
oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 1 of 61

Digital Signature Service Core
Protocols, Elements, and Bindings
Version 1.0
Committee Specification

13 February 2007
Specification URIs:
This Version:

http://docs.oasis-open.org/dss/core/v1.0/oasis-dss-core-spec-cs-v1.0-r1.html
http://docs.oasis-open.org/dss/core/v1.0/oasis-dss-core-spec-cs-v1.0-r1.pdf

Latest Version:
http://docs.oasis-open.org/dss/core/v1.0/oasis-dss-core-spec-cs-v1.0-r1.html
http://docs.oasis-open.org/dss/core/v1.0/oasis-dss-core-spec-cs-v1.0-r1.pdf

Technical Committee:
OASIS Digital Signature Services TC

Chair(s):
Nick Pope, Thales eSecurity
Juan Carlos Cruellas, Centre d'aplicacions avançades d’Internet (UPC)

Editor(s):
Stefan Drees, individual <stefan@zinz.name>

Related work:

Declared XML Namespace(s):
urn:oasis:names:tc:dss:1.0:core:schema

Abstract:
This document defines XML request/response protocols for signing and verifying XML documents
and other data. It also defines an XML timestamp format, and an XML signature property for use
with these protocols. Finally, it defines transport and security bindings for the protocols.

Status:
This document was last revised or approved by the OASIS Digital Signature Services TC on the
above date. The level of approval is also listed above. Check the current location noted above for
possible later revisions of this document. This document is updated periodically on no particular
schedule.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/dss.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/dss/ipr.php.

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 2 of 61

The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/dss.

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 3 of 61

Notices
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by
implementors or users of this specification, can be obtained from the OASIS Executive Director.
OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to implement this
specification. Please address the information to the OASIS Executive Director.
Copyright © OASIS® 1993–2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to
translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 4 of 61

Table of Contents
1 Introduction...7

1.1 Terminology ..7
1.2 Normative References ..7
1.3 Schema Organization and Namespaces ..9
1.4 DSS Overview (Non-normative) ...9

2 Common Protocol Structures ...11
2.1 Type AnyType...11
2.2 Type InternationalStringType..11
2.3 Type saml:NameIdentifierType...11
2.4 Element <InputDocuments> ...11

2.4.1 Type DocumentBaseType...12
2.4.2 Element <Document>..13
2.4.3 Element <TransformedData>..14
2.4.4 Element <DocumentHash> ...15

2.5 Element <SignatureObject>..16
2.6 Element <Result> ...17
2.7 Elements <OptionalInputs> and <OptionalOutputs>..19
2.8 Common Optional Inputs ..20

2.8.1 Optional Input <ServicePolicy> ...20
2.8.2 Optional Input <ClaimedIdentity>..20
2.8.3 Optional Input <Language>...20
2.8.4 Optional Input <AdditionalProfile>...21
2.8.5 Optional Input <Schemas>..21

2.9 Common Optional Outputs ...21
2.9.1 Optional Output <Schemas>...21

2.10 Type <RequestBaseType>...22
2.11 Type <ResponseBaseType> ..22
2.12 Element <Response> ...23

3 The DSS Signing Protocol..24
3.1 Element <SignRequest>...24
3.2 Element <SignResponse>..24
3.3 Processing for XML Signatures ..25

3.3.1 Basic Process for <Base64XML>..25
3.3.2 Process Variant for <InlineXML>...26
3.3.3 Process Variant for <EscapedXML> ...26
3.3.4 Process Variant for <Base64Data>...26
3.3.5 Process Variant for <TransformedData> ..27
3.3.6 Process Variant for <DocumentHash>..27

3.4 Basic Processing for CMS Signatures..28
3.4.1 Process Variant for <DocumentHash>..28

3.5 Optional Inputs and Outputs ...29
3.5.1 Optional Input <SignatureType> ...29
3.5.2 Optional Input <AddTimestamp> ..29

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 5 of 61

3.5.3 Optional Input <IntendedAudience>..31
3.5.4 Optional Input <KeySelector> ...31
3.5.5 Optional Input <Properties> ..31
3.5.6 Optional Input <IncludeObject>...32
3.5.7 Optional Input <IncludeEContent> ..34
3.5.8 Enveloped Signatures, Optional Input <SignaturePlacement> and Output
<DocumentWithSignature> ..34
3.5.9 Optional Input <SignedReferences> ...36

4 The DSS Verifying Protocol..38
4.1 Element <VerifyRequest>...38
4.2 Element <VerifyResponse>..38
4.3 Basic Processing for XML Signatures ..38

4.3.1 Multi-Signature Verification ...40
4.3.2 Signature Timestamp verification procedure...40

4.4 Basic Processing for CMS Signatures..42
4.5 Optional Inputs and Outputs ...42

4.5.1 Optional Input <VerifyManifests> and Output <VerifyManifestResults>...................................42
4.5.2 Optional Input <UseVerificationTime> ..43
4.5.3 Optional Input/Output <ReturnVerificationTimeInfo> / <VerificationTimeInfo>.........................44
4.5.4 Optional Input <AdditionalKeyInfo>...45
4.5.5 Optional Input <ReturnProcessingDetails> and Output <ProcessingDetails>..........................45
4.5.6 Optional Input <ReturnSigningTimeInfo> and Output <SigningTimeInfo>46
4.5.7 Optional Input <ReturnSignerIdentity> and Output <SignerIdentity>..47
4.5.8 Optional Input <ReturnUpdatedSignature> and Outputs <DocumentWithSignature>,
<UpdatedSignature> ..47
4.5.9 Optional Input <ReturnTransformedDocument> and Output <TransformedDocument>..........49
4.5.10 Optional Input <ReturnTimestampedSignature> and Outputs <DocumentWithSignature>,
<TimestampedSignature> ..49

5 DSS Core Elements ...51
5.1 Element <Timestamp>..51

5.1.1 XML Timestamp Token ...51
5.1.2 Element <TstInfo> ...52

5.2 Element <RequesterIdentity> ...52
6 DSS Core Bindings...54

6.1 HTTP POST Transport Binding ..54
6.2 SOAP 1.2 Transport Binding ..54

6.2.1 SOAP Attachment Feature and Element <AttachmentReference> ..55
6.3 TLS Security Bindings ..56

6.3.1 TLS X.509 Server Authentication..57
6.3.2 TLS X.509 Mutual Authentication..57
6.3.3 TLS SRP Authentication..57
6.3.4 TLS SRP and X.509 Server Authentication ..57

7 DSS-Defined Identifiers..58
7.1 Signature Type Identifiers...58

7.1.1 XML Signature...58
7.1.2 XML TimeStampToken..58

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 6 of 61

7.1.3 RFC 3161 TimeStampToken...58
7.1.4 CMS Signature ..58
7.1.5 PGP Signature...58

A. Use of Exclusive Canonicalization ...59
B. More Complex <Response> Example..60
C. Acknowledgements ..61

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 7 of 61

1 Introduction 1

[All text is normative unless otherwise labeled] 2

1.1 Terminology 3

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 4
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted 5
as described in IETF RFC 2119 [RFC 2119]. These keywords are capitalized when used to 6
unambiguously specify requirements over protocol features and behavior that affect the interoperability 7
and security of implementations. When these words are not capitalized, they are meant in their natural-8
language sense. 9
 This specification uses the following typographical conventions in text: <DSSElement>, 10
<ns:ForeignElement>, Attribute, Datatype, OtherCode. 11

Listings of DSS schemas appear like this. 12

1.2 Normative References 13

[Core-XSD] S. Drees,. DSS Schema. OASIS, February 2007. 14
[DSS-TS-P] T Perrin et al. DSS Timestamp Profile. OASIS, February 2007. 15
[DSS-AdES-P] JC Cruellas et al. Advanced Electronic Signature Profiles of the OASIS Digital 16

Signature Service. OASIS, February 2007 17
[RFC 2119] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. IETF 18

RFC 2119, March 1997. 19
http://www.ietf.org/rfc/rfc2119.txt. 20

[RFC 2246] T Dierks, C. Allen. The TLS Protocol Version 1.0. IETF RFC 2246, January 21
1999. 22
http://www.ietf.org/rfc/rfc2246.txt. 23

[RFC 2396] T. Berners-Lee et al. Uniform Resource Identifiers (URI): Generic Syntax. IETF 24
RFC 2396, August 1998. 25
http://www.ietf.org/rfc/rfc2396.txt. 26

[RFC 2440] J. Callas, L. Donnerhacke, H. Finney, R. Thayer. OpenPGP Message Format. 27
IETF RFC 2440, November 1998. 28
http://www.ietf.org/rfc/rfc2440.txt. 29

[RFC 2616] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. IETF RFC 2616, June 30
1999. 31
http://www.ietf.org/rfc/rfc2616.txt. 32

[RFC 2648] R. Moats. A URN Namespace for IETF Documents. IETF RFC 2648, August 33
1999. 34
http://www.ietf.org/rfc/rfc2648.txt. 35

[RFC 2822] P. Resnick. Internet Message Format. IETF RFC 2822, April 2001. 36
http://www.ietf.org/rfc/rfc2822.txt 37

[RFC 3161] C. Adams, P. Cain, D. Pinkas, R. Zuccherato. Internet X.509 Public Key 38
Infrastructure Time-Stamp Protocol (TSP). IETF RFC 3161, August 2001. 39
http://www.ietf.org/rfc/rfc3161.txt. 40

[RFC 3268] P. Chown. AES Ciphersuites for TLS. IETF RFC 3268, June 2002. 41
http://www.ietf.org/rfc/rfc3268.txt. 42

[RFC 3280] R. Housley, W. Polk, W. Ford, D. Solo. Internet X.509 Public Key Infrastructure 43
Certificate and Certificate Revocation List (CRL) Profile. IETF RFC 3280, April 44
2002. 45
http://www.ietf.org/rfc/rfc3280.txt. 46

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 8 of 61

[RFC 3852] R. Housley. Cryptographic Message Syntax. IETF RFC 3852, July 2004. 47
http://www.ietf.org/rfc/rfc3852.txt. 48
(Remark: As used in DSS, all implementations based upon RFC 3852, RFC 3369 49
and previous releases of CMS will suffice. For the sake of simplicity the 50
"urn:ietf::3369" is used throughout the document to indicate a CMS message as 51
specified in RFC 3852 or RFC 3369 or any version (including PKCS #7). 52

[SAMLCore1.1] E. Maler et al. Assertions and Protocol for the OASIS Security Assertion Markup 53
Language (SAML) V 1.1. OASIS, November 2002. 54
http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-55
1.1.pdf 56

[Schema1] H. S. Thompson et al. XML Schema Part 1: Structures. W3C Recommendation, 57
May 2001. 58
http://www.w3.org/TR/xmlschema-1/ 59

[SOAP] M. Gudgin et al. SOAP Version 1.2 Part 1: Messaging Framework. W3C 60
Recommendation, June 2003. 61
http://www.w3.org/TR/xmlschema-1/ 62

[SOAPAtt] H. F. Nielsen, H. Ruellan SOAP 1.2 Attachment Feature, W3C Working Group 63
Note, 8 June 2004 64
http://www.w3.org/TR/soap12-af/ 65

[WS-I-Att] Ch. Ferris, A. Karmarkar, C. K. Liu Attachments Profile Version 1.0, The Web 66
Services-Interoperability Organization (WS-I), 20 April 2006 67
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html 68

[XML-C14N] J. Boyer. Canonical XML Version 1.0. W3C Recommendation, March 2001. 69
http://www.w3.org/TR/xml-c14n 70

[XML-ESCAPE] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, et al. Predefined Entities in 71
Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, 72
04 February 2004, 73
http://www.w3.org/TR/REC-xml/#dt-escape 74

[xml:id] xml:id, Version 1.0, W3C Recommendation, 9 September 2005, 75
http://www.w3.org/TR/xml-id/ 76

[XML-ns] T. Bray, D. Hollander, A. Layman. Namespaces in XML. W3C 77
Recommendation, January 1999. 78
http://www.w3.org/TR/1999/REC-xml-names-19990114 79

[XML-NT-Document] http://www.w3.org/TR/2004/REC-xml-20040204/#NT-document 80
[XML-PROLOG] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, et al. Prolog and Document 81

Type Declaration in Extensible Markup Language (XML) 1.0 (Third Edition), W3C 82
Recommendation, 04 February 2004, http://www.w3.org/TR/REC-xml/#sec-83
prolog-dtd 84

 [XMLDSIG] D. Eastlake et al. XML-Signature Syntax and Processing. W3C 85
Recommendation, February 2002. 86
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/ 87

[XML-TSP] T. Perrin et al. XML Timestamping Profile of the OASIS Digital Signature 88
Services. W3C Recommendation, February 2002. OASIS, (MONTH/YEAR 89
TBD) 90

[XML] Extensible Markup Language (XML) 1.0 (Third Edition). W3C Recommendation 04 February 91
2004 http://www.w3.org/TR/REC-xml/#sec-element-content 92

[XPATH] XML Path Language (XPath) Version 1.0. W3C Recommendation 16 November 1999 93
http://www.w3.org/TR/xpath 94

[XML-xcl-c14n] Exclusive XML Canonicalization Version 1.0. W3C Recommendation 18 July 2002 95
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/ 96

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 9 of 61

1.3 Schema Organization and Namespaces 97

The structures described in this specification are contained in the schema file [Core-XSD]. All schema 98
listings in the current document are excerpts from the schema file. In the case of a disagreement 99
between the schema file and this document, the schema file takes precedence. 100
This schema is associated with the following XML namespace: 101

urn:oasis:names:tc:dss:1.0:core:schema 102

If a future version of this specification is needed, it will use a different namespace. 103
Conventional XML namespace prefixes are used in the schema: 104

• The prefix dss: stands for the DSS core namespace [Core-XSD]. 105

• The prefix ds: stands for the W3C XML Signature namespace [XMLDSIG]. 106

• The prefix xs: stands for the W3C XML Schema namespace [Schema1]. 107

• The prefix saml: stands for the OASIS SAML Schema namespace [SAMLCore1.1]. 108
Applications MAY use different namespace prefixes, and MAY use whatever namespace 109
defaulting/scoping conventions they desire, as long as they are compliant with the Namespaces in XML 110
specification [XML-ns]. 111
The following schema fragment defines the XML namespaces and other header information for the DSS 112
core schema: 113

<xs:schema xmlns:dss="urn:oasis:names:tc:dss:1.0:core:schema" 114
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 115
 xmlns:xs="http://www.w3.org/2001/XMLSchema" 116
 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" 117
 targetNamespace="urn:oasis:names:tc:dss:1.0:core:schema" 118
 elementFormDefault="qualified" 119
 attributeFormDefault="unqualified"> 120
<xs:annotation> 121
 <xs:documentation xml:lang="en">This Schema defines the Digital Signature 122
Service Core Protocols, Elements, and Bindings Committee Draft 5 for Public 123
Review</xs:documentation> 124
</xs:annotation> 125
<xs:import namespace="http://www.w3.org/2000/09/xmldsig#" 126
schemaLocation="http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd"/> 127
<xs:import namespace="urn:oasis:names:tc:SAML:1.0:assertion" 128
schemaLocation="http://www.oasis-open.org/committees/download.php/3408/oasis-129
sstc-saml-schema-protocol-1.1.xsd"/> 130
<xs:import namespace="http://www.w3.org/XML/1998/namespace" 131
schemaLocation="http://www.w3.org/2001/xml.xsd"/> 132

1.4 DSS Overview (Non-normative) 133

This specification describes two XML-based request/response protocols – a signing protocol and a 134
verifying protocol. Through these protocols a client can send documents (or document hashes) to a 135
server and receive back a signature on the documents; or send documents (or document hashes) and a 136
signature to a server, and receive back an answer on whether the signature verifies the documents. 137
These operations could be useful in a variety of contexts – for example, they could allow clients to access 138
a single corporate key for signing press releases, with centralized access control, auditing, and archiving 139
of signature requests. They could also allow clients to create and verify signatures without needing 140
complex client software and configuration. 141
The signing and verifying protocols are chiefly designed to support the creation and verification of XML 142
signatures [XMLDSIG], XML timestamps (see section 5.1), binary timestamps [RFC 3161] and CMS 143
signatures [RFC 3852]. These protocols may also be extensible to other types of signatures and 144
timestamps, such as PGP signatures [RFC 2440]. 145

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 10 of 61

It is expected that the signing and verifying protocols will be profiled to meet many different application 146
scenarios. In anticipation of this, these protocols have only a minimal set of required elements, which 147
deal with transferring “input documents” and signatures back and forth between client and server. The 148
input documents to be signed or verified can be transferred in their entirety, or the client can hash the 149
documents themselves and only send the hash values, to save bandwidth and protect the confidentiality 150
of the document content. 151
All functionality besides transferring input documents and signatures is relegated to a framework of 152
“optional inputs” and “optional outputs”. This document defines a number of optional inputs and outputs. 153
Profiles of these protocols can pick and choose which optional inputs and outputs to support, and can 154
introduce their own optional inputs and outputs when they need functionality not anticipated by this 155
specification. 156
Examples of optional inputs to the signing protocol include: what type of signature to produce, which key 157
to sign with, who the signature is intended for, and what signed and unsigned properties to place in the 158
signature. Examples of optional inputs to the verifying protocol include: the time for which the client 159
would like to know the signature’s validity status, additional validation data necessary to verify the 160
signature (such as certificates and CRLs), and requests for the server to return information such as the 161
signer’s name or the signing time. 162
The signing and verifying protocol messages must be transferred over some underlying protocol(s) which 163
provide message transport and security. A binding specifies how to use the signing and verifying 164
protocols with some underlying protocol, such as HTTP POST or TLS. Section 6 provides an initial set of 165
bindings. 166
In addition to defining the signing and verifying protocols, this specification defines two XML elements that 167
are related to these protocols. First, an XML timestamp element is defined in section 5.1. The signing 168
and verifying protocols can be used to create and verify both XML and binary timestamps; a profile for 169
doing so is defined in [XML-TSP]. Second, a RequesterIdentity element is defined in section 5.2. This 170
element can be used as a signature property in an XML signature, to give the name of the end-user who 171
requested the signature. 172
 173

 174

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 11 of 61

2 Common Protocol Structures 175

The following sections describe XML structures and types that are used in multiple places. 176

2.1 Type AnyType 177

The AnyType complex type allows arbitrary XML element content within an element of this type (see 178
section 3.2.1 Element Content [XML]). 179

<xs:complexType name="AnyType"> 180
 <xs:sequence> 181
 <xs:any processContents="lax" 182
 minOccurs="0" 183
 maxOccurs="unbounded"/> 184
 </xs:sequence> 185
</xs:complexType> 186

