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1 [bookmark: _Toc26285763][bookmark: _Toc31107488]Introduction
TAXII is an application layer protocol for the communication of cyber threat information in a simple and scalable manner. This specification defines the TAXII RESTful API and its resources along with the requirements for TAXII Client and Server implementations.
1.1 [bookmark: _81kxs6kq9n6j][bookmark: _Toc26285764][bookmark: _Toc31107489]IPR Policy
This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established. For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-open.org/committees/cti/ipr.php).
1.2 [bookmark: _zcasp8dvxi0s][bookmark: _Toc26285765][bookmark: _Toc31107490]Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
All text is normative except for examples, the overview (section 1.6), and any text marked non-normative.
1.3 [bookmark: _n3gr0x6y6idc][bookmark: _Toc26285766][bookmark: _Toc31107491]Normative References
[bookmark: 1jb1x0wn137h][HTTP Auth] 	IANA, “Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry”, March 2017, [Online]. Available: https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml

[bookmark: kix.eor7wuifg8us][ISO10646] 	“ISO/IEC 10646:2014 Information technology -- Universal Coded Character Set (UCS)”, 2014. [Online]. Available: http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip

[bookmark: kix.nptgsiph1u6g][RFC0020] 	Cerf, V., "ASCII format for network interchange", STD 80, RFC 20, DOI 10.17487/RFC0020, October 1969, http://www.rfc-editor.org/info/rfc20.

[bookmark: m6xfm7mdrdha][RFC2119] 	Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, http://www.rfc-editor.org/info/rfc2119.

[bookmark: bte6i4qgx8ch][RFC2782] 	Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for specifying the location of services (DNS SRV)", RFC 2782, DOI 10.17487/RFC2782, February 2000, http://www.rfc-editor.org/info/rfc2782.

[bookmark: kix.dxm6kbk8toqp][RFC3339] 	Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002, http://www.rfc-editor.org/info/rfc3339.

[bookmark: 4dhfpgtppp5g][RFC4033]	Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "DNS Security Introduction and Requirements", RFC 4033, DOI 10.17487/RFC4033, March 2005, http://www.rfc-editor.org/info/rfc4033.

[bookmark: dlnoxmeb3ux0][RFC4122] 	Leach, P., Mealling, M., and R. Salz, "A Universally Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI 10.17487/RFC4122, July 2005, http://www.rfc-editor.org/info/rfc4122.

[bookmark: hb5wa4a70wq][RFC5246] 	Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, http://www.rfc-editor.org/info/rfc5246.

[bookmark: fvqqhg3mlxzq][RFC5280] 	Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008, http://www.rfc-editor.org/info/rfc5280.

[bookmark: ms8j2jrqzng8][RFC6125] 	Saint-Andre, P. and J. Hodges, "Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March 2011, http://www.rfc-editor.org/info/rfc6125.

[bookmark: 3656fgjnywy2][RFC6818] 	Yee, P., "Updates to the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 6818, DOI 10.17487/RFC6818, January 2013, http://www.rfc-editor.org/info/rfc6818.

[bookmark: kix.vcio5ua03ic1][RFC6838] 	Freed, N., Klensin, J., and T. Hansen, "Media Type Specifications and Registration Procedures", BCP 13, RFC 6838, DOI 10.17487/RFC6838, January 2013, https://www.rfc-editor.org/info/rfc6838. 

[bookmark: hb9xzm4g5vgy] [RFC7230] 	Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014, http://www.rfc-editor.org/info/rfc7230.

[bookmark: o3goampoulbe][RFC7231] 	Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI 10.17487/RFC7231, June 2014, http://www.rfc-editor.org/info/rfc7231.

[bookmark: 7g7s1l7zvazm][RFC7233] 	Fielding, R., Ed., Y. Lafon, Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Range Requests", RFC 7233, 10.17487/RFC7233, June 2014, http://www.rfc-editor.org/info/rfc7233.

[bookmark: ybriqzbmdopa][RFC7235] 	Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Authentication", RFC 7235, DOI 10.17487/RFC7235, June 2014, http://www.rfc-editor.org/info/rfc7235.

[bookmark: 8mml1e5lfer7][RFC7493]	Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI 10.17487/RFC7493, March 2015, https://www.rfc-editor.org/info/rfc7493.

[bookmark: 8zum78fjqsb][RFC7540] 	Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI 10.17487/RFC7540, May 2015, http://www.rfc-editor.org/info/rfc7540.

[bookmark: vde58tur741j][RFC7617] 	Reschke, J., "The 'Basic' HTTP Authentication Scheme", RFC 7617, DOI 10.17487/RFC7617, September 2015, http://www.rfc-editor.org/info/rfc7617.

[bookmark: nbwq8vosnsua][RFC7671] 	Dukhovni, V. and W. Hardaker, "The DNS-Based Authentication of Named Entities (DANE) Protocol: Updates and Operational Guidance", RFC 7671, DOI 10.17487/RFC7671, October 2015, http://www.rfc-editor.org/info/rfc7671.

[bookmark: 54rbyjknenlu][bookmark: mt8ey016ydtk][RFC8174] 	Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, https://www.rfc-editor.org/info/rfc8174. 

[bookmark: ogtdhd3kjve6][RFC8259] 	Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/RFC8259, December 2017, https://www.rfc-editor.org/info/rfc8259. 

[RFC8446]	Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, https://tools.ietf.org/html/rfc8446. 
1.4 [bookmark: _qncidowtm60v][bookmark: _Toc26285767][bookmark: _Toc31107492]Non-Normative References
[bookmark: kix.o04g8ogl4h72][RFC1738]	Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform Resource Locators (URL)", RFC 1738, DOI 10.17487/RFC1738, December 1994, https://www.rfc-editor.org/info/rfc1738. 

[bookmark: eiyhac7viod2][RFC6545] 	Moriarty, K., "Real-time Inter-network Defense (RID)", RFC 6545, DOI 10.17487/RFC6545, April 2012, https://www.rfc-editor.org/info/rfc6545. 

[bookmark: 6z26nlv2m2hl][RFC6749] 	Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749, October 2012, https://www.rfc-editor.org/info/rfc6749. 

[bookmark: sd1bshlefmx4][RFC7486] 	Farrell, S., Hoffman, P., and M. Thomas, "HTTP Origin-Bound Authentication (HOBA)", RFC 7486, DOI 10.17487/RFC7486, March 2015, https://www.rfc-editor.org/info/rfc7486. 

