
OASIS ebXML Messaging Services
Version 3.0: Part 2, Advanced Features
Committee Specification 01

19 May 2011

Specification URIs:

This Version:
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/cs01/ebms-v3.0-part2-
cs01.html
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/cs01/ebms-v3.0-part2-
cs01.odt (Authoritative)
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/cs01/ebms-v3.0-part2-
cs01.pdf

Previous Version:
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd02/ebms-v3.0-part2-
csd02.html
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd02/ebms-v3.0-part2-
csd02.odt (Authoritative)
 http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd02/ebms-v3.0-part2-
csd02.pdf

Latest Version:
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/ebms-v3-part2.html
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/ebms-v3-part2.odt
 (Authoritative)
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/ebms-v3-part2.pdf

Technical Committee:
OASIS ebXML Messaging Services TC

Chair:
Ian Jones, British Telecommunications plc

Editor(s):
Jacques Durand, Fujitsu Limited
Sander Fieten, Individual
Pim van der Eijk, Sonnenglanz Consulting BV

Related Work:
XML Schemas: ebms-v3.0-part2-cs01-schemas.zip
This specification is related to:
• OASIS ebXML Messaging Services Version 2.0.
• OASIS ebXML Messaging Services Version 3.0 Part 1: Core Features.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 1 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/cs01/ebms-v3.0-part2-cs01.html
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/cs01/ebms-v3.0-part2-cs01.html
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/cs01/ebms-v3.0-part2-cs01-schemas.zip
mailto:pvde@sonnenglanz.net
mailto:sander@fieten-it.com
http://www.fujitsu.com/
mailto:jdurand@us.fujitsu.com
http://www.btplc.com/
mailto:ian.jones@bt.com
http://www.oasis-open.org/committees/ebxml-msg/
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/ebms-v3-part2.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/ebms-v3-part2.odt
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/ebms-v3-part2.html
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd02/ebms-v3.0-part2-csd02.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd02/ebms-v3.0-part2-csd02.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd02/ebms-v3.0-part2-csd02.odt
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd02/ebms-v3.0-part2-csd02.odt
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd02/ebms-v3.0-part2-csd02.html
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd02/ebms-v3.0-part2-csd02.html
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/cs01/ebms-v3.0-part2-cs01.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/cs01/ebms-v3.0-part2-cs01.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/cs01/ebms-v3.0-part2-cs01.odt
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/cs01/ebms-v3.0-part2-cs01.odt

• SOAP 1.1, SOAP 1.2
• Web Services Security: SOAP Message Security 1.0, 1.1
• WS-Reliability 1.1
• WS-ReliableMessaging 1.2
• WS-Addressing 1.0
• WS-I BP 1.1,1.2, and 2.0; AP 1.0; BSP 1.0, 1.1; RSP 1.0

Declared XML Namespaces:
http://docs.oasis-open.org/ebxml-msg/ns/ebms/v3.0/multihop/200902/
http://docs.oasis-open.org/ebxml-msg/ns/v3.0/mf/2010/04/

Abstract:
This specification complements the ebMS 3.0 Core Specification by specifying advanced
messaging functionality for message service configuration, message bundling, messaging
across intermediaries (multi-hop) and transfer of (compressed) messages as series of smaller
message fragments.

Status:
This document was last revised or approved by the ebXML Messaging Services Technical
Committee on the above date. The level of approval is also listed above. Check the "Latest
Version" location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using
the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/ebxml-msg/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/ebxml-msg/ipr.php).

Citation Format:
When referencing this specification the following citation format should be used:
[EBMS3-ADVANCED]
OASIS ebXML Messaging Services Version 3.0: Part 2, Advanced Features. 19 May 2011.
OASIS Committee Specification 01. http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/part2/201004/cs01/ebms-v3.0-part2-cs01.odt.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 2 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/cs01/ebms-v3.0-part2-cs01.odt
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/cs01/ebms-v3.0-part2-cs01.odt
http://www.oasis-open.org/committees/ebxml-msg/ipr.php
http://www.oasis-open.org/committees/ebxml-msg/ipr.php
http://www.oasis-open.org/committees/ebxml-msg/
http://www.oasis-open.org/committees/ebxml-msg/
http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=ebxml-msg
http://docs.oasis-open.org/ebxml-msg/ns/v3.0/mf/2010/04/
http://docs.oasis-open.org/ebxml-msg/ns/ebms/v3.0/multihop/200902/
http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0-2010-11-09.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://ws-i.org/Profiles/BasicProfile-2.0-2010-11-09.html
http://ws-i.org/Profiles/BasicProfile-1.2-2010-11-09.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.w3.org/TR/ws-addr-core/
http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.doc
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-errata-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Notices
Copyright © OASIS Open 2011. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS
Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS
website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this section are included on all such copies and derivative works. However, this document
itself may not be modified in any way, including by removing the copyright notice or references to
OASIS, except as needed for the purpose of developing any document or deliverable produced by an
OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the
OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS
Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent
licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical
Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a
patent holder that is not willing to provide a license to such patent claims in a manner consistent with
the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include
such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document
or the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures
with respect to rights in any document or deliverable produced by an OASIS Technical Committee can
be found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this OASIS
Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator.
OASIS makes no representation that any information or list of intellectual property rights will at any
time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and
should be used only to refer to the organization and its official outputs. OASIS welcomes reference to,
and implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 3 of 126

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/
http://www.oasis-open.org/who/intellectualproperty.php

Table of Contents
1 Introduction... 7

1.1 Terminology... 7
1.2 Normative References... 7
1.3 Non-normative References..8
1.4 Namespaces.. 9

2 Multi-hop Messaging... 11
2.1 Introduction.. 11
2.2 Terminology... 11
2.3 Multi-hop Topologies...12

2.3.1 Assumptions about Multi-hop Topologies...12
2.3.2 Hub-and-Spoke..13
2.3.3 Interconnected Hubs..13

2.4 Usage Requirements..14
2.4.1 Operation Assumptions...14
2.4.2 Connectivity and Addressability constraints ...15
2.4.3 QoS of Message Exchanges..15
2.4.4 Intermediary Configuration and Change management ..15
2.4.5 Compliance with the SOAP Processing Model...16
2.4.6 MEPs and Channel Bindings..16
2.4.7 Edge-bindings for Multi-hop One-Way..18

2.4.7.1 Pushing Messages from the Sender Endpoint..18
2.4.7.2 Pulling Messages from the Sender Endpoint...18

2.4.8 Edge-bindings for Multi-hop Two-Way..20
2.4.8.1 Asynchronous Edge-bindings..20
2.4.8.2 Synchronous Edge-bindings..22

2.5 The Intermediary MSH...23
2.5.1 Intermediary Functions...23
2.5.2 Message Forwarding Models..24
2.5.3 MEP Bridging.. 26
2.5.4 Sub-channels..27
2.5.5 The Routing Function ..28
2.5.6 Error Handling and Multi-Hop Messaging...30

2.6 Endpoint requirements ..32
2.6.1 Routing Support for Initiating Messages ..33
2.6.2 Routing Support for Response Messages ...33
2.6.3 WS-Addressing Support...35

2.6.3.1 WS-Addressing Endpoint References...35
2.6.3.2 Use of WS-Addressing Headers...36

2.7 P-Modes for multi-hop...37
2.7.1 P-Mode Extension for Web Services Addressing...37

2.7.1.1 Addressing.Address..37
2.7.1.2 Addressing.EPR..37
2.7.1.3 WS-Addressing Action..38
2.7.1.4 P-Mode extensions..39

2.7.2 P-Mode units ... 40
2.7.3 Migrating P-Modes from point-to-point to multi-hop..41

2.8 Details of Reliable and Secure Multi-hop..41
2.8.1 Controlling Sequencing and Grouping..42
2.8.2 Configuring Secure Conversations...43
2.8.3 Reliable Message Pulling...43
2.8.4 Considerations about Reliable Messaging Specifications...44

3 Message Bundling... 45

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 4 of 126

3.1 Definition, Rationale and Requirements...45
3.1.1 Definition.. 45
3.1.2 Rationale.. 45
3.1.3 Requirements...45

3.2 Packaging and Processing Bundles...46
3.2.1 Packaging of bundles...46
3.2.2 Processing Bundles..47

3.3 Controlling Bundling... 48
3.4 Submitting and Bundling..48
3.5 Errors in Bundling..49
3.6 Bundling Best Practices...50

3.6.1 Compatibility...50
3.6.2 Security Compatibility...50
3.6.3 Reliability Compatibility...51

3.7 Bundling and Pull...51
3.8 Bundling and Responses...51
3.9 Bundling for Multi-hop..51
3.10 Delivery Policies ..52

3.10.1 Delivery Parameters...52
3.10.2 Processing Order of Message Units ..53
3.10.3 Processing Bundles with Errors..53

4 Large Message Splitting and Joining ..55
4.1 Background and Context...55
4.2 Message Splitting and Joining...55

4.2.1 Splitting/Joining Protocol ...56
4.2.2 MessageFragment ...57
4.2.3 Binding for Envelope Formats ...58
4.2.4 Compression Feature...60

4.3 Behavior of the MSH.. 61
4.3.1 Behavior of the Sending MSH...61
4.3.2 Behavior of Receiving MSH..63

4.4 Protocol Bindings... 64
4.4.1 Binding for WS-Addressing ...64
4.4.2 Binding for ebXML Messaging..64

4.5 Configuration .. 66
4.6 Errors... 66
4.7 Security Considerations...68

5 Variants in Message Exchange Patterns Execution..69
5.1 Selective message pulling...69
5.2 Alternate MEP bindings...70

6 Processing Mode Extensions..72
6.1 Overview.. 72
6.2 Pmode[1].Addressing..72
6.3 Pmode.MEPBinding...72

6.3.1 HTTP Pipeline Capability..72
6.3.2 EbMS MEPs and Pipelining..73
6.3.3 ebMS Alternate MEPs ...73

6.4 Pmode[1].Protocol...73
6.4.1 Transport Security ...73
6.4.2 Controlling the SOAP Actor or Role..74
6.4.3 Large File Handling using Protocol Restart...74

6.5 Pmode[1].ErrorHandling..75

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 5 of 126

6.6 Pmode[1].Reliability ..75
6.6.1 Reliability Protocol ...75
6.6.2 Reliability of the Pull Signal...76
6.6.3 Transmitting Acknowledgements..76

6.7 Pmode[1].Security..76
6.7.1 Receipts... 76
6.7.2 Secure Conversations..77

6.8 Pmode[1].PayloadService..77
6.9 Pmode[1].ReceptionAwareness...77
6.10 Pmode[1].Bundling...77
6.11 Pmode[].Splitting..78
6.12 Pmode[].BusinessInfo..78

7 Conformance.. 79
7.1 Simple Multi-hop Conformance Clause ...79
7.2 Simple Bundling Conformance Clause..80
7.3 Basic Messaging Extensions Conformance Clause...81
7.4 Simple Fragmented Message Transfer Conformance Clause...81

Appendix A Multi-hop Routing Scenarios and Good Practices...83
A.1 Routing Scenarios... 83
A.2 Routing Rules.. 83
A.3 Business Partner Identification..84
A.4 Business Partner Domains..85
A.5 Services... 86
A.6 Separate Environments... 86
A.7 End-to-end Pulling... 88
Appendix B Refactored ebMS 3.0 Core XML Schema...89

Appendix C Reference Parameter...93

Appendix D Flow Diagrams for Multi-hop...95
D.1 Reliable Sequence Establishment...95
D.2 Routing RM Acknowledgments..97
D.3 Routing User Messages (One-Way MEP)...98
D.4 Routing ebMS Reply User Messages (Two-way MEP)..99
D.5 Routing ebMS Response Signals (Receipts, Errors)...100
Appendix E Sample Message Exchange: One Way Exchange with Asynchronous Receipt..............101
E.1 Message from Buyer to Intermediary ..101
E.2 Message from Intermediary to Seller...103
E.3 Message from Seller to Intermediary...103
E.4 Receipt from Intermediary to Buyer...106
E.5 Variant: Routing Error.. 106
Appendix F Sample Message Exchange: One Way Exchange using WS-ReliableMessaging..........109
F.1 CreateSequence.. 109
F.2 CreateSequenceResponse..112
F.3 UserMessage ... 114
F.4 Acknowledgment .. 116
Appendix G Sample Message Exchange: Store-and-Collect Intermediary...118

Appendix H New ebMS Error Types ..119

Appendix I MessageFragment Schema...122

Appendix J Acknowledgments...125

Appendix K Revision History..126

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 6 of 126

1 Introduction
This specification complements the ebMS 3.0 Core Specification by specifying advanced messaging
functionality for:

• messaging across intermediaries (multihop),

• message bundling,

• compressing, splitting and joining large messages,

• and advanced processing modes.

1.1 Terminology
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as
described in [RFC2119].

1.2 Normative References
[AS2-RESTART] IETF Informational Document. T. Harding, ed. AS2 Restart for Very Large

Messages. January 2011. http://tools.ietf.org/html/draft-harding-as2-restart-02
[EBMS3CORE] OASIS Standard, OASIS ebXML Messaging Services Version 3.0: Part 1,

Core Features, October 2007, http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/core/ebms_core-3.0-spec.pdf.

[EBBPSIG] OASIS Standard, OASIS ebXML Business Signals Schema Version 2.04,
December 2006, http://docs.oasis-open.org/ebxml-bp/ebbp-signals-2.0

[HTTP11] IETF RFC. R. Fielding, et al, Hypertext Transfer Protocol -- HTTP/1.1, 1999.
http://www.ietf.org/rfc/rfc2616.txt

[RFC2119] IETF RFC. S. Bradner. Key words for use in RFCs to Indicate Requirement
Levels. IETF RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt

[RFC2392] IETF RFC. E. Levinson, Content-ID and Message-ID Uniform Resource
Locators, 1998. http://www.ietf.org/rfc/rfc2392.txt

[RFC3987] IETF RFC. M. Duerst. Internationalized Resource Identifiers (IRIs). RFC
3987, January 2005. http://www.ietf.org/rfc/rfc3987.txt

[RFC5246] IETF RFC. T.Dierks et al. The Transport Layer Security (TLS) Protocol
Version 1.2. http://www.ietf.org/rfc/rfc5246.txt

[MTOM] W3C Recommendation. M. Gudgin et al. SOAP Message Transmission
Optimization Mechanism. January 2005. http://www.w3.org/TR/soap12-mtom/

[SOAP11] W3C Note. D. Box, et al, Simple Object Access Protocol (SOAP) 1.1, 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[SOAP12] W3C Recommendation. M. Gudgin, et al, SOAP Version 1.2 Part 1:
Messaging Framework. Second Edition, April 2007.
http://www.w3.org/TR/soap12-part1/

[SOAPATTACH] W3C Note. J. Barton, et al, SOAP Messages with Attachments, 2000.
http://www.w3.org/TR/SOAP-attachments

[WSADDRCORE] W3C Recommendation. M. Gudgin et al, eds. Web Services Addressing 1.0
– Core, May 2006.
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/

[WSADDRSOAP] W3C Recommendation. M. Gudgin et al, eds. Web Services Addressing 1.0 -
SOAP Binding. May 2006. http://www.w3.org/TR/ws-addr-soap/

[WSIAP10] WS-I Final Material. Chris Ferris, et al, eds, Attachments Profile Version 1.0,
2004. http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 7 of 126

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.w3.org/TR/ws-addr-soap/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/soap12-mtom/
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc2392.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2616.txt
http://docs.oasis-open.org/ebxml-bp/ebbp-signals-2.0
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms_core-3.0-spec.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms_core-3.0-spec.pdf
http://tools.ietf.org/html/draft-harding-as2-restart-02

[WSIBP12] WS-I Final Material. Basic Profile Version 1.2. November 2010. http://ws-
i.org/Profiles/BasicProfile-1.2-2010-11-09.html

[WSIBP20] WS-I Final Material. Basic Profile Version 2.0. November 2010.
http://ws-i.org/Profiles/BasicProfile-2.0-2010-11-09.html

[WSIBSP10] WS-I Final Material. Abbie Barbir, et al, eds, Basic Security Profile Version
1.0, 2005. http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

[WSIBSP11] WS-I Final Material. Basic Security Profile Version 1.1. January 2010.
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html

[WSIRSP10] WS-I Final Material. Reliable Secure Profile Version 1.0. Working Group
Approval Draft. November 2010. http://www.ws-
i.org/Profiles/ReliableSecureProfile-1.0-2010-11-09.html

[WSR11] OASIS Standard, WS-Reliability 1.1, November 2004, http://docs.oasis-
open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf

[WSRM12] OASIS Standard, Web Services Reliable Messaging (WS-
ReliableMessaging) Version 1.2, February 2009, http://docs.oasis-
open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html

[WSSC14] OASIS Standard, WS-SecureConversation 1.4, February 2009.
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-
secureconversation-1.4-spec-os.doc

[WSS10] OASIS Standard, Web Services Security: SOAP Message Security 1.0,
March 2004. http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0.pdf

[WSS11] OASIS Standard incorporating Approved Errata, Web Services Security:
SOAP Message Security 1.1, November 2006, http://docs.oasis-
open.org/wss/v1.1/wss-v1.1-spec-errata-os-SOAPMessageSecurity.pdf

[WST14] OASIS Standard, WS-Trust 1.4, February 2009, http://docs.oasis-
open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.doc

[XDM] W3C Recommendation. Mary Fernández, et al, eds. XQuery 1.0 and XPath
2.0 Data Model (XDM). January 2007. http://www.w3.org/TR/xpath-
datamodel/

[XML10] W3C Recommendation. Tim Bray, et al, eds., Extensible Markup Language
(XML) 1.0 (Third Edition), February 2004. http://www.w3.org/TR/2004/REC-
xml-20040204/

[XMLDSIG] W3C Recommendation. Donald Eastlake, et al, eds, XML-Signature Syntax
and Processing (Second Edition), June 2008. http://www.w3.org/TR/xmldsig-
core/

[XMLENC] W3C Recommendation. D. Eastlake, et al, XML Encryption Syntax and
Processing, December, 2002. http://www.w3.org/TR/xmlenc-core/

[XMLNS] W3C Recommendation. Tim Bray, et al, eds, Namespaces in XML (Third
Edition), December 2009. http://www.w3.org/TR/REC-xml-names/

[XMLSCHEMA-P1] W3C Recommendation. Henry S. Thompson, et al, eds., XML Schema Part
1: Structures Second Edition, October 2004.
http://www.w3.org/TR/xmlschema-1/

[XMLSCHEMA-P2] W3C Recommendation. Paul Biron and Ashok Malhotra, eds. XML Schema
Part 2: Datatypes Second Edition, October 2004.
http://www.w3.org/TR/xmlschema-2/

1.3 Non-normative References
[AS4] OASIS Committee Specification 01, AS4 Profile of ebMS V3 Version 1.0, April

2010, http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/200707/AS4-
profile.pdf

[ebCPPA 3.0] OASIS Working Draft, ebXML Collaboration Protocol Profiles and
Agreements, Version 3.0. Editor’s Draft, October 2009. http://www.oasis-

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 8 of 126

http://www.oasis-open.org/committees/download.php/31996/ebcppa-v3.0-Spec-wd-r01-en-pete4.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/200707/AS4-profile.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/200707/AS4-profile.pdf
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.doc
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.doc
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-errata-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-errata-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.doc
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.doc
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0-2010-11-09.html
http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0-2010-11-09.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://ws-i.org/Profiles/BasicProfile-2.0-2010-11-09.html
http://ws-i.org/Profiles/BasicProfile-1.2-2010-11-09.html
http://ws-i.org/Profiles/BasicProfile-1.2-2010-11-09.html

open.org/committees/download.php/31996/ebcppa-v3.0-Spec-wd-r01-en-
pete4.pdf

[HL7ebMSv3] P. Knapp. HL7 Version 3 Standard: Transport Specification - ebXML, Release
2. July 2007.
http://www.hl7.org/v3ballot2007sep/html/infrastructure/transport/transport-
ebxml.htm.

[PARTYIDTYPE] OASIS Committee Specification, ebCore Party Id Type Technical
Specification Version 1.0, April 2010, http://docs.oasis-
open.org/ebcore/PartyIdType/v1.0/PartyIdType-1.0.odt

[RFC4130] IETF RFC. D. Moberg and R. Drummond. MIME-Based Secure Peer-to-Peer
Business Data Interchange Using HTTP, Applicability Statement 2 (AS2).
IETF, July 2005. http://www.ietf.org/rfc/rfc4130.txt.

[WSMC11] OASIS Standard, Web Services MakeConnection (WS-MakeConnection)
Version 1.1. February 2009. http://docs.oasis-open.org/ws-
rx/wsmc/v1.1/wsmc.doc

[XPATH] W3C Recommendation. James Clark, et al, eds., XML Path Language (XPath)
Version 1.0, November, 1999. http://www.w3.org/TR/xpath

[XSLT] W3C Recommendation. M. Kay. XSL Transformations (XSLT). Version 2.0.
January 2007. http://www.w3.org/TR/xslt20/.

1.4 Namespaces
Prefix Namespace Specification

ds http://www.w3.org/2000/09/xmldsig# [XMLDSIG]

eb3 http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/

[EBMS3CORE]

ebint http://docs.oasis-open.org/ebxml-
msg/ns/ebms/v3.0/multihop/200902/

This specification - multihop routing
by intermediaries

ebbp http://docs.oasis-open.org/ebxml-bp/ebbp-signals-2.0 [EBBPSIG]

mf http://docs.oasis-open.org/ebxml-msg/ns/v3.0/mf/2010/04/ This specification - message
fragments

S11 http://schemas.xmlsoap.org/soap/envelope [SOAP11]

S12 http://www.w3.org/2003/05/soap-envelope [SOAP12]

wsa http://www.w3.org/2005/08/addressing [WSADDRCORE]

wsmc http://docs.oasis-open.org/ws-rx/wsmc/200702 [WSMC11]

wsr http://docs.oasis-open.org/wsrm/2004/06/ws-reliability-
1.1.xsd

[WSR11]

wsrm http://schemas.xmlsoap.org/soap/envelope/ [WSRM12]

wssc http://docs.oasis-open.org/ws-sx/ws-
secureconversation/200512

[WSSC14]

wsse http://docs.oasis-open.org/wss/oasis-wss-wssecurity-
secext-1.1.xsd

[WSS11]

wst http://docs.oasis-open.org/ws-sx/ws-trust/200512 [WST14]

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd

[WSS10]

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 9 of 126

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd
http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
http://schemas.xmlsoap.org/soap/envelope/
http://docs.oasis-open.org/wsrm/2004/06/ws-reliability-1.1.xsd
http://docs.oasis-open.org/wsrm/2004/06/ws-reliability-1.1.xsd
http://docs.oasis-open.org/ws-rx/wsmc/200702
http://www.w3.org/2005/08/addressing
http://www.w3.org/2003/05/soap-envelope
http://schemas.xmlsoap.org/soap/envelope
http://docs.oasis-open.org/ebxml-msg/ns/v3.0/mf/2010/04/
http://docs.oasis-open.org/ebxml-bp/ebbp-signals-2.0
http://docs.oasis-open.org/ebxml-msg/ns/ebms/v3.0/multihop/200902/
http://docs.oasis-open.org/ebxml-msg/ns/ebms/v3.0/multihop/200902/
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms_core-3.0-spec.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms_core-3.0-spec.pdf
http://www.w3.org/2000/09/xmldsig
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xpath
http://docs.oasis-open.org/ws-rx/wsmc/v1.1/wsmc.doc
http://docs.oasis-open.org/ws-rx/wsmc/v1.1/wsmc.doc
http://www.ietf.org/rfc/rfc4130.txt
http://docs.oasis-open.org/ebcore/PartyIdType/v1.0/PartyIdType-1.0.odt
http://docs.oasis-open.org/ebcore/PartyIdType/v1.0/PartyIdType-1.0.odt
http://www.hl7.org/v3ballot2007sep/html/infrastructure/transport/transport-ebxml.htm
http://www.hl7.org/v3ballot2007sep/html/infrastructure/transport/transport-ebxml.htm
http://www.oasis-open.org/committees/download.php/31996/ebcppa-v3.0-Spec-wd-r01-en-pete4.pdf
http://www.oasis-open.org/committees/download.php/31996/ebcppa-v3.0-Spec-wd-r01-en-pete4.pdf
http://www.oasis-open.org/committees/download.php/31996/ebcppa-v3.0-Spec-wd-r01-en-pete4.pdf

2 Multi-hop Messaging

2.1 Introduction
The OASIS ebXML Messaging Services (ebMS) Version 3.0 core specification [EBMS3CORE] defines
an advanced Web Services-based message protocol that leverages standards for SOAP-based
security and reliability. It supports and extends the core functionality of version 2.0 of ebMS. The core
specification is focused on point-to-point exchange of messages between two ebMS message service
handlers. It does not explicitly consider multi-hop messaging. Messaging across intermediaries is a
common requirement in many e-business and e-government communities and is functionality provided
by many messaging protocols, including the version 2.0 of ebXML Messaging.

This chapter defines a multi-hop profile of ebMS 3.0 that extends the functionality of the version 3.0
ebMS core specification to multi-hop messaging across ebMS intermediaries. The main function of
intermediaries as defined in this specification is to provide message routing and forwarding based on
standardized SOAP message headers, allowing a sending MSH to ignore the ultimate message
destination and abstract away from lower-level transport parameters such as the URL of the ultimate
receiving MSH and message exchange pattern bindings. The intermediary functionality defined here
supports message relaying across segmented networks, synchronous and asynchronous bindings and
both active (push) and passive (pull message stores) forwarding styles. Multi-hop paths may consist of
any number of intermediaries.

A key end-user requirement that this specification supports is end-to-end reliable messaging and end-
to-end security and compliance with Web Services interoperability profiles.

2.2 Terminology
The following definitions are used throughout this section:

MSH: Message Service Handler assumed here to be conforming to the ebMS V3 Core specification
as well as to this specification (Part 2).

Forwarding role: The ebMS V3 Core specification defines two roles in which a MSH can act:
“Sending” and “Receiving”. In this extension of the messaging model to multi-hop messaging, an
ebMS V3 MSH can also act in a new role called “Forwarding”. An MSH acting in the Forwarding role
forwards a received ebMS message based on its ebXML header content to another MSH without
modifying the SOAP message (SOAP envelope and its content) or any attached payload. Section
2.5.2 describes these message forwarding models in more detail.

Intermediary MSH (or ebMS Intermediary): An MSH acting in the new Forwarding role and
configured for doing so for at least some messages, in a network of MSHs. ebMS Intermediaries
support a routing function that maps messages based on header content to the next MSH
destination or a pull channel as described in section 2.5 .

Endpoint MSH: An MSH that is able to act either in the Sending role or in the Receiving role, and that
is configured for doing so for at least some messages, in a network of MSHs. The ability to act as a
Sender or Receiver in a multi-hop transfer imposes certain requirements on the MSH which are
detailed in section 2.6 .

NOTE: an Endpoint MSH may also act as an Intermediary MSH: Sending, Receiving and Forwarding
roles can be combined in any way, subject to configuration.

ebMS Multi-hop path: a multi-hop path is a sequence of MSHs, starting with an Endpoint MSH and
ending with an Endpoint MSH, connected via one or more ebMS Intermediaries, which are configured
to allow the end-to-end transfer of some ebMS messages from one Endpoint MSH (called path
origin) to the other Endpoint MSH (called path destination). The following figure illustrates two multi-
hop paths between MSHs A and B: one from A to B and another one in the reverse direction from B to
A. The components I0 to IN in between MSHs A and B are ebMS Intermediaries.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 10 of 126

ebMS multi-hop topology: An ebMS multi-hop topology is a network of ebMS nodes connected via
one or more multi-hop paths. Note that not every pair of ebMS nodes in a multi-hop topology has to be
part of the same multi-hop path, i.e. the topology does not require enabling message transfer from any
ebMS node to any ebMS node. In a multi-hop topology one usually finds MSHs that are only able to
act as Endpoints on its periphery, although this is not always the case: for example, in a ring topology
all MSHs are Intermediaries but with any MSH, in the ring topology, acting as an Endpoint for some
multi-hop paths.

I-cloud (or Intermediary-cloud): The I-cloud is the network of ebMS Intermediaries that is at the core
of a multi-hop topology. The I-cloud does not comprise those Endpoint MSHs that are neither capable
nor configured to act as Intermediaries (Forwarding role). However, when considering a single multi-
hop path, we will call I-Cloud the set of Intermediaries involved in this path at the exclusion of the
origin and destination Endpoint MSHs (even if these are able to act as Intermediaries for another
multi-hop path).

The hops that relate the Endpoint MSHs to the I-Cloud (i.e. hop: MSH A - Intermediary 0, and hop
Intermediary N – MSH B) are called Edge-hops, while the hops over the I-Cloud are called I-Cloud
hops. The ebMS Intermediaries that participate in the Edge-hops (I0 and IN in the Figure) are called
Edge Intermediaries.

2.3 Multi-hop Topologies
The multi-hop profile is designed to support multiple multi-hop topologies. This chapter describes
some typical topologies.

2.3.1 Assumptions about Multi-hop Topologies
The following assumptions are made about Intermediaries. These assumptions furthermore define the
multi-hop topologies supported in a way that is considered relevant to the majority of situations:

• The topologies considered here all involve ebMS intermediaries, not exclusive of other non-
ebMS nodes. Other nodes (SOAP nodes, HTTP proxies, etc.) may be involved in transferring
ebMS messages over multi-hop paths, but they are not considered as ebMS intermediaries in
the sense that they are not required to understand any of the ebMS data or metadata available
in the headers and are not supposed to behave depending on this data. Their presence is
orthogonal to the definition of ebMS multi-hop topologies.

• The same MSH may play different roles for different multi-hop paths: it can be an Intermediary
for some messages, a destination Endpoint for others, and an origin Endpoint for others. The
multi-hop model described here must support this, although in practice many topologies will
restrict the roles that an MSH can play. For simplicity we will assume that in a Hub-and-Spoke
model as well as in the Interconnected-Hubs model, the Endpoints are not acting as
Intermediaries.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 11 of 126

Figure 1: Edge hops and I-Cloud hops

2.3.2 Hub-and-Spoke
In the Hub-and-Spoke topology, a single Intermediary MSH (called Hub) is used, to which all Endpoint
MSHs are connecting. In this configuration, every multi-hop path is actually a 2-hop path. Every
Endpoint MSH connected to the Hub is either a destination or an origin to at least one multi-hop path.

Figure 2: Hub -and-Spoke Topology

2.3.3 Interconnected Hubs
This topology is a generalization of the Hub-and-Spoke model. It applies when each Hub is only
serving “regional” Endpoint MSHs, e.g. for security, manageability or scalability reasons. The group of
endpoints directly served by the same Hub is called an Endpoint cluster. Each Hub can be configured
for routing messages to an Endpoint MSH of another cluster.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 12 of 126

Figure 3: Interconnected Hubs Topology

Some Intermediaries may not serve any cluster of endpoint MSHs, but only act as relays between
Intermediaries.

A special case of the interconnected hubs topology is the Bridge Domains topology. In this topology
some interconnected ebMS MSHs act as gateways to sub-networks. Each sub-network is only
reachable from the outside via its Gateway and can use internal addresses that are not publicly
reachable or resolvable outside the sub-network.

The assumption is that any Gateway is reachable from any other Gateway with each Gateway
configured to route messages intended for other domains. This topology mostly departs from the
Interconnected Hub topology in its constraints about the addressing function and its partitioning into
domains bridged by these Gateways.

2.4 Usage Requirements

2.4.1 Operation Assumptions
The following assumptions are underlying to the operation of ebMS multi-hop messaging as specified
in this document:

• The multi-hop mode considered here is of type transparent multi-hop. Transparent multi-hop
is defined as involving only ebMS Intermediaries that do NOT, in any way, modify the SOAP
messages, i.e. SOAP envelope and its content or any attached payload, they are forwarding.
Signature integrity is a major reason for intermediaries to not alter SOAP content, when using
security. Other multi-hop modes are out of scope for this specification, although this
specification does not preclude them.

• An ebMS Intermediary is able to support pulling (i.e. to process a received
eb3:PullRequest) at least over Edge-hops, i.e. from Endpoint MSHs.

• A multi-hop path is decomposed into (a) edge-hops, and (b) I-Cloud hops (see section 1.1 for
definitions). A different configuration construct is used to control message transfer over these
two types of hops being as follows:

1. The P-Mode deployed on each endpoint. This P-Mode controls the communication
over edge-hops (origin Endpoint to I-Cloud, or I-Cloud to destination Endpoint). These
P-Modes define the details of the intermediary that is in contact with the endpoint

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 13 of 126

MSHs, and has no bearing on how these intermediaries transfer messages over the I-
Cloud.

2. The routing function for transfer inside the I-Cloud (ICloud hops). The Endpoint MSHs
are not aware of the way messages are transferred within the I-Cloud, and do not
control the transfer of messages within the I-Cloud besides setting header content
used as input by the routing functions.

2.4.2 Connectivity and Addressability constraints
An Endpoint MSH may or may not be addressable. Addressability, in this context, is defined as the
readiness to accept incoming requests on the underlying transport protocol – e.g. to be on the
receiving side of a One-way / Push MEP. An addressable Endpoint MSH implies a static IP address,
appropriate firewall configuration as well as general availability of the endpoint (no extended
downtime).

If not addressable, an Endpoint MSH will pull messages from the Intermediary it is connected to in the
multi-hop topology (i.e. must be able to act as the initiator of a One-way / Pull MEP, with the
Intermediary acting as the responding MSH of such a MEP).

There may be other reasons for message pulling in addition to non-addressability, e.g. intermittent
connectivity of endpoints, security aspects and control of the collection time of the messages for
business processing reasons.

2.4.3 QoS of Message Exchanges
When using reliable and secure multi-hop message exchanges, the following requirements hold:

• It must be possible to configure a multi-hop topology so that end-to-end message transfer is
possible without breaking signatures. This implies that Intermediaries do not modify ebMS
messages – as well as any message involved in an ebMS MEP over multi-hop (transparent
multihop).

• It must be possible to configure a multi-hop topology so that end-to-end reliable transfer of a
message is possible, i.e. over a single reliable messaging sequence.

• It must be possible to configure a multi-hop topology so that end-to-end secure conversations
may be established, based on the WS-SecureConversation standard [WSSC14].

• When using either WS-ReliableMessaging or WS-SecureConversation or both, the endpoint
MSHs MUST comply with the RSP (Reliable and Secure Profile) 1.0 profile from WS-I
[WSIRSP10], which specifies how to combine reliable messaging and security in an
interoperable way.

When message forwarding does not involve pulling, and when there is no other connectivity
impediment, an Intermediary may either use streaming to forward a message without persisting any
part of it, or store the message for subsequent forwarding(see section 2.5.2 on forwarding models). An
intermediary that is capable of both streaming and store-and-forward messaging may select one or the
other option using its routing function.

2.4.4 Intermediary Configuration and Change management
As in point-to-point communication, P-Modes governing message exchanges should only be known
from Endpoint MSHs, however, some subset of the P-Mode features may need to be configured on
the Intermediary that participates in the edge-hop. For example when an Intermediary has to support
message pulling, it must have knowledge of authorization data related to each pulling Endpoint. This
requires partial knowledge of P-Modes associated with message pulling.

Multi-hop exchanges between two Endpoint MSHs may be re-routed without knowledge from the
Endpoints. In particular, messages sent over a single end-to-end reliable sequence may be routed on

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 14 of 126

different paths, provided they reach the same destination. This may happen when an Intermediary is
out of order, hence requiring routing via an alternate path.

2.4.5 Compliance with the SOAP Processing Model
In the SOAP processing model for intermediaries, any header that is understood and processed may
be reinserted in the message before forwarding. A primary requirement for ebMS intermediaries is
end-to-end security, meaning that they MUST NOT break the signature of messages they forward.
This requirement, combined with the requirement of [WSIRSP10] that reliability headers and WS-
Addressing headers MUST be included in the signature, whenever WS-Security is used, implies that
intermediaries MUST NOT not alter in any way the ebMS 3.0 header and related headers
(eb3:Messaging, wsse:Security, reliability headers and WS-Addressing headers), when
forwarding a signed ebMS 3.0 SOAP message.

