Energy Market Information Exchange (EMIX) Version 1.0

Committee Specification Draft 02 / Public Review Draft 02

28 April 2011

Specification URIs:
This version:
 http://docs.oasis-open.org/emix/emix/v1.0/csprd02/emix-v1.0-csprd02.doc (Authoritative)
 http://docs.oasis-open.org/emix/emix/v1.0/csprd02/emix-v1.0-csprd02.html
 http://docs.oasis-open.org/emix/emix/v1.0/csprd02/emix-v1.0-csprd02.pdf

Previous version:
 http://docs.oasis-open.org/emix/emix/v1.0/csprd01/emix-v1.0-csprd01.doc (Authoritative)
 http://docs.oasis-open.org/emix/emix/v1.0/csprd01/emix-v1.0-csprd01.html
 http://docs.oasis-open.org/emix/emix/v1.0/csprd01/emix-v1.0-csprd01.pdf

Latest version:
 http://docs.oasis-open.org/emix/emix/v1.0/emix-v1.0.doc (Authoritative)
 http://docs.oasis-open.org/emix/emix/v1.0/emix-v1.0.html
 http://docs.oasis-open.org/emix/emix/v1.0/emix-v1.0.pdf

Technical Committee:
 OASIS Energy Market Information Exchange (EMIX) TC

Chair(s):
 William Cox, Individual
 Edward Cazalet, Individual

Editor(s):
 Toby Considine, University of North Carolina at Chapel Hill

Related work:
 This specification is related to:
 • OASIS Specification WS-Calendar V1.0, in process
 • OASIS Specification Energy Interoperation V1.0, in process
 • XML schema(s): emix/v1.0/csprd02/xsd/

Declared XML namespace(s):
 http://docs.oasis-open.org/ns/emix
 http://docs.oasis-open.org/ns/emix/power
 http://docs.oasis-open.org/ns/emix/power/resource

Abstract:
 The data models and XML vocabularies defined by this TC will address issues in energy markets and the Smart Grid, but are defined so as to support requirements for other markets. The TC will develop an information model and XML vocabulary to exchange prices and product definitions for transactive energy markets.
• Price information
• Bid information
• Time for use or availability
• Units and quantity to be traded
• Characteristics of what is traded

The definition of a price and of other market information exchanged depends on the market context in which it exists. It is not in scope for this TC to define specifications for markets, nor how prices are determined, nor the mechanisms for interoperation.

Status:
This document was last revised or approved by the OASIS Energy Market Information Exchange (EMIX) TC on the above date. The level of approval is also listed above. Check the “Latest Version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical Committee's email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/emix/.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/emix/ipr.php).

Citation format:
When referencing this specification the following citation format should be used:

[EMIX-v1.0]
Notices

Copyright © OASIS Open 2011. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The names "OASIS" and "EMIX" are trademarks of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.
Table of Contents

1 Introduction .. 9
 1.1 Terminology .. 9
 1.2 Process .. 9
 1.3 Normative References ... 10
 1.4 Non-Normative References ... 10
 1.5 Namespace ... 11
 1.6 Naming Conventions ... 11
 1.7 Editing Conventions ... 11
 1.8 Semantics from WS-Calendar .. 12
 1.9 Market Semantics .. 12
 1.10 Security Approaches ... 12
2 Overview ... 13
 2.1 Introduction ... 13
 2.2 Approach .. 13
 2.3 Information Structure ... 14
 2.4 EMIX Time and Schedules .. 15
 2.5 Tenders and Transactions for Power Products and Resource Capabilities 15
 2.6 Transport ... 15
 2.7 Verification ... 16
3 Guide to the Schema Structures ... 17
 3.1 Core Extension Elements ... 17
 3.2 Extensibility .. 18
 3.3 Power and Resource Schemas .. 18
4 Overview of the Information Elements ... 19
 4.1 The Intrinsic Elements: EMIX Products ... 19
 4.1.1 Intrinsic Elements of the EMIX Product Type 20
 4.1.2 Intrinsic Elements of the EMIX Option .. 21
 4.1.3 Intrinsic Elements of the TeMIX ... 23
 4.1.4 Intrinsic Elements of Delivery ... 24
 4.1.5 Other Envelopes and Information Elements .. 24
 4.2 Transactive States ... 24
 4.3 Inside the Envelope – the Extrinsic Items ... 25
 4.4 Summary of the EMIX Base Derivations ... 26
5 Constraints and Market Requirements .. 27
 5.1 EMIX Constraints .. 27
 5.2 Market Requirements ... 28
6 Interfaces and Items – Components for Constructing Product Descriptions 29
 6.1 EMIX Interfaces ... 29
 6.2 Item Base .. 29
 6.2.1 Example of use of Item Base ... 29
7 The Schedule in the EMIX Product: Gluons and Intervals 31
 7.1 The EMIX Gluon ... 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2 The EMIX Sequence and Intervals</td>
<td>32</td>
</tr>
<tr>
<td>7.3 EMIX Product Model</td>
<td>32</td>
</tr>
<tr>
<td>8 EMIX Power Product Descriptions</td>
<td>34</td>
</tr>
<tr>
<td>8.1 Power Product Descriptions</td>
<td>34</td>
</tr>
<tr>
<td>8.2 Resource Offer Descriptions</td>
<td>34</td>
</tr>
<tr>
<td>8.3 Transport Product Descriptions</td>
<td>34</td>
</tr>
<tr>
<td>9 Power Product Descriptions</td>
<td>35</td>
</tr>
<tr>
<td>9.1 Base Power Contract</td>
<td>36</td>
</tr>
<tr>
<td>9.2 Full Requirements Power</td>
<td>37</td>
</tr>
<tr>
<td>9.3 Block Power Full Requirements</td>
<td>37</td>
</tr>
<tr>
<td>9.4 TEMIX Power Product</td>
<td>39</td>
</tr>
<tr>
<td>9.5 Power Product Charges</td>
<td>40</td>
</tr>
<tr>
<td>9.6 Enumerated Power Product Types</td>
<td>40</td>
</tr>
<tr>
<td>10 Energy Resources</td>
<td>42</td>
</tr>
<tr>
<td>10.1 Resource Capabilities</td>
<td>42</td>
</tr>
<tr>
<td>10.2 Resource Description Semantics</td>
<td>44</td>
</tr>
<tr>
<td>10.3 Generic Power Resource</td>
<td>45</td>
</tr>
<tr>
<td>10.3.1 Offer Curves</td>
<td>46</td>
</tr>
<tr>
<td>10.4 Reactive Power Resources</td>
<td>46</td>
</tr>
<tr>
<td>10.5 Summary of Resource Types</td>
<td>47</td>
</tr>
<tr>
<td>11 Transactive Energy (TeMIX) Products</td>
<td>48</td>
</tr>
<tr>
<td>12 Ancillary Services</td>
<td>51</td>
</tr>
<tr>
<td>13 Power Quality</td>
<td>52</td>
</tr>
<tr>
<td>13.1 Electrical Power Quality</td>
<td>52</td>
</tr>
<tr>
<td>14 Power Transport Product Descriptions</td>
<td>53</td>
</tr>
<tr>
<td>15 EMIX Warrants</td>
<td>54</td>
</tr>
<tr>
<td>15.1 Warrant List Definition</td>
<td>54</td>
</tr>
<tr>
<td>16 Conformance and Rules for EMIX and Referencing Specifications</td>
<td>55</td>
</tr>
<tr>
<td>16.1 EMIX Conformance with WS-Calendar</td>
<td>55</td>
</tr>
<tr>
<td>16.1.1 Inheritance in EMIX Base</td>
<td>55</td>
</tr>
<tr>
<td>16.1.2 Specific Attribute Inheritance in EMIX</td>
<td>56</td>
</tr>
<tr>
<td>16.2 Miscellaneous Business Rules not yet dealt with</td>
<td>56</td>
</tr>
<tr>
<td>A. Acknowledgements</td>
<td>57</td>
</tr>
<tr>
<td>B. Extensibility and EMIX</td>
<td>58</td>
</tr>
<tr>
<td>B.1 Extensibility in Enumerated values</td>
<td>58</td>
</tr>
<tr>
<td>B.2 Extension of Structured Information Collective Items</td>
<td>59</td>
</tr>
<tr>
<td>C. Semantics from WS-Calendar</td>
<td>61</td>
</tr>
<tr>
<td>D. Electrical Power and Energy</td>
<td>64</td>
</tr>
<tr>
<td>E. Mapping between NAESB PAP03 work and this specification</td>
<td>65</td>
</tr>
<tr>
<td>F. Schemas (Non-Normative)</td>
<td>66</td>
</tr>
<tr>
<td>F.1 EMIX Schemas</td>
<td>66</td>
</tr>
<tr>
<td>F.1.1 EMIX.xSD</td>
<td>66</td>
</tr>
<tr>
<td>F.1.2 EMIX-Requirements</td>
<td>73</td>
</tr>
<tr>
<td>F.1.3 EMIX Warrants</td>
<td>80</td>
</tr>
</tbody>
</table>
Tables, Figures & Examples

Index to Figures

Figure 4-1: EMIX Base Type .. 19
Figure 4-2: EMIX Product Type .. 20
Figure 4-3: EMIX Option Type ... 21
Figure 4-4: The TEMIX Product ... 23
Figure 4-5: Delivery .. 24
Figure 4-6: Envelope Contents ... 25
Figure 4-7: UML of EMIX Base and its Extensions .. 26
Figure 6-1: UML showing use of Item Base in Energy Types ... 30
Figure 7-1: EMIX Model .. 32
Figure 9-1: Base Power Product ... 36
Figure 9-2 Block Power Full Requirements .. 38
Figure 9-3: TeMIX Power ... 39
Figure 10-1: Attributes of a Generic Resource .. 42
Figure 10-2: Equivalence of Load Shed and Generation ... 43
Figure 10-3: Combining Response Capabilities .. 43
Figure 10-4: Ramp Rate Curve—CIM Style .. 44
Figure 10-5: Resource Description base ... 44
Figure 10-6: UML Summary of Resource Types ... 47

Index to Tables

Table 3-1: EMIX Schemas .. 17
Table 4-1: Elements of the EMIX Product ... 20
Table 4-2: Option Elements – another “Face of the Envelope” .. 21
Table 4-3: Elements of the TeMIX ... 23
Table 4-4: Elements of the EMIX Delivery ... 24
Table 4-5: Transactive States Enumeration .. 24
Table 5-1: Constraints .. 27
Table 5-2: Market Requirements for EMIX Products .. 28
Table 7-1: EMIX Base Product – the Gluon ... 31
Table 7-2: EMIX Base Product - the Interval .. 32
Table 9-1: Semantic Elements common to Multiple Power Products .. 35
Table 9-2: Base Power Product Description .. 36
Table 9-3: Full Requirements Power Product Description ... 37
Table 9-4: Block Power Full Requirements .. 38
Table 9-5: TEMIX Power Product Description .. 39
Table 9-6: Elements of Power Demand Charges ... 40
Table 9-7: Requirements Power Products ... 40
Table 10-1: Resource Description Elements ... 45
Table 10-2: Constraints unique to Power Resources .. 45
Table 10-3: Generic Power Response Resource ... 45
Table 10-4: Power Ramp ... 46
Table 10-5: Resource Offer Segment .. 46
Table 10-6: Semantics for Voltage Regulation Services ... 46
Table 11-1: TeMIX Power Product Description ... 49
Table 11-2: TeMIX Power Option Product Description ... 49
Table 13-1: AC Power Quality .. 52
Table 14-1: Transport Description .. 53
Table 15-1: Warrant Types ... 54
Table C-16-1: WS-Calendar Foundational Semantics ... 61
Table C-16-2: WS-Calendar Semantics of Inheritance .. 61
Table C-16-3: WS-Calendar Semantics of Information Processing 62
1 Introduction

This document defines an information model to exchange Price and Product information for power and energy markets. Product definition includes quantity and quality of supply as well as attributes of interest to consumers distinguishing between power and energy sources. Energy Market Information Exchange (EMIX) is not intended as a stand-alone signal; rather, it is anticipated to be used for information exchange in a variety of market-oriented interactions.

The EMIX Technical Committee (TC) is developing this specification in support of the US Department of Commerce National Institute of Standards and Technology (NIST) NIST Framework and Roadmap for Smart Grid Interoperability Standards [NIST] and in support of the US Department of Energy (DOE) as described in the Energy Independence and Security Act of 2007 (EISA 2007) [EISA].

This specification defines the following:

- The characteristics of power and energy that along with price define a product
- An [XML Schema] for Price and Product definition for products whose value varies with time of delivery.
- An [XML Schema] for Price and Product definition for Power-related products and services.
- An [XML Schema] describing the capabilities of resources that are being offered to the market.

Key to reading the document:

- **BOLD** terms are the names of referenced standards
- *Italic phrases* are quotes from external material.
- [bracketed] are references to the standards listed in normative or non-normative sections references sections.
- All examples and all Appendices are non-normative.

1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

1.2 Process

This information exchange was developed primarily by integrating requirements and use cases for Price and Product definition developed by the North American Energy Standards Board (NAESB) as part of its response to NIST Priority Action Plan 03 (PAP03), "Develop Common Specification for Price and Product Definition" [PAP03], which was driven by NIST, Federal Energy Regulatory Commission (FERC), and DOE priority items.

Where appropriate, semantic elements from the International Electrotechnical Commission (IEC) Technical Committee (TC) 57 Power systems management and associated information exchange Common Information Model (CIM) are used [IEC]. Business and market information was borrowed from the financial instruments Common Information Models as described in International Standards Organization (ISO) [ISO20022] standard and in the financial trading protocol, [FIX] (Financial Information eXchange).

Both the supply and the use of energy products, and therefore the market value, are time dependent, so precise communication of time of delivery is a significant component of product definition. EMIX incorporates schedule and interval communication interfaces from Web Services Calendar ([WS-Calendar]) to communicate schedule-related information.
Additional guidance was drawn from subject matter experts familiar with the design and implementation of enterprise and other systems that may interact with smart grids.

1.3 Normative References

- **RFC2119**

- **CEFACT**

- **GML**

- **SOA-RM**

- **UML**

- **URI**

- **WS-Calendar**

- **XML Schema**

1.4 Non-Normative References

- **EISA**

- **FIX**

- **IEC TC57**
 - IEC TC 57 Power and Load Management, http://tc57.iec.ch/index-tc57.html

- **NIEM**

- **TeMIX**

- **NAESB 03**

- **NIST Roadmap**

- **PAP03**
 - Details of PAP03 may be found at http://collaborate.nist.gov/twiki-sggrid/bin/view/SmartGrid/PAP03PriceProduct (link retrieved 06/23/2010)
1.5 Namespace

XML namespaces and prefixes used in this standard:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Namespace</th>
</tr>
</thead>
<tbody>
<tr>
<td>emix:</td>
<td>http://docs.oasis-open.org/ns/emix</td>
</tr>
<tr>
<td>power:</td>
<td>http://docs.oasis-open.org/ns/emix/power</td>
</tr>
<tr>
<td>resource:</td>
<td>http://docs.oasis-open.org/ns/emix/power/resource</td>
</tr>
<tr>
<td>xs</td>
<td>http://www.w3.org/2001/XMLSchema</td>
</tr>
<tr>
<td>gml:</td>
<td>http://www.opengis.net/gml/3.2</td>
</tr>
</tbody>
</table>

Namespace URIs resolve to a Resource Directory Description Language [RDDL 2.0] document describing the namespace.

1.6 Naming Conventions

This specification generally follows the National Information Exchange Model [NIEM] naming and design rules for artifacts defining the specification, as follows:

For the names of elements and the names of attributes within XSD files, the names follow the lower camelCase convention, with all names starting with a lower case letter. For example,

```xml
<element name="componentService" type="emix:ComponentServiceType"/>
```

For the names of types within XSD files, the names follow the Upper CamelCase convention with all names starting with an upper case letter postfixed with "Type". For example,

```xml
<complexType name="ComponentServiceType"/>
```

1.7 Editing Conventions

For readability, element names in tables appear as separate words. The actual names are lowerCamelCase, as specified above, and as they appear in the XML schemas.

The cardinality of each element can vary by transactive state. For clarity, cardinality for each element is not indicated in the tables in the specification. Note: because of EMIX Inheritance (see section 16.1), a "missing" required element may be supplied through inheritance.

Information in the "Specification" column of the tables is normative. Information appearing in the note column is explanatory and non-normative.

All sections explicitly noted as examples are informational and are not to be considered normative.
1.8 Semantics from WS-Calendar

Time semantics are critical to EMIX. An overview of EMIX semantics is in Appendix C for easy reference. Practitioners should read that specification or the [White Paper on WS-Calendar].

1.9 Market Semantics

Different energy markets have specific market terms and interaction patterns. This specification endorses none of them, but still needs to discuss the various stages of a market transaction. Without mandating the terminology used in any particular market, the EMIX specification uses the common market terms as defined in Table 4-5: Transactive States Enumeration.

You may want to turn ahead to have these definitions in mind as you read this document.

1.10 Security Approaches

EMIX is an information model, and thus security per se is out of scope for this specification. EMIX will normally be conveyed in messages as part of business processes. Each business process will have its own security needs, including different consequences for failure of security.
2 Overview

2.1 Introduction

Energy markets have been characterized by tariffs and embedded knowledge that make decision automation difficult. Different market segments use conflicting terms for similar attributes. Smart grids introduce rapidly changing products and product availability, with associated dynamic prices. A lack of a widely understood model conveying market information has been a barrier to development and deployment of technology to respond to changing market circumstances.

Price and product definition are actionable information. When presented with standard messages conveying price and product, automated systems can make decisions to optimize energy and economic results. In regulated electricity markets, price and products often are defined by complex tariffs, derived through not strictly economic processes. These tariffs convey the price and product information to make buying and selling decisions easier. The same information can be derived from market operations in non-tariffed markets. EMIX defines the information for use in messages that convey this actionable information.

An essential distinction between energy and other markets is that price is strongly influenced by time of delivery. Energy for sale at 2:00 AM, when energy use is low, is not the same product as energy for sale at the same location at 2:00 PM, during the working day. EMIX conveys time and interval by incorporating WS-Calendar into tenders, transactions, and performance calls.

Not all market information is available in real time. Present day markets, particularly wholesale markets, may have deferred charges (e.g. balancing charges) that cannot be determined at point of sale. Other markets may require additional purchases to allow the use of the energy purchased (e.g. same-time transmission rights or pipeline fees when accepting delivery on a forward contract). EMIX is useful for representing available price and product information.

2.2 Approach

The EMIX TC has prepared a white paper which provides a context for discussing the use of transactions in retail and wholesale energy markets. The Transactional Energy Market Information Exchange (TeMIX) white paper can be found in the non-normative references.

Transactive Energy Market Information Exchange (TeMIX) was developed as a specialization of work within the EMIX TC to address retail and wholesale transactions using approaches common in energy wholesale and financial transactions. The Energy Interoperation TC defines a TeMIX profile which is a subset of the EMIX information model and the Energy Interoperation TC services.

The TeMIX profile allows only specific tenders and transactions for block power on defined intervals of time. Tenders may be offered by any party to any other party, as market rules and regulations may allow. Any party can be a buyer, seller or both. Transactions may include call and put options. TeMIX Options perform a similar function to demand response contracts or ancillary service contracts where an operator has dispatch control over the exercise of the option. TeMIX products also include transmission and distribution (transport) products.

TeMIX tenders and transactions can support dynamic tariffs by retail providers to retail customers. TeMIX is designed for interval metering where delivery can be accurately measured. The simplified information model and services of the TeMIX profile also support increased automation of transactions using the computer and communications technology of the smart grid.

EMIX has adopted the much of the TeMIX terminology. EMIX supports current operating models of market operators, utilities, and demand response providers while at the same time supporting the TeMIX model and future transitions among the models.

Power is a commodity whose market value may be different based upon how it is produced or generated. After production, though, the commodity is commingled with production from other sources with which it is...
fully fungible. Even so, some energy purchasers distinguish between sources of this product even as they consume the commingled commodity.

Throughout this work, we refer to the intrinsic and extrinsic properties of an energy product. An intrinsic property is one “belonging to a thing by its very nature.” An extrinsic property is one “not forming an essential part of a thing or arising or originating from the outside.” In EMIX, the term intrinsic properties refers to those that can be measured and/or verified at the point of delivery, i.e., electric power and price. The term extrinsic properties refers to those that can only be known with prior knowledge, such as the carbon cost, the energy source, or the sulfate load from generation.

EMIX artifacts communicate both intrinsic and extrinsic properties; extrinsic properties must be able to clear in the market just as do intrinsic properties.

EMIX is not concerned with the processes whereby an actor provides the products and resources it describes. EMIX is an information model that assumes conveyance within a service-based environment. As defined in the OASIS Reference Model for Service Oriented Architecture 1.0 [SOA-RM], service requests access the capability of a remote system.

The purpose of using a capability is to realize one or more real world effects. At its core, an interaction is “an act” as opposed to “an object” and the result of an interaction is an effect (or a set/series of effects). This effect may be the return of information or the change in the state of entities (known or unknown) that are involved in the interaction.

We are careful to distinguish between public actions and private actions; private actions are inherently unknowable by other parties. On the other hand, public actions result in changes to the state that is shared between at least those involved in the current execution context and possibly shared by others. Real world effects are, then, couched in terms of changes to this shared state.

A request for the delivery of a product is a request for specific real world effects. For EMIX, these effects are expected to occur during a given period. Consider two sellers that offer the same product. One must start planning an hour or more in advance. The second may be able to deliver the product in five minutes. The service start time is the time when product delivery begins. Because this service start time and service period are all that matters, different providers using quite different technologies can provide equivalent product as specified in EMIX.

Time semantics are critical to EMIX. EMIX uses semantics from [WS-Calendar] to describe time, duration, and schedule. WS-Calendar also defines an information model wherein services or products that vary over time can be efficiently and unambiguously communicated using inheritance. Lastly, WS-Calendar describes an approach wherein an incompletely specified sequence of information can be completed using minimal re-definition and remote invocation. EMIX uses these semantic and conformance rules throughout this specification.

2.3 Information Structure

As a conceptual aid, we discuss the information structure using the metaphor of an envelope containing warrants. The intrinsic properties and the price are on the face of the envelope, easy to read by all. The contents of the envelope are the supporting information and various warrants about the extrinsic qualities.

On the face of the envelope, EMIX lists the intrinsic qualities of the energy product. In the simplest model, the intrinsic qualities are limited to the price and the information a meter can provide. In a market of homogenous energy sources and commodity energy, only the intrinsic qualities are actionable. In postal handling, information on the face is meant for high-speed automated processing. The simplest devices, including the proverbial smart toaster, may understand only the intrinsic qualities. The phrase “prices to devices” is used in energy policy discussions to describe a market model in which energy use decisions are distributed to each device that uses energy. Under this model, decisions about whether to use energy now or delay energy use until later are best made where the value is received for that energy use, the end device. The smart toaster is shorthand for the smallest, least capable device that can receive such a message. The Committee anticipates that the information on the face of the envelope will be sufficient for many if not most energy decisions.

The envelope contents are the supporting documents that explain and support the price for the intrinsic qualities on the face of the envelope. These extrinsic qualities are separable from the intrinsic transaction.
and perhaps can be traded in secondary markets. The contents can include Warrants about the source and the environmental attributes which provide information about the energy, but they are not the energy. The extrinsic qualities enable traceability and auditing, increasing public trust in energy markets and on energy differentiation. The simplest gateways and devices may ignore the warrants, that is, they can forward or process messages without opening the envelope.

Extrinsic information conveyed within the envelope includes supporting information. For example, a purchaser may opt to buy energy from a particular supplier with advertised rates. Transport loss may reduce the quantity delivered. Markets may add congestion charges along the way. Such supporting information can explain why the delivered cost, on the face of the envelope, is different than the purchase cost.

2.4 EMIX Time and Schedules

Time is an important component of energy products. An energy product produced in one Interval of time may or may not be able to be stored for delivery at a later Interval of time. Thus the same product in different Intervals of time may have different prices. EMIX uses [WS-Calendar] to apply prices and products to time Intervals.

WS-Calendar defines a mechanism to apply a schedule to a Sequence of time Intervals. WS-Calendar further defines how to use a process analogous to inheritance to apply a single information artifact to each Interval in the Sequence, allowing elements of that artifact to be over-ridden within any given Interval. WS-Calendar also defines a schedule entry point, defining how specific performance can be contracted and scheduled.

This document assumes that the reader has a clear understanding of WS-Calendar and its interfaces. The non-normative white paper on the use of the WS-Calendar specification published by that committee is a good place to start.

2.5 Tenders and Transactions for Power Products and Resource Capabilities

The focus of EMIX is on price and product communication in support of commercial transactions. The messaging and interaction patterns for commercial transactions are out of scope for EMIX but worth a brief discussion here to provide context.

EMIX is intended for commercial transactions in all types of markets including ISO/RTO markets, exchange markets, regulated markets, regulated retail tariffs, open markets, and wholesale and retail bilateral markets. The commercial practices that determine prices vary in these markets but all markets can benefit from interoperable communication of price and product.

Transactions in most markets begin with Tenders (offers to buy or sell) by a Party to another Party. Once an agreement among Parties is reached, the parties Agree to a Transaction (contract or award). The parties to the Transaction then must perform on the Transaction by arranging for supply, transport, consumption, settlement and payment. At every stage in this process, clear communication of the terms (price, quantity, delivery schedule and other attributes) of the tender or transaction is essential. Section 4, “Overview of the Information Elements” describes EMIX Base Type, the core of EMIX information models.

