
Dita-v1.0-spec-os-ArchitecturalSpecification.pdf 09 May 2005
Copyright © OASIS Open 2005. All Rights Reserved.

OASIS Darwin Information Typing
Architecture (DITA) Architectural
Specification v1.0
OASIS Standard, 09 May 2005
Document Identifier:

dita-v1.0-spec-os-ArchitecturalSpecification.pdf
Location:

This Version: http://docs.oasis-open.org/dita/v1.0/dita-v1.0-spec-os-ArchitecturalSpecification.pdf

Technical Committee:
OASIS Darwin Information Typing Architecture (DITA) TC

Chair(s):
Don Day, IBM

Editor(s):
Michael Priestley, IBM
JoAnn Hackos

Related work:
This specification replaces or supercedes:

• none
This specification is related to:

• none

Abstract:
The Darwin Information Typing Architecture (DITA) specification defines both a) a set of
document types for authoring and organizing topic-oriented information; and b) a set of
mechanisms for combining and extending document types using a process called specialization.
The specification consists of:

• The DTDs and schemas that define DITA markup for the base DITA document types,
as well as catalog files. While the DTDs and schemas should define the same DITA
elements, the DTDs are normative if there is ever any discrepency.

• The language reference that provides explanations for each element in the base
DITA document types

• This document, which comes in three parts:
– An introduction, which provides background concepts and an overview of the

architecture
– The DITA markup specification, which provides an overview of DITA’s base

document types
– The DITA specialization specification, which provides details of the mechanisms

DITA provides for defining and extending DITA document types.

Dita-v1.0-spec-os-ArchitecturalSpecification.pdf 09 May 2005
Copyright © OASIS Open 2005. All Rights Reserved.

This document is part of the technical specification for the DITA architecture. While the
specification does contain some introductory information, it is not intended as an introduction to
DITA nor as a users guide. The intended audience of this specification consists of implementers
of the DITA standard, including tool developers and specializers.

Status:
This document was last revised or approved by the Darwin Information Typing Architecture
(DITA) TC on the above date. The level of approval is also listed above. Check the current
location noted above for possible later revisions of this document. This document is updated
periodically on no particular schedule.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at www.oasis-
open.org/committees/dita.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (www.oasis-
open.org/committees/dita/ipr.php.
The non-normative errata page for this specification is located at www.oasis-
open.org/committees/dita.

Dita-v1.0-spec-os-ArchitecturalSpecification.pdf 09 May 2005
Copyright © OASIS Open 2005. All Rights Reserved.

Notices
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by
implementors or users of this specification, can be obtained from the OASIS President.
OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to implement this
specification. Please address the information to the OASIS President.
Copyright © OASIS Open 2005. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
does not be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to
translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Contents

Chapter 1. About the DITA Specification 1

Chapter 2. An introduction to DITA . . . 3

Definitions and background concepts 3

Basic concepts 3

Terminology 4

Naming conventions and file extensions 5

Chapter 3. DITA markup 7

DITA topics 7

What are topics? 7

Why topics? 7

Information typing 8

Topic structure 8

Topic content 9

Topic modules 9

Concepts 10

Tasks 11

Reference 12

Domains 13

DITA maps 13

What are maps? 14

Why DITA maps? 14

Common DITA map attributes and metadata . . 14

DITA map structure 17

Inheritance of attributes and metadata 18

DITA map modules 18

Common metadata elements 18

Publication metadata elements 19

Management metadata elements 19

Metadata qualification elements 19

Topic properties in topics and maps 20

Common attributes 20

Identity attribute 20

Content reference attribute 21

Metadata attributes 22

Miscellaneous Attributes 23

Architectural attributes 24

Conditional processing 24

Chapter 4. DITA specialization 27

What is specialization? 27

Why specialization? 28

Structural versus domain specialization 28

Limits of specialization 29

Specialization in content 30

Why specialization in content? 31

The class attribute 31

Class attribute syntax 31

The domains attribute 32

Specialization validity 33

Generalization 33

Specialization in design 35

Why specialization in design? 35

Modularization and integration of design . . . 35

Specialization in processing 41

Using the class attribute 41

Modularization and integration of processing . . 42

 iii

iv OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

Chapter 1. About the DITA Specification

The Darwin Information Typing Architecture (DITA) specification defines both a) a set of document types

for authoring and organizing topic-oriented information; and b) a set of mechanisms for combining and

extending document types using a process called specialization.

The specification consists of:

v The DTDs and schemas that define DITA markup for the base DITA document types, as well as catalog

files. While the DTDs and schemas should define the same DITA elements, the DTDs are normative if

there is ever any discrepancy.

v The language reference that provides explanations for each element in the base DITA document types

v This document, which comes in three parts:

– an introduction, which provides background concepts and an overview of the architecture

– the DITA markup specification, which provides an overview of DITA’s base document types

– the DITA specialization specification, which provides details of the mechanisms DITA provides for

defining and extending DITA document types.

This document is part of the technical specification for the DITA architecture. While the specification does

contain some introductory information, it is not intended as an introduction to DITA nor as a users guide.

The intended audience of this specification consists of implementers of the DITA standard, including tool

developers and specializers.

Editors

 Michael Priestley and JoAnn Hackos

Members

 Paul Antonov

 France Baril

 Robin Cover, OASIS

 Don Day, IBM

 Stanley Doherty, Sun Microsystems

 Bruce Esrig, Lucent Technologies

 Yas Etessam, Blast Radius

 Rob Frankland, Rascal Software

 Paul Grosso, Arbortext

 JoAnn Hackos

 Eric Hixson, BMC Software

 Eliot Kimber, Innodata Isogen

 Chris Kravogel

 Deborah Lapeyre

 Seraphim Larsen, Intel

 Indi Liepa, Nokia

 Kirsten Nothstine, BMC Software

 Paul Prescod, Blast Radius

 Michael Priestley, IBM

 David Schell, IBM

 1

Kevin Shaum, BMC Software

 Wendy Shepperd, BMC Software

 Jerry Smith, US Department of Defense

 Dana Spradley, Oracle

 Sharon Veach, Sun Microsystems

 Mike Wethington, BMC Software

 Christopher Wong, Idiom Technologies

Additional contributors

 Patricia Best, Sun Microsystems

 David Brainard, BMC Software

 Jarno Elovirta, Nokia

 Nancy Harrison, IBM

 Erik Hennum, IBM

 Alan Houser

 John Hunt, IBM

 Helena Jerney, Actional Corporation

 Shawn Jordan

 Tyde Richards

 Bruce Sesnovich, Sun Microsystems

 Eric Sirois, IBM

 Zachary Taylor, BMC Software

 Scott Tsao, Boeing

2 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

Chapter 2. An introduction to DITA

DITA is an architecture for creating topic-oriented, information-typed content that can be reused and

single-sourced in a variety of ways. It is also an architecture for creating new topic types and describing

new information domains based on existing types and domains.

The process for creating new topic types and domains is called specialization. Specialization allows the

creation of very specific, targeted document type definitions while still sharing common output

transforms and design rules developed for more general types and domains, in much the same way that

classes in an object-oriented system can inherit methods of ancestor classes.

DITA topics are XML conforming. As such, they are readily viewed, edited, and validated with standard

XML tools, although some features such as content referencing and specialization may benefit from

customized support.

Definitions and background concepts

The following terms have specific meanings in DITA which should be understood before reading either

the DITA markup specification or the DITA specialization specification.

Basic concepts

The following are basic concepts used in DITA.

 “What are topics?” on page 7
A topic is a unit of information with a title and content, short enough to be specific to a single subject

or answer a single question, but long enough to make sense on its own and be authored as a unit.

 “What are maps?” on page 14
DITA maps are documents that collect and organize references to DITA topics to indicate the

relationships among the topics. They can also serve as outlines or tables of contents for DITA

deliverables and as build manifests for DITA projects.

 “What is specialization?” on page 27
Specialization allows you to define new kinds of information (new structural types or new domains of

information), while reusing as much of existing design and code as possible, and minimizing or

eliminating the costs of interchange, migration, and maintenance.

 “Structural versus domain specialization” on page 28
Structural specialization defines new types of structured information, such as new topic types or new

map types. Domain specialization creates new markup that can be useful in multiple structural types,

such as new kinds of keywords, tables, or lists.

 “Integration” on page 35
Each domain specialization or structural specialization has its own design module. These modules can

be combined to create many different document types. The process of creating a new document type

from a specific combination of modules is called integration.

 “Customization” on page 42
When you just need a difference in output, you can use DITA customization to override the default

output without affecting portability or interchange, and without involving specialization.

 “Generalization” on page 33
Specialized content can be generalized to any ancestor type. The generalization process can preserve

information about the former level of specialization to allow round-tripping between specialized and

unspecialized forms of the same content.

 3

Terminology

DITA uses a number of terms in particular or unique ways. Within the scope of this specification, the

following terms are used when talking about DITA models, DITA declarations, and DITA instances.

Model terminology

DITA can be understood at the level of an abstract model without reference to particular DTDs, schemas,

or actual XML documents. When discussing DITA concepts at this level, the following terminology is

used.

Element type

Defines the structure and semantics for a fragment of content.

Specialized element type

Defines an element type as a semantic refinement of another element type. The content allowed

by the specialized element type must be a subset of or identical to the content allowed by the

original element type.

Topic type

An element type that defines a complete unit of content. The topic type provides the root element

for the topic and, through contained element types, substructure for the topic instances. The root

element of the topic type is not necessarily the same as the root element of a document type:

document types may nest multiple topic types, and may also declare non-DITA wrapper elements

as the root element for compatibility with other processes.

Map type

An element type that defines a set of relationships for topic instances. The map type provides the

root element and, through contained element types, substructure for the map instances. The map

substructure provides hierarchy, group, and matrix organization of references to topic instances.

Structural type

A topic type or map type.

Domain

A set of elements that support a specific subject area. Elements in a domain can be integrated

with topic or map types to enhance their semantic support for particular kinds of content. For

example, the structural type <topic> declares the <keyword> element; when integrated with a

domain for describing user interfaces, new keyword specializations (such as <wintitle>) become

available wherever <keyword> was allowed in the original structural type.

Document type

The full set of element types defined in the modules that are integrated by the document type

shell. A DITA document type may support authoring multiple topic types or multiple map types,

but not a mix of the two. The structural types can be augmented with elements from domains.

The term ″document type″ is used for compatibility with existing standards, since this is the point

at which DITA’s set of topic, domain, and map types are assembled into a document type that is

functionally equivalent to a traditional non-modularized document type.

Declaration terminology

When the model is expressed in a DTD or schema, the various element types are declared. When

referring to these declarations, the following terminology is used.

Element declaration

The representation within a schema technology (such as DTD, XML Schema, or Relax NG) for an

element type.

Type module

The representation within a schema technology for the element types uniquely defined by a topic

type, map type, or domain.

4 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

Topic module

The representation within a schema technology for the element types uniquely defined by a topic

type.

Map module

The representation within a schema technology for the element types uniquely defined by a map

type.

Structural module

A topic or map module.

Domain module

The representation within a schema technology for the element types uniquely defined by a

domain.

Document type shell

The representation within a schema technology for a shell that declares no element types itself

but points to and assembles topic, map, and domain modules.

Document type declaration

The representation within a schema technology for a document type. The document type

declaration includes the declaration modules assembled by the document declaration shell.

Instance terminology

When actual documents, topics, and elements are created based on a DITA document type, the following

terminology is used.

Element instance

An occurrence of an element type in a document.

Topic instance

An occurrence of a topic type in a document.

Map instance

An occurrence of a map type in a document.

Structural type instance

An occurrence of a topic type or a map type in a document.

Document instance

A document whose meaning and validity are determined by a document type declaration.

Naming conventions and file extensions

The following naming conventions and file extensions are in use by DITA.