As defined in the SOAP specification [SOAP12], each SOAP node acts in a role. This role determines
which SOAP headers may be processed by that node. For ebMS intermediaries a new role nextMSH
is defined, identified by the URI http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh. ebMS intermediaries MUST act in this new role.

The sending endpoint SHOULD target the header required for routing the ebMS message to the
destination, i.e. the eb3:Messaging or ebint:RoutingInput header (which will be introduced in
section 2.5.5), to the nextMSH role and set the mustUnderstand attribute to true. In situations
where both an ebint:RoutingInput element and an eb3:Messaging element are present, ONLY
the ebint:RoutingInput element SHALL be targeted to the nextMSH as that is used for routing
(see section 2.5.5).

Because ebMS intermediaries do not change the ebMS messages they route, the eb3:Messaging
header can be targeted to the nextMSH when received by the ultimate endpoint. Therefore, the
ultimate receiving endpoint SHOULD also act in the nextMSH role. If the ultimate receiving endpoint is
unable to act in the nextMSH role, the sending endpoint SHOULD target eb3:Messaging headers to
the default ultimateReceiver role, and SHOULD make use of the WS-Addressing reference parameter
ebint:RoutingInput targeted to the nextMSH role for the routing information. Whether the
eb3:Messaging header should be targeted to nextMSH is a matter of agreement between
endpoints. This can be controlled using a new parameter
Pmode[1].Protocol.AddActorOrRoleAttribute, described in section 6.4

The WS-Addressing wsa:To header which targets the I-Cloud is also to be processed by ebMS
intermediaries and therefore MUST also target this role.

2.4.6 MEPs and Channel Bindings
Section 2.2 of the Core V3 Specification defines the notion of ebMS message exchange patterns.
These MEPs represent how ebMS User Messages are exchanged between two MSHs. The Core
Specification defines two MEPs:

• One-Way for the exchange of one message and

• Two-Way for the exchange of a request message followed by a reply in response.

Also defined in section 2.2.3 of the Core Specification is the concept of MEP Bindings. Such a MEP
binding defines how the abstract MEP is bound to the underlying transport layer / protocol.

Although the Core Specification restricts the definition of MEP to the exchanges between two MSHs,
the above MEPs are actually independent from the network topology as the MEPs represent the
exchange pattern between the application-level Producer and Consumer of the message. Therefore
two partners evolving from a point-to-point topology toward a multi-hop topology would still use the
same message exchanges patterns (One-Way, Two-Way) as defined in the Core specification (V3).
The way these MEPs bind to the underlying transport protocol does change however, as the transfer is
now divided into multiple hops. This implies that the binding of MEPs to the underlying transport may
vary in a way that is not covered by the Core Specification.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 15 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh

Message transfer over a multi-hop path including the way the underlying transport protocol is used, is
controlled by two different means depending on the type of hop:

• For the edge hops the transfer is primarily controlled by the P-Mode deployed on the endpoint
MSHs;

• Transfers within the I-Cloud, i.e. on the I-Cloud hops are controlled by the routing function
deployed on each Intermediary. The routing function of intermediaries is defined in section 2.5

The following figure illustrates the control of multi-hop transfers and the related partitioning of multi-
hop paths.

Figure 4: Multi-hop control model

Throughout this specification, the notion of “multi-hop MEP binding” will only be defined in terms of the
binding of edge hops, and will make abstraction of the binding of I-Cloud hops.

As only the channel binding of the edge hops is controlled by the P-Mode, the P-Mode MEP Binding
parameter only defines the binding of the edge hop (e.g. push or pull) between this endpoint and the
first (or last) Intermediary of the I-Cloud. These MEP bindings are therefore called “edge-bindings”.

The following subsections describe the most common multi-hop MEP bindings from the endpoint
perspective (edge-bindings). They remain independent from the channel binding of the multi-hop
section that occurs inside the I-Cloud.

These multi-hop MEP bindings are entirely determined by the combination of point-to-point MEP
bindings for both edge hops, as explained in sub-sections 2.4.7 and 2.4.8 . Therefore they will not be
defined by specific URI values for the PMode.MEPbinding parameter. For ease of reference they will
be given composed names like “First-and-Last-Push”.

While in a point-to-point context equivalent P-Modes are deployed by each endpoint to control the
point-to-point exchange, slightly different P-Modes on each endpoint may be deployed for controlling
the same exchange over a multi-hop path. Section 2.7 will describe these differences, one of them
being the PMode.MEPbinding parameter value which may now differ on both ends, as the first and
last hops (edge hops) may be channel-bound quite differently over a multi-hop path.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 16 of 126

2.4.7 Edge-bindings for Multi-hop One-Way
NOTES:

1. In the following, the path origin MSH is also called the Sender, and the path destination MSH,
the Receiver.

2. This section lists the edge-binding combinations that are expected to be most commonly used.
They do not preclude other combinations.

2.4.7.1 Pushing Messages from the Sender Endpoint
Both of the following edge-binding combinations assume a Sender pushing the message to the I-
Cloud. These edge bindings are configured via the PMode.MEP and PMode.MEPbinding
parameters deployed on each endpoint, using conventional values defined in Core V3:
Case 1: "First-and-last-push". Both endpoint MSHs interact with the I-Cloud using the same MEP
bindings they would use with their partner in a direct point-to-point mode.
P-Mode MEP configuration:

● Edge hop Sender side:
○ Sender as PMode.Initiator
○ MEP and binding = One-way / Push

● Edge hop Receiver side
○ Receiver as PMode.Responder
○ MEP and binding = One-way / Push

Case 2: "First-push-last-pull". This edge-binding will be used when both Sender and Receiver
endpoints are not addressable, or when these Endpoints are not willing to receive incoming requests.
P-Mode MEP configuration:

● Edge hop Sender side:
○ Sender as PMode.Initiator (Intermediary as PMode.Responder)
○ MEP and binding = One-way / Push

● Edge hop Receiver side
○ Receiver as PMode.Initiator (Intermediary as PMode.Responder)
○ MEP and binding = One-way / Pull

2.4.7.2 Pulling Messages from the Sender Endpoint
Both of the following edge-binding combinations assume that the I-Cloud pulls messages from the
Sender. These edge bindings are configured via the PMode.MEP and PMode.MEPbinding
parameters deployed on each endpoint, using conventional values defined in Core V3:

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 17 of 126

In both Case 3a and 3b above, the edge bindings are quite similar: all of them are One-way / Pull. The
difference lies in the way the pulling is propagated across the I-Cloud, which may affect endpoints
even if this is still the same edge-binding, named here "first-and-last-pull"..
Case 3a: In this MEP binding, the eb3:PullRequest signal is generated by the Receiver endpoint
MSH, and routed all the way by the I-Cloud as any other message, to the Sender MSH. In other words,
the same eb3:PullRequest message is used in both edge-hops. The main advantage is that there
is a single authorization point for the pulling: the Sender MSH to which the Pull signal is intended. The
I-Cloud has no responsibility in authorizing the pulling and has no authorization information
(passwords or certificates) to maintain. On the other hand, the implication of such multi-hop pulling, is
that each Intermediary on the path must keep its transport connections open.

P-Mode MEP configuration:
● Edge hop Sender (MSH 1) side:

○ Sender as PMode.Responder (Intermediary as PMode.Initiator)
○ MEP and binding = One-way / Pull

● Edge hop Receiver (MSH 2) side
○ Receiver as PMode.Initiator (Intermediary as PMode.Responder)
○ MEP and binding = One-way / Pull

Case 3b: In this MEP binding, the eb3:PullRequest signal is not routed, and only goes over a
single hop. The eb3:PullRequest signals over each edge-hop are different messages, which could
have different authorization credentials (the Pull signal is authorized for the next node only). These
edge pulls are relayed by the I-Cloud in unspecified ways – the pulled message could be pushed
and/or pulled across the I-Cloud.
P-Mode MEP configuration: same as for Case 3.
The difference between Case 3a and Case 3b affects endpoint behavior in the way reliable messaging
is supported. In Case 3b the eb3:PullRequest from the Receiver is only sent to the Intermediary
and not routed to the Sender endpoint, so there is no use for sending the eb3:PullRequest reliably
to Sender as would be the normal way when operating in a point-to-point context (see Core

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 18 of 126

Figure 5: One-Way Multi-hop MEPs: Sender-Pulling Edge Bindings (1)

specification). See section 2.8 “ Details of Reliable and Secure Multi-hop” for a detailed description
and a new P-Mode parameter Pmode[1].Reliability.AtleastOnce.ReliablePull

Another less common one-way edge-binding is illustrated below in Case 4:

Case 4: "First-pull-last-push". In this MEP binding, the first edge-hop is pulled, while the last edge-
hop is pushed. These edge pulls are relayed by the I-Cloud in unspecified ways – the pulled message
could be pushed and/or pulled across the I-Cloud. The difference between Case 4 and Case 3 is in
the last edge-hop binding.

P-Mode MEP configuration:
● Edge hop Sender (MSH 1) side:

○ Sender as PMode.Responder (Intermediary as PMode.Initiator)
○ MEP and binding = One-way / Pull

● Edge hop Receiver (MSH 2) side
○ Receiver as PMode.Responder (Intermediary as PMode.Initiator)
○ MEP and binding = One-way / Push

Other combinations of edge-bindings are expected to be used and supported by Intermediaries that
are not described here although they will automatically be supported by Intermediaries that already
support the edge-binding combinations specified here.

2.4.8 Edge-bindings for Multi-hop Two-Way
NOTE:
In the following, two multi-hop paths are involved: one for the “request” message, one for the “reply”
message. The origin MSH for a path is also called the Sender, and the destination MSH, the Receiver.

2.4.8.1 Asynchronous Edge-bindings
Both of the following edge-binding combinations assume a reply message that is sent back
asynchronously by the request Receiver endpoint MSH. The routing through the I-Cloud is
independent from these edge-bindings. The edge bindings are configured via the PMode.MEP and

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 19 of 126

Figure 6: One-Way Multi-hop MEPs: Sender-Pulling Edge Bindings (2)

PMode.MEPbinding parameters deployed on each endpoint, using conventional values defined in
Core V3:

Case 1: "Request-push-last-push and Reply-push-last-push". Both endpoint MSHs interact with
the I-Cloud using the same MEP bindings they would use with their partner in a direct point-to-point
mode. Both are addressable.
P-Mode MEP configuration:

● Edge hops on Request Sender (MSH 1) side:
○ Request Sender as PMode.Initiator (Intermediary as PMode.Responder)
○ MEP and binding = Two-way / Push-and-Push.

● Edge hops on Request Receiver (MSH 2) side:
○ Request Receiver as PMode.Responder (Intermediary as PMode.Initiator)
○ MEP and binding = Two-way / Push-and-Push

Case 2: "Request-push-last-pull and Reply-push-last-pull". This case applies when both endpoint
MSHs are not addressable: both are pulling messages from the I-Cloud.

P-Mode MEP configuration:
● Edge hops on Request Sender (MSH 1) side:

○ Request Sender as PMode.Initiator (Intermediary as PMode.Responder)
○ MEP and binding = Two-way / Push-and-Pull

● Edge hops on Request Receiver (MSH 2) side:
○ Request Receiver as PMode.Responder (Intermediary as PMode.Initiator)
○ MEP and binding = Two-way / Pull-and-Push

Other combinations of asynchronous edge-bindings are expected to be used and supported by
Intermediaries that are not described here although they will automatically be supported by
Intermediaries that already support the edge-binding combinations specified here. An example would
combine Case 2 and 3 above: { first edge-binding = Two-way / Push-and-Push, last edge-binding =
Two-way / Pull-and-Push}.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 20 of 126

Figure 7: Two-Way Multi-hop MEPs: Asynchronous Edge Bindings

2.4.8.2 Synchronous Edge-bindings

Both of the following edge-binding combinations assume a reply message that is sent back
synchronously by the request Receiver endpoint MSH. The routing through the I-Cloud is independent
from these edge-bindings. These edge bindings are configured via the PMode.MEP and
PMode.MEPbinding parameters deployed on each endpoint, using conventional values defined in
Core V3:

Case 3: "Request-push-last-sync and Reply-last-pull". The request Receiver endpoint MSH
interacts with the I-Cloud using the same MEP binding it would use with its partner in a direct point-to-
point mode. The request Sender MSH may be non-addressable, and will pull the reply message. No
connection has to be kept open on the first edge-hop.

P-Mode MEP configuration:
● Edge hops on Request Sender (MSH 1) side:

○ Request Sender as PMode.Initiator (Intermediary as PMode.Responder)
○ MEP and binding = Two-way / Push-and-Pull

● Edge hops on Request Receiver (MSH 2) side:
○ Request Receiver as PMode.Responder (Intermediary as PMode.Initiator)
○ MEP and binding = Two-way / Sync

Case 4: "First-sync-last-sync". Both endpoint MSHs interact with the I-Cloud using the same MEP
binding they would use between themselves in a direct point-to-point mode. The request Sender MSH
may be non-addressable, and will get the reply message over the same transport connection as the
request message – so this connection has to be kept open on the first edge-hop.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 21 of 126

Figure 8: Two-Way Multi-hop MEPs: Synchronous Edge Bindings

P-Mode MEP configuration:
● Edge hops on Request Sender (MSH 1) side:

○ Request Sender as PMode.Initiator (Intermediary as PMode.Responder)
○ MEP and binding = Two-way / Sync

● Edge hops on Request Receiver (MSH 2) side:
○ Request Receiver as PMode.Responder (Intermediary as PMode.Initiator)
○ MEP and binding = Two-way / Sync

NOTE:
Although both Endpoints in this case use synchronous communication with their respective
intermediaries there is no guarantee that the response message is communicated synchronously end-
to-end as the I-Cloud hops might use asynchronous communication. When an I-Cloud uses
synchronous communication on the I-Cloud hops to enable end-to-end synchronous communication
this may be very resource intensive on the intermediaries because of the requirement to keep the
connections open.

2.5 The Intermediary MSH

2.5.1 Intermediary Functions
An ebMS intermediary is expected to support the following functions:

Message forwarding. Besides the Send and Receive operations defined in the model of V3 Core
specification, a new operation called Forward is added to the messaging model. It is defined as:
sending (operation Send) a message that has been received (operation Receive) without altering it,
and without external intervention (i.e. without the message being delivered in-between, then re-
submitted). Doing so requires no additional processing other than that needed by the routing function.

The following figures illustrate a Hub Intermediary MSH (Hub-and-Spoke topology) forwarding a
message either for pushing to or for pulling by the Receiver endpoint.

Figure 9: Message forwarding

NOTE: The diagram could easily be generalized for the Interconnected Hubs topology, where every
Intermediary on the multi-hop path would have to act in the Forwarding role.

Message Routing. As an intermediary is not an endpoint of the multi-hop path, every message
received MUST be forwarded to another MSH. The routing function of an intermediary defines to
which MSH a message must be forwarded to based on metadata carried by the received message.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 22 of 126

MEP bridging. Forwarding MAY also imply the ability to bridge between different MEP channel
bindings. For example, a message bound to a One-way / Push MEP when received, may be bound to
a One-way / Pull after forwarding, as illustrated in the following figure.

Figure 10: MEP Bridging

Message Pulling support. This implies some partial knowledge of P-Modes that determine a push
vs. a pull channel. In the case of pulling, a scalability feature like sub-channels (see section 2.5.4)
needs to be supported and configured with authorization info. In addition to assigning
eb3:UserMessages to Pull channels, an Intermediary MUST also be able to assign
eb3:SignalMessages and non-ebMS, e.g. RM signals such as wsrm:CreateSequence or
sequence acknowledgments, to a Pull channel based on the @mpc attribute on the routing parameter
in the SOAP header so that these signals become available for pulling by the endpoint MSH. This
represents an extension to the pull protocol as defined in [EBMS3CORE]: in addition to ebMS user
messages and ebMS signal messages containing an eb3:Error element with code: EBMS:0006
(EmptyMessagePartitionChannel), a third valid response message type is: any SOAP message
containing a valid ebint:RoutingInput/ebint:UserMessage header element.

Error Handling. An Intermediary MUST be able to generate eb3:Errors as discussed in section
2.5.6 .

2.5.2 Message Forwarding Models
For the Forward abstract operation two implementation models exist. First is the store-and-forward
model in which the Send operation only starts after the Receive operation has successfully been
completed by the intermediary. So the Send and Receive are executed sequentially and the
successful execution of the Receive operation is not dependent on the successful execution of the
Send operation. The sequence diagram for this model is shown in the next figure.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 23 of 126

Figure 11: Store-and-forward model

An alternative forwarding model is the streaming model in which both operations are executed in
parallel by the intermediary, i.e. data is directly transferred to the next hop. In this model the Send
operation starts as soon as possible after the Receive operation has started. Because the next hop will
only be known after the message header has been received the Send operation will always start some
time after the start of the Receive operation.

Depending on whether the Receive operation ends before or at the same time as the Send operation
two sub cases of the streaming model exist. In the first sub case, called asynchronous streaming, the
Receive operation completes successfully after receiving all message data, i.e. a transport channel
acknowledgment is sent to the previous hop and the channel is closed. The figure below shows the
sequence diagram for this streaming model sub case.

Figure 12: Asynchronous Streaming

In the other case, called synchronous streaming, the Receive operation only ends when the Send
operation is complete successfully, i.e. the transport acknowledgment is only sent back to the previous
hop when a transport acknowledgment is received from the next hop. The sequence diagram for this
sub case of the streaming model is shown in the next figure.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 24 of 126

Figure 13: Synchronous streaming

Note that synchronous refers to the transport acknowledgments and not the ebMS message transfer.
Even when using synchronous streaming intermediaries the ebMS MEP could be asynchronous. For
synchronous ebMS message transfers, the only option is to use the synchronous streaming model
because in this model the intermediary MSH will wait with responding to the previous hop until a
response is received from the next hop.

An advantage of both streaming models over the store-and-forward model is that they require less
storage space because there is no need to store complete messages. Also the end-to-end latency is
reduced.

The main disadvantage of both streaming models is that they require more bandwidth as the Receive
and Send operation run in parallel. Congestion on the intermediary will occur if the outgoing
connection does not have at least the same bandwidth as the incoming connection, especially in the
synchronous streaming model where the incoming connection stays open until the outgoing one is
closed.

Therefore the [synchronous] streaming model SHOULD only be used when bandwidth is known to be
available.

2.5.3 MEP Bridging
The forwarding function may involve message pushing as well as message pulling. Message pulling at
Intermediary level is controlled by the routing function. More precisely, message forwarding falls into
one of the following patterns:

(a) "Push-on-push" : Messages pushed to the Intermediary over MPC x are forwarded in push
mode on MPC x to the next node;

(b) "Pull-on-push" : Messages pushed to the Intermediary over MPC x, are forwarded in pull
mode, on MPC x or a sub-channel of x (see section 2.5.4 on sub-channels) to the next node.
I.e. the message will be pulled from MPC x (or a subchannel of x) on the Intermediary by the
next node MSH which can either be an Intermediary or an endpoint;

(c) "Push-on-pull" : Messages are pulled by the Intermediary from MPC x or a sub-channel of x
and forwarded to the next MSH in push mode on MPC x. I.e. if the message is pulled from a
sub-channel that sub-channel is not forwarded to the next MSH;

(d) "Pull-on-pull" : Messages are pulled by the Intermediary from MPC x or a sub-channel of x
and forwarded in pull mode on MPC x or a sub-channel of x (see next section on sub-
channels) to the next node. In this pattern the sub-channel the message is forwarded on may
differ from the sub-channel the messages is pulled from.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 25 of 126

The routing function MUST specify which forwarding pattern is in use for each MPC it handles. The
routing function MUST also specify the authorization credentials associated with pulling – both inbound
and outbound – when the forwarding pattern involves pulling.
This specification does not define which ones of these forwarding patterns must be supported by an
intermediary: this is to be determined by future conformance profiles.

2.5.4 Sub-channels
The nature of message partition channels (MPC) as defined in the core ebMS V3 specification is such
that an intermediary may forward the flow of user messages with the same MPC value (i.e. having the
same eb3:Messaging/eb3:UserMessage/@mpc value) to different destinations. This requires the
routing function to use other criteria than [only] the @mpc value. Indeed, an MPC is not associated with
a particular pair of Sending / Receiving MSHs.

However this forwarding of messages from the same MPC to multiple destinations requires an
additional capability when these destinations are pulling these messages, i.e. when the last
intermediary is using either "pull-on-push or "pull-on-pull" forwarding patterns.

An example of such a use case is:

A party is sending messages to a large number of recipients over the I-Cloud. These recipients are
supposed to pull these messages from their common edge-intermediary. Because each recipient is
not supposed to pull messages for other recipients', each recipient will pull from a different MPC that is
authorized differently from others. However, the sending party does not want to be aware of all the
MPCs that are associated with each recipient, and is sending all messages over the same MPC. The
last intermediary alone is aware of which message should be forwarded to which recipient.

Sub-channels are a means to support the previous use case. A sub-channel is associated with an
existing or "parent" MPC, and plays the role of a new MPC in case of a "pull" forwarding. Every ebMS
User Message is always assigned to an MPC - if only to the default one (see also chapter 3 of the
Core specification on message pulling). An Intermediary may decide to "sub-channel" this MPC, which
means it associates one or more sub-channels to this MPC, and assigns the received message to one
of these sub-channels when forwarding, based on message metadata. Now the different endpoint
MSHs can pull their messages from the specific sub-channel assigned to them instead of the general
parent channel.

In order to pull from a particular sub-channel, an MSH must use the sub-channel ID in the @mpc
attribute of the eb3:PullRequest. This pulling may be authorized differently than pulling from the
parent MPC, i.e. the eb3:PullRequest must contain authorization credentials that are specific to
this sub-channel. The same message can also by pulled directly from its parent MPC, if the
eb3:PullRequest contains the right authorization credentials (which may be different from those
associated with its sub-channels). However a message assigned to sub-channel SC1 cannot be pulled
from sub-channel SC2, even if SC1 and SC2 have same parent channel. Typically, when sub-
channels are associated with different recipients who need to ensure that their messages are not
pulled by others, each sub-channel needs to be authorized differently.

The identifier of a sub-channel is an extension of the identifier of the parent MPC. MPCs are identified
with URIs. Different ways to indicate hierarchy in URIs exist, which can be used to indicate a channel /
sub-channel relation. When an MPC (y) is a sub-channel of another MPC (x), the following rules apply:

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 26 of 126

Figure 14: MPC sub-channels

• the URI scheme in (x) and (y) must be same (and the URI authority if used in one must also
be used in the other with same value)

• the path of the URI of the sub-channel (y) must start with the path of of the URI of the parent
channel (x).

Example: If the MPC identifier is an URI of the form:

http://sender.example.com/mpc123
 A sub-channel of this MPC may have an identifier of the form:

http://sender.example.com/mpc123/subc42
Because intermediaries should not modify forwarded messages, the @mpc attribute value in the
message is not altered so the message is still considered as sent over this MPC, the sub-channel
assignment is purely 'virtual'. This also implies that sub-channel assignment can only take place in the
forwarding patterns (b) (pull-on-push) and (c) (pull-on-pull). Intermediaries SHALL only forward a
message over the MPC specified in the message or a sub-channel thereof. This behavior is
determined by the routing function associated with the intermediary.
From the receiver viewpoint (in the above use case, the ultimate recipient), sub-channels are used in
the same way as normal MPCs: sub-channel identifiers are to be used in P-Modes in the same way as
other MPC identifiers. An eb3:PullRequest message for a sub-channel will specify the sub-channel
ID in its @mpc value. Because the sub-channel assignment is only virtual, the pulled message however
will still have the parent MPC identifier in its @mpc value. Therefore a receiving MSH SHOULD accept
messages from a parent MPC when pulling.

2.5.5 The Routing Function
A function every intermediary MUST implement is the routing function that defines to which MSH a
received message is to be forwarded. The input to this routing function, called the routing input, is a
set of metadata elements taken from the received message. As the main purpose of an ebMS
Intermediary is to route ebMS User Messages the metadata used for routing is based on information
elements available in such messages. Non-normative Appendix A provides some use cases and good
practices for routing in a multi-hop context.

The routing function can be modeled as:

ƒ(«RoutingInput») «next destination»

The output of the routing function is the next destination of the message. This is not just the URL of
the next MSH, but also includes information on how the forwarding should be done - i.e. by pushing or
pulling. When for example the destination is the ultimate receiver which uses pulling to get its
messages there is no URL where the message must be sent to. The routing function must then
specify which MPC is intended for pulling and specify the credentials for pulling authorization.

The input for the routing function, the RoutingInput is a subset of the header content of ebMS User
Messages, more precisely the eb3:UserMessage element. The routing function of an Intermediary
MAY use all information available in the eb3:UserMessage element or it descendants. However it
MUST be able to parse and use the following metadata as its routing input:

• The mpc attribute, when present.
• The eb3:PartyInfo element and its sub-elements.
• The eb3:CollaborationInfo element and its sub-elements

Furthermore the routing function SHOULD be able to parse and use:
• The eb3:MessageProperties element and its sub-elements,
• The eb3:PayloadInfo element and its sub-elements

The routing function must be able to route all messages that need to be forwarded by the intermediary,
including:

1. ebMS signal messages which are not also ebMS user messages;

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 27 of 126

2. non-ebMS messages that are involved in facilitating the transfer and quality of service of
ebMS messages (such as various signals supporting reliable messaging).

Such messages however do not contain an eb3:UserMessage element with the input needed for the
routing function. In order to provide the routing function with proper routing input these messages
MUST contain a WS-Addressing endpoint reference (EPR) parameter that includes the routing input –
except for PullRequest signals when the routing function can determine the destination of the
PullRequest based on the MPC alone.

This reference parameter is defined as an element named ebint:RoutingInput which contains
exactly one child ebint:UserMessage element. For non ebMS user messages like 1. and 2. above
the SOAP header must contain the following WS-A reference parameter:

<ebint:RoutingInput
 wsa:IsReferenceParameter='true'
 S12:role="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh"
>
 <ebint:UserMessage>...</ebint:UserMessage>
</ebint:RoutingInput>
The embedded ebint:UserMessage element is similar to the XML schema defined for the similar
element in the packaging section of Core V3 and reuses some of its type and element definitions,
except for the eb3:MessageInfo element which can be absent here. The schema is defined in
Appendix C Reference Parameter.

NOTE: The UserMessage element in the reference parameter is in a different namespace than the
UserMessage element from the Core V3 specification because it allows for the MessageInfo
element to be absent and therefore must be redefined for use in the reference parameter. An
Intermediary MUST NOT fault a message with an ebint:UserMessage element that does not
contain an eb3:MessageInfo element, and MUST consider such an ebint:UserMessage as a
valid input for the routing function.

In the XML Schema definition for the ebMS 3.0 Core Specification, defined in section [EBMS3CORE]
and available from http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms-header-3_0-
200704.xsd, the eb3:MessageInfo, eb3:PartyInfo, eb3:CollaborationInfo,
eb3:MessageProperties and eb3:PayloadInfo elements are defined in the UserMessage
complex type. XML schemas that import the ebMS 3.0 Core Specification cannot reference these
elements. To support reuse of these elements within the ebint:UserMessage element, a
refactored version of the ebMS 3.0 schema is provided (see Appendix B) where these elements are
defined separately. The ebint:RoutingInput schema defined in Appendix C imports this
refactored schema. Note that an eb3:Messaging rooted XML document is valid with respect to this
refactored XML schema if and only if it is valid according to the original XML schema and that
processing such a document using the refactored XML schema results in the same Post Schema
Validation Infoset as from the original ebMS 3.0 XML schema.

An ebMS Intermediary MUST be able to obtain the routing input from a message (provided that
information is targeted to it) in one of the following ways:

• By parsing the eb3:Messaging header in an ebMS user message, and by extracting its
eb3:UserMessage child element.

• By parsing the eb3:PullRequest header element in a PullRequest message and using the
value of its @mpc attribute;

• By parsing the WS-Addressing reference parameter header ebint:RoutingInput and by
extracting its ebint:UserMessage child element

It is possible that an ebMS user or PullRequest message also contains a WS-Addressing reference
parameter in the SOAP header. In such cases where multiple routing input options are present in the
same message, the intermediary MUST use the WS-Addressing reference parameter as input for the
routing function.

A routing function must be able to map the ebint:RoutingInput header either to a URL (for
pushing the forwarded message) or to a pull channel.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 28 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms-header-3_0-200704.xsd
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms-header-3_0-200704.xsd
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh

A routing function will generally use only a subset of the eb3:UserMessage element or of the
ebint:RoutingInput element. This subset is called the effective routing input, as opposed to the
available routing input represented by the entire eb3:UserMessage element,
ebint:RoutingInput element or pull request.

When the effective routing input is reduced for some messages to the sole MPC value – or in other
words, when the I-Cloud routing function uses only the MPC value (@mpc) for some routings – then
each one of these MPC values resolved by the routing function MUST NOT be shared by different
destination endpoints. This is the case when eb3PullRequest messages that do not contain a WS-
Addressing reference parameter must be routed through the I-Cloud as described in case 3a in
section 2.4.7.2

2.5.6 Error Handling and Multi-Hop Messaging
Similarly to endpoints, intermediaries can generate ebMS errors. This section describes the reporting
of errors by intermediaries and the types of errors that can be generated by them. The requirements
on endpoints for routing Error response messages are described in section 2.6.2 .

The reporting of an error generated by an intermediary MUST follow one of these three patterns:

(a) Fixed configured reporting: errors are handled and reported in an implementation-specific manner:
either logged locally or sent to a fixed, pre-configured destination, or yet assigned to a specific MPC
that another MSH may pull from. In all cases this is subject to a QoS agreement between I-Cloud
providers and endpoints connecting to their intermediary message handlers.

(b) Message-determined reporting: if there is no provision for solution (a), the error is sent to the
destination based on data contained in the faulty message. This may in turn be subdivided into a
couple of cases:

• Either the WS-Addressing header wsa:FaultTo or wsa:ReplyTo is present in the message
in error and its value indicates an URL that can be directly resolved. If both headers are
available the error MUST be sent to the URL given by the wsa:FaultTo header. The Error
message MUST be sent directly to this location;

• One of these WS-Addressing headers is present and contains an ebint:RoutingInput
reference parameter. The intermediary MUST then add this WS-Addressing EndPoint
Reference (EPR) to the error message (as described in 2.6.2 - the ebMS Error message
being considered as a response message). The error message MUST then be sent to its
destination through the I-Cloud. Again when both headers are available the EPR from the
wsa:FaultTo header MUST be used;

• None of these WS-Addressing headers is present in the message in error, but an
ebint:RoutingInput header can be inferred (section 2.6.2 case 4) from other headers
available in the message in error. The intermediary MUST add the inferred
ebint:RoutingInput header to the Error message and send it using the I-Cloud.

(c) Synchronous reporting : in this case, the error related to the routing of a message that is sent to an
intermediary as an HTTP request and generated upon the receipt of the message by this intermediary,
is sent back as an error message over the HTTP response. This reporting mode is sufficient for hub-
and-spoke configurations. It is of particular relevance with connected endpoints of small and medium
size enterprises or other light clients that may only connect occasionally to the network to transmit
messages to their trading partners. In case there are errors, the pattern ensures immediate feedback.

Of the errors specified in section 6.7.1 of [EBMS3CORE] at least the following errors SHOULD be
supported:

• EBMS:0005 ConnectionFailure, in situations where the routing function of the intermediary is
configured to push the message but a connection to a next hop cannot be established.

• EBMS:0009 InvalidHeader, in situations where the intermediary receives a message
containing an invalid ebMS header.

Some of the errors specified in the core specification are not relevant in the context of Intermediaries.
Therefore an intermediary:

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 29 of 126

• MUST NOT generate an EBMS0010, ProcessingModeMismatch, error, as intermediaries
process messages based on a routing function and not based on P-Modes.

• SHOULD NOT generate EBMS0011, ExternalPayloadError, failures because, unlike the
intermediaries involved, the ultimate recipient ebMS MSH MAY still be able to resolve such
references even if the intermediaries are not.

This specification defines four new error types:

(1) RoutingFailure. Since ebMS intermediaries are configured using a routing function (see section
2.5.5), an ebMS Error MUST be generated when a message cannot be routed by the Intermediary
because the message does not match any entry in the routing function. This new type of error MUST
be supported by intermediaries and SHOULD be reported:

• Error ID: EBMS:0020,

• Short description: RoutingFailure

• Severity: failure

• Description: the Intermediary MSH was unable to route an ebMS message and stopped
processing the message.

Note that finding a match for a message in the routing function is separate from applying the
forwarding action associated with the pattern. For instance, in situations where the intermediary
operates in a store-and-forward mode (see section 2.5.2), the actual forwarding of a message may
take place well after the initial processing of the incoming message and after the incoming transport
connection on which it came in was closed. If synchronous reporting pattern (c) is defined for a
message pushed to an intermediary, then the intermediary SHOULD match the message, immediately
upon receiving it and before the incoming connection is closed, against its routing table, in order to
establish whether a matching rule exists. This allows the intermediary to provide immediate feedback
to the MSH that pushed the message to it.

A non-normative example of a routing error signal is provided in appendix E.5 .

Two other new ebMS error types are relevant in situations where the routing rule of the intermediary
specifies that another MSH (either the final destination or the next intermediary) is to pull the message
based on its message partition channel identifier:

2) MPCCapacityExceeded. When the intermediary attempts to store the message, it is possible that
this attempt fails due to a lack of capacity, similar to the EBMS:0005 “push” connection failure. In this
situation, the intermediary SHOULD generate and report the following new error type:

• Error ID: EBMS 0021

• Short description: MPCCapacityExceeded.

• Severity: failure

• Description: an entry in the routing function is matched that assigns the message to an MPC
for pulling, but the intermediary MSH is unable to store the message with this MPC.

This error is compatible with, and can be reported using any of the three reporting options.

3) MessagePersistenceTimeout. The intermediary MAY also impose a limit on the time it will wait for
the message to be pulled, and discard messages that have not been pulled after the time limit is
reached. If such a limit is set, the intermediary SHOULD generate and MAY report the following new
kind of error:

• Error ID: EBMS0022

• Short Description: MessagePersistenceTimeout.

• Severity: Failure

• Description: An intermediary MSH has assigned the message to an MPC for pulling and has
successfully stored it. However the intermediary set a limit on the time it was prepared to wait
for the message to be pulled, and that limit has been reached.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 30 of 126

This error, by definition, is typically generated well after the message is submitted to the intermediary.
This error therefore in general cannot be reported using the synchronous reporting option (c).

4) MessageExpired. It is possible that delays in the forwarding of messages in the I-Cloud cause
messages to expire before they reach the destination endpoint MSH. An intermediary MAY check if
messages have expired before forwarding them. Intermediaries MAY use one or multiple mechanisms
to determine expiration. In particular, an intermediary MAY inspect message headers, even if it is not
explicitly identified as the target of those headers, or inspect message payloads. Such mechanisms
could be specified in profiles as an extension to this specification. A mechanism that an intermediary
MAY use to determine expiration for an intermediary is to interpret expiration information in the WS-
Reliability [WSR11] header or in the WS-Security header. These headers express expiration
information as follows:

• WS-Reliability defines the wsr:Request/wsr:ExpiryTime element.

• WS-Security defines the wsu:Timestamp/wsu:Expires element.

If an intermediary applies this or other expiration detection mechanisms and determines a message
has expired, it SHOULD discard the message and SHOULD generate the following error:

• Error ID: EBMS0023

• Short Description: MessageExpired

• Severity: Warning

• Description: an MSH has determined that the message is expired and will not attempt to
forward or deliver it.

The intermediary MAY generate the error silently (without any notification to any other MSH), or it
MAY report the error using one of the three error reporting mechanisms.

Note that message expiration detection at intermediaries is just an optimization to prevent
unnecessary forwarding of messages. If endpoint MSHs implement expiration checking, the end-to-
end exchange is not affected if intermediaries do expiration checking too.

