relying Party. For a self-issued Information 2086

Card, the Self-issued Identity Provider in an Identity Selector system SHOULD generate a PPID for each 2087

Relying Party as a function of the card identifier and the Relying Party‟s identity. The processing rules and 2088

encoding of the PPID claim value is specified in Section 7.6. 2089

Compatibility Note: Some existing Identity Selectors omit listing the PPID claim as an 2090

ic:SupportedClaimType from the ic:SupportedClaimTypeList when saving a self-issued 2091

Information Card in the Information Cards Transfer Format defined in Section 6.1, even though the PPID 2092

claim is supported by the card. This behavior is deprecated, as all supported claims SHOULD be listed. 2093

Nonetheless, Identity Selectors MAY choose to recognize this case and support the PPID claim for self-2094

issued cards not explicitly listing this claim. 2095

7.5.15 Web Page 2096

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/webpage 2097

Type: xs:string 2098

Definition: The Web page of a Subject expressed as a URL. 2099

7.6 The PPID Claim 2100

The PPID claim for a Subject user represents a unique identifier for that user at a given Relying Party that 2101

is different from all identifiers for that user at any other Relying Party. In other words, the PPID is a pair-2102

wise unique identifier for a given user identity and Relying Party combination. Since an Information Card 2103

represents a specific user identity and a Relying Party is the organization behind a Web service or site 2104

that the user interacts with, the PPID claim is logically a function of an Information Card and the 2105

organizational identity of the Relying Party. 2106

This section describes the processing rules that SHOULD be used by a SIP to derive a PPID claim value 2107

for a combination of an Information Card and a Relying Party where it is used. 2108

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 58 of 80

7.6.1 Relying Party Identifier and Relying Party PPID Seed 2109

In order to derive the PPID and Signing Key as functions of the RP‟s organizational identity, a stable and 2110

unique identifier for the RP, called the RP Identifier, is needed. In the Information Card Model, the identity 2111

of a Relying Party (RP) possessing an X.509v3 certificate is presented in the form of that certificate. 2112

Therefore the organizational identity of the RP is obtained by applying a series of transformations to the 2113

identity information carried in the X.509 certificate. (See Section 8 for the specification of how to compute 2114

these values for Relying Parties not possessing a certificate.) 2115

As specified in [RFC 2459], the subject field inside an X.509 certificate identifies the entity associated with 2116

the public key stored in the subject public key field. Where it is non-empty, the subject field MUST contain 2117

an X.500 distinguished name (DN). The DN MUST be unique for each subject entity certified by the one 2118

CA as defined by the issuer name field. 2119

The subject field contains a DN of the form shown below: 2120

CN=string, [OU=string, ...,] O=string, L=string, S=string, C=string 2121

The Object Identifiers for these attributes from the DN are as follows: 2122

Field Abbreviation Field Name Object Identifier

O organizationName 2.5.4.10

L localityName 2.5.4.7

S stateOrProvinceName 2.5.4.8

C countryName 2.5.4.6

CN commonName 2.5.4.3

Note that the field names and abbreviations used in this specification may not correspond to those used 2123

by particular software but the underlying Object Identifiers (OIDs) of the attributes are unambiguous. 2124

For an end-entity certificate, the values of the attribute types O (organizationName), L (localityName), S 2125

(stateOrProvinceName) and C (countryName) together uniquely identify the organization to which the 2126

end-entity identified by the certificate belongs. These attribute types are collectively referred to as the 2127

organizational identifier attributes here. The RP Identifier is constructed using these organizational 2128

identifier attributes as described below. 2129

The RP Identifier value is used as an input to the Signing Key computation. A closely related value called 2130

the Relying Party PPID Seed is also computed, which is used as an input to the PPID claim and Client 2131

Pseudonym PPID computations. In many cases these are the same but in one case they differ. 2132

There are four cases of how the RP Identifier and RP PPID Seed are constructed depending on which 2133

organizational identifier attributes the RP‟s certificate contains, if it is an extended validation (EV) 2134

certificate [EV Cert] with respect to the organizational identifier attributes, and if it chains to a trusted root 2135

certificate. 2136

Case 1: RP’s certificate is EV for organizational identifier attributes and chains to a trusted root 2137

certificate authority 2138

 Convert the organizational identifier attributes in the end-entity certificate into a string, call it 2139

OrgIdString, of the following form: 2140

|O="string"|L="string"|S="string"|C="string"| 2141

The vertical bar character (ASCII 0x7C) is used as a delimiter at the start and end of the string as 2142

well as between the attribute types. Further, the string values of the individual attribute types are 2143

enclosed within double quote characters (ASCII 0x22). If an attribute type is absent in the subject 2144

field of the end-entity certificate, then the corresponding string value is the empty string (""). 2145

Following is an example OrgIdString per this convention. 2146

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 59 of 80

|O="Microsoft"|L="Redmond"|S="Washington"|C="US"| 2147

 Encode all the characters in OrgIdString into a sequence of bytes, call it OrgIdBytes, using 2148

Unicode encoding UTF-16LE with no byte order mark. 2149

 Hash OrgIdBytes using the SHA256 hash function, and use the resulting value as the RP 2150

Identifier and RP PPID Seed. 2151

RP PPID Seed = RP Identifier = SHA256 (OrgIdBytes) 2152

Case 2: RP’s certificate is not EV for organizational identifier attributes, has a non-empty 2153

organizationName (O) value, and chains to a trusted root certificate authority 2154

 Convert the organizational identifier attributes in the end-entity certificate into a string, call it 2155

OrgIdString, in the same manner as employed for Case 1 above. 2156

 Let QualifierString be the string: 2157

|Non-EV 2158

 Let QualifiedOrgIdString be the concatenation of QualifierString and OrgIdString. 2159

QualifiedOrgIdString = QualifierString + OrgIdString 2160

 Encode all the characters in QualifiedOrgIdString into a sequence of bytes, call it 2161

QualifiedOrgIdBytes, using Unicode encoding UTF-16LE with no byte order mark. 2162

 Hash QualifiedOrgIdBytes using the SHA256 hash function, and use the resulting value as the 2163

RP Identifier. 2164

RP Identifier = SHA256 (QualifiedOrgIdBytes) 2165

 Encode all the characters in OrgIdString into a sequence of bytes, call it OrgIdBytes, using 2166

Unicode encoding UTF-16LE with no byte order mark. 2167

 Hash OrgIdBytes using the SHA256 hash function, and use the resulting value as the Relying 2168

Party PPID Seed. 2169

RP PPID Seed = SHA256 (OrgIdBytes) 2170

Case 3: RP’s certificate has an empty or no organizationName (O) value and has an empty or no 2171

commonName (CN) or does not chain to a trusted root certificate authority 2172

 Take the subject public key in the end-entity certificate, call it PublicKey, as a byte array. 2173

 Hash PublicKey using the SHA256 hash function, and use the resulting value as the RP Identifier 2174

and RP PPID Seed. 2175

RP PPID Seed = RP Identifier = SHA256 (PublicKey) 2176

Case 4: RP’s certificate has an empty or no organizationName (O) value but has a non-empty 2177

commonName (CN) value and chains to a trusted root certificate authority 2178

 Convert the commonName attribute value in the end-entity certificate into a string, call it 2179

CnIdString, of the following form: 2180

|CN="string"| 2181

Following is an example CnIdString per this convention: 2182

|CN="login.live.com"| 2183

 Encode all the characters in CnIdString into a sequence of bytes, call it CnIdBytes, using Unicode 2184

encoding UTF-16LE with no byte order mark. 2185

 Hash CnIdBytes using the SHA256 hash function, and use the resulting value as the RP Identifier 2186

and RP PPID Seed. 2187

RP PPID Seed = RP Identifier = SHA256 (CnIdBytes) 2188

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 60 of 80

7.6.2 PPID 2189

The PPID value SHOULD be produced as follows using the card identifier and the RP PPID Seed 2190

(specified in Section 7.6.1): 2191

 Encode the value of the ic:CardId element of the Information Card into a sequence of bytes, 2192

call it CardIdBytes, using Unicode encoding UTF-16LE with no byte order mark. 2193

 Hash CardIdBytes using the SHA256 hash function to obtain the canonical card identifier 2194