2.2 Type InternationalStringType 187

The InternationalStringType complex type attaches an xml:lang attribute to a human-readable string 188
to specify the string’s language. 189

<xs:complexType name="InternationalStringType"> 190
 <xs:simpleContent> 191
 <xs:extension base="xs:string"> 192
 <xs:attribute ref="xml:lang" use="required"> 193
 </xs:extension> 194
 </xs:simpleContent> 195
</xs:complexType> 196

2.3 Type saml:NameIdentifierType 197

The saml:NameIdentifierType complex type is used where different types of names are needed (such 198
as email addresses, Distinguished Names, etc.). This type is borrowed from [SAMLCore1.1] section 199
2.4.2.2. It consists of a string with the following attributes: 200
NameQualifier [Optional] 201

The security or administrative domain that qualifies the name of the subject. This attribute provides a 202
means to federate names from disparate user stores without collision. 203

Format [Optional] 204
A URI [RFC 2396] reference representing the format in which the string is provided. See section 7.3 205
of [SAMLCore1.1] for some URI references that may be used as the value of the Format attribute. 206

2.4 Element <InputDocuments> 207

The <InputDocuments> element is used to send input documents to a DSS server, whether for signing 208
or verifying. An input document can be any piece of data that can be used as input to a signature or 209
timestamp calculation. An input document can even be a signature or timestamp (for example, a pre-210
existing signature can be counter-signed or timestamped). An input document could also be a 211
<ds:Manifest>, allowing the client to handle manifest creation while using the server to create the rest 212
of the signature. Manifest validation is supported by an optional input / output. 213
The <InputDocuments> element consists of any number of the following elements: 214
<Document> [Any Number] 215

It contains a document as specified in section 2.4.2 of this document. 216

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 12 of 61

<TransformedData> [Any Number] 217
This contains the binary output of a chain of transforms applied by a client as specified in section 2.4.3 218
of this document. 219

<DocumentHash> [Any Number] 220
This contains the hash value of an XML document or some other data after a client has applied a 221
sequence of transforms and also computed a hash value as specified in section 2.4.4 of this 222
document. 223

<Other> 224
Other may contain arbitrary content that may be specified in a profile and can also be used to extend 225
the Protocol for details see section 2.1. 226

<xs:element name="InputDocuments"> 227
 <xs:complexType> 228
 <xs:sequence> 229
 <xs:choice minOccurs="1" maxOccurs="unbounded"> 230
 <xs:element ref="dss:Document"/> 231
 <xs:element ref="dss:TransformedData"/> 232
 <xs:element ref="dss:DocumentHash"/> 233
 <xs:element name="Other" type="dss:AnyType"/> 234
 </xs:choice> 235
 </xs:sequence> 236
 </xs:complexType> 237
</xs:element> 238

When using DSS to create or verify XML signatures, each input document will usually correspond to a 239
single <ds:Reference> element. Thus, in the descriptions below of the <Document>, 240
<TransformedData> and <DocumentHash> elements, it is explained how certain elements and 241
attributes of a <Document>, <TransformedData> and <DocumentHash> correspond to components 242
of a <ds:Reference>. 243

2.4.1 Type DocumentBaseType 244

The DocumentBaseType complex type is subclassed by <Document>, <TransformedData> and 245
<DocumentHash> elements. It contains the basic information shared by subclasses and remaining 246
persistent during the process from input document retrieval until digest calculation for the relevant 247
document. It contains the following elements and attributes: 248
ID [Optional] 249

This identifier gives the input document a unique label within a particular request message. Through 250
this identifier, an optional input (see sections 2.7, 3.5.6 and 3.5.8) can refer to a particular input 251
document. 252

RefURI [Optional] 253
This specifies the value for a <ds:Reference> element’s URI attribute when referring to this input 254
document. The RefURI attribute SHOULD be specified; no more than one RefURI attribute may be 255
omitted in a single signing request. 256

RefType [Optional] 257
This specifies the value for a <ds:Reference> element’s Type attribute when referring to this input 258
document. 259

SchemaRefs [Optional]: 260
The identified schemas are to be used to identify ID attributes during parsing in sections 2.5.2, 3.3.1 261
1.a and 4.3 and for XPath evaluation in sections 2.6, 3.5.7, 4.3.1. If anything else but <Schema> are 262
referred to, the server MUST report an error. If a referred to <Schema> is not used by the XML 263
document instance this MAY be ignored or reported to the client in the <Result>/<ResultMessage> 264
(for the definition of <Schema> see 2.8.5 or 2.9.1 on <Schemas>). 265

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 13 of 61

The Document is assumed to be valid against the first <Schema> referred to by SchemaRefs. 266
If a <Schemas> element is referred to first by SchemaRefs the document is assumed to be valid 267
against the first <Schema> inside <Schemas>. In both cases, the remaining schemas may occur in 268
any order and are used either directly or indirectly by the first schema. 269
If present, the server MUST use the schemas to identify the ID attributes and MAY also perform 270
complete validation against the schemas. 271

<xs:complexType name="DocumentBaseType" abstract="true"> 272
 <xs:attribute name="ID" type="xs:ID" use="optional"/> 273
 <xs:attribute name="RefURI" type="xs:anyURI" use="optional"/> 274
 <xs:attribute name="RefType" type="xs:anyURI" use="optional"/> 275
 <xs:attribute name="SchemaRefs" type="xs:IDREFS" use="optional"/> 276
</xs:complexType> 277

Note: It is recommended to use xml:id as defined in [xml:id] as id in the payload being referenced by a 278
<ds:Reference>, because the schema then does not have to be supplied for identifying the ID 279
attributes. 280

2.4.2 Element <Document> 281

The <Document> element may contain the following elements (in addition to the common ones listed in 282
section 2.4.1): 283
If the content inside one of the following mutually exclusive elements <InlineXML>, <EscapedXML> 284
or <Base64XML> is not parseable XML data, after appropriate decoding, then the server MUST return a 285
<Result> (section 2.6) issuing a <ResultMajor> RequesterError qualified by a <ResultMinor> 286
NotParseableXMLDocument. 287
The server MUST use the <Schema> referred by <SchemaRefs> for validation if specified. 288
<Base64XML> [Optional] [Default] 289

This contains a base64 string obtained after base64 encoding of a XML data. The server MUST 290
decode it to obtain the XML data. 291

<InlineXML> [Optional] 292
The InlineXMLType clearly expresses the fact, that content of <InlineXML> is inline XML that should 293
be equivalent to a complete XML Document. I.e. having only one DocumentElement (see section 2.1 294
Well-Formed XML Documents [XML]) and not allowing anything but PI's and Comments before and 295
after this one element. 296
It may contain the ignorePIs and ignoreComments attributes. These attributes apply to the 297
complete document and indicate respectively, if processing instructions or comments MAY be ignored. 298
If one or both of these attributes are not present, their values MUST be considered to be "true". 299
InlineXML will work with PIs and/or Comments if ignorePIs and ignoreComments are false 300
respectively and if the server supports such behavior. 301

<EscapedXML> [Optional] 302
This contains an escaped string. The server MUST unescape (escape sequences are processed to 303
produce original XML sequence) it for obtaining XML data. 304

<Base64Data> [Optional] 305
This contains a base64 encoding of data that are not XML. The type of data is specified by its 306
MimeType attribute, that may be required when using DSS with other signature types. 307

<AttachmentReference> [Optional] 308
This contains a reference to an attachment like SOAP attachments or similar data containers that may 309
be passed along with the request. For details see section 6.2.1 310

<xs:element name="Document" type="dss:DocumentType"/> 311
 312

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 14 of 61

<xs:complexType name="DocumentType"> 313
 <xs:complexContent> 314
 <xs:extension base="dss:DocumentBaseType"> 315
 <xs:choice> 316
 <xs:element name="InlineXML" type="dss:InlineXMLType"/> 317
 <xs:element name="Base64XML" type="xs:base64Binary"/> 318
 <xs:element name="EscapedXML" type="xs:string"/> 319
 <xs:element ref="dss:Base64Data"/> 320
 <xs:element ref="dss:AttachmentReference"/> 321
 </xs:choice> 322
 </xs:extension> 323
 </xs:complexContent> 324
</xs:complexType> 325
 326
<xs:element name="Base64Data"> 327
 <xs:complexType> 328
 <xs:simpleContent> 329
 <xs:extension base="xs:base64Binary"> 330
 <xs:attribute name="MimeType" type="xs:string" 331
 use="optional"> 332
 </xs:extension> 333
 </xs:simpleContent> 334
 </xs:complexType> 335
</xs:element> 336
 337
<xs:complexType name="InlineXMLType"> 338
 <xs:sequence> 339
 <xs:any processContents="lax"/> 340
 </xs:sequence> 341
 <xs:attribute name="ignorePIs” type="xs:boolean" 342
 use="optional" default="true"/> 343
 <xs:attribute name="ignoreComments" type="xs:boolean" 344
 use="optional" default="true"/> 345
</xs:complexType> 346

2.4.3 Element <TransformedData> 347

The <TransformedData> element contains the following elements (in addition to the common ones 348
listed in section 2.4.1): 349
<ds:Transforms> [Required on a SignRequest] [Optional on VerifyRequest] 350

This is the sequence of transforms applied by the client and specifies the value for a 351
<ds:Reference> element’s <ds:Transforms> child element. In other words, this specifies 352
transforms that the client has already applied to the input document before the server will hash it. 353

<Base64Data> [Required] 354
This gives the binary output of a sequence of transforms to be hashed at the server side. 355

WhichReference [Ignored on a SignRequest] [Optional on a VerifyRequest] 356
As there may be multiple TransformedData / DocumentHash elements of the same document 357
having the same URI [RFC 2396] and RefType on a SignRequest or VerifyRequest - their 358
correspondance to an already existing <ds:Reference> however needs to be established on a 359
VerifyRequest only. 360
There is a need to disambiguate such cases. This Attribute hence offers a way to clearly identify the 361
<ds:Reference> when URI and RefType match multiple ds:References / TransformedData / 362
DocumentHash. The corresponding ds:Reference is indicated by this zero-based 363
WhichReference attribute (0 means the first <ds:Reference> in the signature, 1 means the 364
second, and so on). 365
Note: It may be possible to establish the ds:References / TransformedData / DocumentHash 366
correspondence by comparing the optionally supplied chain of transforms to those of the 367

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 15 of 61

ds:References having the same URI and RefType in the supplied ds:Signature if this chain of 368
transform has been supplied. This can be quite expensive and even out the advantages of 369
TransformedData / DocumentHash. 370

<xs:element name="TransformedData"> 371
 <xs:complexType> 372
 <xs:complexContent> 373
 <xs:extension base="dss:DocumentBaseType"> 374
 <xs:sequence> 375
 <xs:element ref="ds:Transforms" minOccurs="0"/> 376
 <xs:element ref="dss:Base64Data"/> 377
 </xs:sequence> 378
 <xs:attribute name="WhichReference" type="xs:integer" 379
 use="optional"/> 380
 </xs:extension> 381
 </xs:complexContent> 382
 </xs:complexType> 383
</xs:element> 384

2.4.4 Element <DocumentHash> 385

The <DocumentHash> element contains the following elements (in addition to the common ones listed in 386
section 2.4.1): 387
<ds:Transforms> [Required on a SignRequest] [Optional on VerifyRequest] 388

This specifies the value for a <ds:Reference> element’s <ds:Transforms> child element when 389
referring to this document hash. In other words, this specifies transforms that the client has already 390
applied to the input document before hashing it. 391

<ds:DigestMethod> [Required on a SignRequest] [Optional on VerifyRequest] 392
This identifies the digest algorithm used to hash the document at the client side. This specifies the 393
value for a <ds:Reference> element’s <ds:DigestMethod> child element when referring to this 394
input document. 395

<ds:DigestValue> [Required] 396
This gives the document’s hash value. This specifies the value for a <ds:Reference> element’s 397
<ds:DigestValue> child element when referring to this input document. 398

WhichReference [Ignored on a SignRequest] [Optional on a VerifyRequest] 399
As there may be multiple TransformedData / DocumentHash elements of the same document 400
having the same URI and RefType on a SignRequest or VerifyRequest - their correspondance 401
to an already existing <ds:Reference> however needs to be established on a VerifyRequest only. 402
There is a need to disambiguate such cases. This Attribute hence offers a way to clearly identify the 403
<ds:Reference> when URI and RefType match multiple ds:References / TransformedData / 404
DocumentHash. The corresponding ds:Reference is indicated by this zero-based 405
WhichReference attribute (0 means the first <ds:Reference> in the signature, 1 means the 406
second, and so on). 407

<xs:element name="DocumentHash"> 408
 <xs:complexType> 409
 <xs:complexContent> 410
 <xs:extension base="dss:DocumentBaseType"> 411
 <xs:sequence> 412
 <xs:element ref="ds:Transforms" minOccurs="0"/> 413
 <xs:element ref="ds:DigestMethod" minOccurs="0"/> 414
 <xs:element ref="ds:DigestValue"/> 415
 </xs:sequence> 416
 <xs:attribute name="WhichReference" type="xs:integer" 417
 use="optional"/> 418
 </xs:extension> 419

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 16 of 61

 </xs:complexContent> 420
 </xs:complexType> 421
</xs:element> 422

2.5 Element <SignatureObject> 423

The <SignatureObject> element contains a signature or timestamp of some sort. This element is 424
returned in a sign response message, and sent in a verify request message. It may contain one of the 425
following child elements: 426
<ds:Signature> [Optional] 427

An XML signature [XMLDSIG]. 428
<Timestamp> [Optional] 429

An XML, RFC 3161 or other timestamp (see section 5.1). 430
<Base64Signature> [Optional] 431

A base64 encoding of some non-XML signature, such as a PGP [RFC 2440] or CMS [RFC 3852] 432
signature. The type of signature is specified by its Type attribute (see section 7.1). 433

<SignaturePtr> [Optional] 434
This is used to point to an XML signature in an input (for a verify request) or output (for a sign 435
response) document in which a signature is enveloped. 436

SchemaRefs [Optional] 437
As described above in 2.4.1 438

A <SignaturePtr> contains the following attributes: 439
WhichDocument [Required] 440

This identifies the input document as in section 2.4.2 being pointed at (see also ID attribute in section 441
2.4.1). 442

XPath [Optional] 443
a) This identifies the signature element being pointed at. 444
b) The XPath expression is evaluated from the root node (see section 5.1 of [XPATH]) of the 445
document identified by WhichDocument after the XML data was extracted and parsed if necessary. 446
The context node for the XPath evaluation is the document’s DocumentElement (see section 2.1 Well-447
Formed XML Documents [XML]). 448
c) About namespace declarations for the expression necessary for evaluation see section 1 of 449
[XPATH]. Namespace prefixes used in XPath expressions MUST be declared within the element 450
containing the XPath expression. E.g.: <SignaturePtr 451
xmlns:ds="http://www.w3.org/2000/09/xmldsig#" XPath="//ds:Signature">. See 452
also the following example below. A piece of a XML signature of a <ds:Reference> containing a 453
<ds:Transforms> with a XPath filtering element that includes inline namespace prefixes 454
declaration. This piece of text comes from one of the signatures that were generated in the course of 455
the interoperability experimentation. As one can see they are added to the <ds:XPath> element: 456

<Reference URI=""> 457
 <Transforms> 458
 <ds:Transform xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 459
 Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116"> 460
 <ds:XPath xmlns:upc1="http://www.ac.upc.edu/namespaces/ns1" 461
 xmlns:upc2="http://www.ac.upc.edu/namespaces/ns2">ancestor-or-462
self::upc1:Root</ds:XPath> 463
 </ds:Transform> 464
 </Transforms> 465
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 466
 <DigestValue>24xf8vfP3xJ40akfFAnEVM/zxXY=</DigestValue> 467

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 17 of 61

</Reference> 468

If the XPath does not evaluate to one element the server MUST return a <Result> (section 2.6) 469
issuing a <ResultMajor> RequesterError qualified by a <ResultMinor> 470
XPathEvaluationError. 471

<Other> 472
Other may contain arbitrary content that may be specified in a profile and can also be used to extend 473
the Protocol. 474

The following schema fragment defines the <SignatureObject>, <Base64Signature>, and 475
<SignaturePtr> elements: 476

<xs:element name="SignatureObject"> 477
 <xs:complexType> 478
 <xs:sequence> 479
 <xs:choice> 480
 <xs:element ref="ds:Signature"/> 481
 <xs:element ref="dss:Timestamp"/> 482
 <xs:element ref="dss:Base64Signature"/> 483
 <xs:element ref="dss:SignaturePtr"/> 484
 <xs:element name="Other" type="dss:AnyType"/> 485
 </xs:choice> 486
 </xs:sequence> 487
 <xs:attribute name="SchemaRefs" type="xs:IDREFS" use="optional"/> 488
 </xs:complexType> 489
</xs:element> 490
<xs:element name="Base64Signature"> 491
 <xs:complexType> 492
 <xs:simpleContent> 493
 <xs:extension base="xs:base64Binary"> 494
 <xs:attribute name="Type" type="xs:anyURI"/> 495
 </xs:extension> 496
 </xs:simpleContent> 497
 </xs:complexType> 498
</xs:element> 499
<xs:element name="SignaturePtr"> 500
 <xs:complexType> 501
 <xs:attribute name="WhichDocument" type="xs:IDREF"/> 502
 <xs:attribute name="XPath" type="xs:string" use="optional"/> 503
 </xs:complexType> 504
</xs:element> 505

2.6 Element <Result> 506

The <Result> element is returned with every response message. It contains the following child 507
elements: 508
<ResultMajor> [Required] 509

The most significant component of the result code. 510
<ResultMinor> [Optional] 511

The least significant component of the result code. 512
<ResultMessage> [Optional] 513

A message which MAY be returned to an operator, logged, used for debugging, etc. 514

<xs:element name="Result"> 515
 <xs:complexType> 516
 <xs:sequence> 517
 <xs:element name="ResultMajor" type="xs:anyURI"/> 518
 <xs:element name="ResultMinor" type="xs:anyURI" 519
 minOccurs="0"/> 520

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 18 of 61

 <xs:element name="ResultMessage" 521
 type="dss:InternationalStringType" minOccurs="0"/> 522
 </xs:sequence> 523
 </xs:complexType> 524
</xs:element> 525

The <ResultMajor> URIs MUST be values defined by this specification or by some profile of this 526
specification. The <ResultMajor> values defined by this specification are: 527
urn:oasis:names:tc:dss:1.0:resultmajor:Success 528