DITA topic instance files

*.xml, *.dita

DITA map instance files

*.ditamap

DTD structural module files

typename.mod

DTD domain module files

typenameDomain.mod

 typenameDomain.ent

Schema structural module files

typenameMod.xsd

 typenameGrp.xsd

Chapter 2. An introduction to DITA 5

Schema domain module files

typenameDomain.xsd

CSS override files

typename.css

 customization-purpose.css

XSLT override files

typename.xsl

 customization-purpose.xsl

6 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

Chapter 3. DITA markup

The two main units of authoring in DITA are topics and maps. Each can be extended into new structural

types and domains through specialization.

DITA topics

DITA topics are the basic units of DITA content. Each topic should be organized around a single subject.

What are topics?

A topic is a unit of information with a title and content, short enough to be specific to a single subject or

answer a single question, but long enough to make sense on its own and be authored as a unit.

In DITA, a topic is the basic unit of authoring and of reuse. A document may contain one topic or

multiple topics, and a document type may support authoring one or many kinds of topics. But regardless

of where they occur, all topics have the same basic structure and capabilities. Books, PDF files, Websites,

and help sets, for example, can all be constructed from the same set of underlying topic content, although

there may be some topics that are unique to a particular deliverable, and the organization of topics may

differ to take advantage of the unique capabilities of each delivery mechanism.

Reference information is inherently topic-oriented, since it requires information to be modular and

self-contained for the sake of retrievability.

Topic-oriented authoring for conceptual and task information has its roots in Minimalism, an instructional

design technique first espoused by John Carroll. The minimalist approach to information design focusses

on identifying the smallest amount of instruction that allows for the successful completion of a task, or

that provides basic knowledge of a concept. Readers have goals, and they want to achieve those goals as

quickly as possible. Generally, readers don’t want to read information just for the pleasure of reading.

They are reading to learn or to do something.

Some of the key principles of Minimalism are:

v Support actions. Let people act as they learn, and let them pursue the goals they want to accomplish.

v Document tasks, not tools or functions.

v Help readers anticipate and avoid errors.

v Let readers explore. They don’t need explained what they can discover for themselves.

While DITA’s topic-oriented approach has its roots in instructional design, the topic-based approach can

be useful for any information that has human readers and a consistent structure.

Why topics?

Topics are the basis for high-quality information. They should be short enough to be easily readable, but

long enough to make sense on their own.

By organizing content into topics, authors can achieve several goals simultaneously:

v Content is readable even when accessed from an index or search, not just when read in sequence as

part of a chapter. Since most readers don’t read information end-to-end, it’s good information design to

make sure each unit of information can be read on its own to give just-in-time help.

v Content can be organized differently for online and print purposes. Authors can create task flows and

concept hierarchies for online orientation, and still have a print-friendly combined hierarchy that helps

people who do want an organized reading flow.

 7

v Content can be reused in different collections. Since the topic is written to make sense when accessed

randomly (as by search), it should also make sense when included as part of different product

deliverables, so authors can refactor information as needed, including just the topics that apply for

each reuse scenario.

Topics are small enough to provide lots of opportunities for reuse, but large enough to be coherently

authored and read. While DITA supports reuse below the topic level, this requires considerably more

thought and review, since topics assembled out of smaller chunks often require editing to make them

flow properly. By contrast, since topics are already organized around a single subject, authors can

organize a set of topics logically and get an acceptable flow between them, since transitions from subject

to subject don’t need to be as seamless as the explanations within a single subject.

Information typing

Information typing is the practice of identifying types of topics that contain distinct kinds information,

such as concepts, tasks, and reference information. Topics that answer different kinds of questions can be

categorized as different information types. The base topic types provided by DITA (a generic topic, plus

concept, task, and reference) provide a usable starter set that can be adopted for immediate authoring.

Classifying information by type helps authors:

v Design new information more easily and consistently.

v Ensure the right design gets used for the kind of information (retrieval-oriented structures like tables

for reference information, simple sequences of steps for task information)

v Focus on tasks.

v Factor out supporting concepts and reference information into other topics, where they can be read if

required and ignored if not.

v Eliminate unimportant or redundant information. Identify common or reusable subjects.

Information typing is part of the general authoring approach called structured writing, which is used

across the technical authoring industry to improve information quality. It is based on extensive research

and experience, including Robert Horn’s Information Mapping, and Hughes Aircraft’s STOP (Sequential

Thematic Organization of Proposals).

Information types in DITA are expressed as topic types. The base topic types provided by DITA can be

used as a base for further specialization. New information types that require different structures and

semantics are directly supported by topic type modules, each of which defines the specific markup and

structural rules required to describe a particular type of topic. These modules can then be integrated into

document types to support authoring information-typed topics.

Topic structure

All topics have the same basic structure, regardless of topic type: title, description, prolog, and body.

All DITA topics must have an ID, a title, and a body. Topic structures can consist of the following parts:

Topic element

Required id attribute, contains all other elements

Title The subject of the topic.

Alternate titles

Titles specifically for use in navigation or search. When not provided, the base title is used for all

contexts.

Short description

A short description of the topic. Used both in topic content, in generated summaries that include

8 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

the topic, and in links to the topic. While short descriptions aren’t required, they can make a

dramatic difference to the usability of an information set, and should generally be provided for

all topics.

Prolog Container for various kinds of topic metadata, such as change history, audience, product, and so

on.

Body The actual topic content: paragraphs, lists, sections - whatever the information type allows.

Related links

Links to other topics. When an author creates a link as part of a topic, the topic becomes

dependent on the other topic being available. To reduce dependencies between topics and thereby

increase the reusability of each topic, authors can use DITA maps to define and manage links

between topics, instead of embedding links directly in each related topic.

Nested topics

Topics can be defined inside other topics. Nesting can result in complex documents that are less

usable and less reusable, and should be used carefully. It is more often appropriate for reference

information, which can support longer documents organized into multiple topics for scanning

and retrieval.

Topic content

All topics, regardless of topic type, build on the same common structures.

Topic bodies

While all topic types have the same elements for title, short description, and prolog, they each

allow different content in their body.

Sections and examples

Sections and examples can be contained only by the body of a topic. They cannot nest. They can

contain block-level elements like paragraphs, phrase-level elements like API names, or text.

Block-level elements

Paragraphs, lists, and tables are kinds of ″block″ elements. As a class of content, they can contain

other blocks, phrases, or text, though the rules vary for each structure.

Phrases and keywords

Authors can intermix markup with text when they need to identify part of a paragraph or even

part of a sentence as having special significance. Phrases can usually contain other phrases and

keywords as well as text. Keywords can only contain text.

Images

Authors can insert images using the image element. Images can be used at the block level, for

example to show screen captures or diagrams, or at the phrase level, for example to show what

icons or toolbar buttons look like.

Multimedia

Authors can create multimedia for online information using the object element, for example to

display SVG diagrams that can be rotated and explored.

Topic modules

There are three basic modules in topic: for tables, for metadata, and for everything else.

tblDecl.mod (DTD)

tblDeclMod.xsd, tblDeclGrp.xsd (Schema)

Defines the elements for authoring tables, based on the CALS table model but with some

DITA-specific extensions.

Chapter 3. DITA markup 9

metaDecl.mod (DTD)

metaDeclMod.xsd, metaDeclGrp.xsd (Schema)

Defines metadata elements. Also used by DITA maps, where metadata can be defined for

multiple topics at once.

topicAttr.mod, topicDefn.ent (DTD only - folded into other schema files))

Common DITA attributes and entities.

xml.xsd, ditaarch.xsd (Schema only - folded into other DTD files)

Common XML attributes and the DITA architecture version attribute

topic.mod (DTD)

topicMod.xsd, topicGrp.xsd (Schema)

Defines the rest of the elements in a topic.

Concepts

DITA concept topics answer ″What is...″ questions. They include a body-level element with a basic topic

structure, including sections and examples.

Why concepts?

Concepts provide background that helps readers understand essential information about a product,

interface, or task. Often, a concept is an extended definition of a major abstraction such as a process or

function. Conceptual information may explain a product and how it fits into its category of products.

Conceptual information helps users to map their existing knowledge to tasks and other essential

information about a product or system.

Concept structure

The <concept> element is the top-level element for a DITA concept topic. Every concept contains a <title>

and a <conbody> and optional <titlealts>, <shortdesc>, <prolog>, and <related-links>.

The <conbody> element is the main body-level element for a concept. Like the body element of a general

topic, <conbody> allows paragraphs, lists, and other elements as well as sections and examples. But

<conbody> has a constraint that a section or an example can be followed only by other sections or

examples.

Here is an example of a simple concept topic.

<concept id="concept">

 <title>Bird Calling</title>

 <conbody>

 <p>Bird calling attracts birds.</p>

 <example>

 <p>Bird calling requires learning:</p>

 Popular and classical bird songs

 How to whistle like a bird

 </example>

 </conbody>

</concept>

Modules

 concept.mod (DTD)

 conceptMod.xsd, conceptGrp.xsd (Schema)

10 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

Tasks

Task topics answer ″How do I?″ questions, and have a well-defined structure that describes how to

complete a procedure to accomplish a specific goal.

Why tasks?

Tasks are the essential building blocks for providing procedure information. A task topic answers the

″How do I?″ question by providing precise step-by-step instructions detailing what to do and the order in

which to do it. The task topic includes sections for describing the context, prerequisites, expected results,

and other aspects of a task.

Task structure

The <task> element is the top-level element for a task topic. Every task topic contains a <title> and a

<taskbody> and optional <titlealts>, <shortdesc>, <prolog>, and <related-links>.

The <taskbody> element is the main body-level element inside a task topic. A task body has a very

specific structure, with the following elements in this order: <prereq>, <context>, <steps>, <result,

<example> and <postreq>. Each of the body sections is optional.

<prereq>

Describes information needed before starting the current task.

<context>

Provides background information for the task. This information helps the user understand what

the purpose of the task is and what they will gain by completing the task. This section should be

brief and does not replace or recreate a concept topic on the same subject, although the context

section may include some conceptual information.

<steps>

Provides the main content of the task topic. A task consists of a series of steps that accomplish

the task. The <steps> section must have one or more <step> elements, which provide the

specifics about each step in in the task.

 The <step> element represents an action that a user must follow to accomplish a task. Each step

in a task must contain a command <cmd> element which describes the particular action the user

must do to accomplish the overall task. The step element can also contain information <info>,

substeps <substeps>, tutorial information <tutorialinfo>, a step example <stepxmp>, choices

<choices> or a stepresult <stepresult>, although these are optional.

<result>

Describes the expected outcome for the task as a whole.

<example>

Provides an example that illustrates or supports the task.

<postreq>

Describes steps or tasks that the user should do after the successful completion of the current

task. It is often supported by links to the next task or tasks in the <related-links> section.

Here‘s an example of a task topic.

<task id="ertx">

 <title>Creating an ERTX file</title>

 <taskbody>

 <context>Each morning before breakfast you need to

create a fresh ERTX file.</context>

 <steps>

 <step><cmd>Start ERTX.</cmd></step></steps>

 <step><cmd>Click New ERTX File.</cmd></step></steps>

Chapter 3. DITA markup 11

</steps>

 <result>You now have your ERTX file for today!</result>

 </taskbody>

</task>

Modules

 task.mod (DTD)

 taskMod.xsd, taskGrp.xsd (Schema)

Reference

Reference topics describe regular features of a subject or product, such as commands in a programming

language.

Why reference?

In technical information, reference topics are often used to cover subjects such as the commands in a

programming language. Reference topics can hold anything that has regular content, such as ingredients

for food recipes, bibliographic lists, catalogues, and the like. Reference topics provide quick access to

facts. Information needed for deeper understanding of a reference topic or to perform related procedures

should be provided in a concept or task topic.

Reference structure

The <reference> element defines a top-level container for a reference topic. Reference topics have the

same high-level structure as the other core DITA topic types, with a title, short description, and body.

Within the body, reference topics organize content into one or more sections, property lists, or tables.

The <refbody> element holds the main content of the reference topic. Reference topics limit the body

structure to tables (both simple and standard), property lists, syntax sections, and generic sections and

examples.

All of the elements of <refbody> are optional and may appear in any sequence and number.