[bookmark: xz1kqyosyped][RFC7804] 	Melnikov, A., "Salted Challenge Response HTTP Authentication Mechanism", RFC 7804, DOI 10.17487/RFC7804, March 2016, https://www.rfc-editor.org/info/rfc7804. 

[bookmark: abpl5st4m526][RFC7515] 	Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May 2015, https://www.rfc-editor.org/info/rfc7515. 

[bookmark: df9fpxzdck9f][RFC7516] 	Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)", RFC 7516, DOI 10.17487/RFC7516, May 2015, https://www.rfc-editor.org/info/rfc7516. 

[bookmark: uq4tdpvpivuj][RFC7616] 	Shekh-Yusef, R., Ed., Ahrens, D., and S. Bremer, "HTTP Digest Access Authentication", RFC 7616, DOI 10.17487/RFC7616, September 2015, https://www.rfc-editor.org/info/rfc7616. 

[bookmark: 4kbujqmo661k][RFC7617] 	Reschke, J., "The 'Basic' HTTP Authentication Scheme", RFC 7617, DOI 10.17487/RFC7617, September 2015, https://www.rfc-editor.org/info/rfc7617. 

[bookmark: 63l1pc2cqypr][RFC7797] 	Jones, M., "JSON Web Signature (JWS) Unencoded Payload Option", RFC 7797, DOI 10.17487/RFC7797, February 2016, https://www.rfc-editor.org/info/rfc7797. 

[bookmark: w4c0twlro6fo][RFC8322]	Field, J., Banghart, S., and D. Waltermire, "Resource-Oriented Lightweight Information Exchange (ROLIE)", RFC 8322, DOI 10.17487/RFC8322, February 2018, https://www.rfc-editor.org/info/rfc8322. 

[bookmark: qa8jvwtaa2jy][IANA AUTH] 	IANA, "Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry", February 2014, https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml. 

[bookmark: l9q83lfvszri][NIST RBAC] 	NIST Computer Security Resource Center (CSRC), "Role Based Access Control (RBAC)", November 2016, https://csrc.nist.gov/projects/role-based-access-control. 

[bookmark: bwjdk2wwe2v][UNICODE] 	Davis, M. and Suignard, M., "UNICODE Security Considerations", Unicode Technical Report #36, September 2014, https://www.rfc-editor.org/info/rfc8322.
1.5 [bookmark: _ag2gxbmaqwjw][bookmark: _Toc26285768][bookmark: _Toc31107493]Document Conventions
1.5.1 [bookmark: _kv0cuh34vz98][bookmark: _Toc26285769][bookmark: _Toc31107494]Naming Conventions
All type names, property names and literals are in lowercase. Words in property names are separated with an underscore (_), while words in type names and string enumerations are separated with a hyphen (Unicode hyphen-minus, U+002D, ‘-‘). All type names, property names, object names, and vocabulary terms are between three and 250 characters long.
1.5.2 [bookmark: _oh4kptyswepb][bookmark: _Toc26285770][bookmark: _Toc31107495]Font Colors and Style
The following color, font and font style conventions are used in this document:
· The Consolas font is used for all type names, property names and literals.
· resource and type names are in red with a light red background – collection
· property names are in bold style – description
· parameter names in URLs are stylized with angled brackets - {api-root}
· literals (values) are in blue with a blue background – complete
· All examples in this document are expressed in Consolas 9-point font, with straight quotes, black text, 2-space indentation, and sometimes in a light grey background. JSON examples in this document are representations of JSON Objects. They should not be interpreted as string literals. The ordering of object keys is insignificant. Whitespace before or after JSON structural characters in the examples are insignificant [RFC8259].
· Parts of the example may be omitted for conciseness and clarity. These omitted parts are denoted with ellipses (...).
1.6 [bookmark: _g6vzg6qixpic][bookmark: _Toc26285771][bookmark: _Toc31107496]Overview
Trusted Automated Exchange of Intelligence Information (TAXII) is an application layer protocol used to exchange cyber threat intelligence (CTI) over HTTPS. TAXII enables organizations to share CTI by defining an API that aligns with common sharing models. Specifically, TAXII defines two primary services, Collections and Channels, to support a variety of commonly-used sharing models. Collections allow a producer to host a set of CTI data that can be requested by consumers. Channels allow producers to push data to many consumers; and allow consumers to receive data from many producers. Collections and Channels can be organized by grouping them into an API Root to support the needs of a particular trust group or to organize them in some other way. Note: This version of the TAXII specification reserves the keywords required for Channels but does not specify Channel services. Channels and their services will be defined in a subsequent version of this specification.
TAXII is specifically designed to support the exchange of CTI represented in STIX. As such, the examples and some features in the specification are intended to align with STIX. This does not mean TAXII cannot be used to share data in other formats; it is designed for STIX but is not limited to STIX.
1.6.1 [bookmark: _3zdz9jiis8g6][bookmark: _Toc26285772][bookmark: _Toc31107497]Discovery
This specification defines two discovery methods. The first is a network level discovery that uses a DNS SRV record [RFC2782]. This DNS SRV record can be used to advertise the location of a TAXII Server within a network (e.g., so that TAXII-enabled security infrastructure can automatically locate an organization's internal TAXII Server) or to the general Internet. See section 3.9 for complete information on advertising TAXII Servers in DNS.
The second discovery method is a Discovery Endpoint (this specification uses the term Endpoint to identify a URL and an HTTP method with a defined request and response) that enables authorized clients to obtain information about a TAXII Server and get a list of API Roots. See section 4.1 for complete information on the Discovery Endpoint.
1.6.2 [bookmark: _z8oehi35xasz][bookmark: _Toc26285773][bookmark: _Toc31107498]API Roots
API Roots are logical groupings of TAXII Collections, Channels, and related functionality. A TAXII server instance can support one or more API Roots. API Roots can be thought of as instances of the TAXII API available at different URLs, where each API Root is the "root" URL of that particular instance of the TAXII API. Organizing the Collections and Channels into API Roots allows for a division of content and access control by trust group or any other logical grouping. For example, a single TAXII Server could host multiple API Roots - one API Root for Collections and Channels used by Sharing Group A and another API Root for Collections and Channels used by Sharing Group B.
Each API Root contains a set of Endpoints that a TAXII Client contacts in order to interact with the TAXII Server. This interaction can take several forms:
· Server Discovery, as described above, can be used to learn about the API Roots hosted by a TAXII Server.
· Each API Root might support zero or more Collections. Interactions with Collections include discovering the type of CTI contained in that Collection, pushing new CTI to that Collection, and/or retrieving CTI from that Collection. Each piece of CTI content in a Collection is referred to as an Object.
· Each API Root might host zero or more Channels.
· Each API Root also allows TAXII Clients to check on the Status of certain types of requests to the TAXII Server. For example, if a TAXII Client submitted new CTI, a Status request can allow the Client to check on whether the new CTI was accepted.