To prevent looping of error messages, intermediaries SHOULD NOT return standalone Error
messages for messages that themselves transmit routing errors in situations where the reporting
mechanism is other than (c). Note that this does not prevent an intermediary from generating and
reporting such errors in other situations, as long as they are not sent out as error messages. In
situations where errors are piggy-backed on an ebMS user message, it is still possible to fault the
eb3:UserMessage unit and send the related error. In situations where an intermediary is operating in
“streaming” mode, it MAY pass on an error message received synchronously on an outgoing
connection from the next hop back on the incoming connection to the preceding hop.

2.6 Endpoint requirements
Intermediaries are responsible for the routing of messages through the I-Cloud based on the metadata
available in the routed message. The MSH sending a message to the I-Cloud is responsible for
providing appropriate header data in the message so that the routing functions of the intermediaries
can perform their function and forward the message to its destination.

For ebMS user messages this poses few additional requirements on endpoints: the routing input is
already included in the eb3:Messaging SOAP header block. This endpoint MUST target the header
to the http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
role if specified in the Pmode[1].Protocol.AddActorOrRoleAttribute parameter described in
sections 2.4.5 and 6.4 . For other messages (ebMS Signal messages, or non-ebMS messages) the
endpoint MUST insert one or more WS-Addressing headers and use these to carry routing input. The
following requirements MUST be observed by endpoints when involved in a multi-hop message
exchange.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 31 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextms

2.6.1 Routing Support for Initiating Messages
The Initiating message is defined as the first message sent by the Initiating MSH as defined in section
2.2.3 of the Core specification. As shown in section 2.4.7 , in a multi-hop configuration both an
endpoint MSH (cases 1, 2, 3a) and an Intermediary MSH (case 3b and 4) can be the initiator of a
message exchange. Three kinds of initiating messages can be distinguished:

1. ebMS User Messages: Such messages are either the “request” leg of an ebMS Two-way or the
“one way” leg of an ebMS One-way. The eb3:UserMessage header element contains all routing
input. The content of this header is determined jointly by the PMode configuration of the Sending
endpoint and/or by the submitting message Producer.

2. ebMS Signal Messages: The most common case of an initiating ebMS Signal message is the
eb3:PullRequest message sent by an Intermediary to pull a message from the endpoint (see
cases 3a, 3b and 4 in section 2.4.7). Some eb3:Errors may also be generated as initiating
messages, i.e. not as responses to faulty messages.
When these signals are sent by the Intermediary directly to the Endpoint and therefore do not need to
be routed (cases 3b and 4 in section 2.4.7), no routing info is needed. When the messages are sent
by an Endpoint (case 3a) and do need to be routed to another endpoint, they should contain routing
information. The ebMS header of such messages does not contain an eb3:UserMessage element.

For Pull requests, there are two options (configurable via the P-Mode parameters
Pmode[1].Protocol.AddActorOrRoleAttribute and Pmode[1][s].Addressing.EPR):

• The Pull Request is contained in an eb3:Messaging header targeted to the ebMS
intermediary that references a channel via its @mpc attribute. Intermediaries can use routing
tables based on these channel identifiers to route the requests through the I-Cloud .

• The P-Mode associated with the messages to be pulled (i.e. defining a One-way / Pull MEP) is
shared between partners, along with the EPR of the sender of the pulled message. From this
EPR the ebint:RoutingInput reference parameter is extracted and added as a WS-
Addressing header to the SOAP header and targeted to the ebMS intermediary. In this case
the signal message is targeted to the SOAP ultimate receiver and the content of the
eb3:PullRequest itself is not used for routing.

The EPR for the request signal to pull a user message can be inferred from the P-Mode as follows:
• The eb3:From and eb3:To values should be swapped.
• The eb3:Service is the same, but the fixed string “.pull” is appended to the value of

eb3:Action.
• The MPC, if mentioned, is used in the eb3:PullRequest.

3. non-ebMS messages: Such messages are typically bound to the first leg of an underlying two-way
transport protocol (e.g. HTTP). They do not contain an eb3:Messaging header (unless they are
piggybacked on ebMS Messages in which case the routing rules for these messages apply). They
may contain a wsa:ReplyTo header. The WS-Addressing headers and reference parameters contain
all routing input. The content of these headers is determined by the P-Mode configuration of the
Sending endpoint as in (2). Such messages may be:

• WS-ReliableMessaging sequence management messages (such as
wsrm:CreateSequence and wsrm:TerminateSequence)

• WS-SecureConversation and WS-Trust messages, used to establish and manage security
contexts (wst:RequestSecurityToken, etc.).

2.6.2 Routing Support for Response Messages
A response message is defined as a message that is sent, by the Receiver, in response to a previous
(request) message, and in general back to the Sender of this request. For example, a “reply” message
in an ebMS Two-way MEP. More precisely: a message that relates to a previous message in any of
the three following ways:

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 32 of 126

• The response message is an ebMS user message that is the second leg of an ebMS two-way
MEP, and relates to the first message using eb3:RefToMessageId

• The response message is an ebMS signal message that is referring to a previous ebMS
message using eb3:RefToMessageId, regardless of the type of MEP the previous message
is involved in and its role in the MEP. This concerns eb3:Error messages and
eb3:Receipt messages.

• The response message is NOT an ebMS message, but an accessory message such as an
RM signal that is responding to a previous RM message (e.g.
wsrm:CreateSequenceResponse) or to a group of such messages (e.g
wsrm:SequenceAcknowledgment message), or yet a WS-SecureConversation message
such as wst:RequestSecurityTokenResponse.

Support for response message routing falls into one of these four cases:

1. ebMS User Messages: the eb3:UserMessage header element contains all routing input. The
content of these headers is determined as for request user messages. In case the wsa:ReplyTo
header was present in the request message, and if its EPR value contains the
ebint:RoutingInput element, then the corresponding WS-Addressing reference parameter
header block MUST be present in the response message – and will therefore take precedence as the
routing input for the response message. In case the wsa:To element is present in the response
message (from the wsa:Address element present in the wsa:ReplyTo EPR) it MAY be used as
routing input by an intermediary.

2. ebMS Signal Messages: These are either eb3:Error or eb3:Receipt signal messages sent in
response to a previously received ebMS message. The ebMS header of such messages does not
contain an eb3:UserMessage element. However, either one of these conditions MUST be met and
decided per agreement between communicating parties:

1. the wsa:ReplyTo header was present in the request message, and if its EPR value contains the
ebint:RoutingInput element. In that case (and unless the EPR also contains a reachable URI
– see Section 2.5.6) this element is used to generate a corresponding WS-Addressing header
that will be used by the I-Cloud routing function. For eb3:Error, the wsa:FaultTo if present
must take precedence over wsa:ReplyTo.

2. the P-Mode associated with the request message is shared between partners, and the sender of
the response message extracts the EPR of the initial sender from this P-Mode (even if it has an
anonymous URI). It inserts the ebint:RoutingInput reference parameter obtained from this
EPR in the header of the response message. This header will be used by the I-Cloud routing
function.

3. non-ebMS messages: Such messages do not contain any eb3:Messaging header (unless they
are piggybacked on ebms Messages in which case the routing rules for these messages apply). The
same rules as for above case (2) apply: the routing is based on WS-Addressing reference parameter
header ebint:RoutingInput (unless the EPR also contains a reachable URI – see Section 2.5.6)
An exception is made for RM protocol messages (such as acknowledgments, or sequence
management messages): In that case – and assuming that end-to-end reliable messaging is used -
the EPR of the request sender MUST be specified in the wsrm:AcksTo element provided when
requesting or accepting an RM sequence creation. Either one of the following conditions MUST be
met:

• This EPR contains the ebint:RoutingInput element suitable for routing across the I-
Cloud back to the initial message sender.

• The wsa:Address element in this EPR contains a URI identifying the request message
sender so that it can be used as routing input by Intermediaries or used to directly reach the
destination MSH, bypassing the I-Cloud and not relying on any ebMS-related routing function.

• This EPR has an wsa:Address element that contains a reachable URI identifying the edge
intermediary used by the request message sender, as well as an ebint:RoutingInput
containing an @mpc value, so that the message can be pulled by the request sender on this
MPC.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 33 of 126

4. Inferred RoutingInput for the reverse path

In case no WS-Addressing header indicates the return destination (wsa:ReplyTo or wsa:FaultTo
are not used in the initiating message), and in case no response EPR is known from the responding
endpoint (not specified in its P-Mode), then the reverse RoutingInput value for response messages
SHOULD be automatically inferred from the RoutingInput in the request message as follows:

• The eb3:From and eb3:To values should be swapped.

• The eb3:Service is the same, but eb3:Action is appended with “.response”,
generalizing over all response messages.

• In case an MPC is mentioned, derive a new MPC by simply concatenating a “.response”
suffix. E.g. on the first hop, a One-way / Push message is sent to MPC “abc123”. The
eb3:Receipt or eb3:Error is automatically routed back to MPC “abc123.response”.
Inferring a new MPC for these response messages allows the original Sender to automatically
know which MPC it can then pull to retrieve Receipts, Acknowledgements and Errors, in case
this Sender is not addressable for callbacks.

More fine-grained variations of this scheme are possible, distinguishing different types of responses,
e.g. appending “.receipt” (in case an eb3:Receipt is sent back), “.acknowledgment” (reliable
messaging acknowledgments) or “.error” (eb3:Error messages).

Note that this same mechanism of inferring the ebint:RoutingInput can be applied by
intermediaries in the case of routing errors. This is important because intermediaries have no access
to P-Mode configurations at the endpoints.

2.6.3 WS-Addressing Support
Endpoints are required to support WS-Addressing, to use and interpret WS-Addressing endpoint
references as described in section 2.6.3.1 and use WS-Addressing headers as described in section
2.6.3.2 .

2.6.3.1 WS-Addressing Endpoint References
WS-Addressing EndPoint References (EPRs) are used in this specification to identify endpoint MSHs.
WS-A EPRs primarily use URLs to identify endpoints. However, part of the rationale of ebMS multi-
hop topologies is that the Internet address (URL) of destination endpoints is either not resolvable
directly by the original sender, or even not to be published (e.g. it may change over time, or be
meaningful only for a local network). Consequently a WS-A reference parameter is used to allow the
routing of messages through the I-Cloud as defined in section 2.5.5 .

When the actual address (URL) of the destination Endpoint of a multi-hop path is supposed to remain
unknown from other MSHs, or is not supposed to play any role in the transfer of messages addressed
to this Endpoint, the EPR of the Endpoint MUST use the following URI in its wsa:Address element
(also called the “I-cloud” URI):

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud

The EPR of such Endpoint MSHs will be of the form:

<wsa:EndpointReference>
 <wsa:Address
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh"
 >http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/icloud</wsa:Address>
 <wsa:ReferenceParameters>

<ebint:RoutingInput
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh">
 <ebint:UserMessage>...</ebint:UserMessage>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 34 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud

 </ebint:RoutingInput>
 /wsa:ReferenceParameters>
</wsa:EndpointReference>

The @S12:role attribute indicates the endpoint reference address and reference parameters MUST
be interpreted by ebMS routing intermediaries in the I-Cloud, as discussed in section 2.4.5 . If using
SOAP1.1 instead of SOAP 1.2, the EPR would reference the @S11:actor attribute instead.

This EPR indicates the need to rely exclusively on information in the reference parameter
ebint:RoutingInput to route the messages intended to such an endpoint. The “I-cloud” URI must
then appear in the wsa:To header of any message intended for this destination Endpoint, along with
the ebint:RoutingInput header block that represents the reference parameter.

The minimum set of WS-Addressing headers that must be present in a message intended for an
Endpoint described by the above EPR, is illustrated below:

<S12:Header>
 <wsa:To
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh"
 >http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud</wsa:To>
 <wsa:Action >…</wsa:Action>
 <ebint:RoutingInput wsa:IsReferenceParameter='true'
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh">

<ebint:UserMessage>...</ebint:UserMessage>
 </ebint:RoutingInput>
</S12:Header>
The value of the @S12:role attribute is the value introduced in section 2.4.5 . When using SOAP 1.1
the attribute to use is @S11:actor as discussed before.

2.6.3.2 Use of WS-Addressing Headers

Reliance on WS-Addressing headers other than those supporting the routing function (i.e. headers
containing reference parameters) is not required for ebMS multi-hop processing. However, in order to
comply with the SOAP binding of message addressing properties, as defined in [WSADDRSOAP],
when a reference parameter header block is present, indicating a destination endpoint described by an
EPR, then at minimum the wsa:To and wsa:Action headers must be present, with values
corresponding to those in the EPR definition.

Using wsa:Action :

In the case of a two-way MEP, and unless otherwise specified (eg. as determined by a WSDL
definition for a back-end Service), it is RECOMMENDED to set the wsa:Action to the following default
values:

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/oneWay

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/twoWay.request

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/twoWay.reply

These values indicate the ebMS MEP definition URI that the message participates in, with a suffix of
the form “.request” or “.reply” specifying the “role” of the message in the MEP.

In the case where the message contains an eb3:Receipt for an ebMS user message, it is
RECOMMENDED that the wsa:Action value has a similar value based on whether the received
message is a One Way message or the request or a response in a Two Way message exchange,
again with “.receipt” as suffix:

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 35 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/oneWay.receipt
(for the receipt of a One Way message exchange)

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/twoWay.request.receipt (for the
receipt of a request message in a Two Way message exchange)

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/twoWay.reply.receipt (for the receipt
of a response messages in a Two Way message exchange)

In the case where the message is an eb3:Error for a message containing any of the above Action
value, it is RECOMMENDED that the wsa:Action value reuses the same value, with “.error” as
additional suffix.

Note that the wsa:Action attribute MUST be an IRI as defined in [RFC3987]and has basically the
same structure as an URL.

If a value different from these recommended values is to be used (e.g. to target the message to a
particular Web Service), then this SHOULD be indicated using the the WS-Addressing processing
mode parameter as defined in section 2.7.1.3 . There is no S12:role="http://docs.oasis-
open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh" on the wsa:Action block
as it is the ultimate receiver of the SOAP message, not ebMS intermediaries, that needs to interpret
the value of wsa:Action.

Another situation in which the default values are not to be used for wsa:Action is when the
reference parameter is used to route Web Services protocol messages that have required values. For
instance, WS-ReliableMessaging [WSRM12] reserves the value http://docs.oasis-open.org/ws-
rx/wsrm/200702/CreateSequence for the action of a sequence creation message.

Using wsa:ReplyTo :

Some Endpoint MSHs MAY decide to make a more advanced use of WS-Addressing, e.g. by using
the wsa:ReplyTo EPR for providing response message routing information in a two-way MEP,
instead of relying on P-Mode configuration. Reliance on wsa:ReplyTo for the routing of a response
message is neither necessary nor required, as the P-Mode associated with the MEP that describes
this response will normally contain sufficient routing information (e.g. in form of the destination EPR for
this response).

2.7 P-Modes for multi-hop

2.7.1 P-Mode Extension for Web Services Addressing
When it is necessary to insert WS-Addressing header elements in a message, an endpoint needs to
get this information from the P-Mode. The P-Mode governing the sending of messages SHOULD
specify whether a reference parameter must be added and what should be included in the parameter,
as well as the values for the WS-Addressing Address and Action. This requires an extension of the
data model for P-Modes as presented in the core specification. A new composed P-Mode parameter
named Addressing is introduced to specify this additional information. As WS-Addressing headers
are involved in the sending of both request and response messages, the Addressing parameter may
occur multiple times within one P-Mode. The next section defines the parameter and in section 2.7.1.2
 its usage is defined.

2.7.1.1 Addressing.Address
Addressing.Address indicates the address URI of the WS-Addressing endpoint reference. In a multi-
hop context where the routing function is used, its value is expected to be: http://docs.oasis-
open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud.

2.7.1.2 Addressing.EPR
The EPR parameter is composed of the sub-element RoutingInput. Addressing.EPR.RoutingInput
representing the value of the RoutingInput element that is used as the reference parameter of the WS-
Addressing EPR. The parameter is composed of the following optional sub-elements which define the

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 36 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud
http://docs.oasis-open.org/ws-rx/wsrm/200702/CreateSequence
http://docs.oasis-open.org/ws-rx/wsrm/200702/CreateSequence
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/twoWay.reply.receipt
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/twoWay.request.receipt
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/oneWay.receip

value to use in the child elements of RoutingInput. The mapping of these parameters to the child
elements is analogous to the mapping of the existing P-Mode parameters.

• Addressing.EPR.RoutingInput.Initiator.Party;
• Addressing.EPR.RoutingInput.Initiator.Role;
• Addressing.EPR.RoutingInput.Responder.Party;
• Addressing.EPR.RoutingInput.Responder.Role;
• Addressing.EPR.RoutingInput.BusinessInfo.Service;
• Addressing.EPR.RoutingInput.BusinessInfo.Action;
• Addressing.EPR.RoutingInput.BusinessInfo.Properties[];
• Addressing.EPR.RoutingInput.BusinessInfo.MPC

Notes:

• The definition of the EPR parameter does not include sub-elements for all children of the
ebint:RoutingInput element. For example, there is no parameter for configuration of the
MessageInfo element. It is expected that, when used, these values will be derived in some
way from the message being sent and that the configuration of this derivation is
implementation dependent.

• The content of the ebint:RoutingInput XML header in ebMS SOAP messages MUST
conform to the RoutingInput schema. This does not mean that all elements defined as
required in the RoutingInput schema must be defined in the P-Mode. An MSH SHOULD set
the values of elements not defined in the EPR based on the inferred values as described in
section 2.6 . The EPR in the P-Mode should define values for the effective routing input
elements.

• RoutingInput.BusinessInfo concerns the destination endpoint. All or a subset of the children
parameters {Service, Action, Properties, MPC} of this parameter may be specified. Although
several Service instances may be associated with an endpoint (same for Action and MPC), it
is possible that only one instance of {Service, Action, Properties, MPC} values is known from
the I-Cloud routing function and is necessary to route all messages to this endpoint. In that
case, the EPR P-Mode parameter associated with this endpoint MAY only contain this
instance of {Service, Action, Properties, MPC} under its BusinessInfo sub-parameter. All P-
Modes associated with this destination endpoint MUST have the same
Addressing.EPR.RoutingInput.BusinessInfo parameter even though each one of them may
use a different Service / Action pair (or different MPC) in its PMode.BusinessInfo parameter.
In such cases the EPR.RoutingInput reference parameter must always be used even for
routing User Messages, as the routing function would be unable to use other Service / Action
pairs - as specified under the eb3:Messaging/eb3:UserMessage element - that are also
supported by this endpoint.

• For reasons of reuse of types and elements defined in the ebMS 3.0 XML schema, the
ebint:RoutingInput contains a CollaborationInfo group. This group contains a
ConversationId element. This value of this element is not set via a P-Mode parameter,
and is left to implementations. It MAY be set in ways to support monitoring:

• A forward message containing a CreateSequence request sent to establish (just-in-time)
an RM sequence for a particular user message MAY use the ConversationId of that
user message for its ConversationId.

• A reverse message containing an ebMS error or receipt for an ebMS message MAY
reuse the ConversationId of that message.

2.7.1.3 WS-Addressing Action

Section 2.6.3.2 describes situation in which the wsa:Action element is required and defines default
values. In situations where a different value is required, this value can be agreed using the following
new parameter:

Pmode.Addressing.Action: Specifies the value to use for wsa:Action. If this parameter is not
specified, and the value is not determined by other SOAP processing modules (e.g. reliable
messaging) an implementation SHOULD use the recommended default values.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 37 of 126

2.7.1.4 P-Mode extensions

The Addressing parameter defined above may be repeated at different places in the P-Mode, where it
is necessary to indicate a multi-hop destination. In particular, it may appear in the P-Mode as follows:

Pmode.Initiator.Addressing: To specify the EPR value to be used for routing any message to the
Initiator endpoint of a P-Mode.

Note: In case this EPR parameter only contains the Address element and no RoutingInput element,
the Address value MUST be sufficient to directly address the endpoint (meaning “response” messages
sent by the Responder are not routed via the I-Cloud) .

Pmode.Responder.Addressing:To specify the EPR value to be used for routing any message to the
Responder endpoint of a P-Mode.

Pmode[2][s].Addressing

This parameter is needed to be able to express whether or not an ebint:RoutingInput reference
parameter and other WS-Addressing headers needs to be added to Pull Request messages. These
two options are explained in section 2.6.2 case (2). The contents of the reference parameter MAY
also be inferred from the Pmode.BusinessInfo for the user message using the algorithm described in
that section.

Pmode[1].Errorhandling.Report.SenderErrorsTo.Addressing: To specify the destination to be
used for routing any Error generated by the UserMessage-sending endpoint for this P-Mode leg. The
default is the EPR associated with the Sending MSH for this P-Mode leg (either
Pmode.Initiator.Addressing.EPR or Pmode.Responder.Addressing.EPR)

Pmode[1].Errorhandling.Report.ReceiverErrorsTo.Addressing: To specify the destination to be
used for routing any Error generated by the UserMessage-receiving endpoint for this P-Mode leg. The
default is the EPR associated with the Receiving MSH for this P-Mode leg (either
Pmode.Initiator.Addressing.EPR or Pmode.Responder.Addressing.EPR)

Pmode[1].Security.SendReceipt.Addressing: To specify the destination to be used for routing any
eb3:Receipt generated in response to a User Message sent over this P-Mode leg. If not present,
Receipts will be routed using the EPR associated with the UserMessage-sending endpoint (either
PMode.Initiator.Addressing or PMode.Responder.Addressing)

Pmode[1].Reliability.AtLeastOnce.Contract.AcksTo.Addressing: To specify the destination to be
used for routing any reliable messaging response messages related to a User Message sent over this
P-Mode leg. If not present, RM response messages will be routed using the EPR associated with the
UserMessage-sending endpoint (either PMode.Initiator.Addressing or PMode.Responder.Addressing)

Note: When PMode[1].Reliability.AtLeastOnce.Contract is set to “true” then Acknowledgements as
well as other RM signals sent by the Responder RMP (Reliable Messaging Processor, see section 8 of
[EBMS3CORE]) MUST be sent back to the Sending party for this P-Mode leg. In case the
PMode[1].Reliability.AtLeastOnce.Contract.AcksTo parameter is set, but no value is supplied for
Pmode[1].Reliability.AtLeastOnce.Contract.AcksTo.Addressing, then its value MUST be a URI,
as described in ebMS V3 Appendix D.3.5., that resolves to the Initiator RMP associated with the
sending endpoint, in which case these signals will be directly addressed to this RMP without multi-hop
routing.

When using WS-ReliableMessaging as reliable messaging protocol, the value of the
Pmode[1].Reliability.AtLeastOnce.Contract.AcksTo.Addressing when available MUST be used to
construct the wsrm:AcksTo element in the wsrm:CreateSequence initialization message.

If a value is supplied for Pmode[1].Reliability.AtLeastOnce.Contract.AcksTo.Addressing with an
address http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud then the value of
Pmode[1].Reliability.AtLeastOnce.Contract.AcksTo MUST be the URI of the intermediary that will
route the acknowledgment back through the I-Cloud. Note that this parameter may be specified
differently for the Sender (see section 2.7.2 , init P-Mode) than for the Receiver (idem, resp P-Mode).

If a value is supplied for Pmode[1].Reliability.AtLeastOnce.Contract.AcksTo.Addressing with an
address other than the I-Cloud IRI, then this MUST be an EPR associated with the RMS of the

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 38 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud

sending endpoint, containing an address that does not need be resolved by the I-Cloud routing
function, meaning these RM signals are directly sent back to the MSH without multi-hop routing. In this
case no value SHOULD be specified for Pmode[1].Reliability.AtLeastOnce.Contract.AcksTo.

The use of the EPR.RoutingInput extension will generally be required for non-ebMS messages (e.g.
RM protocol messages) and may be required for signals (eb3:Receipt, eb3:Error) although the
reverse routing of these messages may rely on information provided in the WS-Addressing header of
the related request message (wsa:ReplyTo) as described in section 2.6.2.

2.7.2 P-Mode units
The P-Mode governing a multi-hop MEP is actually divided in two parts or “units”, each one of these is
actually structured as a separate P-Mode:

• The P-Mode unit that governs the Initiator edge-hop (linking the Initiator endpoint to the first
ebMS Intermediary on a multi-hop path originating in the Initiator). The ID of this P-Mode
(PMode.ID) MUST be of the form: <ID>”.init”, where <ID> is a valid value for PMode.ID. This
unit is called the “init” P-Mode for the multi-hop MEP.

• The P-Mode unit that governs the Responder edge-hop (linking the Responder endpoint to the
last ebMS Intermediary on a multi-hop path originating in the Initiator). The ID of this P-Mode
(PMode.ID) MUST be of the form: <ID>”.resp”, where <ID> is the same value used in the
PMode.ID for the corresponding Initiator edge-hop. This unit is called the “resp” P-Mode for
the multi-hop MEP.

The ebMS 3.0 Core Specification states that the optional pmode attribute of the eb3:AgreementRef
element, if used, contains the Pmode.ID parameter. In a multi-hop context, it MUST contain the
Pmode.ID parameter without the “.init” and “.resp” suffixes.

As the two edge hops of a same multi-hop path used by an MEP instance are now controlled by two
different P-Mode units, these two P-Mode units must be aligned for proper interoperability.

Some P-Mode parameters are expected to be shared between an “init” P-Mode and its “resp”
counterpart P-Mode, while other parameters are likely to be different, in order to accommodate
different MEP binding conditions on each edge-hop.

The following P-Mode parameters MUST be common between two related P-Mode units:

• PMode.ID (with “.init” appended for the “init” P-Mode unit, and “.resp” appended for the “resp”
P-Mode unit.)

• PMode.MEP (either one-Way or two-Way)

• PMode.Initiator (and sub-elements)

• PMode.Responder (and sub-elements)

• PMode[1].Protocol.SOAPVersion (as the SOAP envelope must not change over a multi-hop
path.)

• PMode[1].BusinessInfo (and sub-elements)

• All the Reliability parameters (PMode[1].Reliability and sub-elements), except for
PMode[1].Reliability.AtLeastOnce.Contract.ReplyPattern which may be different in the
“init” and the “resp” P-Mode units.

• All the Security parameters (PMode[1].Security and sub-elements), except for PMode[1].
Security.SendReceipt.ReplyPattern which may be different in the init P-Mode and the resp
P-Mode units.

Some P-Mode parameters are likely to be different between two related P-Mode units:

• PMode.MEPbinding, which may vary over edge-hops for the same MEP (as shown in the
section “MEPs and Channel Bindings”).

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 39 of 126

In order to minimize the impact over an already deployed endpoint MSH when upgrading a
point-to-point exchange into a multi-hop exchange, the existing P-Mode model as defined in
ebMS core V3, is not extended with new MEP binding values in order to implement the new
multi-hop bindings (edge bindings) defined in 2.4.7 and 2.4.8 .
This allows each unit to have its own value for the MEPbinding parameter indicating how
messages are exchanged over the edge hop:

o For the “init” unit it defines the exchange between the Initiator MSH and the first
Intermediary MSH;

o For the “resp” unit it defines the exchange between the last Intermediary MSH and
the Responder MSH

• PMode[1].Protocol.Address: The P-Mode deployed on the Initiator side will update this to
the URL of the immediate Intermediary MSH. (In case of a Pull MEP binding where the
endpoint MSH acts as Initiator, this address indicates the URL of the Intermediary to be pulled
from.) Note that in a multi-hop path, some hops may use HTTP and others SMTP transport.

• PMode[1].ErrorHandling.Report.AsResponse: This parameter only concerns the receiving
side of an ebMS message. It may need be modified as it may no longer be the same for each
edge-hop of the same path. This will be more often the case for the Sender endpoint (first
hop) than for the Receiver destination endpoint. For example, the first edge-binding may not
be able to keep the transport connection open to wait for the error generated by the ultimate
destination endpoint. In that case, the value will be “false” on the Sender side, while it may still
be “true” on the Receiver side

• PMode[1].Reliability.AtLeastOnce.ReplyPattern: This parameter may differ between the
“init” P-Mode unit and the “resp” P-Mode unit, as it governs the binding of RM
Acknowledgements and other RM signals to the underlying protocol (e.g. HTTP response vs.
HTTP request.)

• PMode[1].Security.SendReceipt.ReplyPattern: This parameter may differ between the “init”
P-Mode unit and the “resp” P-Mode unit, as it governs the binding of eb3:Receipts to the
underlying protocol (e.g. HTTP response vs. HTTP request)

2.7.3 Migrating P-Modes from point-to-point to multi-hop
When two partners who were communicating in point-to-point mode need to migrate to a multi-hop
configuration, it is expected they will derive their P-Mode units for the multi-hop exchanges from the
existing P-Modes that govern their point-to-point exchanges.

When migrating from a point-to-point to a multi-hop exchange, endpoints however may have to modify
their behavior compared with a point-to-point exchange. For example, depending on the multi-hop
channel binding (see section 2.4.6) they may have to pull eb3:Receipt messages related to pushed
User messages, whereas in a point-to-point exchange such messages could be received over the
same connection as the User message (e.g. on the HTTP response). Also, when using reliable
messaging (WS-RM) the routing of RM signal messages such as wsrm:CreateSequence, requires
the addition of reference parameters (conforming to WS-Addressing) in the SOAP header.

2.8 Details of Reliable and Secure Multi-hop
End-to-End reliability as well as end-to-end secure conversations MUST be supported by the I-Cloud,
meaning an entire multi-hop path between two endpoints can be made reliable with these endpoints
acting as source and destination of a reliable messaging sequence. This does not exclude other
reliability schemes that MAY be supported, e.g. where a multi-hop path is split into several reliable
segments i.e. where some Intermediary is acting as reliability endpoint.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 40 of 126

2.8.1 Controlling Sequencing and Grouping
As required in Core ebMS V3 specification, an endpoint MSH MUST be able to control which reliable
(RM) sequence is used by the User Message it sends, if only because different reliability QoS may be
associated with different reliable sequences. This is also the case for security: a particular security
context may be associated with an RM sequence, or more generally with a sequence of messages
(conversation).

This includes the ability to initiate RM sequences - possibly secure - as required by the P-Modes of
messages to be sent, and to associate such sequences with any further message sent for this P-
Mode. The main difference between a multi-hop environment and a peer-to-peer environment, is the
need to add sufficient routing input to:

• RM Lifecycle Messages (CreateSequence, CloseSequence, TerminateSequence,
Acknowledgements), in particular when using WS-ReliableMessaging.

• WS-SecureConversation messages used for establishing and managing the security context.

This routing input is obtained from Reference Parameters associated with the destination EPR. Such a
Reference Parameter value SHOULD be specified in the EPR.RoutingInput P-Mode parameter
associated with the destination.

The following rules apply when creating reliable sequences and secure conversations for multi-hop:

• An end-to-end reliable (RM) sequence is always associated with a unique destination MSH,
although it MAY be used for several types of message exchanges governed by different P-
Modes, if all these messages require the same level of reliability QoS (see the P-Mode
parameters: AtLeastOnce, AtMostOnce, ExactlyOnce). It is however RECOMMENDED that all
messages sent over the same sequence, are sent over the same MPC.

• When a wsrm:CreateSequence message contains an ebint:RoutingInput reference
parameter (as a SOAP header block), and if the MPC value (@mpc attribute) is specified
(S12:Header/ ebint:RoutingInput/ebint:UserMessage/@mpc) then all User
messages sent reliably over this sequence MUST be intended for the same MPC, i.e. have
same ebint:UserMessage/@mpc value.

• An end-to-end secure conversation is always associated with a unique destination MSH,
although it MAY be used for several types of message exchanges governed by different P-
Modes and MAY be associated with different MPCs.

• The combination of a reliable sequence (as defined in WS-ReliableMessaging) and of a
secure conversation (as defined in WS-SecureConversation), is a "secure sequence" - as
defined in WS-I Reliable and Secure Profile [WSIRSP10] - meaning that a security context is
associated with the RM sequence. A secure RM sequence combines the above requirements,
and must be initiated with an wsrm:CreateSequence element that has been extended with
a wsse:SecurityTokenReference element.

Messages with different available routing inputs (see 1.6.4) may share the same RM sequence
provided they are routed to the same destination. This routing is determined by a subset of the routing
input: the effective routing input. The routing function of the I-Cloud may be configured to route
messages with different Effective routing inputs to the same destination. However, for robustness of
the reliability mechanism it is RECOMMENDED to only send messages with same effective routing
input over the same RM sequence. The same recommendation applies for secure conversations.

The P-Mode parameter PMode[1].Reliability.Correlation can help enforce that only messages with
the same Effective routing input will be assigned to a particular RM sequence. For example, if the
routing is determined by the following Effective routing input:

1. eb3:CollaborationInfo/eb3:Service
2. eb3:CollaborationInfo/eb3:Action

3. eb3:PartyInfo/eb3:To/eb3:PartyId

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 41 of 126

Then the following P-Mode value will ensure (or specify) that only messages sharing the same values
for the above elements are assigned to the same RM sequence:

PMode[1].Reliability.Correlation =

”ebint:UserMessage/eb3:CollaborationInfo/eb3:Service,
ebint:UserMessage/eb3:CollaborationInfo/eb3:Action,
ebint:UserMessage/eb3:PartyInfo/eb3:To/eb3:PartyId”

if an RM sequence is intended to be shared by messages governed by different P-Modes, this will only
be possible if these P-Modes use the same Correlation expression, and if messages across these P-
Modes share same values for these expressions.

NOTE: the Correlation expression does not have to replicate the effective Routing input elements. It
can use a different expression (e.g. an MPC value, a message property) as long as it is known that the
same value for this expression will result in the same routing destination.

2.8.2 Configuring Secure Conversations
Similarly, messages related to a P-Mode may be associated with the same secure conversation. This
is indicated with the P-Mode parameter:

PMode[1].Security.Conversation = true.

The assignment of messages to the same conversation follow the same rule as for RM sequences.
The PMode[1].Security.Conversation.Correlation P-Mode parameter will determine which
messages can be assigned to the same secure conversation, in the same way as for RM sequences.

In the case of a secure (RM) sequence, both PMode[1].Reliability.Correlation and
PMode[1].Security.Conversation.Correlation will define the same expression.

The responses to RM lifecycle messages (CreateSequence, CloseSequence, TerminateSequence,
AckRequested).as well as responses to the establishment of secure conversations are routed
according to cases 3 or 4 in section 2.6.2 (Routing support for response Messages) .

Note that these parameters do not fully specify the use of secure conversations with ebMS. Future
profiles MAY define additional processing mode parameters for this.

2.8.3 Reliable Message Pulling
When messages must be pulled reliably (contract: AtLeastOnce), the Core V3 specification requires
that the PullRequest signal be also sent reliably. This requirement is valid for point-to-point, but not
always for multi-hop. Indeed, in a point-to-point context, resending a PullRequest message may
represent the only opportunity for the pulled endpoint to resend a message that has already been
pulled but possibly lost on its way (e.g. in the case of an HTTP transport, resending on HTTP back-
channel would require the receiving MSH to open an HTTP connection).

In a multi-hop context, the following multi-hop One-Way pulling cases must be considered:

1. End-to-end pulling (as described in section 2.4.7.2 , Pulling Messages from the Sender Endpoint,
Case 3 – “end-to-end pulling”). This case is handled in the same way as reliable point-to-point, from a
reliable messaging viewpoint. The eb3:PullRequest message itself SHOULD be sent reliably
(AtLeastOnce contract) in order to support AtLeastOnce contract for pulled messages, as the
resending of PullRequest messages will provide – for some request-response transports such as
HTTP – a back-channel for resending pulled messages that may have already been sent. The
behavior of sending PullRequest signals reliably is normally assumed when ensuring reliable One-
Way / Pull, as in point-to-point.

2. One-hop pulling(s). Here there is no routing of the eb3:PullRequest signal. This case covers
two subcases:

a. Receiving-side pulling and Sending-side pulling, or one-hop pull for each edge-hop. The case
is illustrated in section 2.4.7.2 , Pulling Messages from the Sender Endpoint, Case 4

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 42 of 126

b. Receiving-side pulling and Sending-side pushing. This case is illustrated in Section 2.4.7.1
Pushing Messages from the Sender Endpoint (Case 2), involving pushing from the Sending
endpoint (first edge hop) and Pulling from Receiving endpoint (last edge hop).