The protocol executed successfully. 529
urn:oasis:names:tc:dss:1.0:resultmajor:RequesterError 530

The request could not be satisfied due to an error on the part of the requester. 531
urn:oasis:names:tc:dss:1.0:resultmajor:ResponderError 532

The request could not be satisfied due to an error on the part of the responder. 533
urn:oasis:names:tc:dss:1.0:resultmajor:InsufficientInformation 534

The request could not be satisfied due to insufficient information. 535
In case of doubt of who is responsible a 536
urn:oasis:names:tc:dss:1.0:resultmajor:ResponderError is assumed. 537
This specification defines the following <ResultMinor> values, that are listed below, grouped by the 538
respective associated <ResultMajor> code. 539
One of the following <ResultMinor> values MUST be returned when the <ResultMajor> code is 540
Success. 541
urn:oasis:names:tc:dss:1.0:resultminor:valid:signature:OnAllDocuments 542

The signature or timestamp is valid. Furthermore, the signature or timestamp covers all of the input 543
documents just as they were passed in by the client. 544

urn:oasis:names:tc:dss:1.0:resultminor:valid:signature:NotAllDocumentsReferen545
ced 546

The signature or timestamp is valid. However, the signature or timestamp does not cover all of the 547
input documents that were passed in by the client. 548

urn:oasis:names:tc:dss:1.0:resultminor:invalid:IncorrectSignature 549
The signature fails to verify, for example due to the signed document being modified or the incorrect 550
key being used. 551

urn:oasis:names:tc:dss:1.0:resultminor:valid:signature:HasManifestResults 552
The signature is valid with respect to XML Signature core validation. In addition, the message also 553
contains VerifyManifestResults. 554
Note: In the case that the core signature validation failed no attempt is made to verify the manifest. 555

urn:oasis:names:tc:dss:1.0:resultminor:valid:signature:InvalidSignatureTimest556
amp 557

The signature is valid however the timestamp on that signature is invalid. 558
The following <ResultMinor> values is suggest MAY be returned when the <ResultMajor> code is 559
RequesterError. 560
urn:oasis:names:tc:dss:1.0:resultminor:ReferencedDocumentNotPresent 561

A ds:Reference element is present in the ds:Signature containing a full URI, but the corresponding 562
input document is not present in the request. 563

urn:oasis:names:tc:dss:1.0:resultminor:KeyInfoNotProvided 564
The required key information was not supplied by the client, but the server expected it to do so. 565

urn:oasis:names:tc:dss:1.0:resultminor:MoreThanOneRefUriOmitted 566

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 19 of 61

The server was not able to create a signature because more than one RefUri was omitted. 567
urn:oasis:names:tc:dss:1.0:resultminor:InvalidRefURI 568

The value of the RefURI attribute included in an input document is not valid. 569
urn:oasis:names:tc:dss:1.0:resultminor:NotParseableXMLDocument 570

The server was not able to parse a Document. 571
urn:oasis:names:tc:dss:1.0:resultminor:NotSupported 572

The server doesn’t recognize or can’t handle any optional input. 573
urn:oasis:names:tc:dss:1.0:resultminor:Inappropriate:signature 574

The signature or its contents are not appropriate in the current context. 575
For example, the signature may be associated with a signature policy and semantics which the DSS 576
server considers unsatisfactory. 577

Further values for <ResultMinor> associated with <ResultMajor> code 578
urn:oasis:names:tc:dss:1.0:resultmajor:RequesterError are left open to the implementer 579
or profile to be defined with in their namespaces. 580
The following <ResultMinor> values MAY be returned when the <ResultMajor> code is ResponderError. 581
urn:oasis:names:tc:dss:1.0:resultminor:GeneralError 582

The processing of the request failed due to an error not covered by the existing error codes. Further 583
details should be given in the result message for the user which may be passed on to the relevant 584
administrator. 585

urn:oasis:names:tc:dss:1.0:resultminor:invalid:KeyLookupFailed 586
Locating the identified key failed (e.g. look up failed in directory or in local key file). 587

Further values for <ResultMinor> associated with <ResultMajor> code 588
urn:oasis:names:tc:dss:1.0:resultmajor:ResponderError are left open to the implementer 589
or profile to be defined within their namespaces. 590
The following <ResultMinor> values MAY be returned when the <ResultMajor> code is 591
InsufficientInformation. 592
urn:oasis:names:tc:dss:1.0:resultminor:CrlNotAvailiable 593

The relevant certificate revocation list was not available for checking. 594
urn:oasis:names:tc:dss:1.0:resultminor:OcspNotAvailiable 595

The relevant revocation information was not available via the online certificate status protocol. 596
urn:oasis:names:tc:dss:1.0:resultminor:CertificateChainNotComplete 597

The chain of trust could not be established binding the public key used for validation to a trusted root 598
certification authority via potential intermediate certification authorities. 599

2.7 Elements <OptionalInputs> and <OptionalOutputs> 600

All request messages can contain an <OptionalInputs> element, and all response messages can 601
contain an <OptionalOutputs> element. Several optional inputs and outputs are defined in this 602
document, and profiles can define additional ones. 603
The <OptionalInputs> contains additional inputs associated with the processing of the request. 604
Profiles will specify the allowed optional inputs and their default values. The definition of an optional input 605
MAY include a default value, so that a client may omit the <OptionalInputs> yet still get service from 606
any profile-compliant DSS server. 607
If a server doesn’t recognize or can’t handle any optional input, it MUST reject the request with a 608
<ResultMajor> code of RequesterError and a <ResultMinor> code of NotSupported (see 609
section 2.6). 610

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 20 of 61

The <OptionalOutputs> element contains additional protocol outputs. The client MAY request the 611
server to respond with certain optional outputs by sending certain optional inputs. The server MAY also 612
respond with outputs the client didn’t request, depending on the server’s profile and policy. 613
The <OptionalInputs> and <OptionalOutputs> elements contain unordered inputs and outputs. 614
Applications MUST be able to handle optional inputs or outputs appearing in any order within these 615
elements. Normally, there will only be at most one occurrence of any particular optional input or output 616
within a protocol message. Where multiple occurrences of an optional input (e.g. <IncludeObject> in 617
section 3.5.6) or optional output are allowed, it will be explicitly specified (see section 4.5.9 for an 618
example). 619
The following schema fragment defines the <OptionalInputs> and <OptionalOutputs> elements: 620

<xs:element name="OptionalInputs" type="dss:AnyType"/> 621
 622
<xs:element name="OptionalOutputs" type="dss:AnyType"/> 623

2.8 Common Optional Inputs 624

These optional inputs can be used with both the signing protocol and the verifying protocol. 625

2.8.1 Optional Input <ServicePolicy> 626

The <ServicePolicy> element indicates a particular policy associated with the DSS service. The 627
policy may include information on the characteristics of the server that are not covered by the Profile 628
attribute (see sections 3.1 and 4.1). The <ServicePolicy> element may be used to select a specific 629
policy if a service supports multiple policies for a specific profile, or as a sanity-check to make sure the 630
server implements the policy the client expects. 631

<xs:element name="ServicePolicy" type="xs:anyURI"/> 632

2.8.2 Optional Input <ClaimedIdentity> 633

The <ClaimedIdentity> element indicates the identity of the client who is making a request. The 634
server may use this to parameterize any aspect of its processing. Profiles that make use of this element 635
MUST define its semantics. 636
The <SupportingInfo> child element can be used by profiles to carry information related to the 637
claimed identity. One possible use of <SupportingInfo> is to carry authentication data that 638
authenticates the request as originating from the claimed identity (examples of authentication data include 639
a password or SAML Assertion [SAMLCore1.1], or a signature or MAC calculated over the request using 640
a client key). 641
The claimed identity may be authenticated using the security binding, according to section 6, or using 642
authentication data provided in the <SupportingInfo> element. The server MUST check that the 643
asserted <Name> is authenticated before relying upon the <Name>. 644

<xs:element name=”ClaimedIdentity”> 645
 <xs:complexType> 646
 <xs:sequence> 647
 <xs:element name=”Name” type=”saml:NameIdentifierType”/> 648
 <xs:element name=”SupportingInfo” type=”dss:AnyType” 649
 minOccurs=”0”/> 650
 </xs:sequence> 651
 </xs:complexType> 652
</xs:element> 653

2.8.3 Optional Input <Language> 654

The <Language> element indicates which language the client would like to receive 655
InternationalStringType values in. The server should return appropriately localized strings, if possible. 656

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 21 of 61

<xs:element name="Language" type="xs:language"/> 657

2.8.4 Optional Input <AdditionalProfile> 658

The <AdditionalProfile> element can appear multiple times in a request. It indicates additional 659
profiles which modify the main profile specified by the Profile attribute (thus the Profile attribute 660
MUST be present; see sections 3.1 and 4.1 for details of this attribute). The interpretation of additional 661
profiles is determined by the main profile. 662

<xs:element name=”AdditionalProfile” type=”xs:anyURI”/> 663

2.8.5 Optional Input <Schemas> 664

The <Schemas> element provides an in band mechanism for communicating XML schemas required for 665
validating an XML document. 666

<xs:element name="Schemas" type="dss:SchemasType"/> 667
<xs:complexType name="SchemasType"> 668
 <xs:sequence> 669
 <xs:element ref="dss:Schema" minOccurs="1" maxOccurs="unbounded"/> 670
 </xs:sequence> 671
</xs:complexType> 672
 673
<xs:element name=”Schema” type=”dss:DocumentType”/> 674

An XML schema is itself an XML document, however, only the following attributes, defined in 675
dss:DocumentType, are meaningful for the <Schema> element: 676
ID 677

Used by relying XML document to identify a schema. 678
RefURI 679

The target namespace of the schema (i.e. the value of the targetNamespace attribute). 680
RefType 681

MUST NOT be used. 682
SchemaRefs 683

MUST NOT be used. 684
Note: It is recommended to use xml:id as defined in [xml:id] as id in the payload being referenced by a 685
<ds:Reference>, because the schema then does not have to be supplied for identifying the ID 686
attributes. 687

2.9 Common Optional Outputs 688

These optional outputs can be used with both the signing protocol and the verifying protocol. 689

2.9.1 Optional Output <Schemas> 690

The <Schemas> element is typically used as an optional input in a <VerifyRequest>. However, there 691
are situations where it may be used as an optional output. For example, a service that makes use of the 692
<ReturnUpdatedSignature> mechanism may, after verifying a signature over an input document, 693
generate a signature over a document of a different schema than the input document. In this case the 694
<Schemas> element MAY be used to communicate the XML schemas required for validating the returned 695
XML document. 696
For a description of the <Schemas> element see section 2.8.5. 697

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 22 of 61

2.10 Type <RequestBaseType> 698

The <RequestBaseType> complex type is the base structure for request elements defined by the core 699
protocol or profiles. It defines the following attributes and elements: 700
RequestID [Optional] 701

This attribute is used to correlate requests with responses. When present in a request, the server 702
MUST return it in the response. 703

Profile [Optional] 704
This attribute indicates a particular DSS profile. It may be used to select a profile if a server supports 705
multiple profiles, or as a sanity-check to make sure the server implements the profile the client 706
expects. 707

<OptionalInputs> [Optional] 708
Any additional inputs to the request. 709

<InputDocuments> [Optional] 710
The input documents which the processing will be applied to. 711

<xs:complexType name=”RequestBaseType”> 712
 <xs:sequence> 713
 <xs:element ref=”dss:OptionalInputs” minOccurs=”0”/> 714
 <xs:element ref=”dss:InputDocuments” minOccurs=”0”/> 715
 </xs:sequence> 716
 <xs:attribute name=”RequestID” type=”xs:string” 717
 use=”optional”/> 718
 <xs:attribute name=”Profile” type=”xs:anyURI” use=”optional”/> 719
</xs:element> 720

2.11 Type <ResponseBaseType> 721

The <ResponseBaseType> complex type is the base structure for response elements defined by the 722
core protocol or profiles. It defines the following attributes and elements: 723
RequestID [Optional] 724

This attribute is used to correlate requests with responses. When present in a request, the server 725
MUST return it in the response. 726

Profile [Required] 727
This attribute indicates the particular DSS profile used by the server. It may be used by the client for 728
logging purposes or to make sure the server implements a profile the client expects. 729

<Result> [Required] 730
A code representing the status of the request. 731

<OptionalOutputs> [Optional] 732
Any additional outputs returned by the server. 733

<xs:complexType name=”ResponseBaseType”> 734
 <xs:sequence> 735
 <xs:element ref=”dss:Result”/> 736
 <xs:element ref=”dss:OptionalOutputs” minOccurs=”0”/> 737
 </xs:sequence> 738
 <xs:attribute name=”RequestID” type=”xs:string” 739
 use=”optional”/> 740
 <xs:attribute name=”Profile” type=”xs:anyURI” use=”required”/> 741
</xs:element> 742

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 23 of 61

2.12 Element <Response> 743

The <Response> element is an instance of the <ResponseBaseType> type. This element is useful in 744
cases where the DSS server is not able to respond with a special response type. It is a general purpose 745
response element for exceptional circumstances. 746
E.g.: "The server only supports verification requests.", "The server is currently under maintenance" or 747
"The service operates from 8:00 to 17:00". 748
Other use cases for this type are expected to be described in special profiles (e.g. the Asynchronous 749
profile). 750

<xs:element name=”Response” type=”dss:ResponseBaseType”/> 751

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 24 of 61

3 The DSS Signing Protocol 752

3.1 Element <SignRequest> 753

The <SignRequest> element is sent by the client to request a signature or timestamp on some input 754
documents. It contains the following attributes and elements inherited from <RequestBaseType>: 755
RequestID [Optional] 756

This attribute is used to correlate requests with responses. When present in a request, the server 757
MUST return it in the response. 758

Profile [Optional] 759
This attribute indicates a particular DSS profile. It may be used to select a profile if a server supports 760
multiple profiles, or as a sanity-check to make sure the server implements the profile the client 761
expects. 762

<OptionalInputs> [Optional] 763
Any additional inputs to the request. 764

<InputDocuments> [Optional] 765
The input documents, which the signature will be calculated over. This element, while optional in 766
RequestBaseType, is REQUIRED for the <SignRequest> element. 767

<xs:element name="SignRequest"> 768
 <xs:complexType> 769
 <xs:complexContent> 770
 <xs:extension base="dss:RequestBaseType"/> 771
 </xs:complexContent> 772
 </xs:complexType> 773
</xs:element> 774

3.2 Element <SignResponse> 775

The <SignResponse> element contains the following attributes and elements inherited from 776
<ResponseBaseType>: 777
RequestID [Optional] 778

This attribute is used to correlate requests with responses. When present in a request, the server 779
MUST return it in the response. 780

Profile [Optional] 781
This attribute indicates the particular DSS profile used by the server. It may be used by the client for 782
logging purposes or to make sure the server implements a profile the client expects. 783

<Result> [Required] 784
A code representing the status of the request. 785

<OptionalOutputs> [Optional] 786
Any additional outputs returned by the server. 787

In addition to <ResponseBaseType> the <SignResponse> element defines the following 788
<SignatureObject> element: 789
<SignatureObject> [Optional] 790

The result signature or timestamp or, in the case of a signature being enveloped in an output 791
document (see section 3.5.8), a pointer to the signature. 792

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 25 of 61

In the case of <SignaturePlacement> being used this MUST contain a <SignaturePtr>, having 793
the same XPath expression as in <SignaturePlacement> and pointing to a 794
<DocumentWithSignature> using it’s WhichDocument attribute. 795

<xs:element name="SignResponse"> 796
 <xs:complexType> 797
 <xs:complexContent> 798
 <xs:extension base="dss:ResponseBaseType"> 799
 <xs:sequence> 800
 <xs:element ref="dss:SignatureObject" minOccurs="0"/> 801
 </xs:sequence> 802
 </xs:extension> 803
 </xs:complexContent> 804
 </xs:complexType> 805
</xs:element> 806

3.3 Processing for XML Signatures 807

3.3.1 Basic Process for <Base64XML> 808

A DSS server that produces XML signatures SHOULD perform the following steps, upon receiving a 809
<SignRequest>. 810
These steps may be changed or overridden by procedures defined for the optional inputs (for example, 811
see section 3.5.6), or by the profile or policy the server is operating under. 812
The ordering of the <Document> elements inside the <InputDocuments> MAY be ignored by the 813
server. 814
1. For each <Document> in <InputDocuments> the server MUST perform the following steps: 815

a. In the case of <Base64XML> (see later sub-sections for other cases), the server base64-816
decodes the data contained within <Document> into an octet stream. This data MUST 817
be a well formed XML Document as defined in [XML] section 2.1. If the RefURI attribute 818
references within the same input document then the server parses the octet stream to 819
NodeSetData (see [XMLDSIG] section 4.3.3.3) before proceeding to the next step. 820

b. The data is processed and transforms applied by the server to produce a canonicalized 821
octet string as required in [XMLDSIG] section 4.3.3.2. 822
Note: Transforms can be applied as a server implementation MAY choose to increase 823
robustness of the Signatures created. These Transforms may reflect idiosyncrasies of 824
different parsers or solve encoding issues or the like. Servers MAY choose not to apply 825
transforms in basic processing and extract the binary data for direct hashing or 826
canonicalize the data directly if certain optional inputs (see sections 3.5.8 point 2 and d.v, 827
3.5.9) are not to be implemented. 828
Note: As required in [XMLDSIG] if the end result is an XML node set, the server MUST 829
attempt to convert the node set back into an octet stream using Canonical XML [XML-830
C14N]. 831

c. The hash of the resulting octet stream is calculated. 832
d. The server forms a <ds:Reference> with the elements and attributes set as follows: 833

i. If the <Document> has a RefURI attribute, the <ds:Reference> element’s 834
URI attribute is set to the value of the RefURI attribute, else this attribute is 835
omitted. 836
A signature MUST NOT be created if more than one RefURI is omitted in the set 837
of input documents and the server MUST report a RequesterError by setting 838
<ResultMajor> RequesterError qualified by a <ResultMinor>. 839

ii. If the <Document> has a RefType attribute, the <ds:Reference> element’s 840
Type attribute is set to the value of the RefType attribute, else this attribute is 841
omitted. 842

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 26 of 61

iii. The <ds:DigestMethod> element is set to the hash method used. 843
iv. The <ds:DigestValue> element is set to the hash value that is to be 844

calculated as per [XMLDSIG]. 845
v. The <ds:Transforms> element is set to the sequence of transforms applied by 846

the server in step b. This sequence MUST describe the effective transform as a 847
reproducible procedure from parsing until hash. 848

2. References resulting from processing of optional inputs MUST be included. In doing so, the server 849
MAY reflect the ordering of the <Document> elements. 850