In many electricity markets Operators are offered electrical products based on specific resources, i.e., generators, load curtailment, and other energy resources. EMIX uses EMIX Resource Descriptions to describe the responsiveness, capacity, and other aspects of these Resources. EMIX Resource Offers combine an EMIX Resource Description with a multi-part offer. A Party can use EMIX Resource Offers to tender to an Operator one or more EMIX Products. Similarly, an EMIX Load Curtailment Offer combines a Load Curtailment Resource Description with a multi-part offer.

2.6 Transport

Product transport costs vary over time. Delivery costs come in two general forms. Congestion charges apply to each unit of product that passes through a particular point in the distribution system. Congestion
charges increase the cost of the Product delivered in a particular Interval. Loss reduces the product
delivered as it passes from the purchase point to the delivery point. Loss may reduce the amount of
product received or a loss charge may be applied to purchase replacement energy for the energy loss.
If the Product is priced for Delivery to the consumer, transport charges may not apply. Product
descriptions for Transport charges are discussed in Section 14, *Power Transport Product Descriptions*.

2.7 Verification

Many products, particularly those transacted for Demand Response, are distinguished by particular
Verification Methods. In a pure transactive energy market, the meter would be the only Verification
mechanism. In today's markets, Verification can be more complex.
Verification is out of scope for this document. Verification is fully specified under NAESB Business
Practices for Verification. This specification does not describe verification.
Guide to the Schema Structures

The EMIX information exchange model defines common structures that can be used to define products whose value varies with the time of delivery. Because the future of smart energy markets is not known, there is an emphasis on extensibility and composition to allow EMIX to be suitable for markets known and unknown, and for easy evolution.

The EMIX 1.0 Specification consists of three schemas.

- The EMIX schema defines the framework and extensibility as well as agreement types common to many markets.
- The Power schema defines the specific information exchanges, based on the EMIX framework, needed for markets in power and energy.
- The Resource schema defines how load and generation, specific capabilities of devices and systems to affect power and energy markets, can be described irrespective of the underlying technologies.

Other markets, particularly other products for energy markets, share the characteristic that value is closely linked to time of delivery. Power and Resource provide examples of extension and conformance with the EMIX model. Specifications that wish to claim conformance with EMIX use should follow the same approaches. Information exchanges based on specifications that conform to the EMIX specification, can be used within any business process or specification that uses or exchanges EMIX payloads.

Table 3-1: EMIX Schemas

<table>
<thead>
<tr>
<th>Schema</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMIX</td>
<td>The EMIX schema has target namespace http://docs.oasis-open.org/ns/emix and consists of three files—emix.xsd, emix-requirements.xsd, and emix-warrants.xsd</td>
</tr>
<tr>
<td>Power</td>
<td>The Power schema as target namespace http://docs.oasis-open.org/ns/emix/power consists of three files—power.xsd, power-product.xsd, and power-quality.xsd.</td>
</tr>
<tr>
<td>Resource</td>
<td>The Resource schema has target namespace http://docs.oasis-open.org/ns/emix/power and consists of one file—resource.xsd</td>
</tr>
</tbody>
</table>

3.1 Core Extension Elements

The core extension elements are the Product Description Type and the EMIX Base Type. These types include the abstract types Item (Item Base), and the Interface (EMIX Interface). Almost all of EMIX using these four abstract types.

The abstract Product Description Type is the basis for all static descriptions of EMIX products. Product Descriptions are static in that they refer to a particular instance in time. Most of the elements in the Power and Resource schemas are creating Product Descriptions for Power Markets.

The abstract EMIX Base Type defines a Product Description Type to a Schedule. That Schedule may be as simple as a single 5 minute interval on a particular day, or as complex and repeating you can find in your own personal calendar. Any type derived from the EMIX Base Type can hold any Product Description. Information elements derived from the EMIX Base include Products, Options, TEMIX, and Delivery (Metered Information).

The Item Base is the basis for the lowest level description of each Product and its aspects. The term Item is in common business use for that thing on a line of a purchase order, or of a receipt, or on a bill of...
lading. Item Base derived types have at least a name, a unit of measure, and a scale factor. The Power schema defines 3 power types and three energy types derived from the Item Base Type.

All product descriptions include the EMIX Interface. The EMIX Interface is where something transfers ownership for the market. In Power, it can be a node or meter, and aggregation of nodes or meters, a pair of nodes, or a geographic area. Other specifications can derive from the base type to support their own needs. Any type derived from the Interface can be used in any of the EMIX Base derived types.

3.2 Extensibility

EMIX supports a modular model in which extensions to EMIX can easily be propagated into standards that communicate EMIX. There are multiple EMIX envelopes to participate in different roles; each includes a set of EMIX Base Types that describe what is tendered or transacted.

New efforts could specify novel Product Descriptions by extending the EMIX Product Description Type. These new Product Descriptions would define new conformant EMIX Products merely by application the EMIX Base Type. Such conforming Products could then be transported on any EMIX Envelope. Any Specification that communicates EMIX Products can exchange market information about these new Product Descriptions. A new committee can extend EMIX into new products without re-considering any aspects of the EMIX specification itself.

A similar logic applies to the warrants, which outside the scope of this specification. If the warrant information varies over time, the warrant information can be applied to a WS-Calendar Sequence just as if it were a Product Description.

Extensibility mechanisms supported in EMIX are discussed in Appendix B.

3.3 Power and Resource Schemas

The Power and Resource schemas are, in effect, the first extensions to the EMIX Schema. This specification includes two schemas that extend EMIX. The Power schema extends the EMIX schema to define products for Power markets. The Resource schema extends the EMIX schema to define the capabilities of systems in ways that allow market participants to make buying decisions.
4 Overview of the Information Elements

EMIX describes the market communications (EMIX Base type) of tenders and transactions for products whose market value varies with time of delivery. An energy product typically is delivered over time at a specific location. Five kW at 2:00 AM does not provide the same energy services as five kW at 2:00 PM.

EMIX describes the terms of tenders and transactions for which time and location are essential characteristics. For example, the price and quantity (rate of delivery) of energy in each time Interval of a Sequence of Intervals may vary for energy transactions made in a Sequence of Intervals.

EMIX Base derived types are created by applying Product Descriptions to WS-Calendar Sequences. WS-Calendar Sequences embody the same calendaring standards used by most business and personal calendaring systems. This enables greater interoperation between grid systems and business and personal systems. An EMIX Product Description describes the elements of an energy product at a location for a one Interval or a Sequence of Intervals. An EMIX Product Description for a constant rate of delivery power product over a single Interval comprises a (1) start time, (2) duration, (3) rate of delivery, (4) price and (5) location. If the rate of delivery (kW) and price ($/kWh) have been exchanged in advance, the information exchanged to deliver the product is simply "start (reference [URI] to product) at 3:00 AM for 0.75 hours."

Figure 4-1: EMIX Base Type

A Product Description included in each Interval in a Sequence could describe the same elements again and again. Only a few elements, perhaps only price, or quantity, may change per Interval. EMIX uses the WS-Calendar Sequence to specify product elements once, and then specifies which elements may vary by the time Intervals of a Sequence.

For example, a resource representing a responsive load may state that 15 minutes lead time is required between notification and load reduction. This characteristic may hold true whether the response requested is for a run-time of 10 minutes or for one of 10 hours. EMIX specifies invariant characteristics as part of a product description or resource, while offering the variable run-time to the market.

EMIX Base types using EMIX Product Descriptions applied to WS-Calendar Sequence provide a flexible information model for describing any energy tender or transaction. New or specialized energy products can offered and transacted without changing the EMIX standard.

EMIX Base types minimize the size of information exchanged by efficiently describing how information elements of a tender or a transaction may or may not vary over time. This reduces communication overhead.

4.1 The Intrinsic Elements: EMIX Products

The following table Table 4-1: Elements of the EMIX Product specifies the Intrinsic Elements in the EMIX information model. Intrinsic elements make up the face of the envelope. EMIX-based transactions are based on the exchange of these envelopes. There are four types of envelopes defined in EMIX. These are Product, Option, TeMIX, and Delivery, each envelope with its own requirements.
Central to each is the Base Product Description Type. The Base Product Description Type is the abstract class from which all Product Descriptions are derived. A Product is a description of the product or service applied to a delivery schedule. Product Descriptions as concrete classes, make up most of the sections after this one. However, as no envelope is complete without a Product Description, we define them here.

4.1.1 Intrinsic Elements of the EMIX Product Type

![Diagram of EMIX Product Type]

Figure 4-2: EMIX Product Type

The EMIX Product is the commonest of the envelopes. It is used for simple tenders, and agreements. It describes specific product delivery.

Table 4-1: Elements of the EMIX Product

<table>
<thead>
<tr>
<th>Product Element</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>Identifier of this artifact. In many (if not most) markets the UID is required to be globally unique.</td>
</tr>
<tr>
<td>Transactive State</td>
<td>Used to aid parsing and conformance, e.g., to distinguish between different purposes for EMIX communications. See Table 4-5: Transactive States Enumeration</td>
</tr>
<tr>
<td>EMIX Product</td>
<td>EMIX Products are created by applying a Product Description to a Schedule using the Base Product abstract class.</td>
</tr>
<tr>
<td>Market Context</td>
<td>An identification of the market in which the Product is offered. This may include standard financial and energy exchanges, markets managed by system operators, markets managed by or for aggregators and distributors, or an identification of the microgrid in which the Product is priced</td>
</tr>
<tr>
<td>Party Type</td>
<td>Identifies whether information originator is Buyer or Seller</td>
</tr>
<tr>
<td>Currency</td>
<td>A code that indicates the currency used, as specified in [CEFACT]</td>
</tr>
</tbody>
</table>

Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product
4.1.2 Intrinsic Elements of the EMIX Option

The EMIX Option is an elaboration of the EMIX Product described above. An option is a financial instrument that gives the buyer the right, but not the obligation, to buy or sell a product at a set price during given time windows. Many typical energy agreements, including demand response and reserves, include elements that would give them the name Option in any other market.

Figure 4-3: EMIX Option Type

The EMIX option also specifies specific availability and performance. The “face of the envelope” displays additional information to support these requirements.

Table 4-2: Option Elements – another “Face of the Envelope”

<table>
<thead>
<tr>
<th>Product Element</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints</td>
<td>A collection of business and performance rules that constrain the option agreement. See Constraints at Section 16</td>
</tr>
<tr>
<td>Envelope Contents</td>
<td>As defined in section 4.3 Inside the Envelope – the Extrinsic Items</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option Element</th>
<th>Specification</th>
</tr>
</thead>
</table>

emix-v1.0-csprd02
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product
<table>
<thead>
<tr>
<th>Option Element</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>Identifier of this artifact. In many (if not most) markets the UID is required to be globally unique.</td>
</tr>
<tr>
<td>Transactive State</td>
<td>Used to aid parsing and conformance, e.g., to distinguish between different purposes for EMIX communications</td>
</tr>
<tr>
<td>EMIX Product</td>
<td>EMIX Products are created by applying a Product Description to a Schedule using the Base Product abstract class.</td>
</tr>
<tr>
<td>Market Context</td>
<td>An identification of the market in which the Product is offered. This may include standard financial and energy exchanges, markets managed by system operators, markets managed by or for aggregators and distributors, or an identification of the microgrid in which the Product is priced</td>
</tr>
<tr>
<td>Currency</td>
<td>A code that indicates the currency used, as specified in [CEFACT]</td>
</tr>
<tr>
<td>Envelope Contents</td>
<td>As defined in section 4.3 Inside the Envelope – the Extrinsic Items</td>
</tr>
<tr>
<td>Option Exercise Schedule</td>
<td>Uses the Availability Schedule Constraint to specify the period or periods in which the option is available for exercise. For example, a reserve power option could specify a schedule of afternoons in July excluding the 4th</td>
</tr>
<tr>
<td>Option Holder Side</td>
<td>The side which enjoys the benefit of choosing whether or not to exercise the terms specified in the option. Sometimes referred to as the Promisee</td>
</tr>
<tr>
<td>Option Premium</td>
<td>The price paid to the Promisor for the rights involved</td>
</tr>
<tr>
<td>Option Strike Price</td>
<td>The price at which an option holder (Promisee) has the right to require the option writer (Promisor) to deliver</td>
</tr>
<tr>
<td>Exercise Lead Time</td>
<td>The minimum notification time required by the Promisor to to be able to perform. Uses the Minimum Notification Duration Constraint. The Promisor is not responsible for performance in less than the Exercise Lead Time.</td>
</tr>
<tr>
<td>Strike Price</td>
<td>The price the Promisee will pay the Promisor delivery of Product under the option. May be fixed or relative to a specified market.</td>
</tr>
<tr>
<td>Side</td>
<td>Identifies whether information originator is on the Buy or Sell side</td>
</tr>
<tr>
<td>Option Type</td>
<td>An enumerated list of Option types</td>
</tr>
<tr>
<td>Constraints</td>
<td>A collection of business and performance rules that constrain the option agreement. See Constraints at Section 16</td>
</tr>
</tbody>
</table>
4.1.3 Intrinsic Elements of the TeMIX

The TEMIX (Transactional Energy Market Information Exchange) is a model for balancing energy markets with pure economic trading. As such, it is the simplest of the EMIX Envelopes.

Table 4-3: Elements of the TeMIX

<table>
<thead>
<tr>
<th>TEMIX Element</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>Identifier of this artifact. In many (if not most) markets the UID is required to be globally unique.</td>
</tr>
<tr>
<td>Transactive State</td>
<td>Used to aid parsing and conformance, e.g., to distinguish between different purposes for EMIX communications. See Table 4-5: Transactive States Enumeration</td>
</tr>
<tr>
<td>EMIX Product</td>
<td>EMIX Products are created by applying a Product Description to a Schedule using the Base Product abstract class.</td>
</tr>
<tr>
<td>Currency</td>
<td>A code that indicates the currency used, as specified in [CEFACT]</td>
</tr>
<tr>
<td>Constraints</td>
<td>A collection of business and performance rules that constrain the option transaction. See Constraints at Section 16. The permitted list of constraints for TeMIX is constrained to those discussed in section 11.</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>For Tenders only, the date and time when this Tender expires.</td>
</tr>
<tr>
<td>Envelope Contents</td>
<td>As defined in section 4.3 Inside the Envelope – the Extrinsic Items</td>
</tr>
</tbody>
</table>

See Section 11 for a discussion putting TeMIX products in context.
4.1.4 Intrinsic Elements of Delivery

Figure 4-5: Delivery

In any market, order must be matched to delivery. EMIX Delivery reports the historical delivery of product over time.

Table 4-4: Elements of the EMIX Delivery

<table>
<thead>
<tr>
<th>Delivery Element</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>Identifier of this artifact. In many (if not most) markets the UID is required to be globally unique.</td>
</tr>
<tr>
<td>EMIX Product</td>
<td>EMIX Products are created by applying a Product Description to a Schedule using the Base Product abstract class.</td>
</tr>
<tr>
<td>Injection</td>
<td>True means positive Delivery is injection into the grid. False means positive Delivery is extraction from Grid</td>
</tr>
<tr>
<td>Envelope Contents</td>
<td>As defined in section 4.3 Inside the Envelope – the Extrinsic Items</td>
</tr>
</tbody>
</table>

4.1.5 Other Envelopes and Information Elements

EMIX anticipates that further elements will be defined, and an EMIX envelope containing elements not defined herein is fully compliant.

4.2 Transactive States

As parties use EMIX to come to an agreement and transact energy, the information required changes. An initial offer may not have a price. An agreement may not yet have a performance date. It is necessary for both parties in any communication to understand the Transactive State, i.e. what level of agreement defines the current communication.

Table 4-5: Transactive States Enumeration

<table>
<thead>
<tr>
<th>Transactive State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication of Interest</td>
<td>Indication of Interest is a non-binding offer or request for offer for a transaction that may or may not indicate price and quantity and other terms.</td>
</tr>
<tr>
<td>Tender</td>
<td>A Tender is a binding offer or bid for a Transaction by a party that when accepted by a counter party will result in a binding Transaction. ISOs use the term Bids to describe offers and bids into their markets.</td>
</tr>
</tbody>
</table>
Transactive State

<table>
<thead>
<tr>
<th>Transactive State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction</td>
<td>A Transaction between two parties is a binding agreement</td>
</tr>
<tr>
<td>Exercise</td>
<td>Exercise applies to two-part Transactions such as Ancillary Services Dispatch by ISOs, Call and Put Options and DR event dispatch that have an initial agreement that includes a second step to that results in another Transaction.</td>
</tr>
<tr>
<td>Transport Commitment</td>
<td>Transport Commitment is what the ISOs call "Transmission Scheduling" which is a Transport product and not an energy product transaction. Since the distribution grid may require such transactions or schedules in the future we use the term "Transport"</td>
</tr>
<tr>
<td>Delivery</td>
<td>Delivery, which includes both Production and Usage, is the act of actually generating and consuming power that is measured by meters and reported for settlement to the parties. Delivery also names the enumeration of the Delivery.</td>
</tr>
<tr>
<td>Publication</td>
<td>Publication is the act of general announcement or posting of appropriate prices and other information concerning products. Publications are not Tenders or Indications of Interest.</td>
</tr>
</tbody>
</table>

4.3 Inside the Envelope – the Extrinsic Items

While energy markets deliver a blended commodity, the customer may value the product differently based upon indistinguishable characteristics of the commodity. Often this distinction is based upon the origin of the product. The product may come with attached credits that may have re-sale value. The buyer may contract for, and the supplier may need to report specific quality of product delivery. In other circumstances, it may be necessary to deliver supporting detail to explain the prices delivered.

![Figure 4-6: Envelope Contents](image)

429 Figure 4-6: Envelope Contents
The definition of a warrant is “a written assurance that some product or service will be provided or will meet certain specifications”. Sellers use EMIX Warrants to provide information about the source of the energy or about its environmental characteristics. Buyers can use warrants to indicate what they wish to purchase. It seems a fundamental market rule that a middleman cannot sell more wind power than he has bought. Such rules are beyond the scope of EMIX, but EMIX-based information exchanges support such market rules.

EMIX Warrants are assertions about the EMIX Product.

4.4 Summary of the EMIX Base Derivations

Figure 4-7: UML of EMIX Base and its Extensions
5 Constraints and Market Requirements

As noted on each of the elements above, EMIX Products can be subject to a number of Constraints and Market Requirements. These Constraints and Requirements can apply at each transactive state. Both Constraints and Requirements are extensible, so additional schemas, specifications, and standards can extend the lists while remaining in conformance.

Neither the EMIX Constraints nor Requirements are tied to any particular kind of Product or Resource (See section 10 for a discussion of Resources).

5.1 EMIX Constraints

Constraints are extrinsic to the product delivery but affect how a partner may request performance of a service. Performance constraints may originate in the basic mechanical needs of the Resource or to the business needs of the source. These constraints can affect the market value of the resource or the repeated invocation of a resource. It is possible for a given underlying resource to be offered to the market with different constraints and therefore different values.

Table 5-1: Constraints

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Response Duration</td>
<td>The shortest Duration for which the resource will accept a request to maintain a response before returning to pre-request levels.</td>
</tr>
<tr>
<td>Maximum Response Duration</td>
<td>The longest Duration for which the resource will accept a request.</td>
</tr>
<tr>
<td>Minimum Recovery Duration</td>
<td>The minimum Duration that the Resource requires after the end of a response the resource has is ready to respond to a new request.</td>
</tr>
<tr>
<td>Minimum Duration Between Invocations</td>
<td>The minimum Duration that the Resource requires after receiving a request before the resource has is ready to respond to a new request.</td>
</tr>
<tr>
<td>Minimum Notification Duration</td>
<td>The minimum Duration that the Resource requires for Notification before initiating a response to a request.</td>
</tr>
<tr>
<td>Maximum Notification Duration</td>
<td>The maximum Duration in advance of a response that the Resource will accept a Notification.</td>
</tr>
<tr>
<td>Response Time</td>
<td>Duration required from receipt of a request to supplying the requested level of response by the resource</td>
</tr>
<tr>
<td>Maximum Invocations Per Duration</td>
<td>Maximum number of invocations of service during a given duration</td>
</tr>
<tr>
<td>Maximum Consecutive Durations</td>
<td>Maximum consecutive durations in which service can be invoked, e.g., it will not accept requests on more than 3 consecutive days.</td>
</tr>
<tr>
<td>Minimum Starts Per Duration</td>
<td>The fewest Requests that the resource will accept during any duration. This constraint is typically used in market rather than in resource descriptions</td>
</tr>
<tr>
<td>Maximum Run Duration</td>
<td>The Maximum duration for which a resource will accept a request</td>
</tr>
<tr>
<td>Minimum Run Duration</td>
<td>The Minimum duration for which a resource will accept a request</td>
</tr>
</tbody>
</table>
Constraint | Definition
--- | ---
Availability Schedule | A schedule of time for which a resource will accept requests. The schedule may include multiple availability windows, i.e., an availability in May, can include weekday mornings and Thursday afternoons. The scheduled duration must be entirely within a single instance of an availability window.

Notification Schedule | A schedule of time during which a resource will accept requests. The schedule may include multiple availability windows which may be tied to business process, i.e., must receive notifications between 8:00 and 9:30 on business days. The notification must be received within a notification window.

Unavailability Schedule | A schedule of time during which a resource will accept requests. The schedule may include multiple availability windows, i.e., an availability in May, can include weekday mornings and Thursday afternoons. The scheduled duration must be entirely within a single instance of an availability window.

5.2 Market Requirements

Market Requirements are the market portion of Constraints, i.e., they are used to state the offeror's expectations about a tender. It is possible for a given underlying resource to be offered to the market with different Requirements and therefore different values.

Table 5-2: Market Requirements for EMIX Products

<table>
<thead>
<tr>
<th>Market Requirement</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Economic Requirement</td>
<td>Minimum net remuneration this resource requires from a total response</td>
</tr>
<tr>
<td>Required Startup Cost</td>
<td>Minimum remuneration required from start-up of this service.</td>
</tr>
<tr>
<td>Minimum Resource Cost</td>
<td>Resource requires this amount per period, i.e., a minimum requirement for $100 / hour at whatever rate</td>
</tr>
</tbody>
</table>

There is a wide variety of warrant types, issuing authorities, and characteristics described by warrants. For bilateral agreements, there may be self-issued warrants. In larger markets, there may be a requirement that Warrants be traceable through multiple levels of transactions. Warrants are discussed in Section 15.
6 Interfaces and Items – Components for Constructing Product Descriptions

EMIX Product Descriptions applied to business schedules define EMIX Products. The EMIX Products were defined in section 4.1, including Products, Options, TEMIX, and Delivery. All product descriptions include an EMIX Interface and one or more elements derived from the EMIX Item Base.

6.1 EMIX Interfaces

Every market transaction occurs at an interface, where beneficial rights to or use of a product are transferred between buyer and seller. This is often the point at which the flow of product is measured although it may not be.

In power Markets, described in the sections below, it can be a node or meter, and aggregation of nodes or meters, a pair of nodes, or a geographic area. Only the geographic area is defined within the EMIX schema.

Other specifications can derive from the base type to support their own needs. Any type derived from the Interface can be used in any of the EMIX Base derived Product Descriptions.

6.2 Item Base

In common business usage, the item is that thing on each line of the Purchase Order, n each line of the Invoice, and on each line of the Shipping Document. Common aspects of the item is the name and the unit of measure. For general use, EMIX also defines the

EMIX references the International System of Units (SI) to specify a set of unit prefixes known as SI prefixes or metric prefixes. An SI prefix is a name that precedes a basic unit of measure to indicate a decadic multiple or fraction of the unit. The SI prefixes are standardized by the International Bureau of Weights and Measures (IBWM)in resolutions dating from 1960 to 1991. EMIX enumerates the Si prefixes in the SiScale enumeration. EMIX requires that conforming specifications use the SiScale to indicate the size of the unit of measure.

The Item Base is used not only to quantify the Item, but potential attributes of the Item as well.

Items do not include quantity or precise. The same Item definition may be used in every transactive state, and prices and quantities are not known for all.

6.2.1 Example of use of Item Base

The Item Base is used in many derived types. This illustration shows the POWER Energy Item Type, from which Real, Apparent, and Reactive Energy are derived.
Figure 6-1: UML showing use of Item Base in Energy Types
7 The Schedule in the EMIX Product: Gluons and Intervals.

The EMIX Base Product is an abstract class that defines how all Product Descriptions are assembled with a schedule to be brought to market. The Base Product also defines an inheritance model whereby a fixed description of a product is refined with additional information as it becomes actionable.