In both cases, the routing function inside the I-Cloud may be configured for any combination of pull
and push along the multi-hop path, and any pull is only a one-hop pull (Pull may be relayed, as in the
"pull-on-pull" forwarding pattern (d), section 2.5.3) , For this reason, there is no use for sending
eb3:PullRequest signals reliably from the initiating endpoint, as the resending MSH is not the one
receiving the resent eb3:PullRequest. Eb3:PullRequest signals SHOULD NOT be sent reliably,
in spite of the response expected to be sent reliably. This is controlled by a new P-Mode parameter
that overrides the default behavior for One-Way / Pull MEPs:

Pmode[1].Reliability.AtleastOnce.ReliablePull: Indicates whether the eb3:PullRequest signal
must be sent reliably or not. If “false”, the initiating endpoint will not send eb3:PullRequest signal
messages using reliable messaging.

2.8.4 Considerations about Reliable Messaging Specifications
The Core V3 specification [EBMS3CORE] allows for binding with either WS-Reliability or WS-
ReliableMessaging OASIS Standards, in order to ensure reliable messaging. The current versions for
these specification are WS-Reliability 1.1 [WSR11]or WS-ReliableMessaging 1.2 [WSRM12]. Both
standards provide the same level of reliability and can be used for end-to-end multi-hop reliability. The
following minor differences must be noted:

The routing of RM signals (CreateSequence, etc) and the need to add routing input headers to these,
are mostly a requirement tied to the use of WS-ReliableMessaging, as WS-Reliability does not use
such signals to manage sequences. Initiating and closing a reliable sequence with WS-Reliability
requires less effort in managing routing information.

On the other hand, in the previous sub-case of one-hop pull for each edge-hop (2.a), WS-
ReliableMessaging allows for combination with WS-MakeConnection [WSMC11] in order to create – in
the case of HTTP transport – back-channel opportunities for resending non-acknowledged pulled
messages. For this subcase (one-hop pull for each edge-hop), unless the Intermediary is supporting a
connection mechanism such as the one specified in WS-MakeConnection, reliability of the multi-hop
path for a pulled message (AtLeastOnce contract) would likely be restricted – with WS-Reliability - to
no more than notification of delivery failure, as the resending capability would require such a
mechanism at Intermediary level.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 43 of 126

3 Message Bundling
This specification defines a new protocol to bundle message units in ebMS messages and to submit,
send, receive, forward and deliver these units as a single SOAP message. This protocol extends the
ebMS 3.0 Core Specification and is compatible with the multi-hop profile.

3.1 Definition, Rationale and Requirements

3.1.1 Definition
Message bundling is defined here as aggregating several ebMS message units (see section 2.1.2 of
[EBMS3CORE]) in the same SOAP message. The core V3 specification supports some bundling
patterns, all of which involve only one user message unit and possibly several signal message units
(see section 5.2.4 of [EBMS3CORE]). This specification extends this functionality and supports
bundling several user message units and signal message units in the same ebMS envelope.

3.1.2 Rationale
The main rationale for bundling is to handle situations where two endpoints exchange a large number
of small messages in a short time interval, where efficiency of message processing is an issue and
where it is acceptable that some messages submitted to an MSH are not always sent immediately.
This happens in situations such as the following:

• An application generates many small business documents that need to be transferred to
business partners. They are not (very) time-critical and many of them have the same ultimate
destination.

• A (legacy) batch business application is scheduled to run once every 24 hours outside office
hours to process requests. These requests have accumulated over the previous 24 hours and
many of them have the same source. The requests are processed and the responses are all
submitted to the MSH in a short period.

• An application uses messaging to synchronize or replicate large sets of relatively static data
with business partners. With existing partners, only the updates need to be exchanged, so the
required bandwidth is limited. However, setting up the exchange for new partners causes a
large number of messages to be exchanged.

• A system has been unavailable for some time or has been disconnected from business
partners due to network issues. Once it resumes processing its backlog, it causes a large
number of messages to be sent.

In situations like these, an MSH that sends the outgoing response messages can use bundling to
share the overhead of processing a SOAP message -including security and reliability quality of
service- across several message units. Bundling increases the processing throughput of an MSH and
allows it to scale to a higher volume of transfer without increasing processing capacity.

A major benefit of supporting bundling at the message protocol level is that it obviates the need for a
bundling or batching mechanism at the business document level. This simplifies the design and
implementation of business applications that process these documents.

3.1.3 Requirements
This specification aims to address the following requirements:

• For the Producer and Consumer layers, the semantics of bundling is equivalent to sending
and receiving a sequence of distinct messages.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 44 of 126

• The processing model for the bundle is similar to the model for non-bundled messages (see
section 4.1 in [EBMS3CORE]), and the order of processing headers (security, reliability, ebMS
for inbound, the reverse for outbound) is the same as for non-bundled messages.

• Business partners must be able to control what message units are bundled, and to control
properties of the resulting bundle (such as its maximum size or the maximum delay) using
processing mode parameters.

• There is no requirement that bundling only concerns messages that have been submitted to
the MSH in a consecutive way or as an explicit bundle. In other words, bundling may be
applied (internally in the MSH) to an arbitrary set of submitted messages, regardless of their
submission time or mode.

• Implementations MAY also offer an interface to allow more explicit control over bundling or to
allow for submission of bundles, as long as the constructed bundles comply with the agreed
bundling parameters.

• Errors occurring in message units affect processing of related units in the bundle, but not of
unrelated units.

3.2 Packaging and Processing Bundles
Bundling is defined as an extension of regular ebMS processing. By definition, a bundle consists of a
single designated message unit called the primary message unit and any number of additional
secondary message units that are packaged with it. The primary message unit, any secondary units
and their payloads are packaged as described in section 3.2.1 and processed as described in section
3.2.2 .

3.2.1 Packaging of bundles
The packaging of a bundled ebMS message follows these rules:

• SOAP header: the unique eb3:Messaging element contains the header of each message
unit - either an eb3:UserMessage element or an eb3:SignalMessage element.

• SOAP Body: At most a single child element (payload of one of the bundled messages) MUST
be present in the Body, in order to comply with WS-I Basic Profile requirements. This MUST
be the payload (if any) of the primary message unit. Every other payload MUST appear as a
MIME attachment. The payload in the Body is therefore referred to by the eb3:PayloadInfo
element of the primary message unit header.

• Attachments: the payloads of each message unit other than the primary unit become MIME
parts of the bundled message. As is the case for the payload included in the SOAP Body, they
are referred to by the eb3:PayloadInfo element of the related message unit header. The
relation between the payload information element and the MIME part is based on MIME
Content-ID values, which are required to be globally unique [RFC2392].

There is no requirement that the order of payloads is in any way related to the order in which the ebMS
message units are placed in the eb3:Messaging container.

When receiving a message bundle, an ebMS MSH MUST process the first child element of the
eb3:Messaging container element (in message unit order) as the designated primary message unit.
When bundling multiple message units, a sending MSH must similarly insert the intended primary
message unit as the first element. Any following message units are processed as secondary message
units.

A message bundle that contains no secondary message units is equivalent to, and indistinguishable
from, a regular ebMS message that contains only a single message unit.

The value of the eb3:MessageInfo/eb3:Timestamp element in each message unit SHOULD
reflect the time at which the message unit is created, NOT the time at which the message unit is
bundled with other message units and sent. As a consequence, the values of this element in different
units in a bundle may be different. As defined in [EBMS3CORE], these time stamps have an XML
schema dateTime type and MUST be expressed as UTC. If the SOAP message is protected using
WS-Security, and the wsse:Security header contains a wsu:Timestamp/wsu:Created element,

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 45 of 126

then that time stamp MUST be more recent than any of the eb3:MessageInfo/eb3:Timestamp
values at it reflects the time the SOAP message containing all message units is serialized for
transmission.

Message bundling applies at the level of individual message exchanges. User message units may be
one way exchanges, or the request or response messages in a two way exchange. A signal message
may pull or be a response to a user message (which, in a two way exchange, can be the business
request or a business response). As an example, subject to the bundling control mechanism of 3.3 a
one way user message unit from MSH A to MSH B can be bundled with:

• other one way user message units for MSH B.

• request user message units from A to B that are the first half of a two way message
exchange.

• response message units to B related to earlier messages from B to A.

• a pull request signal message on a particular MPC on B.

In the ebMS 3.0 Core Specifications, cross-references exist at the level of message units, and
bundling does not change this. Each message unit has its own eb3:MessageId, and can refer to
another user message unit using eb3:RefToMessageId. Similarly, error messages can reference
individual message units using the eb3:Error/@refToMessageInError attribute. A bundle has no
identity and cannot be referenced.

3.2.2 Processing Bundles
A message bundle is processed based on the processing mode of the primary message unit for the
following processing mode sections: Pmode[1].Protocol, Pmode[1].ErrorHandling,
Pmode[1].Reliability, and Pmode[1].Security with the exception of parameters for non-repudiation
of receipt. This means that:

• The message security parameters of the primary message unit determine the way the entire
message bundle is processed. If the P-Mode of this unit is configured to sign ebMS SOAP
headers, body and any attached payloads, then the signature MUST also cover any header
content and payload from the other message units. This because the SOAP message has a
single wsse:Security header that contains a single ds:Signature for the SOAP
message, and not separate ds:Signature elements for each message unit. The
certificate(s) used will be the certificate(s) specified for the primary unit. If the P-Mode is
configured to encrypt the message payloads, all message payloads related to all message
units in the bundle will be encrypted using the configuration (algorithms, certificates) specified
for the primary unit.

• Non-repudiation of receipt is handled at the ebMS message unit level. For each user message
that requires a receipt, a separate receipt signal is generated, configured via the
Pmode[1].Security.SendReceipt and Pmode[1].Security.SendReceipt.ReplyPattern
parameters of the received message unit. When the receipt is expressed as an
ebbp:NonRepudiationInformation element, the ds:Reference elements in the
ebbp:MessagePartNRInformation elements MUST cover all elements in the received
message that relate to the message unit. The receipt MAY cover elements related to other
message units. In particular, a reference to the eb3:Messaging container (using its id
attribute value) covers all content in that container, not just content related to the unit the
receipt is generated for. For non-repudiation of receipt, the receiving MSH MUST sign the
receipt using the configuration (algorithms, certificates) specified for the received unit.

• The reliable messaging parameters of the primary unit will apply to the entire bundle.
Acknowledgments and any required resending of messages apply to the entire bundle. The
entire bundle counts as a single message in a single sequence. When InOrder delivery is
specified for the primary unit, the bundle must be sent using InOrder reliable messaging and
bundles MUST only include sub-series of message units without leaving gaps. I.e. when
message units 1-10 are submitted, it is possible to bundle 1-4 and 5-10 in two bundles, but not
to bundle 1, 2 and 4 in the first bundle and 3, 5-10 in the second bundle.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 46 of 126

• Transport configuration such as the protocol, the URL or IP address of the destination or (in a
multi-hop context) the next MSH, and any transport security to be applied is based on the
configuration of the primary unit.

• The message will be packaged as a SOAP 1.1 or 1.2 message based on the configuration of
the primary unit P-Mode.

Bundling is an operation in the ebMS module of an MSH. As defined in the ebMS Core Specification,
this module operates before the reliability and security module on the sender side. By definition, the
message (the bundle) must be complete on the sender side before applying any reliability and security
operations. Even if the primary message unit is known from the start, no signing is done until the
message is complete. In the WSI Reliable Secure Profile [WSIRSP10], a signature protects all the
SOAP Body, any contained payloads, and several SOAP headers. In compliance with this approach,
all message unit headers of a bundle are signed together.

3.3 Controlling Bundling
Message unit bundling is configured using a number of parameters. These control which units can be
bundled together, which message unit in a bundle can act as primary message unit, constraints on the
resulting message unit bundle and on the timing between submitting and sending.

Pmode[].bundling.policy

This parameter indicates whether the message unit, respectively, MUST NOT (value never), MAY
(value optional) or MUST (value always) be sent in a bundle with other message units. The default
value is never, which means that the only allowed types of bundling are those defined in
[EBMS3CORE]. If the value is optional or always, the parameter Pmode[].bundling.maxdelay
MUST NOT have the value 0.

Pmode[].bundling.compatibility.pmodelist

For message units that have a value other than never for Pmode[].bundling.policy, this parameter
indicates which other message units (acting as primary message units) the message unit may be
bundled with. The message units that have this parameter specified MAY become secondary units in
bundles that have a message unit with the referenced unit as primary unit. These referenced message
units MUST NOT have a value never for Pmode[].bundling.policy.

Pmode[].bundling.maxsize

This parameter defines the maximum size of a message resulting from bundling. It includes the size of
the SOAP envelope and any payloads in MIME attachments. If the size of the single primary message
unit is bigger than this parameter, then this means that no other secondary message may be bundled
with this unit.

Pmode[].bundling.maxdelay

This parameter (of type duration) defines the maximum time between the oldest message unit and the
newest message unit in a bundle, based on the eb3:MessageInfo/eb3:Timestamp values of the
message units. A receiving MSH SHOULD validate that the bundles satisfies this requirement. A
sending MSH MAY use this parameter to determine, for a submitted message unit, to bundle it with
other submitted messages , to send it by itself (as an unbundled) message or to defer sending it (as
other message units may be submitted later that it could be bundled with).

3.4 Submitting and Bundling
Section 2.1.1 of [EBMS3CORE] describes the ebMS messaging model. In this model, a Message
Producer invokes the submit abstract operation of a Sending MSH, which instructs that MSH to send
the message. Sections 2.1.2 and 2.1.4 clarify that the submit operation is to be understood at the level
of user message units. The bundling protocol can be viewed as an extension of this model in one of
the following two ways:

• The submit operation of the Sending MSH is extended to allow the Producer to submit not just
the data needed to generate a single message unit (which will become the primary message

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 47 of 126

unit), but to also provide a (possibly empty) list of such data structures, which are used to
generate a message bundle containing the primary and any secondary message units. In this
interpretation, the Producer must be aware of the constraints of the parameters defined in
section 3.3 and the Sending MSH must validate that the submitted bundle complies with its
configuration. If this is not the case, the EBMS:0030 bundling error (see 3.5) is generated in
the Sending MSH.

• The submit operation is not modified. Instead, the Sending MSH determines (subject to the
control parameters described in section 3.3) whether to send a submitted user message unit
as an unbundled message, to bundle it as secondary message unit to an available primary
unit, to designate it as a primary unit that other (separately submitted) message units can be
bundled with, or to defer any decision on bundling for some specified time.

An implementation of this protocol MAY support either or both approaches. For interoperability with
other implementations, the only requirement is that the agreed values for the bundling parameters of
section 3.3 are correctly applied in the exchanged message bundle.

In the second situation, where bundling is an MSH-internal operation, more optimizations are possible.
This is because multiple business applications may submit units of different types (e.g. one application
submits invoices and the other updates catalogs) that have the same destination and can be bundled.
Another advantage is that the bundling logic is not duplicated in the various business applications.

In situations where there is more than one option for a unit (send unbundled, send as primary unit with
other secondary units attached, send as secondary), the behavior of the MSH is not specified. An
implementation MAY take factors like system or network load, number of pending message units,
connectivity to the business partner into consideration. An event (see section 3.7 for discussion) that
MAY cause a bundle to be formed and sent is an incoming pull request.

3.5 Errors in Bundling
An ebMS message bundle consists of multiple message units. Errors may occur in the processing of
any of these messages. For any message unit in the bundle that has an error, an
eb3:SignalMessage is generated that contains one or multiple eb3:Error elements. The MSH
SHOULD bundle these signal messages and use the Pmode[1].ErrorHandling.Report.
{SenderErrorsTo, ReceiverErrorsTo, AsResponse} processing modes parameter of the primary
message unit to determine the address to send this bundle to.

The impact of errors in message units on the processing of other message units in a bundle is subject
to configuration and is discussed in section 3.10.3 . This specification defines a new error type related
to the actual bundling.

• Error ID: EBMS:0030

• Short description: BundlingError

• Severity: Failure

• Description: a message bundle is being processed that has a structure that is not compatible
with the bundling processing mode parameters of one or more user message units in the
bundle.

While this error concerns the bundling, the bundle as such has no identity and therefore the signal
message containing the error MUST reference the primary message unit as the unit that represents
the bundle.

A receiving MSH SHOULD generate this error in the following situations:

• A bundle is received where the oldest message is more than Pmode[].bundling.maxdelay
older than the newest message.

• A secondary message is present that does not have the primary message unit listed in its
Pmode[].bundling.compatibility.pmodelist list.

• The message is a bundle and the overall size of the message is greater than
Pmode[].bundling.maxsize of the primary message unit.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 48 of 126

A sending MSH MUST generate this error in the following situation:

• A message unit with value always for Pmode[].bundling.policy is submitted at time t, but no
message unit in its Pmode.compatibility configuration is submitted before
t+Pmode[].bundling.maxdelay.

Section 3.10.3 discusses delivery policies for bundles containing units that have errors and introduces
a second new type of error. An ebMS Intermediary is to forward message bundles transparently and
MUST NOT generate any of these errors.

3.6 Bundling Best Practices
The parameters in section 3.3 allow business partners to control which message units are bundled. In
practice, some combinations of units will be more common or acceptable than others. This non-
normative subsection defines some best practices regarding bundling configuration.

3.6.1 Compatibility
First of all, Pmode[].bundling.compatibility is typically reflexive: multiple message units of the same
type can normally be bundled as the sender would process them in the same way and any
intermediaries in an I-Clode would route them (assuming no changes to the routing function) to the
same ultimate destination. However, a potential exception to this are cases where a message unit of
some type transmits very large payloads. In that situation it may be acceptable to bundle the unit with
other small units, but the message would become too big if a second unit of the same type were to be
added. (See section 4 and 6.4.3 for ebMS 3.0 support for handling large messages).

For different message unit types, the Pmode[].bundling.compatibility relation is generally
asymmetric: it is acceptable (but unnecessary) to apply “stronger” quality of service to a message unit
if it becomes part of a bundle that has units that require it. The reverse is not. This “stronger”/“looser”
relation depends on the exact values of processing mode parameters, or combinations of such values.
For instance, a bundle secured using a particular configuration of hashing or signing algorithms, using
other certificates, or a different key length may, in combination, provide the same or better protection
than some other combination of values for these parameters.

3.6.2 Security Compatibility
A bundled ebMS message uses a single wsse:Security header targeted to the ultimate ebMS
receiver, if security is specified in the processing mode of the primary message unit. This security
header contains a single ds:Signature element that has ds:Reference elements for all payload
parts, if payload signing is specified. Any payload parts brought in via secondary message units will be
treated in the same way as parts that came with the primary message unit.

In ebMS, non-repudiation of receipt is handled via receipt signals and handled at the level of message
units. These signals are generated for each user message that requests them. A receiving MSH MAY
construct Receipt signals using the ds:Signature element in the received message, and the
ds:Reference message parts identifiers and digest values (verified by the security module). In that
situation, each receipt references all signed message parts in a bundle, not just parts that relate to a
specific user message. A user message that requires a signed Receipt in its
Pmode[].bundling.compatibility.pmodelist SHOULD NOT reference any candidate primary user
message that does not require message signing.

3.6.3 Reliability Compatibility
An ebMS message bundle is a single reliable messaging (RM) entity. All bundled message units are
subject to the same delivery assurance (either AtLeastOnce, AtMostOnce, or ExactlyOnce, InOrder).
Consequently the same RM headers apply to all units, as well as the same RM sequence and
message number. All these message units MUST then be subject to the same reliability QoS. The
delivery assurance specified for the primary message unit SHOULD be similar or better than the
assurance of any secondary message units.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 49 of 126

Attention must be paid to message units that require InOrder delivery assurance. These

• MUST NOT be bundled with a primary primary message unit that has a value “undefined”
for the processing parameter Pmode[].bundling.ordering.policy. This is because this value
means the submission order is not preserved in the bundling process.

• MUST NOT be bundled with primary message units that have an incompatible value for
Pmode[].reliability.correlation. This is needed to make sure that the units are sent using
the same sequence/group as would have been applied when sent using their own P-Mode.

3.7 Bundling and Pull
The description of bundling in section 3.2.2 allows a sending MSH to queue submitted user messages
temporarily in the ebMS module, bundle them after a configurable interval with other units and then
process the bundle in the security and reliability processing modules, like unbundled ebMS messages.
When receiving a Pull Request on a particular MPC, an MSH SHOULD NOT deliver an EBMS:0006
warning (“EmptyMessagePartitionChannel”) in situations where a unit has been submitted on that
MPC which allows for bundling with other units, but which has not yet been bundled. An MSH MAY
use any mechanism that has the effect that an ebMS message is available for pulling on an MPC in
situations where at least one message unit has been assigned to that MPC. Such mechanisms MAY
include (but are not limited to) not bundling such units, “on the fly” bundling or even “re-bundling”
(optimizing already bundled units that have not yet been pulled into more efficient bundles).

3.8 Bundling and Responses
An ebMS message may result in various types of response messages: business responses, ebMS
receipts, ebMS errors and reliable messaging acknowledgments.

For two way message exchanges, a “sync” channel binding is typically used for situations where the
response business message is needed immediately, and can be produced within the short duration of
an HTTP connection. It is RECOMMENDED that Pmode[].bundling.policy is set to never for request
message units in Two Way exchanges that have a “sync” channel binding.

When processing a message bundle, the receiving MSH MUST look up the processing mode
parameter setting of the primary message unit in the bundle and determine for each of these response
message types what channel they are to be sent back on. In some configurations, response
message units are to be sent on the HTTP back channel. The receiving MSH MUST collect all these
synchronous response messages and MUST send a message bundle containing all of them on the
HTTP back channel. (This means that if a secondary message had specified a different channel than
the HTTP back channel, this value is ignored. Ie. the configuration of the primary message unit
determines the back channel for all message units). If the address of the response message is not
the HTTP back channel, then bundling is still allowed, but not required.

3.9 Bundling for Multi-hop
The concept of transparent intermediaries defined in chapter 2 supports end-to-end security and
requires messages to be forwarded without any modification. This requirement means that
intermediaries MUST NOT bundle or un-bundle messages.

In a multi-hop environment, intermediaries MUST process a message bundle as a regular ebMS
message. This means that:

• If a routing parameter needs to be generated (for instance to route a WS-ReliableMessaging
life cycle message to its intended destination), its content is determined based on the primary
message unit.

• If no routing parameter is present, the primary user message unit determines the way the
message is processed.

This means that there is no ambiguity about which information is to be used for routing decisions.
Business partners SHOULD set up the Pmode[].bundling.compatibility in a way that makes sure
that message units are only bundled with other primary message units that will be routed to the same

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 50 of 126

ultimate destination. This assumes some knowledge of the routing functions in the I-Cloud. If the
configuration of these functions is unknown or subject to unanticipated changes, the safe option is to
only allow bundling of message units of the same type.

3.10 Delivery Policies
When business partners exchange message units that are logically related, there often is a
requirement for those units to be delivered and processed in order. For instance, a first user message
unit may make a request that a subsequent user message cancels. The cancellation user message
unit must not be processed before the request message unit as it references an as yet unknown
request and will therefore most likely cause a processing error, while the request is not canceled.
When an error occurs in the processing of message unit in a series, it may not be possible or
desirable to process subsequent related messages.

When related messages units are sent in separate SOAP messages, the message ordering
capabilities of Web Services reliable messaging specifications [WSRM12] or [WSR11] can be used to
specify the order in which they are delivered, even if for some reason the later message unit is
received before the earlier message unit. When using message bundling, it is possible that the two
message units are sent as part of the same bundle, in situations where the second message unit is
submitted shortly after the first one. The reliable messaging In-Order delivery contract does not help
here, as it applies to the message bundle as a whole, not to the individual message units.

Sender and receiver are able to agree on policies that affect the delivery of message units in a bundle.
These policies can be set using the processing mode parameters defined in section 3.10.1 and help
account for dependencies among message units. These parameters determine the order of delivery
(described in section 3.10.2) and the behavior in case of errors (see 3.10.3).

3.10.1 Delivery Parameters
Delivery is controlled using the parameters Pmode[].bundling.ordering.policy and
Pmode[].bundling.ordering.scope.

The parameter Pmode[].bundling.ordering.policy specifies the semantics of the order of message
units in a bundle as related to the order of submission or the order in the eb3:Messaging container.
It has three values:

• undefined: the order of message units in the eb3:Messaging container has no meaning.
This value means that InOrder delivery MUST NOT be specified for any secondary message
unit in the bundle.

• documentorder: the document order ([XDM], section 2.4) of the message units in the
eb3:Messaging container MAY reflect the order of submission and MUST be interpreted as
the required order of delivery of these units. This means that the primary message unit is the
first submitted message and that any secondary message units have been submitted
subsequently, appended to the list of child elements in the eb3:Messaging container.

• timestamp. This indicates that the sending MSH units MAY insert units in any order and that
the primary message therefore is not necessarily the oldest message in the container.
However, timestamps on message units MUST reflect their order of submission.

The default value is undefined. This processing mode parameter can be used to control the order in
which message units in a bundle are to be delivered (section 3.10.2) and whether units are delivered
in case of errors (section 3.10.3).

When using a value other than undefined, the P-Mode configuration SHOULD also specify the use
of InOrder delivery assurance at the reliable messaging level, to make sure that all message units in a
bundle are processed before all message units in a later bundle. A message unit U1 intended to be
processed before a unit U2 MUST either be:

• Inserted in a bundle, or packaged as a standalone message, and sent before the message (or
message bundle) containing U2, both using an InOrder delivery assurance; or:

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 51 of 126

• Inserted in the same bundle as U2, but preceding it in document order (document order
ordering policy) or submitted before U2 and bearing an time stamp older than the time stamp
for U2 (time stamp ordering policy), also both using an InOrder delivery assurance.

The Pmode[].bundling.ordering.scope parameter MUST ONLY be specified when the value for
Pmode[].bundling.ordering.policy is other than undefined. Its value is a list of XPath expressions
that are applied to the message units in a bundle to select subsets of message units at which ordering
is defined. For example:

• A value of {eb3:CollaborationInfo/eb3:ConversationId} indicates that
conversations are separate and can be processed independently.

• A value of {eb3:PartyInfo/eb3:From, eb3:PartyInfo/eb3:To} indicates that the
scope of ordering is limited to sender/receiver party ID pairs.

If both Pmode[].reliability.correlation and Pmode[].bundling.ordering.scope are specified for a P-
Mode, their value MUST be identical.

3.10.2 Processing Order of Message Units
In bundling multiple message units, message units in the eb3:Messaging container may not be
arranged in the order in which they were submitted. In fact, a secondary message unit may have been
submitted to the MSH before the primary message unit, but inserted following it in the
eb3:Messaging container. The values of Pmode[].bundling.ordering.policy can be used to
control delivery of units in a bundle:

• A value undefined means that the order of message units has no defined meaning. A
receiving MSH MAY process and deliver in any order. It may even deliver them in parallel.

• A value of documentorder means that a receiving MSH MUST process and deliver
message units in the order in the eb3:Messaging container.

• A value of timestamp means that a receiving MSH MUST process and deliver message
units in the temporal order in the eb3:Messaging container. The receiving MSH MUST sort
the message units based on the value of the eb3:Timestamp in eb3:MessageInfo and
deliver the message units in temporal order, older units first. Any message units having the
exact same time stamp value MUST be delivered in the order in which they occur in the
eb3:Messaging container.

The Pmode[].bundling.ordering.scope parameter, if specified, allows the receiving MSH to partition
the message units into subsets before processing them in the order specified by
Pmode[].bundling.ordering.policy. The MSH MAY process each partition in parallel.

3.10.3 Processing Bundles with Errors
An MSH may encounter errors in the processing of one or more message units in a bundle. These
errors may also be relevant to some other message units in the bundle, and to subsequent messages
sent in other bundles or as standalone messages, but not to other messages units that are not related
to any message unit in error. The Pmode[].bundling.ordering.policy and
Pmode[].bundling.ordering.scope parameters allow an MSH to determine when such a dependency
exists.

• The value undefined for Pmode[].bundling.ordering.policy indicates that there is no
dependency between message units. An error in one message unit has no impact on any
other message unit.

• The values documentorder and timestamp for Pmode[].bundling.ordering.policy
indicate a dependency among message units. An MSH MUST NOT process subsequent
message units when it encounters an error in a preceding (for documentorder) or older (for
timestamp) message unit.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 52 of 126

• The parameter Pmode[].bundling.ordering.scope allows the MSH to partition the message
units into unrelated groups. Processing of one message unit partition, and any errors
encountered in this, MUST NOT impact the processing of other partitions.

These requirements only affect the processing of units in a single bundle. They do not impact the
processing of subsequent units sent in other bundles or as standalone messages.

To indicate that a message is not processed because of an error involving another related message
unit in a bundle, an MSH SHOULD generate the following warning:

• Error ID: EBMS:0031

• Short Description: RelatedMessageFailed

• Severity: Failure

• Description: A message unit was not processed because a related message unit failed.

A separate error, indicating the nature of the error, MUST be generated for the unit having caused the
error.

As an example, assume a bundle is sent containing 5 message units. The primary unit specifies the
following P-Mode parameters:

• {eb3:CollaborationInfo/eb3:ConversationId} as value for
Pmode[].bundling.ordering.scope.

• True for Pmode[].Security.SendReceipt.

• Response for Pmode[].Security.SendReceipt.ReplyPattern.

• True for Pmode[].ErrorHandling.Report.AsResponse.

• documentorder for Pmode[].bundling.ordering.policy.

• An http://.. address for Pmode[].Protocol.Address.

Units 1, 3 and 4 are part of a conversation C1 and units 2 and 5 of conversation C2. The MSH
successfully processes units 1 and 2, but encounters an error in processing unit 3. Since unit 4 is in
the same partition as unit 3, it will not be processed. Unit 5 is processed successfully. A response
message is generated and sent on the HTTP back-channel that consists of a bundle containing
Receipts for messages 1, 2 and 5 and Errors for messages 3 and 4. The error for message 4 is of
type EBMS:0031.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 53 of 126

4 Large Message Splitting and Joining

4.1 Background and Context
In many industry sectors and communities in the public sector there is an ever-increasing need to
exchange large data sets or files, with sizes ranging from hundreds of megabytes to gigabytes.
Examples of this include:

• Large or very large transaction data sets, such as billing data in telecom industry (exchanged
between MVNO and infrastructure providers, roaming partners or telecom service providers
and corporate customers), or payment order sets in the financial services sector.

• Data sets from event monitoring applications.

• Data sent to off-site data warehouses for analysis.

• Backups and electronic archives.

• Image and other multimedia data in healthcare, media and other sectors.

• Geo-spatial data.

• Computer-Aided Design files in automotive, industrial goods, aerospace and defense
industries.

The following problems may occur in large message exchanges:

• Transmitting large messages takes time. If the transfer fails and is restarted from scratch, a
lot of data may have to be resent that was already transmitted.

• Network or software components may impose limits on message size and connection
timeouts and may cause transfers to be aborted.

• Section 2.5.2 defines a store-and-forward model for intermediaries. When applied to large
messages, the delays in transfer of these messages may be unacceptable.

This specification defines multiple new mechanisms to transfer large ebMS SOAP messages that
extend the ebMS 3.0 Core Specification and are compatible with the ebMS bundling and intermediary
features:

• Transport restart. This is provided for the HTTP protocol and the “push” MEP binding using
the AS2 restart feature described in section 6.4.3 . This feature does not support “pull”
messaging. It is well-suited to point-to-point, push messaging. It can also be used in multi-hop
messaging to transmit (push using HTTP) large messages from an MSH to the next MSH.

• Transfer of a large message by splitting the message and transmitting it as a set of smaller
SOAP messages. This is described in this chapter. This feature supports both push and pull
messaging, and limits transfer delays when using store-and-forward intermediaries.

4.2 Message Splitting and Joining
This chapter specifies a protocol for transmitting a large SOAP-rooted, MIME Multipart/Related
message as a set of SOAP message fragments. The protocol can be used with other SOAP protocols
for security, addressing, reliable messaging and with ebMS. An implementation of the protocol
operates as a discrete module in a SOAP processing pipeline. The protocol defines how and when a
sending MSH splits a message in fragments and how a receiving MSH reassembles the message
from its fragments in an interoperable way. The protocol is similar to some HTTP 1.1 features, in
particular to chunked transfer coding and compressed content coding, but is applied at the SOAP
message level. It supports asynchronous messaging in multi-hop connections and supports both
SOAP-with-attachments [SOAPATTACH]and Message Transmission Optimization Mechanism
[MTOM].

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 54 of 126

While the protocol can be used with other Web Services profiles, the main goal is to support transfer
of large ebMS messages. Its main benefits in that context are:

• Support for both push and pull message exchange (the AS2 restart feature of 6.4.3 is limited
to push exchanges);

• Support for HTTP and SMTP transport protocols.

• Reliable messaging is leveraged to transmit (and, if needed, retransmit or eliminate duplicates
of) fragments;

• The upper bound of the delay caused by a store-and-forward intermediary and the temporary
storage space needed by such an intermediary are proportional to the fragment size, rather
than to the message size.

• Fragments can be routed individually through a multi-hop network. Fragments may follow
different paths from sender to recipient. If one intermediary fails and traffic is re-routed via an
alternative route, only the undelivered fragments need to be resent.

• The protocol can be used with the ebMS message bundling feature of chapter 3 .

• An optional compression option is provided.

4.2.1 Splitting/Joining Protocol
The splitting/joining protocol is an optional protocol that is intended to be used in a SOAP processing
pipeline with other SOAP modules. The protocol consists of two related operations:

• As an extension to SOAP message sending, a message splitting operation splits a large
message into multiple fragments, wrapping each fragment in a separate SOAP message with
a MessageFragment header extension element. These messages are further processed
individually in the SOAP pipeline, causing the sending MSH to emit multiple SOAP output
messages for a single submitted message.

• As an extension to SOAP message receiving, the presence of a MessageFragment header
element is an indication that the content of the message is part of a larger message.
Processing of the SOAP message is halted, until all related fragments are received. The
fragmented message parts are re-assembled and joined into a single larger message. The
receiving MSH then continues to process this larger message.

We will refer to the input of the splitting protocol (and the output of the joining protocol) as the “source
message”, and to the output of the splitting protocol (and the input of the joining protocol) as the “result
fragments”.

The following diagram illustrates the layering of SOAP services. Some services are higher-level than
the splitting/joining protocol and some are lower-level services. Within a processing pipeline, the
splitting protocol can be positioned relative to other SOAP protocols depending on specific
requirements. For instance, if WS-Security is used as a higher level service to sign and encrypt
messages, signatures of incoming messages can only be validated when all fragments are received
and the larger message is reassembled. If WS-Security is used as the lower level service, each
fragment can be processed as it comes in, but the number of security operations to perform
increases.

When used in combination with higher level SOAP modules, these modules may require additional
binding or configuration, such as adding specific SOAP headers, in addition to the
MessageFragment header. Section 4.4.1 specifies such additional requirements for WS-Addressing,
and section 4.4.2 specifies a default binding for ebXML Messaging version 3.0. Other Web Services
protocols or profiles could similarly define such requirements as bindings.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 55 of 126

4.2.2 MessageFragment
Figure 16: MessageFragmentType shows the structure of the MessageFragment schema type
definition.

The required attribute href identifies the MIME part containing the message fragment.

The attribute groups S11atts and S12atts define the SOAP 1.1 and 1.2 attributes. These express
how SOAP processors process MessageFragment structures.

The following elements are in MessageFragment:

• GroupId identifies a set of related messages and specifies that these messages are
fragments derived from the same single source message. The value of GroupId MUST be a
globally unique string.

• The optional MessageSize element indicates the size (in bytes) of the message after
reassembly. An MSH can use this to compute status information about a message that is
being received, such as the percentage of data that has been received, and the amount of
storage space needed to receive the message.

• FragmentCount indicates the number of fragments that a message has been split into. A
receiving MSH can use this to determine if it has received all fragments in a group. At least
one fragment must specify fragment count. This supports an implementation model where the
splitter function works in streaming mode or at the end of a pipeline, and the number of
fragments is not known until the last part of the message is processed.