CanonicalCardId. 2195

CanonicalCardId = SHA256 (CardIdBytes) 2196

 Hash the concatenation of RP PPID Seed and CanonicalCardId using the SHA256 hash function 2197

to obtain the PPID. 2198

PPID = SHA256 (RP PPID Seed + CanonicalCardId) 2199

7.6.3 Friendly Identifier 2200

The PPID provides an RP-specific identifier for a Subject that is suitable for programmatic processing, but 2201

is not a user-friendly identifier. The simple transformation rules specified in this section MAY be used by a 2202

SIP, or any other Identity Provider supporting the PPID claim, to create a friendly identifier for use within a 2203

Display Token accompanying a Security Token carrying the PPID claim. 2204

The Friendly Identifier has the following characteristics: 2205

 It is encoded as a 10-character alphanumeric string of the form “AAA-AAAA-AAA” grouped into 2206

three groups separated by the „hyphen‟ character (e.g., the string “6QR-97A4-WR5”). Note that 2207

the hyphens are used for punctuation only. 2208

 The encoding alphabet does NOT use the numbers „0‟ and „1‟, and the letters „O‟ and „I‟ to avoid 2209

confusion stemming from the similar glyphs used for these numbers and characters. This leaves 2210

8 digits and 24 letters – a total of 32 alphanumeric symbols – as the alphabet for the encoding. 2211

The processing rules used for deriving a Friendly Identifier from a PPID are as follows: 2212

 The PPID value is conveyed as a base64 encoded string inside tokens. Start with the base64 2213

decoded PPID value as input. 2214

 Hash the PPID value using the SHA1 hash function to obtain a hashed identifier. 2215

HashId = SHA1 (PPID) 2216

 Let the Friendly Identifier be the string “A0 A1 A2– A3 A4 A5 A6– A7 A8 A9” where each Ai is an 2217

alphanumeric character from the encoding alphabet described above. 2218

 For i := 0 to 9, each Ai is determined as below: 2219

o Take the i
th
 octet of HashId (denoted as HashId[i]) 2220

o Find RawValue = HashId[i] % 32 (where % is the remainder operation) 2221

o Ai = EncodedSymbol obtained by mapping RawValue to EncodedSymbol using the table 2222

below 2223

 2224

Raw

Value
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Encoded

Symbol
Q L 2 3 4 5 6 7 8 9 A B C D E F

 2225

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 61 of 80

Raw

Value
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Encoded

Symbol
G H J K M N P R S T U V W X Y Z

 2226

8 Relying Parties without Certificates 2227

While Relying Parties are typically identified by presenting a cryptographically protected identity, such as 2228

an X.509v3 certificate, the Information Card Model is also applicable in situations in which no Relying 2229

Party certificate is available. This section specifies how Information Cards are used at Relying Parties 2230

with no certificate: specifically, Web sites using the [HTTP] scheme. Also see 2231

ic07:RequireStrongRecipientIdentity in Section 3.1.1.7 for a means whereby card issuers can 2232

prohibit the use of cards at Relying Parties not identified by a certificate. 2233

8.1 Relying Party Identifier and Relying Party PPID Seed 2234

The Relying Party Identifier and Relying Party PPID Seed values for Relying Parties without certificates 2235

are computed in this manner: 2236

 Set the string OrgIdString to be the fully qualified DNS host name in lowercase characters 2237

specified in the URI of the Relying Party, or if a numeric IP address was used, then a string 2238

representation of the IP address of the server. For IPv4 addresses, this string is the standard 4-2239

byte dotted decimal representation of the address with no leading zeros, such as 2240
131.107.55.210. For IPv6 addresses, this string is the hexadecimal representation of the 2241

address in eight groups of four hex digits each using uppercase for the letters, with each group of 2242

four digits separated by a colon, all enclosed by square brackets, such as 2243
[0000:1234:0000:0000:0000:000A:00BC:0DEF]. 2244

 Encode all the characters in OrgIdString into a sequence of bytes, call it OrgIdBytes, using the 2245

Unicode encoding UTF-16LE with no byte order mark. 2246

 Hash OrgIdBytes using the SHA256 hash function, and use the resulting value as both the RP 2247

Identifier and the RP PPID Seed. 2248

The RP Identifier and RP PPID Seed are then used in the same manner as for Relying Parties identified 2249

by certificates when computing PPID claim and Client Pseudonym PPID values. 2250

8.2 AppliesTo Information 2251

Under the circumstances described in Section 3.3.3 that the RP endpoint to which the token will be sent 2252

is supplied as the wsp:AppliesTo value to the IP, when the RP possesses no certificate, the URL of the 2253

RP is supplied as that wsp:AppliesTo value. 2254

Example: 2255

<wst:RequestSecurityToken xmlns:wst="..." xmlns:wsp="..." xmlns:wsa="..."> 2256
 <wsp:AppliesTo> 2257
 <wsa:EndpointReference> 2258
 <wsa:Address>http://login.contoso.com</wsa:Address> 2259
 </wsa:EndpointReference> 2260
 </wsp:AppliesTo> 2261
 ... 2262
</wst:RequestSecurityToken> 2263

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 62 of 80

8.3 Token Signing and Encryption 2264

When the Relying Party is not identified by a certificate, tokens sent from the Self-issued Identity Provider 2265

are not encrypted, although they are still signed in the manner described in Section 7.2. Tokens 2266

generated by Identity Providers for Relying Parties not identified by a certificate are also typically not 2267

encrypted, as no encryption key is available. However, the token MAY still be encrypted if the Identity 2268

Provider has a pre-existing relationship with the Relying Party and they have mutually agreed on the use 2269

of a known encryption key. The token SHOULD still typically be signed, even when not encrypted. 2270

9 Using WS-SecurityPolicy 1.2 and WS-Trust 1.3 2271

Software implementing the Information Card Model SHOULD utilize the OASIS standard versions of WS-2272

SecurityPolicy and WS-Trust – [WS-SecurityPolicy 1.2] and [WS-Trust 1.3] and MAY utilize the previous 2273

draft versions – [WS-SecurityPolicy 1.1] and [WS-Trust 1.2]. This section describes the differences 2274

between the old and standard versions of these protocols that MAY affect software implementing the 2275

Information Card Model. 2276

9.1 Overview of Differences 2277

The following changes between the protocol versions affect software implementing this specification: 2278

 Namespace changes: 2279

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702 replaces 2280

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy. 2281

http://docs.oasis-open.org/ws-sx/ws-trust/200512 replaces 2282

http://schemas.xmlsoap.org/ws/2005/02/trust. 2283

 Use of RequestSecurityTokenResponseCollection: A 2284

wst:RequestSecurityTokenResponseCollection element encloses the 2285

wst:RequestSecurityTokenResponse when WS-Trust 1.3 is used. 2286

 Use of SecondaryParameters: An Identity Selector sends some information received from the 2287

Relying Party to the Identity Provider in a wst:SecondaryParameters element. 2288

 Bearer Token Request Syntax: The new wst:KeyType value http://docs.oasis-open.org/ws-2289

sx/wstrust/200512/Bearer is used to request a bearer token. 2290

9.2 Identity Selector Differences 2291

Identity Selectors MUST determine the WS-Trust versions used by Identity Provider STSs and Relying 2292

Party STSs using their Security Policy. 2293

Identity Selectors supporting WS-Trust 1.3 MUST understand the new WS-Trust 1.3 elements and syntax 2294

such as wst13:RequestSecurityTokenResponseCollection and new URIs such as 2295

http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer. They MUST also understand that typical 2296

properties of an RST like Claims and KeyType MAY be either a direct child of the top level 2297

wst13:RequestSecurityToken element or contained within a wst13:SecondaryParameters 2298

element in the RST. 2299

When constructing an RST for an Identity Provider using WS-Trust 1.3, the Identity Selector SHOULD 2300

send parameters received from the Relying Party in a wst13:SecondaryParameters element within 2301

the wst13:RequestSecurityToken, with these exceptions: 2302

 The user chooses not to send optional claims. In this scenario, no SecondaryParameters element 2303

is sent in order to hide this user decision. 2304

 No wsp:AppliesTo is being sent in the RST. In this scenario, no 2305

wst13:SecondaryParameters element is sent so that the Identity Provider does not obtain 2306

any identifying information about the Relying Party. 2307

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://schemas.xmlsoap.org/ws/2005/02/trust
http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer
http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer
http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 63 of 80