While a product can be fully defined within an Interval, energy markets often consist of many consecutive intervals throughout the day. The intervals can be as short as minutes, or even seconds. A day’s worth of intervals, each described separately, would consist of much duplicate information. For this reason, it is desirable to define product information in the Gluon, and place only those bits of information that change over time in each interval. Sometimes, the information in a particular interval takes precedence over the inherited information. The rules of inheritance are discussed below in EMIX Conformance with WS-Calendar,

7.1 The EMIX Gluon

The Base Product incorporates structures and inheritance patterns from [WS-Calendar] that are applied to and through the schedule. Table 7-1 and Table 4-1 describe the key elements of the semantics of the Base Product. [WS-Calendar] defines the Gluon as a way to convey information relating to an entire Schedule. Those unfamiliar with WS-Calendar may wish to refer to Appendix C for an overview,

Table 7-1: EMIX Base Product – the Gluon

<table>
<thead>
<tr>
<th>Gluon Element</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Description</td>
<td>An EMIX ProductDescription describes the energy or services, the location and the price and quantity variables that can be set as a default in the Gluon and inherited by the Intervals in the Sequence. With the possibility of lineage of multiple gluons, product description in the interval, this is not required.</td>
</tr>
<tr>
<td>Gluon Duration</td>
<td>A Duration set in a Gluon can be inherited by a Sequence of Intervals, subject to the inheritance rules. Not present in all Gluons.</td>
</tr>
<tr>
<td>Gluon Quantity</td>
<td>A Quantity set in a Gluon can be inherited by a Sequence of Intervals, subject to the inheritance rules. Not present in all Gluons.</td>
</tr>
<tr>
<td>Gluon Unit Price</td>
<td>A Price set in a Gluon can be inherited by a Sequence of Intervals, subject to the inheritance rules. Not present in all Gluons.</td>
</tr>
<tr>
<td>Sequence</td>
<td>A sequence is a set of intervals and the Gluons associated with them. A Gluon influences a Sequence through Inheritance.</td>
</tr>
<tr>
<td>Starting Date-Time</td>
<td>A Price set in a Gluon can be inherited by the Designated Interval in the Sequence to define the schedule for all Intervals in the Sequence. Not present in all Gluons</td>
</tr>
<tr>
<td>Designated Interval</td>
<td>The Interval in a sequence which has a direct relation with a Gluon (or chain of Gluons).</td>
</tr>
<tr>
<td>Availability</td>
<td>When present in a tender, defines when the product is available for delivery.</td>
</tr>
</tbody>
</table>
7.2 The EMIX Sequence and Intervals

[WS-Calendar] defines a Sequence is a temporally related set of Intervals. An interval is a period when something is done or delivered. Because of the temporal relation, Scheduling one Interval in the Sequence schedules them all. For this reason, EMIX Intervals are normally brought to market through one or more Gluons, each able to schedule its Sequence.

Table 7-2: EMIX Base Product - the Interval

<table>
<thead>
<tr>
<th>Interval Element</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>Elements of the Product Description that can be inherited without change from the Gluon need not be expressed in the Interval.</td>
</tr>
<tr>
<td>Duration</td>
<td>Can be inherited from the Gluon Lineage. Local expression supersedes inheritance.</td>
</tr>
<tr>
<td>Quantity</td>
<td>Can be inherited from the Gluon Lineage. Local expression supersedes inheritance.</td>
</tr>
<tr>
<td>Unit Price</td>
<td>Can be inherited from the Gluon Lineage. Local expression supersedes inheritance.</td>
</tr>
<tr>
<td>Starting Date-Time</td>
<td>Within a Sequence, is computed from the Starting Date Time of a single member of the Sequence. The Designated Interval can inherit this from the Gluon Lineage. Local expression supersedes inheritance.</td>
</tr>
<tr>
<td>Relation</td>
<td>Link from one Interval to other that specifies the relationship in time between Intervals in a Sequence.</td>
</tr>
</tbody>
</table>

7.3 EMIX Product Model

The illustration below provides a model demonstrating a sequence of three intervals, and the successive application of Gluons to bring them to market.

![Figure 7-1: EMIX Model](image)

Generation Sequence

- **Interval A**: 15 minutes ~ 3.5 MWh
- **Interval B**: 50 / MWh
- **Interval C**: 10 minutes ~ 1.5 / MWh
1. Power source defines product to market (Sequence and Gluon 1).

2. Product is offered to market on a particular day ([1] and Gluon 2) (Date but not time, required price specified)

3. Transaction specifies start time (9:00) and duration (6:30) (Gluon 3), inherited by Sequence through Gluons 2 and 1. Interval B (linked to Gluon 1) is the Interval that starts at 9:00.
8 EMIX Power Product Descriptions

Electrical Energy and must be described precisely as it comes to market. Different products can provide total power, real power, or reactive power. Products delivering the same Power at a different voltage, or in DC rather than AC, may be valued differently. For the convenience of the readers, terms associated with electrical power and energy, and the relationships between them, are reviewed in Appendix E.

EMIX Provides a general model for exchanging product and market information about products whose value is tied closely to the time of delivery. EMIX Power defines specific EMIX Products for Power delivery. EMIX Resources define capabilities that could be brought market and the performance characteristics those resources will have, and thus enable a buyer to determine which resources to seek agreements with.

EMIX Products consist of Product Descriptions applied to the EMIX Base Product. The sections ahead discuss three classes of Product Description:

1) Power Product Descriptions
2) Resource Offer Descriptions
3) Transport Product Descriptions

EMIX Electrical Power Products are defined using standard attribute definitions from the Power and Load Management Common Information Model (CIM). The canonical definitions are in the IEC TC57 CIM.

8.1 Power Product Descriptions

Power can be bought under terms that

a) Specify the rate of delivery over a duration of an interval. Duration times power = energy

b) Specify the amount of energy over an interval with no restrictions on the rate of delivery at any instant with in the interval.

c) Made available as Full Requirements Power (the same as b) except that the amount of energy transacted is measured after delivery.

Power Products are the subject of tenders and transactions, i.e., they are what is actually bought and sold. Depending upon the market, Power can be bought under terms that specify the energy and its rate of delivery (power), or made available for use up to the maximum amount deliverable by the in-place infrastructure (also known as ‘‘Full-requirements Power’’) Power Products in Section 9, Power Product Descriptions.

8.2 Resource Offer Descriptions

Resources include generators that can produce power and other services, storage devices that can consume, store and then produce power, and load that produce a power through load curtailment.

A Resource Offer describes both the characteristics of the resource and the prices and quantities of products and services offered as described in Section 10, Energy Resources

8.3 Transport Product Descriptions

Product transport incurs specific costs that vary over time. Transport costs include congestion charges that apply to each unit of Product that passes through a particular point in the distribution system, and loss, which reduces the Product delivered. If the Product is priced for Delivery to the consumer, transport charges may not apply. Product descriptions for Transport charges are discussed in Section 14, Power Transport Product Descriptions Descriptions.
9 Power Product Descriptions

The information model in this section is described in POWER-PRODUCTS.XSD

All Power Products are based on core abstract class, the Power Product Description. The Power Products also share core semantic elements, used throughout the Descriptions and their associated charges. Not all elements are in all classes; these are the recurring elements.

Table 9-1: Semantic Elements common to Multiple Power Products

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMIX Interface</td>
<td>An EMIX Interface is any of a number of metering points (as defined below), an aggregate point, or a geographic area at which a product exchanges ownership</td>
</tr>
<tr>
<td>Attributes</td>
<td>Essential characteristics (Voltage, Hz, AC or DC) of delivered electricity.</td>
</tr>
<tr>
<td>Voltage</td>
<td>One of three elements hereafter referred to as the Power Attributes.</td>
</tr>
<tr>
<td>Hertz</td>
<td>One of three elements hereafter referred to as the Power Attributes. Always 0 for DC</td>
</tr>
<tr>
<td>AC</td>
<td>One of three elements hereafter referred to as the Power Attributes.</td>
</tr>
<tr>
<td>Power Units</td>
<td>Enumeration of Power Units, e.g., total power (VA), real power (W), and reactive power (VAR)</td>
</tr>
<tr>
<td>Energy Units</td>
<td>Enumeration of Energy Units, e.g., including real energy (Wh), reactive energy, (VARh), and apparent energy (VAh)</td>
</tr>
<tr>
<td>Voltage Units</td>
<td>Enumeration of Voltage Units, e.g., MV</td>
</tr>
<tr>
<td>VAR Units</td>
<td>Enumeration of volt amperes reactive (var) units, e.g., Kvar</td>
</tr>
<tr>
<td>Meter Asset</td>
<td>Identifier for an actual or virtual meter</td>
</tr>
<tr>
<td>Node</td>
<td>Grid Location identifier</td>
</tr>
<tr>
<td>Price</td>
<td>A fixed price.</td>
</tr>
<tr>
<td>Price Multiplier</td>
<td>A multiplier relative to a market. It consists of a multiplier, which could be more or less than 1.0 and of a reference to a market context. PriceMultiplier can also be used to set a price now to match market at a forward period in time</td>
</tr>
<tr>
<td>Price Relative</td>
<td>A price to add or subtract from the pre-existing market price. It consists of a price, which could be positive or negative, and of a reference to a market context.</td>
</tr>
</tbody>
</table>
9.1 Base Power Contract

The Base Power Contract is the foundation for all the other Power Contracts. Each of them has the characteristics of the Base Power Contract plus their own additional elements:

Table 9-2: Base Power Product Description

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Product Type</td>
<td>Enumerated type of Power Product. Used to determine conformance requirements.</td>
</tr>
</tbody>
</table>
Name | Definition
--- | ---
EMIX Interface | An EMIX Interface is any of a number of market exchange points including a point, an aggregate point, or a geographic area at which a product exchanges ownership
Unit Energy Price | Price per Unit of Energy
Power Item | Can indicate Real, Apparent, or Reactive Power
Charges | Charges affect the power product in addition to the cost of the product delivered. Charges are defined below.

Each Power Product is applied to the EMIX Base Product before it is fully described. Because each element can be set for the while Sequence, or applied to individual intervals, each can vary over time.

9.2 Full Requirements Power

Full Requirements Power products are the traditional “all-you-can-eat” electrical contract. Maximum delivery is limited by the physical infrastructure. Demand Charges may apply. This type of product often appears in Residential markets.

As well as the attributes in the base Power Contract, the Full Requirements Product has:

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>EMIX Price is a choice one of a Price, a Price Multiplier, or a Price Relative.</td>
</tr>
<tr>
<td>Energy Units</td>
<td>Denominates the units that the Price applies to.</td>
</tr>
<tr>
<td>Attributes</td>
<td>Essential characteristics (Voltage, Hz, AC or DC) of delivered electricity.</td>
</tr>
<tr>
<td>Maximum Power</td>
<td>Denominates the most power available for transacting during the period.</td>
</tr>
<tr>
<td>Minimum Power</td>
<td>Denominates the least power that must be transacted during the Interval. Buyer is responsible for making up the difference if the stated value is not reached.</td>
</tr>
</tbody>
</table>

9.3 Block Power Full Requirements

Block Power Full Requirements products provide for full buyer requirement, but prices the power in “blocks”. Price is constant within a block, but changes as each block is used during a period. Demand Charges MAY be included. Often used in retail residential rates.
As well as the attributes in the base Power Contract, the Block Power Full Requirements Product has these additional elements:

Table 9-4: Block Power Full Requirements

<table>
<thead>
<tr>
<th>Block Power Element</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Energy Price</td>
<td>Blocks are sorted in order of Maximum Energy Quantity and price for next block starts when last block is used. Blocks can be confined within an interval to create different tiers at different times of day.</td>
</tr>
<tr>
<td>Energy Units</td>
<td>Denominates the units that the Price applies to.</td>
</tr>
<tr>
<td>Attributes</td>
<td>For residential, usually 60 Hz, 220V AC</td>
</tr>
<tr>
<td>Maximum Power</td>
<td>Denominates the most power available for transacting during the period.</td>
</tr>
<tr>
<td>Minimum Power</td>
<td>Denominates the least power that must be transacted during the Interval. Buyer is responsible for making up the difference if the stated value is not reached.</td>
</tr>
</tbody>
</table>
9.4 TEMIX Power Product

TEMIX Products are specified by the power (rate of delivery of energy) over an interval. TEMIX Products are obligations in that a TEMIX Product is a commitment by the seller to deliver and the buyer to take the power (energy) over the interval. When the interval includes more than one measurement or metering interval, the TEMIX product is defined as a constant rate over those metering intervals. An example is the sale of 1 MW tomorrow between 3 and 5 PM that may be measured every 15 minutes (The energy is 1 MWh). The power in each 15 minute intervals is 1 MW and the energy in each 15 minute interval is 0.25 MWh. A position in a TEMIX product may be resold or added to. Depending on local market rules differences between the power purchased and the actual delivery may be delivered from or to spot markets at spot market prices.

Table 9-5: TEMIX Power Product Description

<table>
<thead>
<tr>
<th>TEMIX Element</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Product Type</td>
<td>Enumerated type of Power Product. Used to determine conformance requirements.</td>
</tr>
<tr>
<td>EMIX Interface</td>
<td>An EMIX Interface is any of a number of market exchange points including a point, an aggregate point, or a geographic area at which a product exchanges ownership</td>
</tr>
</tbody>
</table>
TEMIX Element | Definition
---|---
Price | Price per Unit of Energy. For TeMIX, this is always the actual price and not an offset.
Energy Item | Total Energy (Power * Time), Real, Apparent, or Reactive, in the block purchase
Power Item | Rate of Delivery of Energy. Can be Real, Apparent, or Reactive Power, and must match type of Energy Item.

TeMIX Product-based information exchanges are a little different than those for other products; they are discussed by themselves in Section 11.

9.5 Power Product Charges

Each of the products above, with the exception of TEMIX, can be subject to one or more Power Market Charges. All charges are based on the BasePowerCharge abstract interface, meaning markets the define new charges have the means to define new compliant charges. See the Appendices for a discussion of extensibility in EMIX.

Many of the charges defined are specific to Transport Products, although they can be applied to each of the Product herein. See Section 14, **Power Transport Product Descriptions**, for a discussion of those charges.

One charge can be applied to each of the Products as above, so is defined here. That charge is the Demand Charge.

Table 9-6: Elements of Power Demand Charges

<table>
<thead>
<tr>
<th>Demand Charge Element</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Charge Units</td>
<td>Units upon which Demand Charges will be computed</td>
</tr>
<tr>
<td>Demand Charge Floor</td>
<td>Below this floor, demand charges are not applied</td>
</tr>
<tr>
<td>Demand Charge Rate</td>
<td>Incremental charge applied if floor is exceeded.</td>
</tr>
<tr>
<td>Measurement Interval</td>
<td>Granularity or Power Use readings. For example the demand charge may be incurred if the Power is above the floor for 5 minutes.</td>
</tr>
<tr>
<td>Collection Interval</td>
<td>Period during which power usage is summed for comparison to Demand Floor.</td>
</tr>
<tr>
<td>Collection Period</td>
<td>Period during which the Demand Charge applies</td>
</tr>
<tr>
<td>Charge Duration</td>
<td>Period during which Demand Charges will be applied after incurred.</td>
</tr>
</tbody>
</table>

9.6 Enumerated Power Product Types

Because different Power Product Descriptions use the same informational elements, and because different transaction states may not require all elements be present in every exchange, each Power Product Description includes a Power Contract Type. Different Power Contract Types MAY have different conformance requirements in different market contexts. The Power Contract Type MAY be extended per the extensibility rules.

The following Power Product Types are enumerated:

Table 9-7: Requirements Power Products

<table>
<thead>
<tr>
<th>Power Contract Type</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Contract Type</td>
<td>Note</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Energy</td>
<td>Used in TeMIX for simple block of Energy agreement</td>
</tr>
<tr>
<td>Transport</td>
<td>Used in TeMIX for simple transport agreement</td>
</tr>
<tr>
<td>Energy Option</td>
<td>Used in TeMIX for Option to transact simple block of Energy</td>
</tr>
<tr>
<td>Transport Option</td>
<td>Used in TeMIX for Option to acquire rights to Transport</td>
</tr>
<tr>
<td>Full Requirements Power</td>
<td>Traditional power Product to provide all power used. Often used in retail residential rates. Demand Charges</td>
</tr>
<tr>
<td>Full Requirements Power with Demand Charge</td>
<td>Similar to Full Requirements except specific and perhaps recurring charges are incurred for exceeding set limit(s)</td>
</tr>
<tr>
<td>Full Requirements Power with Maximum and Minimum</td>
<td>Customer must draw energy at least the minimum rate (power) and no more than the maximum rate during any measurement Interval.</td>
</tr>
<tr>
<td>Hourly Day Ahead Pricing</td>
<td>Same Full requirements power but prices potentially change each day.</td>
</tr>
<tr>
<td>Ex-Ante Real Time Price</td>
<td>Used to report prices after the fact.</td>
</tr>
<tr>
<td>Time of Use Pricing</td>
<td>Similar to Hourly day-ahead pricing but prices may change seasonally and not be at hourly Intervals</td>
</tr>
<tr>
<td>Transport Service</td>
<td>Product to acquire Transport including factors for congestion, loss, charges, fees, etc.</td>
</tr>
<tr>
<td>Congestion Revenue Rights</td>
<td>Hedge product against future Transport / Congestion costs</td>
</tr>
</tbody>
</table>

Power products such as these can be described using the Power Product Descriptions
10 Energy Resources

The information model in this section is described in RESOURCE.XSD.

Resources describe potential services to offer to others in a smart grid. Resource tenders are either requesting services or offering services. In a pure transactive market, these tenders might be identical to the services provided, i.e., they could be fully described using the same language used to transact execution and performance.

Resources often enter or are called to enter the market to meet specific needs. These needs can include a range of performance requirements; Resources might be able to perform a range of capabilities. These performance capabilities are described using the information in Resource Offers. Resource Offers are less specific than a single transactive request, and may thereby present the Resource to more than a single market.

When making a tender for products and services, it is useful to describe the capabilities of a resource, so the counter party can determine if a resource can meet the requirements. A notice of interest MAY specify performance expectations. A Resource MAY compare its own capabilities to those requirements before submitting a bid.

Resource Capabilities may describe a ramp rate, or maximum run time, or any number of elements useful to energy schedulers. A Resource Offer associates offers for power produces with a Resource Capability.

10.1 Resource Capabilities

Resources have capabilities rather than schedules. Resource descriptions describe what could be done, as distinguished from a transaction in which specific performance is requested or agreed to.

Figure 10-1: Attributes of a Generic Resource

In the Resource illustration above, there is some base level of energy, a status quo ante. When invoked, the resource takes some period of time to change to a different level. If the response is binary, then it can only go up to the maximum response, and that ramp rate takes a fixed time. If a resource is able to provide several layers of response, then the ramp time also varies. The ramp time can be computed from the ramp rate and the difference between the base power and the maximum response.

As electricity is fungible, a critical key element of power resources is that generation, that is the production of power, and load shedding, the reduction of power use are similar products with similar value.
Figure 10-2: Equivalence of Load Shed and Generation

As shown above, generation and load response are similar and can be described using the same language.

Many Resources have capabilities that change over the range of response. A generator may have one ramp speed until it gets up to half speed, and then another as it goes to full. Load response can have similar characteristics. Such resources can be described by combining simple response characteristics.

Figure 10-3: Combining Response Capabilities

Resources as in Figure 10-3 can be communicated as an array of ramp up rates, a maximum power offered, and an array of ramp down rates. Between the Base 1 and Maximum 1, expressed in MW, the resource can ramp up at Ramp 1 expressed in MW/min. Between the Base 2 and Maximum 2, expressed in MW, the resource can ramp up at Ramp 1 expressed in MW/min.
With capabilities expressed as above, to capabilities of a Resource can be found by the time indicated (moving along the X axis) between Base 1 and wherever the ramp up line passes through desired output level.

Users of the IEC TC57 CIM express this with a Ramp Rate Curve. Figure 10-4 expresses similar information as does Figure 10-3, showing Base 1 at 50 MW of power and Maximum 1 at 100 MW with a ramp rate of 10 MW/minute. Ramp 2, at 15 MW/minute goes from 100MW to 180 MW.

By expressing Resources in terms of capabilities and ramp rates, a potential purchaser can determine if a Resource meets his or her needs, tendering a single resource to a variety of purchase scenarios. Picture several Resources each able to generate 10 MW of additional power. One can increase power at 1 MW/minute, one at 2 MW/minute, one at 5 MW/minute. The latter two each can enter into an Agreement to supply 10 MW in 5 minutes. Only the last can Agree to supply an increase of 10 MW within 2 minutes. All three can Agree to supply an increase of 10 MW within 15 minutes.

10.2 Resource Description Semantics

EMIX Resource Descriptions are an extension of the EMIX Product Description. As an extension of the Product Description, resources can be applied inside any EMIX schedule.

The only aspects of a Resource that matters to the energy market are the effects it can provide, the likelihood it will be able adequately to provide what it promises, and the financial incentives required to
acquire them. The technology and process control details are many, and new ones may be required for each new power technology. Unless the market for the Resource requires direct control, such details are irrelevant. The limited semantic set herein is sufficient to describe the capabilities of a Resource.

The EMIX Resource Description base consists of:

<table>
<thead>
<tr>
<th>Table 10-1: Resource Description Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Description Element</td>
</tr>
<tr>
<td>MRID</td>
</tr>
<tr>
<td>EMIX Interface</td>
</tr>
<tr>
<td>Constraints</td>
</tr>
</tbody>
</table>

Power Resources descriptions can use any of the constraints or requirements defined in EMIX. Power Resource descriptions can also use additional constraints that are specific to Power:

<table>
<thead>
<tr>
<th>Table 10-2: Constraints unique to Power Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Constraint</td>
</tr>
<tr>
<td>Minimum Load</td>
</tr>
<tr>
<td>Maximum Power</td>
</tr>
<tr>
<td>Maximum Energy</td>
</tr>
<tr>
<td>Minimum Load Reduction</td>
</tr>
</tbody>
</table>

10.3 Generic Power Resource

The Generic Power Resource description is used both for generation and for load Resources. The common Resource model is as follows:

<table>
<thead>
<tr>
<th>Table 10-3: Generic Power Response Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic Resource Element</td>
</tr>
<tr>
<td>Staging Ramp</td>
</tr>
<tr>
<td>Minimum Response</td>
</tr>
<tr>
<td>Maximum Response</td>
</tr>
<tr>
<td>Recovery Ramp</td>
</tr>
</tbody>
</table>

A Power Response Description MAY be accompanied by an Offer Curve (described in section 10.3.1). Each Ramp consists of zero to many Power Ramp Segments (see figure Figure 10-3: Combining Response Capabilities). Each Power Ramp Segment Rate describes a change up or down in units/duration, from the Power Quantity of the Begin Ramp to the Power Quantity of the End Ramp. The rate of change is assumed to be constant between the Begin Ramp and the End Ramp.

Power Ramp Segments consist of the following elements:
Table 10-4: Power Ramp

<table>
<thead>
<tr>
<th>Power Ramp Element</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>Power Units for the Ramp</td>
</tr>
<tr>
<td>Begin Ramp</td>
<td>Power Quantity at the beginning of the Segment</td>
</tr>
<tr>
<td>End Ramp</td>
<td>Power Quantity at the end of the Segment</td>
</tr>
<tr>
<td>Duration</td>
<td>The time to get between the begin ramp and the end ramp.</td>
</tr>
<tr>
<td>Integral Only</td>
<td>If true, one can’t stop between the begin and end rates.</td>
</tr>
</tbody>
</table>

While Power Ramps are generic, specific instances within derived Resource Descriptions are subject to different conformance rules.

For a Generation Resource, Staging Ramps are processed in order of increasing End Power. The quantity of End Power MUST be greater than the quantity of the Begin Power for each Ramp in the Staging Ramp. Recovery Ramps are processed in order of decreasing End Power. The quantity of End Power MUST be less than the quantity of Begin Power for each Ramp in the Recovery Ramp.

For a Load Resource, Staging Ramps are processed in order of decreasing End Power. The quantity of End Power MUST be less than the quantity of Begin Power for each Ramp in the Staging Ramp. Recovery Ramps are processed in order of increasing End Power. The quantity of End Power MUST be greater than the quantity of the Begin Power for each Ramp in the Recovery Ramp.

Load Resources and Power Resources are conformed instances of the Generic Power Resource.

10.3.1 Offer Curves
When a Power Resource is offered to the market, it may be accompanied by an Offer Curve. An Offer Curve is comprised of a number of Offer Segments. An Offer Segment defines the minimum requirements (as expressed in EMIX Requirements) of the Offeror for each block of response without which the Offeror will withdraw the Resource from the market.

Table 10-5: Resource Offer Segment

<table>
<thead>
<tr>
<th>Resource Offer Element</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>Price required for this Segment</td>
</tr>
<tr>
<td>Maximum Response</td>
<td>Enumerator for the Power rate at the beginning of this Ramp maximum Power change in this segment</td>
</tr>
<tr>
<td>Units</td>
<td>Power Quantity at which the Ramp Ends</td>
</tr>
</tbody>
</table>

Because an Offer Curve is always figured in terms of the block size of the response, it is always sorted in order of increasing response. In many markets, they Offer Curves are then processed as a series of bids.

10.4 Reactive Power Resources
In addition, voltage regulation services have their own semantics.

Table 10-6 Semantics for Voltage Regulation Services

<table>
<thead>
<tr>
<th>Voltage Regulation Element</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMin</td>
<td>VMin is the IEEE 1547 minimum voltage level of 88% of nominal voltage where the PV inverter must disconnect. Also defined as the minimum Reactive Power of the Resource.</td>
</tr>
</tbody>
</table>
Voltage Regulation Element | Note
--- | ---
VMax | VMax is the IEEE 1547 maximum voltage level of 110% of nominal voltage where the PV inverter must disconnect. Also defined as the Maximum reactive power of the Resource
QMax | Qmax is the inverter’s current var capability and may be positive (capacitive) or negative (inductive). It is the VA capability left after supporting the W demand.
voltVar | Reactive Power

10.5 Summary of Resource Types

![Figure 10-6: UML Summary of Resource Types](image)
11 Transactive Energy (TeMIX) Products

TeMIX products use transactive interactions to acquire blocks of power. It emphasizes simple interactions and requires minimal knowledge of one’s trading partner. All TeMIX Products are subscriptions for power over a single Delivery Interval. Subscriptions impose an obligation on the buyer to purchase and the seller to deliver a TeMIX Power Product. This simplicity reduces the number of products and interactions.