• FragmentNum identifies a single fragment within a group. Its value is an integer, 1 ≤
FragmentNum ≤ FragmentCount.

• MessageHeader is a container with information related to the envelope of the source
message. Its content is described in section 4.2.3 .

• Action is the value of the SOAP 1.1 SOAPAction header or the SOAP 1.2 action
parameter.

• The optional CompressionAlgorithm and UncompressedMessageSize elements are
defined in section 4.2.4 .

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 56 of 126

Figure 15: Splitting and joining stages in a SOAP pipeline

4.2.3 Binding for Envelope Formats
The content of the MessageHeader element is displayed in Figure 17: Message Header. It contains
the information from the source message header that needs to be preserved in order to correctly
reassemble the MIME enveloped SOAP message in the receiving MSH.

The following elements are contained in MessageHeader:

• Content-Type: the content type of the source message envelope. The fixed value of this
optional element is Multipart/Related.

• Boundary: the boundary separating the MIME parts in the source message envelope.

• Type: the value of the type parameter.

• Start: the value of the start parameter. This identifies the first MIME part in the MIME
envelope that contains the SOAP envelope of the source message, without the “<” and “>”
delimiters.

• StartInfo: the value of the startinfo parameter as used in MTOM.

• Content-Description: the optional description of the MIME envelope.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 57 of 126

Figure 16: MessageFragmentType

To explain the semantics of the splitting and joining operations, we describe these operations as
format transformations. The splitting operation in the sending MSH can be viewed as an operation on
a MIME envelope that extracts values from the MIME header to build the MessageFragment
element. The joining operation in the receiving MSH can be viewed as an operation that constructs a
MIME envelope from a MessageFragment element. Note that SOAP processors may use optimized
internal data structures for messages and may not serialize messages that are exchanged between
SOAP modules for efficiency. This specification does not assume a particular processing or internal
data structures and the transformation analogy does not require implementations to use MIME
envelopes as interface formats.

As an example, we use the following example from the ebMS 3.0 Core Specification:
SOAPAction: leasing
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
 start="<car-data@cars.example.com>"

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <car-data@cars.example.com>

<?xml version='1.0' ?>
<S11:Envelope xmlns:S11="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:eb="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/">
 <S11:Header>
 <eb:Messaging S11:mustUnderstand="1">
 …
 <eb:PayloadInfo>
 <eb:PartInfo href="cid:car-photo@cars.example.com" />
 <eb:PartInfo href="#carData" />
 </eb:PayloadInfo>
 </eb:Messaging>
 </S11:Header>

 <S11:Body>
 <t:Data id="carData" xmlns:t="http://cars.example.com">
 <t:Mileage>20000</t:Mileage>
 <t:OwnerPicture href="cid:picture-of-owner@cars.example.com"/>
 </t:Data>
 </S11:Body>
</S11:Envelope>

--MIME_boundary

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 58 of 126

Figure 17: Message Header

Content-Type: image/tiff
Content-Transfer-Encoding: binary
Content-ID: <car-photo@cars.example.com>

...binary TIFF image of the car...
--MIME_boundary—
Content-Type: image/tiff
Content-Transfer-Encoding: binary
Content-ID: <picture-of-owner@cars.example.com>

...binary TIFF image of the car's owner...
--MIME_boundary—

Assuming the message will be split in two fragments, the first MessageFragment could look like the
following:

 <mf:MessageFragment
 href="cid:3ec80b70-c6d0-4e39-89ee-
d45da8b82859@cars.example.com">
 <mf:GroupId>fa053eaf-47ed-4862-b70b-e5acbd94061a</mf:GroupId>
 <mf:FragmentCount>2</mf:FragmentCount>
 <mf:FragmentNum>1</mf:FragmentNum>
 <mf:MessageHeader>
 <mf:Content-Type>Multipart/Related</mf:Content-Type>
 <mf:Boundary>MIME_boundary</mf:Boundary>
 <mf:Type>text/xml</mf:Type>
 <mf:Start>car-data@cars.example.com</mf:Start>
 </MessageHeader>
 <mf:Action>leasing</mf:Action>
 </mf:MessageFragment>

4.2.4 Compression Feature
This protocol provides optional support for MIME envelope compression. Compression is applied to
the source message (prior to splitting) and decompression is applied to the concatenated content of
the assembled fragment messages (after joining). Therefore either all fragment messages contain
compressed data or none.

• Use of compression is specified by presence of a CompressionAlgorithm element with
value of type CompressionAlgorithmType. The values gzip, compress, deflate
and identity MUST be interpreted as encoding transformations as defined in the section
3.5 of [HTTP11]. The supported compression algorithm is an agreement feature (section 4.5).

• The element CompressedMessageSize specifies the size (in bytes) of the compressed
SOAP message.

The following summarizes the differences between the compression feature and other mechanisms to
reduce file size:

• SOAP-with-attachments and Message Transmission Optimization Mechanism (MTOM)
optimize transfer of base64Binary data as binary attachments when using the HTTP
protocol. The compression feature applies to the entire MIME envelope, including SOAP and
MIME part headers and any text or binary payload content.

• AS4 compression applies to an individual payload. The compression feature may be more
effective in case of a message containing multiple payloads.

• The splitting/joining protocol requires each fragment to carry a SOAP header that contains the
MessageFragment element and possibly additional SOAP headers. This increases the
amount of data to be transmitted.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 59 of 126

4.3 Behavior of the MSH
This section specifies the behavior of the sending MSH and the receiving MSH.

4.3.1 Behavior of the Sending MSH
The sending MSH operates the splitting function. Splitting is as an operation that:

• Uniquely identifies the group of related message fragments and sets the GroupId element
accordingly. (Profiles MAY specify how the identification is done; section 4.4.2 describes this
for ebMS 3.0).

• Removes the MIME header from the source message and extracts the relevant metadata
needed to be able to construct the MessageHeader header and Action elements as
described in section 4.2.3 .

• Optionally applies compression as specified in section 4.2.4 and 4.5 and sets the
CompressionAlgorithm and CompressedMessageSize elements accordingly.

• Splits the remaining message in contiguous parts. Note that this is a splitting operation that
considers the MIME envelope as a byte stream. It is unaware of the MIME structure of the
source message. A single MIME part from the source message may start in one fragment,
continue in another and end in a third part. A fragment may contain a complete MIME part,
part of one, the end of one part and the beginning of the next, etc.

• Builds new SOAP messages, one for each fragment.

◦ If the source message is a SOAP with attachment message, the SOAP message
containing the fragment will also be a SOAP with attachments message. An MTOM
source message will result in an MTOM fragment message. The SOAP envelope versions
in the source message and the SOAP envelope for each of the fragments MUST also
match, so a SOAP 1.2 source message results in SOAP 1.2 SOAP fragment messages.

◦ The Content-Type of the MIME part containing the SOAP envelope will be text/xml
for SOAP with attachments messages and application/xop+xml for MTOM
messages.

◦ The MIME boundary and Content-Id of the SOAP root part in the SOAP message of
the fragment MUST be unique and MUST differ from the corresponding values in the
source message. The range of data from the source message that is included in the
fragment MUST be inserted as a single MIME part, immediately following the part
containing the SOAP envelope.

◦ The Content-Type of the data part MUST be set to application/octet-stream.

◦ The MSH MUST NOT insert any MIME part other than these two MIME parts.

◦ The root SOAP Body element MUST have empty content.

◦ The SOAP envelope MUST contain a MessageFragment header. If the SOAP
message is split into just one fragment (i.e. is not really split at all), the values for
FragmentCount and FragmentNum are both 1. If there are two fragments,
FragmentCount is 2 and one fragment message has FragmentNum at 1 and the other
at 2, and so on.

◦ The MSH MUST provide a value for the href attribute of the MessageFragment in the
SOAP envelop that identifies the data part using its content identifier.

◦ Additional SOAP headers MAY be added, for instance to support message routing. This
higher-level functionality is dependent on the other SOAP modules, such as WS-
Addressing or ebMS (see sections 4.4.1 and 4.4.2).

• Continue, for each of these generated SOAP messages, processing them using the lower
level SOAP modules.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 60 of 126

As an example, here is a hypothetical generated first MIME part for the ebMS example message. It
contains the first part of the source message. The entire SOAP envelope, and the beginning of the first
TIFF image fit in the first fragment. Note that the MIME boundary of the source message is just text
data in the fragment.

SOAPAction: leasing
Content-Type: Multipart/Related; boundary=37b648b1-44af-459f-a533-
bbf8ed6a93be; type=text/xml; start="<f19aff62-8983-47f5-bc36-
514741203fe2@cars.example.com>"

--37b648b1-44af-459f-a533-bbf8ed6a93be
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <f19aff62-8983-47f5-bc36-514741203fe2@cars.example.com>

<?xml version='1.0' ?>
<S11:Envelope
 xmlns:S11="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:mf="http://docs.oasis-open.org/ebxml-msg/ns/v3.0/mf/2010/04/">
 <S11:Header>
 <mf:MessageFragment
 href="cid:3ec80b70-c6d0-4e39-89ee-
d45da8b82859@cars.example.com">
 <mf:GroupId>fa053eaf-47ed-4862-b70b-e5acbd94061a</mf:GroupId>
 <mf:FragmentCount>2</mf:FragmentCount>
 <mf:FragmentNum>1</mf:FragmentNum>
 <mf:MessageHeader>
 <mf:Content-Type>Multipart/Related</mf:Content-Type>
 <mf:Boundary>MIME_boundary</mf:Boundary>
 <mf:Type>text/xml</mf:Type>
 <mf:Start>car-data@cars.example.com</mf:Start>
 </mf:MessageHeader>
 <mf:Action>leasing</mf:Action>
 </mf:MessageFragment>
 <!-- OTHER HEADERS OMITTED, SEE SECTION 4.4.2 -->
 </SS:Header>
 <S11:Body />
</S11:Envelope>

--37b648b1-44af-459f-a533-bbf8ed6a93be
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-ID: <3ec80b70-c6d0-4e39-89ee-d45da8b82859@cars.example.com>

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <car-data@cars.example.com>

<?xml version='1.0' ?>
<S11:Envelope xmlns:S11="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:eb="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/">
 <S11:Header>
 <eb:Messaging S11:mustUnderstand="1">
 …
 <eb:PayloadInfo>
 <eb:PartInfo href="cid:car-photo@cars.example.com" />
 <eb:PartInfo href="#carData" />
 </eb:PayloadInfo>
 </eb:Messaging>
 </S11:Header>

 <S11:Body>
 <t:Data id="carData" xmlns:t="http://cars.example.com">
 <t:Mileage>20000</t:Mileage>
 <t:OwnerPicture href="cid:picture-of-owner@cars.example.com"/>
 </t:Data>
 </S11:Body>
</S11:Envelope>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 61 of 126

--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: binary
Content-ID: <car-photo@cars.example.com>

... BEGINNING of the data for the binary TIFF image of the car ...
--37b648b1-44af-459f-a533-bbf8ed6a93be

4.3.2 Behavior of Receiving MSH
A receiving MSH that receives SOAP message containing a MessageFragment element MUST
process this as follows:

• Extract the value of GroupId and FragmentNum. Based on the value of GroupId, the MSH
may classify the fragment message as the first fragment for a new message transfer, or a
fragment in a group for which other fragments were previously received.

◦ If the fragment is part of a group for which a previously received fragment was rejected,
the fragment message is rejected.

◦ If a fragment message with the same values for GroupId and FragmentNum was
previously received, the message is rejected and all data from previously received
fragments for the group is deleted.

◦ If the FragmentCount is specified or known from previously received fragment and
FragmentNum is greater than it, the message is rejected.

◦ Otherwise, the message fragment data is extracted and stored, indexed on GroupId
and FragmentNum. A counter counting the number of received fragments is (initialized
at 0 if not yet set and) incremented. The storage in use to hold the fragment data related
to the group is (initialized at 0 if not yet set and) incremented.

• If FragmentCount is specified then, if no previously received fragment specified a value for it
and no previously received fragment for the group had a greater value for FragmentNum, the
value is recorded for GroupId. Otherwise the message is rejected.

• If the size of the MIME data part exceeds the specified maximum, the message is rejected.

• If CompressedMessageSize is specified then, if no previously received fragment specified a
value for this element, the value is recorded for GroupId. Otherwise, the message is rejected
and an error generated. Based on the value of the element, the amount of data related to the
group already received and persisted and the anticipated need for additional storage, the MSH
MAY reserve storage space to store data from the fragment messages that are yet to be
received. The MSH MAY be able to determine whether it has sufficient space to receive the
complete message and MAY reject the message if this is not the case.

• This is done similarly for MessageSize.

• If the fragment message is accepted, the data content MIME part MUST be extracted and
persisted. The SOAP header part serves no further purpose and MAY be deleted.

• If the message fragment that is received is the last fragment in a group, the message
fragments are reassembled. If the message is compressed, it MUST be decompressed

• The corresponding values of the eb3:UserMessage header are compared and MUST
match.

• The message is processed as if the message was received as a single large message, with
the relevant MIME parameters taken from the MessageFragment group.

In all situations where a message is rejected, an error is generated and all data related to the
GroupId is removed. The MSH MUST record the value for GroupId with status rejected and reject
any subsequent fragments with this GroupId.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 62 of 126

For security reasons the receiving MSH MAY identify fragment sets and messages on more values
than just the value of GroupId. See section 4.7 for discussion.

4.4 Protocol Bindings
Higher-level protocols may require specific additional behaviour of a message splitting / joining
processor. This section defines default bindings for WS-Addressing [WSADDRCORE] and ebMS 3.0
[EBMS3CORE].

4.4.1 Binding for WS-Addressing
When using this protocol in combination with WS-Addressing, the following WS-Addressing headers
MUST be copied to the SOAP header of the SOAP fragment message. This includes:

• wsa:To, wsa:Action, wsa:RelatesTo headers.

• Any WS-Addressing headers targeted to the http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh role.

• Any WS-Addressing headers targeted to other SOAP role that are used for routing purposes.

The wsa:MessageId MUST NOT be copied. If the source message contains a wsa:MessageId,
distinct unique WS-Addressing Message IDs MUST be generated for and inserted in all fragment
messages.

4.4.2 Binding for ebXML Messaging
This subsection specifies a default binding of ebMS 3.0 to the message splitting/joining protocol. The
following is specified:

• Application of the splitting/joining protocol is controlled by Processing Mode parameters (see
section 4.5), not (just) by message size.

• The MessageFragment element is targeted to the SOAP ultimate receiver and MUST be
understood. Intermediaries do not split messages or join fragments.

• Splitting and Joining is a higher-level SOAP module than ebMS pull authorization; i.e. pull
requests MUST be properly authorized, based on P-Mode configuration, and return SOAP
message fragments.

• When an ebMS message is split and separate fragment messages are sent, then the
processing mode parameters for WS-Security and reliable messaging apply at the level of
fragments, not at the level of the source message. Message fragments are individually
secured and sent reliably. Message acknowledgments, retries and duplicate elimination apply
at the level of message fragments.

• The content of the eb3:Messaging MUST be copied from the source message to the SOAP
header carrying the fragment messages, with the following exceptions:

◦ If more than one user message is present, only the first user message is used to
construct the fragment envelope, with the following exceptions:

▪ The eb3:MessageId MUST be reset to a new, unique value.

▪ Any eb3:PayloadInfo elements are not copied.

◦ Any eb3:SignalMessage elements are not copied.

◦ Only properties specified (in Pmode[].Splitting.RoutingProperties) as needing to be
copied are copied, with unmodified values. (Some properties may be used to route
messages, or for selective pulling).

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 63 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh

• The joining protocol reassembles fragments in groups based on sequence number. It is not
needed to use InOrder delivery as the joining MSH will rearrange the data parts as
appropriate.

• Messages containing eb3:PullRequest signals MUST never be split.

• An MSH SHOULD use the value of eb3:MessageId as the value of GroupId to support
monitoring and message tracking.

• If the channel binding of the P-Mode has the value Pull and the message is split into multiple
fragments, then each of the fragments is pulled individually. The pull request is authorized for
messages split in fragments using the same parameters as for messages that are not split.
The order in which a sending MSH releases fragments in response to pull requests is
undefined. A sending MSH MAY release the fragment messages in ascending order.

• The message splitting and joining protocol is constrained to asynchronous communication.
Therefore the following constraints on binding of response messages apply:

◦ The value for Pmode.MEPBinding MUST NOT be “sync”.

◦ The value for Pmode.ErrorHandling.Report.AsResponse MUST NOT be “True”.

◦ The value for Pmode[1].Reliability.AtLeastOnce.ReplyPattern MUST NOT be
“Response”.

◦ The value for Pmode[1].Security.SendReceipt.ReplyPattern MUST NOT be
“Response”.

Splitting and bundling relate to other ebMS functionality as follows:

• Bundling and message splitting may seem to exclude each other. After all, unbundled user
messages are smaller than bundled messages. However, there are situations where it may
make sense to first bundle and then split. For example, if in some context a message
fragment size of 500 KB is considered optimal, and there are six user messages to be sent,
one of 700 KB and five messages of 25 KB each, then these could be bundled in one large
message, then split into two fragments.

• The AS4 compression feature is defined in the AS4 profile. This AS4 feature applies
compression to a single payload. The optional compression feature of the splitting/joining
protocol applies to the complete MIME envelope. So it may be more effective in situations
where the source message contains a large number of small payloads, in particular XML
documents based on a common vocabulary.

To generate a receipt acknowledgment for non-repudiation, the receiving ebMS module needs to
compute hash values for the payload parts (and sign them). This differs from regular ebMS
processing, where the NRR module can reuse the computed digests from the WS-Security module
(validated by that module).

The following diagram shows how splitting/joining fits in the SOAP protocol hierarchy with selected
ebMS functional layers, security and reliability.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 64 of 126

Other bindings to ebMS 3.0 than the binding specified in this section are conceivable and MAY be
specified in other conformance profiles.

4.5 Configuration
The following processing mode parameter control the message splitting/joining protocol:

• Pmode[].Splitting: if present, indicates that messages sent using this P-Mode can be split.

• Pmode[].Splitting.FragmentSize: maximum size of fragments.

• Pmode[].Splitting.RoutingProperties: a list of message properties that a sending MSH
SHOULD copy to the fragment SOAP header.

• Pmode[].Splitting.Compression: If present, indicates that the message must be
compressed before splitting.

• Pmode[].Splitting.Compression.Algorithm: Indicates which compression algorithm to use.

• Pmode[].Splitting.JoinInterval: Specifies the maximum time to expect and process
additional fragments after the first fragment is received

4.6 Errors
An MSH MUST generate errors related to the splitting/joining of fragments in a number of situations.
The splitting/joining protocol is typically applied as part of a higher-level standard or profile like ebMS,
and any errors in the protocol are escalated to this higher level. The following table defines the errors
and maps them to ebMS 3.0 errors.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 65 of 126

Figure 18: MSH functional layers

Error Code Short Description Recommended
Severity

Category
Value

Description or Semantics

EBMS:0040 BadFragmentGroup failure Content A fragment is received that
relates to a group that was
previously rejected.

EBMS:0041 DuplicateMessageSize failure Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for this element.

EBMS:0042 DuplicateFragmentCount failure Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for this element.

EBMS:0043 DuplicateMessageHeader failure Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for this element.

EBSMS:0044 DuplicateAction failure Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for this element.

EBMS:0045 DuplicateCompressionInfo failure Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for a compression
element.

EBMS:0046 DuplicateFragment failure Content A fragment is received but a
previously received fragment
message had the same values
for GroupId and FragmentNum

EBMS:0047 BadFragmentStructure failure Unpackaging The href attribute does not
reference a valid MIME data
part, MIME parts other than the
fragment header and a data part
are in the message. are added
or the SOAP Body is not empty.

EBMS:0048 BadFragmentNum failure Content An incoming message fragment
has a a value greater than the
known FragmentCount.

EBMS:0049 BadFragmentCount failure Content A value is set for
FragmentCount, but a
previously received fragment
had a greature value.

EBMS:0050 FragmentSizeExceeded warning Unpackaging The size of the data part in a
fragment message is greater
than
Pmode[].Splitting.FragmentSi
ze

EBMS:0051 ReceiveIntervalExceeded failure Unpackaging More time than
Pmode[].Splitting.JoinInterval
has passed since the first
fragment was received but not
all other fragments are received.

EBMS:0052 BadProperties warning Unpackaging Message properties were
present in the fragment SOAP

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 66 of 126

Error Code Short Description Recommended
Severity

Category
Value

Description or Semantics

header that were not specified
in
Pmode[].Splitting.RoutingPro
perties

EBMS:0053 HeaderMismatch failure Unpackaging The eb3:Message header
copied to the fragment header
does not match the
eb3:Message header in the
reassembled source message.

EBMS:0054 OutOfStorageSpace failure Unpackaging Not enough disk space
available to store all (expected)
fragments of the group.

EBMS:0055 DecompressionError failure Processing An error occurred while
decompressing the
reassembled message.

4.7 Security Considerations
The join operation combines data received in different message fragments into a larger message,
based on a shared value for GroupId. When the splitting and joining operations apply at a higher
level in the SOAP stack than WS-Security, as in the binding for ebXML Messaging described in
section 4.4.2 and message fragments received from different senders use the same GroupId, data
from different senders will be merged. This is a vulnerability that can be addressed in the following
way:

• Sender and Receiver SHOULD only configure Pmode[].Splitting for processing modes that
provide secure transmission of the GroupId value, by using transport level encryption,
trusted intermediaries and/or by encrypting the MessageFragment SOAP header.

• The sending MSH SHOULD generate unpredictable, random, sufficiently long values for
GroupId and SHOULD prevent parties other than the receiving MSH to determine which
values are used.

• The receiving MSH SHOULD use distinct value spaces for different Sender MSHs and index
and correlate message fragments on a pair <eb3:Messaging//eb3:From/eb3:PartyId,
mf:MessageFragment/GroupId> rather than on GroupId only.

Profiles of this specification MAY use WS-SecureConversation [WSSC14] to minimize the security
overhead of processing fragment messages as separate SOAP messages.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 67 of 126

5 Variants in Message Exchange Patterns
Execution

This chapter defines variants in executing MEPs associated with a P-Mode, which require
implementing new features in an MSH.

5.1 Selective message pulling
Selective pulling consists of pulling only from a subset of messages posted on an MPC, as defined by
some common attribute value in their message header. Selective pulling is not intended as a general
querying mechanism over message content. It is only intended to support the most common cases of
message selection, e.g. selecting messages that belong to the same conversation (i.e. with same
eb3:ConversationId value) or messages that are responses to some previous requests (i.e.
with a particular eb3:RefToMessageId value). The selection feature is limited to a set of such
header elements, and is limited to exact value match (i.e. no sub-string comparison or relational
operators).
In selective pulling, the eb3:PullRequest element has one or more child element(s) that can be any
from a subset of those elements used under the eb3:UserMessage or eb3:SignalMessage
elements.
For example, a Signal message containing the following eb3:PullRequest element will only pull a
message (either User message or a Signal message such as a Receipt or and Error) that has an
eb3:MessageInfo/eb3:RefToMessageId element with value equal to
'11223344@initiator.example.com':

<eb3:SignalMessage>
 <eb3:MessageInfo>
 <eb3:Timestamp>2010-07-25T12:19:05</eb3:Timestamp>
 <eb3:MessageId>UUID-2@initiator.example.com</eb3:MessageId>
 </eb3:MessageInfo>
 <eb3:PullRequest mpc="http://msh.example.com/mpc123">
 <eb3:RefToMessageId>11223344@initiator.example.com</eb3:RefToMessageId>
 </eb3:PullRequest>
</eb3:SignalMessage>

The elements that can be used as children of eb3:PullRequest are called selection items. A Pull
signal containing selection items is called a selective Pull signal. Selection items are named after
corresponding message header elements. Only a subset of header elements are eligible as selection
items. Two categories of selection items are considered: (a) simple selection items: these are
elements without children, (b) complex selection items: these are elements with children.

1. Simple selection items:
• eb3:RefToMessageId element
• eb3:ConversationId element
• eb3:AgreementRef element
• eb3:Service element
• eb3:Action element

The selection semantics of such items is: messages from the targeted MPC will be pulled only if they
contain a header element matching exactly the selection item. For example, the selection item:
<eb3:Service>QuoteToCollect</eb3:Service> will not select a message containing:
<eb3:Service type="MyServiceTypes">QuoteToCollect</eb3:Service> due to a
mismatch on the @type attribute.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 68 of 126

2. Complex selection items:
• eb3:From element element: this item may contain one or more eb3:PartyId elements

and at most one eb3:Role element. The selection semantics is that only messages with
eb3:PartyInfo/eb3:From containing the same elements (including attributes values if
any) as those under this selection item - or a superset of these - will be pulled.

• eb3:To element element: this item may contain one or more eb3:PartyId elements,
and at most one eb3:Role element. The selection semantics is that only messages with
eb3:PartyInfo/e3b:To containing the same elements (including attributes values if any)
as those under this selection item - or a superset of these - will be pulled.

• eb3:MessageProperties element: this item may contain one or more eb3:Property
elements. The selection semantics is that only messages that have a property set
eb3:MessageProperties containing the set of eb3:Property elements under this item,
with specified values, will be pulled. Note that both @name attribute value and element value
must be matched.

Any combination of above selection items (complex and simple) can be used as immediate children of
eb3:PullRequest: such combination has the semantics of a boolean conjunction.
The MSH receiving a selective eb3:PullRequest MUST either:
(a) return a message assigned to the same @mpc that successfully matches the contained selection
items as described in above selection semantics, or:
(b) return error EBMS:0006 (EmptyMessagePartitionChannel) if no message is currently assigned to
this MPC , that matches the selection items in (a).

5.2 Alternate MEP bindings
Sometimes messaging partners want more flexibility than using just one MEP transport channel
binding for message exchanges governed by a P-Mode. This section defines the "alternate MEP"
feature allowing such flexibility, often by involving the pulling mechanism.

An example of such a flexibility requirement is when a Two-Way / Sync exchange cannot be honored
by the responding MSH due to the application layer (Consumer of the request message) taking too
long in producing the response. In this case, it is convenient to allow the initiating MSH to pull the
response message later, effectively shifting the MEP of this exchange from a tentative Two-Way /
Sync to an actual Two-Way / Push-and-Pull exchange. The latter is called an alternate (or "fall-back")
MEP for the P-Mode governing the exchange, while the initially defined MEP (here the Two-Way /
Sync) is the "preferred" MEP in the P-Mode.

This specification is restricting the alternate MEPs to only concern cases where:

• The preferred MEP is a Two-Way MEP.

• Alternates do not modify the way the Request message is transmitted but only modify the way
the Response message is bound to the underlying channel.

• Not more than one alternate MEP binding is defined in a P-Mode, besides the preferred MEP
binding.

In order to support this feature, the following new P-Mode parameters are defined:

• PMode.MEPbinding.Alternate: defines the alternate transport channel binding for the MEP
defined in PMode.MEP. For example, http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/pushAndPull is an alternate channel binding for a
Two-Way MEP where the preferred channel binding is: http://docs.oasis-
open.org/ebxml-msg/ebms/v3.0/ns/core/200704/sync.

• PMode[1].BusinessInfo.MPC.Alternate: The value of this parameter is the identifier of the
MPC (Message Partition Channel) to which the message sent using the alternate MEP is
assigned. It maps to the attribute eb3:Messaging/eb3:UserMessage/@mpc. This

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 69 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/sync
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/sync
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pushAndPull
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pushAndPull

parameter is optional even when an MEPbinding.Alternate has been defined: in that case, the
response is assigned to the same MPC regardless of its MEP binding (preferred MEP or
alternate MEP).

• Other parameters already defined MUST be used for supporting the alternate MEP binding,
when applicable. For example, when the alternate MEP binding introduces pulling, parameters
such as PMode[].Security.PModeAuthorize and PMode.Initiator.Authorization, are to be
used for governing the authorization of pulling in the alternate MEP binding.

In order to support the alternate MEP binding feature, both an initiating MSH and a responding MSH
MUST understand these P-Mode parameters.

A Responding MSH MUST take the initiative of indicating its use of the alternate MEP binding, by
sending an Error signal with code EBMS:0060 "ResponseUsingAlternateMEP" instead of a response
message, when responding to a request message. For example, shifting from a Two-Way / Sync MEP
binding to a Two-Way / Push-and-Pull MEP binding will be indicated by sending back an EBMS:0060
Error signal synchronously referring to this request, instead of the actual response to the request. The
responding MSH MUST then transmit the actual response message on the alternate MPC (either
push or pull, depending on the alternate MEP binding definition) when this response is available from
its Producer application.

An Initiating MSH MUST accept responses over alternate MPCs when notified with EBMS:0060
"ResponseUsingAlternateMEP" signal, and MUST take the initiative of pulling these responses in case
the alternate MEP defines a Pull mode for the response. In such case, the Initiating MEP MAY pull the
response using selective pulling based on the simple selective item eb3:RefToMessageId, using
the value of eb3:MessageId in the request.

When using an alternate MEP with the same MPC as specified for the preferred MEP, the message
header eb3:Messaging will be same regardless which MEP is used.

When using an alternate MEP to send a response message, the same reliable messaging features
and security features apply as for the preferred MEP.

In case both MEP bindings use the same MPC and when reliable messaging for responses is required
by the P-Mode, a Responding MSH SHOULD send a response over the same reliable messaging
sequence regardless which MEP (preferred or alternate) is used for this P-Mode, In other words, the
entire SOAP header of a response message should not vary whether the message is sent using
preferred or alternate MEP over the same MPC.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 70 of 126

6 Processing Mode Extensions

6.1 Overview
The ebMS 3.0 Core Specification [EBMS3CORE] defines a core set of processing mode parameters
that were deemed essential to support the implementation of the ebMS 3.0 OASIS Standard. The
parameters do not form an exhaustive set as profiles and extensions may require additional
parameters to be agreed upon. This chapter extends this set of P-Mode parameters with parameters
needed to support the extended functionality defined in this specification and other parameters that
ebMS 3.0 implementers have found to be useful. It references additional P-Mode parameter defined in
the AS4 profile [AS4]. It also describes any additional values or distinct semantics of parameters
compared to the Core Specification. This section follows the grouping of parameters in the ebMS 3.0
Core Specification, where new parameters are added to existing groups.

6.2 Pmode[1].Addressing
The multihop protocol uses an Addressing group containing an Endpoint Reference group, defined in
section 2.7.1

• Addressing.Address

• Addressing.EPR.RoutingInput

• Addressing.EPR.RoutingInput.Initiator.Party

• Addressing.EPR.RoutingInput.Initiator.Role

• Addressing.EPR.RoutingInput.Responder.Party

• Addressing.EPR.RoutingInput.Responder.Role

• Addressing.EPR.RoutingInput.BusinessInfo.Service

• Addressing.EPR.RoutingInput.BusinessInfo.Action

• Addressing.EPR.RoutingInput.BusinessInfo.Properties

• Addressing.EPR.RoutingInput.BusinessInfo.MPC

• Addressing.Action

6.3 Pmode.MEPBinding
This specification defines an extension to the MEPBinding P-Mode to use HTTP pipelining.

6.3.1 HTTP Pipeline Capability
HTTP/1.1 [HTTP11] specifies that clients and servers may coordinate requests and responses by
“pipelining” requests over a single open TCP connection subject to two basic constraints:

• A client must be able to send multiple requests before receiving HTTP responses for those
requests.

• A server must return responses to requests in the same order that the requests have been
received.

The capability to engage in a MEPbinding that uses pipelining is indicated by setting
PMode.MEPbinding.Pipelining to “true”.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 71 of 126

For MEPbindings involving HTTP 1.1, the default value for this parameter is “false.” HTTP 1.1 is
currently the only protocol binding substrate supporting pipelining semantics, though other protocols
may emerge with an option to support the basic constraints.

6.3.2 EbMS MEPs and Pipelining
The HTTP/1.1 protocol session always consists of a request to apply a specific method to a URI-
specified resource. A response always includes a status code. In either case, the protocol data unit
(“message”) can contain various headers and a message “entity,” which has a MIME structure.

ebMS has two P-Mode parameters, the PMode.MEP and the PMode.MEPbinding. The
PMode.MEPbinding value indicates how the PMode.MEP is accomplished within an application
transfer protocol, such as HTTP/1.1.

When used in combination with HTTP, the MEPbindings reflect various kinds of entities that can
appear within an HTTP/1.1 request/response pair. The pull MEPbinding , http://docs.oasis-
open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pull, creates the expectation that the request
contains a Pull signal message and the HTTP response may contain an ebMS user message.

While pipelining might be used for any of the ebMS-specified MEPbindings, the HTTP/1.1
specification contains several cautions.

First, the specification advises “Clients SHOULD NOT pipeline requests using non-idempotent
methods or non-idempotent sequences of methods (see section 9.1.2).” Most ebMS MEPBindings
use HTTP POST method requests, which are not generally regarded as idempotent. However,
normally each POST method request carries a distinct MIME entity. Exceptions would include retries
or resending and several other situations, such as a Pull signal. A sequence of Pull signals (using the
same MPC) would not be idempotent because normal operation would yield distinct results for the
same Pull signal (unless the MPC is empty and they all return the error signal for an empty MPC.

For the non-idempotent cases, if they are pipelined, clients SHOULD wait for the return of a status
code before posting the next message.

A more practical limitation on pipelining pertains to the SYNC MEPbinding. Because an ebMS user
message in an HTTP response may involve obtaining data from internal applications, unpredictable
latencies in response time are common. For this reason, pipelining support may be withdrawn for
certain MEPbindings because of end user deployment constraints, even though the capability for
pipelining is present in the MSH.

6.3.3 ebMS Alternate MEPs
The P-Mode parameter indicating an MEP alternate is:

• PMode.MEPbinding.Alternate: defines the alternate transport channel binding for the MEP
defined in PMode.MEP. It takes values similar to those in PMode.MEP. For example,
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pushAndPull is an alternate
channel binding for a Two-Way MEP where the preferred channel binding is:
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/sync.

6.4 Pmode[1].Protocol
This specification adds P-Mode parameters for transport security, controlling the SOAP actor or role
attributes, and large file handling based on protocol restarts.

6.4.1 Transport Security
In many deployments of ebMS 3.0, transport layer security will be used in addition to (or instead of)
SOAP-based security mechanisms like WS-Security [WSS10],[WSS11]or WS-SecureConversation
[WSSC14]. The following parameters have been added to express transport layer security

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 72 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/sync
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pushAndPull
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pull
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pull

agreements. They have been modeled after corresponding elements in [ebCPPA 3.0]. Conformance
profiles MAY further constrain the acceptable values of these parameters.

• Pmode[1].Protocol.Security.Protocol This parameter identifies the security protocol used. If
this parameter is not specified, no security protocol is used. The value “TLS” for this P-Mode
parameter MUST be interpreted as indicating the use of the IETF Transport Layer Security
protocol and this is the RECOMMENDED transport layer.

• Pmode[1].Protocol.Security.ProtocolVersion This parameter specifies the minimum
version of the security protocol to use and MUST only be specified when a security protocol
has been specified. In combination with the value “TLS” for the previous parameter, the value
“1.2” for this P-Mode parameters indicates the use of the TLS 1.2 protocol [RFC5246].

• Pmode[1].Protocol.Security.SecurityAlgorithm This parameter specifies an agreed list of
algorithm suites that may be used for key establishment, encryption and authentication. Note
that some (versions of) security protocols require implementations to support particular cipher
suites. For example, TLS 1.1 compliant implementations MUST support the
TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher suite and TLS 1.2 compliant
implementations MUST support the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite.

• Pmode[1].Protocol.Security.Server.Certificate This parameter specifies a server certificate
to use. If this parameter is absent, server certificate authentication is not required.

• Pmode[1].Protocol.Security.Client.Certificate This parameter similarly specifies a client
certificate to use. If this parameter is absent, client certificate authentication is not required.

• Pmode[1].Protocol.Security.Server.AnchorCertificates This parameter may be used to
specify a list of trusted anchors. These anchors are used in the process of server certificate
path validation. If a server certificate is used that does not chain to one of these trusted
anchors, it is considered invalid.