Example: 2308

<wst13:RequestSecurityToken Context="ProcessRequestSecurityToken" 2309
 xmlns:wst13="..." xmlns:ic="..."> 2310
 <wst13:RequestType>http://docs.oasis-open.org/ws-sx/ws-2311
trust/200512/Issue</wst13:RequestType> 2312
 <ic:InformationCardReference> 2313
 ... 2314
 </ic:InformationCardReference> 2315
 <wst13:Claims Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity"> 2316
 ... 2317
 </wst13:Claims> 2318
 <wst13:KeyType>http://docs.oasis-open.org/ws-sx/ws-2319
trust/200512/SymmetricKey</wst13:KeyType> 2320
 <wst13:SecondaryParameters> 2321
 <wst13:RequestType>http://docs.oasis-open.org/ws-sx/ws-2322
trust/200512/Issue</wst13:RequestType> 2323
 <wst13:TokenType>urn:oasis:names:tc:SAML:1.0:assertion</wst13:TokenType> 2324
 <wst13:KeyType>http://docs.oasis-open.org/ws-sx/ws-2325
trust/200512/SymmetricKey</wst13:KeyType> 2326
 <wst13:KeyWrapAlgorithm>http://www.w3.org/2001/04/xmlenc#rsa-oaep-2327
mgf1p</wst13:KeyWrapAlgorithm> 2328
 ... 2329
 </wst13:SecondaryParameters> 2330
</wst13:RequestSecurityToken> 2331

The wst13:RequestSecurityTokenResponse constructed MUST be enclosed within a 2332

wst13:RequestSecurityTokenResponseCollection element. 2333

Example: 2334

<wst13:RequestSecurityTokenResponseCollection xmlns:wst13="..."> 2335
 <wst13:RequestSecurityTokenResponse> 2336
 <wst13:TokenType>urn:oasis:names:tc:SAML:1.0:assertion</wst13:TokenType> 2337
 <wst13:RequestedSecurityToken> ... </wst13:RequestedSecurityToken> 2338
 ... 2339
 </wst13:RequestSecurityTokenResponse> 2340
</wst13:RequestSecurityTokenResponseCollection> 2341

9.3 Security Token Service Differences 2342

To utilize WS-Trust 1.3, an Identity Provider STS and Relying Party STSs MUST express their Security 2343

Policy using WS-SecurityPolicy 1.2. 2344

STSs using WS-Trust 1.3 MUST understand the new WS-Trust 1.3 elements and syntax such as 2345
wst13:RequestSecurityTokenResponseCollection and new URIs such as http://docs.oasis-2346

open.org/ws-sx/wstrust/200512/Bearer. They MUST also understand that typical properties of an RST 2347

like Claims and KeyType MAY be either a direct child of the top level wst13:RequestSecurityToken 2348

element or contained within a wst13:SecondaryParameters element in the RST. 2349

http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer
http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 64 of 80

10 Browser Behavior with Information Cards 2350

This section explains the steps that a Web browser takes when using an Information Card to authenticate 2351

to a Web site. Two cases are described. The basic case is where the Web site provides all the Relying 2352

Party functionality via HTML extensions transported over HTTPS. The second case is where the Relying 2353

Party employs a Relying Party Security Token Service (STS), which it references via HTML extensions 2354

transported over HTTPS. 2355

10.1 Basic Protocol Flow when using an Information Card at a Web 2356

Site 2357

This section explains the protocol flow when using an Information Card to authenticate at a Web site 2358

where no Relying Party STS is employed. 2359

 2360

Figure 1. Basic protocol flow when using an Information Card to authenticate at a Web site 2361

 2362

Figure 1 gives an example of the basic protocol flow when an Information Card is used to authenticate at 2363

a Web site that employs no Relying Party STS. Steps 1, 2, and 5 are essentially the same as a typical 2364

forms-based login today: (1) The user navigates to a protected page that requires authentication. (2) 2365

The site redirects the browser to a login page, which presents a Web form. (5) The browser posts the 2366

Web form that includes the login credentials supplied by the user back to the login page. The site then 2367

validates the contents of the form including the user credentials, typically writes a client-side browser 2368

cookie to the client for the protected page domain, and redirects the browser back to the protected page. 2369

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 65 of 80

The key difference between this scenario and today‟s site login scenarios is that the login page returned 2370

to the browser in step (2) contains an HTML tag that allows the user to choose to use an Information Card 2371

to authenticate to the site. When the user selects this tag, the browser invokes an Identity Selector, 2372

which implements the Information Card user experience and protocols, and triggers steps (3) through (5). 2373

In Step (3), the browser Information Card support code invokes the Identity Selector, passing it parameter 2374

values supplied by the Information Card HTML tag supplied by the site in Step (2). The user then uses 2375

the Identity Selector to choose an Information Card, which represents a Digital Identity that can be used 2376

to authenticate at that site. Step (4) retrieves a Security Token that represents the Digital Identity 2377

selected by the user from the STS at the Identity Provider for that identity. 2378

In Step (5), the browser posts the token obtained back to the Web site using a HTTPS/POST. The Web 2379

site validates the token, completing the user‟s Information Card-based authentication to the Web site. 2380

Following authentication, the Web site typically then writes a client-side browser cookie and redirects the 2381

browser back to the protected page. 2382

It is worth noting that this cookie is likely to be exactly the same cookie as the site would have written 2383

back had the user authenticated via other means, such as a forms-based login using 2384

username/password. This is one of the ways that the goal of “minimal impact on Web sites” is achieved. 2385

Other than its authentication subsystem, the bulk of a Web site‟s code can remain completely unaware 2386

that Information Card-based authentication is even utilized. It just uses the same kinds of cookies as 2387

always. 2388

10.2 Protocol Flow with Relying Party STS 2389

In the previous scenario, the Web site communicated with the client Identity Selector using only the HTML 2390

extensions enabling Information Card use, transported over the normal browser HTTPS channel. In this 2391

scenario, the Web site also employs a Relying Party STS to do part of the work of authenticating the user, 2392

passing the result of that authentication on to the login page via HTTPS POST. 2393

There are several reasons that a site might factor its solution this way. One is that the same Relying 2394

Party STS can be used to do the authentication work for both browser-based applications and smart 2395

client applications that are using Web services. Second, it allows the bulk of the authentication work to be 2396

done on servers dedicated to this purpose, rather than on the Web site front-end servers. Finally, this 2397

means that the front-end servers can accept site-specific tokens, rather than the potentially more general 2398

or more complicated authentication tokens issued by the Identity Providers. 2399

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 66 of 80

 2400

Figure 2. Protocol flow when using an Information Card to authenticate 2401

at a Web site, where the Web site employs a Relying Party STS 2402

This scenario is similar to the previous one, with the addition of steps (3) and (6). The differences start 2403

with the Information Card information supplied to the browser by the Web site in Step (2). In the previous 2404

scenario, the site encoded its WS-SecurityPolicy information using Information Card HTML extensions 2405

and supplied them to the Information Card-extended browser directly. In this scenario, the site uses 2406

different Information Card HTML extensions in the Step (2) reply to specify which Relying Party STS 2407

SHOULD be contacted to obtain the WS-SecurityPolicy information. 2408

In Step (3), the Identity Selector contacts the Relying Party STS specified by the Web site and obtains its 2409

WS-SecurityPolicy information via WS-MetadataExchange. In Step (4) the Identity Selector user interface 2410

is shown and the user selects an Information Card, which represents a Digital Identity to use at the site. 2411

In Step (5), the Identity Provider is contacted to obtain a Security Token for the selected Digital Identity. 2412

In Step (6), the Security Token is sent to the Web site‟s Relying Party STS to authenticate the user and a 2413

site-specific authentication token is returned to the Identity Selector. Finally, in Step (7), the browser 2414

posts the token obtained in Step (6) back to the Web site using HTTPS/POST. The Web site validates 2415

the token, completing the user‟s Information Card-based authentication to the Web site. Following 2416

authentication, the Web site typically then writes a client-side browser cookie and redirects the browser 2417

back to the protected page. 2418

10.3 User Perspective and Examples 2419

The Information Card user experience at Web sites is intended to be intuitive and natural enough that 2420

users‟ perspective on it will simply be “That‟s how you log in”. Today, Web sites that require 2421

authentication typically ask the user to supply a username and password at login time. With Information 2422