3. The server creates an XML signature using the <ds:Reference> elements created in Step 1.d, 851
according to the processing rules in [XMLDSIG]. 852

3.3.2 Process Variant for <InlineXML> 853

In the case of an input document which contains <InlineXML> Step 3.3.1 1.a is replaced with the 854
following step: 855
1. 856

a. The XML document is extracted from the DSS protocol envelope, without taking inherited 857
namespaces and attributes. Exclusive Canonical XML [XML-xcl-c14n] MUST be applied to 858
extract data AND assure context free extraction. 859
If signed data is to be echoed back to the client and hence details could get lost refer to 860
Error! Reference source not found.. 861

In Step 3.3.1 step 1.d.v, the <ds:Transforms> element MUST begin with the canonicalization transform 862
applied under revised step 3.3.2 1.a above. 863

3.3.3 Process Variant for <EscapedXML> 864

In the case of an input document which contains <EscapedXML> Step 3.3.1 1.a is replaced with the 865
following: 866
1. 867

In the case of <EscapedXML> the server unescapes the data contained within <Document> into 868
a character string. If the RefURI references within the same input document the server 869
parses the unescaped character content to NodeSetData if necessary. If the RefURI does not 870
reference within the same input document then the server canonicalizes the characters or 871
parsed NodeSetData (see [XMLDSIG] section 4.3.3.3) to octet stream if necessary before 872
proceeding to the next step. 873
 874
Note: If the characters are converted to an octet stream directly a consistent encoding 875
including ByteOrderMark has to be ensured. 876

In Step 3.3.1 1.d.v, the <ds:Transforms> element MUST begin with the canonicalization transform 877
applied under revised step 3.3.3 0 above. 878

3.3.4 Process Variant for <Base64Data> 879

In the case of an input document which contains <Base64data> Step 1 a and Step 1 b are replaced 880
with the following: 881
1. 882

a. The server base64-decodes the data contained within <Document> into an octet string. 883
b. No transforms or other changes are made to the octet string before hashing. 884

 885
Note: If the RefURI references within the same input document the Document MUST also be 886
referenced by <IncludeObject> in section 3.5.6 to include the object as base64 data 887

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 27 of 61

inside a <ds:Object> otherwise a <Result> (section 2.6) issuing a <ResultMajor> 888
RequesterError qualified by a <ResultMinor> NotParseableXMLDocument. 889

3.3.5 Process Variant for <TransformedData> 890

In the case of an input document which contains <TransformedData> Step 3.3.1 1 is replaced with the 891
following: 892
1. For each <TransformedData> in <InputDocuments> the server MUST perform the following 893

steps: 894
a. The server base64-decodes the data contained within <Base64Data> of 895

<TransformedData> into an octet string. 896
b. Omitted. 897
c. The hash over of the octet stream extracted in step a is calculated. 898
d. as in 3.3.1 step 1d updated as follows 899

replace the word "<Document>" by <TransformedData> otherwise as in as 3.3.1 900
step 1d.i. 901

replace the word "<Document>" by <TransformedData> otherwise as in as 3.3.1 902
step 1d.ii. 903

same as 3.3.1 step 1d.iii. 904
The <ds:Transforms> element is set to the sequence of transforms indicated by the 905

client in the <ds:Transforms> element within the <TransformedData>. This 906
sequence MUST describe the effective transform as a reproducible procedure from 907
parsing until digest input. 908

3.3.6 Process Variant for <DocumentHash> 909

In the case of an input document which is provided in the form of a hash value in <DocumentHash> Step 910
3.3.1 1 is replaced with the following: 911
1. For each <DocumentHash> in <InputDocuments> the server MUST perform the following steps: 912

a. Omitted. 913
b. Omitted. 914
c. Omitted. 915
d. as in 3.3.1 step 1d updated as follows 916

i. replace the word "<Document>" by <DocumentHash> otherwise as in as 3.3.1 step 917
1d.i. 918

ii. replace the word "<Document>" by <DocumentHash> otherwise as in as 3.3.1 step 919
1d.ii. 920

iii. The <ds:DigestMethod> element is set to the value of <ds:DigestMethod> in 921
<DocumentHash> 922

iv. The <ds:DigestValue> element is set to the value of <ds:DigestValue> in 923
<DocumentHash>. 924

v. The <ds:Transforms> element is set to the sequence of transforms indicated by 925
the client in the <ds:Transforms> element within <DocumentHash>, if any such 926
transforms are indicated by the client. This sequence MUST describe the effective 927
transform as a reproducible procedure from parsing until hash. 928

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 28 of 61

3.4 Basic Processing for CMS Signatures 929

A DSS server that produces CMS signatures [RFC 3852] SHOULD perform the following steps, upon 930
receiving a <SignRequest>. These steps may be changed or overridden by the optional inputs, or by 931
the profile or policy the server is operating under. With regard to the compatibility issues in validation / 932
integration of PKCS#7 signatures and CMS implementations please refer to [RFC 3852] section 1.1.1 933
“Changes Since PKCS #7 Version 1.5”. 934
The <SignRequest> MUST contain either a single <Document> not having RefURI, RefType set or 935
a single <DocumentHash> not having RefURI, RefType, <ds:Transforms> set: 936
1. If a <Document> is present, the server hashes its contents as follows: 937

a. If the <Document> contains <Base64XML>, the server extracts the ancestry context free text 938
content of the <Base64XML> as an octet stream by base64 decoding it’s contents. 939

b. If the <Document> contains <InlineXML>, the server extracts the ancestry context free text 940
content of the <InlineXML> as an octet stream as explained in (section 3.3.2 1.a). This 941
octet stream has to be returned as <TransformedDocument>/ <Base64XML>. For CMS 942
signatures this only has to be returned in the case of CMS signatures that are 943
external/detached/"without eContent", as these return the signed Data anyway. 944

c. If the <Document> contains <EscapedXML>, the server unescapes the content of the 945
<EscapedXML> as a character stream and converts the character stream to an octet stream 946
using an encoding as explained in (section 3.3.3). 947

d. If the <Document> contains <Base64Data>, the server base64-decodes the text content of 948
the <Base64Data> into an octet stream. 949

e. The server hashes the resultant octet stream. 950
2. The server forms a SignerInfo structure based on the input document. The components of the 951

SignerInfo are set as follows: 952
a. The digestAlgorithm field is set to the OID value for the hash method that was used in 953

step 1.c (for a <Document>), or to the OID value that is equivalent to the input document’s 954
<ds:DigestMethod> (for a <DocumentHash>). 955

b. The signedAttributes field’s message-digest attribute contains the hash value that was 956
calculated in step 1.e (for a <Document>), or that was sent in the input document’s 957
<ds:DigestValue> (for a <DocumentHash>). Other signedAttributes may be added 958
by the server, according to its profile or policy, or according to the <Properties> optional 959
input (see section 3.5.5). 960

c. The remaining fields (sid, signatureAlgorithm, and signature) are filled in as per a 961
normal CMS signature. 962

3. The server creates a CMS signature (i.e. a SignedData structure) containing the SignerInfo that 963
was created in Step 2. The resulting SignedData should be detached (i.e. external or “without 964
eContent”) unless the client sends the <IncludeEContent> optional input (see section 3.5.9). 965

3.4.1 Process Variant for <DocumentHash> 966

In the case of a <DocumentHash> the processing by the server is as follows: 967
1. Omitted. 968

a. Omitted. 969
b. Omitted. 970
c. Omitted. 971
d. Omitted. 972
e. Omitted. 973

2. Same as in 3.4 step 2 974

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 29 of 61

a. Unchanged. 975
b. Unchanged. 976
c. Unchanged. 977

3. As in 3.4 step 3, with the requirement that the signature has to be external/detached/"without 978
eContent", since <DocumentHash> is incompatible with optional input <IncludeEContent> (see 979
3.5.7). 980

3.5 Optional Inputs and Outputs 981

This section defines some optional inputs and outputs that profiles of the DSS signing protocol might find 982
useful. Section 2.8 defines some common optional inputs that can also be used with the signing protocol. 983
Profiles of the signing protocol can define their own optional inputs and outputs, as well. General 984
handling of optional inputs and outputs is discussed in section 2.7. 985

3.5.1 Optional Input <SignatureType> 986

The <SignatureType> element indicates the type of signature or timestamp to produce (such as a XML 987
signature, a XML timestamp, a RFC 3161 timestamp, a CMS signature, etc.). See section 7.1 for some 988
URI references that MAY be used as the value of this element. 989

<xs:element name=”SignatureType” type=”xs:anyURI”/> 990

3.5.2 Optional Input <AddTimestamp> 991

The <AddTimestamp> element indicates that the client wishes the server to embed a timestamp token 992
as a property or attribute of the resultant or the supplied signature. The timestamp token will be applied to 993
the signature value in the case of CMS/PKCS7 signatures or the <ds:SignatureValue> element in the 994
case of XML signatures. 995
Note: Procedures for handling other forms of timestamp may be defined in profiles of the Core. In 996
particular, the DSS AdES profile [DSS-AdES-P] defines procedures for generating timestamps over the 997
content which is about to be signed (sometimes called content timestamps), and the DSS Timestamp 998
profile [DSS-TS-P] defines procedures for handling standalone timestamps. 999
The schema definition of this optional input is as follows: 1000

<xs:element name=”AddTimestamp” type=”dss:UpdateSignatureInstructionType”/> 1001
<xs:complexType name="TimeSignatureInstructionType"> 1002
 <xs:complexContent> 1003
 <xs:extension base="dss:UpdateSignatureInstructionType"> 1004
 <xs:attribute name="TimeStampTheGivenSignature" type="xs:boolean" 1005
 use="optional" default="false"/> 1006
 </xs:extension> 1007
 </xs:complexContent> 1008
</xs:complexType> 1009

The type UpdateSignatureInstructionType is defined as follows: 1010

<xs:complexType name=”UpdateSignatureInstructionType”> 1011
 <xs:attribute name=”Type” type=”xs:anyURI” use=”optional”/> 1012
</xs:complexType> 1013

The Type attribute, if present, indicates what type of timestamp to apply. Profiles that use this optional 1014
input MUST define the allowed values, and the default value, for the Type attribute (unless only a single 1015
type of timestamp is supported, in which case the Type attribute can be omitted). 1016
Two scenarios for the timestamping of both CMS and XML signatures are supported by this Optional 1017
Input. They are as follows: 1018
a) Create and embed a timestamp token into the signature being created as part of this SignRequest. 1019

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 30 of 61

b) Create and embed a timestamp token into an existing signature, without verification, which is passed in 1020
the <InputDocuments> element of this SignRequest. 1021
The following subsections specify the use of RFC 3161 timestamps with CMS signatures and the use of 1022
XML Timestamps or RFC 3161 timestamps with XML Signature. These subsections address both 1023
scenarios. 1024

3.5.2.1 Processing for CMS signatures time-stamping 1025

In both scenarios, the timestamp token created by the server SHALL be created according to 1026
[RFC 3161]. The MessageImprint field within the TstInfo structure of the timestamp token will be 1027
derived from the signature value of the just-created or incoming signature depending on the scenario. 1028
The timestamp SHALL be embedded in the CMS signature as an unsigned attribute with the object 1029
identifier (see Appendix A of [RFC 3161]): 1030
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 14} 1031
The signature and its embedded timestamp is returned in the <SignatureObject> of the 1032
<SignResponse>. 1033
In scenario b) the incoming signature is passed in a <Base64Data> element, with the MimeType 1034
attribute set to application/pkcs7-signature. 1035
The Type attribute of the <AddTimestamp> optional input SHALL be set to: 1036
 "urn:ietf:rfc:3161". 1037
Note: In scenario b) the server SHOULD not verify the signature before adding the timestamp. If a client 1038
wishes that its signatures be verified as a condition of time stamping, the client SHOULD use the 1039
<AddTimestamp> optional input of the Verify protocol. 1040

3.5.2.2 Processing for XML Timestamps on XML signatures 1041

If the type attribute in this optional input is 1042
urn:oasis:names:tc:dss:1.0:core:schema:XMLTimeStampToken and signature being 1043
timestamped is an XML signature, then the XML signature MUST contain <dss:timestamp> as defined 1044
in 5.1, placed in a <xades:XMLTimestamp> within a 1045
<xades:SignatureTimeStamp> as defined in [XAdES]. 1046
The <dss:timestamp> MUST contain <ds:Signature> with at least two <ds:Reference> 1047
elements: 1048
- One with the Type attribute set to 1049

"urn:oasis:names:tc:dss:1.0:core:schema:XMLTimeStampToken". and referencing a 1050
<ds:Object> element whose content is a <TSTInfo> element. 1051

- The other referencing the <ds:SignatureValue> being timestamped. 1052
The present specification defines a format for XML timestamp tokens. In addition XAdES defines a 1053
mechanism for incorporating signature timestamps in XML signatures. The present document mandates 1054
that signature timestamps in XML format MUST follow the syntax defined in section 5.1 of this document. 1055
These time-stamp tokens MUST be added to XML signatures as specified by XAdES. 1056
The signature and its embedded timestamp SHALL be returned in the <SignatureObject> of the 1057
<SignResponse>. 1058
In scenario b) the incoming signature MUST be passed in on one of the following three elements 1059
<EscapedXML>, <InlineXML> or <Base64XML>. 1060
Note: In scenario b) the server SHOULD not verify the signature before adding the timestamp. If a client 1061
wishes that its signatures be verified as a condition of time stamping, the client SHOULD use the 1062
<AddTimestamp> optional input of the Verify protocol. 1063
The Type attribute of the <AddTimestamp> optional input SHALL be set to: 1064
 "urn: oasis:names:tc:dss:1.0:core:schema:XMLTimeStampToken”. 1065

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 31 of 61

3.5.2.3 Processing for RFC 3161 Timestamps on XML signatures 1066

If the type attribute in this optional input is urn:ietf:rfc:3161 and signature being timestamped is an 1067
XML signature then the XML signature MUST contain an RFC 3161, placed in a 1068
<xades:EncapsulatedTimeStamp> within a <xades:SignatureTimeStamp> as defined in 1069
[XAdES]. 1070
In scenario b) the incoming signature MUST be passed in on one of the following three elements 1071
<EscapedXML>, <InlineXML> or <Base64XML>. 1072
Note: In scenario b) the server SHOULD not verify the signature before adding the timestamp. If a client 1073
wishes that its signatures be verified as a condition of time stamping, the client SHOULD use the 1074
<AddTimestamp> optional input of the Verify protocol. 1075

3.5.3 Optional Input <IntendedAudience> 1076

The <IntendedAudience> element tells the server who the target audience of this signature is. The 1077
server MAY use this to parameterize any aspect of its processing (for example, the server MAY choose to 1078
sign with a key that it knows a particular recipient trusts). 1079

<xs:element name=”IntendedAudience”> 1080
 <xs:complexType> 1081
 <xs:sequence> 1082
 <xs:element name=”Recipient” type=”saml:NameIdentifierType” 1083
 maxOccurs=”unbounded”/> 1084
 </xs:sequence> 1085
 </xs:complexType> 1086
</xs:element> 1087

3.5.4 Optional Input <KeySelector> 1088

The <KeySelector> element tells the server which key to use. 1089

<xs:element name=”KeySelector”> 1090
 <xs:complexType> 1091
 <xs:choice> 1092
 <xs:element ref=”ds:KeyInfo”/> 1093
 <xs:element name="Other" type="dss:AnyType"/> 1094
 </xs:choice> 1095
 </xs:complexType> 1096
</xs:element> 1097

3.5.5 Optional Input <Properties> 1098

The <Properties> element is used to request that the server add certain signed or unsigned properties 1099
(aka “signature attributes”) into the signature. The client can send the server a particular value to use for 1100
each property, or leave the value up to the server to determine. The server can add additional properties, 1101
even if these aren’t requested by the client. 1102
The <Properties> element contains: 1103
<SignedProperties> [Optional] 1104

These properties will be covered by the signature. 1105
<UnsignedProperties> [Optional] 1106

These properties will not be covered by the signature. 1107
Each <Property> element contains: 1108
<Identifier> [Required] 1109

A URI reference identifying the property. 1110
<Value> [Optional] 1111

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 32 of 61

If present, the value the server should use for the property. 1112
This specification does not define any properties. Profiles that make use of this element MUST define the 1113
allowed property URIs and their allowed values. 1114

<xs:element name=”Properties”> 1115
 <xs:complexType> 1116
 <xs:sequence> 1117
 <xs:element name=”SignedProperties” 1118
 type=”dss:PropertiesType” minOccurs=”0”/> 1119
 <xs:element name=”UnsignedProperties” 1120
 type=”dss: PropertiesType” minOccurs=”0”/> 1121
 </xs:sequence> 1122
 </xs:complexType> 1123
</xs:element> 1124
 1125
<xs:complexType name=”PropertiesType”> 1126
 <xs:sequence> 1127
 <xs:element ref=”dss:Property” maxOccurs=”unbounded”/> 1128
 </xs:sequence> 1129
</xs:complexType> 1130
 1131
<xs:element name=”Property”> 1132
 <xs:complexType> 1133
 <xs:sequence> 1134
 <xs:element name=”Identifier” type=”xs:anyURI”/> 1135
 <xs:element name=”Value” type=”dss:AnyType” 1136
 minOccurs=”0”/> 1137
 </xs:sequence> 1138
 </xs:complexType> 1139
</xs:element> 1140

3.5.6 Optional Input <IncludeObject> 1141

Optional input <IncludeObject> is used to request the creation of an XMLSig enveloping signature as 1142
follows. Multiple occurrences of this optional input can be present in a single <SignRequest> message. 1143
Each occurrence will cause the inclusion of an object inside the signature being created. 1144
The attributes of <IncludeObject> are: 1145
WhichDocument [Required] 1146

Identifies the input document which will be inserted into the returned signature (see the ID attribute in 1147
section 2.4.1). 1148

hasObjectTagsAndAttributesSet 1149
If True indicates that the <Document> contains a <ds:Object> element which has been prepared 1150
ready for direct inclusion in the <ds:Signature>. 1151

ObjId [optional] 1152
Sets the Id attribute on the returned <ds:Object>. 1153

createReference 1154
This attribute set to false inhibits the creation, carried by the Basic Processing specified in section 1155
3.3.1, of the <ds:Reference> associated to the RefURI attribute of the input document referred by 1156
the WhichDocument attribute, effectively allowing clients to include <ds:Object> elements not 1157
covered/protected by the signature being created. 1158