<section>

Represents an organizational division in a reference topic. Sections organize subsets of

information within a larger topic. You can only include a simple list of peer sections in a topic;

sections cannot be nested. A section may have an optional title.

<refsyn>

Contains syntax or signature content (for example, a command-line utility’s calling syntax, or an

API’s signature). The <refsyn> contains a brief, possibly diagrammatic description of the subject’s

interface or high-level structure.

<example>

Provides containing examples that illustrate or support the current topic. The <example> element

has the same content model as <section>.

<table>

Organizes information according into a tabular rows and columns structure. Table markup also

allows for more complex structures, including spanning rows and columns, as well as table

captions.

<simpletable>

Holds information in regular rows and columns and does not allow for a caption.

<properties>

Lists properties and their types, values, and descriptions.

Here‘s an example of a reference topic.

12 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

<reference id = "boldproperty">

<title>Bold property</title>

<shortdesc>(Read-write) Whether to use a bold font for the specified

text string.</shortdesc>

<refbody>

 <refsyn>

 <synph>

 <var>object</var><delim>.</delim><kwd>Font</kwd><delim>.</delim>

 <kwd>Bold</kwd><delim> = </delim><var>trueorfalse</var>

 </synph>

 </refsyn>

 <properties>

 <property>

 <proptype>Data type</proptype>

 <propvalue>Boolean</propvalue>

 </property>

 <property>

 <proptype>Legal values</proptype>

 <propvalue>True (1) or False (0)</propvalue>

 </property>

 </properties>

</refbody>

</reference>

Modules

 reference.mod (DTD)

 referenceMod.xsd, referenceGrp.xsd (Schema)

Domains

A DITA domain defines a set of elements associated with a particular subject area or authoring

requirement regardless of topic type.

The elements in a domain are defined in a domain module which can be integrated with a topic type to

make the domain elements available within the topic type structure. Currently the following domains are

provided:

 Table 1. DITA domains

Domain Description Short name Module name

Typographic For highlighting when the appropriate

semantic element doesn’t exist yet

hi-d highlightDomain.mod (DTD)

highlightDomain.xsd (Schema)

Programming For describing programming and

programming languages

pr-d programmingDomain.mod (DTD)

programmingDomain.xsd (Schema)

Software For describing software sw-d softwareDomain.mod (DTD)

softwareDomain.xsd (Schema)

User interfaces For describing user interfaces ui-d uiDomain.mod (DTD)

uiDomain.xsd (Schema)

Utilities For providing imagemaps and other

useful structures

ut-d utilitiesDomain.mod (DTD)

utilitiesDomain.xsd (Schema)

DITA maps

Maps organize topics for output to a specific deliverable, including generating navigation files and links

to related topics.

Chapter 3. DITA markup 13

What are maps?

DITA maps are documents that collect and organize references to DITA topics to indicate the relationships

among the topics. They can also serve as outlines or tables of contents for DITA deliverables and as build

manifests for DITA projects.

DITA maps represent the architecture of an information set – what topics are needed, in what order or

relationships, to support a particular set of user goals or other requirements.

Maps describe the context in which the topics will be read – the audience, platform, relationships,

requirements of the information set. In this way, the topics themselves become relatively context-free, and

can be more easily used and reused in many different contexts, as defined by maps.

Maps draw on a rich set of existing best practices and standards for defining information models, such as

hierarchical task analysis. They also support the definition of non-hierarchical relationships, such as

matrices and groups, which provide a set of capabilities that has some similarities to RDF and ISO topic

maps.

A map file references one or more DITA topic files using <topicref> elements. The <topicref> elements

can be nested or otherwise organized to reflect the desired relationships between the referenced topics.

Map files need to have a file extension of .ditamap to be processed properly

Why DITA maps?

Maps allow scalable reuse of content across multiple contexts. They can be used by information

architects, writers, and publishers to plan, develop, and deliver content.

Among the specific uses that maps support:

Defining an information architecture

The map can be used to define what topics are required for a particular audience and user goals,

even before the topics themselves exist.

Providing an authoring interface

The map can be used as a starting point for authoring new topics and integrating existing ones.

Defining what topics to build for a particular output

Maps point to topics that are included in output processing. Authors or publishers can use maps

to specify a set of topics to transform at the same time, instead of transforming each topic

individually.

Defining online navigation

Maps can define the online navigation or table of contents for the topics it points to.

Defining what topics to print

Maps can define a hierarchy that will determine how topics will be combined and nested for

printing.

Defining related links

Maps define relationships among the topics they reference; on output, these relationships can be

expressed as related links among the topics in each relationship.

Common DITA map attributes and metadata

DITA maps have many of the same common attributes as DITA content, but also have some additional

ones for controlling the way relationships are interpreted for different output purposes.

Because DITA maps may encode structures that are wholly or partially specific to a particular medium or

kind of output (for example, hyperlinked web pages or printed books), DITA maps contain attributes to

help processors interpret the map for each kind of output. These attributes are not available in DITA

14 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

content: individual topics, once separated from the high-level structures and dependencies associated

with a particular kind of output, should be entirely reusable across multiple media.

collection-type, linking

The containment structure in a map can be used to generate related links or references on output. The

author can annotate the containment structure to identify a particular set of siblings as being part of a

specific type of collection, such as a family or sequence. The collection-type value for a group of siblings

can indicate whether to generate links among the siblings, and what kind of links to generate (for

example, next and previous links for a sequence). The collection-type attribute can also indicate how the

parent topic should link to its children (for example, showing the child links as a numbered list when the

collection-type is sequence).

By default, relationships between topics in a map are reciprocal: children link to parents and vice versa;

next and previous topics in a sequence link to each other; topics in neighboring table cells link to each

other, and so on. This default behavior can be modified using the linking attribute, which lets a topic

modify how it participates in a relationship:

v A topic reference with linking=″none″ does not exist in the map for the purposes of calculating links

v linking=″sourceonly″ means that the topic will link to its related topics but not vice versa

v linking=″targetonly″ means that the related topics will link to it, but not vice versa

v linking=″normal″ is the default, and means that linking will be reciprocal (the topic will link to related

topics, and they will link back to it)

<topicref href="A.dita" collection-type="sequence">

 <topicref href="A1.dita"/>

 <topicref href="A2.dita"/>

</topicref>

<reltable>

 <relrow>

 <relcell>A.dita</relcell>

 <relcell>B.dita</relcell>

 </relrow>

</reltable>

A links to A1, A2, A3 as children

 links to B as related

A1 links to A as a parent

 links to A2 as next in the sequence

A2 links to A as a parent

 links to A1 as previous in the sequence

B links to A as related

Figure 1. Simple linking example

Chapter 3. DITA markup 15

toc, navtitle, locktitle

Authors can exclude entries from navigation output (such as an online table of contents, or a Web site

map) using the toc attribute. By default, hierarchies are included in navigation output, and tables are

excluded.

Authors can provide a shorter version of the title for use in the navigation using the navtitle attribute. By

default the navtitle attribute is ignored, and used only to help the author keep track of the target topic’s

title. The locktitle attribute can be set to ensure that the navtitle takes effect and overrides any title values

in the target topic, or defined elsewhere in the topic reference metadata.

print, search

You can set attributes on a topic to indicate whether it should be included in printed output and search

indexes.

chunk, copy-to

When a set of topics is transformed using a map, multi-topic files can be broken into smaller files, and

multiple individual topics can be combined into a single larger file, using the chunk attribute.

New topic versions can be created using the copy-to attribute. The copied topic will have a new file

name, and the map can override the default title and shortdesc by providing values for them in the map.

Shared attributes

DITA maps use the same metadata and reuse attributes that DITA topics use:

v product, platform, audience, otherprops, rev, status, importance, xml:lang, translate

v id, conref

DITA maps also use many of the same attributes that are used with link or xref elements in DITA content:

<topicref href="A.dita" collection-type="sequence">

 <topicref href="B.dita" linking="none"/>

 <topicref href="A1.dita"/>

 <topicref href="A2.dita"/>

</topicref>

<reltable>

 <relrow>

 <relcell>A.dita</relcell>

 <relcell linking="sourceonly">B.dita</relcell>

 </relrow>

</reltable>

A links to A1, A2 as children

 (no links to B as a child, no links to B as related)

A1 links to A as a parent

 links to A2 as next in the sequence

 (no links to B as previous)

A2 links to A as a parent

 links to A1 as previous in the sequence

B links to A as related

Figure 2. Linking example with the linking attribute

16 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

v format, scope, href, keyref, type, query

Shared metadata elements, and the lockmeta attribute

You can associate topic metadata with a topic or branch of topics in a map. By default metadata in the

map supplements or overrides metadata in the topic. If the lockmeta attribute is set to ″no″, then the

metadata in the map will not take precedence over the metadata in the topic, and conflicts will be

resolved in favor of the topic.

The metadata elements in a map are the same as those in a topic, although they may be in a separate

order. The map also includes a short description and alternate titles, which can override their equivalents

in the content. In sum, the map can override or supplement everything about a topic except its content

(in the topic’s body element).

DITA map structure

Maps organize topics into hierarchies, tables, and groups, and have special elements for referencing other

maps.

topicref elements are the basic elements of a map. A topicref can point to a DITA topic, map, or to any

other resource that can be processed or linked to.

topicref elements can be nested to create a hierarchy, which can be used to define print output, online

navigation, and parent/child links. The topichead element can be used for nodes in the hierarchy that

provide containers without equivalent topics: they are equivalent to topicref elements with a navtitle but

no href or equivalent referencing attribute.

Relationship tables are defined with the reltable element. Relationship tables can be used to define

relationships among the topics in different cells of the same row. In a relationship table, the columns

define common attributes or metadata for the topics in that column. The rows define relationships, with

each cell representing a different role in the relationship. For example, a table with different columns for

concepts, tasks, and reference topics could be used to define the relationship between a task and the

topics that support it.

Both hierarchies and tables can be annotated using the collection-type attribute to define sets of siblings

that are part of a particular kind of collection, for example a set of choices, a sequence, or a family. These

collection-types can affect link generation, and may be interpreted differently for different outputs.

Groups or collections outside of a hierarchy or table can be defined with the topicgroup element, which is

equivalent to a topicref with no referencing attributes or titles. Groups can be combined with hierarchies

and tables, for example by including a group within a table cell or within a set of siblings in a hierarchy.

Example of a simple relationship table

<reltable>

 <relheader>

 <relcolspec type="concept"/>

 <relcolspec type="task"/>

 <relcolspec type="reference"/>

 </relheader>

 <relrow>

 <relcell>

 <topicref href="A.dita"/>

 </relcell>

 <relcell>

 <topicref href="B.dita"/>

 </relcell>

 <relcell>

 <topicref href="C1.dita"/>

Chapter 3. DITA markup 17

<topicref href="C2.dita"/>

 </relcell>

 </relrow>

</reltable>

 type=″concept″ type=″task″ type=″reference″

A B C1

C2

A links to B, C1, C2

B links to A, C1, C2

C1, C2 link to A, B

Inheritance of attributes and metadata

Some of the attributes and metadata in a map can be inherited based on the structures in the map.

Inheritance is additive except where this would cause a conflict. When there is a conflict, the value

defined closest to the topicref takes effect.

The following attributes and metadata elements are inheritable:

Attributes

audience, platform, product, otherprops, rev

 linking, toc, print, search

 chunk, format, scope, type

Elements

author, source, publisher, copyright, critdates, permissions

 audience, category, keywords, prodinfo, othermeta

Attributes and metadata can be defined at the root level (attributes on the map element itself, topicmeta

as a direct child of the map element) to apply them to the entire map. They can also be applied at any

point in a hierarchy, group, or table. Tables can be particularly useful for attribute and metadata

management, since they can be applied to entire columns or rows as well as individual cells.

DITA map modules

Maps have the same module structure as topics, and share some of the same modules for defining

metadata.

map.mod (DTD)

mapMod.xsd, mapGrp.xsd (Schema)

Defines the base map structures.

mapGroup.mod (DTD)

mapGroup.xsd (Schema)

Adds topicgroup and topichead as specialized variants of topicref.