Cards, they instead ask users to choose an Information Card. Some sites will choose to accept only 2423

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 67 of 80

Information Cards whereas others will give users the choice of Information Cards or other forms of 2424

authentication. 2425

A site that accepts Information Cards typically has a login screen that contains button with a label such as 2426

“Sign in with an Information Card” or “Log in using an Information Card”. Upon clicking this button, 2427

the user is presented with a choice of his Information Cards that are accepted at the site, and is asked to 2428

choose one. Once a card is selected and submitted to the site, the user is logged in and continues using 2429

the site, just as they would after submitting a username and password to a site. 2430

Sites that accept both Information Cards and other forms of authentication present users with both an 2431

Information Card login choice and whatever other choices the site supports. For instance, a site login 2432

screen might display both “Sign in with your username and password” and “Sign in with an 2433

Information Card” buttons. 2434

10.4 Browser Perspective 2435

Very little additional support is needed from today‟s Web browsers to also support Information Cards. 2436

The main addition is that they MUST recognize special HTML and/or XHTML tags for invoking the Identity 2437

Selector, pass encoded parameters on to the Identity Selector on the platform, and POST back the token 2438

resulting from the user‟s choice of an Information Card. 2439

10.5 Web Site Perspective 2440

Web sites that employ Information Card-based authentication MUST support two new pieces of 2441

functionality: adding HTML or XHTML tags to their login page to request an Information Card-based login 2442

and code to log the user into the site using the POSTed credentials. In response to the Information Card-2443

based login, the Web site typically writes the same client-side browser cookie that it would have if the 2444

login had occurred via username/password authentication or other mechanisms, and issue the same 2445

browser redirects. Thus, other than the code directly involved with user authentication, the bulk of a Web 2446

site can remain unchanged and oblivious to the site‟s acceptance of Information Cards as a means of 2447

authentication. 2448

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 68 of 80

11 Invoking an Identity Selector from a Web Page 2449

11.1 Syntax Alternatives: OBJECT and XHTML tags 2450

HTML extensions are used to signal to the browser when to invoke the Identity Selector. However, not all 2451

HTML extensions are supported by all browsers, and some commonly supported HTML extensions are 2452

disabled in browser high security configurations. For example, while the OBJECT tag is widely 2453

supported, it is also disabled by high security settings on some browsers, including Internet Explorer. 2454

An alternative is to use an XHTML syntax that is not disabled by changing browser security settings. 2455

However, not all browsers provide full support for XHTML. 2456

To address this situation, two HTML extension formats are specified. Browsers MAY support one or both 2457

of the extension formats. 2458

11.1.1 OBJECT Syntax Examples 2459

An example of the OBJECT syntax is as follows: 2460

<html> 2461
 <head> 2462
 <title>Welcome to Fabrikam</title> 2463
 </head> 2464
 <body> 2465
 2466
 <form name="ctl00" id="ctl00" method="post" 2467
 action="https://www.fabrikam.com/InfoCard-Browser/Main.aspx"> 2468
 <center> 2469
 <img src='infocard_56x39.png' alt="Information Card Icon" 2470
 onClick='ctl00.submit()' /> 2471
 <input type="submit" name="InfoCardSignin" value="Log in" 2472
 id="InfoCardSignin" /> 2473
 </center> 2474
 <OBJECT type="application/x-informationCard" name="xmlToken"> 2475
 <PARAM Name="tokenType" Value="urn:oasis:names:tc:SAML:1.0:assertion"> 2476
 <PARAM Name="issuer" Value= 2477
 "http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self"> 2478
 <PARAM Name="requiredClaims" Value= 2479
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress 2480
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname 2481
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname"> 2482
 </OBJECT> 2483
 </form> 2484
 </body> 2485
</html> 2486

This is an example of a page that requests that the user log in using an Information Card. The key 2487

portion of this page is the OBJECT of type “application/x-informationCard”. Once a card is 2488

selected by the user, the resulting Security Token is included in the resulting POST as the xmlToken 2489

value of the form. Appendix A shows a sample POST resulting from using a login page similar to the 2490

preceding one. If the user cancels the authentication request, the resulting POST contains an empty 2491

xmlToken value. 2492

Parameters of the Information Card OBJECT are used to encode the necessary WS-SecurityPolicy 2493

information in HTML. In this example, the Relying Party is requesting a SAML 1.0 token from a Self-2494

issued Identity Provider, supplying the requested claims “emailaddress”, “givenname”, and 2495

“surname”. This example uses the basic protocol described in Section 2.1 (without employing a Relying 2496

Party STS). 2497

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 69 of 80

A second example of the OBJECT syntax is as follows: 2498

<html> 2499
 <body> 2500
 <form name="ctl01" method="post" 2501
 action="https://www.fabrikam.com/InfoCard-Browser-STS/login.aspx" 2502
 id="ctl01" onSubmit="fnGetCard();"> 2503
 <img src='infocard_56x39.png' alt="Information Card Icon" 2504
 onClick='ctl01.submit()' /> 2505
 <input type="submit" name="InfoCardSignin" value="Log in" 2506
 id="InfoCardSignin" /> 2507
 <OBJECT type="application/x-informationCard" name="xmlToken" 2508
 ID="oCard" /> 2509
 </form> 2510
 <script type="text/javascript"> 2511
 <!-- 2512
 function fnGetCard(){ 2513
 oCard.issuer = "http://www.fabrikam.com/sts"; 2514
 oCard.issuerPolicy = "https://www.fabrikam.com/sts/mex"; 2515
 oCard.tokenType = "urn:fabricam:custom-token-type"; 2516
 } 2517
 //--> 2518
 </script> 2519
 </body> 2520
</html> 2521

This example uses the enhanced protocol described in Section 2.3, which employs a Relying Party STS. 2522

Note that in this case, the “issuer” points to a Relying Party STS. The “issuerPolicy” points to an endpoint 2523

where the Security Policy of the STS (expressed via WS-SecurityPolicy) is to be obtained using WS-2524

MetadataExchange. Also, note that the “tokenType” parameter requests a custom token type defined by 2525

the site for its own purposes. The “tokenType” parameter could have been omitted as well, provided that 2526

the Web site is capable of understanding all token types issued by the specified STS or if the STS has 2527

prior knowledge about the token type to issue for the Web site. 2528

The object parameters can be set in normal script code. This is equivalent to setting them using the 2529

“PARAM” declarations in the previous example. 2530

11.1.2 XHTML Syntax Example 2531

An example of the XHTML syntax is as follows: 2532

<html xmlns="http://www.w3.org/1999/xhtml" 2533
 xmlns:ic="http://schemas.xmlsoap.org/ws/2005/05/identity"> 2534
 <head> 2535
 <title>Welcome to Fabrikam</title> 2536
 </head> 2537
 <body> 2538
 2539
 <form name="ctl00" id="ctl00" method="post" 2540
 action="https://www.fabrikam.com/InfoCard-Browser/Main.aspx"> 2541
 <ic:informationCard name='xmlToken' 2542
 style='behavior:url(#default#informationCard)' 2543
 issuer="http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self" 2544
 tokenType="urn:oasis:names:tc:SAML:1.0:assertion"> 2545
 <ic:add claimType= 2546
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress" 2547
 optional="false" /> 2548
 <ic:add claimType= 2549
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname" 2550
 optional="false" /> 2551
 <ic:add claimType= 2552
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname" 2553
 optional="false" /> 2554
 </ic:informationCard> 2555

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 70 of 80

 <center> 2556
 <input type="submit" name="InfoCardSignin" value="Log in" 2557
 id="InfoCardSignin" /> 2558
 </center> 2559
 </form> 2560
 </body> 2561
</html> 2562

11.2 Identity Selector Invocation Parameters 2563

The parameters to the OBJECT and XHTML Information Card objects are used to encode information in 2564

HTML that is otherwise supplied as WS-SecurityPolicy information via WS-MetadataExchange when an 2565

Identity Selector is used in a Web services context. 2566

11.2.1 issuer 2567

This optional parameter specifies the URL of the STS from which to obtain a token. If omitted, no specific 2568

STS is requested. The special value 2569

“http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self” specifies that the token 2570