Figure 1.1 summarizes the relationships between the components of an API Root.
Example API Root URLs
https://example.com/
https://api1.example.com/
https://example.com/api1/
https://example.com/api2/
https://example.org/trustgroup1/
https://example.org/taxii2/api1/

Figure 1.1
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1.6.3 [bookmark: _sul0reld592w][bookmark: _Toc26285774][bookmark: _Toc31107499]Endpoints
An Endpoint consists of a specific URL and HTTP Method on a TAXII Server that a TAXII Client can contact to engage in one specific type of TAXII exchange. For example, each Collection on a TAXII Server has an Endpoint that can be used to get information about it; TAXII Clients can contact the Collection’s Endpoint to request a description of that Collection. A separate Endpoint is used for the TAXII Client to collect a manifest of that Collection’s Content. Yet another Endpoint is used to get objects from the Collection and, at the same URL, a POST can be used to add objects to the collection. The Endpoints supported by a TAXII Server are summarized in section 3.1 and fully defined in sections 4, 5, and 6.
1.6.4 [bookmark: _802in1vgfpd][bookmark: _Toc26285775][bookmark: _Toc31107500]Collections
A TAXII Collection is an interface to a logical repository of CTI objects provided by a TAXII Server and is used by TAXII Clients to send information to the TAXII Server or request information from the TAXII Server. A TAXII Server can host multiple Collections per API Root, and Collections are used to exchange information in a request–response manner.
Figure 1.2 below illustrates how Collection based communications are used when a single TAXII Client makes a request to a TAXII Server and the TAXII Server fulfills that request with information available to the TAXII Server (nominally from a database).
1.6.5 [bookmark: _pvch43p5vc0z][bookmark: _Toc26285776][bookmark: _Toc31107501]Channels
A TAXII Channel is maintained by a TAXII Server and enables TAXII Clients to exchange information with other TAXII Clients in a publish-subscribe model. TAXII Clients can publish messages to Channels and subscribe to Channels to receive published messages. A TAXII Server may host multiple Channels per API Root.
Figure 1.3 below illustrates how Channel communications are used when a single authorized TAXII Client sends a message to the TAXII Server, and that TAXII Server then distributes the message to all authorized TAXII Clients that are connected to the Channel. The arrows in the following diagrams represent data flow.

       Figure 1.2 					     Figure 1.3
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1.6.6 [bookmark: _jknn2kkqvj4k][bookmark: _Toc26285777][bookmark: _Toc31107502]Transport
The TAXII protocol defined in this specification uses HTTPS (HTTP over TLS) as the transport for all communications.
1.6.7 [bookmark: _vj2dopx186bb][bookmark: _Toc26285778][bookmark: _Toc31107503]Serialization
This specification uses UTF-8 encoded JSON as defined in [RFC7493] and [RFC8259] for the serialization of all TAXII resources.
1.6.8 [bookmark: _vwl52ujjvbnw][bookmark: _Toc26285779][bookmark: _Toc31107504]Content Negotiation
This specification uses media types (section 3.1.1.1 of [RFC7231]) and an optional "version" parameter in the HTTP Accept header (section 5.3.2 of [RFC7231]) and Content-Type header (section 3.1.1.5 of [RFC7231]) to perform HTTP content negotiation as defined in [RFC7231]. It is important that TAXII Clients and Servers use correct Accept and Content-Type headers to negotiate TAXII versions.
1.6.8.1 [bookmark: _403da3gw1xso][bookmark: _Toc26285780][bookmark: _Toc31107505]Media Types
The TAXII media types used in this specification are summarized in the following table and are used for both requests and responses. Appendix B contains the official IANA registration information for the TAXII media type. 

	Type
	Subtype
	Example

	application
	taxii+json
	application/taxii+json



1.6.8.2 [bookmark: _hhugixyu3jv8][bookmark: _Toc26285781][bookmark: _Toc31107506]Version Parameter
This section defines the optional version parameter that can be used with content negotiation. The version parameter is defined per the guidelines in section 4.3 of [RFC6838] and the value is of the form 'n.m', where n is the major version and m the minor version, both unsigned integer values. 
The value for the version parameter that represents the final contents of this specification is "2.1". 