Common metadata elements

The same metadata elements are available in both DITA topic types and DITA map types. This allows the

metadata assigned to a topic when it is created to be supplemented or overridden when the topic is

included in a collection.

18 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

Publication metadata elements

These elements provide standard information about the topic as a publication.

Some content providers might choose to provide such information only in the map or the initial topic for

a deliverable.

author The person or organization who created the content. This element is equivalent to the Dublin

Core Creator.

publisher

The organization who provides and distributes the content. This element is equivalent to the

Dublin Core Publisher.

copyright

The legal ownership for the content. This element is equivalent to the Dublin Core Rights.

Management metadata elements

These elements provide a basis for managing the publication process for topics.

The management elements might get updated by workflow processes or provide input for such processes:

source An identifier or name for the original form of the content. This element is equivalent to Dublin

Core Source.

critdates

Milestones in the publishing cycle. This element is equivalent to Dublin Core Date.

permissions

Specification of the level of entitlement needed to access for content.

resourceid

The identifier associated with the topic when provided to the specified application.

Metadata qualification elements

These elements qualify the topic for processes such as flagging, filtering, or retrieval.

The metadata elements apply to an entire topic, and can also be used in a map to apply metadata to

multiple topics at a time. Metadata elements can expand on the values used in metadata attributes. (See

metadata attributes.) For example, the audience element in a topic’s prolog can define an audience in

terms of type, job, and experience level, and give it a name; when there is content within the topic’s body

that applies only to that audience, that content can identify its audience by the same name used in the

prolog.

When metadata is expressed in a map, it supplements any metadata expressed in the topics it references.

When metadata in a map and a topic conflict (for example, both define a publisher), by default the value

in the map takes precedence, on the assumption that the author of the map has more knowledge of the

reusing context than the author of the topic.

audience

The type, job, experience level, and other characteristics of the reader for the topic. Many of these

characteristics have enumerated values, but the enumeration can be extended through associated

attributes. For instance, the audience type enumeration can be extended through an othertype

attribute. The audience element can elaborate values used by audience attributes.

category

A classification of the topic content. Such classifications are likely to come from an enumerated or

hierarchical set. This element is equivalent to both Dublin Core Coverage and Dublin Core

Subject.

Chapter 3. DITA markup 19

keywords

Terms from a controlled or uncontrolled subject vocabulary that apply to the topic.

prodinfo

The definition of the product or platform for the topic. The prodinfo element can elaborate values

used by the product and platform attributes.

othermeta

A name-value pair specifying other metadata about the topic.

Topic properties in topics and maps

The properties of a topic can be specified in the topic itself or on references to the topic within maps.

Within a topic, properties can be expressed using metadata attributes on the topic element or using

publication, management, or metadata elements in the topic prolog.

Within a map, the same properties can be expressed on the topicref element that refers to the topic. That

is, the topicref attributes and the topicref subelements within the topicmeta container apply to the

referenced topic. In addition, the metadata properties map or topicref element set the default properties

for nested topicref elements within the map hierarchy. Because the topics in a branch of the navigation

hierarchy typically have common subject or properties, this mechanism provides a convenient way to set

the properties for a set of topics.

If a property is set in both the map and topic, the map properties are additive if the property (such as the

audience type) takes a list of values. If, instead, the property (such as the importance) takes a single

value, the map property overrides the topic property.

Example of audience metadata in prolog and body

The practice of providing full metadata in the prolog and referencing it from attributes when a subset of

metadata applies is not a best practice. Prolog metadata and attribute metadata can be used and

expressed independently. The coordination shown here is possible but is not required.

<prolog>

 <metadata>

 <audience name="AdminNovice"

 type="administrator"

 job="customizing"

 experiencelevel="novice">

 </metadata>

</prolog>

....

<p audience="AdminNovice ProgrammerExp">This paragraph applies to both

novice administrators and expert programmers</p>

Common attributes

The following attributes are common across most DITA elements.

Identity attribute

The DITA identity attribute provides mechanisms for identifying content for retrieval or linking.

The id attribute assigns a unique identifier to an element so the element can be referenced. The scope of

uniqueness for the id attribute depends on the role of the element within the DITA architecture:

v Because topics are the basic units of information within DITA, the id attribute for the topic must be

unique within the document instance.

20 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

A topic architecture assembles topics into a deliverable by reference. To ensure that topics can be

referenced, the id attribute is required on the topic element.

The complete identifier for a topic consists of the combination of the URI for the document instance, a

separating hash character, and the topic id (as in

http://some.org/some/directory/topicfile.xml#topicid). URIs are described in RFC 2396. As is

typical with URIs, a relative URI can be used as the identifier for the document instance so long as it is

resolvable in the referencing context. For instance, within a file system directory, the filename of the

document instance suffices (as in some/directory/topicfile.xml#topicid). Within the same document,

the topic id alone suffices (as in #topicid). Where the topic element is the root element of the

document instance, contexts outside the document instance may omit the topic id when referring to the

topic element (as in topicfile.xml).

The topic id can be referenced by topicrefs, links, xrefs, or conrefs to the topic as well as indirectly as

part of references to the topic content.

The id attribute for DITA topics is of type ID in XML.

v Because topic content is always contained within a topic, the id attribute for a topic content element

must be unique only within the topic. This approach ensures maintainable references to content

because the identifier remains valid so long as the document instance, topic, and content exist. The

position of the content within the topic and the position of the topic within the document instance can

change without invalidating the content identifier. In addition, this approach avoids the need to rewrite

topic content ids to avoid naming collisions when aggregating topics.

The id is optional and need be added only to make the content referenceable.

The complete identifier for topic content consists of the combination of the complete identifier for the

topic, a separating solidus (/), and the topic content id (as in

http://some.org/some/directory/topicfile.xml#topicid/contentid). As noted before, the topic

identifier portion can use a relative URI for the document instance in contexts where the relative URI

can be resolved (as in some/directory/topicfile.xml#topicid/contentid).

The containing topic id must always be included when referencing an element id. Otherwise, a

reference to another topic couldn’t be distinguished from a reference to an element within the same

topic. For references within the same document instance, the identifier for the document instance can

be omitted altogether (as in #topicid/contentid).

The id attribute for elements within DITA topics is not of type ID and is not required to be unique.

v For a map, the id of a map, topicref, or anchor must be unique within the document instance. This

approach ensures that these elements can be referenced outside the map without qualification by the

map id.

For the anchor element, which exists only to identify a position within a map as a target for references,

the id attribute is required. For the other elements, the id attribute is optional.

As with a topic, the complete identifier consists of the combination of the absolute URI for the map

document instance and the element id (as in

http://some.org/some/directory/mapfile.xml#topicrefid).

The id attribute for maps, topicrefs, and anchors is of type ID.

v The id for a relationship table element must be unique only within the map.

As with topic content, the full identifier consists of the combination of the absolute URI for the map

and the id for the relationship table element (as in

http://some.org/some/directory/mapfile.xml#mapid/reltableid).

The id attribute for reltable elements is not of type ID and is not required to be unique.

Content reference attribute

The DITA conref attribute provides a mechanism for reuse of content fragments. The conref attribute

stores a reference to another element and is processed to replace the referencing element with the

referenced element.

Chapter 3. DITA markup 21

The element containing the content reference acts as a placeholder for the referenced element. The

identifier for the referenced element must be either absolute or resolvable in the context of the referencing

element. (See “Identity attribute” on page 20 for the details on identifiers.)

More formally, the DITA conref attribute can be considered a transclusion mechanism. In that respect,

conref is similar to XInclude as well as HyTime value references. DITA differs from these mechanisms,

however, by comparing the constraints of each context to ensure the ongoing validity of the replacement

content in its new context. In other words, conref validity does not apply simply to the current content at

the time of replacement, but to the ranges of possible content given the constraints of the two document

types. A valid conref processor does not allow the resolution of a reuse relationship that could be

rendered invalid under the rules of either the reused or reusing content.

If the referenced element is the same type as the referencing element and the list of domains in the

referenced topic instance (declared on the domains attribute) is the same as or a subset of the list of

domains in the referencing document, the element set allowed in the referenced element is guaranteed to

be the same as, or a subset of, the element set allowed in the placeholder element. In the preferred

approach, a processor resolving a conref should tolerate specializations of valid elements and generalize

elements in the content fragment as needed for the referencing context.

Replacement of the placeholder occurs after parsing of the document but prior to any styling or other

transformational or presentational operations on the full topic.

The target of the conref may be substituted based on build-time or runtime conditions. For example,

content such as product names or install paths can be separated out from topic content since they change

when the topic is reused by other products; the reusing product can substitute their own targets for the

conref to allow resolution to their own product name and install paths, and so on.

The target of a conref must be in a valid DITA topic or DITA map. Fragments of DITA content do not

contain enough information on their own to allow the conref processor to determine the validity of a

reference to them.

Metadata attributes

The metadata attributes express qualifications on the content. These qualifications can be used to modify

the processing of the content.

One typical use of the metadata attributes is to filter content based on their values. Another typical use is

to flag content based on their values, for example by highlighting the affected text on output. Typically

audience, platform, product, and otherprops are used for filtering, and the same attributes plus rev are

used for flagging. Status and importance are used for tool-specific or transform-specific behavior, for

example marking steps in a task as optional or required.

In general, a metadata attribute provides a list of one or more qualification values, separating those

values with whitespace. For instance, an audience attribute of administrator programmer qualifies the

content as applying to administrators and programmers.

For a topic, the audience, platform, and product metadata can be expressed with attributes on the topic

element or with elements within the topic prolog. While the metadata elements are more expressive, the

meaning of the values is the same, and can be used in coordination: for example, the prolog elements can

fully define the audiences for a topic, and then metadata attributes can be used within the content to

identify parts that apply to only some of those audiences.

audience

The values from the enumerated attributes of the audience metadata element have the same

meaning when used in the audience attribute of a content element. For instance, the ″user″ value

has the same meaning whether appearing in the type attribute of the audience element for a topic

22 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

or in the audience attribute of a content element. The principle applies to the type, job, and

experience level attributes of the audience element.

 The values in the audience attribute may also be used to reference a more complete description of

an audience in an audience element. Use the name of the audience in the audience element when

referring to the same audience in an audience attribute.

 The audience attribute takes a blank-delimited list of values, which may or may not match the

name value of any audience elements.

platform

The platform might be the operating system, hardware, or other environment. This attribute is

equivalent to the platform element for the topic metadata.

 The platform attribute takes a blank-delimited list of values, which may or may not match the

content of a platform element in the prolog.

product

The product or component name, version, brand, or internal code or number. This attribute is

equivalent to the prodinfo element for the topic metadata.

 The product attribute takes a blank-delimited list of values, which may or may not match the

value of the prodname element in the prolog.

importance

The degree of priority of the content. This attribute takes a single value from an enumeration.

rev The identifier for the revision level.

status The current state of the content. This attribute takes a single value from an enumeration.

otherprops

A catchall for metadata qualification values about the content. This attribute is equivalent to the

othermeta element for the topic metadata.

 The product attribute takes a blank-delimited list of values, which may or may not match the

values of othermeta elements in the prolog.

 The attribute can also take labelled groups of values. A labelled group consists of a string value

followed by an open parenthesis followed by one or more blank-delimited values followed by a

close parenthesis. The simple format is sufficient when an information set requires only one

additional metadata axis, in addition to the base metadata attributes of product, platform, and

audience. The full format is useful when an information set requires two or more additional

metadata axes. A process can detect which format is in use by the presence of parentheses in the

attribute.

 For example, a simple otherprops value list: <codeblock otherprops="java cpp">

 For example, a complex otherprops value list: <codeblock otherprops="proglang(java cpp)

commentformat(javadoc html)">

Miscellaneous Attributes

The xml:lang attribute identifies the language of a topic or content fragment. The outputclass attaches a

classifying label to an element.