SHOULD come from a Self-issued Identity Provider. 2571

11.2.2 issuerPolicy 2572

This optional parameter specifies the URL of an endpoint from which the STS‟s WS-SecurityPolicy can be 2573

retrieved using WS-MetadataExchange. This endpoint MUST use HTTPS. 2574

11.2.3 tokenType 2575

This optional parameter specifies the type of the token to be requested from the STS as a URI. This 2576

parameter can be omitted if the STS and the Web site front-end have a mutual understanding about what 2577

token type will be provided or if the Web site is willing to accept any token type. 2578

11.2.4 requiredClaims 2579

This optional parameter specifies the types of claims that MUST be supplied by the identity. If omitted, 2580

there are no required claims. The value of requiredClaims is a space-separated list of URIs, each 2581

specifying a required claim type. 2582

11.2.5 optionalClaims 2583

This optional parameter specifies the types of optional claims that MAY be supplied by the identity. If 2584

omitted, there are no optional claims. The value of optionalClaims is a space-separated list of URIs, 2585

each specifying a claim type that can MAY be submitted. 2586

11.2.6 privacyUrl 2587

This optional parameter specifies the URL of the human-readable Privacy Policy of the site, if provided. 2588

11.2.7 privacyVersion 2589

This optional parameter specifies the Privacy Policy version. This MUST be a value greater than 0 if a 2590

privacyUrl is specified. If this value changes, the UI notifies the user and allows them review the change 2591

to the Privacy Policy. 2592

11.3 Data Types for Use with Scripting 2593

The object used in the Information Card HTML extensions has the following type signature, allowing it to 2594

be used by normal scripting code: 2595

interface IInformationCardSigninHelper 2596

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 71 of 80

{ 2597
 string issuer; // URI specifying token issuer 2598
 string issuerPolicy; // MetadataExchange endpoint of issuer 2599
 string tokenType; // URI specifying type of token to be requested 2600
 string [] requiredClaims; // Array of URIs of required claim types 2601
 string [] optionalClaims; // Array of URIs of optional claim types 2602
 string privacyUrl; // URL of the Privacy Policy of the site 2603
 string privacyVersion; // Version number of the Privacy Policy 2604
 boolean isInstalled; // True when an Identity Selector is available 2605
 // to the browser 2606
} 2607

11.4 Detecting and Utilizing an Information Card-enabled Browser 2608

Web sites MAY choose to detect browser and Identity Selector support for Information Cards and modify 2609

their login page contents depending upon whether Information Card support is present, and which of the 2610

OBJECT and/or XHTML syntaxes are supported by the browser and supported by the Web site. This 2611

allows Information Card capabilities to be shown when available to the user, and to be not displayed 2612

otherwise. 2613

Detecting an Information Card-enabled browser may require detecting specific browser and Identity 2614

Selector versions and being aware of the nature of their Information Card support. 2615

11.5 Behavior within Frames 2616

When the object tag is specified in an embedded frame, the certificate of the frame is compared to that of 2617

the root frame. For this configuration to work, the scheme, domain, and security zone (for example https, 2618

microsoft.com, and Intranet) of the URL of the embedded frame MUST be the same as that of the root 2619

frame. If they do not match, the object tag SHOULD NOT be acted upon. This prevents a form of cross-2620

site scripting attacks. 2621

11.6 Invocation Using the Document Object Model (DOM) 2622

In addition to being invokable using static HTML tags and script code, Identity Selectors can be invoked 2623

from script injected into the page using the Document Object Model [DOM]. Invocation from dynamically 2624

generated script allows the Web site‟s requirements to be set dynamically. 2625

11.7 Auditing, Non-Auditing, and Auditing-Optional Cards 2626

 Auditing Card: When a managed card with an ic:RequireAppliesTo element and no 2627

Optional attribute or Optional=false attribute is used at a Web site, the Request Security 2628

Token (RST) sent to the Identity Provider contains a wsp:AppliesTo element. 2629

 Non-Auditing Card: When a managed card with no ic:RequireAppliesTo element is used 2630

at a Web site, the Request Security Token (RST) sent to the Identity Provider contains no 2631
wsp:AppliesTo element. 2632

 Auditing-Optional Card: When a managed card with an ic:RequireAppliesTo element with 2633

Optional=true attribute is used at a Web site, the Request Security Token (RST) sent to the 2634

Identity Provider contains a wsp:AppliesTo element. 2635

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 72 of 80

12 Endpoint Reference wsai:Identity Property 2636

This section adds the wsai:Identity property to an Endpoint Reference [WS-Addressing] and 2637

leverages extensibility of the wsa:EndpointReferenceType schema to include a wsai:Identity 2638

element as described below: 2639

<wsa:EndpointReference xmlns:wsa="..." xmlns:wsai="..."> 2640
 ... 2641
 <wsai:Identity>...identity representation...</wsai:Identity> 2642
 ... 2643
</wsa:EndpointReference> 2644

The wsai:Identity element inside a wsa:EndpointReference can hold any of the identity 2645

representations defined in Section 12.2 below. 2646

12.1 Default Value 2647

If a wsa:EndpointReference does not contain a wsai:Identity element, a DNS Name 2648

representation can be assumed by extracting the hostname from the Address URI. 2649

If the URI does not have a hostname, it does not have an implicit identity value and can not be verified by 2650

the mechanisms defined in this document. 2651

12.2 Identity Representation 2652

12.2.1 DNS Name 2653

The DNS Name representation implies that the remote principal is trusted to speak for that DNS name. 2654
For instance the DNS Name representation could specify “fabrikam.com”. When challenged, the endpoint 2655
contacted MUST be able to prove its right to speak for “fabrikam.com”. The service could prove its right 2656
by proving ownership of a certificate containing a reference to fabrikam.com and signed by a trusted 2657

Certificate Authority. The following element of type xs:string can be used to represent a DNS Name 2658

representation within a wsai:Identity element. 2659

 2660

<wsai:Dns xmlns:wsai="...">fabrikam.com</wsai:Dns> 2661

 2662

12.2.2 Service Principal Name 2663

The SPN representation implies that the remote principal is trusted to speak for that SPN, a mechanism 2664
common in intranet domains. Its format is <serviceClass>/<host>. For example, the SPN for a generic 2665
service running on “server1.fabrikam.com” would be “host/server1.fabrikam.com”. The client could 2666
confidentially speak to the service and verify replies back from the service by obtaining a Kerberos ticket 2667
from the realm‟s domain controller. The following element of type xs:string can be used to represent 2668

an SPN representation within a wsai:Identity element. 2669

 2670

<wsai:Spn xmlns:wsai="...">host/hrweb</wsai:Spn> 2671

12.2.3 User Principal Name 2672

The UPN representation implies that the remote principal is a particular user in a domain. Its format is: 2673
<user>@<domain>. For example, the UPN for a user “someone” at a domain “example.com” would be 2674
“someone@example.com”. A service could prove its UPN by providing the password for the user 2675

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 73 of 80

associated with “someone@example.com”. The following element of type xs:string can be used to 2676

represent a UPN representation within a wsai:Identity element. 2677

 2678

<wsai:Upn xmlns:wsai="...">someone@example.com</wsai:Upn> 2679

12.2.4 KeyInfo 2680

This identity value is similar to the previous three, but rather than describing an attribute of the target, this 2681

mechanism describes a reference (embedded or external) to key material associated with the target. This 2682

allows confirmation of the target trust identity through encryption. These values can also be used to 2683

compare authenticated identities similar to the basic trust identity values by comparing the hash of the 2684

specified trust identity value with a hash of the authenticated identity of the service. The ds:KeyInfo 2685

element defined in [XMLDSIG] can be used. 2686

 2687

<ds:KeyInfo xmlns:ds="...">...</ds:KeyInfo> 2688

12.2.4.1 Example specifying an RSA Public Key 2689

The PublicKey representation states the public key of the remote principal. A service could prove its 2690
ownership of the key by signing some data with the private key. 2691

 2692

<wsai:Identity xmlns:wsai="..." ds:wsai="..."> 2693
 <ds:KeyInfo> 2694
 <ds:RSAKeyValue> 2695
 <ds:Modulus>xA7SEU+e0yQH5...</ds:Modulus> 2696
 <ds:Exponent>AQAB</ds:Exponent> 2697
 </ds:RSAKeyValue> 2698
 </ds:KeyInfo> 2699
</wsai:Identity> 2700