There are only four types of TeMIX Products:

1. TeMIX Power Product
2. TeMIX Transport Product
3. TeMIX Option Power Product
4. TeMIX Option Transport Product

The Transactive States for a TeMIX Product are:
- Indication of Interest
- Tender
- Transaction
- Delivery
- Price Publishing

A TeMIX Delivery Interval is specified by a Duration and Start Time. When TeMIX Product is specified for a set of Delivery Intervals, then elements that do not vary by Delivery Interval may be specified in a Gluon. However each TeMIX Delivery Interval is transacted independently of the others in the set.

A TeMIX Power Product defines a subscription for Power (energy = power * duration) over a Delivery Interval. The subscribed power of TeMIX Power Product is constant over all measured (metered) intervals within a TeMIX Delivery Interval.

For example, 1 MW of power subscribed for delivery tomorrow for 2-hours between 3 and 5 PM provides 1 MWh of energy over each hour and 2-MWh over the two hours. If delivery is measured every 15-minutes, then the power subscribed in each 15 minute interval is 1 MW. The energy subscribed in each 15-minute interval is 0.25 MWh. If the energy delivered in each 15-minute interval is greater or less than 0.25 MWh then the balance (positive or negative) will typically be sold or purchased in a subsequent balancing transaction.

The Price of a TeMIX Product is expressed in energy units. For the example above, when the price is $80 per MWh of energy, the extended price (cost) of 1 MW of Power for 2-hours between 3 and 5 PM is $160 and the extended price for 1 MW of Power in each 15-minute interval of the 2-hours is $20.

A TeMIX Transport Product is a subscription for Transport (transmission or distribution) to transport a TeMIX Power Product from one EMIX Interface to another. A TeMIX Transport Product is a subscription for power transport at a constant rate over the delivery interval.

A TeMIX Option Product is a subscription for optionality applied to a TeMIX Power or Transport Product. A TeMIX Option Product is a subscription that provides the Option Holder a right to instruct the Option Writer to deliver (call) or take (put) a TeMIX Power or Transport Product up to the subscribed quantity (rate of delivery) of the Option at a Strike Price.

TeMIX Options are either Call or Put Options on TeMIX Power and Transport Products. A TeMIX Option can be exercised during the Delivery Interval of the Option for any subinterval not smaller than the Option Interval Granularity.

For example a TeMIX Option for 10 MW for a Day and an Option Interval Granularity of 1-hour and an Option Lead Time of 30 minutes would allow the Holder to exercise the option for any or all hours of the Day at the Strike Price by giving notice 30 minutes before each hour.
The elements of a TeMIX Power and Transport Product are shown in Error! Reference source not found. When the Product Description (from section 9) is applied to the EMIX Base types, the TeMIX elements are:

Table 11-1: TeMIX Power Product Description

<table>
<thead>
<tr>
<th>TeMIX Element</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Product Type</td>
<td>Enumerated type of Power Product. Used to determine conformance requirements.</td>
</tr>
<tr>
<td>EMIX Interface</td>
<td>The TeMIX Interface where the transaction occurs. Generally the Interface for a Power Product has one node and the Interface for a Transport Product has two nodes.</td>
</tr>
<tr>
<td>Price</td>
<td>Price per Unit of Energy. For TeMIX, this is always the actual price and not an offset.</td>
</tr>
<tr>
<td>Start Date and Time</td>
<td>When the Interval begins</td>
</tr>
<tr>
<td>Duration</td>
<td>The length of time of the Interval</td>
</tr>
<tr>
<td>Price</td>
<td>The Unit Energy Price for the interval. TeMIX does not allow Relative Prices or Price Multipliers.</td>
</tr>
<tr>
<td>Energy Item</td>
<td>Total Energy (Power * Time), Real, Apparent, or Reactive, in the block purchase</td>
</tr>
<tr>
<td>Power Item</td>
<td>Units for the Rate of Delivery of Energy for the Delivery Interval. Includes Power Attributes.</td>
</tr>
<tr>
<td>Power Quantity</td>
<td>Rate of Delivery of Energy for the Delivery Interval.</td>
</tr>
<tr>
<td>Transactive State</td>
<td>TeMIX Transactive state is conformed to Indication of Interest, Tender, Transaction, Delivery or Publish.</td>
</tr>
<tr>
<td>Currency</td>
<td>Currency for the exchange</td>
</tr>
<tr>
<td>Side</td>
<td>Indicates which side of the agreement the information originator is on. Buy or Sell</td>
</tr>
<tr>
<td>Expires Date</td>
<td>Date and Time Tender expires. Not present if the Transactive State is anything other than Tender.</td>
</tr>
<tr>
<td>Envelope</td>
<td>As defined in Section 4.1.5</td>
</tr>
</tbody>
</table>

The TeMIX Option extends the TeMIX Product by adding these additional elements:

Table 11-2: TeMIX Power Option Product Description

<table>
<thead>
<tr>
<th>TeMIX Element</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option Holder</td>
<td>The side (buy or sell side of the option) which enjoys the benefit of choosing whether or not to exercise the option. The other side is the Option Writer</td>
</tr>
<tr>
<td>Strike Price</td>
<td>The price at which the Option Holder can require Option Writer to deliver.</td>
</tr>
<tr>
<td>Option Lead Time</td>
<td>The Minimum Notification Duration constraint</td>
</tr>
<tr>
<td>Option Schedule</td>
<td>The Availability Schedule constraint</td>
</tr>
<tr>
<td>TeMIX Element</td>
<td>Definition</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Minimum Option Call</td>
<td>The shortest duration for which the Option can be called. Uses the Minimum Run Duration constraint</td>
</tr>
<tr>
<td>Granularity</td>
<td>If present, expresses the temporal granularity of requests as a duration. For example, if the Duration is 15 Minutes, the option can be called at 10:00, 10:15, 10:30, or 10:45.</td>
</tr>
</tbody>
</table>
Ancillary Services

Ancillary Services are typically products provided by a Resource Capability and historically were contracted to stand by for a request to deliver changes in power to balance the grid on very short notice. Ancillary services include Regulation Up, Regulation Down, Spinning Reserve, and Non-Spinning Reserve. These Ancillary services are different from other power products in that they are paid for availability, whether or not they perform. Of course, they must also perform when called.

In general, Ancillary services are a promise to perform, usually within tight constraints, i.e., within five minutes of notification in one market, or within one minute of notification for another. The promisee pays for this offer to perform, whether or not the promise is called. When the performance call comes, the promisor is then paid again, often at a premium over the market rate at the time of the performance call.

In EMIX, Reserves are modeled as simple Options using the EMIX Option type, which is one of the EMIX Base-derived types. Performance expectations are expressed using constraints, which can appear on either side of a Tender. Strike prices and the penalty for non-performance are part of the option agreement.

Because it is useful to have a short-hand to refer to these services, they are enumerated in the Power Option Type enumeration which is incorporated into the Power Product Types. The enumerated Power Option Types are: Spinning Reserve, Non Spinning Reserve, Operating Reserve, and Demand Response. Because the exact definitions vary from market to market, and will continue to vary over time, EMIX does not define these terms. All definitions and performance requirements SHALL be expressed through the constraints.
13 Power Quality

The information model in this section is described in POWER-QUALITY.XSD.

Higher quality power can obtain a market premium. A buyer willing to accept lower quality power may be able to obtain inexpensive power. Power Qualities must be measurable, discrete, and on a spectrum allowing the buyers to make choices. They must also be verifiable, measurable by defined protocols, so performance can be compared to promise.

13.1 Electrical Power Quality

Table 13-1: AC Power Quality

<table>
<thead>
<tr>
<th>Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Protocol</td>
<td>A string containing an identification of the standard or other protocol used to measure power quality</td>
</tr>
<tr>
<td>Power Frequency</td>
<td>A floating point number describing the measured Power frequency. Users who wish to describe how the frequency varies over time will need to derive their own measure from the base Power Quality type.</td>
</tr>
<tr>
<td>Supply Voltage Variations</td>
<td>An unsigned integer count of Supply Voltage Variations during the period</td>
</tr>
<tr>
<td>Rapid Voltage Changes</td>
<td>An unsigned integer count of Rapid Voltage Change events during the period</td>
</tr>
<tr>
<td>Flicker</td>
<td>An unsigned integer count of Flicker events during the period</td>
</tr>
<tr>
<td>Supply Voltage Dips</td>
<td>An unsigned integer count of Supply Voltage Dip events during the period</td>
</tr>
<tr>
<td>Short Interruptions</td>
<td>An unsigned integer count of Short Interruption events during the period</td>
</tr>
<tr>
<td>Long Interruptions</td>
<td>An unsigned integer count of Long Interruption events during the period</td>
</tr>
<tr>
<td>Temp Overvoltage</td>
<td>An unsigned integer count of Temporary Overvoltage events during the period</td>
</tr>
<tr>
<td>Supply Voltage Imbalance</td>
<td>An unsigned integer count of Supply Voltage Imbalance events during the period. Not meaningful for DC.</td>
</tr>
<tr>
<td>Harmonic Voltage</td>
<td>A floating point number for the Harmonic Voltage during the period. For DC, distortion is with respect to a signal of 0 Hz</td>
</tr>
<tr>
<td>Mains Voltage</td>
<td>A floating point number Mains [Signaling] Voltage</td>
</tr>
</tbody>
</table>
Power Transport Product Descriptions

The information model in this section is described in POWER-PRODUCTS.XSD.

Transport costs affect the delivery of energy in all markets. Today’s electrical power markets use different terms in transmission and delivery, but the underlying elements are the same. Future markets, including those for microgrids and virtual service providers, may not make the same distinctions between transmission and distribution as have been made in the past. Distributed Energy Resources (DER) may create new business models for use of the existing distribution networks.

The information model below merges the charges and approaches used in the respective transmission and distribution networks today. It anticipates that potential source selection markets may result in passage through multiple networks. The resulting EMIX Base can support either stand-alone transport products, or price support information conveyed within the Envelope, in support of Locational Marginal Pricing (LMP).

Table 14-1: Transport Description

<table>
<thead>
<tr>
<th>Transport Product Element</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point of Receipt</td>
<td>Where power enters a network or changes ownership</td>
</tr>
<tr>
<td>Point of Delivery</td>
<td>Where power exits a network or changes ownership</td>
</tr>
<tr>
<td>Transport Access Fee</td>
<td>Fixed Charge (not dependent on congestion) to access transport system</td>
</tr>
<tr>
<td>Transport Congestion Fee</td>
<td>Congestion fee per unit of energy for energy flowing from receipt to delivery point. Can be a positive or negative price.</td>
</tr>
<tr>
<td>Marginal Loss Fee</td>
<td>Marginal Loss Fee</td>
</tr>
<tr>
<td>Transport Loss Factor</td>
<td>Reduction in amount delivered due to loss during transport. (Loss Factor * purchase amount) = delivered amount</td>
</tr>
<tr>
<td>Conversion Loss Factor</td>
<td>Reduction in amount delivered as product voltage is changed or as converted from AC to DC or DC to AC. (Loss Factor * purchase amount = delivered amount)</td>
</tr>
</tbody>
</table>

There MAY be multiple instances of the above Artifacts in a single Price instance. For example, in a given transaction, power may pass through multiple distribution nodes and congestion points.

The items listed in the table above are each derived from the base charge type. All other charges, previously described, are available for inclusion within a Transport Product.
15 EMIX Warrants

The information model in this section is described in EMIX-WARRANTS.XSD

Warrants are specific assertions about the extrinsic characteristics of EMIX Products that may affect market pricing. Warrants are in effect Product artifacts as defined in EMIX. Warrants are extensions of the Product Descriptions type that are applied the Intervals in a Schedule. There may be zero Intervals in a Product if the unchanged product description applies to all.

The Intervals in a warrant may differ from those of the Product on the outside of the envelope.

Some warrants may be applicable only in certain jurisdictions. For example, in today's energy markets (2011) energy warranted as renewable in the Pacific Northwest can include hydropower. Energy markets in California exclude hydropower from their definition of renewable power. Credits or mandates for renewable energy in California are not met by Products warranted as renewable in the Northwest.

Some warrants may be separable from the underlying energy. For example, a warrant that energy is generated by a source that is certified as "green" by an authority, may be issued a "green certificate". In some markets, such a certificate can be traded separately. The detailed specification of warrants is not part of version 1.0 of this specification.

15.1 Warrant List Definition

Warrant Types are abstract types defined in this specification for extension and definition elsewhere. Conforming information exchanges can include schema types derived from these types.

<table>
<thead>
<tr>
<th>Warrant Type</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Quality</td>
<td>If during an offer, can be a promise of quality. If during verification, and be actual measurements. If during an indication of interest, might be a minimum standard.</td>
</tr>
<tr>
<td>Environmental Warrant</td>
<td>Quantifies the environmental burden created during the generation of the electric power.</td>
</tr>
<tr>
<td>Content Warrant</td>
<td>The proportion of the product defined that is from non-fossil fuel sources, including but not limited to “hydroelectric”, “nuclear”, “solar”, and “wind”.</td>
</tr>
<tr>
<td>Source Warrant</td>
<td>In aggregate may be the same as a Warrant Content</td>
</tr>
<tr>
<td>Controllability Warrant</td>
<td>Assertion that a Resource referenced on the face of the envelope can be controlled and/or operated by or to some standard.</td>
</tr>
</tbody>
</table>
16 Conformance and Rules for EMIX and Referencing Specifications

This section specifies conformance related to the semantic model of EMIX. EMIX is heavily dependent upon WS-Calendar, and repeatedly incorporates WS-Calendar-based information models. EMIX artifacts can be exchanged at any of several stages of a transaction. Necessarily, a tender must be able to accept an incomplete information model while a call for execution must fully define the performance expected. Specifications referencing EMIX SHALL define conformance rules by transaction type and market context.

EMIX Conformance necessarily occurs in two stages. EMIX uses WS-Calendar to communicate similar intervals that occur over time, each containing an EMIX artifact. Portions of that artifact may be expressed within the Lineage of the sequence. Applications MUST apply WS-Calendar Inheritance and then EMIX Inheritance to Compose the information exchange for each interval. Only after Composition, can the EMIX artifact within each Interval of the Sequence be evaluated for conformance and completeness.

16.1 EMIX Conformance with WS-Calendar

EMIX Base are EMIX Products and Resources instantiated through the schedule model of WS-Calendar. As such, EMIX Base SHALL follow WS-Calendar Conformance rules. These rules include the following conformance types:

- Conformance to the inheritance rules in WS-Calendar, including the direction of inheritance
- Specific attributes for each type that MUST or MUST NOT be inherited.
- Conformance rules that Referencing Specifications MUST follow
- Description of Covarying attributes with respect to the Reference Specification
- Semantic Conformance for the information within the artifacts exchanged.

EMIX Products and Resources also extend the Inheritance patterns of WS-Calendar to include the EMIX information model. We address each of these in the following sections.

16.1.1 Inheritance in EMIX Base

In this section we recapitulate the rules that define inheritance including direction in WS-Calendar.

I1: Proximity Rule Within a given lineage, inheritance is evaluated through each Parent to the Child before what the Child bequeaths is evaluated.

I2: Direction Rule Intervals MAY inherit attributes from the nearest gluon subject to the Proximity Rule and Override Rule, provided those attributes are defined as Inheritable.

I3: Override Rule If and only if there is no value for a given attribute of a Gluon or Interval, that Gluon or Interval SHALL inherit the value for that attribute from its nearest Ancestor in conformance to the Proximity Rule.

I4: Comparison Rule Two Sequences are equivalent if a comparison of the respective Intervals succeeds as if each Sequence were fully Bound and redundant Gluons are removed.

I5: Designated Interval Inheritance [To facilitate composition of Sequences] the Designated Interval in the ultimate Ancestor of a Gluon is the Designated Interval of the composed Sequence. Special conformance rules for Designated Intervals apply only to the Interval linked from the Designator Gluon.

I6: Start Time Inheritance When a start time is specified through inheritance, that start time is inherited only by the Designated Interval; the start time of all other Intervals are computed through the durations.
and temporal; relationships within the Sequence. The designated Interval is the Interval whose parent is
at the end of the lineage.

16.1.2 Specific Attribute Inheritance in EMIX

This section refers to EMIX Products, agreements, and Resources as Artifacts. In general, if an artifact of
a particular type blocks inheritance of a complete artifact of that type down the lineage.

If an Artifacts of the same type exist in both the parent and in the child, the prototypical argument can be
discussed two-dimensional tree with branches. Blended inheritance consists of deciding when to graft a
branch onto the root.

The root node of parent and the child must match for blended inheritance to occur, that is, the roots must
be of the same type. The exception is if there are no roots the child’s Artifact, then the root and all its
branches are inherited by the child.

If matching roots are found in both the parent and in the child, then each tree should be navigated to
determine blended inheritance. The child’s artifact may be mostly unpopulated. Within any branch in the
child, the first node that is populated blocks all further inheritance on that branch. All nodes deeper in the
Artifact than that populated node, are determined by the child. When a branch is inherited from the child,
it blocks the inheritance of any deeper nodes within that branch.

Specific artifacts may declare rules that break this inheritance pattern. As of now, the exceptions are:

- There are no exceptions.

Inheritance creates a virtual artifact at each level of processing. That virtual artifact is the basis for
inheritance for any child artifact.

In EMIX the following attributes MUST NOT be inherited

- UID (Gluons and Intervals)
- Temporal Relationships

Some elements of EMIX are may be **covarying**, meaning that they change together. Such elements are
treated as a single element for inheritance, they are either inherited together or the child keeps its current
values intact. This becomes important if one or more of a covarying set have default values. In that case,
if any are present, then inheritance should deem they are all present, albeit some perhaps in their default
values.

16.2 Miscellaneous Business Rules not yet dealt with.

If the first Interval in a series has a price only, all Intervals in the Sequence have a price only and there is
no price in the Product

If the first Interval in a series has a quantity only, all Intervals in the Sequence have a quantity only and
there is no quantity in the Product

If the first Interval in a series has a price & quantity, all Intervals in the Sequence MUST have a Price and
Quantity and there is neither Price not Quantity in the Product

All Intervals in a Sequence may be restricted to single service location. What are the rules?
A. Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants:

- Bruce Bartell, Southern California Edison
- Timothy Bennett, Drummond Group Inc.
- Edward Cazalet, Individual
- Toby Considine, University of North Carolina at Chapel Hill*
- William Cox, Individual
- Sean Crimmins, California Independent System Operator
- Phil Davis, Schneider Electric
- Sharon Dinges, Trane
- Pim van der Eijk, Sonnenglanz Consulting
- Girish Ghatikar, Lawrence Berkeley National Laboratory
- Todd Graves, Microsoft Corporation
- Anne Hendry, Individual
- David Holmberg, NIST*
- Gale Horst, Electric Power Research Institute (EPRI)
- Ali Ipakchi, Open Access Technology International Inc. (OATI)
- Perry Krol, TIBCO Software Inc.
- Derek Lasalle, JPMorganChase
- Jeremy Laundergren, Southern California Edison
- Alex Levinson, Lockheed Martin*
- Dirk Mahling, CPower
- Scott Neumann, Utility Integration Solutions Inc.
- Robert Old, Siemens AG
- John Petze, Individual
- Donna Pratt, ISO/RTO Council
- Ruchi Rajasekhar, Midwest Independent Transmission System Operator, Inc.
- Carl Reed, Open Geospatial Consortium, Inc. (OGC)*
- Jeremy Roberts, LonMark International*
- Anno Scholten, Individual
- Aaron F. Snyder, EnerNex
- Pornsak Songkakul, Siemens AG
- Bill Stocker, ISI/RTO Council (IRC)
- David Sun, Alstom Power Inc.
- Jake Thompson, EnerNOC
- Matt Wakefield, Electric Power Research Institute (EPRI)
- David Webber, Individual
- Leighton Wolfe, Individual
- Brian Zink, New York Independent System Operator (NYISO)
B. Extensibility and EMIX

Extensibility was a critical design constraint for EMIX. Extensibility allows the EMIX specification to be used in markets and in interactions that were not represented on the Technical Committee. Formal extensibility rules also create a set of complaint extensions for incorporation into later versions that are already compliant.

B.1 Extensibility in Enumerated values

EMIX defines a number of enumerations. Some of these, such as measurements of power, are predictably stable. Others, such as market contracts or energy sources, may well have new elements added. In general, these accept any string beginning with “x-” as a legal extension. In particular, these are defined using the following mechanism in the formal schemas (XSD's).

In emix.xsd, the extensibility pattern is defined. This pattern looks like:

```xml
<xs:simpleType name="EMIXExtensionType">
  <xs:annotation>
    <xs:documentation>Pattern used for extending string enumeration, where allowed</xs:documentation>
  </xs:annotation>
  <xs:restriction base="xs:string">
    <xs:pattern value="x-\S.*"/>
  </xs:restriction>
</xs:simpleType>
```

Non-extensible enumerated types look like this:

```xml
<xs:simpleType name="PowerOptionTypeEnumeratedType">
  <xs:annotation>
    <xs:documentation>Power Reserve Options</xs:documentation>
  </xs:annotation>
  <xs:restriction base="xs:string">
    <xs:enumeration value="SpinningReserve"/>
    <xs:enumeration value="NonSpinningReserve"/>
    <xs:enumeration value="OperatingReserve"/>
    <xs:enumeration value="DemandResponse"/>
  </xs:restriction>
</xs:simpleType>
```

The enumerations used in the specifications look like this.

```xml
<xs:element name="powerOptionType" type="power:PowerOptionTypeType"/>
<xs:simpleType name="PowerOptionTypeType">
  <xs:union memberTypes="power:PowerOptionTypeEnumeratedType emix:EmixExtensionType"/>
</xs:simpleType>
```

This pattern has been followed throughout EMIX, allowing any string beginning “X-” to be a legal extension enumeration for EMIX enumerated strings.

Some extensible enumerated types are planned for extension. For example, the means of measurement for power quality are defined specific testing protocols. As of this writing, there are only two testing protocols in the specification.

```xml
<xs:simpleType name="MeasurementProtocolEnumeratedType">
  <xs:restriction base="xs:string">
    <xs:enumeration value="EN 50160"/>
    <xs:enumeration value="IEEE 1549-2009"/>
  </xs:restriction>
</xs:simpleType>
```
We anticipate that other protocols will be used. In this case, we use the suffix “EnumeratedType” to allow for the possibility of other Measurement Protocols that are not enumerated. Actual compliance, though, is based upon the type:

```xml
<xs:simpleType name="MeasurementProtocolType">
  <xs:union memberTypes="power:MeasurementProtocolEnumeratedType
cmix:EMIXExtensionType"/>
</xs:simpleType>
```

That is, valid values for the measurement protocol are the enumerated values, and any that match the extension pattern “x-*”

EMIX defines extensibility for the following values:

- [Quality] Measurement Protocol
- Contract Type
- Option Type
- Power Option Type
- Resource Type

B.2 Extension of Structured Information Collective Items

EMIX anticipates adding some information structures that are more complex than simple strings can be extended as well. A challenge for these items is that they are more complicated and so require formal definition. Formal definitions, expressed as additions to schema, could require changes to the specification. Without formal definition, it is difficult for trading partners to agree on valid information exchanges.

EMIX uses abstract classes for many information exchanges. For example, trading partners could agree on the exchange of larger or smaller lists of quality measures. Many measures of power quality are defined in power-quality.xsd. Quality consists of an array of elements that are derived from the abstract base quality element.

```xml
<xs:complexType name="PowerQualityType">
  <xs:annotation>
    <xs:documentation>Power Quality consists of a number of measures, based on contract, negotiation, and local regulation. Extend Power Quality to incorporate new elements by creating additional elements based on PowerQualityBaseType</xs:documentation>
  </xs:annotation>
  <xs:sequence>
    <xs:element name="measurementProtocol" type="power:MeasurementProtocolType"/>
    <xs:element name="constraints" type="power:ArrayOfPowerQualities"/>
  </xs:sequence>
</xs:complexType>
```

A practitioner who wanted to add an additional quality type would need to develop a description and instantiation of that type based on the abstract base, similar to that used below. The implementation refers to the substitution group:

```xml
<xs:element name="supplyVoltageVariations" type="power:SupplyVoltageVariationsType" substitutionGroup="power:basePowerQualityMeasurement"/>
```

and the type extends the abstract base class BasePowerQualityMeasurementType:

```xml
<xs:complexType name="SupplyVoltageVariationsType" mixed="false">
  <xs:complexContent mixed="false">
    ...
  </xs:complexContent>
</xs:complexType>
```
The resulting schema, which references the approved EMIX schemas, but does not change them, can then be distributed to business partners to validate the resulting information exchanges. The core EMIX types, which are used throughout the specifications herein, can be extended this way, including:

- **EMIX Base** Type: iCalendar-derived object to host EMIX Product Descriptions
- **Product Description** Type: In EMIX, the Product Description is the basis for all Resources and Product Descriptions.
- **Item** Base: Abstract base class for units for EMIX Product delivery, measurement, and warrants. Item does not include Quantity or Price, because a single product description or transaction may have multiple quantities or prices associated with a single item.
- **EMIX Interface**: Abstract base class for the interfaces for EMIX Product delivery, measurement, and/or pricing.