• Pmode[1].Protocol.Security.Client.AnchorCertificates This parameter may be used for
client certificate path validation in a similar way as the preceding parameter does for server
certificates.

• Pmode.[1].Protocol.Security.minimumKeySize This parameter specifies the minimum
acceptable size of the symmetric encryption key.

6.4.2 Controlling the SOAP Actor or Role
In a multi-hop context, all the Pmode[1].Protocol parameters MUST be defined separately for init
and resp PModes (using the terminology defined in section 2.7.2) with the exception of
Pmode[1].Protocol.SOAPVersion and the following new parameter:

• Pmode[1].Protocol.AddActorOrRoleAttribute {true/false} This parameter is defines whether
or not the actor or role attribute is present in the eb3:Messaging element. If true, and
if the value for the Pmode[1].Protocol.SOAPVersion parameter is “1.1” then the attribute
actor is present. If true, and if the value for the Pmode[1].Protocol.SOAPVersion
parameter is “1.2” then the attribute role is present. In both case the attribute has a fixed
value of “http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh“.

6.4.3 Large File Handling using Protocol Restart
Some B2B message exchanges involve the transfer of large messages. In situations where a payload
compression feature (as the one described in section 6.8) does not reduce this size sufficiently, and
the message splitting/joining protocol described in section 4 is not available, a mechanism that allows
trading partners to restart failed transfers from the point of failure is desirable.

Trading partners can configure a restart feature using the following parameters:

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 73 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh

• Pmode.[1].Protocol.Restart {True, False} This parameter expresses whether or not a restart
feature is to be used for the specified processing mode. The default value is False.

• Pmode.[1].Protocol.Restart.Protocol This parameter identifies the transport restart protocol
to use. The value as2-restart identifies the the AS2 Restart protocol [AS2-RESTART]. In case
the transport protocol is HTTP 1.1, this is the default restart protocol.

• Pmode.[1].Protocol.Restart.Interval This parameter expresses the maximum amount of
time the recipient of a message SHOULD cache a temporary copy of the incomplete
message, for a particular message transfer.

These parameters MUST be interpreted in the context of the transport protocol that is used and the
MEP Binding. When using the [AS2-RESTART] protocol, PMode.MEPBinding MUST be set to the
value “push”.

6.5 Pmode[1].ErrorHandling
The following parameter allows initiators to pull errors related to messages they sent from
intermediaries.

• Pmode[1].ErrorHandling.Report.ReceiverErrors.ReplyPattern configures the way receiver
errors are transmitted and generalizes and deprecates the parameter
Pmode[1].ErrorHandling.Report.AsResponse of [EBMS3CORE]. It has three possible
values. The values callback and response are the equivalent of false and true for
Pmode[1].ErrorHandling.Report.AsResponse. The new value pull indicates errors (which
have an ebint:RoutingInput reference parameter to be routed) are to be pulled.

Additional routing information can be attached to errors using the parameters introduced in section
2.7.1

• Pmode[1].Errorhandling.Report.SenderErrorsTo.Addressing.EPR

• PMode[1].Errorhandling.Report.ReceiverErrorsTo. Addressing.EPR

The following parameter is defined in section 4.2.2 of [AS4]:

• Pmode[1].ErrorHandling.Report.MissingReceiptNotifyProducer. This parameter controls
the behavior of a Sending MSH that fails to receive a Receipt.

6.6 Pmode[1].Reliability

6.6.1 Reliability Protocol
Whereas some ebMS 3.0 implementations may only support one reliability protocol, some products
may support multiple protocols, or versions of protocols. An organization may use one reliability
protocol with one trading partner or service and another protocol with another. The following
parameter makes the choice of reliability protocol a configuration option.

The Pmode[1].Reliability.Protocol identifies the reliable messaging protocol, and the version of that
protocol, that is used in a particular message exchange.

• The value http://docs.oasis-open.org/ws-rx/wsrm/200702 MUST be interpreted as identifying
the WS-ReliableMessaging 1.1 or 1.2 protocol [WSRM12] or any backwards-compatible
updates of it.

• The value http://docs.oasis-open.org/wsrm/2004/06/ws-reliability-1.1.xsd MUST be
interpreted as identifying the WS-Reliability 1.1 [WSR11]protocol or any backwards-
compatible updates of it.

Conformance profiles or implementations may limit the choice of reliability protocol or define different
values to indicate other reliability protocols.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 74 of 126

http://docs.oasis-open.org/wsrm/2004/06/ws-reliability-1.1.xsd
http://docs.oasis-open.org/ws-rx/wsrm/200702

6.6.2 Reliability of the Pull Signal
Sections B.1.3 and B.2.3 of the ebMS 3.0 Core Specification specify that a Pull signal for a user
message that is sent under an at-least-once delivery contract must itself be transmitted reliably. This
supports point-to-point message pulling as well as multi-hop “end-to-end” pulling, where the
eb3:PullRequest is forwarded to and processed by, the Sending MSH. It is not appropriate in
situations where the request is processed by an intermediary that only provides temporary
intermediate message storage. The reliable messaging model specified in section 2 is based on end-
to-end message retransmission where ebMS intermediaries do not act as RMP.

The Boolean valued Pmode[1].Reliability.AtLeastOnce.Contract.ReliablePull parameter
accommodates situations where an MSH may pull some messages directly from the Sending MSH
and others from an intermediary. The default value of this parameter is true, meaning that Pull signals
are sent reliably for any P-Mode that has a value true for
Pmode[1].Reliability.AtLeastOnce.Contract. The non-default value false indicates that the Pull
request is not sent reliably. (For more discussion, see discussion in the 2.4.7.2 and 2.8 sections).

6.6.3 Transmitting Acknowledgements
In a multi-hop context, there is a requirement to retrieve acknowledgments that are returned
asynchronously from intermediaries. The following parameters support this:

• Pmode[1].Reliability.AtLeastOnce.ReplyPattern. This parameter is defined in
[EBMS3CORE] as having three values: “Response”, “Callback” and “Poll”. The value “Poll” is
limited to WS-Reliability and indicates that acknowledgments are retrieved via
wsr:PollRequest messages [WSR11]. This specification adds a fourth value “Pull”, which
specifies that acknowledgments are to be retrieved by ebMS 3.0 PullRequest signal
messages. If this value is used, then one of the following two cases MUST apply:

1. A value is specified for Pmode[1].Reliability.AtLeastOnce.Contract.AcksTo.Addressing. In
this case the contents of the embedded reference parameter MUST be used to created a
reference parameter.

2. If no value is specified for this parameter, then a reference parameter is inferred from the user
message using the mechanism “Inferred RoutingInput for the reverse path” described in
section 2.6.2 .

The reference parameter provides a value for the the @mpc attribute that identifies the channel
that the acknowledgement can be pulled from.

• Pmode[1].Reliability.AtLeastOnce.Contract.AcksTo.Addressing.EPR This parameter
contains an EPR structure as discussed in section 2.7.1 . If present, its contents must be
used to construct a routing input parameter that is attached to the acknowledgment message.

6.7 Pmode[1].Security

6.7.1 Receipts
• Pmode[1].Security.SendReceipt.ReplyTo. This parameter indicates the address to which

the eb3:SignalMessage containing a requested eb3:Receipt is sent to, in situations
where the Pmode[1].Security.SendReceipt.ReplyPattern parameter has a value different
from “response”. It serves a similar purpose as the
Pmode[1].Reliability.AtLeastOnce.Contract.AcksTo for reliable messaging
acknowledgments and Pmode[1].Errorhandling.Report.ReceiverErrorsTo for receiver
errors.

• Pmode[1].Security.SendReceipt.ReplyPattern. In a multi-hop context, this parameter
defined in [EBMS3CORE] may have a third value, “pull”. This value indicates that receipt
signals are pulled using ebMS 3 Pull messages. If this option is selected, an
ebint:RoutingInput reference parameter MUST be added to the receipt, which specifies

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 75 of 126

the MPC from which the receipt can be pulled and routing information that supports I-Cloud
routing. The Pmode[1].Security.SendReceipt.Addressing.EPR MUST be specified and the
value of the routing input MUST be derived from it.

• Pmode[1].Security.SendReceipt.Addressing.EPR. This parameter can be used to specify
routing information to be attached to receipt signals.

The following parameter is defined in section 4.2.1 of [AS4]:

• Pmode[1].Security.SendReceipt.NonRepudiation {true/false} This parameter constrains
the content of eb3:Receipt to be a valid ebbp:NonRepudiationInformation element
[EBBPSIG].

6.7.2 Secure Conversations
This specification does not fully specify the use of the WS-SecureConversation OASIS Standard
[WSSC14] in combination with ebMS. However, initial support for routing of WS-SecureConversation
messages is discussed in 2.8 . This requires the following additional parameters:

• Pmode[1].Security.Conversation {true/false} Specifies whether or not messages exchanged
using this P-Mode are part of secure conversations.

• Pmode[1].Security.Conversation.Correlation Defines which messages can be assigned to
the same secure conversation, similarly to the Pmode[1].Reliability.Correlation parameter.

Conformance profiles may further specify the use of secure conversations.

6.8 Pmode[1].PayloadService
The AS4 profile defines a payload compression service:

• PMode[1].PayloadService.Compression: {true / false}

6.9 Pmode[1].ReceptionAwareness
Section 3.2 of the AS4 profile defines for additional P-Mode parameters for reception awareness
[AS4].

• Pmode[1].ReceptionAwareness: (true / false)

• PMode[1].ReceptionAwareness.Replay: (true / false)

• Pmode[1].ReceptionAwareness.Replay.Parameters.

• PMode[1].ReceptionAwareness.DuplicateDetection: (true / false)

• Pmode[1].ReceptionAwareness.DetectDuplicates.Parameters

6.10 Pmode[1].Bundling
The following parameters are defined in section 3.3 :

• Pmode[].bundling.policy

• Pmode[].bundling.compatibility.pmodelist

• Pmode[].bundling.maxsize

• Pmode[].bundling.maxdelay

• The following parameters are defined in section 3.10.1 :

• Pmode[].bundling.ordering.policy

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 76 of 126

• Pmode[].bundling.ordering.scope

6.11 Pmode[].Splitting
The following parameters are defined in section 4.5

• Pmode[].Splitting

• Pmode[].Splitting.FragmentSize

• Pmode[].Splitting.RoutingProperties.

• Pmode[].Splitting.Compression.

• Pmode[].Splitting.Compression.Algorithm.

• Pmode[].Splitting.JoinInterval

6.12 Pmode[].BusinessInfo
When defining an alternate MEP, the following parameter MAY be added to define an alternate MPC:

• PMode[1].BusinessInfo.MPC.Alternate: The value of this parameter is the identifier of the
MPC (Message Partition Channel) to which the message sent using the alternate MEP is
assigned. It maps to the attribute eb3:Messaging/eb3:UserMessage/@mpc.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 77 of 126

7 Conformance
This section defines four conformance profiles that address the four major feature sets or modules
specified here (multihop routing, message bundling, advanced interaction patterns, and message
splitting). The conformance profiles are:

1. one conformance profile for the multi-hop part of this specification – called here the
simple multi-hop conformance profile,

2. one conformance profile for the message bundling part of this specification – called here
the simple bundling conformance profile,

3. one conformance profile for the extended messaging features - called here the basic
messaging extensions conformance profile,

4. one conformance profile for the large message splitting and joining protocol – called here
the simple fragmented message transfer profile,

 These four feature sets are largely independent and can be composed in various ways.

These four simple conformance profiles are defined here as addressing the most basic of the
expected usages of this specification. They are not exclusive of other conformance profiles that may
be defined separately outside this specification to accommodate the needs of some user communities.
Such conformance profiles may require a different set of features to be implemented – either more
features, or sometimes less if a particular context of use is expected that allows even simpler
implementations.

MSH conformance may be to exactly one of the profiles, or to any combination of profiles.

Each of these conformance profiles is defined by a Conformance Clause.

7.1 Simple Multi-hop Conformance Clause
The requirements for this clause are different, depending on the role an MSH is playing in a multi-hop
environment.

MSH in Intermediary role:

An Intermediary MSH must comply with the following:

• must satisfy all strict (MUST) normative requirements in sections 2.4.5,

• must support the store-and-forward message forwarding model described in 2.5.2.

• must support one MEP bridging model (over the four described in 2.5.3): “push-on-push” .

• Must support a routing function as described in 2.5.5, that can process both
eb3:UserMessage header and the ebint:RoutingInput reference parameter header
block.

• Must conform to the error handling requirements (2.5.6) and must support at least the
EBMS:0005 ConnectionFailure error and the new EBMS:0020 RoutingFailure.

• Must support WS-addressing as described in 2.6.3.

In addition, when a conforming MSH Intermediary implements additional features specified in this
document, it must conform to all related requirements.

MSH in Endpoint role:

• Must support at least the Case 1 edge binding ("first-and-last-push") for one-way MEPs
described in 2.4.7.1 (pushing messages from Sender), and at least the Case 1 edge binding

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 78 of 126

("Request-push-last-push and Reply-push-last-push") for two-way MEPs described in
2.4.8.1.

• Must support the Endpoint requirements in 2.6, but is not required to support the requirements
for non-ebMS messages (case 3 in 2.6.1). In particular, it must be able to add the
ebint:RoutingInput header at least to ebMS Signal messages it generates. It must be
able to infer the value of ebint:RoutingInput for response messages (2.6.2, item 4).

• Must implement all the P-Mode parameters that control the above features.

• An endpoint MUST generate and process messages conforming to the “CORE” level of either
[WSIBP12] or [WSIBP20] depending on the SOAP version used. When using HTTP as a
transport, the requirements of these profiles tagged “HTTP-TRANSPORT” must also be
complied with.

In addition, when a conforming MSH endpoint implements additional features specified in this
document, it must conform to all related requirements. In particular:

• If an endpoint MSH supports WS-Addressing it must then comply with all requirements related
to WS-Addressing, including implementing related P-Mode parameters such as
“PMode.Addressing” parameters that control the use of WS-Addressing.

• If an endpoint MSH supports WS-ReliableMessaging, it must then comply with all
requirements related to reliable messaging as well as related to the sending of non-ebMS
messages (for RM signals), including implementing related P-Mode parameters. In particular,
it must conform to the WS-I Reliable Secure Profile RSP1.0.

• If bundling is in use, endpoints and intermediaries must comply with the strict requirements in
section 3.9 (“Bundling for Multi-hop” section).

• In case a conforming MSH receives messages that exhibit multihop features beyond those
required by this conformance profile, it SHOULD generate an EBMS:0008 error
(FeatureNotSupported).

• All features referred to in this profile MUST be implemented in conformance to ebMS V3 core
specification, and messages conforming to this profile MUST also conform to the ebMS V3
core specification.

7.2 Simple Bundling Conformance Clause
A conforming MSH MUST comply with the following:

• It must satisfy all packaging and bundling rules in section 3.2 that are strict requirements
(MUST or equivalent).

• It must implement at least the P-Mode parameter PMode.bundling.policy (section 3.3) with
at least values “never” and “always”.

• It must understand and handle the BundlingError error message (EBMS:0030) , although it is
not required to generate this error when in Sending role, and is only required to generate this
error in Receiving role when either one of Pmode[].bundling.maxsize,
Pmode[].bundling.compatibility or Pmode[].bundling.maxdelay parameters is
implemented and the corresponding error rule stated in 3.5 applies.

• A sending MSH must implement at least one of the two ways to control bundling as described
in section 3.4 .

• It must satisfy the strict requirements for bundling responses as described in 3.8 .

• MUST implement all the P-Mode parameters that control the above features.

• MUST implement the value undefined for Pmode[].bundling.ordering.policy.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 79 of 126

• MUST generate and process messages conforming to the “CORE” level of either [WSIBP12]
or [WSIBP20] depending on the SOAP version used. When using HTTP as a transport, the
requirements of these profiles tagged “HTTP-TRANSPORT” must also be complied with.

In addition, when a conforming MSH endpoint implements additional features beyond the Simple
Bundling Conformance Profile, it must conform to all related requirements. In particular:

• The value Bundling delivery policies, if supported, must be controlled as described in section
3.10.

• In case a conforming MSH receives messages that exhibit bundling features beyond those
required by this conformance profile, it SHOULD generate an EBMS:0008 error
(FeatureNotSupported).

• All features referred to in this profile MUST be implemented in conformance to ebMS V3 core
specification, and messages conforming to this profile MUST also conform to the ebMS V3
core specification.

7.3 Basic Messaging Extensions Conformance Clause
This conformance profile concerns the "Variants in Message Exchange Pattern Execution" (Section 5)
and establishes a minimal set of features from those specified in this section, that is suitable as an
interoperable baseline of advanced features.

A conforming MSH MUST comply with the following:

• In the case of the selective pulling capability, support for the eb3:RefToMessageId and
eb3:ConversationId simple selection items, which MUST NOT be used together in the
same Pull request.

• In the case of alternate MEPs, support Two-Way / Push-and-Pull as alternate MEP to a Two-
Way / Sync preferred MEP. This means: (a) for an initiating MSH to be able to accept
responses in either mode for any exchange governed by such a P-Mode, and in particular to
pull the response from the alternate MPC in case it received the EBMS:0060
"ResponseUsingAlternateMEP" signal instead of the synchronous response, (b) for a
responding MSH to be able to dynamically re-assign responses to the alternate Pull MPC after
sending back the EBMS:0060 "messageUsingAlternateMEP" signal as synchronous response
to the request message.

• MUST generate and process messages conforming to the “CORE” level of either [WSIBP12]
or [WSIBP20] depending on the SOAP version used. When using HTTP as a transport, the
requirements of these profiles tagged “HTTP-TRANSPORT” must also be complied with.

7.4 Simple Fragmented Message Transfer Conformance Clause
This conformance profile concerns the Large Message Splitting and Joining functionality defined in
section 4 .

• A SOAP processor implementation conforms with the simple fragmented message transfer
profile if it satisfies all the MUST and REQUIRED level requirements defined in sections 4.2
and 4.3 .

• A WS-Addressing processor conforms with the simple fragmented message transfer profile if
it satisfies all the MUST and REQUIRED level requirements defined in sections 4.4.1 .

• As indicated in section 4.4.2 , multiple ebMS bindings for the splitting / joining protocol are
conceivable. An ebMS MSH conforms with the simple fragmented message transfer profile if
it satisfies the MUST and REQUIRED level requirements defined in sections 4.4.2 .

• A conforming SOAP processor implementation MUST generate and process messages
conforming to the “CORE” level of either [WSIBP12] or [WSIBP20] depending on the SOAP

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 80 of 126

version used. When using HTTP as a transport, the requirements of these profiles tagged
“HTTP-TRANSPORT” must also be complied with.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 81 of 126

Appendix A Multi-hop Routing Scenarios and Good
Practices
In multi-hop environments, ebXML intermediaries provide a flexible mechanism for the routing of
SOAP messages based on standardized SOAP header content. The ebMS 3.0 business document
header offers a rich set of metadata elements with a standardized semantics that support a variety of
messaging and routing scenarios, including document exchange and service invocation. This non-
normative section discusses some routing scenarios and requirements enabled by the use of ebXML
intermediaries.

A.1 Routing Scenarios

The ebMS 3.0 routing function defined by this profile supports messages carrying arbitrary payloads,
including non XML data and encrypted data. It also supports routing non-ebMS messages using the
ebint:RoutingInput WS-Addressing reference parameter. This section illustrates some scenarios
that are supported by this profile:

• Routing based on business partner identity

• Routing based on business partner domains

• Routing based on requested service and action

• Defining separate logical environments for development, test, acceptance and production.

These scenarios are typical of many messaging environments and have been identified in some
deployments of version 2.0 of ebXML messaging. All scenarios use routing based on pattern matching
against SOAP envelope structures, rather than target URI, IP address or content of message
payloads.

A.2 Routing Rules

To route messages, intermediaries need some configuration mechanism based on routing rules.
Conceptually, a routing rule can be thought of as a message pattern, a destination and a set of
configuration parameters that control the transmission to next MSH (via pull or push). A message
pattern can be expressed using XPath expressions [XPATH]. A rule conflict resolution mechanism like
the one defined in section 6.4 of [XSLT] could be used to select among multiple matching patterns.

This annex assumes three categories of message patterns:

• Patterns matching eb3:UserMessage content.

• Patterns matching ebint:RoutingInput structures

• Patterns used to forward eb3:SignalMessages

The following example is an example of the first category:

//eb3:UserMessage[1]/eb3:PartyInfo/eb3:To/eb3:PartyId/text()
When applied to a SOAP message, this expression matches content in the first eb3:UserMessage
element only and selects the destination business partner based on the PartyID value. The restriction
to the first user message element avoids any routing ambiguity in situations where multiple
UserMessage elements are “bundled” in a single SOAP envelope: all but the first user message
structures are ignored by the routing function.

The second category of message patterns is needed because of the requirement to route messages
other than ebMS user messages, such as ebMS response signals (receipts and errors) and non-ebMS
messages like the sequence lifecycle management messages discussed in section 2.8 . These
messages can be routed using the ebint:RoutingInput WS-Addressing routing parameter. An
example of a pattern matching these messages using the same metadata as the previous pattern is:

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 82 of 126

//
ebint:RoutingInput/ebint:UserMessage/eb3:PartyInfo/eb3:To/eb3:PartyId/tex
t()

For any routing rules operating on eb3:UserMessages, a rule operating on ebint:UserMessages
is needed to route these messages to the exact same destination.

The third category of routing pattern involves routing eb3:SignalMessages in the “end-to-end
pulling” case. In this scenario, the intermediary needs to connect to another ebMS node when it
receives an ebMS message containing an eb3:PullRequest.

<eb3:SignalMessage>
 <eb3:MessageInfo>
 <eb3:Timestamp>2009-05-21T11:30:11.320Z</eb3:Timestamp>
 <eb3:MessageId>30c6eb92-6329-44c7-a4a3-
468d503c01f8@seller.com</eb3:MessageId>
 </eb3:MessageInfo>
 <eb3:PullRequest mpc="e5c31ef7-d750-4db8-b4dc-13a751d80b9a" />
</eb3:SignalMessage>

This third case of routing is similar to a regular pull request message except that there is no periodic
or other scheduling of pull requests (the pull is triggered by an incoming pull request), that there is no
authorization done by the intermediary (this is relayed transparently) and that the incoming request
must wait for the related outgoing request to complete (no decoupling). This pattern only relies on the
mpc attribute value. (Note that it is also possible to route pull signal messages using the previous
pattern, using an appended ebint:RoutingInput header. If such a header is not present, the mpc
attribute value is the only routing input.)

A.3 Business Partner Identification

It is a common requirement for electronic business messages to be routed based on the identification
code for the intended recipient business partner. Examples of these include:

• EDI Value Added Networks (VANs) route messages based on partner identifiers in EDIFACT
interchange header segments or ASX X12 Interchange Control Headers.

• Many messaging protocols have header elements to identify business partners using codes.
An example are the AS2-From and AS2-To system identifiers of AS2 [RFC4130].

In ebXML, partner identification is expressed as a combination of a PartyId string, qualified by an
optional type attribute. The content of the PartyId type can be retrieved from an incoming ebMS
SOAP message using the following XPath expression:

//eb3:UserMessage[1]/eb3:PartyInfo/eb3:To/eb3:PartyId/@type
The following expression retrieves the actual partner identifier string for the PartyId

//eb3:UserMessage[1]/eb3:PartyInfo/eb3:To/eb3:PartyId/text()
An ebXML message containing the following destination information:

<eb3:To>
 <eb3:PartyId type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0002"

 >123456789</eb3:PartyId>
 <eb3:Role>Seller</eb3:Role>
</eb3:To>

matches the following XPath expression:

//eb3:UserMessage[1]/eb3:PartyInfo/eb3:To/eb3:PartyId[@type='urn:oasis:n
ames:tc:ebcore:partyid-type:iso6523:0002'][text()='123456789']

An intermediary could use this XPath expression to retrieve the transport configuration parameters for
the next node from ebXML messages.

This example adopts the OASIS ebCore Party Id Type [PARTYIDTYPE] notation where
urn:oasis:names:tc:ebcore:partyid-type:iso6523: prefix of a PartyId type attribute

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 83 of 126

value indicate that a code list agency that is registered in ISO 6523. Value 0002 in the ISO 6523
registry is assigned to SIRENE, the business registry for France.

The combination of a “Push” channel binding for incoming messages with a “Pull” channel binding for
outgoing messages and the use of PartyId for routing allows ebMS intermediaries to offer a store-
and-collect functionality that replicates the “mailbox” functionality of EDI value-added networks and
SMTP-based message exchanges. This enables the intermediary to support situations where both
business partners have addressability and connection issues: the receiver can receive messages
even if the sender is offline or not addressable, as long as the sender has stored the message on an
intermediary accessible to both.

The routing techniques using XPath or similar pattern matching can also extend beyond the ebMS
Intermediary functions: E.g. another routing practice could be to involve Payload elements, e.g. route
based on some business document content. At the level of the intermediary information from attached
business documents will often not be available due to end-to-end payload encryption. If that is the
case, an approach is to bring-up these crucial payload elements in the header, as message
properties. If the business data is not encrypted at the payload level but available in the SOAP Body,
the type of pattern matching applied to SOAP headers here could be extended to apply to SOAP body
content.

A.4 Business Partner Domains

A generalization from the previous scenario is a scenario where intermediaries are used to connect
different communities that all use their own, distinct business identification schemas. Examples of
these include cross-border trade and collaboration of government agencies across sectors.

As a first example, assume an organization in the Netherlands exchanges business documents with
an organization in France. The organization in the Netherlands has a party identifier from the
Association of Chambers of Commerce and Industry in the Netherlands, which has the value 0106 in
ISO 6523. The party identification type for the organization in France could use the SIRENE
identification (see A.3). A system of national intermediaries could be set up where each national
intermediary provides secure routing to businesses in a single country, based on PartyId where the
type is constrained to the national type. In addition to this, the intermediary would act as a relay to
similar intermediaries in other countries.

This routing can be based only on the value for type and does not need to refer to any particular
partner identification code. For example, the hypothetical intermediary in France could have a single
routing rule to forward all messages sent to businesses in the Netherlands to an intermediary in the
Netherlands based on the 0106 PartyId type value. That rule would use the following XPath
expression:

//eb3:UserMessage[1]/eb3:PartyInfo/eb3:To/eb3:PartyId[@type=
'urn:oasis:names:tc:ebcore:partyid-type:iso6523:0106']

Similarly, the intermediary in the Netherlands would have a single rule to forward messages to
businesses in France to its counterpart in France:

//eb3:UserMessage[1]/eb3:PartyInfo/eb3:To/eb3:PartyId[@type=
'urn:oasis:names:tc:ebcore:partyid-type:iso6523:0002']

A similar requirement is common in environments where multiple government sectors (e.g. healthcare,
criminal justice, social security, immigration) have sectoral (private) networks and messaging
infrastructures that are based on sector-specific identification schemas. For instance, the healthcare
system could use the urn:hl7ii type to identify HL7 V3 instances [HL7ebMSv3]. Other sectors
would use their own, distinct, organization identification mechanisms. A cross-sector routing
mechanism supports collaboration among agencies across sector boundaries without requiring a
single identification scheme.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 84 of 126

A.5 Services

The ebXML document header also supports service-oriented messaging based on the eb3:Service
and eb3:Action elements. An ebMS 3.0 intermediary can use these standard and required header
elements to route request message to services providers and reverse route the response messages to
the service consumers. Their values can be retrieved using the following XPath expressions:

//eb3:UserMessage[1]/eb3:CollaborationInfo/eb3:Service
//eb3:UserMessage[1]/eb3:CollaborationInfo/eb3:Action

As an example, the following pattern matches ebMS messages sent to a “Procurement” service.

//eb3:UserMessage[1]/eb3:CollaborationInfo/eb3:Service[text()='Procurem
ent']

In many larger environments there will be several (potential or competing) providers of a single
particular service. This means that in practice routing rules are likely to require both a partner identifier
(as described in A.3) and a service identifier.

//eb3:UserMessage[1]
[eb3:PartyInfo/eb3:To/eb3:PartyId[@type='urn:oasis:names:tc:ebcore:partyid
-type:iso6523:0002']
[text()='123456789']]/eb3:CollaborationInfo/eb3:Service[text()='Procureme
nt']

In large or distributed organizations, there may be multiple data centers hosting the business
applications that provide distinct services. Each of these data centers could have its own ebXML
message service handler endpoints. A separate rule would map messages related to this other service
to a distinct next MSH.

//eb3:UserMessage[1]
[eb3:PartyInfo/eb3:To/eb3:PartyId[@type='urn:oasis:names:tc:ebcore:partyid
-type:iso6523:0002']
[text()='123456789']]/eb3:CollaborationInfo/eb3:Service[text()='Marketing
']

Only the last intermediary delivering messages to these MSHs needs to know which data center
provides which service. When using intermediaries, services can be relocated from one data center
and MSH to another, data centers can be reorganized and consolidated, services outsourced or in-
sourced, without the business partners using services from those data center having to reconfigure
their MSH configurations.

A.6 Separate Environments

Like other information systems, messaging systems typically follow a life cycle through various stages,
such as development, test, acceptance and production. It is common practice in service management
to have different environments for these stages so that versions of systems and services in various
development stages are separated and can be developed, tested and deployed in parallel. In these
situations it is important that messages from one environment never cross boundaries with other
environments. For instance, a test message should never be confused with a production message.

There are multiple approaches to separating these environments. One approach is to use distinct
(virtual) private networks, each containing endpoints and intermediaries for each environment. When
using messaging intermediaries, each intermediary participates in at most one environment. Another
approach is to partition the endpoints and intermediaries logically and to configure messaging
intermediaries to keep the message traffic from or to systems in one particular logical environment
separate from other environments.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 85 of 126

Figure 19 Separate environments for test and production

The routing function of an ebXML intermediary supports multiple approaches to meet this requirement.
One approach is to use the ebMS concept of message partition channels to assign messages to a
Development, Test, Acceptance and Production partition. An intermediary can route messages
based on MPC using patterns like:

//eb3:UserMessage[1][@mpc='Production']
An alternative approach is to use the ebMS 3.0 feature of MessageProperties and have a
Property to classify messages according to environment.

<eb3:MessageProperties>
 <eb3:Property name="Environment">Production</eb3:Property>
</eb3:MessageProperties>

This approach is more flexible as environments may be partitioned in more dimensions (e.g. for
versions of services) and additional properties could be added to reflect this.

The name and values of these properties need to be standardized and used consistently in the
community. A test MSH can be configured to always insert (or check for the presence of) this property
and the correct value in any outgoing message and validate its correct use in incoming messages.
Intermediaries can deploy routing rules that reference these properties, possibly in combination with
the other message header elements discussed in this section or other properties, to route messages
within the appropriate logical environment.

//eb3:UserMessage[1]/eb3:MessageProperties/eb3:Property[@name='Environm
ent'][text()='Production']

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 86 of 126

A.7 End-to-end Pulling

A separate category of messages to route are ebMS PullRequests. An ebXML intermediary may
handle PullRequests either as requests to retrieve messages it received from other message
handlers and is storing on behalf of these, or as request messages that need to be forwarded
synchronously to a remote ebMS 3.0 server. The latter case is referred to as end-to-end pulling and
involves a Receiving MSH that pulls messages from a remote Sender MSH via an Intermediary MSH.
A routing rule supporting such end-to-end pulling could use a pattern containing the mpc, for example:

//eb3:SignalMessage/eb3:PullRequest[@mpc='e5c31ef7-d750-4db8-b4dc-
13a751d80b9a']

Note that an ebMS intermediary only considers routing messages if they are targeted by setting the
value of the S12:role attribute to "http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh".

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 87 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh

Appendix B Refactored ebMS 3.0 Core XML Schema
As explained in section 2.5.5 , a re-factored version of the normative schema for the ebXML
Messaging version 3.0 Core allows more reuse of some element definitions from this schema by the
ebint:RoutingInput and other XML schemas without affecting interoperability of ebMS 3.0
processors. This re-factored schema is defined using [XMLSCHEMA-P1] and [XMLSCHEMA-P2] and
is located at:
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd03/ebms-header-3_0-
200704_refactored.xsd
The following copy is provided for reference:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:S11="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:S12="http://www.w3.org/2003/05/soap-envelope"
xmlns:tns="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
targetNamespace="http://docs.oasis-open.org/ebxml-

msg/ebms/v3.0/ns/core/200704/"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xsd:annotation>

<xsd:appinfo>Schema for ebMS-3 XML Infoset</xsd:appinfo>
<xsd:documentation xml:lang="en"> This schema defines the XML Infoset of

ebMS-3 headers.
These headers are placed within the SOAP Header element of either a SOAP

1.1 or SOAP 1.2
message. </xsd:documentation>

</xsd:annotation>
<xsd:import namespace="http://schemas.xmlsoap.org/soap/envelope/"

schemaLocation="http://schemas.xmlsoap.org/soap/envelope/"/>
<xsd:import namespace="http://www.w3.org/2003/05/soap-envelope"

schemaLocation="http://www.w3.org/2003/05/soap-envelope"/>
<xsd:import namespace="http://www.w3.org/XML/1998/namespace"

schemaLocation="http://www.w3.org/2001/03/xml.xsd"/>

<xsd:element name="Messaging" type="Messaging"/>
<xsd:complexType name="Messaging">

<xsd:annotation>
<xsd:documentation xml:lang="en"> The eb:Messaging element is the top

element of ebMS-3
headers, and it is placed within the SOAP Header element (either SOAP

1.1 or SOAP
1.2). The eb:Messaging element may contain several instances of

eb:SignalMessage and
eb:UserMessage elements. However in the core part of the ebMS-3

specification, only
one instance of either eb:UserMessage or eb:SignalMessage must be

present. The
second part of ebMS-3 specification may need to include multiple

instances of either
eb:SignalMessage, eb:UserMessage or both. Therefore, this schema is

allowing
multiple instances of eb:SignalMessage and eb:UserMessage elements

for part 2 of the
ebMS-3 specification. Note that the eb:Messaging element cannot be

empty (at least
one of eb:SignalMessage or eb:UserMessage element must present).