	Media Type with Optional Version Parameter
	Description

	application/taxii+json;version=2.1 
	TAXII version 2.1 in JSON

	application/taxii+json
	Latest version of TAXII that the server supports



1.6.9 [bookmark: _58fh19e81uge][bookmark: _Toc26285782][bookmark: _Toc31107507]Authentication and Authorization
Access control to an instance of the TAXII API is specific to the sharing community, vendor, or product and is not defined by this specification.
Authentication and Authorization in TAXII is implemented as defined in [RFC7235], using the  WWW-Authenticate and Authorization HTTP headers.
HTTP Basic authentication, as defined in [RFC7617] is the suggested authentication scheme in TAXII. As specified in sections 8.2.2 and 8.5.1, TAXII Servers are encouraged to implement support for HTTP Basic and Clients are required to implement support for HTTP Basic, though other authentication schemes can also be supported. Implementers can allow operators to disable the use of HTTP Basic in their operations.
If the TAXII Server receives a request for any Endpoint that requires authentication, regardless of HTTP method, and either an acceptable Authorization header that grants the client access to that object is not sent with the request or the TAXII Server does not determine via alternate means that the client is authorized to access the resource, then the TAXII Server will respond with an HTTP 401 (Unauthorized) status code and a WWW-Authenticate HTTP header.
The WWW-Authenticate header contains one or more challenges, which define which authentication schemes are supported by the TAXII Server. The format of the WWW-Authenticate HTTP header and any challenges are defined in [RFC7235]. To ensure compatibility, it is recommended that any authentication schemes used in challenges be registered in the IANA Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry [HTTP Auth] .
A TAXII Server may omit objects, information, or optional properties from any response if the authenticated client is not authorized to receive them, so long as that omission does not violate this specification.
1.6.10 [bookmark: _rpkewxilmx5n][bookmark: _Toc26285783][bookmark: _Toc31107508]STIX and Other Content
TAXII is designed with STIX in mind and to support the exchanging of STIX 2 [STIX Version 2.1] content. While additional content types are not prohibited, all specific requirements throughout the document are designed for STIX. See section 3.7 for more details.
1.6.11 [bookmark: _7onc0p5eh50s][bookmark: _Toc26285784][bookmark: _Toc31107509]Object Lifecycle
There are no requirements defined in this specification for how long a TAXII server needs to store a specific object on the server or within a collection after it has been successfully posted to a TAXII collection. If the TAXII server chooses to remove an entire object or any number of versions of the object from the server or collection that is entirely up to the software, its deployment, and the use cases it supports.
1.7 [bookmark: _fua3nrt69w3c][bookmark: _Toc26285785][bookmark: _Toc31107510]Changes from Earlier Versions
This section lists all of the major changes from the previous 2.0 version of TAXII.
1.7.1 [bookmark: _e8lf9o3a33jj][bookmark: _Toc26285786][bookmark: _Toc31107511]TAXII 2.1 Major Changes and Additions
TAXII 2.1 differs from TAXII 2.0 in the following ways:

1. The DNS SRV record was changed from taxii to taxii2
2. The discovery URL was changed from /taxii/ to /taxii2/
3. The Manifest Resource was changed to represent individual versions of an object, instead of an object with all of its versions
4. Item based pagination was removed from this version of the specification
5. The section on content negotiation was updated
6. The media types were changed throughout the document
7. Clarification was added to say that API Roots can be relative paths as well as absolute paths
8. Changed version value in API Roots to match media type
9. Changed status resource to allow status on success and pending
10. Add TAXII media type as Accept type in 5.4 and 5.6 since a TAXII error message could be returned
11. HTTP Basic is now a SHOULD implement for the Server
12. Added a DELETE object by ID endpoint
13. Added a versions endpoint for object by ID.
14. Added section on Server Implementation Considerations
15. Added a limit URL parameter
16. Added a next URL parameter
17. Added a spec_versions match filter parameter
18. Removed STIX media types and STIX Bundle and replaced with TAXII Envelope
19. Added clarifying text around TAXII timestamps needing millisecond precision
20. Cleaned up and deemphasized text around support for content other than STIX
21. Added user-agent HTTP header description

Please see Appendix C for a list GitHub issues that were resolved for this release. 
2 [bookmark: _d5wi2c6r864g][bookmark: _Toc26285787][bookmark: _Toc31107512]Data Types
This section defines the names and permitted values of common types used throughout this specification. These types are referenced by the “Type” column in other sections. This table does not, however, define the meaning of any properties using these types. These types may be further restricted elsewhere in the document.

	Type
	Description

	api-root
	An API Root Resource, see section 4.2.1.

	boolean
	A boolean is a value of either true or false. Properties with this type MUST have a literal (unquoted) value of true or false.

	collection
	A Collection Resource, see section 5.2.1.

	collections
	A Collections Resource, see section 5.1.1.

	dictionary
	A dictionary is a JSON object that captures an arbitrary set of key/value pairs.

	discovery
	A Discovery Resource, see section 4.1.1.

	envelope
	A TAXII Envelope, see section 3.7.

	error
	An Error Message, see section 3.6.1.

	identifier
	An identifier is an RFC 4122-compliant Version 4 UUID. The UUID MUST be generated according to the algorithm(s) defined in RFC 4122, section 4.4 (Version 4 UUID) [RFC4122].

	integer
	The integer data type represents a whole number. Unless otherwise specified, all integers MUST be capable of being represented as a signed 54-bit value  ([-(2**53)+1, (2**53)-1]) as defined in [RFC7493]. Additional restrictions MAY be placed on the type where it is used.

	list
	The list type defines a sequence of values ordered based on how they appear in the list. The phrasing “list of type <type>” is used to indicate that all values within the list MUST conform to the specified type. For instance, list of type integer means that all values of the list must be of the integer type. 

This specification does not specify the maximum number of allowed values in a list, however every instance of a list MUST have at least one value. Specific TAXII resource properties may define more restrictive upper and/or lower bounds for the length of the list.

Empty lists are prohibited in TAXII and MUST NOT be used as a substitute for omitting optional properties. If the property is required, the list MUST be present and MUST have at least one value.

The JSON MTI serialization uses the JSON array type [RFC8259], which is an ordered list of values.

	manifest
	A Manifest Resource, see section 5.3.1.

	object
	An Object Resource, see section 3.7.

	status
	A Status Resource, see section 4.3.1.

	string
	The string data type represents a finite-length string of valid characters from the Unicode coded character set [ISO10646] that are encoded in UTF-8. Unicode incorporates ASCII [RFC0020] and the characters of many other international character sets. 

	timestamp
	The timestamp type defines how timestamps are represented in TAXII and is represented in serialization as a string. 

· The timestamp type MUST be a valid RFC 3339-formatted timestamp [RFC3339] using the format YYYY-MM-DDTHH:MM:SS.ssssssZ Unlike the STIX timestamp type, the TAXII timestamp MUST have microsecond precision.
· The timestamp MUST be represented in the UTC timezone and MUST use the “Z” designation to indicate this.

	versions
	A Versions Resource, see section 5.8.1.