The following additional abstract types are among those designed with extension by practitioners in mind:

- **BasePowerQualityMeasurement** Type: the basis for exchanging measurements of power quality
- **BaseConstraint** Type: used to express constraints on the performance of equipment exposed to the market as Resources
- **BaseRequirement** Type: used to express the market or business requirements of a trading partner.
- **BaseWarrant** Type: the root for all warrants delivered with the energy product.
C. Semantics from WS-Calendar

Certain terms appear throughout this document that are defined in [WS-Calendar]. This section provides summary definitions for the convenience of the reader and reviewer. Nothing in this table replaces or over-rides the normative definitions in that specification.

Table C-16-1: WS-Calendar Foundational Semantics

<table>
<thead>
<tr>
<th>Time Segment</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>Duration is the length of an event scheduled using iCalendar or any of its derivatives.</td>
</tr>
<tr>
<td>Interval</td>
<td>The Interval is the core component of duration and sequence. Parties make Agreements for delivery of EMIX-described products during an Interval.</td>
</tr>
<tr>
<td>Sequence</td>
<td>A Sequence is a set of Intervals with defined temporal relationships. Sequences may have gaps between Intervals, or even simultaneous activities. A Sequence may be re-locatable, i.e., it does not require a specific date and time. A Sequence may consist of a single Interval. A Sequence MAY include a Lineage.</td>
</tr>
<tr>
<td>Partition</td>
<td>A Partition is a set of consecutive Intervals. The Partition includes the trivial case of a single Interval. Many energy negotiations apply an EMIX product to a partition, e.g., consecutive fifteen minute Intervals.</td>
</tr>
<tr>
<td>Gluon</td>
<td>A Gluon is influences the serialization of Intervals in a Sequence, though inheritance and through schedule setting. The Gluon is similar to the Interval, but has no service or schedule effects until applied to an Interval or Sequence. A Gluon also defines a handle for invoking a sequence within a service.</td>
</tr>
<tr>
<td>Artifact</td>
<td>An Artifact is the thing that occurs during an Interval. The contents of the Artifact are not specified in WS-Calendar, rather the Artifact provides an extension base for the use of WS-Calendar in other specifications. EMIX product and performance Artifacts may inherit elements as do Intervals within a Sequence.</td>
</tr>
</tbody>
</table>

Much of EMIX defines the payloads that are delivered in the artifact. WS-Calendar defines how schedule-related information, although incomplete in an Interval and Sequence can be modified and completed.

WS-Calendar calls this process Inheritance and specifies a number of rules that govern Inheritance.

EMIX artifacts define Inheritance in manner compliant with WS-Calendar. Table C-16-2 defines the terms used to describe inheritance.

Table C-16-2: WS-Calendar Semantics of Inheritance

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td>A Gluon that points to a sequence is known as the sequence’s Parent. A Gluon may alternately reference another Gluon, i.e., it is that other Gluon’s Parent.</td>
</tr>
<tr>
<td>Lineage</td>
<td>Lineage refers to the full ordered set of Parents of a Sequence</td>
</tr>
</tbody>
</table>
Term | Definition
--- | ---
Inheritance | Parents bequeath information to Children that inherit them. If a child does not already possess that information, then it accepts the inheritance. Information specified in one informational object is considered present in another that is itself lacking expression of that information. This information is termed the Inheritance of that object.

Bequeath | A Parent Bequeaths attributes (Inheritance) to its Children

Inherit | A Child Inherits attributes (Inheritance) from its Parent

Availability | Availability expresses the range of times in which an Interval or Sequence can be Scheduled. Availability can overlay or be overlaid by Busy. Availability can be Inherited

Busy | Busy expresses the range of times in which an Interval or Sequence cannot be Scheduled. Busy can overlay or be overlaid by Availability. Busy can be Inherited

As Intervals are processed, as Intervals are assembled, and as inheritance is processed, the information conveyed about each element changes. EMIX artifacts may pass through several stages in which the information is not yet complete or actionable, but is still a conforming expression of time and Sequence.

Table 16-3 defines the terms used when discussing the processing or processability of Intervals and Sequences.

Table 16-3: WS-Calendar Semantics of Information Processing

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bound</td>
<td>As in mathematical logic where a metasyntactic variable is called "bound", an Interval, Sequence, or Partition is said to be Bound when the values necessary to execute it (as a service) are completely filled in.</td>
</tr>
<tr>
<td>Partially Bound</td>
<td>A Partially Bound Interval is one that is still not Bound after receiving its Inheritance. A Sequences or Partitions is Partially Bound if it contains at least one Interval that is Partially Bound.</td>
</tr>
<tr>
<td>Unbound</td>
<td>An Unbound Interval or Sequence is not itself complete, but must still receive inheritance to be fully specified. A Sequences or Partitions is Unbound if it contains at least one Interval that is Unbound.</td>
</tr>
<tr>
<td>Fully Bound</td>
<td>A synonym for Bound</td>
</tr>
<tr>
<td>Scheduled</td>
<td>A Sequence or Partition is said to be Scheduled when it is Anchored, Fully Bound, and service performance has been requested.</td>
</tr>
<tr>
<td>Unscheduled</td>
<td>An Interval is Unscheduled if its neither its begin date and time nor its end date and time have been set. A Sequence or Partition is Unscheduled if none of its Intervals, after when Fully Bound, is Scheduled.</td>
</tr>
<tr>
<td>Designated Interval</td>
<td>In a Sequence the Designated Interval is either (a) (if there are no Gluons related to the Sequence) one of the Earliest Interval(s), or (b) (if there is at least one Gluon related to the Sequence) the single Interval referenced by a Gluon as Parent.</td>
</tr>
<tr>
<td>Composed Interval</td>
<td>A Composed Interval is the virtual Interval specified by applying inheritance through the entire lineage and into the Sequence in accord with the inheritance rules. A Composed Interval may be Bound or Unbound.</td>
</tr>
</tbody>
</table>
Term | **Definition**
--- | ---
Composed Sequence | A Composed Sequence is the virtual Sequence specified by applying inheritance through the entire lineage and into the Sequence in accord with the inheritance rules. A Composed Sequence may be Bound or Unbound.

The WS-Calendar defines more terms, and in greater detail, but the tables above are sufficient to be able to discuss schedule, sequence, and inheritance in EMIX.
D. Electrical Power and Energy

Each type of Electrical Power and Energy Product has its own definitions and its own descriptive parameters. These artifacts are the specific descriptions relevant to defining the potential utility of the power and energy Product. The Power and Energy Artifacts describe the intrinsic information. There may be cases when an Artifact is held in the envelope contents, perhaps as informational support for the intrinsic prices.

To put the terms "Power" and "Energy" into the proper context for this specification, the following definitions will be used:

- Apparent Energy: the production or consumption of Apparent Power over time; unit: volt-ampere hours, VAh
- Apparent Power (S): mathematical product of root-mean-square voltage and root-mean-square current, vector sum of Real Power and Reactive Power, square root of sum of squares of Real Power and Reactive Power; unit: volt-ampere, VA
- Current: flow of electric charge, or rate of flow of electric charge; unit: ampere, A
- Energy: the production or consumption of Power over time.
- Power Factor (p.f.): ratio of Real Power to Complex Power, cosine of the phase angle between Current and Voltage, expressed as a number between 0 and 1, expressed as a percentage (i.e., 50% = 0.5); unit: dimensionless
- Reactive Energy: the production or consumption of Reactive Power over time; unit: volt-ampere-reactive hours, VARh, VA-rh, varh
- Reactive Power (Q): mathematical product of the root-mean-square voltage and root-mean-square current multiplied by the sine of the angle between the voltage and current; unit: volt-amperes reactive, VAR, VA-r, var
- Real Energy: the production or consumption of Real Power over time; unit: Watt-hour, Wh
- Real Power (P): rate at which electricity is produced or consumed, mathematical product of Voltage and Current; unit: Watt, W
- Voltage: difference in electric potential between two points; unit: volt, V
- Generically, the use of the term "Power" refers to "Real Power" and is expressed in Watts. Otherwise, one talks of Apparent Power in VA, or Reactive Power in VARs. Generically, the use of the term "Energy" refers to "Real Energy" and is expressed in Watt-hours. Otherwise, on talks of Apparent Energy in VAh, or Reactive Energy in VARh.
E. Mapping between NAESB PAP03 work and this specification

Under the [NIST]-led smart grid interoperability process, the North American Energy Standards Board (NAESB) provided a minimal scope and requirements for this specification, specifically in its work to address the Priority Action Plan 03 (PA03), Price and Product definition. This section maps the specific requirements from NAESB to the work in this specification.

<table>
<thead>
<tr>
<th>Tariff Rate Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>block rate</td>
<td>In Power-Contracts.xsd, addressed by the Block Power Full Requirements Contract.</td>
</tr>
<tr>
<td>critical peak price</td>
<td>Addressed by both Price Relative and Price Multiplier when applies to a business schedule.</td>
</tr>
<tr>
<td>demand rate</td>
<td>Demand charges can be applied to all Product types in EMIX.</td>
</tr>
<tr>
<td>day ahead market rate</td>
<td>Either TEMIX or a Block Power agreement applied to a day-ahead schedule addresses this need.</td>
</tr>
<tr>
<td>market clearing price for energy</td>
<td>TEMIX addresses this use case directly.</td>
</tr>
<tr>
<td>peak time rebate</td>
<td></td>
</tr>
<tr>
<td>real time price rate</td>
<td>Either TEMIX or a Block Power agreement applied to a day-ahead schedule addresses this need.</td>
</tr>
<tr>
<td>time of use rate</td>
<td>Either TEMIX or a Block Power agreement applied to a day-ahead schedule addresses this need. EMIX applied alongside any of the standard agreements can support variable peak pricing.</td>
</tr>
<tr>
<td>variable peak pricing</td>
<td>TEMIX applied alongside any of the standard products can support variable peak pricing.</td>
</tr>
</tbody>
</table>
F. Schemas (Non-Normative)

In OASIS, when there are external, machine-readable artifacts, they are always normative. These are placed here as a convenience to the reviewer.

If you are tracing inheritance, and the construction of EMIX information through the schemas, recall that every EMIX Product is derived from EMIX Base which is a Business Schedule applied to a Product Description. All transactions occur at the EMIX Interface. Products are described and enumerated using extensions of the Item Base.

F.1 EMIX Schemas

The EMIX Schema is in three parts

F.1.1 EMIX.XSD

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- emix.xsd -->
Schema Set for OASIS EMIX 1.0 WD23 (20110411)
Set includes:
EMIX, EMIX-Requirements, EMIX-Warrants (emix)
Power, Power-Contracts, Power-Quality (power)
Resource (resource)

This set built on the WS-Calendar v1.0 PRD02 Schemas.