Miscellaneous attributes of DITA elements include the following

xml:lang

The xml:lang attribute’s behavior is described in detail in the XML specification:

http://www.w3.org/TR/REC-xml/#sec-lang-tag The attribute identifies a language by means of

the standard language and country codes (as described in RFC 3066). For instance, French

Chapter 3. DITA markup 23

http://www.w3.org/TR/REC-xml/#sec-lang-tag
http://www.ietf.org/rfc/rfc3066.txt

Canadian would be identified by the value fr-ca. As is usual, the language applies to the

contained content and attributes of the current element and contained elements, other than

fragments that declare a different language.

outputclass

The outputclass attribute provides a label on one or more element instances, typically to specify a

role or other semantic distinction. As the outputclass attribute doesn’t provide a formal type

declaration or the structural consistency of specialization, it should be used sparingly, often only

as a temporary measure while a specialization is developed. For example, <uicontrol> elements

that define button labels could be distinguished by adding an outputclass: <uicontrol

outputclass="button">Cancel</uicontrol>. The outputclass value could be used to trigger XSLT

or CSS rules, as well as providing a mapping to be used for future migration to a more

specialized set of UI elements.

Architectural attributes

DITA provides some attributes to provide type information to processors instead of qualifications or

properties of content.

Ordinarily, architectural attributes don’t appear in the source files for document instances. Instead,

architectural attributes appear in document instances through defaults set in the DTD or Schema

declaration. This practice ensures that the creation of document instances cannot produce invalid values

for the architectural attributes. These attributes are as follows:

class This attribute identifies the specialization module for the element type as well as the ancestor

element types and the specialization modules to which they belong. Every DITA element has a

class attribute.

domains

This attribute identifies the domain specialization modules used in a topic and, for each domains

module, its module dependencies. Every topic and map element has a domains attribute.

DITAArchVersion

This attribute identifies the version of the DITA architecture used by the DTD or schema.Every

topic and map element has a DITAArchVersion attribute. The attribute is declared in a DITA

namespace to allow namespace-sensitive tools to detect DITA markup.

 To make the document instance usable without the DTD or Schema declaration, a normalization process

can instill the architectural attributes in the document instance.

Conditional processing

Conditional processing is the filtering or flagging of information based on processing-time criteria

DITA tries to implement conditional processing in a semantically meaningful way: rather than allowing

arbitrary values to accumulate in a document over time in a general-purpose processing attribute, with

meaning only to the original author, we encourage the authoring of metadata using specific metadata

attributes on content. These metadata values can then be leveraged by any number of processes,

including filtering, flagging, search, and indexing, rather than being suitable for filtering only.

There are four attributes intended for conditional processing, available on most elements:

v product: the product that is the subject of the discussion.

v platform: the platform on which the product is deployed.

v audience: the intended audience of the text

v rev: the revision or draft number of the current document (typically used for flagging only, not for

filtering)

v otherprops: anything else

24 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

Using metadata attributes

Each attribute takes zero or more space-delimited string values. For example, you can use the product

attribute to identify that an element applies to two particular products.

Processing metadata attributes

At processing time, you specify the values you want to exclude and the values you want to flag. For

example, a publisher producing information for a mixed audience using the basic product could choose

to flag information that applies to administrators, and exclude information that applies to the extended

product:

<prop att="audience" val="administrator" action="flag" use="ADMIN"/>

<prop att="product" val="extendedprod" action="exclude"/>

The format shown here for identifying values for filtering and flagging is not normative, and is shown

purely for the sake of illustrating the expected processing logic.

At output time, the paragraph is flagged, and the first list item is excluded (since it applies to

extendedprod), but the second list item is still included (even though it does apply to extendedprod, it

also applies to basicprod, which was not excluded).

The result should look something like:

Filtering logic

When deciding whether to exclude a particular element, a process should evaluate each attribute, and

then evaluate the set of attributes:

v If all the values in an attribute have been set to ″exclude″, the attribute evaluates to ″exclude″

v If any of the attributes evaluate to exclude, the element is excluded.

For example, if a paragraph applies to three products and the publisher has chosen to exclude all of

them, the process should exclude the paragraph; even if the paragraph applies to an audience or platform

that you aren’t excluding. But if the paragraph applies to an additional product that has not been

excluded, then its content is still relevant for the intended output and should be preserved.

Flagging logic

When deciding whether to flag a particular element, a process should evaluate each value. Wherever a

value that has been set as flagged appears in its attribute (for example, audience=″ADMIN″) the process

should add the flag. When multiple flags apply to a single element, multiple flags should be output,

typically in the order they are encountered.

<p audience="administrator">Set the configuration options:

 <li product="extendedprod">Set foo to bar

 <li product="basicprod extendedprod">Set your blink rate

 Do some other stuff

 <li platform="Linux">Do a special thing for Linux

</p>

Figure 3. Example source

ADMIN Set the configuration options:

v Set your blink rate

v Do some other stuff

v Do a special thing for Linux

Chapter 3. DITA markup 25

Flagging could be done using text (for example, bold text against a colored background) or using images.

When the same element evaluates as both flagged and filtered (for example, flagged because of an

audience attribute value and filtered because of its product attribute values), the element should be

filtered.

26 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

Chapter 4. DITA specialization

Specialization is the process by which new designs are created based off existing designs, allowing new

kinds of content to be processed using existing processing rules.

Specialization provides a way to reconcile the needs for centralized management of major architecture

and design with the needs for localized management of group-specific and content-specific guidelines

and behaviors. Specialization allows multiple definitions of content and output to co-exist, related

through a hierarchy of types and transforms. This hierarchy lets general transforms know how to deal

with new, specific content, and it lets specialized transforms reuse logic from the general transforms. As a

result, any content can be processed by any transform, as long as both content and transform are

specialization-compliant, and part of the same hierarchy. Specializers get the benefit of specific solutions,

but also get the benefit of common standards and shared resources.

 Content Processing Result

Unspecialized Unspecialized Base processing, expected output

Unspecialized Specialized Base processing, specialized overrides

are ignored, expected output

Specialized Unspecialized Base processing, specialized content

treated as general, output may fall

short of expectations

Specialized Specialized Specialized processing, expected

output

Specialized Differently specialized Some specialized processing,

specialized content treated as nearest

common denominator, output may

fall short of expectations

The following topics provide an overview of specialization, some recommendations for use, and detailed

rules for its mechanisms.

What is specialization?

Specialization allows you to define new kinds of information (new structural types or new domains of

information), while reusing as much of existing design and code as possible, and minimizing or

eliminating the costs of interchange, migration, and maintenance.

Specialization is used when new structural types or new domains are needed. DITA specialization can be

used when you want to make changes to your design for the sake of increased consistency or

descriptiveness or have extremely specific needs for output that cannot be addressed using the current

data model. Specialization is not recommended for simply creating different output types as DITA

documents may be transformed to different outputs without resorting to specialization (see

“Customization” on page 42).

There are two kinds of specialization hierarchy: one for structural types (with topic or map at the root)

and one for domains (with elements in topic or map at their root). Structural types define topic or map

structures, such as concept or task or reference, which often apply across subject areas (for example, a

user interface task and a programming task may both consist of a series of steps). Domains define

markup for a particular information domain or subject area, such as programming, or hardware. Each of

them represent an “is a” hierarchy, in object-oriented terms, with each structural type or domain being a

 27

subclass of its parent. For example, a specialization of task is still a task; and a specialization of the user

interface domain is still part of the user interface domain.

Use specialization when you are dealing with new semantics (new, meaningful categories of information,

either in the form of new structural types or new domains). The new semantics can be encoded as part of

a specialization hierarchy, that allows them to be transformed back to more general equivalents, and also

ensures that the specialized content can be processed by existing transforms.

Why specialization?

Specialization can have dramatic benefits for the development of new document architectures.

Among the benefits:

v No need to reinvent the base vocabulary - Create a module in 1/2 day with 10 lines vs. 6 months with

100s of lines; automatically pick up changes to the base

v No impact from other designs that customize for different purposes - Avoid enormous, kitchen-sink

vocabularies; Plug in the modules for your requirements

v Interoperability at the base type - Guaranteed reversion from special to base

v Reusable type hierarchies - Share understanding of information across groups, saving time and

presenting a consistent picture to customers

v Output tailored to customers and information - More specific search, filtering, and reuse that is

designed for your customers and information not just the common denominator

v Consistency - Both with base standards and within your information set

v Learning support for new writers - Instead of learning standard markup plus specific ways to apply

the markup, writers get specific markup with guidelines built in

v Explicit support of different product architectural requirements - Requirements of different products

and architectures can be supported and enforced, rather than suggested and monitored by editorial

staff

Structural versus domain specialization

Structural specialization defines new types of structured information, such as new topic types or new

map types. Domain specialization creates new markup that can be useful in multiple structural types,

such as new kinds of keywords, tables, or lists.

Structural types define structures for modules of information, such as concept or task or reference, which

often apply across subject areas (for example, a user interface task and a programming task may both

consist of a series of steps). When new elements are introduced through structural specialization, the

elements that contain the new elements must be specialized as well; and the new container elements

must have their containers specialized in turn, all the way to the root element for the module (for

example, the <topic> element or <map> element).

Domains typically define markup for a particular domain or subject area, such as programming, or

hardware. Domain elements become available wherever their ancestor elements are allowed once the

domains are integrated with the structural specializations in a document type.

Both structural specialization hierarchies and domain specialization hierarchies are “is a” hierarchies, in

object-oriented terms, with each structural type or domain being a subclass of its parent. For example, a

specialization of task is still a task; and a specialization of the programming domain is still concerned

with programming.

Structural and domain hierarchies must share a common base module in order to be integrated together.

For example, domains for use across topic types must ultimately be specialized off of elements in

<topic>.

28 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

With the exception of the common base module, a domain cannot be specialized from a structural type.

For example, a domain cannot be specialized from elements in <task>, only from the root structural

modules for <topic> or <map>. This rule ensures that domains can be integrated and document types

can be generalized predictably. The rule may be relaxed in future versions of DITA if a mechanism is

added for tracking dependencies between structural and domain specializations in use by a document

type.

Elements created by specialization are scoped by the name of the structural type or domain in which they

were declared. For structural types, the name is the same as the root element: for example, task is the

name of the structural type whose root element is <task>. For domains, the name is not shared with any

element, but is assigned by the developer of the specialization. By convention, domain names end with

″-d″ and are kept short; for example, ui-d for the user interface domain and pr-d for the programming

domain.

Limits of specialization

There are times when a new structural or domain type appears not to fit into the existing hierarchy,

based on the semantics of the existing types and the restrictions of the specialization process. In these

cases there are a variety of options to consider.

The basic specialization mechanism used by the DITA document types can also be used for non-DITA

document types in order to provide the same re-use, specialization, and interoperation benefits that one

can get from the DITA document types, but restricted to the specific domain within which the new

document types apply. Note that even if one uses the DITA-defined types as a starting point, any change

to those base types not accomplished through specialization defines a completely new document type

that has no meaningful or normative relationship to the DITA document types and cannot be considered

in any way to be a conforming DITA application. In other words, the use of DITA specialization from

non-DITA base types does not produce DITA-compliant document types.

However, given the substantial benefits of building from the common DITA base classes (including the

ability to generalize to a common format, use of standards-compliant tools and processes, and reuse of

content across document types through DITA maps and conref) there are some techniques to consider

before complete departure from the DITA content architecture.

Specialize from generic elements

The first option to consider is to choose more generic base elements from the available set. For example,

if you want to create a new kind of list but cannot usefully do so specializing from , , <sl>, or

<dl>, you can create a new set of list elements by specializing nested <ph> elements. This new list

structure will not be semantically tied to the other lists by ancestry, and so will require specialized

processing to receive appropriate output styling. However, it will remain a valid DITA specialization,

with the standard support for generalization, content referencing, conditional processing, and so forth.

The following base elements in <topic> are generic enough to support almost any structurally valid

specialization:

topic any content unit that has a title and associated content

section

any non-nesting division of content within a topic, titled or not

p any non-titled block of content below the section level

fig any titled block of content below the section level

ul, ol, dl, sl, simpletable

any structured block of content that consists of listed items in one or more columns

ph any division of content below the paragraph level

Chapter 4. DITA specialization 29

keyword

any non-nesting division of content below the paragraph level

You should always specialize from the semantically closest match whenever possible. When some

structural requirement forces you to pick a more general ancestor, please inform the technical committee:

over time a richer set of generic elements should become available.