3 [bookmark: _k9uqt826rit][bookmark: _Toc26285788][bookmark: _Toc31107513]TAXII - Core Concepts
The TAXII API is described as sets of Endpoints. Each Endpoint is identified by the URL that it is accessible at and the HTTP method that is used to make the request. For example, the "Get Collections" Endpoint is requested by issuing a GET to `{api-root}/collections/`. Each Endpoint identifies its URL, which parameters it accepts (including both path parameters and standard parameters), which features it supports (e.g. filtering), and which content types it defines for request and response. It also identifies common error conditions and provides guidance on how to use the Endpoint.
This section defines behavior that applies across Endpoints, such as normative requirements to support each Endpoint, sorting, filtering, and error handling.
3.1 [bookmark: _on5bbeus95hi][bookmark: _Toc26285789][bookmark: _Toc31107514]Endpoints
Sections 4, 5 and 6 define the set of TAXII Endpoints used in the TAXII API. The following normative requirements apply to each Endpoint:
· The endpoint path in a requests to a TAXII server MUST end in a trailing slash "/". For example:
· A request for a resource without any filter parameters /{api-root}/collections/{id}/objects/{object-id}/
· A request for a resource with some filter parameters. /{api-root}/collections/{id}/objects/{object-id}/?match[type]=indicator
· TAXII responses with an HTTP success code (200 series) that permit a response body MUST include the appropriate response body for the specified content type as identified in the definition of that Endpoint.
· TAXII responses with an HTTP error code (400-series and 500-series status codes, defined by sections 6.5 and 6.6 of [RFC7231]) that permit a response body (i.e. are not in response to a HEAD request) MAY contain an error message (see section 3.6.1) in the response body.
· All TAXII requests MUST include a media range in the Accept header and MUST include at least one TAXII media range. Requests for TAXII content MUST use the values from section 1.6.8 and SHOULD include the optional version parameter defined in that section.
· All TAXII responses MUST include the appropriate media type and version parameter in the Content-Type header as defined for that Endpoint.
· TAXII responses SHOULD be the highest version of content that the server supports if the version parameter in the Accept header is omitted during content negotiation.
· Requests with media types in the Accept headers that are defined for that Endpoint MUST NOT result in an HTTP 406 (Not Acceptable) response.
· Requests with a media type in the Content-Type header that is defined for that Endpoint MUST NOT result in an HTTP 415 (Unacceptable Media Type) response.
· Requests with media types in the Accept headers that are not defined for that Endpoint MAY be satisfied with the appropriate content or MAY result in an HTTP 406 (Not Acceptable) response.
· Requests with a media type in the Content-Type header that is not defined for that Endpoint MAY be satisfied with the appropriate content or MAY result in an HTTP 415 (Unacceptable Media Type) response.
· All TAXII POST requests MUST include a valid Accept and Content-Type header.
· TAXII responses to Endpoints that support filtering MUST filter results per the requirements in section 3.4.
· The endpoint definition information in the tables found in sections 4 and 5 is normative.

The following table provides a summary of the Endpoints (URLs and HTTP Methods) defined by TAXII and the Resources they operate on.

	URL
	Methods
	Resource Type

	Core Concepts (section 4)
	
	

	/taxii2/
	GET
	discovery

	{api-root}/
	GET
	api

	{api-root}/status/{status-id}/
	GET
	status

	Collections (section 5)
	
	

	{api-root}/collections/
	GET
	collections

	{api-root}/collections/{id}/
	GET
	collection

	{api-root}/collections/{id}/manifest/
	GET
	manifest

	{api-root}/collections/{id}/objects/
	GET, POST
	envelope

	{api-root}/collections/{id}/objects/{object-id}/
	GET, DELETE
	envelope

	{api-root}/collections/{id}/objects/{object-id}/versions/
	GET
	versions

	Channels (section 6)
	
	

	TBD in a future version
	
	



3.2 [bookmark: _vsvl27q20vdp][bookmark: _Toc26285790][bookmark: _Toc31107515]HTTP Headers
This section summarizes the HTTP headers and defines custom headers used by this specification.

	Type
	Description

	Standard Headers
	

	Accept
	The Accept header is used by HTTP Requests to specify which Content-Types are acceptable in response. TAXII defines a media type and an optional version parameter that can be used in the Accept header. See section 5.3.2 of [RFC7231].

	Authorization
	The Authorization header is used by HTTP Requests to specify authentication credentials. See section 4.2 of [RFC7235].

	Content-Type
	The Content-Type header is used by HTTP to identify the format of HTTP Requests and HTTP Responses. TAXII defines a media type and an optional version parameter that can be used in the Content-Type header. See section 3.1.1.5 of [RFC7231].

	User-Agent
	The User-Agent header is used by HTTP to identify the TAXII Client software name and version. TAXII Clients SHOULD use the User-Agent header in requests to a TAXII Server as defined in section 5.5.3 of [RFC7231].

	WWW-Authenticate
	The WWW-Authenticate header is used by HTTP Responses to indicate that authentication is required and to specify the authentication schemes and parameters that are supported. See section 4.1 of [RFC7235].

	Custom Headers
	

	X-TAXII-Date-Added-First
	The X-TAXII-Date-Added-First header is an extension header. It indicates the date_added timestamp of the first object of the response.

The value of this header MUST be a timestamp. All HTTP 200 series responses to the following endpoints MUST include the X-TAXII-Date-Added-First header:
· GET {api-root}/collections/{id}/manifest/
· GET {api-root}/collections/{id}/objects/
· GET {api-root}/collections/{id}/objects/{object-id}/
· GET {api-root}/collections/{id}/objects/{object-id}/versions/
Behaviour of this header on any other endpoint, is not defined.

	X-TAXII-Date-Added-Last
	The X-TAXII-Date-Added-Last header is an extension header. It indicates the date_added timestamp of the last object of the response. 

The value of this header MUST be a timestamp. All HTTP 200 series responses to the following endpoints MUST include the X-TAXII-Date-Added-Last header:
· GET {api-root}/collections/{id}/manifest/
· GET {api-root}/collections/{id}/objects/
· GET {api-root}/collections/{id}/objects/{object-id}/
· GET {api-root}/collections/{id}/objects/{object-id}/versions/
Behaviour of this header on any other endpoint, is not defined.