<!-- 1.0 EMIX: Energy Market Information Exchange -->
<x:schema xmlns:emix="http://docs.oasis-open.org/ns/emix"
xmlns:xcal="urn:ietf:params:xml:ns:icalendar-2.0"
xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:gmlsf="http://www.opengis.net/gmlsf/2.0"
xmlns:xsl="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://docs.oasis-open.org/ns/emix"
elementFormDefault="qualified" attributeFormDefault="unqualified">
  <xs:include schemaLocation="emix-requirements.xsd"/>
  <xs:include schemaLocation="emix-warrants.xsd"/>
  <xs:import namespace="urn:ietf:params:xml:ns:icalendar-2.0"
schemaLocation="http://docs.oasis-open.org/ws-calendar/ws-calendar-1.0/csprd02/xsd/iCalendar.xsd"/>
  <xs:import namespace="urn:ietf:params:xml:ns:icalendar-2.0"
schemaLocation="http://docs.oasis-open.org/ws-calendar/ws-calendar-1.0/csprd02/xsd/iCalendar-wscal-extensions.xsd"/>
  <xs:import namespace="urn:ietf:params:xml:ns:icalendar-2.0"
schemaLocation="http://docs.oasis-open.org/ws-calendar/ws-calendar-1.0/csprd02/xsd/iCalendar-availability-extension.xsd"/>
  <xs:import namespace="http://www.opengis.net/gml/3.2"
schemaLocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd"/>
  <xs:annotation>
    <xs:appinfo>
      <xs:documentation>Emix Product, .i.e., a Product Description applied to a schedule.</xs:documentation>
    </xs:appinfo>
  </xs:annotation>
  <!-- 1.0 Core EMIX objects -->
  <xs:annotation>
    <xs:documentation>Emix Product, .i.e., a Product Description applied to a schedule.</xs:documentation>
  </xs:annotation>
  <xs:element name="product" type="emix:ProductType">
    <xs:annotation>
      <xs:documentation>Emix Product, .i.e., a Product Description applied to a schedule.</xs:documentation>
    </xs:annotation>
  </xs:element>
</xs:schema>
```
<xs:complexType name="ProductType" mixed="false">
 <xs:annotation>
 <xs:documentation>EMIX Product Type, i.e. a Product Description applied to a Schedule</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:EmixBaseType">
 <xs:sequence>
 <xs:element ref="emix:currency"/>
 <xs:element ref="emix:marketContext"/>
 <xs:element ref="emix:transactiveState"/>
 <xs:element ref="emix:side"/>
 <xs:element ref="emix:constraints"/>
 <xs:element ref="emix:currency"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="EmixOptionType" mixed="false">
 <xs:annotation>
 <xs:documentation>Option to buy an Emix Product</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:EmixBaseType">
 <xs:sequence>
 <xs:element ref="emix:transactiveState"/>
 <xs:element type="emix:BusinessScheduleType"/>
 <xs:element name="optionExerciseSchedule" type="emix:BusinessScheduleType"/>
 <xs:element name="optionHolderSide" type="emix:SideType"/>
 <xs:element name="optionPremium" type="emix:PriceType"/>
 <xs:element name="optionExerciseLeadTime" type="xcal:DurationPropType"/>
 <xs:element name="optionStrikePrice" type="emix:PriceType"/>
 <xs:element ref="emix:optionType" type="emix:EmixOptionType"/>
 <xs:element ref="emix:side" type="emix:SideType"/>
 <xs:element ref="emix:marketContext" type="emix:MarketContextType"/>
 <xs:element ref="emix:currency" type="emix:CurrencyType"/>
 <xs:element ref="emix:constraints" type="emix:ConstraintsType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="TemixType" mixed="false">
 <xs:annotation>
 <xs:documentation>minimalist Energy Market Information Exchange (EMIX) Type</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:EmixBaseType">
 <xs:sequence>
 <xs:element ref="emix:currency"/>
 <xs:element ref="emix:transactiveState"/>
 <xs:element ref="emix:constraints"/>
 <xs:element ref="emix:side"/>
 <xs:element type="xs:dateTime" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:element name="temix" type="emix:TemixType">
 <xs:annotation>
 <xs:documentation>minimalist Energy Market Information Exchange (EMIX) Type</xs:documentation>
 </xs:annotation>
 <xs:complexType name="TemixType" mixed="false">
 <xs:annotation>
 <xs:documentation>minimalist Energy Market Information Exchange (EMIX) Type</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:EmixBaseType">
 <xs:sequence>
 <xs:element ref="emix:currency"/>
 <xs:element ref="emix:transactiveState"/>
 <xs:element ref="emix:constraints"/>
 <xs:element ref="emix:side"/>
 <xs:element type="xs:dateTime" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<!-- 1.4 Delivery -->
<xs:element name="delivery" type="emix:DeliveryType"/>

<xs:complexType name="DeliveryType" mixed="false">
 <xs:annotation>
 <xs:documentation>Receipt / Report of Product Delivery. Injection flag is true for adding product to market supply, false for taking from market.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:EmixBaseType">
 <xs:sequence>
 <xs:element name="injection" type="xs:boolean"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 2.0 EMIX Components -->
<!-- 2.1 Envelope -->
<xs:element name="envelopeContents" type="emix:EnvelopeContentsType"/>
<xs:complexType name="EnvelopeContentsType">
 <xs:sequence>
 <xs:element ref="emix:warrants" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
</xs:complexType>

<!-- 8.0 Supporting Information Structures -->
<!-- 8.2 Market defintions -->
<!-- 8.2.1 Market Context -->
<xs:element name="marketContext" type="emix:MarketContextType"/>
<xs:simpleType name="MarketContextType">
 <xs:restriction base="xs:anyURI"/>
</xs:simpleType>

<!-- 8.2.2 Transactive State -->
<xs:element name="transactiveState" type="emix:TransactiveStateType"/>
<xs:simpleType name="TransactiveStateType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="IndicationOfInterest"/>
 <xs:enumeration value="Tender"/>
 <xs:enumeration value="Transaction"/>
 <xs:enumeration value="Exercise"/>
 <xs:enumeration value="Delivery"/>
 <xs:enumeration value="TransportCommitment"/>
 <xs:enumeration value="Publication"/>
 </xs:restriction>
</xs:simpleType>

<!-- 8.2.3 Currency -->
<xs:element name="currency" type="clm5ISO42173A:ISO3AlphaCurrencyCodeContentType"/>
<xs:annotation>
 <xs:documentation>Currency codes coming from UN CEFACT schemas</xs:documentation>
</xs:annotation>

<!-- 8.2.4 Enumeration for Side -->
<xs:element name="side" type="emix:SideType"/>
<xs:simpleType name="SideType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Buy"/>
 <xs:enumeration value="Sell"/>
 </xs:restriction>
</xs:simpleType>

<!-- 8.3 Price -->
<xs:element name="priceBase" type="emix:PriceBaseType" abstract="true"/>
<xs:annotation>
 <xs:documentation>Abstract base for EMIX Prices</xs:documentation>
</xs:annotation>

<!-- 8.3.1 Absolute Price -->
<xs:element name="price" type="emix:PriceType" substitutionGroup="emix:priceBase"/>
<xs:complexType name="PriceType" mixed="false">
 <xs:annotation>
 <xs:documentation>Simple Price</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:PriceBaseType">
 <xs:sequence>
 <xs:element ref="emix:value" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 8.3.2 Multiplier Price -->
<xs:element name="priceMultiplier" type="emix:PriceMultiplierType" substitutionGroup="emix:priceBase"/>
<xs:complexType name="PriceMultiplierType" mixed="false">
 <xs:annotation>
 <xs:documentation>Multiply times market price, 1 for same as market</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:PriceBaseType">
 <xs:sequence>
 <xs:element name="multiplier" type="xs:float" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="emix:marketContext" minOccurs="0" maxOccurs="1">
 <xs:annotation>
 <xs:documentation>Market Context for base price. If blank, Market Context from hosting artifact.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 8.3.4 Price Offset (additive or subtractive) over base amount -->
<xs:element name="priceRelative" type="emix:PriceRelativeType" substitutionGroup="emix:priceBase"/>
<xs:complexType name="PriceRelativeType" mixed="false">
 <xs:annotation>
 <xs:documentation>Price Relative is a fixed charge (positive or negative) applied to base price</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:PriceBaseType">
 <xs:sequence>
 <xs:element ref="emix:value" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="emix:marketContext" minOccurs="0" maxOccurs="1">
 <xs:annotation>
 <xs:documentation>Market Context for base price. If blank, Market Context from hosting artifact.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 8.3.6 Simple Price -->
<xs:element name="value" type="emix:valueType"/>
<xs:simpleType name="valueType">
 <xs:restriction base="xs:decimal"/>
</xs:simpleType>

<!-- 8.5 Quantity -->
<xs:element name="integralOnly" type="emix:IntegralOnlyType"/>
integralOnly is an element used in many EMIX objects distinguishing between an (amount, response, ramp) that is all (true) or nothing (false). An autonomous resource or service (true) is able to respond or maintain service independently. A non autonomous service (false) must await dispatch.

8.7 Enumeration for Option Types

OptionType

<xs:element name="optionType" type="emix:OptionTypeType"/>
<xs:simpleType name="OptionTypeType">
<xs:union memberTypes="emix:OptionTypeEnumeratedType emix:EmixExtensionType"/>
<xs:simpleType name="OptionTypeEnumeratedType">
<xs:annotation>
<xs:documentation>Enumerated Option Types</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string"/>
</xs:simpleType>

8.8 Performance Constraints

9.2 Abstract EMIX Base (product applied to a schedule)

<xs:element name="emixBase" type="emix:EmixBaseType"/>
<xs:complexType name="EmixBaseType" abstract="true">
<xs:annotation>
<xs:documentation>iCalendar-derived object to host EMIX elements</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="xcal:VcalendarType">
<xs:sequence>
<xs:element ref="emix:envelopeContents" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

9.3 Abstract Product Description

<xs:element name="productDescription" type="emix:ProductDescriptionType" substitutionGroup="xcal:artifactBase"/>
<xs:complexType name="ProductDescriptionType" abstract="true">
<xs:annotation>
<xs:documentation>In EMIX, the Product Description is placed in the Interval or Gluon attachment. The respective product schemas extend this abstract class.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="xcal:ArtifactBaseType"/>
</xs:complexContent>
</xs:complexType>

9.4 Interfaces

<xs:element name="serviceArea" type="emix:ServiceAreaType" substitutionGroup="emix:emixInterface"/>
<xs:complexType name="ServiceAreaType">
<xs:annotation>
<xs:documentation>The Service Area is the geographic region that is affected by the EMIX market condition</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="emix:EmixInterfaceType">
<xs:sequence>
<xs:element ref="emix:geographicArea"/>
</xs:sequence>
</xs:extension>
</xs:complexType>
<xs:complexType>
<xs:annotation>
<xs:documentation>Abstract base class for the interfaces for EMIX Product delivery, measurement, and/or pricing</xs:documentation>
</xs:annotation>
</xs:complexType>

<!-- 9.5 Geographic Area -->
<xs:element name="geographicArea" type="emix:GeographicAreaType" substitutionGroup="gml:AbstractFeature"/>
<xs:complexType name="GeographicAreaType" mixed="false">
<xs:annotation>
<xs:documentation>A service area is a geographic region that may be affected by the same EMIX market condition.</xs:documentation>
</xs:annotation>
<xs:complexContent mixed="false">
<xs:extension base="gml:AbstractFeatureType">
<xs:sequence>
<xs:element name="foo" type="gml:GeometryPropertyType"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- 9.6 Business Schedule -->
<xs:element name="businessSchedule" type="emix:BusinessScheduleType"/>
<xs:complexType name="BusinessScheduleType" mixed="false">
<xs:annotation>
<xs:documentation>iCalendar-derived business schedule, more variant than allowed in sequences</xs:documentation>
</xs:annotation>
<xs:complexContent mixed="false">
<xs:extension base="xcal:VavailabilityType"/>
</xs:complexContent>
</xs:complexType>

<xs:element name="duration" type="emix:DurationType"/>
<xs:complexType name="DurationType" mixed="false">
<xs:annotation>
<xs:documentation>iCalendar-derived duration. This brings in xcal:duration and xcal:parameters.</xs:documentation>
</xs:annotation>
<xs:complexContent mixed="false">
<xs:extension base="xcal:DurationPropType"/>
</xs:complexContent>
</xs:complexType>

<!-- 9.7 EMIX Items -->
<xs:element name="measurement" type="emix:MeasurementType" substitutionGroup="emix:productDescription"/>
<xs:complexType name="MeasurementType">
<xs:annotation>
<xs:documentation>Type of Measurement</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="emix:ProductDescriptionType">
<xs:sequence>
<xs:element ref="emix:quantity"/>
<xs:element ref="emix:itemBase"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="emixGranularity" type="emix:EmixGranularityType"/>
<xs:complexType name="EmixGranularityType" mixed="false">
<xs:annotation>
<xs:documentation>Abstract base class used for granularity of market indications of interest and tenders</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element ref="emix:quantity"/>
</xs:sequence>
</xs:complexType>
<xs:element ref="emix:itemBase"/>
</xs:sequence>
</xs:complexType>
<xs:element name="itemBase" type="emix:ItemBaseType" abstract="true"/>
<xs:complexType name="ItemBaseType" abstract="true" mixed="false">
<xs:annotation>
<xs:documentation>Abstract base class for units for EMIX Product delivery, measurement, and warrants. Item as in PO Item, Requisition Item, Invoice Item, Lading Item. Item does not include Quantity or Price, because a single product description or transaction may have multiple quantities or prices associated with a single item.</xs:documentation>
</xs:annotation>
</xs:complexType>
<!-- 9.8 Units and Measurement Abstractions -->
<xs:element name="quantity" type="emix:QuantityType"/>
<xs:simpleType name="QuantityType">
<xs:annotation>
<xs:documentation>Base type for all quantities in EMIX.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:float"/>
</xs:simpleType>
<xs:element name="scale" type="emix:SiScaleType"/>
<xs:simpleType name="SiScaleType">
<xs:annotation>
<xs:documentation>Scale based on representations of SI scale as expressed in the unit multipliers defined for the CIM.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string">
<xs:enumeration value="n">
<xs:annotation>
<xs:documentation>Nano 10**-9</xs:documentation>
<xs:documentation xml:lang="en">enum</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="micro">
<xs:annotation>
<xs:documentation>Micro 10**-6</xs:documentation>
<xs:documentation xml:lang="en">enum</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="milli">
<xs:annotation>
<xs:documentation>Milli 10**-3</xs:documentation>
<xs:documentation xml:lang="en">enum</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="centi">
<xs:annotation>
<xs:documentation>Centi 10**-2</xs:documentation>
<xs:documentation xml:lang="en">enum</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="deci">
<xs:annotation>
<xs:documentation>Deci 10**-1</xs:documentation>
<xs:documentation xml:lang="en">enum</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="kilo">
<xs:annotation>
<xs:documentation>Kilo 10**3</xs:documentation>
<xs:documentation xml:lang="en">enum</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="mega">
<xs:annotation>
<xs:documentation>Mega 10**6</xs:documentation>
<xs:documentation xml:lang="en">enum</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
F.1.2 EMIX-Requirements

<xs:enumeration value="G">
 <xs:documentation>Giga 10**9</xs:documentation>
</xs:enumeration>
<xs:enumeration value="T">
 <xs:documentation>Tera 10**12</xs:documentation>
</xs:enumeration>
<xs:enumeration value="none">
 <xs:documentation>none</xs:documentation>
</xs:enumeration>
<xs:enumeration value="p">
 <xs:documentation>Pico 10**-12</xs:documentation>
</xs:enumeration>

<xs:schema xmlns:emix="http://docs.oasis-open.org/ns/emix"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xcal="urn:ietf:params:xml:ns:icalendar-2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 targetNamespace="http://docs.oasis-open.org/ns/emix"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:include schemaLocation="emix.xsd"/>
 <xs:element name="constraints" type="emix:ConstraintsType"/>
 <xs:complexType name="ConstraintsType">
 <xs:annotation>
 <xs:documentation>Constraints are extrinsic to the product delivery
 but effect how a partner may request performance of a service. Performance constraints
 may be tied to the basic mechanical needs of the resource or to the business needs of
 the source. These constraints can affect the market value of the resource or the
 repeated invocation of a resource. It is possible for a given underlying resource to be
 offered to the market with different constraints and therefor different values. It is
 possible for a given underlying resource to be offered to the market with different
 constraints and therefor different values.</xs:documentation>
 </xs:annotation>
 </xs:complexType>
</xs:schema>
<xs:sequence>
 <xs:element name="constraints" type="emix:ArrayOfConstraints"/>
 <xs:element name="requirements" type="emix:ArrayOfRequirements"/>
</xs:sequence>
</xs:complexType>

<!-- 8.9.1 Core EMIX Constraints -->
<xs:element name="baseConstraint" type="emix:BaseConstraintType" abstract="true">
 <xs:annotation>
 <xs:documentation>Abstract extension object for Emix Constraints</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:complexType name="ArrayOfConstraints">
 <xs:annotation>
 <xs:documentation>Collection of Emix Constraints</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="emix:baseConstraint" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="BaseConstraintType" abstract="true">
 <xs:annotation>
 <xs:documentation>Type of Abstract extension object for Emix Constraints</xs:documentation>
 </xs:annotation>
</xs:complexType>

<xs:element name="minimumResponseDuration" type="emix:MinimumResponseDurationType" substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>The shortest Duration for which the resource will accept a request to maintain a response before returning to pre-request levels.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="maximumResponseDuration" type="emix:MaximumResponseDurationType" substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>The longest Duration for which the resource will accept a request.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="minimumRecoveryDuration" type="emix:MinimumRecoveryDurationType" substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>The minimum Duration that the Resource requires after the end of a response the resource has is ready to respond to a new request.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="minimumDurationBetweenInvocations" type="emix:MinimumDurationBetweenInvocationsType" substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>The minimum Duration that the Resource requires after receiving a request before the resource has is ready to respond to a new request.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="minimumNotificationDuration" type="emix:MinimumNotificationDurationType" substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>The minimum Duration that the Resource requires for Notification before initiating a response to a request.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="maximumNotificationDuration" type="emix:MaximumNotificationDurationType" substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>The maximum Duration in advance of a requested response that the resource is willing to accept a request.</xs:documentation>
 </xs:annotation>
</xs:element>
substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>Duration required from receipt of a request to
initiation of a response by the resource</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="maximumInvocationsPerDuration"
 type="emix:MaximumInvocationsPerDurationType" substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>Maximum number of invocations of service during a
given duration</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="maximumConsecutiveDurations"
 type="emix:MaximumConsecutiveDurationsType" substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>Maximum consecutive durations in which service can
be invoked, e.g., it will not accept requests on more than 3 consecutive
days.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="minimumStartsPerDuration" type="emix:MinimumStartsPerDurationType"
 substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>The fewest Requests that the resource will accept
during any duration. This constraint is typically used in market rather than in resource
descriptions.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="maximumRunDuration" type="emix:MaximumRunDurationType"
 substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>The Maximum duration for which a resource will
accept a request</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="minimumRunDuration" type="emix:MinimumRunDurationType"
 substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>The Minimum duration for which a resource will
accept a request</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="availabilitySchedule" type="emix:AvailabilityScheduleType"
 substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>A schedule of times for which which a resource will
accept requests. The schedule may include multiple availability windows. The scheduled
duration must be entirely within an availability window.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="notificationSchedule" type="emix:NotificationScheduleType"
 substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>A schedule of time during which a resource will
accept requests. The schedule may include multiple availability windows. The notification must occur within an availability window.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="unavailabilitySchedule" type="emix:UnavailabilityScheduleType"
 substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>A schedule of times for which which a resource will
not accept requests. The schedule may include multiple unavailability windows. The
scheduled duration must not occur within or overlap an unavailability
window.</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:complexType name="MinimumResponseDurationType" mixed="false">
 <xs:annotation>
 <xs:documentation>Type of the shortest Duration for which the resource will accept a request to maintain a response before returning to pre-request levels.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element ref="emix:duration" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="MaximumResponseDurationType" mixed="false">
 <xs:annotation>
 <xs:documentation>Type of the longest Duration for which the resource will accept a request.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element ref="emix:duration" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="MinimumRecoveryDurationType" mixed="false">
 <xs:annotation>
 <xs:documentation>Type of the minimum Duration that the Resource requires after the end of a response the resource has is ready to respond to a new request.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element ref="emix:duration" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="MinimumDurationBetweenInvocationsType" mixed="false">
 <xs:annotation>
 <xs:documentation>Type of the minimum Duration that the Resource requires after receiving a request before the resource has is ready to respond to a new request.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element ref="emix:duration" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="MinimumNotificationDurationType" mixed="false">
 <xs:annotation>
 <xs:documentation>Type of the minimum Duration that the Resource requires for Notification before initiating a response to a request.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element ref="emix:duration" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:complexContent mixed="false">
 <xs:complexType name="MaximumNotificationDurationType" mixed="false">
 <xs:annotation>
 <xs:documentation>Type of the maximum Duration in advance that a Resource is willing to accept a request for a response.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element ref="emix:duration" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:complexContent>

<xs:complexContent mixed="false">
 <xs:complexType name="ResponseTimeType" mixed="false">
 <xs:annotation>
 <xs:documentation>Type of the Duration required from receipt of a request to initiation of a response by the resource.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element ref="emix:duration" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:complexContent>

<xs:complexContent mixed="false">
 <xs:complexType name="MaximumInvocationsPerDurationType" mixed="false">
 <xs:annotation>
 <xs:documentation>The resource will only accept a given number of requests for performance during a given interval.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element name="starts" type="xs:int" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="emix:duration" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:complexContent>

<xs:complexContent mixed="false">
 <xs:complexType name="MaximumConsecutiveDurationsType" mixed="false">
 <xs:annotation>
 <xs:documentation>Type of Maximum consecutive durations in which service can be invoked, e.g., it will not accept requests on more than 3 consecutive days.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element name="durations" type="xs:int" maxOccurs="1"/>
 <xs:element ref="emix:duration" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:complexContent>

<xs:complexContent mixed="false">
 <xs:complexType name="MinimumStartsPerDurationType" mixed="false">
 <xs:annotation>
 <xs:documentation></xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:complexContent>
<xs:documentation>Type of the fewest Requests that the resource will accept during any duration. This constraint is typically used in market rather than in resource descriptions.</xs:documentation>

</xs:annotation>

<xs:extension base="emix:BaseConstraintType">

<xs:element name="starts" type="xs:int" minOccurs="1" maxOccurs="1"/>

<xs:element ref="emix:duration" minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="MaximumRunDurationType" mixed="false">

<xs:annotation>

<xs:documentation>Type of the Maximum duration for which a resource will accept a request</xs:documentation>

</xs:annotation>

<xs:complexContent mixed="false">

<xs:extension base="emix:BaseConstraintType">

<xs:sequence>

<xs:element ref="emix:duration" minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="MinimumRunDurationType" mixed="false">

<xs:annotation>

<xs:documentation>Type of the Minimum duration for which a resource will accept a request</xs:documentation>

</xs:annotation>

<xs:complexContent mixed="false">

<xs:extension base="emix:BaseConstraintType">

<xs:sequence>

<xs:element ref="emix:duration" minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<!-- Business Schedules -->

<xs:complexType name="AvailabilityScheduleType" mixed="false">

<xs:annotation>

<xs:documentation>Type of the schedule of time for which a resource will accept requests. The schedule may include multiple availability windows. The scheduled duration must be entirely within an availability window.</xs:documentation>

</xs:annotation>

<xs:complexContent mixed="false">

<xs:extension base="emix:BaseConstraintType">

<xs:sequence>

<xs:element ref="emix:businessSchedule" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="NotificationScheduleType" mixed="false">

<xs:annotation>

<xs:documentation>Type of the schedule of time during which a resource will accept requests. The schedule may include multiple notification windows. The request must occur within a notification window.</xs:documentation>

</xs:annotation>

<xs:complexContent mixed="false">

<xs:extension base="emix:BaseConstraintType">

<xs:sequence>

<xs:element ref="emix:businessSchedule" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>
<xs:complexType name="UnavailabilityScheduleType" mixed="false">
 <xs:annotation>
 <xs:documentation>Type of the schedule of time for which a resource will not accept requests. The schedule may include multiple unavailability windows. The scheduled duration must not occur within or overlap an unavailability window.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element ref="emix:businessSchedule" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 8.2 EMIX Requirements -->
<xs:element name="marketRequirements" type="emix:MarketRequirementsType">
 <xs:annotation>
 <xs:documentation>Market Requirements are the market portion of Constraints, i.e., they are used to state the offeror's expectations about a tender. It is possible for a given underlying resource to be offered to the market with different Requirements and therefore different values.</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:complexType name="MarketRequirementsType">
 <xs:annotation>
 <xs:documentation>Market Requirements are the market portion of Constraints, i.e., they are used to state the offeror's expectations about a tender. It is possible for a given underlying resource to be offered to the market with different Requirements and therefore different values.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="requirements" type="emix:ArrayOfRequirements"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="BaseRequirementType" abstract="true">
 <xs:annotation>
 <xs:documentation>Abstract base for all Requirements</xs:documentation>
 </xs:annotation>
</xs:complexType>

<xs:element name="baseRequirement" type="emix:BaseRequirementType">
 <xs:annotation>
 <xs:documentation>Abstract base for all Requirements</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:complexType name="ArrayOfRequirements">
 <xs:annotation>
 <xs:documentation>Abstract base for a collection of requirements</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="emix:baseRequirement" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:element name="minimumEconomicRequirement" type="emix:MinimumEconomicRequirementType" substitutionGroup="emix:baseRequirement">
 <xs:annotation>
 <xs:documentation>Minimum net remuneration this resource requires from a total response</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:element name="requiredStartupCost" type="emix:RequiredStartupCostType" substitutionGroup="emix:baseRequirement">
 <xs:annotation>
 <xs:documentation>Minimum net remuneration this resource requires from a total response</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:annotation>
 <xs:documentation>Minimum remunuration required from start-up of this
service. </xs:documentation>
</xs:annotation>

</xs:element>

<xs:element name="minimumResourceCost" type="emix:MinimumResourceCostType"
substitutionGroup="emix:baseRequirement">
 <xs:annotation>
 <xs:documentation>Resource requires this amount per period, i.e., a
minimum requirement for $100 / hour at whatever rate</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:complexType name="MinimumEconomicRequirementType" mixed="false">
 <xs:annotation>
 <xs:documentation>Minimum net remuneration this resource requires from
a total response</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseRequirementType">
 <xs:sequence>
 <xs:element ref="emix:price" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="emix:duration"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="RequiredStartupCostType" mixed="false">
 <xs:annotation>
 <xs:documentation> Minimum remunuration required from start-
up of this
service. </xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseRequirementType">
 <xs:sequence>
 <xs:element ref="emix:price" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

F.1.3 EMIX Warrants

<?xml version="1.0" encoding="UTF-8"?>
<!-- emix.xsd
Schema Set for OASIS EMIX 1.0 WD23 (20110411)
Set includes:
 EMIX, EMIX-Requirements, EMIX-Warrants (emix)
 Power, Power-Contracts, Power-Quality (power)
 Resource (resource)
This set built on the W3-Calendar v1.0 PRD02 Schemas.
-->
Warrants are “a written assurances that some product or service will be provided or will meet certain specifications”. Sellers use EMIX Warrants to provide information about the source of the energy or about its environmental characteristics. Buyers can use warrants to indicate what they wish to purchase. EMIX does not define specific warrants, although it does define base types for extension by those who wish to develop the various types of warrants.

8.8.1 Core EMIX Warrants

Price Support products may be needed to justify the price. An example would be a transport product that support the difference between a product price at a point of delivery and a product price at a point of receipt.
F.2 Power Schemas

The Power Schema is in 3 parts
<?xml version="1.0" encoding="UTF-8"?>
<!-- power-quality.xsd - Power Products for OASIS EMIX 1.0 WD23 (20110411)
Set includes:
EMIX, EMIX-Requirements, EMIX-Warrants (emix)
Power, Power-Contracts, Power-Quality (power)
Resource (resource)
This set built on the WS-Calendar v1.0 PRD02 Schemas. -->
<xs:schema xmlns:power="http://docs.oasis-open.org/ns/emix/power"
xmlemix="http://docs.oasis-open.org/ns/emix"
xmldd="http://www.opengis.net/gml/3.2" xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://docs.oasis-open.org/ns/emix/power"
elementFormDefault="unqualified" attributeFormDefault="unqualified">
 <xs:include schemaLocation="power-products.xsd"/>
 <xs:include schemaLocation="power-quality.xsd"/>
 <xs:import namespace="http://docs.oasis-open.org/ns/emix" schemaLocation="emix.xsd"/>
 <!-- 1.0 Core EMIX Power objects -->
 <!-- 1.1 Power Product -->
 <!-- 1.2 Reserves and Power Options -->
 <!-- 2.0 Contract Power Products -->
 <!-- 4.0 Resource Semantics -->
 <!-- 6.0 Power Quality -->
 <!-- 9.1.2 Unit Energy Price -->
 <xs:element name="unitEnergyPrice" type="power:UnitEnergyPriceType"/>
 <xs:complexType name="UnitEnergyPriceType">
 <xs:annotation>
 <xs:documentation>Price per Unit of Energy, i.e., Power times Duration</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="emix:priceBase"/>
 <xs:element ref="power:energyItem"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="energyQuantity" type="power:EnergyQuantityType"/>
 <xs:complexType name="EnergyQuantityType">
 <xs:annotation>
 <xs:documentation>Level of Energy</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="emix:quantity"/>
 <xs:element ref="power:energyItem"/>
 </xs:sequence>
 </xs:complexType>
 <!-- 9.1.3 Power Delivery Rate -->
 <xs:element name="powerQuantity" type="power:PowerQuantityType"/>
 <xs:complexType name="PowerQuantityType">
 <xs:annotation>
 <xs:documentation>Quantity of Power</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="emix:quantity"/>
 <xs:element ref="power:powerItem"/>
 </xs:sequence>
 </xs:complexType>
 <!-- 9.1.5 Reactive Power -->
 <xs:element name="varQuantity" type="power:VarQuantityType"/>
 <xs:complexType name="VarQuantityType">
 <xs:sequence>
 <xs:element ref="emix:quantity"/>
 <xs:element ref="power:powerReactive"/>
 </xs:sequence>
 </xs:complexType>
 <!-- 9.8 Interface Types -->
 <!-- 9.8.1 EndDevices -->
</xs:complexType>
<xs:element name="endDeviceAsset" type="power:EndDeviceAssetType"
 substitutionGroup="emix:emixInterface">
 <xs:annotation>
 <xs:documentation>One type of EndDeviceAsset is a MeterAsset which can
 perform metering, load management, connect/disconnect, accounting functions, etc. Some
 EndDeviceAssets may be connected to a MeterAsset.</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:complexType name="EndDeviceAssetType">
 <xs:annotation>
 <xs:documentation>The EndDeviceAssets are the physical device or
 devices which could be meters or other types of devices that may be of
 interest</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="emix:EmixInterfaceType">
 <xs:sequence>
 <xs:element ref="power:mRID"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 9.8.1.1 Meters -->
<xs:element name="meterAsset" type="power:MeterAssetType"
 substitutionGroup="emix:emixInterface"/>
<xs:complexType name="MeterAssetType">
 <xs:annotation>
 <xs:documentation>The MeterAsset is the physical device or devices
 that performs the role of the meter</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="emix:EmixInterfaceType">
 <xs:sequence>
 <xs:element ref="power:mRID"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 9.8.2 Nodes -->
<xs:element name="pnode" type="power:PnodeType"
 substitutionGroup="emix:emixInterface"/>
<xs:complexType name="PnodeType" mixed="false">
 <xs:annotation>
 <xs:documentation>A pricing node is directly associated with a
 connectivity node. It is a pricing location for which market participants submit their
 bids, offers, buy/sell CRRs, and settle.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:EmixInterfaceType">
 <xs:sequence>
 <xs:element ref="power:node"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 9.8.2 Nodes -->
<xs:element name="aggregatedPnode" type="power:AggregatedPnodeType"
 substitutionGroup="emix:emixInterface"/>
<xs:complexType name="AggregatedPnodeType" mixed="false">
 <xs:annotation>
 <xs:documentation>An aggregated pricing node is a specialized type of
 pricing node used to model items such as System Zone, Default Price Zone, Custom Price
 Zone, Control Area, Aggregated Generation, Aggregated Participating Load, Aggregated Non-
 Participating Load, Trading Hub, DCA Zone</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:EmixInterfaceType">
 <xs:sequence>
 <xs:element ref="power:node"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
ServiceLocation has one or more ServiceDeliveryPoint(s), which in turn relate to Meters. The location may be a point or a polygon, depending on the specific circumstances. For distribution, the ServiceLocation is typically the location of the utility customer's premise.

Logical point on the network where the ownership of the service changes hands. It is one of potentially many service points within a ServiceLocation, delivering service in accordance with a CustomerAgreement. Used at the place where a meter may be installed.

The Transport Interface delineates the edges at either end of a transport segment.

The Node is a place where something changes (often ownership) or connects on the grid. Many nodes are associated with meters, but not all are.
The mRID identifies the physical device that may be a CustomerMeter or other types of EndDevices.
<xs:complexContent mixed="false">
 <xs:restriction base="power:EnergyItemType">
 <xs:sequence>
 <xs:element name="itemDescription" type="xs:string" fixed="RealEnergy"/>
 <xs:element name="itemUnits" type="xs:string" fixed="Wh"/>
 <xs:element name="scale" type="emix:SiScaleType"/>
 </xs:sequence>
 </xs:restriction>
</xs:complexContent>

<!-- == -->
<!-- 9.9.5 Base Energy Item Type -->
<!-- == -->
<br:element name="energyItem" type="power:EnergyItemType" substitutionGroup="emix:itemBase"/>
<br:complexType name="EnergyItemType" abstract="true" mixed="false">
 <xs:annotation>
 <xs:documentation>Base for the measurement of Energy</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:ItemBaseType">
 <xs:sequence>
 <xs:element name="itemDescription" type="xs:string"/>
 <xs:element name="itemUnits" type="xs:string"/>
 <xs:element name="scale" type="emix:SiScaleType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</br:complexType>

<!-- == -->
<!-- 9.9.4 Power Units -->
<!-- == -->
<br:element name="powerApparent" type="power:PowerApparentType" substitutionGroup="power:powerItem"/>
<br:complexType name="PowerApparentType" mixed="false">
 <xs:annotation>
 <xs:documentation>Apparent Power measured in volt-amperes (VA)</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:restriction base="power:PowerItemType">
 <xs:sequence>
 <xs:element name="itemDescription" type="xs:string" fixed="ApparentPower"/>
 <xs:element name="itemUnits" type="xs:string" fixed="VA"/>
 <xs:element name="scale" type="emix:SiScaleType"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
</br:complexType>

<!-- == -->
<!-- == -->
<br:element name="powerReactive" type="power:PowerReactiveType" substitutionGroup="power:powerItem"/>
<br:complexType name="PowerReactiveType" mixed="false">
 <xs:annotation>
 <xs:documentation>Reactive power, measured in volt-amperes reactive (VAR)</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:restriction base="power:PowerItemType">
 <xs:sequence>
 <xs:element name="itemDescription" type="xs:string" fixed="ReactivePower"/>
 <xs:element name="itemUnits" type="xs:string" fixed="VAR"/>
 <xs:element name="scale" type="emix:SiScaleType"/>
 <xs:element ref="power:powerAttributes"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
</br:complexType>
<xs:element name="scale" type="emix:SiScaleType"/>
</xs:sequence>
</xs:restriction>
</xs:complexType>
</xs:annotation>
<xs:documentation>Real power measured in Watts (W) or Joules/second (J/s)</xs:documentation>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:restriction>
</xs:complexContent>
</xs:complexType>
<!--==-->
<xs:element name="powerReal" type="power:PowerRealType" substitutionGroup="power:powerItem"/>
<xs:complexType name="PowerRealType" mixed="false">
<xs:annotation>
<xs:documentation>Real power measured in Watts (W) or Joules/second (J/s)</xs:documentation>
</xs:annotation>
<xs:complexContent mixed="false">
<xs:restriction base="power:PowerItemType">
<xs:sequence>
<xs:element name="itemDescription" type="xs:string" fixed="RealPower"/>
<xs:element name="itemUnits">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="W"/>
<xs:enumeration value="J/s"/>
</xs:restriction>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:restriction>
</xs:complexContent>
</xs:complexType>
</xs:element>
<!--==-->
<xs:element name="powerItem" type="power:PowerItemType" substitutionGroup="emix:itemBase"/>
<xs:complexType name="PowerItemType" abstract="true" mixed="false">
<xs:annotation>
<xs:documentation>Base for the measurement of Power</xs:documentation>
</xs:annotation>
<xs:complexContent mixed="false">
<xs:extension base="emix:ItemBaseType">
<xs:sequence>
<xs:element name="itemDescription" type="xs:string"/>
<xs:element name="itemUnits" type="xs:string"/>
<xs:element name="scale" type="emix:SiScaleType"/>
<xs:element ref="power:powerAttributes"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="powerAttributes" type="power:PowerAttributesType"/>
<xs:complexType name="PowerAttributesType">
<xs:sequence>
<xs:element name="hertz" type="xs:decimal"/>
<xs:element name="voltage" type="xs:decimal"/>
<xs:element name="ac" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>
<!-- 9.9.5 Enumeration for Reserves and other Power Options -->
<xs:element name="powerOptionType" type="power:PowerOptionTypeType"/>
<xs:simpleType name="PowerOptionTypeType">
<xs:annotation>
<xs:documentation>Power Reserve Options</xs:documentation>
</xs:annotation>
<xs:complexType name="PowerOptionTypeEnumeratedType">
<!-- 9.9.5 Base Power Item Type -->
<!-- 9.9.5 Enumeration for Reserves and other Power Options -->
F.2.2 Power Quality

Demonstrates extensibility of base Warrant classes, as well.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- power-quality.xsd - Power Products for OASIS EMIX 1.0 WD23 (20110411) -->
<xs:schema xmlns:power="http://docs.oasis-open.org/ns/emix/power"
xmlns:emix="http://docs.oasis-open.org/ns/emix"
xmlns:xcal="urn:ietf:params:xml:ns:icalendar-2.0"
xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://docs.oasis-open.org/ns/emix/power"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:include schemaLocation="power.xsd"/>
<xs:import namespace="http://docs.oasis-open.org/ns/emix" schemaLocation="emix.xsd" />
<xs:element name="powerQualityWarrant" type="power:PowerQualityWarrantType" substitutionGroup="emix:baseWarrant"/>
<xs:complexType name="PowerQualityWarrantType" mixed="false">
<xs:annotation>
<xs:documentation>A Power Quality Warrant asserts or requires that the power be of a certain quality or better.</xs:documentation>
</xs:annotation>
<xs:complexContent mixed="false">
<xs:extension base="emix:BaseWarrantType">
<xs:sequence>
<xs:element name="measurementProtocol" type="power:MeasurementProtocolType"/>
<xs:element name="constraints" type="power:ArrayOfPowerQualities"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="powerQuality" type="power:PowerQualityType">
<xs:annotation>
<xs:documentation>Power Quality warrant</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
</xs:complexType>
<!-- 6.1 Power Quality -->
<xs:element name="powerQuality" type="power:PowerQualityType"/>
<xs:annotation>
<xs:documentation>Power Quality warrant</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="PowerQualityType">
<xs:annotation>
<xs:documentation>Power Quality consists of a number of measures, based on contract, negotiation, and local regulation. Extend Power Quality to incorporate new elements by creating additional elements based on PowerQualityBaseType</xs:documentation>
</xs:annotation>
<xs:element>
<xs:complexType name="PowerQualityType">
<xs:annotation>
<xs:documentation>Power Quality consists of a number of measures, based on contract, negotiation, and local regulation. Extend Power Quality to incorporate new elements by creating additional elements based on PowerQualityBaseType</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="measurementProtocol" type="power:MeasurementProtocolType"/>
<xs:element name="constraints" type="power:ArrayOfPowerQualities"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:complexType>
```
<xs:element name="basePowerQualityMeasurement" type="power:BasePowerQualityMeasurementType" abstract="true">
 <xs:annotation>
 <xs:documentation>Abstract extension object for Power Qualities</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:complexType name="ArrayOfPowerQualities">
 <xs:annotation>
 <xs:documentation>Collection of Power Qualities</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="power:basePowerQualityMeasurement" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="BasePowerQualityMeasurementType" abstract="true">
 <xs:annotation>
 <xs:documentation>An identification of the standard or other protocol used to measure power quality. Sets definition for all other power attributes. Type of Abstract extension object for Power Qualities</xs:documentation>
 </xs:annotation>
</xs:complexType>