<xs:element name="IncludeObject"> 1159
 <xs:complexType> 1160
 <xs:attribute name="WhichDocument" type="xs:IDREF"/> 1161
 <xs:attribute name="hasObjectTagsAndAttributesSet" 1162
 type="xs:boolean" default="false"/> 1163

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 33 of 61

 <xs:attribute name="ObjId" type="xs:string" 1164
 use="optional"/> 1165
 <xs:attribute name="createReference" type="xs:boolean" 1166
 use="optional" default="true"/> 1167
 </xs:complexType> 1168
</xs:element> 1169

3.5.6.1 XML Signatures Variant Optional Input <IncludeObject> 1170

An enveloping signature is a signature having <ds:Object>s which are referenced by 1171
<ds:Reference>s having a same-document URI. 1172
For each <IncludeObject> the server creates a new <ds:Object> element containing the document, 1173
as identified using the WhichDocument attribute, as its child. This object is carried within the enveloping 1174
signature. The ordering of the <IncludeObject> optional inputs MAY be ignored by the server. 1175
This <Document> MUST include a “same-document” RefURI attribute (having a value starting with “#”) 1176
which references either: 1177
• The whole newly-created <ds:Object>. 1178
• The relevant parts of the newly-created <ds:Object>’s contents to be covered/protected by the 1179

signature (only applicable when the <Document> element contains either <Base64XML>, 1180
<InlineXML> or <EscapedXML>) 1181

If the result of evaluating the expression included in the RefURI attribute doesn’t fit in any of the options 1182
described above, the server MUST reject the request using a <ResultMajor> RequesterError which 1183
MAY be qualified by a <ResultMinor> 1184
urn:oasis:names:tc:dss:1.0:resultminor:InvalidRefURI 1185
Note :If the server does not support the ordering of <ds:Object>, it is recommended either to use ID-1186
based referencing to the <ds:Object> (using the client-generated ID included in the ObjId attribute) or 1187
to rely on expressions based on <ds:Object>'s contents that allow to unambigously refer to the 1188
included object or their relevant parts. 1189
The URI in the RefURI attribute of this <Document> should at least reference the relevant parts of the 1190
Object to be included in the calculation for the corresponding reference. Clients MUST generate requests 1191
in a way that some <ds:Reference>’s URI values actually will reference the <ds:Object> generated 1192
by the server once this element will have been included in the <ds:Signature> produced by the server. 1193
1. For each <IncludeObject> the server MUST carry out the following steps before performing Basic 1194

Processing (as specified in section 3.3.1): 1195
a. The server identifies the <Document> that is to be placed into a <ds:Object> as indicated by 1196

the WhichDocument attribute. 1197
b. The data to be carried in the enveloping signature is extracted and decoded as described in 1198

3.3.1 Step 1 a (or equivalent step in variants of the basic process as defined in 3.3.2 onwards 1199
depending of the form of the input document). 1200

c. if the hasObjectTagsAndAttributesSet attribute is false or not present the server builds the 1201
<ds:Object> as follows: 1202

i. The server generates the new <ds:Object> and sets its Id attribute to the value 1203
indicated in ObjId attribute of the optional input if present. 1204

ii. In the case of the Document pointed at by WhichDocument having Base64Data, 1205
<ds:Object>('s) MIME Type is to be set to the value of <dss:Base64Data>('s) MIME 1206
Type value and the Encoding is to be set to http://www.w3.org/TR/xmlschema-1207
2/#base64Binary 1208

d. The server splices the to-be-enveloped documents as <ds:Object>(s) into the 1209
<ds:Signature>, which is to be returned. 1210

e. If CreateReference is set to true generate a ds:Reference element referencing the 1211
spliced <ds:Object> and exclude this <Document> from the set of <Document>s ready for 1212

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 34 of 61

further processing. Otherwise just exclude this <Document> from the set of <Document>s 1213
ready for further processing. 1214

2. The server then continues with processing as specified in section 3.3.1 for the rest of the documents. 1215

3.5.7 Optional Input <IncludeEContent> 1216

In the case of the optional input <IncludeEContent> (that stands for include enveloped or 1217
encapsulated content) section 3.4 step 3 is overridden as follows. 1218
3. The server creates a CMS signature (i.e. a SignedData structure) containing the SignerInfo that 1219

was created in Step 3. The resulting SignedData is now internal, as the document is enveloped in 1220
the signature. 1221

For CMS details in this context please refer to [RFC 3852] sections 5.1 “SignedData Type” and 5.2 1222
“EncapsulatedContentInfo Type”. 1223

3.5.8 Enveloped Signatures, Optional Input <SignaturePlacement> and 1224
Output <DocumentWithSignature> 1225

Optional input <SignaturePlacement> is used to request the creation of an XMLSig enveloped 1226
signature placed within an input document. The resulting document with the enveloped signature is 1227
placed in the optional output <DocumentWithSignature>. 1228
The server places the signature in the document identified using the WhichDocument attribute. 1229
In the case of a non-XML input document then the server will return an error unless alternative 1230
procedures are defined by a profile or in the server policy for handling such a situation. 1231
The <SignaturePlacement> element contains the following attributes and elements: 1232
WhichDocument [Required] 1233

Identifies the input document which the signature will be inserted into (see the ID attribute in section 1234
2.4.1). 1235

CreateEnvelopedSignature 1236
If this is set to true a reference having an enveloped signature transform is created. 1237

<XpathAfter> [Optional] 1238
Identifies an element, inside the XML input document, after which the signature will be inserted. (The 1239
rules for XPath evaluation are those stated in section 2.5 SignatureObject) 1240

<XpathFirstChildOf> [Optional] 1241
Identifies an element, in the XML input document, which the signature will be inserted as the first child 1242
of. For details on the evaluation of The XPath expression see above (<XpathAfter>). The 1243
signature is placed immediately after the start tag of the specified element. 1244

<xs:element name="SignaturePlacement"> 1245
 <xs:complexType> 1246
 <xs:choice> 1247
 <xs:element name="XPathAfter" type="xs:string"/> 1248
 <xs:element name="XPathFirstChildOf" 1249
 type="xs:string"/> 1250
 </xs:choice> 1251
 <xs:attribute name="WhichDocument" type="xs:IDREF"/> 1252
 <xs:attribute name="CreateEnvelopedSignature" 1253
 type="xs:boolean" default="true"/> 1254
 </xs:complexType> 1255
</xs:element> 1256

The <DocumentWithSignature> optional output contains the input document with the signature 1257
inserted. It has one child element: 1258
<Document> [Required] 1259

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 35 of 61

This contains the input document with a signature inserted in some fashion. 1260

<xs:element name=”DocumentWithSignature”> 1261
 <xs:complexType> 1262
 <xs:sequence> 1263
 <xs:element ref=”dss:Document”/> 1264
 <xs:sequence> 1265
 </xs:complexType> 1266
</xs:element> 1267

For an XMLSig enveloped signature the client produces a request including elements set as follows: 1268
1. The WhichDocument attribute is set to identify the <Document> to envelope the signature. 1269
2. The RefURI attribute MUST be set to include a “same-document” URI which references either: 1270

- The whole <Document> containing the signature (by using a RefURI=””) 1271
- The relevant parts of the <Document> to be covered/protected by the signature (by using a “same-1272
document” RefURI attribute having a value starting with “#”, like RefURI=”#some-id”, 1273
RefURI=”#xpointer(/)”, RefURI=”#xpointer(/DocumentElement/ToBeSignedElement)” or the like). 1274
If the result of evaluating the expression included in the RefURI attribute doesn’t fit in any of the 1275
options described above, the server MUST reject the request using a <ResultMajor> 1276
RequesterError which MAY be qualified by a <ResultMinor> 1277
urn:oasis:names:tc:dss:1.0:resultminor:InvalidRefURI. 1278

3. The createEnvelopedSignature is set to true (or simply omitted). 1279
If the <SignaturePlacement> element is present the server processes it as follows before performing 1280
Basic Processing (as specified in section 3.3.1): 1281
1. The server identifies the <Document> in which the signature is to be enveloped as indicated by the 1282

WhichDocument attribute. 1283
2. This document is extracted and decoded as described in 3.3.1 Step 1.a (or equivalent step in variants 1284

of the basic process as defined in 3.3.2 onwards depending of the form of the input document). 1285
3. The server splices the <ds:Signature> to-be-enveloped into the document. 1286
4. If createEnvelopedSignature equals true, 1287

a. Perform Basic Processing for the enveloping <Document>, as described in section 3.3.1 with the 1288
following amendments: 1289
1. 1290

a. Omitted 1291
b. As in 3.3.1 1.b, with the additional requirement of adding an 1292

EnvelopedSignatureTransform as the first transform in the <ds:Transforms> list 1293
(even preceding transforms used for extraction). 1294
Note: This is necessary because the EnvelopedSignatureTransform would not work 1295
if there was a Canonicalization before it. Similar problems apply to transforms using the 1296
here() function. If such are to be supported, the use of Base64XML or EscapedXML MAY 1297
be required. 1298

c. Unchanged 1299
d. Unchanged 1300

i. Unchanged 1301
ii. Unchanged 1302
iii. Unchanged 1303
iv. Unchanged 1304
v. Unchanged (Note: the requirement imposed in 1.b of having the 1305

EnvelopedSignatureTransform as the first transform in the <ds:Transforms> 1306
list MUST be observed). 1307

2. Omitted 1308

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 36 of 61

3. Omitted 1309
b. After creating the <ds:Reference> due to the modified Basic Processing, make it available for 1310
the Basic Processing, as required in 3.3.1 Step 2. 1311

5. Add the returned <ds:Reference> as required in 3.3.1 Step 2 of Basic processing. 1312

3.5.9 Optional Input <SignedReferences> 1313

The <SignedReferences> element gives the client greater control over how the <ds:Reference> 1314
elements are formed. When this element is present, step 1 of Basic Processing (section 3.3.1) is 1315
overridden. Instead of there being a one-to-one correspondence between input documents and 1316
<ds:Reference> elements, now each <SignedReference> element controls the creation of a 1317
corresponding <ds:Reference>. 1318
Since each <SignedReference> refers to an input document, this allows multiple <ds:Reference> 1319
elements to be based on a single input document. Furthermore, the client can request additional 1320
transforms to be applied to each <ds:Reference>, and can set each <ds:Reference> element’s Id 1321
or URI attribute. These aspects of the <ds:Reference> can only be set through the 1322
<SignedReferences> optional input; they cannot be set through the input documents, since they are 1323
aspects of the reference to the input document, not the input document itself. 1324
Each <SignedReference> element contains: 1325
WhichDocument [Required] 1326

Which input document this reference refers to (see the ID attribute in section 2.4.1). 1327
RefId [Optional] 1328

Sets the Id attribute of the corresponding <ds:Reference>. 1329
RefURI [Optional] 1330

If this attribute is present, the corresponding <ds:Reference> element’s URI attribute is set to its 1331
value. If it is not present, the URI attribute is omitted in the corresponding <ds:Reference> 1332

RefType [Optional] 1333
overrides the RefType of <dss:Document> 1334

<ds:Transforms> [Optional] 1335
 Requests the server to perform additional transforms on this reference. 1336
When the <SignedReferences> optional input is present, basic processing 3.3.1 step 1 is performed 1337
for each <SignedReference> overriding steps a., b., c. and d.: 1338
If the <SignaturePlacement> element is present the server processes it as follows: 1339
For each <SignedReference> in <SignedReferences> 1340
1. The server identifies the <Document> referenced as indicated by the WhichDocument attribute. 1341
2. If RefURI is present create an additional <ds:Reference> for the document in question by 1342

performing basic processing as in section 3.3.1 Step 1 amended as follows: 1343
1. 1344

a. Unchanged. 1345
b. Applies the transforms indicated in <ds:Transforms>. Afterwards, the server may apply 1346

any other transform it considers appropriate as per its policy and then generates a 1347
canonicalized octet string as required in step b. of basic Processing before hashing. 1348

c. Unchanged. 1349
d. The server forms a <ds:Reference> with the elements and attributes set as follows: 1350

i. Use this RefURI attribute from the <SignedReference> if present instead of 1351
RefURI from <dss:Document> in step i. of Basic Processing. 1352

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 37 of 61

The Id attribute is set to the <SignedReference> element’s RefId attribute. If the 1353
<SignedReference> has no RefId attribute, the <ds:Reference> element’s 1354
Id attribute is omitted. 1355

ii. Unchanged. 1356
iii. Unchanged. 1357
iv. Unchanged. 1358
v. The <ds:Transforms> used here will have to be added to <ds:Transforms> of 1359

step v. of basic processing so that this element describes the sequence of transforms 1360
applied by the server and describing the effective transform as a reproducible 1361
procedure from parsing until hash. 1362

2. Add the returned <ds:Reference> as required in 3.3.1 Step 2 of Basic processing. 1363
3. If RefURI is not present perform basic processing for the input document not creating an additional 1364

<ds:Reference> amending Step 1 as follows: 1365
1. 1366

a. Unchanged. 1367
b. Applies the transforms indicated in <ds:Transforms>. Afterwards, the server may apply 1368

any other transform it considers as appropriate as per its policy and then generates 1369
generating a canonicalized octet string as required in step b. of basic Processing before 1370
hashing. 1371

c. Unchanged. 1372
d. The server forms a <ds:Reference> with the elements and attributes set as follows: 1373

i. Perform step i. of Basic Processing and the Id attribute is set to the 1374
<SignedReference> element’s RefId attribute. If the <SignedReference> has 1375
no RefId attribute, the <ds:Reference> element’s Id attribute is omitted. 1376

ii. Unchanged 1377
iii. Unchanged 1378
iv. Unchanged 1379
v. The <ds:Transforms> used here will have to be added to <ds:Transforms> of 1380

step v. of basic processing so that this element describes the sequence of transforms 1381
applied by the server and describing the effective transform as a reproducible 1382
procedure from parsing until hash. 1383

4. The server continues with processing as specified in section 3.3.1 for the rest of the documents. 1384

<xs:element name=”SignedReferences”> 1385
 <xs:complexType> 1386
 <xs:sequence> 1387
 <xs:element ref=”dss:SignedReference” 1388
 maxOccurs=”unbounded”/> 1389
 </xs:sequence> 1390
 </xs:complexType> 1391
</xs:element> 1392
 1393
<xs:element name="SignedReference"> 1394
 <xs:complexType> 1395
 <xs:sequence> 1396
 <xs:element ref="ds:Transforms" minOccurs="0"/> 1397
 </xs:sequence> 1398
 <xs:attribute name="WhichDocument" type="xs:IDREF" use="required"/> 1399
 <xs:attribute name="RefURI" type="xs:anyURI" use="optional"/> 1400
 <xs:attribute name="RefId" type="xs:string" use="optional"/> 1401
 </xs:complexType> 1402
</xs:element> 1403

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 38 of 61

4 The DSS Verifying Protocol 1404

4.1 Element <VerifyRequest> 1405

The <VerifyRequest> inherits from <RequestBaseType>. This element is sent by the client to verify 1406
a signature or timestamp on some input documents. It contains the following additional elements: 1407
<SignatureObject> [Optional] 1408

This element contains a signature or timestamp, or else contains a <SignaturePtr> that points to 1409
an XML signature in one of the input documents. If this element is omitted, there must be only a single 1410
<InputDocument> which the server will search to find the to-be-verified signature(s). Either a 1411
<SignaturePtr> or a single <InputDocument> and no <SignatureObject> MUST be used 1412
whenever the to-be-verified signature is an XML signature which uses an Enveloped Signature 1413
Transform; otherwise the server would have difficulty locating the signature and applying the 1414
Enveloped Signature Transform. 1415

<xs:element name=”VerifyRequest”> 1416
 <xs:complexType> 1417
 <xs:complexContent> 1418
 <xs:extension base="dss:RequestBaseType"> 1419
 <xs:sequence> 1420
 <xs:element ref=”dss:SignatureObject” minOccurs=”0”/> 1421
 </xs:sequence> 1422
 </xs:extension> 1423
 </xs:complexContent> 1424
 </xs:complexType> 1425
</xs:element> 1426

4.2 Element <VerifyResponse> 1427

The <VerifyResponse> inherits from <ResponseBaseType>. This element defines no additional 1428
attributes and elements. 1429

<xs:element name="VerifyResponse" type="dss:ResponseBaseType" /> 1430

4.3 Basic Processing for XML Signatures 1431

A DSS server that verifies XML signatures SHOULD perform the following steps, upon receiving a 1432
<VerifyRequest>. These steps may be changed or overridden by the optional inputs, or by the profile 1433
or policy the server is operating under. For more details on multi-signature verification, see section 4.3.1. 1434
1. The server retrieves one or more <ds:Signature> objects, as follows: If the 1435

<SignatureObject> is present, the server retrieves either the <ds:Signature> that is a child 1436
element of the <SignatureObject> (see: Note at the end of this section), or those 1437
<ds:Signature> objects which are pointed to by the <SignaturePtr> in the 1438
<SignatureObject>. 1439

a. If the <SignaturePtr> points to an input document but not a specific element in that document, 1440
the pointed-to input document must be a <Document> element containing XML either in an 1441
<Base64XML>, <EscapedXML> or <InlineXML> element. 1442
If the document is inside <Base64XML> or <EscapedXML> it is decoded and parsed as 1443
described in 3.3.1 Step 1.a or 3.3.3 Step 1a respectively. 1444
If the document is inside <InlineXML> the document is extracted using exclusive 1445
canonicalization. The <ds:Reference> corresponding to the document MUST have a 1446
chain of transforms (at least one ds:Transform inside ds:Transforms) that anticipates 1447

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 39 of 61

and reflects this. If this is not the case the server MUST throw an Error 1448
(urn:oasis:names:tc:dss:1.0:resultminor:inappropriate:signature). 1449
Note: Otherwise false negatives due to namespace conflicts may appear. 1450

b. If the <SignatureObject> is omitted, there MUST be only a single <Document> element. 1451
This case is handled as if a <SignaturePtr> pointing to the single <Document> was 1452
present: the server will search and find every <ds:Signature> element in this input 1453
document, and verify each <ds:Signature> according to the steps below. 1454