3.3 [bookmark: _h2yheoljk9e7][bookmark: _Toc26285791][bookmark: _Toc31107516]Sorting
For Object and Manifest Endpoints, objects returned MUST be sorted in ascending order by the date it was added. Meaning, the most recently added object is last in the list.
The Collections Endpoint MUST return Collection Resources in a consistent sort order across multiple requests.
3.4 [bookmark: _tvfy419udzxi][bookmark: _Toc26285792][bookmark: _Toc31107517]Filtering
This section defines the URL query parameters used for matching and filtering content. A TAXII Client can request specific content from a TAXII Server by specifying a set of filters included in the request to the server. The URL query parameters listed below specifies what to include in the response from the TAXII Server. If no URL query parameter is specified then the TAXII Client is requesting that all content be returned for that Endpoint, subject to any default behaviors as listed below.
If any of the URL query parameters are malformed, the TAXII Server MUST return an HTTP 400 (Bad Request) status code.

	URL Query Parameters
	Description

	added_after
	A single timestamp that filters objects to only include those objects added after the specified timestamp. The value of this parameter is a timestamp. 
A request MUST NOT have more than one instance of this URL query parameter. If this parameter is provided it MUST contain only a single timestamp.
If no added_after URL query parameter is provided, the server MUST return the oldest objects matching the request first. For example, if a server has 100 objects (0-99) and limits requests to 10 objects at a time and a client makes a request without an added_after URL query parameter, the server would start at record 0 looking for a match and work its way up from oldest to newest finding 10 objects that matched the request. 
The added_after parameter is not in any way related to dates or times in a STIX object or any other CTI object.
Note: The HTTP Date header can be used to identify and correct any time skew between client and server.

	limit
	A single integer value that indicates the maximum number of objects that the client would like to receive in a single response. 
· The value of the limit MUST be a positive integer greater than zero.
· Responses to requests where the client provided a limit MUST NOT contain more objects than requested.
· If the number of objects available for the response is less than or equal to both the client requested and server-imposed limit, then all objects MUST be included in the response.
· A response to a request with a defined client limit that is greater than the number of objects that the server is willing or able to provide MAY result in a response with fewer objects than what was requested.
· If more objects are available either because the client requested that they be limited via the limit parameter or the server limited them, then the response envelope MUST have a value of true in the more property and MAY have an appropriate value in the next property.

	next
	A single string value that indicates the next record or set of records in the dataset that the client is requesting. A client would get this value from the TAXII Envelope and would use this value along with the original query/filter parameters to paginate through additional records. This value is opaque to clients and may vary between server implementations.

	match[<field>]
	The match parameter defines filtering on the specified <field>. The list of fields that MUST be supported is defined per Endpoint as defined in sections 4, 5, and 6. The match parameter can be specified any number of times, where each match instance specifies an additional filter to be applied to the resulting data and each <field> MUST NOT occur more than once in a request. Said another way, all match fields are ANDed together. 

All <field> parameters are defined in the following table. Requests MAY use a <field> not defined in this specification, and servers MAY ignore fields they do not understand.

Each field MAY contain one or more values. Multiple values are separated by a comma (U+002C COMMA, “,”) without any spaces. If multiple values are present, the match is treated as a logical OR. For instance, ?match[type]=incident,malware specifies a filter for objects that are of type incident OR malware.

Examples
?match[type]=campaign,malware,threat-actor
?match[type]=incident&match[version]=2016-01-01T01:01:01.000Z



3.4.1 [bookmark: _mba0tfcm5f0r][bookmark: _Toc26285793][bookmark: _Toc31107518]Supported Fields for Match
	Match Field
	Description

	id
	The identifier of the object(s) that are being requested. When searching for a STIX Object, this is a STIX ID. 

Examples
?match[id]=indicator--3600ad1b-fff1-4c98-bcc9-4de3bc2e2ffb
?match[id]=indicator--3600ad1b-fff1-4c98-bcc9-4de3bc2e2ffb,sighting--4600ad1b-fff1-4c58-bcc9-4de3bc5e2ffd

	spec_version
	The specification version(s) of the STIX object that are being requested. A response to a request with the spec_version match MUST NOT include any specification versions that are not included in this parameter. If no spec_version parameter is provided, the server MUST return only the latest specification version that it can provide for each object matching the remainder of the request. 

Examples
?match[spec_version]=2.0
?match[spec_version]=2.0,2.1

	type
	The type of the object(s) that are being requested. Only the types listed in this parameter are permitted in the response.

Requests for types defined in [STIX Version 2.1] MUST NOT result in an error due to an invalid type.

Requests for other types not defined in [STIX Version 2.1] MAY be fulfilled.

Examples
?match[type]=indicator
?match[type]=indicator,sighting

	version
	The version(s) of the object(s) that are being requested from either an object or manifest endpoint. If no version parameter is provided, the server MUST return only the latest version for each object matching the remainder of the request. 

If a STIX object is not versioned (and therefore does not have a modified timestamp) then this version parameter MUST use the created timestamp. If an object does not have a created or modified timestamp or any other version information that can be used, then the server should use a value for the version that is consistent to the server.

Requests MUST NOT contain any duplicate version parameters, meaning, each keyword (all, first, and last) and any specific version (<value>) MUST NOT occur more than once in a request. However, multiple different specific versions MAY be specified in the same request.

Valid values for the version parameter are:
· last  - requests the latest version of an object. This is the default parameter value if no other version parameter is provided. 
· first - requests the earliest version of an object.
· all - requests all versions of an object. The all keyword MUST NOT be used with any other version parameter.
· <value> - requests a specific version of an object. 
· For STIX objects, this filter option requests objects whose modified time matches exactly the provided value and the value MUST follow the rules for timestamp as defined in [STIX Version 2.1]. 
· For example: "2016-01-01T01:01:01.000Z" tells the server to return the exact STIX object(s) that matched the modified time of "2016-01-01T01:01:01.000Z".
· For non-STIX objects this value MAY, be any string that represents the version of that object type. If the target format does not support object versions, this parameter MUST be ignored.