12.2.4.2 Example specifying an X509 Certificate 2701

This example shows a certificate of the remote principal being used as the identity value. 2702

 2703

<wsai:Identity xmlns:wsai="..." xmlns:ds="..."> 2704
 <ds:KeyInfo> 2705
 <ds:X509Data> 2706
 <ds:X509Certificate>MIICXTCCA...</ds:X509Certificate> 2707
 </ds:X509Data> 2708
 </ds:KeyInfo> 2709
</wsai:Identity> 2710

 2711

12.2.5 Security Token 2712

A security token can be an identity value representing statements about the identity of an endpoint. E.g.: 2713

<wsai:Identity xmlns:wsai="..." ds:wsse="..."> 2714
 <wsse:BinarySecurityToken ValueType="...#X509v3"> 2715
 <!--base64 encoded value of the X509 certificate--> 2716
 </wsse:BinarySecurityToken> 2717
</wsai:Identity> 2718

 2719

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 74 of 80

12.2.6 Security Token Reference 2720

Similarly to ds:KeyInfo, wsse:SecurityTokenReference element can be used within a 2721

wsai:Identity element to reference a token representing a collection of statements about the identity 2722

of an endpoint. E.g.: 2723

<wsai:Identity xmlns:wsai="..." ds:wsse="..."> 2724
 <wsse:SecurityTokenReference> 2725
 <wsse:KeyIdentifier ValueType="...#ThumbprintSHA1"> 2726
 <!-- thumbprint of the X509 certificate --> 2727
 </wsse:KeyIdentifier> 2728
 </wsse:SecurityTokenReference> 2729
</wsai:Identity> 2730

 2731

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 75 of 80

13 Security Considerations 2732

13.1 Protection of Information Cards by Identity Selectors 2733

It is RECOMMENDED that Identity Selectors encrypt or otherwise secure the Information Card data held 2734

by them to help protect cards from being stolen and then used by an attacker. This is particularly 2735

important for self-issued Information Cards, where possession of the unencrypted contents of a card 2736

could enable an attacker to gain access to Relying Parties accounts associated with that card. 2737

13.2 Relying Parties Without Certificates 2738

Because claims sent to relying parties without certificates are not encrypted, it is RECOMMENDED that 2739

sensitive claims not be released to these relying parties. Identity Providers holding sensitive user data 2740

that can be released as claim values are encouraged to issue cards containing an 2741

ic07:RequireStrongRecipientIdentity element to prevent transmission of sensitive claim values 2742

over an unencrypted channel. 2743

13.3 Endpoint References 2744

It is RECOMMENDED that Endpoint Reference elements be signed to prevent tampering. 2745

An Endpoint Reference SHOULD NOT be accepted unless it is signed and have an associated security 2746

token to specify the signer has the right to “speak for” the endpoint. That is, the relying party SHOULD 2747

NOT use an endpoint reference unless the endpoint reference is signed and presented with sufficient 2748

credentials to pass the relying parties acceptance criteria. 2749

It is RECOMMENDED that an endpoint reference be encrypted when it contains claims and other 2750

sensitive information. 2751

When included in a SOAP message, endpoint references are RECOMMENDED to be protected using the 2752
mechanisms described in WS-Security [WS-Security] 2753

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 76 of 80

14 Conformance 2754

An implementation conforms to this specification if it satisfies all of the MUST or REQUIRED level 2755

requirements defined within this specification for the portions of the specification implemented by that 2756

implementation. Furthermore, when an implementation supports functionality in which there is a 2757

RECOMMENDED algorithm or set of parameter choices, conforming implementations MUST support the 2758

RECOMMENDED algorithm and parameter choices. A SOAP Node MUST NOT use the XML 2759

namespace identifiers for this specification (listed in Section 1.2) within SOAP Envelopes unless it is 2760

compliant with this specification. 2761

This specification references a number of other specifications. In order to comply with this specification, 2762

an implementation MUST implement the portions of referenced specifications necessary to comply with 2763

the required provisions of the portions of this specification that it implements. Additionally, the 2764

implementation of the portions of the referenced specifications that are specifically cited in this 2765

specification MUST comply with the rules for those portions as established in the referenced specification. 2766

Additionally, normative text within this specification takes precedence over normative outlines (as 2767

described in Section 1.1), which in turn take precedence over the XML Schema [XML Schema Part 1, 2768

Part 2] and WSDL [WSDL 1.1] descriptions. That is, the normative text in this specification further 2769

constrains the schemas and/or WSDL that are part of this specification; and this specification contains 2770

further constraints on the elements defined in referenced schemas. 2771

If an OPTIONAL message is not supported, then the implementation SHOULD Fault just as it would for 2772
any other unrecognized/unsupported message. If an OPTIONAL message is supported, then the 2773
implementation MUST satisfy all of the MUST and REQUIRED sections of the message. 2774

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 77 of 80

A. HTTPS POST Sample Contents 2775

The contents of an HTTPS POST generated by a page like the first example in Section 4.1.1 follow: 2776