2. For each <ds:Reference> in the <ds:Signature>, the server finds the input document with 1455
matching RefURI and RefType values (omitted attributes match omitted attributes). If the 1456
<ds:Reference> uses a same-document URI, the XPointer should be evaluated against the input 1457
document the <ds:Signature> is contained within, or against the <ds:Signature> itself if it is 1458
contained within the <SignatureObject> element. The <SchemaRef> element or optional input 1459
<Schema> of the input document or <SignatureObject> will be used, if present, to identify ID 1460
attributes when evaluating the XPointer expression. If the <ds:Reference> uses an external URI 1461
and the corresponding input document is not present, the server will skip the <ds:Reference>, and 1462
later return a result code such as ReferencedDocumentNotPresent to indicate this. The RefURI 1463
MAY be omitted in at most one of the set of Input documents. 1464

a. If the input document is a <Document>, the server extracts and decodes as described in 1465
3.3.1 Step 1.a (or equivalent step in variants of the basic process as defined in 3.3.2 onwards 1466
depending of the form of the input document). 1467

b. If the input document is a <TransformedData>, the server MAY check that the 1468
<ds:Transforms> (if supplied) match between the <TransformedData> and the 1469
<ds:Reference> and then hashes the resultant data object according to 1470
<ds:DigestMethod>, and MUST check that the result matches <ds:DigestValue>. 1471

c. If the input document is a <DocumentHash>, the server MAY check that the 1472
<ds:Transforms>, <ds:DigestMethod> (if supplied) and <ds:DigestValue> elements 1473
match between the <DocumentHash> and the <ds:Reference>. 1474

d. If the combination of RefURI and RefType matches more than one input document all of 1475
them MUST be either a <TransformedData> or a <DocumentHash> otherwise a 1476
RequesterError is issued qualified by result minor of 1477
ReferencedDocumentNotPresent. 1478
Only one of them is allowed to have a WhichReference value that matches the order of the 1479
<ds:Reference> within the <ds:SignedInfo> in question otherwise a RequesterError 1480
is issued qualified by result minor of ReferencedDocumentNotPresent. Using this input 1481
document either variant b. or c. is applied respectively before continuing with step 3. 1482

3. The server shall verify the validity of the signature at a particular time (i.e. current time, assumed 1483
signing time or other time), depending on the server policy. This behaviour MAY be altered by using 1484
the optional input <UseVerificationTime> (see section 4.5.2). 1485

4. If the signature validates correctly, the server returns one of the first three <ResultMinor> codes 1486
listed in section 4.4, depending on the relationship of the signature to the input documents (not 1487
including the relationship of the signature to those XML elements that were resolved through XPointer 1488
evaluation; the client will have to inspect those relationships manually). If the signature fails to 1489
validate correctly, the server returns some other code; either one defined in section 4.4 of this 1490
specification, or one defined by some profile of this specification. 1491

Note: The extraction of the <ds:Signature> from the <SignatureObject> should be performed 1492
without namespace inheritance. If the signature <ds:Signature> does not use exclusive 1493
canonicalization for it's <ds:CanonicalizationMethod> there can appear problems caused by 1494
namespace declarations moved by gateways or protocol processors of outer protocol bindings that alter 1495
the signature object and cause false negatives on validation. Problems appearing due to different 1496
behavior of xml parsers in schema validating parsing vs. non-validating parsing like data type 1497
normalizations would have to be healed by canonicalization only as no transforms are available for 1498

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 40 of 61

ds:SignedInfo. As currently available specifications of canonicalization are not aware of schema data 1499
types a solution to heal these defects is currently not possible. Beware, these problems can already occur 1500
on parsing the whole request including protocol bindings like SOAP. Implementors are encouraged to 1501
make use of <dss:Base64XML> or <dss: EscapedXML> instead. 1502

4.3.1 Multi-Signature Verification 1503

If a client requests verification of an entire input document, either using a <SignaturePtr> without an 1504
<XPath> or a missing <SignaturePtr> (see section 4.3 step 1), then the server MUST determine 1505
whether the input document contains zero, one, or more than one <ds:Signature> elements. If zero, 1506
the server should return a <ResultMajor> code of RequesterError. 1507
If more than one <ds:Signature> elements are present, the server MUST either reject the request with 1508
a <ResultMajor> code of RequesterError and a <ResultMinor> code of NotSupported, or 1509
accept the request and try to verify all of the signatures. 1510
If the server accepts the request in the multi-signature case (or if only a single signature is present) and 1511
one of the signatures fails to verify, the server should return one of the error codes in section 4.4, 1512
reflecting the first error encountered. 1513
If all of the signatures verify correctly, the server should return the Success <ResultMajor> code and 1514
the following <ResultMinor> code: 1515
urn:oasis:names:tc:dss:1.0:resultminor:ValidMultiSignatures 1516

Note: These procedures only define procedures for handling of multiple signatures on 1517
one input document. The procedures for handling multiple signatures on multiple 1518
documents are not defined in this core specification, but however such procedures, along 1519
with any optional elements that may be required, may be defined in profiles of this 1520
specification. 1521

Only certain optional inputs and outputs are allowed when performing multi-signature verification. See 1522
section 4.6 for details. 1523

4.3.2 Signature Timestamp verification procedure 1524

The following sub-sections will describe the processing rules for verifying: 1525
- RFC 3161 timestamp tokens on CMS Signatures 1526
- XML timestamp tokens on XML Signatures 1527
- RFC 3161 timestamp tokens on XML Signatures 1528
This section describes signature timestamp processing when the timestamp is embedded in the incoming 1529
signature. 1530
Note: procedures for handling other forms of timestamp may be defined in profiles of the Core. In 1531
particular, the DSS AdES profile [DSS-AdES-P] defines procedures for handling timestamps against the 1532
document being signed, and the DSS Timestamp profile defines procedures for handling standalone 1533
timestamps. 1534
For a definition of the <Timestamp> element see section 5.1 Details of the XML timestamp token can be 1535
found in subsection 5.1.1. 1536

4.3.2.1 Processing for RFC 3161 Timestamp tokens on CMS Signatures. 1537

The present section describes the processing rules for verifying a CMS RFC3161 timestamp token 1538
passed in on a Verify call within the <SignatureObject> of the <VerifyRequest> element. In the 1539
CMS case, since the "signature timestamp" is embedded in the signature as an unsigned attribute, only 1540
the time stamped signature is required for verification processing. As such, no additional input is required. 1541
The processing by the server is broken down into the following steps: 1542

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 41 of 61

1. The signature timestamp is embedded in the incoming signature as an unsigned attribute whose 1543
object identifier is 1.2.840.11359.1.9.16.2.14. Extract and verify the timestamp token. 1544

2. Verify that the token's public verification certificate is authorized for time stamping by examining the 1545
Extended Key Usage field for the presence of the time stamping OID "1.3.6.1.5.5.7.3.8". 1546

3. Validate that the TstInfo structure has a valid layout as defined in [RFC 3161]. 1547
4. Extract the MessageImprint hash value and associated algorithm from the TstInfo structure 1548

which will be compared against the hash value derived in the next step. 1549
5. Recalculate the hash of the signature value field of the signature in which the timestamp is 1550

embedded. 1551
6. Compare the hash values from the two previous steps, and if they are equivalent, then this timestamp 1552

is valid for the signature that was time stamped. 1553
7. Verify that the public verification certificate conforms to all relevant aspects of the relying-party's 1554

policy including algorithm usage, policy OIDs, time accuracy tolerances, and the Nonce value. 1555
8. Set the dss:Result element as defined in this specification. Minor Error 1556

urn:oasis:names:tc:dss:1.0:resultminor:valid:signature:InvalidSignatureTim1557
estamp MAY be used to indicate that the signature is valid but the timestamp against that signature 1558
is invalid. 1559

4.3.2.2 Processing for XML timestamp tokens on XML signatures 1560

The present section describes the processing rules for verifying and XML Signature timestamp token 1561
embedded within an XML signature using the incorporation mechanisms specified in XAdES (i.e., in the 1562
<xades:XMLTimeStamp> <xades:SignatureTimeStamp> element's child). This XML signature may 1563
be passed in on a Verify call within the <SignatureObject> or embedded within a <Document>’s 1564
child. 1565
The server shall verify the timestamp token performing the steps detailed below. If any one of them 1566
results in failure, then the timestamp token SHOULD be rejected. 1567
9. Extract the timestamp token embedded in the incoming signature as defined in 3.5.2.2. 1568
10. Verify that the verification key and algorithms used conforms to all relevant aspects of the applicable 1569

policy. Should this key come within a public certificate, verify that the certificate conforms to all 1570
relevant aspects of the applicable policy including algorithm usage, policy OIDs, and time accuracy 1571
tolerances. 1572

11. Verify that the aforementioned verification key is consistent with the 1573
ds:SignedInfo/SignatureMethod/@Algorithm attribute value. 1574

12. Verify the timestamp token signature in accordance with the rules defined in [XMLDSIG]. 1575
13. Verify that the <ds:SignedInfo> element contains at least two <ds:Reference> elements. 1576
14. Verify that one of the <ds:Reference> elements has its Type attribute set to 1577

“urn:oasis:names:tc:dss:1.0:core:schema:XMLTimeStampToken”. Take this one and proceed as 1578
indicated below: 1579

a. Retrieve the referenced data object. Verify that it references a <ds:Object> element, which 1580
in turn envelopes a <TSTInfo> element. 1581

b. Verify that the <TSTInfo> element has a valid layout as per the present specification. 1582
c. Extract the digest value and associated algorithm from its <ds:DigestValue> and 1583

<ds:DigestMethod> elements respectively. 1584
d. Recalculate the digest of the retrieved data object as specified by [XMLDSIG] with the digest 1585

algorithm indicated in <ds:DigestMethod>, and compare this result with the contents of 1586
<ds:DigestValue>. 1587

15. Take each of the other <ds:Reference> elements and for each validate the hash as specified in 1588
[XMLDSIG]. 1589

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 42 of 61

16. Check that for one of the <ds:Reference> elements the retrieved data object is actually the 1590
<ds:SignatureValue> element and that it contains its digest after canonicalization. 1591

17. Set the <dss:Result> element as appropriate. Minor Error 1592
urn:oasis:names:tc:dss:1.0:resultminor:valid:signature:InvalidSignatureTim1593
estamp MAY be used to indicate that the signature is valid but the timestamp against that signature 1594
is invalid. 1595

4.3.2.3 Processing for RFC 3161 timestamp tokens on XML Signatures 1596

The present section describes the processing rules for verifying an RFC 3161 timestamp token 1597
embedded within an XML signature as an unsigned property. This XML signature may be passed in on a 1598
Verify call within the <SignatureObject> or embedded within a <Document>’s child. 1599
The server shall verify the timestamp token performing the steps detailed below. If any one of them 1600
results in failure, then the timestamp token SHOULD be rejected. 1601
1. Extract the timestamp token embedded in the incoming signature as defined in 3.5.2.3. 1602
2. Verify that the token's public verification certificate is authorized for time stamping by examining the 1603

Extended Key Usage field for the presence of the time stamping OID "1.3.6.1.5.5.7.3.8". 1604
3. Process the signature timestamp as defined in [XAdES] Annex G.2.2.16.1.3. 1605
4. Verify that the public verification certificate conforms to all relevant aspects of the relying-party's 1606

policy including algorithm usage, policy OIDs, time accuracy tolerances, and the Nonce value. 1607
5. Set the dss:Result element as appropriate. 1608

urn:oasis:names:tc:dss:1.0:resultminor:valid:signature:InvalidSignatureTim1609
estamp MAY be used to indicate that the signature is valid but the timestamp against that signature 1610
is invalid. 1611

4.4 Basic Processing for CMS Signatures 1612

A DSS server that verifies CMS signatures SHOULD perform the following steps, upon receiving a 1613
<VerifyRequest>. These steps may be changed or overridden by the optional inputs, or by the profile 1614
or policy the server is operating under. 1615
1. The server retrieves the CMS signature by decoding the <Base64Signature> child of 1616

<SignatureObject>. 1617
2. The server retrieves the input data. If the CMS signature is detached, there must be a single input 1618

document: i.e. a single <Document> or <DocumentHash> element. Otherwise, if the CMS signature 1619
is enveloping, it contains its own input data and there MUST NOT be any input documents present. 1620

3. The CMS signature and input data are verified in the conventional way (see [RFC 3852] for details). 1621
4. If the signature validates correctly, the server returns the first <ResultMinor> code listed in section 1622

4.4. If the signature fails to validate correctly, the server returns some other code; either one defined 1623
in section 4.4 of this specification, or one defined by some profile of this specification. 1624

4.5 Optional Inputs and Outputs 1625

This section defines some optional inputs and outputs that profiles of the DSS verifying protocol might 1626
find useful. Section 2.8 defines some common optional inputs that can also be used with the verifying 1627
protocol. Profiles of the verifying protocol can define their own optional inputs and outputs, as well. 1628
General handling of optional inputs and outputs is discussed in section 2.7. 1629

4.5.1 Optional Input <VerifyManifests> and Output <VerifyManifestResults> 1630

The presence of this element instructs the server to validate manifests in an XML signature. 1631
On encountering such a document in step 2 of basic processing, the server shall repeat step 2 for all the 1632
<ds:Reference> elements within the manifest. In accordance with [XMLDSIG] section 5.1, DSS 1633

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 43 of 61

Manifest validation does not affect a signature's core validation. The results of verifying individual 1634
<ds:Reference>'s within a <ds:Manifest> are returned in the <dss:VerifyManifestResults> 1635
optional output. 1636
For example, a client supplies the optional input <VerifyManifests>, then the returned 1637
<ResultMinor> is 1638
urn:oasis:names:tc:dss:1.0:resultminor:valid:hasManifestResults if XMLSig core 1639
validation succeeds and the optional output <VerifyManifestResults> is returned indicating the 1640
status of the manifest reference verification. In case of a negative XMLSig core validation no attempt is 1641
made to verify manifests. 1642
The <VerifyManifests> optional input is allowed in multi-signature verification. The 1643
<VerifyManifestResults> is comprised of one or more <ManifestResult>s that contain the 1644
following: 1645
<ReferenceXpath> [Required] 1646

Identifies the manifest reference, in the XML signature, to which this result pertains. 1647
<Status> [Required] 1648

Indicates the manifest validation result. It takes one of the values 1649
urn:oasis:names:tc:dss:1.0:manifeststatus:Valid or urn:oasis:names:tc:dss:1.0:manifeststatus:Invalid. 1650

<xs:element name="VerifyManifestResults" 1651
type="dss:VerifyManifestResultsType"/> 1652
 1653
<xs:complexType name="VerifyManifestResultsType"> 1654
 <xs:sequence> 1655
 <xs:element ref="dss:ManifestResult" maxOccurs="unbounded"/> 1656
 </xs:sequence> 1657
</xs:complexType> 1658
 1659
<xs:element name="ManifestResult"> 1660
 <xs:complexType> 1661
 <xs:sequence> 1662
 <xs:element name="ReferenceXpath" type="xs:string"/> 1663
 <xs:element name="Status" type="xs:anyURI"/> 1664
 </xs:sequence> 1665
 </xs:complexType> 1666
</xs:element> 1667

4.5.2 Optional Input <UseVerificationTime> 1668

This element instructs the server to attempt to determine the signature’s validity at the specified time, 1669
instead of a time determined by the server policy. 1670
Note: In order to perform the verification of the signature at a certain time, the server MUST obtain the 1671
information necessary to carry out this verification (e.g. CA certificates, CRLs) applicable at that time. 1672
<CurrentTime> [Optional] 1673

Instructs the server to use its current time (normally the time associated with the server-side request 1674
processing). 1675

<SpecificTime> [Optional] 1676
Allows the client to manage manually the time instant used in the verification process. It SHOULD be 1677
expressed as UTC time (Coordinated Universal Time) to reduce confusion with the local time zone 1678
use. 1679

Profiles MAY define new child elements associated to other different behaviors. 1680

<xs:element name="UseVerificationTime"/> 1681
 <xs:complexType name="UseVerificationTimeType"> 1682
 <xs:choice> 1683
 <xs:element name="CurrentTime"/> 1684

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 44 of 61

 <xs:element name="SpecificTime" type="xs:dateTime"/> 1685
 <xs:any namespace="##other"/> 1686
 </xs:choice> 1687
</xs:complexType> 1688

If the verification time is a significant period in the past the server MAY need to take specific steps for this, 1689
and MAY need to ensure that any cryptographic weaknesses over the period do not affect the validation. 1690
This optional input is allowed in multi-signature verification. 1691

4.5.3 Optional Input/Output <ReturnVerificationTimeInfo> / 1692
<VerificationTimeInfo> 1693

This element allows the client to obtain the time instant used by the server to validate the signature. 1694

<xs:element name="ReturnVerificationTimeInfo"/> 1695

Optionally, in addition to the verification time, the server MAY include in the <VerificationTimeInfo> 1696
response any other relevant time instants that may have been used when determining the verification 1697
time or that may be useful for its qualification. 1698
<VerificationTime> [Required] 1699

The time instant used by the server when verifying the signature. It SHOULD be expressed as UTC 1700
time (Coordinated Universal Time) to reduce confusion with the local time zone use. 1701

<AdditionalTimeInfo> [Optional] 1702
Any other time instant(s) relevant in the context of the verification time determination. 1703

The Type attribute qualifies the kind of time information included in the response. The Ref attribute allows 1704
to establish references to the source of the time information, and SHOULD be used when there is a need 1705
to disambiguate several <AdditionalTimeInfo> elements with the same Type attribute. 1706
This specification defines the following base types, whose values MUST be of type xs:dateTime and 1707
SHOULD be expressed as UTC time (Coordinated Universal Time). Profiles MAY include and define new 1708
values for the Type attribute. 1709
urn:oasis:names:tc:dss:1.0:additionaltimeinfo:signatureTimestamp 1710

The time carried inside a timestamp applied over the signature value. 1711
urn:oasis:names:tc:dss:1.0:additionaltimeinfo:signatureTimemark 1712

The time instant associated to the signature stored in a secure record in the server. 1713
urn:oasis:names:tc:dss:1.0:additionaltimeinfo:signedObjectTimestamp 1714

The time carried inside a timestamp applied over a signed object. 1715
Note that XML Signatures can be produced over multiple objects (via multiple ds:Reference 1716
elements), and therefore it's possible to have multiple timestamps, each one applied over each object. 1717
In this case, the Ref attribute MUST include the value of the Id attribute of the ds:Reference element. 1718
urn:oasis:names:tc:dss:1.0:additionaltimeinfo:claimedSigningTime 1719

The time claimed by the signer to be the signature creation time. 1720

<xs:element name="AdditionalTimeInfo" type="dss:AdditionalTimeInfoType"/> 1721
<xs:complexType name="AdditionalTimeInfoType"> 1722
 <xs:simpleContent> 1723
 <xs:extension base="xs:dateTime"> 1724
 <xs:attribute name="Type" type="xs:anyURI" use="required"/> 1725
 <xs:attribute name="Ref" type="xs:string" use="optional"/> 1726
 </xs:extension> 1727
 </xs:simpleContent> 1728
</xs:complexType> 1729
<xs:element name="VerificationTimeInfo" 1730
 type="dss:VerificationTimeInfoType"/> 1731
<xs:complexType name="VerificationTimeInfoType"> 1732