Examples
?match[version]=all
?match[version]=last,first
?match[version]=first,2018-03-02T01:01:01.123Z,last
?match[version]=2016-03-23T01:01:01.000Z,2018-03-02T01:01:01.123Z



3.5 [bookmark: _6z2nj4q43nd3][bookmark: _Toc26285794][bookmark: _Toc31107519]Pagination
TAXII 2.1 supports pagination of large result sets on certain endpoints. These endpoints return results sorted in ascending order by the date they were added to the collection (see section 3.3). The server may limit the number of responses in response to a query, either as the result of a server-specified limit or in response to a limit parameter passed by the client as part of a query (see section 3.4). 
If more objects are available, either because the client requested that they be limited via the limit parameter or the server limited them, then the response envelope MUST have a value of true in the more property and MAY have an appropriate value in the next property.
If the more property is set to true and the next property is populated then the client can paginate through the remaining records using the next URL parameter along with the same original query options. 
If the more property is set to true and the next property is empty then the client may paginate through the remaining records by using the added_after URL parameter with the date/time value from the X-TAXII-Date-Added-Last header along with the same original query options.
It is possible for the server to return "more": true in a response, yet present no additional objects in the follow-on query. This can occur when the additional objects are deleted from a collection between requests.
Example:
· Collection High-Value-Indicators has 1000 records in it.
· The client or server has limited all responses to 100 records at a time.
· A client will make a request and the server will respond with the first 100 records.
· The server will also populate the two X headers for TAXII, X-TAXII-Date-Added-First and X-TAXII-Date-Added-Last. These headers will contain the date/time value of when the first and last records of the 100 returned records were added to the TAXII server.
· The server will also set the more property to a value of true and may set the next property to an appropriate value on the TAXII envelope.
· When a client wants to obtain the next 100 records, the client will do either:
· Provided the same query/filter parameters that it originally used along with populating the next URL parameter with the value from the next property on the previous TAXII envelope response.
· Or provide the same query/filter parameters that it originally used along with the date/time value from the X-TAXII-Date-Added-Last in the added_after URL parameter 
3.6 [bookmark: _1fg89uogyma3][bookmark: _Toc26285795][bookmark: _Toc31107520]Errors
TAXII primarily relies on the standard HTTP error semantics (400-series and 500-series status codes, defined by sections 6.5 and 6.6 of [RFC7231]) to allow TAXII Servers to indicate when an error has occurred. For example, an HTTP 404 (Not Found) status code in response to a request to get information about a Collection means that the Collection could not be found. The tables defining the Endpoints in sections 4 and 5 identify common errors and which response should be used, but are not exhaustive and do not describe all possible errors.
In addition to this, TAXII defines an error message structure that is provided in the response body when an error status is being returned. It does not, however, define any error codes or error conditions beyond those defined by HTTP.
3.6.1 [bookmark: _xk0ieev25bnn][bookmark: _Toc26285796][bookmark: _Toc31107521]Error Message
Message Type: error
The error message is provided by TAXII Servers in the response body when returning an HTTP error status and contains more information describing the error, including a human-readable title and description, an error_code and error_id, and a details structure to capture further structured information about the error. All of the properties are application-specific, and clients shouldn't assume consistent meaning across TAXII Servers even if the codes, IDs, or titles are the same. 

	Property Name
	Type
	Description

	title (required)
	string
	A human readable plain text title for this error.

	description (optional)
	string
	A human readable plain text description that gives details about the error or problem that was encountered by the application.

	error_id (optional)
	string
	An identifier for this particular error instance. A TAXII Server might choose to assign each error occurrence its own identifier in order to facilitate debugging.

	error_code (optional)
	string
	The error code for this error type. A TAXII Server might choose to assign a common error code to all errors of the same type. Error codes are application-specific and not intended to be meaningful across different TAXII Servers.

	http_status (optional)
	string
	The HTTP status code applicable to this error. If this property is provided it MUST match the HTTP status code found in the HTTP header.

	external_details (optional)
	string
	A URL that points to additional details. For example, this could be a URL pointing to a knowledge base article describing the error code. Absence of this property indicates that there are no additional details.

	details (optional)
	dictionary
	The details property captures additional server-specific details about the error. The keys and values are determined by the TAXII Server and MAY be any valid JSON object structure.



Examples
{
  "title": "Error condition XYZ",
  "description": "This error is caused when the application tries to access data...",
  "error_id": "1234",
  "error_code": "581234",
  "http_status": "409",
  "external_details": "http://example.com/ticketnumber1/errorid-1234",
  "details": {
    "somekey1": "somevalue",
    "somekey2": "some other value"
  }
}

3.7 [bookmark: _2njtsnfo6dhz][bookmark: _Toc26285797][bookmark: _Toc31107522]Envelope Resource
Resource Name: envelope
The envelope is a simple wrapper for STIX 2 content. When returning STIX 2 content in a TAXII response the HTTP root object payload MUST be an envelope. This specification does not define any other form of content wrapper for objects outside of STIX content.
For example:
· A single indicator in response to a request for an indicator by ID is enclosed in the objects property list inside of an envelope.
· A list of campaigns returned from a Collection is enclosed in the objects property list inside of an envelope.
· An empty response with no objects property inside the envelope.

	Property Name
	Type
	Description

	more (optional)
	boolean
	This property identifies if there is more content available based on the search criteria. The absence of this property means the value is false.

	next (optional)
	string
	This property identifies the server provided value of the next record or set of records in the paginated data set. This property MAY be populated if the more property is set to true.

This value is opaque to the client and represents something that the server knows how to deal with and process. 

For example, for a relational database this could be the index autoID, for elastic search it could be the Scroll ID, for other systems it could be a cursor ID, or it could be any string (or int represented as a string) depending on the requirements of the server and what it is doing in the background. 

	objects (optional)
	list of type <STIX Object>
	This property contains one or more STIX Objects. Objects in this list MUST be a STIX Object (e.g., SDO, SCO, SRO, Language Content object, or a Marking Definition object).



Examples
{
  "more": true,
  "next": "123456789",
  "objects": [
    {
      "type": "indicator",
      "id": "indicator--252c7c11-daf2-42bd-843b-be65edca9f61",
      ...
    }
  ]
}

3.8 [bookmark: _1d9h6cqjy9uw][bookmark: _Toc26285798][bookmark: _Toc31107523]Property Names
· All property names and string literals MUST be exactly the same, including case, as the names listed in the property tables in this specification. 
· For example, the discovery resource has a property called api_roots and it MUST result in the JSON key name "api_roots". 
· Properties marked required in the property tables MUST be present in the JSON serialization of that resource.
3.9 [bookmark: _xkiz3sryjgjy][bookmark: _Toc26285799][bookmark: _Toc31107524]DNS SRV Names
Organizations that choose to implement a DNS SRV record in their DNS server to advertise the location of their TAXII Server MUST use the service name taxii2. As defined in [RFC2782], the service name is defined without an underscore, and an underscore is added to construct the correct name in the actual DNS SRV record. The protocol for this DNS SRV record MUST be tcp.
Examples
The following example is for a DNS SRV record advertising a TAXII Server for the domain “example.com” located at taxii-hub-1.example.com:443:
_taxii2._tcp.example.com. 86400 IN SRV 0 5 443 taxii-hub-1.example.com

4 [bookmark: _7ev21mikafda][bookmark: _Toc26285800][bookmark: _Toc31107525]TAXII API - Server Information
The following table provides a summary of the Server Information Endpoints (URLs and HTTP Methods) defined by TAXII and the Resources they operate on.