<!-- 6.1 Defined Power Qualities -->
<xsl:element name="powerFrequency" type="power:PowerFrequencyType" substitutionGroup="power:basePowerQualityMeasurement"/>
<xsl:element name="supplyVoltageVariations" type="power:SupplyVoltageVariationsType" substitutionGroup="power:basePowerQualityMeasurement"/>
<xsl:element name="rapidVoltageChanges" type="power:RapidVoltageChangesType" substitutionGroup="power:basePowerQualityMeasurement"/>
<xsl:element name="flicker" type="power:FlickerType" substitutionGroup="power:basePowerQualityMeasurement"/>
<xsl:element name="supplyVoltageDips" type="power:SupplyVoltageDipsType" substitutionGroup="power:basePowerQualityMeasurement"/>
<xsl:element name="shortInterruptions" type="power:ShortInterruptionsType" substitutionGroup="power:basePowerQualityMeasurement"/>
<xsl:element name="longInterruptions" type="power:LongInterruptionsType" substitutionGroup="power:basePowerQualityMeasurement"/>
<xsl:element name="temporaryOvervoltage" type="power:TemporaryOvervoltageType" substitutionGroup="power:basePowerQualityMeasurement"/>
<xsl:element name="supplyVoltageImbalance" type="power:SupplyVoltageImbalanceType" substitutionGroup="power:basePowerQualityMeasurement"/>
<xsl:element name="harmonicVoltage" type="power:HarmonicVoltageType" substitutionGroup="power:basePowerQualityMeasurement"/>
<xsl:element name="mainsVoltage" type="power:MainsVoltageType" substitutionGroup="power:basePowerQualityMeasurement"/>

<!-- 6.2 Defines Power Quality Measures -->
<xs:complexType name="PowerFrequencyType" mixed="false">
 <xs:annotation>
 <xs:documentation>measured Power frequency, e.g. 50.4, 59.9, , measured as per referenced measurement protocol. 0 for DC</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="frequency" type="xs:float"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="SupplyVoltageVariationsType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Supply Voltage Variations during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="RapidVoltageChangesType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Rapid Voltage Changes during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="FlickerType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Flicker events during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="SupplyVoltageDipsType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Supply Voltage Dips during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="ShortInterruptionsType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Short Interruptions during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="LongInterruptionsType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Long Interruptions during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="TemporaryOvervoltageType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Temporary Overvoltage events during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="SupplyVoltageImbalanceType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Supply Voltage Imbalance events during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="HarmonicVoltageType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Harmonic Voltage events during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="MainsVoltageType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Mains Voltage events during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:element name="RapidVoltageChangesType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Rapid Voltage Changes during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="FlickerType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Flicker during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="SupplyVoltageDipsType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Supply Voltage Dips during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="ShortInterruptionsType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Short Interruptions during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="LongInterruptionsType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Long Interruptions during the period, measured as per referenced measurement protocol</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:extension>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="SupplyVoltageImbalanceType" mixed="false">
 <xs:annotation>
 <xs:documentation>count of Supply Voltage Imbalance events during the period, measured as per referenced measurement protocol. Not meaningful for DC.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="HarmonicVoltageType" mixed="false">
 <xs:annotation>
 <xs:documentation>Harmonic Voltage during the period, measured as per referenced measurement protocol. For DC, distortion is with respect to a signal of 0 Hz. The period is usually much shorter than other power quality measures.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="voltage" type="xs:float"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="MainsVoltageType" mixed="false">
 <xs:annotation>
 <xs:documentation>Mains [Signaling] Voltage. Nominal value, e.g, 110, 130, 220, 208. See referenced measurement protocol for definition.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="voltage" type="xs:float"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:simpleType name="MeasurementProtocolType">
 <xs:union memberTypes="power:MeasurementProtocolEnumeratedType emix:EmixExtensionType"/>
</xs:simpleType>

<xs:simpleType name="MeasurementProtocolEnumeratedType">
 <xs:annotation>
 <xs:documentation>An identification of the standard or other protocol used to measure power quality. Sets definition for all other power attributes</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">\n <xs:extension>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BasePowerQualityMeasurementType">
 <xs:sequence>
 <xs:element name="count" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:extension>
 </xs:restriction>
</xs:simpleType>
F.2.3 Power Products.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!-- power-quality.xsd - Power Products for OASIS EMIX 1.0 WD23 (20110411) -->

Set includes:
- EMIX, EMIX-Requirements, EMIX-Warrants (emix)
- Power, Power-Contracts, Power-Quality (power)
- Resource (resource)

This set built on the WS-Calendar v1.0 PRD02 Schemas.

```xml
<xs:schema xmlns:power="http://docs.oasis-open.org/ns/emix/power"
xmlns:emix="http://docs.oasis-open.org/ns/emix"
xmlns:xcal="urn:ietf:params:xml:ns:icalendar-2.0"
xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://docs.oasis-open.org/ns/emix/power"
elementFormDefault="qualified" attributeFormDefault="unqualified">
  <xs:include schemaLocation="power.xsd"/>
  <xs:import namespace="http://docs.oasis-open.org/ns/emix" schemaLocation="emix.xsd"/>

  <!-- 2.0 Power Products -->
  <xs:element name="fullRequirementsPower" type="power:FullRequirementsPowerType" substitutionGroup="emix:PowerProductDescriptionType"/>

  <xs:complexType name="FullRequirementsPowerType">
    <xs:annotation>
      <xs:documentation>Type of Product Description for Supplier to provide for full requirements of buyer. Simple prices, will supply all used. Demand Charges Optional. Often used in retail residential rates.</xs:documentation>
    </xs:annotation>
    <xs:complexContent>
      <xs:extension base="emix:ProductDescriptionType">
        <xs:sequence>
          <xs:element ref="power:fullRequirementsPower" type="power:FullRequirementsPowerType"/>
          <xs:element name="maximumPower" type="emix:QuantityType"/>
          <xs:element name="minimumPower" type="emix:QuantityType"/>
        </xs:sequence>
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
</xs:schema>
```
<xs:complexContent>
 <xs:extension base="power:BlockPowerFullRequirementsType">
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="powerPriceTiers" type="power:ArrayOfBlockPowerPrices" minOccurs="1" maxOccurs="1"/>
 <xs:element name="maximumPower" type="emix:QuantityType" minOccurs="0" maxOccurs="1"/>
 <xs:element name="minimumPower" type="emix:QuantityType" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
</xs:complexContent>

<!-- 2.3 Transport Service -->
<xs:element name="transportProduct" type="power:TransportProductType" substitutionGroup="power:powerProductDescription"/>
<xs:complexType name="TransportProductType">
 <xs:annotation>
 <xs:documentation>Type of Product Description for charges and revenue related to Transport Services for a Power Product, i.e., the movement of Power through Transmission and Distribution. The Interface used matches a segment of the transport infrastructure, usually identified by an injection node and a delivery node.</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="power:PowerProductDescriptionType">
 <xs:sequence>
 <xs:element name="transportCharges" type="power:ArrayOfTransportCharges"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 2.1 TEMIX Power -->
<xs:element name="temixPower" type="power:TemixPowerType" substitutionGroup="emix:productDescription"/>
<xs:complexType name="TemixPowerType">
 <xs:annotation>
 <xs:documentation>Type of contract Product Description for Supplier to a specific sized block of power to buyer. Simple prices, will supply fixed block. Derived directly from emix:ProductDescriptionType rather than power:PowerProductDescriptionType because optionality stripped out.</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="emix:ProductDescriptionType">
 <xs:sequence>
 <xs:element ref="emix:emixInterface" maxOccurs="1"/>
 <xs:element ref="emix:price" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="power:powerItem" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="power:energyItem" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="emix:quantity" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:complexType>
 <!--
 --
 -->
 <!-- Charge Definitions -->
 <!--
 --
 -->
</xs:complexType>

<xs:element name="baseCharge" type="power:BaseChargeType" abstract="true">
 <xs:annotation>
 <xs:documentation>Abstract extension object for Emix Power Product Charges</xs:documentation>
 </xs:annotation>
</xs:element>

<xs:complexType name="ArrayOfCharges">
 <xs:annotation>
 <xs:documentation>Collection of Emix Power Product Charges</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="power:baseCharge" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="BaseChargeType" abstract="true">
 <xs:annotation>
 <xs:documentation>Type of Abstract extension object for Emix Power Product Charges</xs:documentation>
 </xs:annotation>
</xs:complexType>

<xs:element name="blockPowerPrice" type="power:BlockPowerPriceType" substitutionGroup="power:baseCharge"/>

<xs:complexType name="BlockPowerPriceType" mixed="false">
 <xs:complexContent mixed="false">
 <xs:extension base="power:BaseChargeType">
 <xs:sequence>
 <xs:element ref="emix:priceBase"/>
 <xs:element name="maximumEnergyQuantity" type="emix:QuantityType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="ArrayOfBlockPowerPrices">
 <xs:sequence>
 <xs:element ref="power:blockPowerPrice" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:element name="demandCharge" type="power:DemandChargeType" substitutionGroup="power:baseCharge"/>

<xs:complexType name="DemandChargeType" mixed="false">
 <xs:complexContent mixed="false">
 <xs:extension base="power:BaseChargeType">
 <xs:sequence>
 <xs:element name="demandChargeUnits" type="power:PowerItemType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:element name="demandChargeFloor" type="emix:QuantityType"/>
<xs:element name="demandChargeRate" type="emix:PriceBaseType"/>
<xs:element name="measurementInterval" type="emix:DurationType"/>
<xs:element name="collectionInterval" type="emix:DurationType"/>
<xs:element name="collectionPeriod" type="emix:DurationType"/>
<xs:element name="chargeDuration" type="emix:DurationType"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:annotation>
</xs:complexType>
</xs:element>
</xs:complexType>
</xs:complexType>
</xs:complexType>
</xs:element>
</xs:documentation>Abstract extension object for Emix Power Product Charges</xs:documentation>
</xs:element>
</xs:complexType>
</xs:complexType>
</xs:complexType>
</xs:complexType>
</xs:element>
</xs:complexType>
</xs:complexType>
</xs:element>
</xs:complexType>
</xs:element>
</xs:complexType>
</xs:complexType>
</xs:element>
</xs:complexType>
</xs:complexType>
</xs:doctype>Abstract extension object for Emix Power Product Charges</doctype>
</xs:element>
</xs:complexType>
</xs:complexType>
</xs:complexType>
<xs:complexType name="CongestionChargeType" mixed="false">
 <xs:annotation>
 <xs:documentation>Congestion Charge is the cost of purchasing the right to transfer power over a given segment of the grid.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BaseTransportChargeType">
 <xs:sequence>
 <xs:element ref="power:transportInterface"/>
 <xs:element ref="power:transportCongestionFee"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 2.8.3 Marginal Loss Charge -->
<xs:element name="marginalLossCharge" type="power:MarginalLossChargeType" substitutionGroup="power:baseTransportCharge"/>
<xs:complexType name="MarginalLossChargeType" mixed="false">
 <xs:complexContent mixed="false">
 <xs:extension base="power:BaseTransportChargeType">
 <xs:sequence>
 <xs:element ref="power:marginalLossFee"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 2.8.4 Marginal Loss -->
<xs:element name="marginalLoss" type="power:MarginalLossType" substitutionGroup="power:baseTransportCharge"/>
<xs:complexType name="MarginalLossType" mixed="false">
 <xs:complexContent mixed="false">
 <xs:extension base="power:BaseTransportChargeType">
 <xs:sequence>
 <xs:element ref="power:lossFactor"/>
 <xs:element ref="power:pnode"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 2.8.5 Conversion Loss -->
<xs:element name="conversionLoss" type="power:ConversionLossType" substitutionGroup="power:baseTransportCharge"/>
<xs:complexType name="ConversionLossType" mixed="false">
 <xs:complexContent mixed="false">
 <xs:extension base="power:BaseTransportChargeType">
 <xs:sequence>
 <xs:element ref="power:pnode"/>
 <xs:element ref="power:lossFactor"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:element name="transportAccessFee" type="power:TransportAccessFeeType" substitutionGroup="power:baseTransportCharge"/>
<xs:complexType name="TransportAccessFeeType" mixed="false">
 <xs:annotation>
 <xs:documentation>Transport Access Fee is a Fixed Charge (not dependent on congestion or quantity) to access a transport system.</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="power:BaseTransportChargeType">
 <xs:sequence>
 <xs:element ref="power:transportInterface"/>
 <xs:element ref="emix:price"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<!--
==
2.9.3 Loss Fee
<xs:element name="marginalLossFee" type="power:MarginalLossFeeType"/>
<xs:simpleType name="MarginalLossFeeType">
 <xs:annotation>
 <xs:documentation>Marginal Loss Fee</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:decimal"/>
</xs:simpleType>

2.9.4 Transport Congestion Fee
<xs:element name="transportCongestionFee" type="power:TransportCongestionFeeType"/>
<xs:simpleType name="TransportCongestionFeeType">
 <xs:annotation>
 <xs:documentation>Financial Transmission Rights (FTR) regarding transmission capacity.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:decimal"/>
</xs:simpleType>

2.9.5 Loss Factor
<xs:element name="lossFactor" type="power:LossFactorType"/>
<xs:simpleType name="LossFactorType">
 <xs:annotation>
 <xs:documentation>Reduction in amount delivered as product travels. (lossFactor * purchase amount) = delivered amount</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:float">
 <xs:maxInclusive value="1"/>
 </xs:restriction>
</xs:simpleType>

2.9.6 Enumeration & Simple Types for Products
<xs:element name="productType" type="power:ProductTypeType"/>
<xs:simpleType name="ProductTypeType">
 <xs:union memberTypes="power:ProductTypeEnumeratedType emix:EmixExtensionType power:PowerOptionTypeType"/>
 <xs:simpleType name="ProductTypeEnumeratedType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Energy"/>
 <xs:enumeration value="Transport"/>
 <xs:enumeration value="EnergyOption"/>
 <xs:enumeration value="TransportOption"/>
 <xs:enumeration value="FullRequirementsPower"/>
 <xs:enumeration value="FullRequirementsPowerWithDemandCharge"/>
 <xs:enumeration value="FullRequirementsPowerWithMaximumAndMinimum"/>
 <xs:enumeration value="HourlyDayAhead"/>
 <xs:enumeration value="Ex-AnteRealTimePrice"/>
 <xs:enumeration value="TimeOfUsePricing"/>
 <xs:enumeration value="Transport"/>
 <xs:enumeration value="CongestionRevenueRights"/>
 </xs:restriction>
 </xs:simpleType>
</xs:simpleType>
</xs:schema>

F.3 Resource.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2011 rel. 2 (x64) (http://www.altova.com) by Toby Considine (TC9, Inc) -->
<!-- resource.xsd - Resource Descriptions for OASIS EMIX 1.0 WD23 (20110411) -->
Set includes:
 EMIX, EMIX-Requirements, EMIX-Warrants (emix)
 Power, Power-Contracts, Power-Quality (power)
 Resource (resource)
This set built on the WS-Calendar v1.0 PRD02 Schemas.

```xml
  <xs:import namespace="http://docs.oasis-open.org/ns/emix" schemaLocation="emix.xsd"/>
  <xs:import namespace="http://docs.oasis-open.org/ns/emix/power" schemaLocation="power.xsd"/>
  <!-- 3.0 Resource are described in terms of their capabilities Capabilities to aid in the matching of need and supplier -->
  <xs:element name="loadReduction" type="resource:LoadReductionType" substitutionGroup="emix:productDescription"/>
  <xs:element name="generation" type="resource:GenerationType" substitutionGroup="emix:productDescription"/>
  <xs:element name="activeReserve" type="resource:ActiveReserveType" substitutionGroup="emix:productDescription"/>
  <xs:element name="regulationService" type="resource:RegulationServiceType" substitutionGroup="emix:productDescription"/>
  <xs:element name="productVoltageRegulation" type="resource:ProductVoltageRegulation" substitutionGroup="emix:productDescription"/>
  <!-- 3.1 Load resource -->
  <xs:complexType name="LoadReductionType">
    <xs:annotation>
      <xs:documentation>A Load Reduction Resource ramps down, stays down, and then ramps up. For stagingRamps, endRamp is less than beginRamp. For recoveryRamps, endRamp is greater than beginRamp.</xs:documentation>
    </xs:annotation>
    <xs:complexContent>
      <xs:extension base="resource:PowerResponseType"/>
    </xs:complexContent>
  </xs:complexType>
  <!-- 3.2 Generation Resource -->
  <xs:complexType name="GenerationType">
    <xs:annotation>
      <xs:documentation>A Generation Resource ramps up, stays up, and then ramps down. For stagingRamps, endRamp is greater than beginRamp. For recoveryRamps, endRamp is less than beginRamp.</xs:documentation>
    </xs:annotation>
    <xs:complexContent>
      <xs:extension base="resource:PowerResponseType">
        <xs:sequence>
          <xs:element name="Type" type="resource:ResourceTypeType" minOccurs="0" maxOccurs="1"/>
        </xs:sequence>
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  <!-- 3.5 Active Reserve -->
  <xs:complexType name="ActiveReserveType">
    <xs:annotation>
      <xs:documentation>Active Reserve</xs:documentation>
    </xs:annotation>
    <xs:complexContent>
      <xs:extension base="resource:ResourceDescriptionType">
        <xs:element ref="power:powerOptionType" />
        <xs:element ref="resource:targetRegulation" />
        <xs:element ref="resource:dispatchTime" />
        <xs:element ref="emix:autonomous" minOccurs="0"/>
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
</xs:schema>
```
<!-- 3.6 Regulation Service Product -->
<xs:complexType name="RegulationServiceType">
 <xs:annotation>
 <xs:documentation>Regulation Service</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="resource:ResourceDescriptionType">
 <xs:sequence>
 <xs:element ref="resource:productTypeRegulation"/>
 <xs:element ref="resource:targetRegulation"/>
 <xs:element ref="resource:dispatchUp"/>
 <xs:element ref="resource:dispatchDown"/>
 <xs:element ref="emix:autonomous"/>
 <!-- frequency response faster than freq regulation -->
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 3.6 Voltage Regulation -->
<xs:complexType name="ProductVoltageRegulationType">
 <xs:annotation>
 <xs:documentation>Voltage Regulation</xs:documentation>
 <xs:appinfo>At the end of the scheduled interval, VAR resources should return to their original state</xs:appinfo>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="resource:ResourceDescriptionType">
 <xs:sequence>
 <xs:element name="voltVar" type="resource:VoltVarType" maxOccurs="unbounded"/>
 <xs:element ref="resource:rampTime"/>
 <xs:element ref="resource:window"/>
 <xs:element ref="emix:window"/>
 <xs:element ref="emix:window"/>
<!-- 3.9.1 Resource Types -->
<xs:element name="resourceType" type="resource:ResourceTypeType"/>
<xs:simpleType name="ResourceTypeType">
 <xs:union memberTypes="resource:ResourceTypeEnumeratedType
 emix:EmixExtensionType"/>
</xs:simpleType>
<xs:simpleType name="ResourceTypeEnumeratedType">
 <xs:annotation>
 <xs:documentation>Resource types share common responsiveness and
 predictability characteristics, sometimes covarying across resources in the same class.
 (Example: Solar in the same region failing at the same time)</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:enumeration value="DispatchableHydro"/>
 <xs:enumeration value="NonDispatchableHydro"/>
 <xs:enumeration value="WindGeneration"/>
 <xs:enumeration value="SolarGeneration"/>
 <xs:enumeration value="TollingContract"/>
 <xs:enumeration value="AggregateResource"/>
 <xs:enumeration value="DispatchableStorage"/>
 </xs:restriction>
</xs:simpleType>

<!-- 3.9.2 Regulation Products -->
<xs:element name="productTypeRegulation" type="resource:ProductTypeRegulationType"/>
<xs:simpleType name="ProductTypeRegulationType">
 <xs:annotation>
 <xs:documentation>enumerates the Voltage Regulation Products</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="RegulationUp"/>
 <xs:enumeration value="RegulationDn"/>
 <xs:enumeration value="RegulationUp-Dn"/>
 </xs:restriction>
</xs:simpleType>

<!-- 4.0 Resource Semantics -->
<!-- 4.1 Resource Capability -->
<xs:element name="powerResponse" type="resource:PowerResponseType"/>
<xs:complexType name="PowerResponseType" abstract="true">
 <xs:annotation>
 <xs:documentation>Generic model describing the power response capabilities of a resource</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="resource:ResourceDescriptionType">
 <xs:sequence>
 <xs:element ref="resource:stagingRamp" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="resource:maximumResponse" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="resource:minimumResponse" maxOccurs="1"/>
 <xs:element ref="resource:recoveryRamp" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="resource:offerCurve" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<!-- 4.1 Ramp Rates -->
<!-- 4.1.3 Power Ramp Rate -->
<xs:element name="stagingRamp" type="resource:ArrayOfRampSegments"/>
<xs:element name="recoveryRamp" type="resource:ArrayOfRampSegments"/>
<xs:element name="powerRamp" type="resource:ArrayOfRampSegments"/>
<xs:complexType name="PowerRampType">
 <xs:annotation>
 <xs:documentation>A Power Ramp is an Array of of Ramp Segments that describing a Resource's ability to change level. A Power Ramp is either monotonically increasing or monotonically decreasing.</xs:documentation>
 </xs:annotation>
</xs:complexType>
<xs:sequence>
 <xs:element ref="resource:rampSegments"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ArrayOfRampSegments">
 <xs:annotation>
 <xs:documentation>Collection of Power Ramp Segments</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="resource:powerRampSegment" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
<xs:element name="powerRampSegment" type="resource:PowerRampSegmentType"/>
<xs:complexType name="PowerRampSegmentType">
 <xs:annotation>
 <xs:documentation>A Power Ramp Segment describes a change up or down in units/duration. A ramp rate holds for the duration between beginRamp to endRamp</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="rate" type="power:PowerQuantityType"/>
 <xs:element ref="emix:duration"/>
 <xs:element ref="resource:beginRamp"/>
 <xs:element ref="resource:endRamp"/>
 <xs:element ref="emix:integralOnly"/>
 </xs:sequence>
</xs:complexType>
<xs:element name="beginRamp" type="xs:int"/>
<xs:element name="endRamp" type="xs:int"/>

<xs:element name="minimumLoad" type="resource:MinimumLoadType" substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>Constraint on Minimum Load that a Resource can maintain</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="maximumPower" type="resource:MaximumPowerType" substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>Constraint on Maximum Power available from a resource</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="maximumEnergy" type="resource:MaximumEnergyType" substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>Constraint on Maximum Energy available from a resource</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="minimumLoadReduction" type="resource:MinimumLoadReductionType" substitutionGroup="emix:baseConstraint">
 <xs:annotation>
 <xs:documentation>Constraint on Minimum Load Reduction resource can make</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:complexType name="MinimumLoadType" mixed="false">
 <xs:annotation>
 <xs:documentation>Type of Constraint on Minimum Load that a Resource can maintain</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element ref="power:powerQuantity"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="MaximumPowerType" mixed="false">
 <xs:annotation>
 <xs:documentation>Type of Constraint on Maximum Power available from a resource</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element ref="power:powerQuantity" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="MaximumEnergyType" mixed="false">
 <xs:annotation>
 <xs:documentation>Type of Constraint on Maximum Energy available from a resource</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element ref="power:energyQuantity"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="MinimumLoadReductionType" mixed="false">
 <xs:annotation>
 <xs:documentation>Minimum units for a load reduction (e.g., MW rating of a discrete pump)</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element ref="power:powerQuantity" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<!-- 4.2.5 Minimum Load Reduction -->
<xs:complexType name="MinimumLoadReductionType" mixed="false">
 <xs:annotation>
 <xs:documentation>Minimum units for a load reduction (e.g., MW rating of a discrete pump)</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseConstraintType">
 <xs:sequence>
 <xs:element ref="power:powerQuantity" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<!-- 4.3.1 Offer Segment elements -->
<xs:element name="offerCurve" type="resource:OfferCurveType" substitutionGroup="emix:baseRequirement"/>
<xs:complexType name="OfferCurveType" mixed="false">
 <xs:annotation>
 <xs:documentation>Type of a collection of Offer Segments used to compute cost requirements across a range of power</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:extension base="emix:BaseRequirementType">
 <xs:sequence>
 <xs:element name="offerSegment" type="resource:OfferSegmentType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:complexContent>
 <xs:complexType>
 <xs:element name="offerSegment" type="resource:OfferSegmentType"/>
 <xs:complexType name="OfferSegmentType">
 <xs:annotation>
 <xs:documentation> Type of Marginal offer for Power within a range. Marginal costs must be computed within the context of a range of segments as conformed by the Offer Type </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="emix:price"/>
 <xs:element ref="emix:quantity"/>
 <xs:element ref="power:powerItem"/>
 <xs:element ref="emix:integralOnly"/>
 </xs:sequence>
 </xs:complexType>
 </xs:complexType>
</xs:complexContent>

<xs:element name="mrid" type="resource:MridType"/>
<xs:simpleType name="MridType">
 <xs:annotation>
 <xs:documentation>multi-part resource id from the ISO TC57 CIM. </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string"/>
</xs:simpleType>