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 45 of 61

 <xs:sequence> 1733
 <xs:element name="VerificationTime" type="xs:dateTime"/> 1734
 <xs:element ref="dss:AdditionalTimeInfo" minOccurs="0" 1735
 maxOccurs="unbounded"/> 1736
 </xs:sequence> 1737
</xs:complexType> 1738

In the case of multi-signature verification, it’s a matter of server policy as to whether this element is 1739
supported. 1740
This optional input is not allowed in multi-signature verification. 1741

4.5.4 Optional Input <AdditionalKeyInfo> 1742

This element provides the server with additional data (such as certificates and CRLs) which it can use to 1743
validate the signature. 1744
This optional input is not allowed in multi-signature verification. 1745

<xs:element name=”AdditionalKeyInfo”> 1746
 <xs:complexType> 1747
 <xs:sequence> 1748
 <xs:element ref=”ds:KeyInfo”/> 1749
 </xs:sequence> 1750
 </xs:complexType> 1751
</xs:element> 1752

4.5.5 Optional Input <ReturnProcessingDetails> and Output 1753
<ProcessingDetails> 1754

The presence of the <ReturnProcessingDetails> optional input instructs the server to return a 1755
<ProcessingDetails> output. 1756
These options are not allowed in multi-signature verification. 1757

<xs:element name=”ReturnProcessingDetails”/> 1758

The <ProcessingDetails> optional output elaborates on what signature verification steps succeeded 1759
or failed. It may contain the following child elements: 1760
<ValidDetail> [Any Number] 1761

A verification detail that was evaluated and found to be valid. 1762
<IndeterminateDetail> [Any Number] 1763

A verification detail that could not be evaluated or was evaluated and returned an indeterminate result. 1764
<InvalidDetail> [Any Number] 1765

A verification detail that was evaluated and found to be invalid. 1766

<xs:element name=”ProcessingDetails”> 1767
 <xs:complexType> 1768
 <xs:sequence> 1769
 <xs:element name=”ValidDetail” type=”dss:DetailType” 1770
 minOccurs=”0” maxOccurs=”unbounded”/> 1771
 <xs:element name=”IndeterminateDetail” 1772
 type=”dss:DetailType” 1773
 minOccurs=”0” maxOccurs=”unbounded”/> 1774
 <xs:element name=”InvalidDetail” type=”xs:dss:DetailType” 1775
 minOccurs=”0” maxOccurs=”unbounded”/> 1776
 </xs:sequence> 1777
 </xs:complexType> 1778
</xs:element> 1779

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 46 of 61

Each detail element is of type dss:DetailType. A dss:DetailType contains the following child 1780
elements and attributes: 1781
Type [Required] 1782

A URI which identifies the detail. It may be a value defined by this specification, or a value defined by 1783
some other specification. For the values defined by this specification, see below. 1784

Multiple detail elements of the same Type may appear in a single <ProcessingDetails>. For 1785
example, when a signature contains a certificate chain that certifies the signing key, there may be details 1786
of the same Type present for each certificate in the chain, describing how each certificate was 1787
processed. 1788
<Code> [Optional] 1789

A URI which more precisely specifies why this detail is valid, invalid, or indeterminate. It must be a 1790
value defined by some other specification, since this specification defines no values for this element. 1791

<Message> [Optional] 1792
A human-readable message which MAY be logged, used for debugging, etc. 1793

<xs:complexType name=”DetailType”> 1794
 <xs:sequence> 1795
 <xs:element name=”Code” type=”xs:anyURI” minOccurs=”0”/> 1796
 <xs:element name=”Message” type=”dss:InternationalStringType” 1797
 minOccurs=”0”/> 1798
 <xs:any namespace="##other" processContents=”lax” minOccurs=”0” 1799
 maxOccurs=”unbounded”/> 1800
 </xs:sequence> 1801
 <xs:attribute name=”Type” type=”xs:anyURI” use=”required”/> 1802
</xs:element> 1803

The values for the Type attribute defined by this specification are the following: 1804
urn:oasis:names:tc:dss:1.0:detail:IssuerTrust 1805

Whether the issuer of trust information for the signing key (or one of the certifying keys) is considered 1806
to be trustworthy. 1807

urn:oasis:names:tc:dss:1.0:detail:RevocationStatus 1808
Whether the trust information for the signing key (or one of the certifying keys) is revoked. 1809

urn:oasis:names:tc:dss:1.0:detail:ValidityInterval 1810
Whether the trust information for the signing key (or one of the certifying keys) is within its validity 1811
interval. 1812

urn:oasis:names:tc:dss:1.0:detail:Signature 1813
Whether the document signature (or one of the certifying signatures) verifies correctly. 1814

urn:oasis:names:tc:dss:1.0:detail:ManifestReference 1815
Whether a manifest reference in the XML signature verified correctly. 1816

4.5.6 Optional Input <ReturnSigningTimeInfo> and Output 1817
<SigningTimeInfo> 1818

This element allows the client to obtain the time instant associated to the signature creation. 1819
Note: The signing time may be derived, for example, from a claimed signing time signed signature 1820
attribute. 1821

<xs:element name="ReturnSigningTimeInfo"/> 1822

Sometimes, depending on the applicable server policy, this signing time needs to be qualified, in order to 1823
avoid unacceptable measurement errors or false claims, using time boundaries associated to trustworthy 1824
time values (based on timestamps or time-marks created using trusted time sources). In this case, the 1825

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 47 of 61

server MAY include these values in the <LowerBoundary> and <UpperBoundary> elements, 1826
respectively. 1827
Criteria for determining when a time instant can be considered trustworthy and for determining the 1828
maximum acceptable delays between the signing time and their boundaries (if any) is outside the scope 1829
of this specification. 1830
When there's no way for the server to determine the signing time, the server MUST omit the 1831
<SigningTimeInfo> output. 1832
<SigningTime> [Required] 1833

The time value considered by the server to be the signature creation time. 1834
<SigningTimeBoundaries> [Optional] 1835

The trusted time values considered as lower and upper limits for the signing time. If this element is 1836
present, at least one of the <LowerBoundary> and <UpperBoundary> elements MUST be 1837
present. 1838

<xs:element name="SigningTimeInfo" type="dss:SigningTimeInfoType"/> 1839
<xs:complexType name="SigningTimeInfoType"> 1840
 <xs:sequence> 1841
 <xs:element name="SigningTime" type="xs:dateTime"/> 1842
 <xs:element name="SigningTimeBoundaries" minOccurs="0"> 1843
 <xs:complexType> 1844
 <xs:sequence> 1845
 <xs:element name="LowerBoundary" minOccurs="0" 1846
 type="xs:dateTime"/> 1847
 <xs:element name="UpperBoundary" minOccurs="0" 1848
 type="xs:dateTime"/> 1849
 </xs:sequence> 1850
 </xs:complexType> 1851
 </xs:element> 1852
 </xs:sequence> 1853
</xs:complexType> 1854

This optional input is not allowed in multi-signature verification. 1855

4.5.7 Optional Input <ReturnSignerIdentity> and Output <SignerIdentity> 1856

The presence of the <ReturnSignerIdentity> optional input instructs the server to return a 1857
<SignerIdentity> output. 1858
This optional input and output are not allowed in multi-signature verification. 1859

<xs:element name=”ReturnSignerIdentity”/> 1860

The <SignerIdentity> optional output contains an indication of who performed the signature. 1861

<xs:element name=”SignerIdentity” type=”saml:NameIdentifierType”/> 1862

4.5.8 Optional Input <ReturnUpdatedSignature> and Outputs 1863
<DocumentWithSignature>, <UpdatedSignature> 1864

The presence of the <ReturnUpdatedSignature> optional input instructs the server to return an 1865
<UpdatedSignature> output, containing a new or updated signature. 1866
The Type attribute on <ReturnUpdatedSignature>, if present, defines exactly what it means to 1867
“update” a signature. For example, the updated signature may be the original signature with some 1868
additional unsigned signature properties added to it (such as timestamps, counter-signatures, or 1869
additional information for use in verification), or the updated signature could be an entirely new signature 1870
calculated on the same input documents as the input signature. Profiles that use this optional input 1871
MUST define the allowed values and their semantics, and the default value, for the Type attribute (unless 1872
only a single type of updated signature is supported, in which case the Type attribute can be omitted). 1873

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 48 of 61

Multiple occurrences of this optional input can be present in a single verify request message. If multiple 1874
occurrences are present, each occurrence MUST have a different Type attribute. Each occurrence will 1875
generate a corresponding optional output. These optional outputs SHALL be distinguishable based on 1876
their Type attribute, which will match each output with an input. 1877
<UpdatedSignature>/<SignatureObject> [Optional] 1878

The resulting updated signature or timestamp or, in the case of a signature being enveloped in an 1879
output document, a pointer to the signature. This is used in steps 2. and 3. in the processing 1880
described below.These options are not allowed in multi-signature verification. 1881

<xs:element name=”ReturnUpdatedSignature”> 1882
 <xs:complexType> 1883
 <xs:attribute name=”Type” type=”xs:anyURI” use=”optional”/> 1884
 </xs:complexType> 1885
</xs:element> 1886

The <UpdatedSignature> optional output contains the returned signature. 1887

<xs:element name=”UpdatedSignature” type=”dss:UpdatedSignatureType”/> 1888

The <UpdatedSignatureType> is as follows. 1889

<xs:coplexType name=”UpdatedSignatureType”> 1890
 <xs:sequence> 1891
 <xs:element ref="dss:SignatureObject"/> 1892
 </xs:sequence> 1893
 <xs:attribute name=”Type” type=”xs:anyURI” use=”optional”/> 1894
</xs:complexType> 1895

A DSS server SHOULD perform the following steps, upon receiving a <ReturnUpdatedSignature>. 1896
These steps may be changed or overridden by a profile or policy the server is operating under. (e.g For 1897
PDF documents enveloping cms signatures) 1898
1. If the signature to be verified and updated appears within a <SignatureObject>'s 1899

<ds:Signature> (detached or enveloping) or <Base64Signature> then the 1900
<UpdatedSignature> optional ouput MUST contain the modified <SignatureObject> with the 1901
corresponding <ds:Signature> (detached or enveloping) or <Base64Signature> child 1902
containing the updated signature. 1903

2. If the signature to be verified and updated is enveloped, and if the <VerifyRequest> contains a 1904
<SignatureObject> with a <SignaturePtr> pointing to an <InputDocument> (<Base64XML>, 1905
<InlineXML>, <EscapedXML>) enveloping the signature then the server MUST produce the 1906
following TWO optional outputs, first a <DocumentWithSignature> optional output containing the 1907
document that envelopes the updated signature, second an <UpdatedSignature> optional output 1908
containing a <SignatureObject> having a <SignaturePtr> element that MUST point to the 1909
former <DocumentWithSignature>. 1910

3. If there is no <SignatureObject> at all in the request then the server MUST produce only a 1911
<DocumentWithSignature> optional output containing the document with the updated signature. 1912
No <UpdatedSignature> element will be generated. 1913

As <DocumentWithSignature> appears in steps 2. and 3. of the processing above it is explained 1914
here again: 1915
The <DocumentWithSignature> optional output (for the schema refer to section 3.5.8) contains the 1916
input document with the given signature inserted. 1917
It has one child element: 1918
<Document> [Required] 1919

This returns the given document with a signature inserted in some fashion. 1920

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 49 of 61

The resulting document with the updated enveloped signature is placed in the optional output 1921
<DocumentWithSignature>. The server places the signature in the document identified using the 1922
<SignatureObject>/<SignaturePtr>'s WhichDocument attribute. 1923
This <Document> MUST include a same-documentRefURI attribute which references the data updated 1924
(e.g of the form RefURI). 1925

4.5.9 Optional Input <ReturnTransformedDocument> and Output 1926
<TransformedDocument> 1927

The <ReturnTransformedDocument> optional input instructs the server to return an input document to 1928
which the XML signature transforms specified by a particular <ds:Reference> have been applied. The 1929
<ds:Reference> is indicated by the zero-based WhichReference attribute (0 means the first 1930
<ds:Reference> in the signature, 1 means the second, and so on). Multiple occurrences of this 1931
optional input can be present in a single verify request message. Each occurrence will generate a 1932
corresponding optional output. 1933
These options are not allowed in multi-signature verification. 1934

<xs:element name=”ReturnTransformedDocument”> 1935
 <xs:complexType> 1936
 <xs:attribute name=”WhichReference” type=”xs:integer” 1937
 use=”required”/> 1938
 </xs:complexType> 1939
</xs:element> 1940

The <TransformedDocument> optional output contains a document corresponding to the specified 1941
<ds:Reference>, after all the transforms in the reference have been applied. In other words, the hash 1942
value of the returned document should equal the <ds:Reference> element’s <ds:DigestValue>. To 1943
match outputs to inputs, each <TransformedDocument> will contain a WhichReference attribute 1944
which matches the corresponding optional input. 1945

<xs:element name=”TransformedDocument”> 1946
 <xs:complexType> 1947
 <xs:sequence> 1948
 <xs:element ref=”dss:Document”> 1949
 </xs:sequence> 1950
 </xs:complexType> 1951
 <xs:attribute name=”WhichReference” type=”xs:integer” 1952
 use=”required”/> 1953
</xs:element> 1954

4.5.10 Optional Input <ReturnTimestampedSignature> and Outputs 1955
<DocumentWithSignature>, <TimestampedSignature> 1956

The <ReturnTimestampedSignature> element within a <VerifyRequest> message indicates that 1957
the client wishes the server to update the signature after its verification by embedding a signature 1958
timestamp token as an unauthenticated attribute (see "unauthAttrs" in section 9.1 [RFC 3852]) or 1959
unsigned property (see section 6.2.5 "The UnsignedSignatureProperties element" and section 7.3 "The 1960
SignatureTimeStamp element" [XAdES]) of the supplied signature. 1961
The timestamp token will be on the signature value in the case of CMS/PKCS7signatures or the 1962
<ds:SignatureValue> element in the case of XML signatures. 1963
The Type attribute, if present, indicates what type of timestamp to apply. This document defines two 1964
values for it, namely: 1965
a. urn:ietf:rfc:3161 for generating a RFC 3161 timestamp token on the signature 1966
b. urn:oasis:names:tc:dss:1.0:core:schema:XMLTimeStampToken, for generating a XML 1967

timestamp token as defined in section 5 of this document. 1968

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 50 of 61

Profiles that use this optional input MUST define the allowed values, and the default value, for the Type 1969
attribute (unless only a single type of timestamp is supported, in which case the Type attribute can be 1970
omitted). 1971
Below follows the schema definition for these elements. 1972

<xs:element name="ReturnTimestampedSignature" 1973
 type="dss:UpdateSignatureInstructionType"/> 1974
<xs:element name="TimestampedSignature" type="dss:UpdatedSignatureType"/> 1975
 1976
<xs:element name="UpdatedSignature" type="dss:UpdatedSignatureType"/> 1977
 <xs:complexType name="UpdatedSignatureType"> 1978
 <xs:sequence> 1979
 <xs:element ref="dss:SignatureObject"/> 1980
 </xs:sequence> 1981
 <xs:attribute name="Type" type="xs:anyURI" use="optional"/> 1982
</xs:complexType> 1983

A DSS server SHOULD perform the steps 1. - 3. as indicated in 4.5.8 upon receiving a 1984
<ReturnTimeStampedSignature> replacing <UpdatedSignature> by 1985
<TimestampedSignature>. 1986
Procedures for handling RFC 3161 and XML timestamps are as defined in 3.5.2.3 and 3.5.2.2. 1987
Note: Procedures for handling other forms of timestamp may be defined in profiles of the Core. In 1988
particular, the DSS XAdES profile [DSS-XAdES-P] defines procedures for handling timestamps against 1989
the document being signed, and the DSS Timestamp profile [DSS-TS-P] defines procedures for handling 1990
standalone timestamps. 1991

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 51 of 61

5 DSS Core Elements 1992

This section defines two XML elements that may be used in conjunction with the DSS core protocols. 1993

5.1 Element <Timestamp> 1994

This section defines an XML timestamp. A <Timestamp> contains some type of timestamp token, such 1995
as an RFC 3161 TimeStampToken [RFC 3161] or a <ds:Signature> (aka an “XML timestamp token”) 1996
(see section 5.1.1). Profiles may introduce additional types of timestamp tokens. Standalone XML 1997
timestamps can be produced and verified using the timestamping profile of the DSS core protocols [XML-1998
TSP]. 1999
An XML timestamp may contain: 2000
<ds:Signature> [Optional] 2001

This is an enveloping XML signature, as defined in section 5.1.1. 2002

<RFC3161TimeStampToken> [Optional] 2003
This is a base64-encoded TimeStampToken as defined in [RFC3161]. 2004

<xs:element name=”Timestamp”> 2005
 <xs:complexType> 2006
 <xs:choice> 2007
 <xs:element ref=”ds:Signature”/> 2008
 <xs:element name=”RFC3161TimeStampToken” 2009
 type=”xs:base64Binary”/> 2010
 <xs:element name="Other" type="AnyType"/> 2011
 <xs:choice> 2012
 </xs:complexType> 2013
</xs:element> 2014

5.1.1 XML Timestamp Token 2015

An XML timestamp token is similar to an RFC 3161 TimeStampToken, but is encoded as a <TstInfo> 2016
element (see section 5.1.2) inside an enveloping <ds:Signature>. This allows conventional XML 2017
signature implementations to validate the signature, though additional processing is still required to 2018
validate the timestamp properties (see section 4.3.2.2). 2019
The following text describes how the child elements of the <ds:Signature> MUST be used: 2020
<ds:KeyInfo> [Required] 2021

The <ds:KeyInfo> element SHALL identify the issuer of the timestamp and MAY be used to 2022
locate, retrieve and validate the timestamp token signature-verification key. The exact details of 2023
this element may be specified further in a profile. 2024

<ds:SignedInfo>/<ds:Reference> [Required] 2025
There MUST be a single <ds:Reference> element whose URI attribute references the 2026
<ds:Object> containing the enveloped <TstInfo> element, and whose Type attribute is equal 2027
to urn:oasis:names:tc:dss:1.0:core:schema:XMLTimeStampToken. 2028

<ds:Object> [Required] 2029
A <TstInfo> element SHALL be contained in a <ds:Object> element. 2030

Additional <ds:Reference> elements MUST appear for data objects [XMLDSIG] being time-stamped. 2031
For details on further use of time-stamps, please refer to appropriate profiles. 2032