POST /test/s/TokenPage.aspx HTTP/1.1 2777
Cache-Control: no-cache 2778
Connection: Keep-Alive 2779
Content-Length: 6478 2780
Content-Type: application/x-www-form-urlencoded 2781
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-sh 2782
ockwave-flash, */* 2783
Accept-Encoding: gzip, deflate 2784
Accept-Language: en-us 2785
Host: calebb-tst 2786
Referer: https://localhost/test/s/ 2787
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 2788
2.0.50727; .NET CLR 3.0.04506.30) 2789
UA-CPU: x86 2790
 2791
InfoCardSignin=Log+in&xmlToken=%3Cenc%3AEncryptedData+Type%3D%22http%3A%2F%2F 2792
www.w3.org%2F2001%2F04%2Fxmlenc%23Element%22+xmlns%3Aenc%3D%22http%3A%2F%2Fww 2793
w.w3.org%2F2001%2F04%2Fxmlenc%23%22%3E%3Cenc%3AEncryptionMethod+Algorithm%3D% 2794
22http%3A%2F%2Fwww.w3.org%2F2001%2F04%2Fxmlenc%23aes256-cbc%22+%2F%3E%3CKeyIn 2795
fo+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2F09%2Fxmldsig%23%22%3E%3Ce%3AEn 2796
cryptedKey+xmlns%3Ae%3D%22http%3A%2F%2Fwww.w3.org%2F2001%2F04%2Fxmlenc%23%22% 2797
3E%3Ce%3AEncryptionMethod+Algorithm%3D%22http%3A%2F%2Fwww.w3.org%2F2001%2F04% 2798
2Fxmlenc%23rsa-oaep-mgf1p%22%3E%3CDigestMethod+Algorithm%3D%22http%3A%2F%2Fww 2799
w.w3.org%2F2000%2F09%2Fxmldsig%23sha1%22+%2F%3E%3C%2Fe%3AEncryptionMethod%3E% 2800
3CKeyInfo%3E%3Co%3ASecurityTokenReference+xmlns%3Ao%3D%22http%3A%2F%2Fdocs.oa 2801
sis-open.org%2Fwss%2F2004%2F01%2Foasis-200401-wss-wssecurity-secext-1.0.xsd%2 2802
2%3E%3Co%3AKeyIdentifier+ValueType%3D%22http%3A%2F%2Fdocs.oasis-open.org%2Fws 2803
s%2Foasis-wss-soap-message-security-1.1%23ThumbprintSHA1%22+EncodingType%3D%2 2804
2http%3A%2F%2Fdocs.oasis-open.org%2Fwss%2F2004%2F01%2Foasis-200401-wss-soap-m 2805
essage-security-1.0%23Base64Binary%22%3E%2BPYbznDaB%2FdlhjIfqCQ458E72wA%3D%3C 2806
%2Fo%3AKeyIdentifier%3E%3C%2Fo%3ASecurityTokenReference%3E%3C%2FKeyInfo%3E%3C 2807
e%3ACipherData%3E%3Ce%3ACipherValue%3EEq9UhAJ8C9K5l4Mr3qmgX0XnyL1ChKs2PqMj0Sk 2808
6snw%2FIRNtXqLzmgbj2Vd3vFA4Vx1hileSTyqc1kAsskqpqBc4bMHT61w1f0NxU10HDor0DlNVcV 2809
Dm%2FAfLcyLqEP%2Boh05B%2B5ntVIJzL8Ro3typF0eoSm3S6UnINOHIjHaVWyg%3D%3C%2Fe%3AC 2810
ipherValue%3E%3C%2Fe%3ACipherData%3E%3C%2Fe%3AEncryptedKey%3E%3C%2FKeyInfo%3E 2811
%3Cenc%3ACipherData%3E%3Cenc%3ACipherValue%3ErBvpZydiyDzJtzl1%2FjUFX9XAzO1mOR 2812
q0ypPLjh%2FBagXcfZeYwWD57v4Jvn1QwGajadcDASCisazswn1skdkwgmd4IUWJpPMRH7es9zY0U 2813
vnS4ccsakgDcmscq3pDYTrxbSBfhdvrzjDiHC2XCtowOveoHeB51C5N8UAbff18IxCNtkWO8y3wLH 2814
VGdvwaDOSakK%2FK%2Fv1UgXIc51%2FtYvjeFGeGbbSNxo8DTqeDnAMQ%2B4Y%2B1aUGhI%2FtbSr 2815
EyJECkDgtztcxhrumbupKO%2BogWKUTTpSt851xjOFxAMiVaPZ%2FAm8V8H3ZLsR087sX%2FJ%2Bn 2816
bRqze%2BfbdUwimN5pNoJDdMnF%2BEDLass1dPsvhL4EXzuIp5deGBaqAIoaOMEUW7ssuh1PtwkEM 2817
eqwlOzOhu%2FHtwP1qh3D02U59MtyQnJMD5UwIwO7sZJl6%2BPg6Zp9HHtKKUMnkguvFmhyXS4BFS 2818
ZVxPl18i%2B0MLO1um5dejEFd4nwGO%2FmNw6yEI8DdGVjXcYOT6JhPz9rHNh9%2F%2FOj5snJfL6 2819
j2sg0EvIYoRs%2BhT4sdHZ95tGAiwMwT6cFOXbAQZUbYTr1ZOC6XPsfL2CFwiTM3mI%2Blco4Hc%2 2820
F7IakIA8jwAJdtnd2mGuV67ZbY1mzibM1LUApixZj59El83ixctSQbV7iyywQ4IYN2CAq%2BCLMdl 2821
R%2BDHfgEe8O3IVaGBDUEcd2MYimEiA7Yw3NIDrC14SbLzNvU702HpVJMeYv9q6S9xIVGApSrARsw 2822
RFXyMbkMDp5WIQaJEXon7qLcsZONpdlX9bCcmaiikdpxmCeyS638te%2FhGBLmYJSQ0stf7BhA6E0 2823
kwDRgdwsAa88bODiWHek0vDhAN4HlXFZ%2BCxp53L9Mmvy%2FCAOI%2B9OkPL2yxS22yjWQxom%2F 2824
yZuawsK98JHVShsIVmmbKvRM6xJwvHDSzuBAOlQKS%2FMHcFZn8vHZR4lMhm5nL3F%2B%2BumMKh0 2825
vMuKk6JiCqG9OEj996bVIIkLzESU5Z5vT6I1Kr9Brdx8ckDElipdH3x54WVfaItHJTYU%2BsxIR1T 2826
25fi9k%2FOc%2FMX7Q%2B6NSDs4nGqkn4rzqpez9BUWNZw7caVOrDeao85f%2FiDCGymtl0A3JaSZ 2827
dTKfzHLGmUfSkCAlVeisdvB6R7uBw8tR%2BZlgLIGS28wppFlnUYvSK7DnPrzId%2BGfHwLfL6WA% 2828
2FEzBMMgppb5Vi%2BauHq%2BHxpCamlkrcUkzagbwNkGV8TfafkqUvRwJbxRwNVPI%2F%2Fxs%2Fp 2829
Lcu1dh6eKcmU00%2FNx0zNOScd9XoeEU3zsV78PgvPIBT4EDugdv4bMR6dExXvZBl%2F84b1gOMhK 2830
ZRplF8t6EAc4LCct01ht7VOVNz25NtP27ct9QPrDJc%2FoxihT4Df6NV3l4vlTnu%2B%2BzVB%2BH 2831
JAxNkiO9gx3uLUJM9XEZCDzZKihaBk2y%2F3RhsJpABVneUd%2B3sCRbQXhgKYNBHZyRAUGpMDLhL 2832
qpjoF9x%2FNvUujQ5DBLJafxxzNVshG52jRz%2BikhCNhJDDbeA5MQ8Q7QsYcKDC0DBFsewtWaA%2 2833