Customized subset document types for authoring

DITA markup is organized into domain and topic type modules so that authoring groups can easily select

the markup subset they require by creating a new document type shell. However, when an authoring

group requires a subset of markup rules that does not follow the boundaries of the type modules (for

example, global removal of certain attributes or elements), you can if necessary create a customized

document type for the sake of enforcing these rules at authoring time, as long as the document types are

validated using a standards-compliant document type at processing time.

A customized subset document type should be created without editing of the type modules. The

document type shell can override entities in the module files, including attributes and content models, by

providing a new definition of the entity before importing the module files.

Customized subset document types are not compliant with the DITA standard, and may not be supported

by standards-compliant tools. However, customized subset document types can help limit the quantity

and mitigate the consequences of non-standard design in a customized implementation.

Map from customized document type to DITA during preprocessing

While specialization can be used to adapt document types for many different authoring purposes, there

are some authoring requirements that cannot be met through specialization - particularly splitting or

renaming attributes, and simple renaming of elements. In these cases, where the new document type can

be straightforwardly and reliably transformed to a standard document type, the authoring group may be

best served by a customized document type that is transformed to a standard document type as part of

the publishing pipeline. For example, if an authoring group requires additional metadata attributes, and

finds authoring multiple metadata axes in one attribute (otherprops) unusable, the document type could

be customized to add metadata attributes and then preprocessed to push those values into otherprops

before feeding the documents into a standard publishing process.

A customized document type should be created without editing of the type modules. The document type

shell can override entities in the module files, including attributes and content models, by providing a

new definition of the entity before importing the type module files.

Customized document types are not compliant with the DITA standard, and will not be supported by

standards-compliant tools. Preprocessing can ensure compatibility with existing publishing processes, but

does not ensure compatibility with DITA-supporting authoring tools or content management systems.

However, when an implementation is being heavily customized in any case, a customized document

types can help isolate and control the implications of non-standard design in a customized

implementation.

Specialization in content

Specialization is expressed in content through the use of two attributes: the class attribute and the

domain attribute. These are not typically present in the document instance, but are provided by default

values expressed in a DTD or schema.

30 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

Why specialization in content?

Specialization attributes let processes and tools know what set of rules your markup conforms to. This

allows reuse of tools and processes for unfamiliar markup.

The class attribute

Each element declared in the DITA architecture has a class attribute. This attribute provides a mapping

between the element’s current name and its more general equivalents. The more specialized the element

type, the longer its class attribute value.

For example, the class attribute for the task topic type’s step element is:

<!ATTLIST step class CDATA "- topic/li task/step ">

This tells us that the step element is equivalent to the li element in a generic topic. It also tells us that

step is equivalent to a step in a task topic, which we already knew, but it’s worth noting this in the

attribute because it enables round-trip migration between upper level and lower level types without loss

of information. For example, if a user runs a ″generalize″ transform that maps all elements to their first

class value, but preserves their content and attribute values, then the user can follow it up with a

″specialize″ transform that maps all elements to their last class value (preserving content and attribute

values), and provide a full round trip for all content between the two document types, using nothing but

two generic transforms and the information in the class attribute.

The class attribute tells a processor what general classes of elements the current element belongs to. It’s

something like an architectural forms attribute, except that it contains multiple mappings in a single

attribute, instead of one mapping per attribute. Also, DITA scopes values by module type (for example

topic type, domain type, or map type) instead of document type, which lets us combine multiple topic

types in a single document without complicating transform logic.

Combining the mappings into a single attribute gives us the following benefits:

v preservation of sequence: you can tell by looking at the order of values which one is the most general

and which one is the most specific. This is especially important for ″specializing″ transforms, where

you can apply a general rule that says: if the element doesn’t have a mapping to the target topic type,

simply use the last value of the class attribute (and assume that the specialized topic type is reusing

some general element declarations, which only have mappings for the level at which they were

declared).

v mapping persistence through migration: when you migrate to a higher-level element, you can preserve

its more specialized history in the class attribute. If you were declaring a new attribute for each new

mapping (as in architectural forms), then when you migrated to the higher-level type the declaration

for the mapping attribute would disappear, and roundtripping would be considerably more

problematic.

Class attribute syntax

The class attribute has a particular syntax that must be followed for it to be processed correctly.

Every element must have a class attribute. The class attribute starts with a ″-″ if it is declared in a

structural module, or a ″+″ if it is declared in a domain module. After the starting token are one or more

blank-delimited values, ending with a blank. Each value has two parts: the first part identifies a module

package, for example a topic type or domain package name, and the second part (after a /) identifies an

element type. Structural names are taken from the root element for the topic type or map type. Domain

names are defined in the domain package.

Typically, the class attribute value should be declared as a default attribute value in the DTD or schema

rather than directly in the document instance. The class attribute should not be modified by the author.

Chapter 4. DITA specialization 31

When the class attribute is declared in the DTD or schema, it must be declared with a default value. In

order to support generalization round-tripping (generalizing specialized content into a generic form and

then returning it to the specialized form) the default value must not be fixed. This allows the

generalization process to overwrite the default values in a general document type with specialized values

taken from the document being generalized.

When a specialized type declares new elements, it must provide a class attribute for the new element.

The class attribute must include a mapping for every structural type or domain in the specialized type’s

ancestry, even those in which no element renaming occurred. The mapping should start with the value

for the base type (for example topic or map), and finish with the current element type.

Intermediate values are necessary so that generalizing and specializing transforms can map values simply

and accurately. For example, if task/kwd was missing as a value, and a user decided to generalize this

guitask up to a task topic, then the transform would have to guess whether to map to kwd (appropriate

if task is more general than guitask, which it is) or leave as windowname (appropriate if task were more

specialized, which it isn’t). By always providing mappings for more general values, we can then apply

the simple rule that missing mappings must by default be to more specialized values than the one we are

generalizing to, which means the last value in the list is appropriate. For example, when specializing to

<task>, if a <p> element has no target value for <task>, we can safely assume that <p> does not

specialize from <task> and should not be generalized.

While this example is trivial, more complicated hierarchies (say, five levels deep, with renaming occurring

at two and four only) make explicit intermediate values essential.

A specialized type does not need to change the class attribute for elements that it does not specialize, but

simply reuses by reference from more generic levels. For example, since task, bctask, and guitask use the

p element without specializing it, they don’t need to declare mappings for it.

A specialized type only declares class attributes for the elements that it uniquely declares. It does not

need to declare class attributes for elements that it reuses or inherits.

The domains attribute

The domains attribute lists the names of the domains in use by the current document type, and the

ancestry for each domain. The domains attribute is declared on the root element for each topic type.

Each domain in use contributes a string in parentheses that gives the names of each ancestor domain plus

the name of the contributing domain. Within each set of parentheses, the domain and its ancestry should

be listed starting with the most distant ancestor (the root type off of which the domain hierarchy is

based) and finishing with the name of the domain in use.

<appstep class="- topic/li task/step bctask/appstep ">A specialized step</appstep>

Figure 4. Example structural type element with class attribute

<wintitle class="+ topic/keyword ui-d/wintitle ">A specialized keyword</wintitle>

Figure 5. Example domain element with class attribute

<windowname class="- topic/kwd task/kwd guitask/windowname ">

Figure 6. Example attribute with intermediate value

32 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

Example: task with three domains

<task id="mytask" class="- topic/topic task/task "

 domains="(topic ui-d) (topic sw-d) (topic pr-d cpp-d)">

...

</task>

In this example, the task allows the use of tags for describing user interfaces (ui-d), software (sw-d), and

also C++ programming (cpp-d).

Specialization validity

When you specialize one element from another the new element must obey certain rules in order to be a

valid specialization.

v The new element must have a content model that is equivalent to or more restrictive than its parent.

v The new element must have attributes that are equivalent to or a subset of the attributes of its parent.

v The new element’s attributes must have values or value ranges that are equivalent to or a subset of the

parent’s attributes’ values or value ranges.

v The new element must have a properly formed class attribute.

Generalization

Specialized content can be generalized to any ancestor type. The generalization process can preserve

information about the former level of specialization to allow round-tripping between specialized and

unspecialized forms of the same content.

The generalization can either be for the purpose of migration (for example, when retiring an unsuccessful

specialization) or for temporary round-tripping (for example, when moving content through a process

that is not specialization aware and has only been enabled for instances of the base structural type).

When generalizing for migration, the class attribute and domains attribute should be absent from the

generalized instance document so that the default values in the general DTD or schema will be used.

When generalizing for round-tripping, the class attribute and domains attribute should retain the original

specialized values in the generalized instance document.

Any DITA document can contain a mix of markup from at least one structural type and zero or more

domains. The structural types and domains allowed in a particular document type are defined by the

document type shell.

When generalizing the document, the generalizer may choose to leave a structural type or domain as-is,

or may choose to generalize that type or domain to any of its ancestors.

The generalizer can supply the source and target for each generalization: for example, generalize from

reference to topic. The generalizer can specify multiple targets in one pass: for example, generalize from

reference to topic and from ui-d to topic. When the source and target are not supplied, generalization is

assumed to be from all structural types to the base (topic or map), and no generalization for domains.

The generalizer can also supply the target document type. When the target document type is not

supplied, the generalized document will not contain a DTD or schema reference. At some time in the

future it may be possible to automatically generate a document type shell and target document type

based on the class and domains attributes in the generalized document.

The generalization process should be able to handle cases where it is given just sources for generalization

(in which case the designated source types are generalized to topic or map), just targets for generalization

(in which case all descendants of the target are generalized to that target), or both (in which case only the

specified descendants of the target are generalized to that target).

Chapter 4. DITA specialization 33

For each structural type instance, the generalization process checks whether the structural type instance is

a candidate for generalization, or whether it has domains that are candidates for generalization. It is

important to be selective about which structural type instances to process: if the process simply

generalizes every element based on its class attribute values, an instruction to generalize ″reference″ to

″topic″ could leave an APIReference topic with an invalid content model, since any elements it reuses

from ″reference″ would have been renamed to topic-level equivalents.

The class attribute for the root element of the structural type is checked before generalizing structural

types:

 Target and source Source unspecified Source specified

Target unspecified Generalize this structural type to its

base ancestor

Check whether the root element of

the topic type matches a specified

source; generalize to its base ancestor

if it does, otherwise ignore the

structural type instance unless it has

domains to generalize.

Target specified Check whether the class attribute

contains the target; generalize to the

target if it does, otherwise skip the

structural type instance unless it has

domains to generalize.

If the root element matches a

specified source but its class attribute

does not contain the target, emit an

error message. If the root element

matches a specified source and its

class attribute does contain the target,

generalize to the target. Otherwise

ignore the structural type instance

unless it has domains to generalize.

The domains attribute for the root element of the structural type is checked before generalizing domains:

 Target and source Source unspecified Source specified

Target unspecified Do not generalize domain

specializations in this structural type.

Check whether the domains attribute

lists the specified domain; proceed

with generalization if it does,

otherwise ignore the structural type

instance unless it is itself a candidate

for generalization.

Target specified Check whether the domains attribute

contains the target; generalize to the

target if it does, otherwise skip the

structural type instance unless it is

itself a candidate for generalization.

If the domains attribute matches a

specified source but the domain

value string does not contain the

target, emit an error message. If the

domains attribute matches a specified

source and the domain value string

does contain the target, generalize to

the target. Otherwise ignore the

structural type instance unless it is

itself a candidate for generalization.

For each element in a candidate structural type instance:

 Target and source Source unspecified Source specified

Target unspecified If the class attribute starts with ″-″

(part of a structural type) rename the

element to its base ancestor

equivalent. Otherwise ignore it.

Check whether the last value of the

class attribute matches a specified

source; generalize to its base ancestor

if it does, otherwise ignore the

element.