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="SignalMessage" type="SignalMessage" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:element name="UserMessage" type="UserMessage" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 88 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd03/ebms-header-3_0-200704_refactored.xsd
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd03/ebms-header-3_0-200704_refactored.xsd

</xsd:sequence>
<xsd:attributeGroup ref="tns:headerExtension"/>

</xsd:complexType>
<xsd:complexType name="SignalMessage">

<xsd:annotation>
<xsd:documentation xml:lang="en"> In the core part of ebMS-3

specification, an eb:Signal
Message is allowed to contain eb:MessageInfo and at most one Receipt

Signal, at most
one eb:PullRequest element, and/or a series of eb:Error elements. In

part 2 of the
ebMS-3 specification, new signals may be introduced, and for this

reason, an
extensibility point is added here to the eb:SignalMessage element to

allow it to
contain any elements. </xsd:documentation>

</xsd:annotation>
<xsd:sequence>

<xsd:element ref="MessageInfo"/>
<xsd:element name="PullRequest" type="PullRequest" minOccurs="0"/>
<xsd:element name="Receipt" type="Receipt" minOccurs="0"/>
<xsd:element name="Error" type="Error" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Error">

<xsd:sequence>
<xsd:element name="Description" type="tns:Description" minOccurs="0"/>
<xsd:element name="ErrorDetail" type="xsd:token" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="category" type="xsd:token" use="optional"/>
<xsd:attribute name="refToMessageInError" type="xsd:token" use="optional"/>
<xsd:attribute name="errorCode" type="xsd:token" use="required"/>
<xsd:attribute name="origin" type="xsd:token" use="optional"/>
<xsd:attribute name="severity" type="xsd:token" use="required"/>
<xsd:attribute name="shortDescription" type="xsd:token" use="optional"/>

</xsd:complexType>
<xsd:complexType name="PullRequest">

<xsd:sequence>
<xsd:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attributeGroup ref="pullAttributes"/>

</xsd:complexType>
<xsd:complexType name="Receipt">

<xsd:sequence>
<xsd:any namespace="##other" processContents="lax"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="UserMessage">

<xsd:sequence>
<xsd:element ref="MessageInfo"/>
<xsd:element ref="PartyInfo"/>
<xsd:element ref="CollaborationInfo"/>
<xsd:element ref="MessageProperties" minOccurs="0"/>
<xsd:element ref="PayloadInfo" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="mpc" type="xsd:anyURI" use="optional"/>

</xsd:complexType>
<xsd:element name="MessageInfo" type="MessageInfo"/>
<xsd:complexType name="MessageInfo">

<xsd:sequence>
<xsd:element name="Timestamp" type="xsd:dateTime"/>
<xsd:element name="MessageId" type="tns:non-empty-string"/>
<xsd:element name="RefToMessageId" type="tns:non-empty-string"

minOccurs="0"/>
</xsd:sequence>

</xsd:complexType>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 89 of 126

<xsd:element name="PartyInfo" type="PartyInfo"/>
<xsd:complexType name="PartyInfo">

<xsd:sequence>
<xsd:element name="From" type="tns:From"/>
<xsd:element name="To" type="tns:To"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PartyId">

<xsd:simpleContent>
<xsd:extension base="tns:non-empty-string">

<xsd:attribute name="type" type="tns:non-empty-string"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="From">

<xsd:sequence>
<xsd:element name="PartyId" type="tns:PartyId" maxOccurs="unbounded"/>
<xsd:element name="Role" type="tns:non-empty-string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="To">

<xsd:sequence>
<xsd:element name="PartyId" type="tns:PartyId" maxOccurs="unbounded"/>
<xsd:element name="Role" type="tns:non-empty-string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="CollaborationInfo" type="CollaborationInfo"/>
<xsd:complexType name="CollaborationInfo">

<xsd:sequence>
<xsd:element name="AgreementRef" type="tns:AgreementRef" minOccurs="0"/>
<xsd:element name="Service" type="tns:Service"/>
<xsd:element name="Action" type="xsd:token"/>
<xsd:element name="ConversationId" type="xsd:token"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Service">

<xsd:simpleContent>
<xsd:extension base="tns:non-empty-string">

<xsd:attribute name="type" type="tns:non-empty-string"
use="optional"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
<xsd:complexType name="AgreementRef">

<xsd:simpleContent>
<xsd:extension base="tns:non-empty-string">

<xsd:attribute name="type" type="tns:non-empty-string"
use="optional"/>

<xsd:attribute name="pmode" type="tns:non-empty-string"
use="optional"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
<xsd:element name="PayloadInfo" type="PayloadInfo"/>
<xsd:complexType name="PayloadInfo">

<xsd:sequence>
<xsd:element name="PartInfo" type="tns:PartInfo" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PartInfo">

<xsd:sequence>
<xsd:element name="Schema" type="tns:Schema" minOccurs="0"/>
<xsd:element name="Description" type="tns:Description" minOccurs="0"/>
<xsd:element name="PartProperties" type="tns:PartProperties"

minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="href" type="xsd:token"/>

</xsd:complexType>
<xsd:complexType name="Schema">

<xsd:attribute name="location" type="xsd:anyURI" use="required"/>
<xsd:attribute name="version" type="tns:non-empty-string" use="optional"/>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 90 of 126

<xsd:attribute name="namespace" type="tns:non-empty-string" use="optional"/>
</xsd:complexType>
<xsd:complexType name="Property">

<xsd:simpleContent>
<xsd:extension base="tns:non-empty-string">

<xsd:attribute name="name" type="tns:non-empty-string"
use="required"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
<xsd:complexType name="PartProperties">

<xsd:sequence>
<xsd:element name="Property" type="tns:Property" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="MessageProperties" type="MessageProperties"/>
<xsd:complexType name="MessageProperties">

<xsd:sequence>
<xsd:element name="Property" type="Property" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
<xsd:attributeGroup name="headerExtension">

<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:attribute ref="S11:mustUnderstand" use="optional">

<xsd:annotation>
<xsd:documentation>If SOAP 1.1 is being used, this attribute is

required,
other SOAP 1.1 attributes are allowed and SOAP 1.2 attributes are

prohibited.
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute ref="S11:encodingStyle"/>
<xsd:attribute ref="S11:actor"/>
<xsd:attribute ref="S12:mustUnderstand" use="optional">

<xsd:annotation>
<xsd:documentation>If SOAP 1.2 is being used, this attribute is

required,
other SOAP 1.2 attributes are allowed and SOAP 1.1 attributes are

prohibited.
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute ref="S12:encodingStyle"/>
<xsd:attribute ref="S12:relay"/>
<xsd:attribute ref="S12:role"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>

</xsd:attributeGroup>
<xsd:attributeGroup name="pullAttributes">

<xsd:attribute name="mpc" type="xsd:anyURI" use="optional"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>

</xsd:attributeGroup>
<xsd:complexType name="Description">

<xsd:simpleContent>
<xsd:extension base="tns:non-empty-string">

<xsd:attribute ref="xml:lang" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:simpleType name="non-empty-string">

<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 91 of 126

Appendix C Reference Parameter
The normative schema that is defined for the WS-Addressing reference parameter using
[XMLSCHEMA-P1] and [XMLSCHEMA-P2] is located at:

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd03/ebms-
multihop-1_0-200902_refactored.xsd

The following copy is provided for reference:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://docs.oasis-open.org/ebxml-
msg/ns/ebms/v3.0/multihop/200902/"
 xmlns:ebint="http://docs.oasis-open.org/ebxml-
msg/ns/ebms/v3.0/multihop/200902/"
 xmlns:eb3="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:S11="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:S12="http://www.w3.org/2003/05/soap-envelope"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 targetNamespace="http://docs.oasis-open.org/ebxml-
msg/ns/ebms/v3.0/multihop/200902/">

 <xs:import namespace="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/"
 schemaLocation="ebms-header-3_0-200704_refactored.xsd"/>

 <xs:import namespace="http://www.w3.org/2005/08/addressing"
 schemaLocation="http://www.w3.org/2002/ws/addr/ns/ws-addr"/>

 <xs:import namespace="http://www.w3.org/2003/05/soap-envelope"
 schemaLocation="http://www.w3.org/2003/05/soap-envelope"/>

 <xs:import namespace="http://schemas.xmlsoap.org/soap/envelope/"
 schemaLocation="http://schemas.xmlsoap.org/soap/envelope/"/>

 <xs:element name="RoutingInput" type="RoutingInput"/>
 <xs:complexType name="RoutingInput">
 <xs:sequence>
 <xs:element name="UserMessage">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="eb3:MessageInfo" minOccurs="0"/>
 <xs:element ref="eb3:PartyInfo"/>
 <xs:element ref="eb3:CollaborationInfo"/>
 <xs:element ref="eb3:MessageProperties"
minOccurs="0"/>
 <xs:element ref="eb3:PayloadInfo" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="mpc" type="xs:anyURI"
use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="optional"/>
 <xs:attribute ref="wsa:IsReferenceParameter" fixed="true"/>
 <xs:attributeGroup ref="S12atts"/>
 <xs:attributeGroup ref="S11atts"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>

 <xs:attributeGroup name="S12atts">
 <xs:attribute ref="S12:mustUnderstand" use="optional">
 <xs:annotation>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 92 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd03/ebms-multihop-1_0-200902_refactored.xsd
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd03/ebms-multihop-1_0-200902_refactored.xsd

 <xs:documentation> if SOAP 1.2 is being used, this
attribute is required, other
 attributes in the S12atts group are allowed and
attributes in the S11atts group
 are prohibited.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute ref="S12:encodingStyle"/>
 <xs:attribute ref="S12:relay"/>
 <xs:attribute ref="S12:role"
 fixed="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh"/>
 </xs:attributeGroup>

 <xs:attributeGroup name="S11atts">
 <xs:attribute ref="S11:mustUnderstand" use="optional">
 <xs:annotation>
 <xs:documentation> if SOAP 1.1 is being used, this
attribute is required, other
 attributes in the S11atts group are allowed and
attributes in the S12atts group
 are prohibited.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute ref="S11:encodingStyle"/>
 <xs:attribute ref="S11:actor"
 fixed="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh"/>
 </xs:attributeGroup>
</xs:schema>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 93 of 126

Appendix D Flow Diagrams for Multi-hop

D.1 Reliable Sequence Establishment

NOTE: the following diagram shows sequence establishment when using the WS-ReliableMessaging
standard. In WS-Reliability, sequence establishment does not require a distinct procedure.

Figure 20: Reliable Multi-hop: Sequence Establishment

The following steps are taken:

• Step 1: The Sending party submits a User message to its endpoint MSH A. The MSH
resolves which P-Mode / CPA is associated with this message so that it knows its processing
mode (which level of security, reliability, MEP…). In this case, the PMode requires that its
related messages need be sent reliably, i.e. that an RM sequence needs be initiated for these.

• Step 2: The Sending endpoint MSH A determines where to send this message – here to an
ebMS Intermediary – by getting the Intermediary URL from its P-Mode / CPA configuration

• Step 3: MSH A is initiating a wsrm:CreateSequence message to the Intermediary (unless
an RM sequence already exists for this P-Mode / CPA). Because the P-Mode also contains a
WS-Addressing EPR for the destination, including the Reference Parameter
ebint:RoutingInput that replicates a significant subset of the ebMS header data
associated with this PMode (data that will be common to all User Messages sent for this P-
Mode), the MSH piggybacks this Reference Parameter on the wsrm:CreateSequence
message for routing purpose.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 94 of 126

• NOTE: because the destination URL is unknown (dynamically resolved by I-Cloud routing), the
destination EPR is set to the I-Cloud URI: http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/icloud, which has no special meaning in case of a SOAP
Request. The header wsa:To is present in the wsrm:CS message and contains the I-Cloud
URI.

• Step 4: The First Intermediary receives the wsrm:CreateSequence message, and
forwards it using a routing function that uses ebMS header data (regardless whether this data
is wrapped into an ebMS header or into the ebint:RoutingInput wsa Ref Parameters
headers). In this case the routing data is in wsa Reference Parameters.

• Step 5: At the end of the routing path, the Last Intermediary gets the
wsrm:CreateSequence message. Two options must be supported depending on the MEP
required by the destination endpoint (MSH B):

1. Push MEP: The Last Intermediary keeps routing the wsrm:CS in a push mode to
the destination endpoint (MSH B). The content of wsrm:AcksTo will determine
how the wsrm:CSR is sent back.

2. Pull MEP: The Last Intermediary is aware that the reference parameter
associated with the wsrm:CS calls for a Pull mode. Among these parameters, is
a mention of the MPC where messages for this sequence will be pulled from. The
Intermediary MAY piggyback on the wsrm:CS a dummy eb3:Header with a non-
effective Service value (http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/service). The intermediary MUST assign the
wsrm:CS message to the related MPC so that the message becomes subject to pulling
using eb3:PullRequest targeted to this MPC.

• NOTE: an alternative could have used wsmc:MakeConnection (MC) to pull such signals.
However, the use of MC would not support the most common selective pulling cases (pulling
based on sequence ID, and pulling based on wsa:Address) due to the multi-hop context.
Consequently MC extensibility points would have to be used, to pull based on MPC. Because
of this level of customization there is little advantage in using the wsmc standard.

• Step 6: The RM module in MSH B takes knowledge of the wsrm:AcksTo element contained
in the wsrm:CS message. The wsrm:AcksTo element value indicates the EPR where the
wsrm:CSR must be sent back. Indeed, in the ebMS multi-hop model, RM lifecycle response
messages such as CSR must be sent to the same destination as RM acknowledgment. The
wsrm:AcksTo element is itself an EPR that sufficiently identifies the initial Sending MSH so
that the I-Cloud can route the wsrm:CSR back to MSH A. The following cases need to be
supported, depending on how the wsrm:CS was transmitted:

• Pushed wsrm:CS: The wsrm:CSR is sent back based on the wsrm:AcksTo
content. If it were an anonymous URI, the CSR is sent over the backchannel of the
wsrm:CS, from the RM module of MSH B to the Last Intermediary. In all cases, the
ebint:RoutingInput Reference Parameter, if present in the AcksTo EPR, is added to
the wsrm:CSR message. The routing of wsrm:CSR is based on this reference parameter.
In a special case where the AcksTo gives the URL of the destination (MSH A) and this
destination can directly be resolved without ebMS-level routing, the RM module of MSH B
can directly send it back to MSH A.

• Pulled wsrm:CS: The wsrm:CSR is sent over a new HTTP connection to the I-
Cloud. The ebint:RoutingInput Reference Parameter in the AcksTo EPR is added
to the wsrm:CSR for routing.

• NOTE: In both cases the wsrm:CSR MAY be sent to a node of the I-Cloud other
than the last Intermediary involved in routing the wsrm:CS message. This depends on
how the AcksTo EPR is to be resolved by the I-Cloud.

• Step 7: In case the routing of wsrm:CSR involves the initial First Intermediary, the latter gets
the wsrm:CSR with sequence ID. Here, the same procedure as for Step 5 takes place for
transmitting the wsrm:CSR to MSH A, allowing for both Push and Pull options.

In the above process, it must be noted that:

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 95 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/service
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/service
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/icloud

• the endpoint MSHs have the ability to insert and parse WS-addressing EPRs.

• The ebMS intermediary in contact with the destination endpoint MSH, must act in accordance
of the P-Mode unit that governs its edge-hop, especially in case of message pulling from the
endpoint.

D.2 Routing RM Acknowledgments

Figure 21: Reliable Multihop: Acknowledgments

• Step 1: The Sending party submits a User message to its endpoint MSH A. The MSH
resolves which P-Mode / CPA is associated with this message so that it knows its processing
mode (P-Mode) In this case, the P-Mode is already associated with a Reliable Messaging
(RM) sequence.

• Step 2: The Sending endpoint MSH A determines where to send this message – here to an
ebMS Intermediary

• Step 3: The First Intermediary receives the User message, and forwards it using a routing
function that uses ebMS header data.

• Step 4: At the end of the routing path, the Last Intermediary gets the User message. Two
options must be supported depending on the MEP required by the destination endpoint (MSH
B):

1. Push MEP: The Last Intermediary keeps routing the User message in a push mode to the
destination endpoint (MSH B).

2. Pull MEP: The Last Intermediary is aware that the P-Mode associated with the User
message calls for a Pull mode. The message is assigned to a Pull channel (MPC).

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 96 of 126

• Step 5: The RM module in MSH B sends back a wsrm:SequenceAcknowledgment based
on the content of wsrm:AcksTo. It will be routed in the same way as the wsrm:CSR during
the sequence establishment. In case where the User message was pulled from the last
Intermediary, and if the resolution of wsrm:AcksTo is compatible with using this last
Intermediary for routing acknowledgments, then the wsrm:SequenceAcknowledgment
header may be piggybacked on the eb3:PullRequest message.

• Step 6: In case the routing of wsrm:SequenceAcknowledgment involves the initial First
Intermediary, the wsrm:SequenceAcknowledgment message is subject to the same Push /
Pull alternative as in Step 4. In case of a Pull configuration, the Intermediary will assign the
wsrm:SequenceAcknowledgment to a Pull channel. The acknowledgment will be
associated with an eb3:Error of type warning (EBMS:0006) unless it is piggybacked with
another eb message for this channel.

D.3 Routing User Messages (One-Way MEP)

Figure 22: Routing User Messages (One Way MEP)

This case only concerns User messages that are pushed by the Sending MSH. This flow has been
described in sufficient details in the previous sections. Routing is expected to be based on the
UserMessage content. However the presence of a RoutingInput reference parameter is not excluded,
in which case the latter takes precedence.

The routing across the I-Cloud may involve both pushing and pulling. Both push and pull cases are
illustrated on the Receiving side.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 97 of 126

D.4 Routing ebMS Reply User Messages (Two-way MEP)

Figure 23: Routing User Messages (Two Way MEP)

The above case illustrates a Two-Way exchange with the “request” message being pushed by the
Sending MSH. The diagram illustrates the different ways the response (“reply” message in the Two-
Way) can be sent back:

1. Direct addressing, by-passing the I-Cloud routing in case the response address is explicitly
provided (e.g. by wsa:ReplyTo) and can be resolved without ebMS-level routing.

2. Reply message sent back over the back-channel of the “request” message (case where the P-
Mode.MEPbinding is “Sync”, for a request-response underlying transport such as HTTP).

3. Reply message sent back as callback (case where the P-Mode.MEPbinding is “Push-and-Push”,
e.g. over a new HTTP connection).

This flow has been described in sufficient details in the previous sections. Routing is expected to be
based on the UserMessage content, for both request and reply messages. However the presence of a
RoutingInput reference parameter is not excluded, in which case the latter takes precedence.The
routing across the I-Cloud may involve both pushing and pulling. On the receiving side of the reply
message as well as of the request message, both push and pull options are illustrated.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 98 of 126

D.5 Routing ebMS Response Signals (Receipts, Errors)

Figure 24: Routing ebMS Response Signals

The routing of ebMS signals that are responding to previous ebMS messages (i.e. eb3:Receipts,
eb3:Errors) has been described in section .1.7.3 (“Routing support for Response Messages”). The
options are similar to the way “reply” user messages are sent back, except that the routing input must
be provided as a WS-Addressing reference parameter header block.

NOTE: eb3:Error signals may also be sent back by Intermediaries (EBMS:0020 (RoutingFailure),)
which has not been illustrated here. The routing of such Intermediary errors back to the message
originator would need to be supported either by the routing function in a specific way, or by dynamic
routing input provided in wsa:ReplyTo header of the failing message.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 99 of 126

Appendix E Sample Message Exchange: One Way
Exchange with Asynchronous Receipt
This annex as well as the next two annexes contain some sample message exchanges across
intermediaries. They highlight the issues related to intermediaries, such as the use of the
ebint:RoutingInput reference parameter and WS-Addressing headers. The first example
contains a wsse:Security header, but the timestamp, security token and signature values of the
security header are omitted and digest values may be incorrect. The internal structure of the security
header and all payload content is omitted in the other examples.

The first example is a One-Way push MEP across a single intermediary, followed by a Receipt sent
back via the same intermediary, on separate asynchronous HTTP connections. The assumption is
that both endpoints are addressable from the intermediary. The intermediary pushes all messages to
next hop URLs using a routing function based on eb3:To/eb3:PartyId. These URLs are the URLs
of the endpoints, as this topology is limited to a single intermediary.

E.1 Message from Buyer to Intermediary

The first message in this exchange is a regular ebMS 3.0 user message. The only visible sign of
communication via an intermediary is that the message is posted to
http://intermediary.example.com:4081/reroute, the URL of an intermediary, instead of the URL of the
business partner. If the example had used TLS, the TLS server certificate would similarly be the
intermediary TLS certificate.

WS-Security is used to time stamp the SOAP message, sign the eb3:Messaging element, the
attached payload document and the empty S12:Body.
POST /reroute HTTP/1.1
Host: intermediary.example.com:4081
Content-Type: multipart/Related; type=application/soap+xml; action=''; charset="utf-
8"; boundary=f1fad5ca-f6b1-4c1b-ba46-099321af7cbe; start="<d201cab1-198e-49b1-8988-
f55161de3b57@buyer.example.com>"

--f1fad5ca-f6b1-4c1b-ba46-099321af7cbe
Content-Type: application/soap+xml; charset=utf-8
Content-Transfer-Encoding: 8bit
Content-ID: <d201cab1-198e-49b1-8988-f55161de3b57@buyer.example.com>

<S12:Envelope xmlns:S12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 xmlns:eb3="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <S12:Header>
 <eb3:Messaging S12:mustUnderstand="true"
 id="_5cb44655-5720-4cf4-a772-19cd480b0ad4"
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh">
 <eb3:UserMessage mpc="e5c31ef7-d750-4db8-b4dc-13a751d80b9a">
 <eb3:MessageInfo>
 <eb3:Timestamp>2009-05-21T10:49:28.886Z</eb3:Timestamp>
 <eb3:MessageId>orders123@buyer.example.com</eb3:MessageId>
 </eb3:MessageInfo>
 <eb3:PartyInfo>
 <eb3:From>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-
type:iso6523:0002"
 >123456789</eb3:PartyId>
 <eb3:Role>Buyer</eb3:Role>
 </eb3:From>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 100 of 126

http://intermediary.example.com:4081/reroute

 <eb3:To>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0106"
 >192837465</eb3:PartyId>
 <eb3:Role>Seller</eb3:Role>
 </eb3:To>
 </eb3:PartyInfo>
 <eb3:CollaborationInfo>
 <eb3:Service>Sales</eb3:Service>
 <eb3:Action>ProcessPurchaseOrder</eb3:Action>
 <eb3:ConversationId>ecae53d4-7473-45a6-ad70-
61970dd7c4b0</eb3:ConversationId>
 </eb3:CollaborationInfo>
 <eb3:PayloadInfo>
 <eb3:PartInfo href="cid:a1d7fdf5-d67e-403a-ad92-
3b9deff25d43@buyer.example.com"
 />
 </eb3:PayloadInfo>
 </eb3:UserMessage>
 </eb3:Messaging>
 <wsse:Security S12:mustUnderStand="true">
 <wsu:Timestamp wsu:Id="_476193ac-1584-48ac-9074-143a8fc13523">
 <!-- details omitted -->
 </wsu:Timestamp>
 <wsse:BinarySecurityToken wsu:Id="_43336c8b-38bd-470d-94c1-
165ab96b57a5">
 <!-- details omitted -->
 </wsse:BinarySecurityToken>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#_5cb44655-5720-4cf4-a772-19cd480b0ad4">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>KshAH7QFFAw2sV5LQBOUOSSrCaI=</ds:DigestValue
>
 </ds:Reference>
 <ds:Reference URI="#_f8aa8b55-b31c-4364-94d0-3615ca65aa40">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>l2HxWizaP7d43f4hATCD+O7it1c=</ds:DigestValue
>
 </ds:Reference>
 <ds:Reference URI="cid:a1d7fdf5-d67e-403a-ad92-
3b9deff25d43@buyer.example.com">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://docs.oasis-open.org/wss/oasis-wss-
SwAProfile-1.1#Attachment-Content-Signature-Transform"
 />
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>iWNSv2W6SxbOYZliPzZDcXAxrwI=</ds:DigestValue
>
 </ds:Reference>
 <ds:Reference URI="#_476193ac-1584-48ac-9074-143a8fc13523">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 101 of 126

 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>PreCqm0ESZqmITjf1qzrLFuOEYg=</ds:DigestValue
>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 <!-- details omitted -->
 </ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#_43336c8b-38bd-470d-94c1-165ab96b57a5"
 ValueType="http://docs.oasisopen.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-1.0#X509v3"
 />
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </S12:Header>
 <S12:Body wsu:Id="_f8aa8b55-b31c-4364-94d0-3615ca65aa40"/>
</S12:Envelope>

--f1fad5ca-f6b1-4c1b-ba46-099321af7cbe
Content-Type: text/plain

Content-Transfer-Encoding: 7bit
Content-ID: <a1d7fdf5-d67e-403a-ad92-3b9deff25d43@buyer.example.com>
Content-Length: 368

UNB+UNOA:2+ABSENDER9012345678901234567890ABCDE:CD-A:WEITERLEITNG-A+EMPFAENGER:CD-
E:WEITERLEITNG-E+940812:0235+T940812023504A++0026-Anwendung'
UNH+M940812023504A+ORDERS:D:93A:UN:EAN007'
BGM+220+5211229'
DTM+002:940815'
NAD+SU+4004353000000::9'
NAD+BY+4306517005214::9'
LIN+1++4004353054099:EN'
QTY+21:9'
UNS+S'
UNT+51+M940812023504A'
UNZ+3+T940812023504A'
--f1fad5ca-f6b1-4c1b-ba46-099321af7cbe

E.2 Message from Intermediary to Seller

The intermediary forwards the message without any changes to the SOAP-with-Attachment structure.
It only changes the HTTP command.
POST /msh HTTP/1.1
Host: buyer.example.com:5030
The remainder of the MIME structure is forwarded without modification. (Within the I-Cloud
intermediaries could even use SMTP instead of HTTP).

E.3 Message from Seller to Intermediary

Based on P-mode, Seller sends an eb3:SignalMessage containing an eb3:Receipt for the
message displayed in E.1 . The receipt has ds:References for all structures signed by the WS-
Security header in the received message. To be routed through the I-Cloud, an
ebint:RoutingInput element is added. In this response message, WS-Security is used to sign the
ebint:RoutingInput and eb3:Messaging structures, the empty S12:Body element and the
WS-Addressing headers. The following diagram only shows the SOAP envelope.
<S12:Envelope
 xmlns:S12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 102 of 126

 xmlns:eb3="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:ebint="http://docs.oasis-open.org/ebxml-
msg/ns/ebms/v3.0/multihop/200902/"
 xmlns:ebbp="http://docs.oasis-open.org/ebxml-bp/ebbp-signals-2.0"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" >
 <S12:Header>
 <wsa:To wsu:Id="_25ca74aa-0a9f-454d-a5fe-5231ba8304ed"
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh"
 S12:mustUnderstand="true"
 >http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/icloud</wsa:To>
 <wsa:Action wsu:Id="_42924487-4099-4600-a0e7-4156022320a6"
 >http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/oneWay.receipt</wsa:Action>
 <ebint:RoutingInput wsa:IsReferenceParameter="true"
 id="_ccd050c7-a1a5-4c31-8c01-e3c2534609ab" S12:mustUnderstand="true"
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh">
 <ebint:UserMessage mpc="e5c31ef7-d750-4db8-b4dc-13a751d80b9a.receipt">
 <eb3:PartyInfo>
 <eb3:From>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0106"
 >192837465</eb3:PartyId>
 <eb3:Role>Seller</eb3:Role>
 </eb3:From>
 <eb3:To>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0002"
 >123456789</eb3:PartyId>
 <eb3:Role>Buyer</eb3:Role>
 </eb3:To>
 </eb3:PartyInfo>
 <eb3:CollaborationInfo>
 <eb3:Service>Sales</eb3:Service>
 <eb3:Action>ProcessPurchaseOrder.receipt</eb3:Action>
 <eb3:ConversationId>ecae53d4-7473-45a6-ad70-
61970dd7c4b0</eb3:ConversationId>
 </eb3:CollaborationInfo>
 </ebint:UserMessage>
 </ebint:RoutingInput>
 <eb3:Messaging S12:mustUnderstand="true" id="_393bb2e2-df86-4b4f-b682-
f7a684316b3d">
 <eb3:SignalMessage>
 <eb3:MessageInfo>
 <eb3:Timestamp>2009-05-22T14:33:11.735Z</eb3:Timestamp>
 <eb3:MessageId>orderreceipt@seller.example.com</eb3:MessageId>
 <eb3:RefToMessageId>orders123@buyer.example.com</eb3:RefToMessa
geId>
 </eb3:MessageInfo>
 <eb3:Receipt>
 <ebbp:NonRepudiationInformation>
 <ebbp:MessagePartNRInformation>
 <ds:Reference URI="#_5cb44655-5720-4cf4-a772-
19cd480b0ad4">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>KshAH7QFFAw2sV5LQBOUOSSrCaI=</ds:Di
gestValue>
 </ds:Reference>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 103 of 126

 </ebbp:MessagePartNRInformation>
 <ebbp:MessagePartNRInformation>
 <ds:Reference URI="#_f8aa8b55-b31c-4364-94d0-
3615ca65aa40">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>l2HxWizaP7d43f4hATCD+O7it1c=</ds:Di
gestValue>
 </ds:Reference>
 </ebbp:MessagePartNRInformation>
 <ebbp:MessagePartNRInformation>
 <ds:Reference
 URI="cid:a1d7fdf5-d67e-403a-ad92-
3b9deff25d43@buyer.example.com">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://docs.oasis-
open.org/wss/oasis-wss-SwAProfile-1.1#Attachment-Content-Signature-Transform"
 />
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>iWNSv2W6SxbOYZliPzZDcXAxrwI=</ds:Di
gestValue>
 </ds:Reference>
 </ebbp:MessagePartNRInformation>
 </ebbp:NonRepudiationInformation>
 </eb3:Receipt>
 </eb3:SignalMessage>
 </eb3:Messaging>
 <wsse:Security S12:mustUnderStand="true">
 <wsu:Timestamp wsu:Id="_870532b4-2a25-4959-8d5e-029c05f5f6ee">
 <!-- details omitted -->
 </wsu:Timestamp>
 <wsse:BinarySecurityToken wsu:Id="_dc8f9e0f-529f-47eb-b78b-
30ebff44f820">
 <!-- details omitted -->
 </wsse:BinarySecurityToken>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#_25ca74aa-0a9f-454d-a5fe-5231ba8304ed">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>ZwNxc91tmwMBFrvVJZRTlyQUseQ=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_42924487-4099-4600-a0e7-4156022320a6">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>XlAi4OIAYdZJftFWacQAVpRDGeg=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_ccd050c7-a1a5-4c31-8c01-e3c2534609ab">
 <ds:Transforms>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 104 of 126

 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>h0vN6yVOXZwsaLoeLVitUdYoKlM=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_393bb2e2-df86-4b4f-b682-f7a684316b3d">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>vYPsc9BmFT8hNrlruSqDNlycZhg=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_861ff127-f930-4934-8ad0-5b91bd6dbc1e">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>3/NPWtNNuYzfWaCfV2oBdYnEDbg=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_870532b4-2a25-4959-8d5e-029c05f5f6ee">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>PreCqm0ESZqmITjf1qzrLFuOEYg=</ds:DigestValu
e>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 <!-- details omitted -->
 </ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#_dc8f9e0f-529f-47eb-b78b-
30ebff44f820"
 ValueType="http://docs.oasisopen.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-1.0#X509v3"
 />
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </S12:Header>
 <S12:Body wsu:Id="_861ff127-f930-4934-8ad0-5b91bd6dbc1e"/>
</S12:Envelope>
The ebint:RoutingInput reference parameter is filled using the values derived from the
eb3:UserMessage structure using the recommended default values.

E.4 Receipt from Intermediary to Buyer

Again, the intermediary only rewrites the HTTP header:
POST /msh HTTP/1.1
Host: buyer.example.com

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 105 of 126

E.5 Variant: Routing Error

A variant of this scenario is a situation where the intermediary is unable to forward the message from
Buyer to Seller from E.1 and responds with a routing error message:
<S12:Envelope xmlns:S12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:eb3="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:ebint="http://docs.oasis-open.org/ebxml-
msg/ns/ebms/v3.0/multihop/200902/" >
 <S12:Header>
 <wsa:To wsu:Id="_79bfe70e-f87f-4b3c-acb6-a19ddc0f9ad5"
 S12:mustUnderstand="true"
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh"
 >http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/icloud</wsa:To>
 <wsa:Action wsu:Id="_b6760f73-9fa5-48e8-acc0-1fb1784d1a68"
 >http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/oneWay.error
 </wsa:Action>
 <ebint:RoutingInput id="_43336c8b-38bd-470d-94c1-165ab96b57a5"
 S12:mustUnderstand="true"
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh">
 <ebint:UserMessage>
 <eb3:PartyInfo>
 <eb3:From>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0106"
 >192837465</eb3:PartyId>
 <eb3:Role>Seller</eb3:Role>
 </eb3:From>
 <eb3:To>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0002"
 >123456789</eb3:PartyId>
 <eb3:Role>Buyer</eb3:Role>
 </eb3:To>
 </eb3:PartyInfo>
 <eb3:CollaborationInfo>
 <eb3:Service>Sales</eb3:Service>
 <eb3:Action>ProcessPurchaseOrder.error</eb3:Action>
 <eb3:ConversationId>ecae53d4-7473-45a6-ad70-
61970dd7c4b0</eb3:ConversationId>
 </eb3:CollaborationInfo>
 </ebint:UserMessage>
 </ebint:RoutingInput>
 <eb3:Messaging id="_25ca74aa-0a9f-454d-a5fe-5231ba8304ed"
S12:mustUnderstand="true">
 <eb3:SignalMessage>
 <eb3:MessageInfo>
 <eb3:Timestamp>2009-05-21T10:49:29.251Z</eb3:Timestamp>
 <eb3:MessageId>fc9d9e2a-b396-4a9c-89e9-
5f55d7deefa0@intermediary.example.com</eb3:MessageId>
 <eb3:RefToMessageId>orders123@buyer.example.com</eb3:RefToMessa
geId>
 </eb3:MessageInfo>
 <eb3:Error origin="ebMS" category="InternalProcess"
errorCode="EBMS:0020"
 shortDescription="RoutingFailure" severity="failure"
 refToMessageInError="orders123@buyer.example.com">
 <eb3:Description xml:lang="en"

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 106 of 126

>Unable to forward message: no matching routing rule found at
intermediary.example.com for message orders123@buyer.example.com</eb3:Description>
 </eb3:Error>
 </eb3:SignalMessage>
 </eb3:Messaging>
 <wsse:Security S12:mustUnderStand="true">
 <!-- Omitted -->
 </wsse:Security>
 </S12:Header>
 <S12:Body wsu:Id="_30dadeb1-3428-4d1e-92bf-90b28a0adbdc"/>
</S12:Envelope>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 107 of 126

Appendix F Sample Message Exchange: One Way
Exchange using WS-ReliableMessaging
This example is again a one way push message, but this time the exchange has to be reliable and use
the WS-ReliableMessaging 1.1 protocol for reliability. This protocol requires the initialization of a
reliable sequence using the WS-ReliableMessaging sequence management messages. To route
these messages across the I-Cloud, an ebint:RoutingInput structure is added. This example is
about establishing a sequence with asynchronous acknowledgment messages, and also uses an
asynchronous exchange of lifecycle messages.