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 78 of 80

FsKxl3JU6hyTotnFS%2FoS2EzbOSvn25qZuBERsZ3w%2B5WMkRzfQadyIYOSv2Df1YoljubDKy1l9 2834
St%2FbCIBgXbVIZKYtQ%2BLyepxxFjrN7cWo2aYFnB6YLurg4USJwhXzcGcvA3%2BR5dRT6Fr37U6 2835
OcHc%2Fz2MaZmn1cQWiDGNxHtRVxEvirBc1x47hWfSRjrKzf3orL5LzgMlYc7Iwclw2rbeWljCqOb 2836
oV3d71ez%2FvNz1pxEMi4w8yUAQL8p%2FRCZ%2BpzvsgORu4RWKWiSwbl7AN0J3jiWShyZgDmxd2O 2837
DDYffXjNiuH1mQWnDTkJX1ig88mqjhOYJEal0W6L0ErwrRIy29tOiAvXZANC8kA1HexulH0e38x8E 2838
IOaVaJtNz9mqrnmnp4GdZ38txV%2BCUeWHOZaHLF4xkdtRxMAu%2FbzQ03YmUOhgxqkTfNzV6Ymne 2839
v2nv5VsyQGJaQsNjb0M4yOe6kX2qNTwKBN2%2Bp%2Fz3f15i8KuGCgBcfP%2BP9xBizBeo7FbFtyo 2840
2pfFhzBPmZeSOJ6kEbF1yQKHYQAT5iZ4SyTIfqqmwGxsQpWMstx3qJF8aW8WFzU1qXcC1LmgClg19 2841
rx9NYFaQshX4f729B9Ue5MX7gTrMgwAnlXty9BsoP7nzGbr3HSXy8pR%2BimuAFW3c2NaQSbjSH5Z 2842
FOr7PZdLHsNVJzFIsaufAwr0CAEtvlPJUt7%2B%2FE5MQsMsVqMoXFmefgdxbvY1Ue6MX1wtuJYY1 2843
PAX7MHTyRUR3RfJDO054EoflVTwNE1fmocUXUh5rtFFuzy2T%2F2Y6pLAARXzo8uslAuH67VkuXv% 2844
2BEMc7e3ogbf5%2BROsgJirZS6qkcYpfEUwqHiQYLnSIP4bt%2BWI5j1bxs7yzcSCkNZ2rd%2FHWr 2845
A41AyGMfYzqxfGcrOaxHsds3JUcByB5Zw17W58GBC32Iusqa69BFTPagEapM0Fb5CbTqXnWTNNB5J 2846
t40BVZvLv3u5oy%2BBRaMKXZhwnbT2WUTp0Ebsn17xvte52B%2BLMlSWJn96Nl5thd%2Ft1D7PlWA 2847
sUvpJAd0UHPizCkY8VIhcXTrsSyEwer2J2I9TQTUosmssFjoP8Lx9qMfXo0eGVmneV8kVBtu4J7N1 2848
QmWfV%2B%2FK8vGbCwW3Gm%2FEUlOO4ZbbK39y0JgNQ7fshxHr5Hdtd%2F6S%2FQkb6NPVDwn7Srh 2849
Y0diWujXz5QlIYBSN7vDfMun3yF%2BGbmMExZ8MkOthuYkgMS9qiFoJGUXGyELsJfxbzdcRE9iyJn 2850
p88L4%2BCtcO3l2JxIhMAgxOZx42RfAiDV1Gbpa4f%2F0urmWQ2VK7uZ%2FlViVrGAJ2kpH0EfwYE 2851
Mb2YYT8FFjogqEpDSJX48BLIh1TE4nMbqQVG1cksCGDc0XyGKaF5Z7Ikw493Xz0JQ0BZvaf2Kceb7 2852
MUZlsU1DSHcQQ9X%2Bxu9RcgUePJEe9BgCMpZ5Kr6r43qyk79noBSgrsSkDhT5sg%2Fc20RHQB8OX 2853
%2BC4r3XGQFWF2m2j0xTc%2Boy14xqUmSB2qJtuWGOXDJspejDRP1GIfFnqDFdqSO3%2FkV9AC5Ee 2854
39iJGv8I%2B5nErtQao645bCytn4B2bJah8R2fXLs8Dd4%2BC2ykxVrLxTUmJaGqd2RK%2F6t1E47 2855
l%2B90Vp4WEzC0CFXXt9XNqdVjo2bZsXbfKQgO2zT2q2qCsgwbxVzIF5y39R%2BrkSkX16uuz3q6w 2856
n3I5RI9M8Hn3DCzzv6Ms4rYxYuiqxaIcb7DgjI2fk1bdyiiRjSxzpCHpK6CWjBD8DPQYdkqGr%2Bs 2857
oWeSvHvPLMSDxEPzwlnaxysRXzKphHUeUa2CCqcpagux2mbKkwHSXemX9I3V3AhPePp5XI5eCRiy3 2858
D4%2BcBXOydie94Nz9DIhW749hPiVD9CioAgyqgAzFwCxEEUCXKTzu9xXX4DXg9b3CUfGzwERtY7x 2859
TGT2y%2F9i7r5Xs0lrKi9ftws4JO5v%2Be3WuAEtWv0w%2FVKCl1WwTbV9xtx%2B4RZQ3%2Fewvv% 2860
2F0GqiiSrhiVBGuCDaQs7stwqfkF3vFgGXmmODGTIkIxvYm2fzcEfq4A6LRp5RkYyJyUTF87c56tn 2861
Qa%2Bo3xeiX5WRJybpabrRou09vyWLdlkhcUaBElGWB7iYUJ9bCltByEdNZnuDV%2FXlfnmDARKp8 2862
RVN028czIk57wQMuizgWrM6S9Ku20noDmLgbT554UBf7FnjRWOb%2FF9OJuPpUcARBPrfuqTcOsBq 2863
tZr7AJl3zz%2F53mpyn9rgzw5gBLgkvrdbciabJOAacccTDEB5kEzCLuprC3SlVedhgY%2BMQ5%2F 2864
xgN%2Faf3TtJiBKFvb1V37BlbXXGosnPFcoH8I0XbqW5FSsxmcnpg48poJcB7j5eHq7Y%2F01RLb4 2865
iMmzNap4%2BFg2F3LrwOI0Wk7ueIjgFd5KJ1iTda1ivGU%2Fchr9aTNpM5HiLb2fDW0pZ%2FFBJcI 2866
XxpT9eNY%2FpVj5pnTW2ubpPnBulPOQTLCi1EOxbl33wnhUIfnGiVWJdrls2j3GWgqOnrYUbP%2FX 2867
tNJqIucnMYGqPbcGIF2QRuiwD%2FiTRMvCRCmdCsYE%2FaXjOMhskX7KYC%2B9iG%2FT1wQRbfHSK 2868
WD%2Fpv450OVDsfc1Adq6FCr1LesDNTew%2FF8Z3SiHnWS76OVsNM2SB%2FhMP67iu5UWVkb3%2FQ 2869
qCN0aosOPs2QX0XBCZFmN6p3FhFnXPbAbaGz9y6KzUiUxC03U0fZcToKl4y%2Bw0P4IvxpjVt4t8b 2870
84Q9hiBxd5xu1%2BRE973a%2FyIWO%2Fit1MdUSmxWakxWuGxDnQxwkNCN7ekL%2FQ%2B6FItm86b 2871
w9cc%2FMiI7q2fK7y7YAzM3tmamhF1%2FWJNj1lH0vh%2BhNehJlLlb4Z%2F9ZtxMWV4LVTyrFaF1 2872
zyCEqcKUTk0jc%2FXDwyKZc%2FSV9EOoPk2fVnmzs3WkA74GB%2BWtjdvQjSmnJYtPkMNsikHw%2B 2873
RyB1hTkYbn3iQ6BUiJ0v97j7MVZHxCa1KS3t2gx8H7ts6Tfy5il89xVUdiZwfj0w06g199qlAqUMZ 2874
EWxh0%3D%3C%2Fenc%3ACipherValue%3E%3C%2Fenc%3ACipherData%3E%3C%2Fenc%3AEncryp 2875
tedData%3E 2876

An un-escaped and reformatted version of the preceding xmlToken value, with the encrypted value 2877

elided, is as follows: 2878

<enc:EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element" xmlns:enc= 2879
"http://www.w3.org/2001/04/xmlenc#"> 2880
<enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" 2881
/> 2882
<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#"> 2883
<e:EncryptedKey xmlns:e="http://www.w3.org/2001/04/xmlenc#"> 2884
<e:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1 2885
p"> 2886
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" /> 2887
</e:EncryptionMethod> 2888
<KeyInfo> 2889
<o:SecurityTokenReference xmlns:o="http://docs.oasis-open.org/wss/2004/01/oas 2890
is-200401-wss-wssecurity-secext-1.0.xsd"> 2891
<o:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-mes 2892
sage-security-1.1#ThumbprintSHA1" EncodingType="http://docs.oasis-open.org/ws 2893
s/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"> 2894
+PYbznDaB/dlhjIfqCQ458E72wA= 2895

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 79 of 80

</o:KeyIdentifier> 2896
</o:SecurityTokenReference> 2897
</KeyInfo> 2898
<e:CipherData> 2899
<e:CipherValue> 2900
Eq9UhAJ8C9K5l4Mr3qmgX0XnyL1ChKs2PqMj0Sk6snw/IRNtXqLzmgbj2Vd3vFA4Vx1hileSTyqc1 2901
kAsskqpqBc4bMHT61w1f0NxU10HDor0DlNVcVDm/AfLcyLqEP+oh05B+5ntVIJzL8Ro3typF0eoSm 2902
3S6UnINOHIjHaVWyg= 2903
</e:CipherValue> 2904
</e:CipherData> 2905
</e:EncryptedKey> 2906
</KeyInfo> 2907
<enc:CipherData> 2908
<enc:CipherValue> 2909
...= 2910
</enc:CipherValue> 2911
</enc:CipherData> 2912
</enc:EncryptedData> 2913

Identity-1.0-spec-os 1 July 2009
Copyright © OASIS® 2008-2009. All Rights Reserved. Page 80 of 80

B. Acknowledgements 2914

The following individuals have participated in the creation of this specification and are gratefully 2915
acknowledged: 2916

Original Authors of the initial contributions: 2917
Arun Nanda, Microsoft Corporation 2918
Michael B. Jones, Microsoft Corporation 2919
Jan Alexander, Microsoft 2920
Giovanni Della-Libera, Microsoft 2921
Martin Gudgin, Microsoft 2922
Kirill Gavrylyuk, Microsoft 2923
Tomasz Janczuk, Microsoft 2924
Michael McIntosh, IBM 2925
Anthony Nadalin, IBM 2926
Bruce Rich, IBM 2927
Doug Walter, Microsoft 2928

Participants: 2929
John Bradley, Individual 2930
Norman Brickman, Mitre Corporation 2931
Jeffrey Broberg, CA 2932
Scott Cantor Internet2 2933
Ruchith Fernando, WSO2 2934
Marc Goodner, Microsoft Corporation (Chair) 2935
Patrick Harding, Ping Identity 2936
Andrew Hodgkinson, Novell 2937
Mario Ivkovic, A-SIT, Zentrum für Sichere Informationstechnologie - Austria 2938
Michael B. Jones, Microsoft Corporation (Editor) 2939
Mike Kirkwood, Polka Networks 2940
Herbert Leitold, A-SIT, Zentrum für Sichere Informationstechnologie - Austria 2941
Michael McIntosh, IBM (Editor) 2942
Dale Olds, Novell 2943
Anthony Nadalin, IBM (Chair) 2944
Drummond Reed, Cordance 2945
Bruce Rich ,IBM 2946
Darran Rolls, SailPoint Technologies 2947
Prabath Siriwardena, WSO2 2948

 2949