<xs:element name="vMin" type="resource:VMinType"/>
<xs:complexType name="VMinType">
 <xs:annotation>
 <xs:documentation>The minimum voltage level of the Voltage Regulation Service. In IEEE 1547, this represents a voltage level of 88% of nominal voltage for a photovoltaic (PV) inverter. </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="power:voltage"/>
 </xs:sequence>
</xs:complexType>

<xs:element name="vMax" type="resource:VMaxType"/>
<xs:complexType name="VMaxType">
 <xs:annotation>
 <xs:documentation>VMax is the IEEE 1547 maximum voltage level of 110% of nominal voltage where the PV inverter must disconnect. </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="power:voltage"/>
 </xs:sequence>
</xs:complexType>

<xs:element name="qMax" type="resource:QMaxType"/>
<xs:complexType name="QMaxType">
 <xs:annotation>
 <xs:documentation>Qmax is the inverter's var capability and may be positive (capacitive) or negative (inductive). </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="power:varQuantity"/>
 </xs:sequence>
</xs:complexType>

<xs:element name="pMax" type="resource:PMaxType"/>
<xs:complexType name="PMaxType">
 <xs:annotation>
 <xs:documentation>PMax is the inverter's watt capability and may be positive or negative. </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="power:powerQuantity"/>
 </xs:sequence>
</xs:complexType>
></xs:complexType>

<!-- 4.9 Miscellaneous Semantic elements volt-var -->
<xs:element name="dispatchTime" type="emix:DurationType"/>
<xs:element name="maximumDeliveryRate" type="emix:QuantityType"/>
<xs:element name="minimumDeliveryRate" type="emix:QuantityType"/>
<xs:element name="maximumResponse" type="emix:QuantityType"/>
<xs:element name="minimumResponse" type="emix:QuantityType"/>
<xs:element name="rate" type="emix:QuantityType"/>
<xs:element name="targetRegulation" type="power:PowerAttributesType"/>
<xs:element name="dispatchUp" type="emix:DurationType">
 <xs:annotation>
 <xs:documentation>Time in which resource can respond to a request to increase energy provided. If zero, no dispatchUp available. Can also be startup delay for non-spinning reserve.</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="dispatchDown" type="emix:DurationType">
 <xs:annotation>
 <xs:documentation>Time in which resource can respond to a request to decrease energy provided. If zero, no dispatch Down available.</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="rampTime" type="emix:DurationType">
 <xs:annotation>
 <xs:documentation>Requested ramp time to move from the current setpoint to the new setpoint</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="window" type="emix:DurationType">
 <xs:annotation>
 <xs:documentation>Time window within which to randomly execute the command. If the time window is zero, the command will be executed immediately, (If not included, then default time window for this function will be used)</xs:documentation>
 </xs:annotation>
</xs:element>
</xs:schema>
G. An Example

24 Hours of pricing on a full requirements contract.

```xml
<?xml version="1.0" encoding="utf-16"?>
<!--
Jira 274 Price Publication
emix = EMIXType
createdDateTime = 2-12-2011 14:00
transactive State = Tender
currency = USD
terms:
PriceType = absolutePrice

Gluon: StartTime = 2-13-2001 00:00, Duration = 3600 seconds
Intervals (0.71,0.21,-0.13, 0.15,0.70,0.86,0.90,1.01,1.12,1.14,1.15,2.74,
1.25,1.20,1.29,1.31,1.00,0.99,0.89,0.86,0.79,0.88,0.87,0.76)
-->
<emix:product xmlns:power="http://docs.oasis-open.org/ns/emix/power"
xmlns:emix="http://docs.oasis-open.org/ns/emix"
xmlns:xcal="http://docs.oasis-open.org/ns/ws-calendar/201103"
xmlns:xs="http://www.w3.org/2001/XMLSchema-instance">

<xcal:properties>
  <xcal:created>
    <xcal:utc-date-time>20110328</xcal:utc-date-time>
  </xcal:created>
</xcal:properties>

<xcal:components>
  <xcal:gluon>
    <xcal:properties>
      <xcal:uid>
        <xcal:text>b375a906-64bc-4573-9971-045b52e30a56@examples.oasis-open.org</xcal:text>
      </xcal:uid>
    </xcal:properties>
    <xcal:related-to>
      <xcal:parameters>
        <xcal:reltype>
          CHILD</xcal:reltype>
      </xcal:parameters>
      <xcal:uid>cd6de037-1c39-481d-87cf-8c587df56dfb@examples.oasis-open.org</xcal:uid>
    </xcal:related-to>
    <xcal:dtstart>
      <xcal:parameters>
        <xcal:tzid>America/New_York</xcal:tzid>
      </xcal:parameters>
      <xcal:date-time>20110330T00000000</xcal:date-time>
    </xcal:dtstart>
    <xcal:duration>
    </xcal:duration>
    <xcal:x:wsCalendar-attach>
      <emix:productDescription
      type="power:PowerProductDescription">
        <power:unitEnergyPrice>
        </power:unitEnergyPrice>
      </emix:productDescription>
    </xcal:x:wsCalendar-attach>
  </xcal:gluon>
</xcal:components>
</emix:product>
```
<emix:text>5b0b2104-f2bd-4b7b-819c-ab970b29f668@examples.oasis-open.org</emix:text>
</emix:uid>
<emix:related-to>
<emix:parameters>
<emix:reltype>
</emix:reltype>
</emix:parameters>
<emix:uid>6a5d23b2-0aa9-4309-b2d3-b04f630add99@examples.oasis-open.org</emix:uid>
</emix:related-to>
<emix:x-wsCalendar-attach>
<emix:productDescription xs:type="power:PowerProductDescription">
<power:unitEnergyPrice>
<emix:priceAbsolute>
<emix:priceEnumeration>0.70</emix:priceEnumeration>
</emix:priceAbsolute>
</power:unitEnergyPrice>
</emix:productDescription>
</emix:x-wsCalendar-attach>
</emix:properties>
</emix:interval>
<emix:properties>
<emix:uid>
<emix:text>0270f6af-56bc-4d9c-a7c2-becfe3bc0ea@examples.oasis-open.org</emix:text>
</emix:uid>
<emix:related-to>
<emix:parameters>
<emix:reltype>
</emix:reltype>
</emix:parameters>
<emix:uid>5b0b2104-f2bd-4b7b-819c-ab970b29f668@examples.oasis-open.org</emix:uid>
</emix:related-to>
<emix:x-wsCalendar-attach>
<emix:productDescription xs:type="power:PowerProductDescription">
<power:unitEnergyPrice>
<emix:priceAbsolute>
<emix:priceEnumeration>0.86</emix:priceEnumeration>
</emix:priceAbsolute>
</power:unitEnergyPrice>
</emix:productDescription>
</emix:x-wsCalendar-attach>
</emix:properties>
</emix:interval>
<emix:properties>
<emix:uid>
<emix:text>3c36a01d-1229-4f7f-86dc-31728faba6d@examples.oasis-open.org</emix:text>
</emix:uid>
<emix:related-to>
<emix:parameters>
<emix:reltype>
</emix:reltype>
</emix:parameters>
<emix:uid>0270f6af-56bc-4d9c-a7c2-becf3bc0ea@examples.oasis-open.org</emix:uid>
</emix:related-to>
<emix:x-wsCalendar-attach>
<emix:productDescription
xs:type="power:PowerProductDescription">
<power:unitEnergyPrice>
<emix:priceAbsolute>
<emix:priceEnumeration>0.90</emix:priceEnumeration>
</emix:priceAbsolute>
</power:unitEnergyPrice>
</emix:productDescription>
</emix:x-wsCalendar-attach>
</emix:properties>
</emix:interval>
</emix:properties>
</xcal:uid>0d96802b-bf0f-41e6-8d55-804598879be0@examples.oasis-open.org</xcal:uid>
</xcal:related-to>
<emix:parameters>
<xcal:reltype>
</xcal:reltype>
</emix:parameters>
</xcal:uid>3c36a01d-1229-4f7f-86dc-31728baba6d@examples.oasis-open.org</xcal:uid>
</xcal:related-to>
<emix:parameters>
<xcal:reltype>
</xcal:reltype>
</emix:parameters>
</xcal:uid>804598879be0@examples.oasis-open.org</xcal:uid>
</xcal:related-to>
<emix:parameters>
<xcal:reltype>
</xcal:reltype>
</emix:parameters>
</xcal:uid>a843d8d0-28f8-4a31-a7ee-25b14c701036@examples.oasis-open.org</xcal:uid>
</xcal:related-to>
<emix:parameters>
<xcal:reltype>
</xcal:reltype>
</emix:parameters>
</xcal:uid>0d96802b-bf0f-41e6-8d55-804598879be0@examples.oasis-open.org</xcal:uid>
</xcal:related-to>
<emix:parameters>
<xcal:reltype>
</xcal:reltype>
</emix:parameters>
</xcal:uid>0d96802b-bf0f-41e6-8d55-804598879be0@examples.oasis-open.org</xcal:uid>
</xcal:related-to>
<emix:priceEnumeration>1.12</emix:priceEnumeration>
</emix:priceAbsolute>
</power:unitEnergyPrice>
</emix:productDescription>
</xcal:x-wsCalendar-attach>
</xcal:properties>
</xcal:interval>
<xcal:interval>
<xcal:properties>
<xcal:text>2097d7d8-f554-469c-8c92-9eb8551c086d@example.oasis-open.org</xcal:text>
</xcal:uid>
<xcal:related-to>
<xcal:parameters>
<xcal:reltype>
</xcal:reltype>
</xcal:parameters>
<xcal:uid>a843d8d0-28f8-4a31-a7ee-25b14c701036@example.oasis-open.org</xcal:uid>
</xcal:related-to>
<xcal:x-wsCalendar-attach>
<emix:productDescription
xs:type="power:PowerProductDescription">
<power:unitEnergyPrice>
<emix:priceAbsolute>
<emix:priceEnumeration>1.14</emix:priceEnumeration>
</emix:priceAbsolute>
</power:unitEnergyPrice>
</emix:productDescription>
</xcal:x-wsCalendar-attach>
</xcal:properties>
</xcal:interval>
<xcal:interval>
<xcal:properties>
<xcal:text>f2f630f6-f673-47ae-8a89-3d2b23f379c6@example.oasis-open.org</xcal:text>
</xcal:uid>
<xcal:related-to>
<xcal:parameters>
<xcal:reltype>
</xcal:reltype>
</xcal:parameters>
<xcal:uid>2097d7d8-f554-469c-8c92-9eb8551c086d@example.oasis-open.org</xcal:uid>
</xcal:related-to>
<xcal:x-wsCalendar-attach>
<emix:productDescription
xs:type="power:PowerProductDescription">
<power:unitEnergyPrice>
<emix:priceAbsolute>
<emix:priceEnumeration>1.15</emix:priceEnumeration>
</emix:priceAbsolute>
</power:unitEnergyPrice>
</emix:productDescription>
</xcal:x-wsCalendar-attach>
</xcal:properties>
</xcal:interval>
<xcal:interval>
<emix:properties>
<xcal:uid>1d9ad168-433e-4504-97f5-05a8df1df20@examples.oasis-open.org</xcal:uid>
<xcal:related-to>
 <xcal:parameters>
 <xcal:reltype>
 </xcal:reltype>
 </xcal:parameters>
</xcal:related-to>
<xcal:x-wsCalendar-attach>
 <emix:productDescription>
 xs:type="power:PowerProductDescription">
 <power:unitEnergyPrice>
 <emix:priceAbsolute>
 <emix:priceEnumeration>2.74</emix:priceEnumeration>
 </emix:priceAbsolute>
 </power:unitEnergyPrice>
 </emix:productDescription>
 </xcal:x-wsCalendar-attach>
</xcal:properties>
</xcal:interval>
</xcal:interval>
</xcal:properties>
<xcal:uid>f65aa213-3176-47e3-88c3-0f7dbe0ec99e@examples.oasis-open.org</xcal:uid>
<xcal:related-to>
 <xcal:parameters>
 <xcal:reltype>
 </xcal:reltype>
 </xcal:parameters>
</xcal:related-to>
<xcal:x-wsCalendar-attach>
 <emix:productDescription>
 xs:type="power:PowerProductDescription">
 <power:unitEnergyPrice>
 <emix:priceAbsolute>
 <emix:priceEnumeration>1.25</emix:priceEnumeration>
 </emix:priceAbsolute>
 </power:unitEnergyPrice>
 </emix:productDescription>
 </xcal:x-wsCalendar-attach>
</xcal:properties>
</xcal:interval>
</xcal:interval>
</xcal:properties>
<xcal:uid>920c3e26-cea2-4456-84a7-9f5f369cf491@examples.oasis-open.org</xcal:uid>
<xcal:related-to>
 <xcal:parameters>
 <xcal:reltype>
 </xcal:reltype>
 </xcal:parameters>
</xcal:related-to>
<xcal:x-wsCalendar-attach>
 <emix:productDescription>
 xs:type="power:PowerProductDescription">
 <power:unitEnergyPrice>
 <emix:priceAbsolute>
 <emix:priceEnumeration>1.25</emix:priceEnumeration>
 </emix:priceAbsolute>
 </power:unitEnergyPrice>
 </emix:productDescription>
 </xcal:x-wsCalendar-attach>
</xcal:properties>
</xcal:interval>
</xcal:interval>
</xcal:properties>
<emix:productDescription type="power:PowerProductDescription">
 <power:unitEnergyPrice>
 <emix:priceAbsolute>
 <emix:priceEnumeration>1.20</emix:priceEnumeration>
 </emix:priceAbsolute>
 </power:unitEnergyPrice>
</emix:productDescription>

<emix:productDescription type="power:PowerProductDescription">
 <power:unitEnergyPrice>
 <emix:priceAbsolute>
 <emix:priceEnumeration>1.29</emix:priceEnumeration>
 </emix:priceAbsolute>
 </power:unitEnergyPrice>
</emix:productDescription>

<emix:productDescription type="power:PowerProductDescription">
 <power:unitEnergyPrice>
 <emix:priceAbsolute>
 <emix:priceEnumeration>1.29</emix:priceEnumeration>
 </emix:priceAbsolute>
 </power:unitEnergyPrice>
</emix:productDescription>
<emix:priceEnumeration>1.31</emix:priceEnumeration>
</emix:priceAbsolute>
</power:unitEnergyPrice>
</emix:productDescription>
</xcal:x-wsCalendar-attach>
</xcal:properties>
</xcal:interval>
<xcal:interval>
<xcal:properties>
<xcal:uid>01063041-4d93-46a6-9fd6-7b4f92a938e0@examples.oasis-open.org</xcal:uid>
</xcal:related-to>
<xcal:parameters>
<xcal:reltype>
</xcal:reltype>
</xcal:parameters>
<xcal:uid>2482a65c-bd0c-4a33-b777-cf89d637d1b8@examples.oasis-open.org</xcal:uid>
</xcal:related-to>
<xcal:x-wsCalendar-attach>
<emix:productDescription>
<xs:type="power:PowerProductDescription">
<power:unitEnergyPrice>
<emix:priceAbsolute>
<emix:priceEnumeration>1.00</emix:priceEnumeration>
</emix:priceAbsolute>
</power:unitEnergyPrice>
</emix:productDescription>
</xcal:x-wsCalendar-attach>
</xcal:properties>
</xcal:interval>
<xcal:interval>
<xcal:properties>
<xcal:uid>01063041-4d93-46a6-9fd6-7b4f92a938e0@examples.oasis-open.org</xcal:uid>
</xcal:related-to>
<xcal:parameters>
<xcal:reltype>
</xcal:reltype>
</xcal:parameters>
<xcal:uid>2bb61d4e-a3ea-423a-98ef-395e25b35674@examples.oasis-open.org</xcal:uid>
</xcal:related-to>
<xcal:x-wsCalendar-attach>
<emix:productDescription>
<xs:type="power:PowerProductDescription">
<power:unitEnergyPrice>
<emix:priceAbsolute>
<emix:priceEnumeration>0.99</emix:priceEnumeration>
</emix:priceAbsolute>
</power:unitEnergyPrice>
</emix:productDescription>
</xcal:x-wsCalendar-attach>
</xcal:properties>
</xcal:interval>
<xcal:interval>
<xcal:properties>
<xcal:uid>01063041-4d93-46a6-9fd6-7b4f92a938e0@examples.oasis-open.org</xcal:uid>
</xcal:related-to>
<xcal:parameters>
<xcal:reltype>
</xcal:reltype>
</xcal:parameters>
<xcal:uid>2bb61d4e-a3ea-423a-98ef-395e25b35674@examples.oasis-open.org</xcal:uid>
</xcal:related-to>
<xcal:x-wsCalendar-attach>
<emix:productDescription>
<xs:type="power:PowerProductDescription">
<power:unitEnergyPrice>
<emix:priceAbsolute>
<emix:priceEnumeration>0.99</emix:priceEnumeration>
</emix:priceAbsolute>
</power:unitEnergyPrice>
</emix:productDescription>
</xcal:x-wsCalendar-attach>
</xcal:properties>
</xcal:interval>
<emix:priceEnumeration>0.87</emix:priceEnumeration>
</emix:priceAbsolute>
</power:unitEnergyPrice>
</emix:productDescription>
</xcal:x-wsCalendar-attach>
</xcal:properties>
</xcal:interval>
</xcal:interval>
</xcal:properties>
<xcal:uid>
<xcal:text>9e89696d-6511-427b-9086-b595ef25f23c@examples.oasis-open.org</xcal:text>
</xcal:uid>
<xcal:related-to>
<xcal:parameters>
<xcal:reltype>
</xcal:reltype>
<xcal:parameters>
<xcal:uid>3d0b45e4-382b-4964-8779-1b7b8c3d7133@examples.oasis-open.org</xcal:uid>
<xcal:related-to>
<xcal:x-wsCalendar-attach>
<emix:productDescription>
xs:type="power:PowerProductDescription">
<power:unitEnergyPrice>
<emix:priceAbsolute>
<emix:priceEnumeration>0.76</emix:priceEnumeration>
</emix:priceAbsolute>
</power:unitEnergyPrice>
</emix:productDescription>
</xcal:x-wsCalendar-attach>
<emix:productDescription>
<emix:priceEnumeration>0.87</emix:priceEnumeration>
</emix:priceAbsolute>
</power:unitEnergyPrice>
</emix:productDescription>
</xcal:x-wsCalendar-attach>
</xcal:properties>
</xcal:interval>
</xcal:components>
<emix:currency>USD</emix:currency>
<emix:marketContext>market.context@examples.com</emix:marketContext>
<emix:transactiveState>Tender</emix:transactiveState>
</emix:product>
H. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Editor</th>
<th>Changes Made</th>
</tr>
</thead>
<tbody>
<tr>
<td>WD01</td>
<td>2009-12-08</td>
<td>Toby Considine</td>
<td>Initial Draft from templates and outline</td>
</tr>
<tr>
<td>WD02</td>
<td>2010-01-12</td>
<td>William Cox</td>
<td>Inserted information model details from TC discussions</td>
</tr>
<tr>
<td>WD03</td>
<td>2010-03-10</td>
<td>William Cox</td>
<td>Change to envelope and certificate metaphor. Changes in mandatory and optional definitions.</td>
</tr>
<tr>
<td>WD04</td>
<td>2010-03-24</td>
<td>William Cox</td>
<td>Updates based on TC comments and corrections. Additional open issues in TC agenda.</td>
</tr>
<tr>
<td>WD05</td>
<td>2010-05-18</td>
<td>Toby Considine</td>
<td>Aligned elements with current draft if WS-Calendar, cleaned up some language to align with the last two months of conversation. Extended envelop and intrinsic/extrinsic language</td>
</tr>
<tr>
<td>WD06</td>
<td>2010-05-21</td>
<td>Toby Considine</td>
<td>Began incorporating TeMIX language. Changed Certificates to Warrants. Fleshed out Energy Artifacts</td>
</tr>
<tr>
<td>WD07</td>
<td>2010-07-07</td>
<td>Toby Considine</td>
<td>Incorporated Aaron Snyder’s extensive re-write into Power & Energy section</td>
</tr>
<tr>
<td>WD08</td>
<td>2010-08-10</td>
<td>Toby Considine</td>
<td>Extensive re-write for narrative quality, responded to first 52 comments, Updated to include WS-Calendar WD08 language, added tables of table, examples</td>
</tr>
<tr>
<td>WD09</td>
<td>2010-08-18</td>
<td>Toby Considine</td>
<td>Incorporated recent WS-Calendar changes to update Products. Added explanation of WS-Calendar. Cleaned up double entry of Partitions.</td>
</tr>
<tr>
<td>WD10</td>
<td>2010-08-30</td>
<td>Toby Considine</td>
<td>Reduced argumentation in intro, excluded WS-Calendar re-writes, pointed to WS-Calendar appendices. Merged AC and DC</td>
</tr>
<tr>
<td>WD11</td>
<td>2010-09-05</td>
<td>Toby Considine</td>
<td>Distinguished between Intrinsic elements and Generic Product, incorporated inheritance language into GP, Re-created T&D as a much smaller Transport Artifact, changed envelope language to face and contents.</td>
</tr>
<tr>
<td>WD12</td>
<td>2010-10-26</td>
<td>Toby Considine</td>
<td>Responded to many Jira comments. Re-created T&D as a much smaller Transport Artifact, changed envelope language to face and contents. Responded to many Jira comments. Descriptions now based on WD12</td>
</tr>
<tr>
<td>Revision</td>
<td>Date</td>
<td>Editor</td>
<td>Changes Made</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>WD13</td>
<td>2010-11-01</td>
<td>Toby Considine</td>
<td>Removed repetitive discussion of WS-Calendar objects. Reflect new use of WD13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ed Cazalet</td>
<td>WD13: Removes repetitious discussion of WS-Calendar objects. Add new uses of WD13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dave Holmberg</td>
<td>WD13: Reflects new use of WS-Calendar Sequence in WD13. Recast Options to describe reserves.</td>
</tr>
<tr>
<td>WD14</td>
<td>2010-11-09</td>
<td>Toby Considine</td>
<td>Changes to resources, block power, etc. Tightening of document.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ed Cazalet</td>
<td>WD14: Changes to resources, block power, etc. Tightening of document.</td>
</tr>
<tr>
<td>WD15</td>
<td>2010-11-14</td>
<td>Toby Considine</td>
<td>EMIX Sequence changed to EMIX Base. General tightening. Addition of Load and Power Offers, including 3-part bids for each.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ed Cazalet</td>
<td>WD15: EMIX Sequence changed to EMIX Base. General tightening. Add Load and Power Offers, including 3-part bids for each.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sean Crimmins</td>
<td>WD15: EMIX Sequence changed to EMIX Base. General tightening. Add Load and Power Offers, including 3-part bids for each.</td>
</tr>
<tr>
<td>CSD01</td>
<td>2010-11-15</td>
<td>Toby Considine</td>
<td>Minor changes as per comments</td>
</tr>
<tr>
<td>WD16</td>
<td>2011-01-15</td>
<td>Toby Considine</td>
<td>46 Minor issues from PR01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WD16: 46 Minor issues from PR01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WD16: Adopted new WD format</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WD16: Moved namespaces into section 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WD16: Adjusted duplicate table names</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WD16: Fixed section numbering anomalies</td>
</tr>
<tr>
<td>WD17</td>
<td>2011-02-08</td>
<td>Toby Considine</td>
<td>Issue Resolution. See Release Notes from Jira</td>
</tr>
<tr>
<td>WD18</td>
<td>2011-03-07</td>
<td>Toby Considine</td>
<td>Numerous Jira Issues, (see release notes). Significant Schema work:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WD18: Numerous Jira Issues, (see release notes). Significant Schema work:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WD18: Resources as discussed, General EMIX constraints and requirements now in Core EMIX namespace, but isolated in requirements.xsd. Added schedule constraints as optional constraint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WD18: Resources as discussed, General EMIX constraints and requirements now in Core EMIX namespace, but isolated in requirements.xsd. Added schedule constraints as optional constraint</td>
</tr>
<tr>
<td>WD19</td>
<td>2011-03-17</td>
<td>Toby Considine</td>
<td>Tightened language, some egregious errors and references not found removed</td>
</tr>
<tr>
<td>WD20</td>
<td>2011-03022</td>
<td>Toby Considine</td>
<td>Simplified Tables, Added NAESB appendix, updated schemas in appendix</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WD20: Simplified Tables, Added NAESB appendix, updated schemas in appendix</td>
</tr>
<tr>
<td>WD21</td>
<td>2011-0323</td>
<td>Toby Considine</td>
<td>Quick Pass for show-stoppers, Purged last 16 uses of EMIXTerms for EMIX Base,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WD21: Quick Pass for show-stoppers, Purged last 16 uses of EMIXTerms for EMIX Base,</td>
</tr>
<tr>
<td>WD22</td>
<td>2011-0329</td>
<td>Toby Considine</td>
<td>Minor edits and comments from Jira. Made explicit relations between Base, Product Description, Items, Interfaces, and all derived extensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WD22: Minor edits and comments from Jira. Made explicit relations between Base, Product Description, Items, Interfaces, and all derived extensions</td>
</tr>
<tr>
<td>WD23</td>
<td>2011-0411</td>
<td>Toby Considine</td>
<td>Extensive review and re-write to consolidate changes as logged in Jira</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WD23: Extensive review and re-write to consolidate changes as logged in Jira</td>
</tr>
</tbody>
</table>