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 52 of 61

5.1.2 Element <TstInfo> 2033

A <TstInfo> element is included in an XML timestamp token as a <ds:Signature> / 2034
<ds:Object> child element. A <TstInfo> element has the following children: 2035
<SerialNumber> [Required] 2036

This element SHALL contain a serial number produced by the timestamp authority (TSA). It 2037
MUST be unique across all the tokens issued by a particular TSA. 2038

<CreationTime> [Required] 2039
The time at which the token was issued. 2040

<Policy> [Optional] 2041
This element SHALL identify the policy under which the token was issued. The TSA’s policy 2042
SHOULD identify the fundamental source of its time. 2043

<ErrorBound> [Optional] 2044
The TSA’s estimate of the maximum error in its local clock. 2045

<Ordered> [Default=”false”] 2046
This element SHALL indicate whether or not timestamps issued by this TSA, under this policy, 2047
are strictly ordered according to the value of the CreationTime element value. 2048

TSA [Optional] 2049
The name of the TSA. 2050

<xs:element name=”TstInfo”> 2051
 <xs:complexType> 2052
 <xs:sequence> 2053
 <xs:element name=”SerialNumber” type=”xs:integer”/> 2054
 <xs:element name=”CreationTime” type=”xs:dateTime”/> 2055
 <xs:element name=”Policy” type=”xs:anyURI” minOccurs=”0”/> 2056
 <xs:element name=”ErrorBound” type=”xs:duration” 2057
 minOccurs=”0”/> 2058
 <xs:element name=”Ordered” type=”xs:boolean” 2059
 default=”false” minOccurs=”0”/> 2060
 <xs:element name=”TSA” type=”saml:NameIdentifierType” 2061
 minOccurs=”0”/> 2062
 <xs:sequence> 2063
 </xs:complexType> 2064
</xs:element> 2065

5.2 Element <RequesterIdentity> 2066

This section contains the definition of an XML Requester Identity element. This element can be used as 2067
a signature property in an XML signature to identify the client who requested the signature. 2068
This element has the following children: 2069
Name [Required] 2070

The name or role of the requester who requested the signature be performed. 2071

SupportingInfo [Optional] 2072
Information supporting the name (such as a SAML Assertion [SAMLCore1.1], Liberty Alliance 2073
Authentication Context, or X.509 Certificate). 2074

The following schema fragment defines the <RequesterIdentity> element: 2075

<xs:element name=”RequesterIdentity”> 2076
 <xs:complexType> 2077
 <xs:sequence> 2078

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 53 of 61

 <xs:element name=”Name” type=”saml:NameIdentifierType”/> 2079
 <xs:element name=”SupportingInfo” type=”dss:AnyType” 2080
 minOccurs=”0”/> 2081
 </xs:sequence> 2082
 </xs:complexType> 2083
</xs:element> 2084

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 54 of 61

6 DSS Core Bindings 2085

Mappings from DSS messages into standard communications protocols are called DSS bindings. 2086
Transport bindings specify how DSS messages are encoded and carried over some lower-level transport 2087
protocol. Security bindings specify how confidentiality, authentication, and integrity can be achieved for 2088
DSS messages in the context of some transport binding. 2089
Below we specify an initial set of bindings for DSS. Future bindings may be introduced by the OASIS 2090
DSS TC or by other parties. 2091

6.1 HTTP POST Transport Binding 2092

In this binding, the DSS request/response exchange occurs within an HTTP POST exchange [RFC 2093
2616]. The following rules apply to the HTTP request: 2094
The client may send an HTTP/1.0 or HTTP/1.1 request. 2095
The Request URI may be used to indicate a particular service endpoint. 2096
The Content-Type header MUST be set to “application/xml”. 2097
The Content-Length header MUST be present and correct. 2098
The DSS request message MUST be sent in the body of the HTTP Request. 2099
The following rules apply to the HTTP Response: 2100
The Content-Type header MUST be set to “text/xml”. 2101
The Content-Length header MUST be present and correct. 2102
The DSS response message MUST be sent in the body of the HTTP Response. 2103
The HTTP status code MUST be set to 200 if a DSS response message is returned. Otherwise, the 2104
status code can be set to 3xx to indicate a redirection, 4xx to indicate a low-level client error (such as a 2105
malformed request), or 5xx to indicate a low-level server error. 2106

6.2 SOAP 1.2 Transport Binding 2107

In this binding, the DSS request/response exchange occurs using the SOAP 1.2 message protocol 2108
[SOAP]. The following rules apply to the SOAP request: 2109
A single DSS <SignRequest> or <VerifyRequest> element will be transmitted within the body of the 2110
SOAP message. 2111
The client MUST NOT include any additional XML elements in the SOAP body. 2112
The UTF-8 character encoding must be used for the SOAP message. 2113
Arbitrary SOAP headers may be present. 2114
The following rules apply to the SOAP response: 2115
The server MUST return either a single DSS <SignResponse> or <VerifyResponse> element within 2116
the body of the SOAP message, or a SOAP fault code. 2117
The server MUST NOT include any additional XML elements in the SOAP body. 2118
If a DSS server cannot parse a DSS request, or there is some error with the SOAP envelope, the server 2119
MUST return a SOAP fault code. Otherwise, a DSS result code should be used to signal errors. 2120
The UTF-8 character encoding must be used for the SOAP message. 2121
Arbitrary SOAP headers may be present. 2122
On receiving a DSS response in a SOAP message, the client MUST NOT send a fault code to the DSS 2123
server. 2124

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 55 of 61

6.2.1 SOAP Attachment Feature and Element <AttachmentReference> 2125

Applications MAY support SOAP 1.2 attachment feature [SOAPAtt] to transmit documents in the context 2126
of a <SignRequest> or a <VerifyRequest> and can take advantage of 2127
<Document>/<AttachmentReference>. 2128
AttRefURI 2129

SOAP 1.2 attachment feature [SOAPAtt] states that any secondary part ("attachment") can be 2130
referenced by a URI of any URI scheme. 2131

AttRefURI refers to such a secondary part ("attachment") and MUST resolve within the 2132
compound SOAP message. The default encapsulation mechanism is MIME as specified in the 2133
WS-I Attachments Profile [WS-I-Att] (cf. swaRef, http://www.ws-i.org/Profiles/AttachmentsProfile-2134
1.0.html#Referencing_Attachments_from_the_SOAP_Envelope). 2135

MimeType [Optional] 2136
Declares the MIME type of the referred secondary part of this SOAP compound message. 2137

Note: If MIME is used as encapsulation mechanism, the MIME content-type is available via a 2138
MIME header. However, the MIME headers may not be available to implementations and the 2139
SOAP 1.2 attachment feature is not restricted to MIME. Further the MIME header is not secured 2140
by the AttachmentReference's DigestValue, which is calculated over the binary attachment 2141
data (not including the MIME headers). 2142

<ds:DigestMethod> [Optional Sequence] 2143
<ds:DigestValue> 2144

These optional elements can be used to ensure the integrity of the attachment data. 2145

If these elements are supplied the server SHOULD compute a message digest using the 2146
algorithm given in <ds:DigestMethod> over the binary data in the octet stream and compare it 2147
against the supplied <ds:DigestValue>. 2148

If the comparison fails then a RequesterError qualified by a GeneralError and an 2149
appropriate message containing the AttRefURI is returned. 2150

Note: The attachments digest value(s) can be included in the primary SOAP part to allow the 2151
entire request (including secondary parts) to be secured by WSS. However, the MIME headers 2152
are not covered by the digest value and therefore can be included into the 2153
dss:AttachmentReference (which is relevant for the processing of dss:IncludeObject 2154
referring to an dss:AttachmentReference). 2155

The digest value may be computed while the data is read from the attachment. After the last byte 2156
being read from the attachment the server compares the calculated digest value against the 2157
supplied <ds:DigestValue>. 2158

<xs:element name="AttachmentReference" type="dss:AttachmentReferenceType"/> 2159
 <xs:complexType name="AttachmentReferenceType"> 2160
 <xs:sequence minOccurs="0"> 2161
 <xs:element ref="ds:DigestMethod"/> 2162
 <xs:element ref="ds:DigestValue"/> 2163
 </xs:sequence> 2164
 <xs:attribute name="AttRefURI" type="xs:anyURI" /> 2165
 <xs:attribute name="MimeType" type="xs:string" use="optional"/> 2166
</xs:complexType> 2167

6.2.1.1 Signing Protocol, Processing for XML Signatures, Process Variant for 2168
<AttachmentReference> 2169

In the case of an input document which contains <AttachmentReference> the server retrieves the 2170
MIME type from the MimeType attribute (if present) otherwise from the content-type MIME header of the 2171

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 56 of 61

attachment referred by AttRefURI. If the MimeType attribute diverges from the attachment's MIME 2172
header content-type, an implementation MAY either ignore the MIME header's content-type or issue a 2173
RequesterError qualified by a GeneralError and an appropriate message containing the 2174
AttRefURI. 2175
IF the MIME type indicates that it contains XML continue with processing as in section 3.3.1 and Step 1 a 2176
is replaced with the following: 2177
1. 2178
a. The server retrieves the data from the attachment referred by AttRefURI as an octet stream. This 2179
data MUST be a well formed XML Document as defined in [XML] section 2.1. If the RefURI attribute 2180
references within the same input document then the server parses the octet stream to NodeSetData 2181
(see [XMLDSIG] section 4.3.3.3) before proceeding to the next step. 2182
ELSE continue with processing as in section 3.3.4 and Step 1 a is replaced with the following: 2183
1. 2184
a. The server retrieves the data from the attachment referred by AttRefURI as an octet stream. 2185
Note: In the first case attachmentReference is always treated like Base64XML in the latter like 2186
Base64Data for further processing. (E.g. In the case of dss:IncludeObject, the MimeType attribute 2187
is copied from dss:AttachmentReference to ds:Object.) 2188

6.2.1.2 Verifying Protocol, Processing for XML Signatures, Process Variant for 2189
<AttachmentReference> 2190

Perform section 4.3 Basic Processing for XML Signatures amending step 2 2.a as follows: 2191
2. 2192
a. If the input document is a <Document>, the server extracts and decodes as described in 3.3.1 Step 1 2193
a (or equivalent step in variants of the basic process as defined in 3.3.2 onwards depending of the form of 2194
the input document) or in the case of <AttachmentReference> as described in section 6.2.1.1. 2195

6.2.1.3 Signing Protocol, Basic Processing for CMS Signatures, Process Variant 2196
for <AttachmentReference> 2197

Perform section 3.4 Basic Processing for CMS Signatures adding the following variant 1. d' after 1.d and 2198
before 1.e: 2199
1. 2200
d'. If the <Document> contains <AttachmentReference>, the server retrieves the data from the 2201
attachment referred by AttRefURI as an octet stream. 2202

6.2.1.4 Verifying Protocol, Basic Processing for CMS Signatures, Process Variant 2203
for <AttachmentReference> 2204

Perform section 4.4 Basic Processing for CMS Signatures amending step 2 as follows: 2205
 2206
2. The server retrieves the input data. (In the case of <AttachmentReference> this is done as in 2207
section 6.2.1.3 step 1. d'. If the CMS signature is detached, there must be a single input document: i.e. a 2208
single <Document> or <DocumentHash> element. Otherwise, if the CMS signature is enveloping, it 2209
contains its own input data and there MUST NOT be any input documents present. 2210

6.3 TLS Security Bindings 2211

TLS [RFC 2246] is a session-security protocol that can provide confidentiality, authentication, and 2212
integrity to the HTTP POST transport binding, the SOAP 1.2 transport binding, or others. TLS supports a 2213

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 57 of 61

variety of authentication methods, so we define several security bindings below. All of these bindings 2214
inherit the following rules: 2215
TLS 1.0 MUST be supported. SSL 3.0 MAY be supported. Future versions of TLS MAY be supported. 2216
RSA ciphersuites MUST be supported. Diffie-Hellman and DSS ciphersuites MAY be supported. 2217
TripleDES ciphersuites MUST be supported. AES ciphersuites SHOULD be supported. Other 2218
ciphersuites MAY be supported, except for weak ciphersuites intended to meet export restrictions, which 2219
SHOULD NOT be supported. 2220

6.3.1 TLS X.509 Server Authentication 2221

The following ciphersuites defined in [RFC 2246] and [RFC 3268] are supported. The server MUST 2222
authenticate itself with an X.509 certificate chain [RFC 3280]. The server MUST NOT request client 2223
authentication. 2224
MUST: 2225

 TLS_RSA_WITH_3DES_EDE_CBC_SHA 2226
SHOULD: 2227
 TLS_RSA_WITH_AES_128_CBC_SHA 2228

 TLS_RSA_WITH_AES_256_CBC_SHA 2229

6.3.2 TLS X.509 Mutual Authentication 2230

The same ciphersuites mentioned in section 6.2.1 are supported. The server MUST authenticate itself 2231
with an X.509 certificate chain, and MUST request client authentication. The client MUST authenticate 2232
itself with an X.509 certificate chain. 2233

6.3.3 TLS SRP Authentication 2234

SRP is a way of using a username and password to accomplish mutual authentication. The following 2235
ciphersuites defined in [draft-ietf-tls-srp-08] are supported. 2236
MUST: 2237

 TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA 2238
SHOULD: 2239
 TLS_SRP_SHA_WITH_AES_128_CBC_SHA 2240
 TLS_SRP_SHA_WITH_AES_256_CBC_SHA 2241

6.3.4 TLS SRP and X.509 Server Authentication 2242

SRP can be combined with X.509 server authentication. The following ciphersuites defined in [draft-ietf-2243
tls-srp-08] are supported. 2244
MUST: 2245

 TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA 2246
SHOULD: 2247
 TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA 2248
 TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA 2249

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 58 of 61

7 DSS-Defined Identifiers 2250

The following sections define various URI-based identifiers. Where possible an existing URN is used to 2251
specify a protocol. In the case of IETF protocols the URN of the most current RFC that specifies the 2252
protocol is used (see [RFC 2648]). URI references created specifically for DSS have the following stem: 2253
urn:oasis:names:tc:dss:1.0: 2254

7.1 Signature Type Identifiers 2255

The following identifiers MAY be used as the content of the <SignatureType> optional input (see 2256
section 3.5.1). 2257

7.1.1 XML Signature 2258

• URI: urn:ietf:rfc:3275 2259
• This refers to an XML signature per [XMLDSIG]. 2260

7.1.2 XML TimeStampToken 2261

• URI: urn:oasis:names:tc:dss:1.0:core:schema:XMLTimeStampToken 2262
• This refers to an XML timestamp containing an XML signature, per section 5.1. 2263

7.1.3 RFC 3161 TimeStampToken 2264

• URI: urn:ietf:rfc:3161 2265
• This refers to an XML timestamp containing an ASN.1 TimeStampToken, per [RFC 3161]. 2266

7.1.4 CMS Signature 2267

• URI: urn:ietf:rfc:3369 2268
• This refers to a CMS signature per [RFC 3852] or prior versions of CMS. 2269

7.1.5 PGP Signature 2270

• URI: urn:ietf:rfc:2440 2271
• This refers to a PGP signature per [RFC 2440]. 2272

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 59 of 61

A. Use of Exclusive Canonicalization 2273

Exclusive Canonicalization of dereferenced and transformed data can be achieved by appending 2274
exclusive canonicalization as the last transform in the <ds:Transforms> element of 2275
<TransformedData> or <DocumentHash>. 2276
In the case of <Document> being used this can be done by adding exclusive canonicalization as the last 2277
transform in the <ds:Transforms> of a <SignedReference> pointing to that <Document>. 2278
By doing this the resulting data produced by the chain of transforms will always be octet stream data 2279
which will be hashed without further processing on a <ds:Reference> level by the server as indicated 2280
by basic processing section 3.3.1 step 1 b. and c. 2281
Another possibility to apply exclusive canonicalization on <ds:Reference> level is the freedom given to 2282
servers to apply additional transforms to increase robustness. This however implies that only trustworthy 2283
transformations are appended by a server. 2284
As in section 3.3.1 step 1 b an implementation can choose to use exclusive canonicalization: "... 2285
Transforms are applied as a server implementation MAY choose to increase robustness of the Signatures 2286
created. These Transforms may reflect idiosyncrasies of different parsers or solve encoding issues or the 2287
like. ..." 2288
In such a case that the exclusive canonicalization is to be included in the <ds:Transforms> as well (cf. 2289
section 3.3.1 step 1.d.v.) 2290
The standards default is however in line with [XMLDSIG] as indicated in the Note in section 3.3.1 step 1 2291
b. 2292
However after the server formed a <ds:SignedInfo> (section 3.3.1 step 3.) this information to be 2293
signed also needs to be canonicalized and digested, here [XMLDSIG] offers the necessary element 2294
<ds:CanonicalizationMethod> directly and can be used to specify exclusive canonicalization. 2295

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 60 of 61

B. More Complex <Response> Example 2296

To further explain the use of the <Response> element which is useful in cases where the DSS server is 2297
not able to respond with a special response type a more complex example is given in the following 2298
paragraph. 2299
Consider for example a client sends a <SignRequest> to a service that only supports 2300
<VerifyRequest>'s over plain HTTP (as opposed to protocols where some information could be 2301
derived from the header). As the service does not support <SignRequest>'s it has to either generate a 2302
<VerifyResponse> with a "bad message" result or fail at the HTTP layer. In the former case, the client 2303
will receive a response that does not correspond semantically to the request - it got a 2304
<VerifyResponse> to a <SignRequest>. This leaves both parties thinking that the other one is at 2305
fault. 2306

oasis-dss-core-spec-cs-v1.0-r1 13 February 2007
Copyright © OASIS® 2007. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 61 of 61

C. Acknowledgements 2307

The following individuals have participated in the creation of this specification and are gratefully 2308
acknowledged: 2309
Participants: 2310

Dimitri Andivahis, Surety 2311
Glenn Benson, JPMorganChase 2312
Juan Carlos Cruellas, individual 2313
Carlos Gonzalez-Cadenas, Netfocus, S.L 2314
Frederick Hirsch, Nokia 2315
Pieter Kasselman, Cybertrust 2316
Andreas Kuehne, individual 2317
Konrad Lanz, Austria Federal Chancellery <Konrad.Lanz@iaik.tugraz.at> 2318
Tommy Lindberg, individual 2319
Paul Madsen, Entrust 2320
John Messing, American Bar Association 2321
Tim Moses, Entrust 2322
Trevor Perrin, individual 2323
Nick Pope, Thales eSecurity 2324
Rich Salz, DataPower 2325
Ed Shallow, Universal Postal Union 2326