34 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

Target and source Source unspecified Source specified

Target specified Check whether the class attribute

contains the target; rename the

element to the value associated with

the target if it does contain the target,

otherwise ignore the element.

If the last value in the class attribute

matches a specified source but the

previous values do not include the

target, emit an error message. If the

last value in the class attribute

matches a specified source and the

previous values do include the target,

rename the element to the value

associated with the target. Otherwise

ignore the element.

When renaming elements during round-trip generalization, the generalization process should preserve

the values of all attributes. When renaming elements during one-way or migration generalization, the

process should preserve the values of all attributes except the class and domains attribute, both of which

should be supplied by the target document type.

Specialization in design

Specialization in design enables reuse of design elements, just as specialization in content allows reuse of

processing rules. These rules involve the creation and management of markup modules as separate

reusable units.

Why specialization in design?

Following the rules for specialization design enables reuse of design elements, just as following the rules

for specialized content enables reuse of content

By using standard schemes for developing design modules, a specializer enables:

v Reuse of their design modules by others, allowing shared development of specific parts of a document

type

v Faster integration of their designs with other specializations, allowing quicker deployment of new

design elements and quicker adoption of new markup standards

v Better management of differences between authoring groups in the same organization: each group can

create specific document types that integrate just the modules they require.

Modularization and integration of design

Specialization hierarchies are implemented as sets of module files that declare the markup and entities

that are unique to each specialization. The modules must be integrated into a document type before they

can be used.

The separation of markup into modules, as with the XHTML modularization initiative,

(http://www.w3.org/TR/xhtml-modularization/), allows easy reuse of specific parts of the

specialization hierarchy, as well as allowing easy extension of the hierarchy (since new modules can be

added without affecting existing document types). This makes it easy to assemble design elements from

different sources into a single integrated document type.

Integration

Each domain specialization or structural specialization has its own design module. These modules can be

combined to create many different document types. The process of creating a new document type from a

specific combination of modules is called integration.

Chapter 4. DITA specialization 35

Integration is accomplished using a document type shell, which defines the modules to be integrated and

how they will be integrated. Integration defines both what topic types and domains will be allowed in

the document type, and how the topic types will be allowed to nest.

The module for a specific type should contain only the declarations for elements that are unique to that

type, and should not embed any other modules. The shell should contain no markup declarations, and

should directly reference all the modules it requires. Nesting shells or nesting modules (having shells that

embed other shells, or modules that embed other modules) is discouraged since it adds complexity and

may break some tools. Sharing between document types should be accomplished through shared

modules, not through direct reference to any other document type. Dependencies between modules

should be satisfied by the integrating shell, not through the module itself.

Modularization in DTDs

To support extensibility and pluggability, DITA requires that a DTD implementation of structural and

domain specialization modules conform to well-defined design patterns.

This section describes those design patterns. These design patterns realize the specialization architecture

with the capabilities and within the limitations of the DTD grammar.

Structural specialization pattern: Each structural type must be defined in a separate DTD module with

a name consisting of the topic element name and the mod extension. To see an example, look at the

concepts.mod module for the concept topic type.

The structural type module must conform to the following design pattern.

Default element entities

Each element defined in the module must have a corresponding entity whose default value is the

name of the element. The following example comes from the definition for the concept topic.

<!ENTITY % conbody "conbody">

The document type shell can predefine an element entity to add domain specialized elements into

every context in which the base element occurs.

Default included domains entity

The module must define the included-domains entity with a default empty that is empty as in the

following example:

<!ENTITY included-domains "">

The document type shell can predefine the included-domains entity to list domains added to the

document type.

Default nested topics entity

Topic type modules must define an info-types entity that is named with a prefix of the topic

element name and a suffix of -info-types. This entity can default to a list of element entities if

the topic has default subordinate topics. If the topic doesn’t have default subordinate topics, the

entity can default to the value of the info-types entity as in the following example:

<!ENTITY % concept-info-types "%info-types;">

The document type shell can then control how topics are allowed to nest by redefining the

topictype-info-types entity for each topic type, or quickly create common nesting rules by

redefining the main info-types entity.

Structural type’s root element content model

As with all specializations, the root element of a structural specialization must have a content

model that restricts or conserves the content model of the element it specializes. In addition, for

topic types, the last position in the content model must be the nested topics entity as in the

following example:

36 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

<!ELEMENT concept ((%title;), (%titlealts;)?, (%shortdesc;)?,

 (%prolog;)?, (%conbody;), (%related-links;)?,

 (%concept-info-types;)*)>

Attributes

As with all specializations, the root element’s attributes must restrict or conserve the attributes of

the element it specializes. In particular, the topic must set the DITAArchVersion attribute to the

DITAArchVersion entity and the domains attribute to the included-domains entity.

<!ATTLIST concept id ID #REQUIRED

 ...

 DITAArchVersion CDATA #FIXED "&DITAArchVersion;"

 domains CDATA "&included-domains;"

>

These attributes give processes a reliable way to check the architecture version and look up the

list of domains available in the document type.

Element and attribute definitions

The module defines every specialized element used as substructure within the topic. The

specialized elements must follow the rules of the architecture in defining content models and

attributes. Content models must use element entities instead of literal element names.

 In particular, the module defines a class attribute for every specialized element. The class

attribute must include the value of the class attribute of the base element and append the element

name qualified by the topic element name with at least one leading and trailing space. The class

attribute for an element introduces by a structural specialization must start with a minus sign.

Domain specialization pattern: Each domain specialization must have two files:

v A DTD entity declaration file with a name consisting of the domain name and the ent extension.

v A DTD definition module with a name consisting of the domain name and the mod extension.

To see an example, look at the highlightDomain.ent and highlightDomain.mod files.

Domain entity declaration file

The domain entity declaration file must conform to the following design pattern:

Element extension entity

The declaration file must define an entity for each element extended by the domain. The contents

of the entity must be the list of specialized elements for the extended element. The name of the

entity has a prefix of the abbreviation for the domain and an extension of the name of the

extended element. In the following example, the highlight domain (abbreviated as hi-d) extends

the ph element.

<!ENTITY % hi-d-ph "b | u | i | tt | sup | sub">

Domain declaration entity

The declaration file must define one entity for the document type shell to register the domain.

The name of the entity has a prefix of the abbreviation for the domain and an att extension. The

value of the entity must list the dependencies of the domain module in order of dependency

from left to right within enclosing parentheses, starting with the topic module and listing domain

dependencies using their abbreviations (including the defining domain as the last item in the list).

The following example declares the dependency of the highlight domain on the base topic

module.

<!ENTITY hi-d-att "(topic hi-d)">

Domain definition module

The domain definition module conforms to the following design pattern:

Chapter 4. DITA specialization 37

Default element entities

As in a topic module, the domain definition module must declare a default entity for each

element defined by the domain so that other domains can extend the elements.

<!ENTITY % b "b">

Element and attribute definitions

As in a topic module, the domain definition module must define each specialized element and its

attributes. As with any specialization, the domain element must restrict the base element. The

class attribute of the domain element must start with a plus sign but, otherwise, follows the same

rules as the class attribute for an element introduced by a topic specialization.

Document type shell pattern: The document type shell must conform to the following design pattern.

To see an example, look at the concepts.dtd module for the concept document type.

Domain entity inclusions

The document type shell starts by including the domain entity declaration files. The entity for the

domain declaration consists of the domain name prefix with the dec suffix, as in the following

example:

<!ENTITY % hi-d-dec PUBLIC

 "-//OASIS//ENTITIES DITA Highlight Domain//EN" "highlightDomain.ent">

 %hi-d-dec;

Element extension redefinitions

For each element extended by one or more domains, the document type shell redefines the entity

for the element to a list of alternatives including the literal name of the element and the element

extension entity from each domain that is providing specializations.

<!ENTITY % pre

 "pre | %pr-d-pre; | %sw-d-pre; | %ui-d-pre;">

Topic nesting redefinitions

For each topic type, the document type shell can control nesting of subtopics by redefining the

nested topics entity to the literal element name for any of the topics included in the document

type. The document type shell can also simply define the info-types entity to set the default for

most topic types. Here is an example:

<!ENTITY % concept-info-types "concept">

Domain declaration redefinition

The document type shell redefines the included-domains entity to list the domains included in

the document type as in the following example:

<!ENTITY included-domains

 "&ui-d-att; &hi-d-att; &pr-d-att; &sw-d-att; &ut-d-att;">

Structural definition inclusions

The document type shell includes the definitions for the structural type modules used in the

document type. The entity for the structural definition consists of the structural type’s name with

the type suffix, as in the following example:

<!ENTITY % topic-type PUBLIC

 "-//OASIS//ELEMENTS DITA Topic//EN" "topic.mod">

 %topic-type;

Domain definition inclusions

The document type shell includes the domain definitions for the domains used in the document

type. The entity for the domain definition consists of the domain name prefix with the def suffix,

as in the following example:

<!ENTITY % hi-d-def PUBLIC

 "-//OASIS//ELEMENTS DITA Highlight Domain//EN" "highlightDomain.mod">

 %hi-d-def;

38 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

Modularization in schemas

To support extensibility and pluggability, DITA requires that an XML schema implementation of

structural and domain specialization modules conform to well-defined design patterns.

This section describes those design patterns. These design patterns realize the specialization architecture

with the capabilities and within the limitations of the XML schema grammar.

Structural specialization pattern:

For each structural type, the document type shell document collects the schema documents, parent

structural type modules, domain type modules, and content models needed to implement new topic type

specializations. Each new structural type requires three files. To see an example, look at the concept.xsd

document type shell document for the concept topic type.

1. Each structural type must define a separate module schema document with a name consisting of the

root structural element name and Mod.xsd

2. Each structural type must define a separate model group definition schema document with a name

consisting of the root structural element name and Grp.xsd

The default values for the domains attributes in the base root structural element and the specialized root

structural elements must be defined using the XML Schema redefine to populate the domains attribute. It

identifies the domains used in the structural type. This attribute give processes a reliable way to look up

the list of domains available in the document type. The list the domains is included in the document type

as in the following example:

<xs:redefine schemaLocation="topicMod.xsd" >

 <xs:complexType name="topic.class">

 <xs:complexContent>

 <xs:extension base="topic.class">

 <xs:attribute

name="domains" type="xs:string" default="(topic ui-d)

(topic hi-d) (topic sw-d) (topic pr-d) (topic ut-d)"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:redefine>

In the case of topic types, the head schema document can control nesting of subtopics by redefining the

nested topics to the literal element names the document type author wishes to allow nested in the

document type.

<xs:group name="info-types">

 <xs:choice>

 <xs:group ref="concept-info-types"/>

 </xs:choice>

</xs:group>

The module schema document must define an info-type model group that is named with a prefix of the

topic element name and a suffix of -info-types. Here is an example of a info-types model group that is

defined in concept_mod.xsd:

<xs:group name="concept-info-types">

 <xs:choice>

 <xs:group ref="concept"/>

 </xs:choice>

</xs:group>

The module schema document defines every specialized element used as substructure within the

structural type. The specialized elements must follow the rules of the architecture in defining content

models and attributes. The naming convention for content models must use the root structural element

name and.class.

Chapter 4. DITA specialization 39

In particular, the module schema document defines a class attribute for every specialized element. The

class attribute must include the value of the class attribute of the base element and append the element

name qualified by the root structural element name or domain name with at least one leading and

trailing space. The class attribute for an element introduced by structural specialization must start with a

minus sign.

The model group schema document defines model groups for each new specialized element in a

structural type. Each structural type and domain must have a model group schema document . The

model group schema document is an essential part of the specialization.

The new file is needed to mimic substitutionGroups in XML Schema without using the inheritance model

in W3C XML Schema 1.0 specification. The process is very similar to the DITA DTD design pattern. For a

structural type the name of the schema document consists of the root structural element name and

Grp.xsd extension. To see an example of a model group schema document, look at the file

conceptGrp.xsd :

 <xs:group name="concept">

 <xs:sequence>

 <xs:element ref="concept"/>

 </xs:sequence>

</xs:group>

Domain specialization pattern:

A domain type schema document with a name consisting of the domain name and the Domain.xsd

extension.