F.1 CreateSequence

A sending MSH is about to send a user message containing an invoice on behalf of a partner acting
as a Seller to the Buyer who previously placed an order. The MSH detects that, for this particular
message P-Mode, a reliable sequence is needed. As none is available for re-use, it sets one up. An
ebint:RoutingInput is added and constructed using the relevant P-mode parameters. One other
occurrence of the ebint:RoutingInput is present in the wsrm:AcksTo element to support
reverse routing by the recipient of the CreateSequenceResponse response message and of the
acknowledgments that will use the sequence to be established.
<S12:Envelope xmlns:S12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200702"
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702"
 xmlns:eb3="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:ebint="http://docs.oasis-open.org/ebxml-
msg/ns/ebms/v3.0/multihop/200902/"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
>
 <S12:Header>
 <wsa:MessageID wsu:Id="_590ae39c-1e12-47ea-8697-fa2be482ff23"
 >http://seller.example.com/b6ca4390-6694-419f-a2c5-
c9fa161ba0aa.wsrm.cs</wsa:MessageID>
 <wsa:Action wsu:Id="_973a9035-f878-41d8-8958-c9fe20ffa820"
 >http://docs.oasis-open.org/ws-
rx/wsrm/200702/CreateSequence</wsa:Action>
 <wsa:To wsu:Id="_d5c147b8-c610-4629-85ee-8c9bfd5f49c0"
S12:mustUnderstand="true"
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh"
 >http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/icloud</wsa:To>
 <ebint:RoutingInput wsa:IsReferenceParameter="true"
S12:mustUnderstand="true"
 id="_5d657462-b175-4657-86bf-90a231a5f495"
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh">
 <ebint:UserMessage mpc="595066c0-77b6-4c0e-95db-3015e335095e">
 <eb3:PartyInfo>
 <eb3:From>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0106"
 >192837465</eb3:PartyId>
 <eb3:Role>Seller</eb3:Role>
 </eb3:From>
 <eb3:To>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0002"
 >123456789</eb3:PartyId>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 108 of 126

 <eb3:Role>Buyer</eb3:Role>
 </eb3:To>
 </eb3:PartyInfo>
 <eb3:CollaborationInfo>
 <eb3:Service>Sales</eb3:Service>
 <eb3:Action>RequestForPayment</eb3:Action>
 <eb3:ConversationId>b6ca4390-6694-419f-a2c5-
c9fa161ba0aa</eb3:ConversationId>
 </eb3:CollaborationInfo>
 </ebint:UserMessage>
 </ebint:RoutingInput>
 <wsse:Security S12:mustUnderStand="true">
 <wsu:Timestamp wsu:Id="_7222f3fb-018e-4952-9511-841bbc883279">
 <!-- details omitted -->
 </wsu:Timestamp>
 <wsse:BinarySecurityToken wsu:Id="_76d8adbc-0f19-4af3-80e1-
b48e25bdf02c">
 <!-- details omitted -->
 </wsse:BinarySecurityToken>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#_590ae39c-1e12-47ea-8697-fa2be482ff23">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>Epfm13Uu/HIfINBz9HvvQ5pNu0E=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_973a9035-f878-41d8-8958-c9fe20ffa820">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>a/kLYjouK9ShHnQgiZz7X3/ofbk=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_d5c147b8-c610-4629-85ee-8c9bfd5f49c0">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>RgDdQIprqVHgTnjwhUAvreoy73w=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_5d657462-b175-4657-86bf-90a231a5f495">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>E71/QH3ev3JnhD4deNCr2Z76S7o=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_f8aa8b55-b31c-4364-94d0-3615ca65aa40">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 109 of 126

 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>PreCqm0ESZqmITjf1qzrLFuOEYg=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_7222f3fb-018e-4952-9511-841bbc883279">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>PreCqm0ESZqmITjf1qzrLFuOEYg=</ds:DigestValu
e>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 <!-- details omitted -->
 </ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#_76d8adbc-0f19-4af3-80e1-
b48e25bdf02c"
 ValueType="http://docs.oasisopen.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-1.0#X509v3"
 />
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </S12:Header>
 <S12:Body wsu:Id="_f8aa8b55-b31c-4364-94d0-3615ca65aa40">
 <wsrm:CreateSequence>
 <wsrm:AcksTo>
 <wsa:Address
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh"
 >http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/icloud</wsa:Address>
 <wsa:ReferenceParameters>
 <ebint:RoutingInput
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh">
 <ebint:UserMessage mpc="595066c0-77b6-4c0e-95db-
3015e335095e.response">
 <eb3:PartyInfo>
 <eb3:From>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0002"
 >123456789</eb3:PartyId>
 <eb3:Role>Buyer</eb3:Role>
 </eb3:From>
 <eb3:To>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0106"
 >192837465</eb3:PartyId>
 <eb3:Role>Seller</eb3:Role>
 </eb3:To>
 </eb3:PartyInfo>
 <eb3:CollaborationInfo>
 <eb3:Service>Sales</eb3:Service>
 <eb3:Action>RequestForPayment.response</eb3:Action>
 <eb3:ConversationId>b6ca4390-6694-419f-a2c5-
c9fa161ba0aa</eb3:ConversationId>
 </eb3:CollaborationInfo>
 </ebint:UserMessage>
 </ebint:RoutingInput>
 </wsa:ReferenceParameters>
 </wsrm:AcksTo>
 <wsrmp:DeliveryAssurance>
 <wsrmp:AtLeastOnce/>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 110 of 126

 <wsrmp:InOrder/>
 </wsrmp:DeliveryAssurance>
 </wsrm:CreateSequence>
 </S12:Body>
</S12:Envelope>

F.2 CreateSequenceResponse

Buyer’s MSH receives the request via the I-Cloud and produces the following response, using a
ebint:RoutingInput reference parameter derived from the AcksTo structure in the
CreateSequence message:

<?xml version="1.0" encoding="UTF-8"?>
<S12:Envelope xmlns:S12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200702"
 xmlns:eb3="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 xmlns:ebint="http://docs.oasis-open.org/ebxml-msg/ns/ebms/v3.0/multihop/200902/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 >
 <S12:Header>
 <wsa:MessageID wsu:Id="_de488ec7-e533-486e-ab16-f48889a3675a"
 >http://buyer.example.com/9393b326-e9f3-4969-94bb-
afc525413370.wsrm.csr</wsa:MessageID>
 <wsa:To wsu:Id="_256766f8-19f8-4ee1-9be6-e00c05a79c9c"
 S12:mustUnderstand="true"
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh"
 >http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/icloud</wsa:To>
 <wsa:Action wsu:Id="_476193ac-1584-48ac-9074-143a8fc13523"
 >http://docs.oasis-open.org/ws-
rx/wsrm/200702/CreateSequenceResponse</wsa:Action>
 <wsa:RelatesTo wsu:Id="_60e8a742-50cd-4eb4-8a7c-e49a08f26372"
 RelationshipType="http://www.w3.org/2005/08/addressing/reply"
 >http://seller.example.com/b6ca4390-6694-419f-a2c5-
c9fa161ba0aa.wsrm.cs</wsa:RelatesTo>
 <ebint:RoutingInput wsa:IsReferenceParameter="true"
 id="_95aa453c-e68e-4365-8c3e-09c76d889e03"
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh"
 S12:mustUnderstand="true">
 <ebint:UserMessage mpc="595066c0-77b6-4c0e-95db-3015e335095e.response">
 <eb3:PartyInfo>
 <eb3:From>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0002"
 >123456789</eb3:PartyId>
 <eb3:Role>Buyer</eb3:Role>
 </eb3:From>
 <eb3:To>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0106"
 >192837465</eb3:PartyId>
 <eb3:Role>Seller</eb3:Role>
 </eb3:To>
 </eb3:PartyInfo>
 <eb3:CollaborationInfo>
 <eb3:Service>Sales</eb3:Service>
 <eb3:Action>RequestForPayment.response</eb3:Action>
 <eb3:ConversationId>b6ca4390-6694-419f-a2c5-
c9fa161ba0aa</eb3:ConversationId>
 </eb3:CollaborationInfo>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 111 of 126

 </ebint:UserMessage>
 </ebint:RoutingInput>
 <wsse:Security S12:mustUnderStand="true">
 <wsu:Timestamp wsu:Id="_5cb44655-5720-4cf4-a772-19cd480b0ad4">
 <!-- details omitted -->
 </wsu:Timestamp>
 <wsse:BinarySecurityToken wsu:Id="_41666e7f-facb-4f3e-86b0-
f6ba246e5c6a">
 <!-- details omitted -->
 </wsse:BinarySecurityToken>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#_de488ec7-e533-486e-ab16-f48889a3675a">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>bgUQRNjzfnYSAh9mkq0C5+G0xaY=</ds:DigestValue
>
 </ds:Reference>
 <ds:Reference URI="#_256766f8-19f8-4ee1-9be6-e00c05a79c9c">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>CNfEqkxRjnXM8P/hbfe4vzsuEBs=</ds:DigestValue
>
 </ds:Reference>
 <ds:Reference URI="#_476193ac-1584-48ac-9074-143a8fc13523">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>kNNQkuLbjuAZaqIVlovDrIUFiLw=</ds:DigestValue
>
 </ds:Reference>
 <ds:Reference URI="#_60e8a742-50cd-4eb4-8a7c-e49a08f26372">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>6FWE1+iUD9UnJTbnqn/BPT9fnZw=</ds:DigestValue
>
 </ds:Reference>
 <ds:Reference URI="#_95aa453c-e68e-4365-8c3e-09c76d889e03">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>+AktU8cQ9k152maEKVQRZJfmLiQ=</ds:DigestValue
>
 </ds:Reference>
 <ds:Reference URI="#_7863066f-44bb-49d0-a7f2-8edc045b4601">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 112 of 126

 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>WLKJJXX66QrUwSv0TVA+dP/EMt0=</ds:DigestValue
>
 </ds:Reference>
 <ds:Reference URI="_5cb44655-5720-4cf4-a772-19cd480b0ad4">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>PreCqm0ESZqmITjf1qzrLFuOEYg=</ds:DigestValue
>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 <!-- details omitted -->
 </ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#_41666e7f-facb-4f3e-86b0-f6ba246e5c6a"
 ValueType="http://docs.oasisopen.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-1.0#X509v3"
 />
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </S12:Header>
 <S12:Body wsu:Id="_7863066f-44bb-49d0-a7f2-8edc045b4601">
 <wsrm:CreateSequenceResponse>
 <wsrm:Identifier>64331cf8-8a64-4e36-bf8e-9cbee3cf9384</wsrm:Identifier>
 </wsrm:CreateSequenceResponse>
 </S12:Body>
</S12:Envelope>

F.3 UserMessage

Seller can now use the sequence to send messages. The third message sent is also asking for an
acknowledgment.
<?xml version="1.0" encoding="UTF-8"?>
<S12:Envelope xmlns:S12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200702"
 xmlns:eb3="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 xmlns:ebint="http://docs.oasis-open.org/ebxml-
msg/ns/ebms/v3.0/multihop/200902/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 >
 <S12:Header>
 <eb3:Messaging
 S12:mustUnderstand="true"
 id="_476193ac-1584-48ac-9074-143a8fc13523">
 <eb3:UserMessage mpc="595066c0-77b6-4c0e-95db-3015e335095e">
 <eb3:MessageInfo>
 <eb3:Timestamp>2009-06-01T13:21:55.0001Z</eb3:Timestamp>
 <eb3:MessageId>invoice123@seller.example.com</eb3:MessageId>
 </eb3:MessageInfo>
 <eb3:PartyInfo>
 <eb3:From>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-
type:iso6523:0106"

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 113 of 126

 >192837465</eb3:PartyId>
 <eb3:Role>Seller</eb3:Role>
 </eb3:From>
 <eb3:To>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0002"
 >123456789</eb3:PartyId>
 <eb3:Role>Buyer</eb3:Role>
 </eb3:To>
 </eb3:PartyInfo>
 <eb3:CollaborationInfo>
 <eb3:Service>Sales</eb3:Service>
 <eb3:Action>RequestForPayment</eb3:Action>
 <eb3:ConversationId>595066c0-77b6-4c0e-95db-
3015e335095e</eb3:ConversationId>
 </eb3:CollaborationInfo>
 <eb3:PayloadInfo>
 <eb3:PartInfo
 href="cid:e3cb0fcd-6c0a-4609-875f-
5bacfb0d0764@seller.example.com"
 />
 </eb3:PayloadInfo>
 </eb3:UserMessage>
 </eb3:Messaging>
 <wsrm:Sequence wsu:Id="_50111bf6-cec9-4f65-9b14-d8a67473bfec"
 S12:mustUnderstand='true' >
 <wsrm:Identifier>64331cf8-8a64-4e36-bf8e-9cbee3cf9384</wsrm:Identifier>
 <wsrm:MessageNumber>3</wsrm:MessageNumber>
 </wsrm:Sequence>
 <wsrm:AckRequested wsu:Id="_ce8b7adc-8299-4709-8786-7b6e47d11bfe">
 <wsrm:Identifier>64331cf8-8a64-4e36-bf8e-9cbee3cf9384</wsrm:Identifier>
 </wsrm:AckRequested>
 <wsse:Security S12:mustUnderStand="true">
 <wsu:Timestamp wsu:Id='_3f3a6960-0da8-4cfe-a558-0429da9f10f1'>
 <!-- details omitted -->
 </wsu:Timestamp>
 <wsse:BinarySecurityToken wsu:Id="_c116daa8-2c55-4021-8090-
9aba31306924">
 <!-- details omitted -->
 </wsse:BinarySecurityToken>
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#_476193ac-1584-48ac-9074-143a8fc13523">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2001/10/xml-exc-
c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>G81aGuOd+yex89mdYP4yfy7zeE0=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_50111bf6-cec9-4f65-9b14-d8a67473bfec">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2001/10/xml-exc-
c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>m/dQpoocYc5mDy7I5Q7BGtmCM6g=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_ce8b7adc-8299-4709-8786-7b6e47d11bfe">
 <ds:Transforms>
 <ds:Transform

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 114 of 126

 Algorithm="http://www.w3.org/2001/10/xml-exc-
c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>BZv/Y2V6CBO5bML96vBJDB79kBk=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_60e8a742-50cd-4eb4-8a7c-e49a08f26372">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2001/10/xml-exc-
c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>LgUqGoN49jOMC8v8JAFIwFIexhg=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference
 URI="cid:e3cb0fcd-6c0a-4609-875f-
5bacfb0d0764@seller.example.com">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2001/10/xml-exc-
c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>Mc1tKNVmA5m/j426qwk07Nr5Ba4=</ds:DigestValu
e>
 </ds:Reference>
 <ds:Reference URI="#_3f3a6960-0da8-4cfe-a558-0429da9f10f1">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>
 <ds:DigestValue>PreCqm0ESZqmITjf1qzrLFuOEYg=</ds:DigestValu
e>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 <!-- details omitted -->
 </ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#_c116daa8-2c55-4021-8090-
9aba31306924"
 ValueType="http://docs.oasisopen.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-1.0#X509v3"
 />
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </S12:Header>
 <S12:Body wsu:Id="_60e8a742-50cd-4eb4-8a7c-e49a08f26372"/>
</S12:Envelope>

F.4 Acknowledgment

The following acknowledgment is returned. It contains a ebint:RoutingInput that was specified
as the wsrm:AcksTo in the message that established the sequence.

<?xml version="1.0" encoding="UTF-8"?>
<S12:Envelope xmlns:S12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 115 of 126

 xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200702"
 xmlns:eb3="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 xmlns:ebint="http://docs.oasis-open.org/ebxml-
msg/ns/ebms/v3.0/multihop/200902/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <S12:Header>
 <wsa:To wsu:Id="_95aa453c-e68e-4365-8c3e-09c76d889e03"
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh"
 S12:mustUnderstand="true"
 >http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/icloud</wsa:To>
 <wsa:Action wsu:Id="_7863066f-44bb-49d0-a7f2-8edc045b4601"
 >http://docs.oasis-open.org/ws-
rx/wsrm/200702/SequenceAcknowledgement</wsa:Action>
 <ebint:RoutingInput wsa:IsReferenceParameter="true"
 S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh"
 id="_a83cb2ba-956c-4b46-b6d3-cd8edd98b32e" S12:mustUnderstand="true">
 <ebint:UserMessage mpc="595066c0-77b6-4c0e-95db-3015e335095e.response">
 <eb3:PartyInfo>
 <eb3:From>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0002"
 >123456789</eb3:PartyId>
 <eb3:Role>Buyer</eb3:Role>
 </eb3:From>
 <eb3:To>
 <eb3:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:iso6523:0106"
 >192837465</eb3:PartyId>
 <eb3:Role>Seller</eb3:Role>
 </eb3:To>
 </eb3:PartyInfo>
 <eb3:CollaborationInfo>
 <eb3:Service>Sales</eb3:Service>
 <eb3:Action>RequestForPayment.response</eb3:Action>
 <eb3:ConversationId>b6ca4390-6694-419f-a2c5-
c9fa161ba0aa</eb3:ConversationId>
 </eb3:CollaborationInfo>
 </ebint:UserMessage>
 </ebint:RoutingInput>
 <wsrm:SequenceAcknowledgement wsu:Id="_02b17eed-be4f-4483-af26-
55a3e2412bb3"
 S12:ackRequested="true" S12:mustUnderstand="true">
 <wsrm:Identifier>64331cf8-8a64-4e36-bf8e-9cbee3cf9384</wsrm:Identifier>
 <wsrm:AcknowledgementRange Upper="1" Lower="1"/>
 <wsrm:AcknowledgementRange Upper="3" Lower="3"/>
 </wsrm:SequenceAcknowledgement>
 <wsse:Security S12:mustUnderStand="true">
 <!-- Omitted -->
 </wsse:Security>
 </S12:Header>
 <S12:Body wsu:Id="_98825416-7b3d-4aba-85c5-089fd22f07d4"/>
</S12:Envelope>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 116 of 126

Appendix G Sample Message Exchange: Store-and-
Collect Intermediary
The functionality described in scenario Appendix E can be modified to support a (third-party hosted)
“mailbox” type solution by changing the routing function of the intermediary. If Buyer is not
addressable, it can only retrieve the asynchronous Receipt if the intermediary stores the response
signal message and makes it available for pulling. One key difference with scenario Appendix E is that
Buyer needs to actively poll the intermediary for messages on the relevant MPC. The content of the
user message and the receipt are the same as in the previous scenario. The signal can be pulled from
the Intermediary using an eb3:PullRequest signal message. No
S12:role="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/part2/200811/nextmsh" attribute has to be added as the pull request
accesses the intermediary directly and no forwarding of the pull request via intermediaries occurs.
The intermediary also acts in the “ebms” role.
<?xml version="1.0" encoding="UTF-8"?>
<S12:Envelope xmlns:S12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200702"
 xmlns:eb3="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:ebint="http://docs.oasis-open.org/ebxml-
msg/ns/ebms/v3.0/multihop/200902/"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <S12:Header>
 <eb3:Messaging S12:mustUnderstand="true"
 id="_b2943cc2-0af3-49d8-ba09-1e3922219711">
 <eb3:SignalMessage>
 <eb3:MessageInfo>
 <eb3:Timestamp>2009-05-21T11:30:11.320Z</eb3:Timestamp>
 <eb3:MessageId>30c6eb92-6329-44c7-a4a3-
468d503c01f8@buyer.example.com</eb3:MessageId>
 </eb3:MessageInfo>
 <eb3:PullRequest mpc="e5c31ef7-d750-4db8-b4dc-
13a751d80b9a.receipt"/>
 </eb3:SignalMessage>
 </eb3:Messaging>
 <wsse:Security S12:role="ebms"
 S12:mustUnderstand="true"
 wsu:Id="_c885e5b3-934d-4f06-ab9c-d8b044d800d6">
 <wsse:UsernameToken>
 <!-- This must be valid at the Intermediary -->
 <wsse:Username>buyer</wsse:Username>
 <wsse:Password
 Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordDigest"
 >r0jfXM1XaIK1/IlwycaHZTZvDpc=</wsse:Password>
 <wsse:Nonce>h0vN6yVOXZwsaLoeLVitUdYoKlM=</wsse:Nonce>
 <wsu:Created>2009-05-21T11:30:11.320Z</wsu:Created>
 </wsse:UsernameToken>
 </wsse:Security>
 <wsse:Security
 S12:mustUnderStand="true">
 <!-- Omitted -->
 </wsse:Security>
 </S12:Header>
 <S12:Body wsu:Id="_f9e2b212-c001-4648-a6bd-ef24d1dc813e"/>
</S12:Envelope>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 117 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/part2/200811/nextmsh

Appendix H New ebMS Error Types
This appendix summarizes the new ebMS error types defined in this specification. Section 2.5.6
discusses the following errors:

Error Code Short Description Recommended
Severity

Category
Value

Description or Semantics

EBMS:0020 RoutingFailure failure Processing An Intermediary MSH was
unable to route an ebMS
message and stopped
processing the message.

EBMS:0021 MPCCapacityExceeded failure Processing An entry in the routing
function is matched that
assigns the message to an
MPC for pulling, but the
intermediary MSH is unable
to store the message with
this MPC

EBMS:0022 MessagePersistenceTi
meout

failure Processing An intermediary MSH has
assigned the message to an
MPC for pulling and has
successfully stored it.
However the intermediary set
a limit on the time it was
prepared to wait for the
message to be pulled, and
that limit has been reached.

EBMS:0023 MessageExpired warning Processing An MSH has determined that
the message is expired and
will not attempt to forward or
deliver it.

Section 3.5 and 3.10.3 introduce the following two errors:

Error Code Short Description Recommended
Severity

Category
Value

Description or Semantics

EBMS:0030 BundlingError failure Content The structure of a received
bundle is not in accordance with
the bundling rules.

EBMS:0031 RelatedMessageFailed failure Processing A message unit in a bundle
was not processed because a
related message unit in the
bundle caused an error.

Section 4.6 defines the errors EBMS:0040 to EBMS:0055.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 118 of 126

Error Code Short Description Recommended
Severity

Category
Value

Description or Semantics

EBMS:0040 BadFragmentGroup failure Content A fragment is received that
relates to a group that was
previously rejected.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 119 of 126

Error Code Short Description Recommended
Severity

Category
Value

Description or Semantics

EBMS:0041 DuplicateMessageSize failure Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for this element.

EBMS:0042 DuplicateFragmentCount failure Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for this element.

EBMS:0043 DuplicateMessageHeader failure Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for this element.

EBSMS:0044 DuplicateAction failure Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for this element.

EBMS:0045 DuplicateCompressionInfo failure Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for a compression
element.

EBMS:0046 DuplicateFragment failure Content A fragment is received but a
previously received fragment
message had the same values
for GroupId and FragmentNum

EBMS:0047 BadFragmentStructure failure Unpackaging The href attribute does not
reference a valid MIME data
part, MIME parts other than the
fragment header and a data part
are in the message. are added
or the SOAP Body is not empty.

EBMS:0048 BadFragmentNum failure Content An incoming message fragment
has a a value greater than the
known FragmentCount.

EBMS:0049 BadFragmentCount failure Content A value is set for
FragmentCount, but a
previously received fragment
had a greature value.

EBMS:0050 FragmentSizeExceeded warning Unpackaging The size of the data part in a
fragment message is greater
than
Pmode[].Splitting.FragmentSi
ze

EBMS:0051 ReceiveIntervalExceeded failure Unpackaging More time than
Pmode[].Splitting.JoinInterval
has passed since the first
fragment was received but not
all other fragments are received.

EBMS:0052 BadProperties warning Unpackaging Message properties were
present in the fragment SOAP
header that were not specified
in
Pmode[].Splitting.RoutingPro
perties

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 120 of 126

Error Code Short Description Recommended
Severity

Category
Value

Description or Semantics

EBMS:0053 HeaderMismatch failure Unpackaging The eb3:Message header
copied to the fragment header
does not match the
eb3:Message header in the
reassembled source message.

EBMS:0054 OutOfStorageSpace failure Unpackaging Not enough disk space
available to store all (expected)
fragments of the group.

EBMS:0055 DecompressionError failure Processing An error occurred while
decompressing the
reassembled message.

Section 5.2 defines the following error

Error Code Short Description Recommended
Severity

Category
Value

Description or Semantics

EBMS:0060 ResponseUsing-
AlternateMEP

Warning Processing A responding MSH indicates
that it applies the alternate
MEP binding to the response
message.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 121 of 126

Appendix I MessageFragment Schema
The XML schema of the MessageFragment header extension element described in chapter 4 is
defined at:

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd03/mf.xsd
The following copy is provided for reference:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:S11="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:S12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:mf="http://docs.oasis-open.org/ebxml-msg/ns/v3.0/mf/2010/04/"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 targetNamespace="http://docs.oasis-open.org/ebxml-msg/ns/v3.0/mf/2010/04/"
 >

 <xsd:import namespace="http://www.w3.org/2003/05/soap-envelope"
 schemaLocation="http://www.w3.org/2003/05/soap-envelope"/>

 <xsd:import namespace="http://schemas.xmlsoap.org/soap/envelope/"
 schemaLocation="http://schemas.xmlsoap.org/soap/envelope/"/>

 <xsd:element name="MessageFragment" type="mf:MessageFragmentType"/>

 <xsd:complexType name="MessageFragmentType">
 <xsd:sequence>
 <xsd:element name="GroupId" type="mf:non-empty-string">
 <xsd:annotation>
 <xsd:documentation>The identifier of the group of fragments
that a message is
 split into. </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="MessageSize" type="xsd:positiveInteger"
minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>The size of the message as the sum of the
size of all
 fragments (excluding headers), i.e. before splitting or
after reassembly.
 This needs to be specified exactly once for a group.
</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="FragmentCount" type="xsd:positiveInteger"
minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>The number of items that are part of the
group. This needs to
 be specified exactly once for a group. </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="FragmentNum" type="xsd:positiveInteger">
 <xsd:annotation>
 <xsd:documentation>The identifier of an individual message in a
sequence. 1 <
 FragmentCount < </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="MessageHeader" type="mf:MessageHeaderType"
minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>The header fields and parameters of the
fragmented message.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 122 of 126

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/part2/201004/csd03/mf.xsd

 This needs to be specified exactly once for a group.
</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="Action" type="xsd:string" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation> This needs to be specified exactly once for
a group. When
 using SOAP 1.1, this value corresponds to the SOAPAction
header. When using
 SOAP 1.2, this value corresponds to the action parameter.
When not set, this
 value of the SOAPaction header or action parameter is
assumed to be the
 empty string. </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:sequence minOccurs="0" maxOccurs="1">
 <xsd:element name="CompressionAlgorithm"
type="mf:CompressionAlgorithmType"/>
 <xsd:element name="CompressedMessageSize"
type="xsd:positiveInteger"/>
 </xsd:sequence>
 <xsd:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="href" type="xsd:anyURI"/>
 <xsd:attributeGroup ref="mf:S12atts"/>
 <xsd:attributeGroup ref="mf:S11atts"/>
 <xsd:anyAttribute namespace="##other" processContents="lax"/>
 </xsd:complexType>

 <xsd:complexType name="MessageHeaderType">
 <xsd:sequence>
 <xsd:element name="Content-Type" type="mf:non-empty-string"
fixed="Multipart/Related"/>
 <xsd:element name="Boundary" type="mf:non-empty-string">
 <xsd:annotation>
 <xsd:documentation>The MIME boundary separating the MIME parts
in the MIME
 envelop. </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="Type" type="mf:TypeType"/>
 <xsd:element name="Start" type="mf:non-empty-string"/>
 <xsd:element name="StartInfo" type="mf:non-empty-string" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>For MTOM XOP </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="Content-Description" type="xsd:string"
minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="non-empty-string">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="TypeType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="application/xop+xml">
 <xsd:annotation>
 <xsd:documentation>XOP Package as defined in
 http://www.w3.org/TR/2005/REC-xop10-20050125/
</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="text/xml">

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 123 of 126

 <xsd:annotation>
 <xsd:documentation>SOAP with attachments </xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="HTTPCompressionAlgorithmType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="gzip"/>
 <xsd:enumeration value="compress"/>
 <xsd:enumeration value="deflate"/>
 <xsd:enumeration value="identity"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="CompressionAlgorithmType">
 <xsd:union memberTypes="mf:non-empty-string
mf:HTTPCompressionAlgorithmType"/>
 </xsd:simpleType>

 <xsd:attributeGroup name="S12atts">
 <xsd:attribute ref="S12:mustUnderstand" use="optional">
 <xsd:annotation>
 <xsd:documentation> if SOAP 1.2 is being used, this attribute is
required, other
 attributes in the S12atts group are allowed and attributes in
the S11atts group
 are prohibited.</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute ref="S12:encodingStyle"/>
 <xsd:attribute ref="S12:relay"/>
 <xsd:attribute ref="S12:role"/>
 </xsd:attributeGroup>

 <xsd:attributeGroup name="S11atts">
 <xsd:attribute ref="S11:mustUnderstand" use="optional">
 <xsd:annotation>
 <xsd:documentation> if SOAP 1.1 is being used, this attribute is
required, other
 attributes in the S11atts group are allowed and attributes in
the S12atts group
 are prohibited.</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute ref="S11:encodingStyle"/>
 <xsd:attribute ref="S11:actor"/>
 </xsd:attributeGroup>

</xsd:schema>

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 124 of 126

Appendix J Acknowledgments
The editors would also like to acknowledge the contributions of the OASIS ebXML Messaging
Services TC, whose members at the time of publication were:

• Timothy Bennett, Drummond Group Inc.

• Weisin Chong, Cisco Systems, Inc.

• Jacques Durand, Fujitsu Limited (Secretary).

• Pim van der Eijk, Sonnenglanz Consulting.

• Richard Emery, Axway Software

• Sander Fieten, Individual member.

• Kazunori Iwasa, Fujitsu Limited.

• Ian Jones, British Telecommunications Plc (Chair)

• Theo Kramer, Flame Computing Enterprises

• Dale Moberg, Axway.

• Ernst Jan van Nigtevecht, Sonnenglanz Consulting.

• Makesh Rao, Cisco Systems, Inc.

• Dilip Sarmah, Sybase.

• John Voss, Cisco Systems, Inc.

The following former TC member contributed to chapter 2 of this specification and his contribution is
gratefully acknowledged:

• Rajashekar Kailar, Centers for Disease Control and Prevention.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 125 of 126

Appendix K Revision History

Rev Date By Whom What

CD 1 06/30/10 J. Durand / P.
van der Eijk

CD 1 draft for PR

WD 66 10/25/10 S. Fieten Public Review Comments

WD 67 10/31/10 P. van der Eijk Fixed some formatting and layout issues, missing values in
Appendix H. Fixed URLs for AS2 restart, ebCore Party Id Type.

CSD 02 11/03/10 P. van der Eijk Document voted CSD 02.

WD 68 02/06/11 P. van der Eijk Fixed some editorial issues that came up in preparation for
second Public Review, and updated some references.

WD 69 02/09/11 P. van der Eijk Fixed three references to “cds02” that should be to “csd03”

WD 70 02/11/11 J. Durand / P.
van der Eijk

• Related materials section and section 1.2: removed BP
1.1 reference, as BP 1.2 is now final material; updated references
for WS-ReliableMessaging to version 1.2, WS-Trust and WS-
SecureConversation to 1.4, MakeConnection to 1.1.

• Section 2.4.3: added an explicit requirement to comply
with WS-I RSP1.0 and edited the section to adjust to the
existence of final material for RSP1.0.

• Section 2.8.1, reworded some sentences to associate
some requirements to the use of WS-ReliableMessaging

• Section 2.8.4 (slight rewording to emphasize difference
with WS-Reliability). Updated for version 1.2 of WS-
ReliableMessaging.

• Section 3.2.2 (slight rewording to emphasize
compatibility with RSP signing)

• Section 7, references to BP1.2 and 2.0 added.

• Retitled 7.x as Clauses not Profiles.

• Appendix D1: transformed “Editor Note” into just “Note”
+ rewording

WD 71 02/15/11 T. Kramer /

P. van der Eijk

• Editorial fixes in section 7.

• Updated Appendix J

WD 72 02/16/11 P. van der Eijk • Word “conformance” added in title of section 7.6.4.

ebms-v3.0-part2-cs01 19 May 2011
Copyright © OASIS Open 2011. All Rights Reserved. Standards Track Work Product Page 126 of 126

	1 Introduction
	1.1 Terminology
	1.2 Normative References
	1.3 Non-normative References
	1.4 Namespaces

	2 Multi-hop Messaging
	2.1 Introduction
	2.2 Terminology
	2.3 Multi-hop Topologies
	2.3.1 Assumptions about Multi-hop Topologies
	2.3.2 Hub-and-Spoke
	2.3.3 Interconnected Hubs

	2.4 Usage Requirements
	2.4.1 Operation Assumptions
	2.4.2 Connectivity and Addressability constraints
	2.4.3 QoS of Message Exchanges
	2.4.4 Intermediary Configuration and Change management
	2.4.5 Compliance with the SOAP Processing Model
	2.4.6 MEPs and Channel Bindings
	2.4.7 Edge-bindings for Multi-hop One-Way
	2.4.7.1 Pushing Messages from the Sender Endpoint
	2.4.7.2 Pulling Messages from the Sender Endpoint

	2.4.8 Edge-bindings for Multi-hop Two-Way
	2.4.8.1 Asynchronous Edge-bindings
	2.4.8.2 Synchronous Edge-bindings

	2.5 The Intermediary MSH
	2.5.1 Intermediary Functions
	2.5.2 Message Forwarding Models
	2.5.3 MEP Bridging
	2.5.4 Sub-channels
	2.5.5 The Routing Function
	2.5.6 Error Handling and Multi-Hop Messaging

	2.6 Endpoint requirements
	2.6.1 Routing Support for Initiating Messages
	2.6.2 Routing Support for Response Messages
	2.6.3 WS-Addressing Support
	2.6.3.1 WS-Addressing Endpoint References
	2.6.3.2 Use of WS-Addressing Headers

	2.7 P-Modes for multi-hop
	2.7.1 P-Mode Extension for Web Services Addressing
	2.7.1.1 Addressing.Address
	2.7.1.2 Addressing.EPR
	2.7.1.3 WS-Addressing Action
	2.7.1.4 P-Mode extensions

	2.7.2 P-Mode units
	2.7.3 Migrating P-Modes from point-to-point to multi-hop

	2.8 Details of Reliable and Secure Multi-hop
	2.8.1 Controlling Sequencing and Grouping
	2.8.2 Configuring Secure Conversations
	2.8.3 Reliable Message Pulling
	2.8.4 Considerations about Reliable Messaging Specifications

	3 Message Bundling
	3.1 Definition, Rationale and Requirements
	3.1.1 Definition
	3.1.2 Rationale
	3.1.3 Requirements

	3.2 Packaging and Processing Bundles
	3.2.1 Packaging of bundles
	3.2.2 Processing Bundles

	3.3 Controlling Bundling
	3.4 Submitting and Bundling
	3.5 Errors in Bundling
	3.6 Bundling Best Practices
	3.6.1 Compatibility
	3.6.2 Security Compatibility
	3.6.3 Reliability Compatibility

	3.7 Bundling and Pull
	3.8 Bundling and Responses
	3.9 Bundling for Multi-hop
	3.10 Delivery Policies
	3.10.1 Delivery Parameters
	3.10.2 Processing Order of Message Units
	3.10.3 Processing Bundles with Errors

	4 Large Message Splitting and Joining
	4.1 Background and Context
	4.2 Message Splitting and Joining
	4.2.1 Splitting/Joining Protocol
	4.2.2 MessageFragment
	4.2.3 Binding for Envelope Formats
	4.2.4 Compression Feature

	4.3 Behavior of the MSH
	4.3.1 Behavior of the Sending MSH
	4.3.2 Behavior of Receiving MSH

	4.4 Protocol Bindings
	4.4.1 Binding for WS-Addressing
	4.4.2 Binding for ebXML Messaging

	4.5 Configuration
	4.6 Errors
	4.7 Security Considerations

	5 Variants in Message Exchange Patterns Execution
	5.1 Selective message pulling
	5.2 Alternate MEP bindings

	6 Processing Mode Extensions
	6.1 Overview
	6.2 Pmode[1].Addressing
	6.3 Pmode.MEPBinding
	6.3.1 HTTP Pipeline Capability
	6.3.2 EbMS MEPs and Pipelining
	6.3.3 ebMS Alternate MEPs

	6.4 Pmode[1].Protocol
	6.4.1 Transport Security
	6.4.2 Controlling the SOAP Actor or Role
	6.4.3 Large File Handling using Protocol Restart

	6.5 Pmode[1].ErrorHandling
	6.6 Pmode[1].Reliability
	6.6.1 Reliability Protocol
	6.6.2 Reliability of the Pull Signal
	6.6.3 Transmitting Acknowledgements

	6.7 Pmode[1].Security
	6.7.1 Receipts
	6.7.2 Secure Conversations

	6.8 Pmode[1].PayloadService
	6.9 Pmode[1].ReceptionAwareness
	6.10 Pmode[1].Bundling
	6.11 Pmode[].Splitting
	6.12 Pmode[].BusinessInfo

	7 Conformance
	7.1 Simple Multi-hop Conformance Clause
	7.2 Simple Bundling Conformance Clause
	7.3 Basic Messaging Extensions Conformance Clause
	7.4 Simple Fragmented Message Transfer Conformance Clause
	Appendix A Multi-hop Routing Scenarios and Good Practices
	A.1 Routing Scenarios
	A.2 Routing Rules
	A.3 Business Partner Identification
	A.4 Business Partner Domains
	A.5 Services
	A.6 Separate Environments
	A.7 End-to-end Pulling

	Appendix B Refactored ebMS 3.0 Core XML Schema
	Appendix C Reference Parameter
	Appendix D Flow Diagrams for Multi-hop
	D.1 Reliable Sequence Establishment
	D.2 Routing RM Acknowledgments
	D.3 Routing User Messages (One-Way MEP)
	D.4 Routing ebMS Reply User Messages (Two-way MEP)
	D.5 Routing ebMS Response Signals (Receipts, Errors)

	Appendix E Sample Message Exchange: One Way Exchange with Asynchronous Receipt
	E.1 Message from Buyer to Intermediary
	E.2 Message from Intermediary to Seller
	E.3 Message from Seller to Intermediary
	E.4 Receipt from Intermediary to Buyer
	E.5 Variant: Routing Error

	Appendix F Sample Message Exchange: One Way Exchange using WS-ReliableMessaging
	F.1 CreateSequence
	F.2 CreateSequenceResponse
	F.3 UserMessage
	F.4 Acknowledgment

	Appendix G Sample Message Exchange: Store-and-Collect Intermediary
	Appendix H New ebMS Error Types
	Appendix I MessageFragment Schema
	Appendix J Acknowledgments
	Appendix K Revision History