As in a structural module, the domain module must define each specialized element, its attributes and its

model groups. As with any specialization, the domain element must restrict the base element. The class

attribute of the domain element must start with a plus sign but, otherwise, follows the same rules as the

class attribute for an element introduced by a topic specialization.

For each element extended by one or more domains, the domain type schema document defines a model

group for the base element to a list of alternatives including the literal name of the element and the

element extension entity from each domain that is providing specializations.

The schema document must define an a model group for each element extended by the domain. The

contents of the model group must be the list of specialized elements for the extended element. The name

of the model group has a prefix of the abbreviation for the domain and an extension of the name of the

extended element. In the following example, the user interface domain (abbreviated as ui-d) extends the

ph element.

<xs:group name="ui-d-ph">

 <xs:choice>

 <xs:element ref="uicontrol" />

 <xs:element ref="menucascade" />

 </xs:choice>

</xs:group>

For each element extended by one or more domains, the document type shell redefines the model group

for the element to a list of alternatives including the literal name of the element and the element

extension entity from each domain that is providing specializations. To integrate a new domain in the

document type shell use the schema redefine mechanism to manage the number of domains used by the

document type shell. The model group requires a reference to itself to extend the base model group. To

see an example, look at the topic.xsd schema document.

<xs:group name="pre">

 <xs:choice>

 <xs:group ref="pre" />

 <xs:group ref="pr-d-pre" />

40 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

<xs:group ref="ui-d-pre" />

 <xs:group ref="sw-d-pre" />

 </xs:choice>

</xs:group>

To add domains to a new structural type you can copy the contents of the parent structural type domains

schema document into the document type shell. Add or remove the model group from the new domain

to the appropriate named group.

<xs:group name="pre">

 <xs:choice>

 <xs:group ref="pre"/>

 <xs:group ref="pr-d-pre" />

 <xs:group ref="domainName-d-element"/>

 </xs:choice>

</xs:group>

Specialization in processing

Specialized processing is not necessary for every specialized element, only for those elements which do

not have appropriate default behavior based on their ancestors.

Whether creating a new transform or extending an existing one, there are several rules that should be

followed to ensure the effectiveness of the transform for other specialized types, and also the

maintainability and extensibility of the transform to accommodate new requirements.

Using the class attribute

Applying an XSLT template based on class attribute values allows a transform to be applied to whole

branches of element types, instead of just a single element type.

Wherever you would check for element name (any XPath statement that contains an element name

value), you need to change this to instead check the contents of the element’s class attribute. Even if the

element is unknown to the processor, the class attribute can let the transform know that the element

belongs to a class of known elements, and can be safely treated according to the rules for that class.

Be sure to include a leading and trailing blank in your class attribute string check. Otherwise you could

get false matches (without the blanks, ’task/step’ would match on both ’task/step’ and on

’notatask/stepaway’).

Make sure that when you create a transform that targets more than one type that you give the more

specific rules a higher precedence to avoid conflicts. For example, when you combine the existing

processing rules for topics with more specific processing rules for tasks, use a shell file to import both

sets of rules and use import precedence to ensure task-specific rules will not conflict with generic rules

for topics.

Example: match statement for list items

<xsl:template match="li">

becomes

<xsl:template match="*[contains(@class,’ topic/li ’)]">

This match statement will work on any li element it encounters. It will also work on step and appstep

elements, even though it doesn’t know what they are specifically, because the class attribute tells the

template what they are generally.

Example: match statement for steps

<xsl:template match="*[contains(@class,’ task/step ’)]">

Chapter 4. DITA specialization 41

This match statement won’t work on generic li elements, but it will work on both step elements and

appstep elements; even though it doesn’t know what an appstep is, it knows to treat it like a step.

Modularization and integration of processing

Processing should be divided into modules based on the structural types or domains they support, and

can be integrated together into transforms or stylesheets in the same way that structural type and domain

modules can be integrated into document types.

Customization

When you just need a difference in output, you can use DITA customization to override the default

output without affecting portability or interchange, and without involving specialization.

For example, if your readers are mostly experienced users, you could concentrate on creating many

summary tables, and maximizing retrievability; or if you needed to create a brand presence, you could

customize the transforms to apply appropriate fonts and indent style, and include some standard

graphics and copyright links.

Use customization when you need new output, with no change to the underlying semantics (you aren‘t

saying anything new or meaningful about the content, only its display).

Modularization in CSS

Stylesheet support in CSS for DITA specializations can be applied using the same principles as for the

DTDs or Schemas, resulting in stylesheets that are easy to maintain and that will support any subsequent

specialization with a minimum of effort.

Specification of module definition

A specialization-aware property for CSS has this form of selector:

*[class~="topic\/section"] {

 margin-top: 12pt;

 display: block;

}

The CSS selector that associates the style to the element does not use a literal match to the element name.

Instead, based on an element having the defaulted value class="- topic/section reference/refsyn "

(for example) this rule will trigger on the “topic/section” value (or “word”) and perform the associated

styling or transform, regardless of what the actual element name is.

Note that the attribute string must contain an escape character for the “/” character which is otherwise

not valid in a CSS selector.

The selector pattern in this example effectively reads, in CSS terminology, ″Selects any element with a

class attribute that contains the word topic\/section.″

Not all CSS systems can match based on values that are not physically present in the instance document.

Since the class attribute values in DITA are typically provided by default declarations in the DTD or

schema, not all CSS systems can match directly on DITA source.

When direct specialization-aware matches are not possible, alternatives include normalization

(preprocessing the DITA source to push values from the DTD or schema directly into the instance) or the

use of element-name-based rules.

Element-name-based rules will not be specialization-aware. Your calling-stylesheet will have to import

each additional stylesheet required by the scope of specialized topics and vocabularies, each explicitly

defined using element-name selectors. In this scheme, unsupported new elements will have no rendering

properties associated, whereas in the specialization-aware systems such elements can fall back to a rule

42 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

that triggers off a previously-supported value in the class attribute string.

Assembly rules for CSS

CSS supports specialization similarly to XSLT. This document describes a best practice for naming and

populating CSS stylesheets that follow the specialization design pattern for DITA DTDs and Schemas.

Although this practice is not required in order to implement CSS support for DITA, following the practice

will make subsequent specializations off the pattern to be done with minimal work, and the files should

be correspondingly easier to maintain.

To support a newly-specialized DITA DTD or Schema that has been specialization-enabled with unique

class attribute values, create a module that will contain ONLY the rules required for the uniquely new

elements in the specialization. This is similar to the mod files that declare the unique elements in the

specialization. The name of this module should be the same as the root name for the specialization

module. In the case of DITA’s reference DTD, the element declarations are in reference.mod and the

corresponding delta rules for CSS are in reference.css.

Next, create an “override”CSS stylesheet that starts off with the @import instruction, naming the CSS file

used by this specialization’s parent DTD. This import picks up support for all elements that are common

with the parent DTD. Then add another @import instruction in sequence, naming the CSS delta module

that you created previously. Then copy in the CSS rules for any previously defined support that need to

be associated to the new element names, and rename the selectors as needed to the new specialized

values for each new element. These added CSS rules are deltas for the new stylesheet, much as

specialized DTDs build on previous DTDs by adding delta element definitions. This technique

approximates the “fall-through” support for what would normally happen if the class attribute actually

could map to the root class.

Finally, if necessary, modify the behaviors of any of these new, delta CSS rules. Because this process

reuses a great deal of previous behaviors, the time spent supporting the delta changes is minimal.

To use a specialization-enabled CSS stylesheet with a specialized DITA topic, simply associate it to the

topic using either the W3C defined stylesheet link processing instruction or by following configuration

rules for your editor or browser.

Modularization in XSLT

Stylesheet support in XSLT for DITA specializations can be applied using the same principles as for the

DTDs or Schemas, resulting in stylesheets that are easy to maintain and that will support any subsequent

specialization with a minimum of effort.

Specification of module definition

A specialization-aware template for XSLT has this form of match pattern:

<xsl:template match="*[contains(@class,’ topic/section ’)]">

 <div>

 <xsl:apply-templates/>

 </div>

</xsl:template>

The XSLT match statement that associates the style to the element does not use a literal match to the

element name. Instead, based on an element having the defaulted value class="- topic/section

reference/refsyn " (for example) this rule will trigger on the “topic/section ” value (note the required

space delimiters in the match string) and perform the associated template actions, regardless of what the

actual element name is.

The XPath pattern in this example effectively reads, ″Selects any element whose class attribute contains

the space-delimited substring “topic/section”.″

Chapter 4. DITA specialization 43

Assembly rules for XSLT

XSLT pattern matching is the basis for DITA’s specialization-aware processing. As such, the base XSLT

stylesheet for a DITA topic should minimally support any specialization, no matter how far removed in

generations from the archetype topic.

To support a newly-specialized DITA DTD or Schema that has been specialization-enabled with unique

class attribute values, create a module that will contain ONLY the templates required for the uniquely

new elements in the specialization. This is similar to the mod files that declare the unique elements in the

specialization. The name of this module should be the same as the root name for the specialization

module. In the case of DITA’s reference DTD, the element declarations are in reference.mod and the

corresponding delta rules for XSLT are in reference.xsl.

Next, create an “override”XSLT stylesheet that starts off with the xsl:import instruction, naming the XSLT

file used by this specialization’s parent DTD. This import picks up support for all elements that are

common with the parent DTD. Then add another xsl:import instruction in sequence, naming the XSLT

delta module that you created previously. Additionally you can add imports for any domain-specific

templates that need to be applied with this shell. Then copy in the XSLT templates for any previously

defined support that needs to be associated uniquely to the new element names, and rename the match

pattern strings as needed to the new specialized values for each new element. These added XSLT

templates are deltas for the new stylesheet, much as specialized DTDs build on previous DTDs by adding

delta element definitions. For XSLT support, you only need to define templates if you need new behavior

or if you need to modify the behavior of an ancestor element’s processing.

Because this process reuses a great deal of previous behaviors, the time spent supporting the delta

changes is minimal.

To use a specialization-enabled XSLT stylesheet with a specialized DITA topic, simply associate it to the

topic using either the W3C defined stylesheet link processing instruction or by following configuration

rules for your processing tools (usually an XSLT processing utility such as saxon or xsltproc).

44 OASIS Darwin Information Typing Architecture (DITA) Architectural Specification v1.0 OASIS Standard 09 May 2005

Chapter 4. DITA specialization 45

Printed in USA

	Contents
	Chapter 1. About the DITA Specification
	Chapter 2. An introduction to DITA
	Definitions and background concepts
	Basic concepts
	Terminology
	Model terminology
	Declaration terminology
	Instance terminology

	Naming conventions and file extensions

	Chapter 3. DITA markup
	DITA topics
	What are topics?
	Why topics?
	Information typing
	Topic structure
	Topic content
	Topic modules
	Concepts
	Tasks
	Reference
	Domains

	DITA maps
	What are maps?
	Why DITA maps?
	Common DITA map attributes and metadata
	DITA map structure
	Inheritance of attributes and metadata
	DITA map modules

	Common metadata elements
	Publication metadata elements
	Management metadata elements
	Metadata qualification elements
	Topic properties in topics and maps

	Common attributes
	Identity attribute
	Content reference attribute
	Metadata attributes
	Miscellaneous Attributes
	Architectural attributes
	Conditional processing
	Using metadata attributes
	Processing metadata attributes
	Filtering logic
	Flagging logic

	Chapter 4. DITA specialization
	What is specialization?
	Why specialization?
	Structural versus domain specialization
	Limits of specialization
	Specialization in content
	Why specialization in content?
	The class attribute
	Class attribute syntax
	The domains attribute
	Specialization validity
	Generalization

	Specialization in design
	Why specialization in design?
	Modularization and integration of design
	Integration
	Modularization in DTDs
	Modularization in schemas

	Specialization in processing
	Using the class attribute
	Modularization and integration of processing
	Customization
	Modularization in CSS
	Modularization in XSLT

	Untitled