	URL
	Methods
	Resource Type

	/taxii2/
	GET
	discovery

	{api-root}/
	GET
	api-root

	{api-root}/status/{status-id}/
	GET
	status



4.1 [bookmark: _q0a03pfr5x7n][bookmark: _Toc26285801][bookmark: _Toc31107526]Server Discovery
This Endpoint provides general information about a TAXII Server, including the advertised API Roots. It's a common entry point for TAXII Clients into the data and services provided by a TAXII Server. For example, clients auto-discovering TAXII Servers via the DNS SRV record defined in section 1.6.1 will be able to automatically retrieve a discovery response for that server by requesting the /taxii2/ path on that domain.
Discovery API responses MAY advertise any TAXII API Root that they have permission to advertise, included those hosted on other servers.

	GET
	 /taxii2/

	
Implementation Notes
Get information about the TAXII Server and any advertised API Roots

Requests

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
discovery

Failure Responses

Response Codes
401 - The client needs to authenticate
403 - The client does not have access to this resource
404 - The Discovery service is not found, or the client does not have access to the resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /taxii2/ HTTP/1.1
Host: example.com
Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK
Content-Type: application/taxii+json;version=2.1

{
  "title": "Some TAXII Server",
  "description": "This TAXII Server contains a listing of...",
  "contact": "string containing contact information",
  "default": "https://example.com/api2/",
  "api_roots": [
    "https://example.com/api1/",
    "https://example.com/api2/",
    "https://example.net/trustgroup1/"
  ]
}



4.1.1 [bookmark: _cnwttwtm2b4k][bookmark: _Toc26285802][bookmark: _Toc31107527]Discovery Resource
Resource Name: discovery
The discovery resource contains information about a TAXII Server, such as a human-readable title, description, and contact information, as well as a list of API Roots that it is advertising. It also has an indication of which API Root it considers the default, or the one to use in the absence of another information/user choice.

	Property Name
	Type
	Description

	title (required)
	string
	A human readable plain text name used to identify this server.

	description (optional)
	string
	A human readable plain text description for this server.

	contact (optional)
	string
	The human readable plain text contact information for this server and/or the administrator of this server. 

	default (optional)
	string
	The default API Root that a TAXII Client MAY use. Absence of this property indicates that there is no default API Root. The default API Root MUST be an item in api_roots.

	api_roots (optional)
	list of type string
	A list of URLs that identify known API Roots. This list MAY be filtered on a per-client basis. 

API Root URLs MUST be HTTPS absolute URLs or relative URLs. API Root relative URLs MUST begin with a single `/` character and MUST NOT begin with `//` or '../". API Root URLs MUST NOT contain a URL query component.

Examples - Valid
https://taxii.example.com:443/
https://someserver.example.net/apiroot1/
/someapiroot/

Examples -Invalid
//someserver.example.com/apiroot1
../someapiroot/
https://foo.edu/bar?baz



4.2 [bookmark: _subu0a1w5bvt][bookmark: _Toc26285803][bookmark: _Toc31107528]Get API Root Information
This Endpoint provides general information about an API Root, which can be used to help users and clients decide whether and how they want to interact with it. Multiple API Roots MAY be hosted on a single TAXII Server. Often, an API Root represents a single trust group.
· Each API Root MUST have a unique URL.
· Each API Root MAY have different authentication and authorization schemes.

	GET
	 /{api-root}/

	
Implementation Notes
Get information about a specific API Root

Requests

URL Parameters
{api-root} - the base URL of the API Root

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
api-root

Failure Responses

Response Codes
401 - The client needs to authenticate
403 - The client does not have access to this resource
404 - The API Root is not found, or the client does not have access to the resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/ HTTP/1.1
Host: example.com
Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK
Content-Type: application/taxii+json;version=2.1

{
  "title": "Malware Research Group",
  "description": "A trust group setup for malware researchers",
  "versions": ["application/taxii+json;version=2.1"],
  "max_content_length": 104857600
}



4.2.1 [bookmark: _3n5r3cjoheja][bookmark: _Toc26285804][bookmark: _Toc31107529]API Root Resource
Resource Name: api-root
The api-root resource contains general information about the API Root, such as a human-readable title and description, the TAXII versions it supports, and the maximum size (max_content_length) of the content body it will accept in a PUT or POST request.

	Property Name
	Type
	Description

	title (required)
	string
	A human readable plain text name used to identify this API instance. 

	description (optional)
	string
	A human readable plain text description for this API Root.

	versions (required)
	list of type string
	The list of TAXII versions that this API Root is compatible with. The values listed in this property MUST match the media types defined in Section 1.6.8.1 and MUST include the optional version parameter. A value of "application/taxii+json;version=2.1" MUST be included in this list to indicate conformance with this specification.

	max_content_length (required)
	integer
	The maximum size of the request body in octets (8-bit bytes) that the server can support. The value of the max_content_length MUST be a positive integer greater than zero. This applies to requests only and is determined by the server. Requests with total body length values smaller than this value MUST NOT result in an HTTP 413 (Request Entity Too Large) response. If for example, the server supported 100 MB of data, the value for this property would be determined by 100*1024*1024 which equals 104,857,600. This property contains useful information for the client when it POSTs requests to the Add Objects endpoint.



4.3 [bookmark: _qhki2dow699u][bookmark: _Toc26285805][bookmark: _Toc31107530]Get Status
This Endpoint provides information about the status of a previous request. In TAXII 2.1, the only request that can be monitored is one to add objects to a Collection (see section 5.5). It is typically used by TAXII Clients to monitor a POST request that they made in order to take action when it is complete.
TAXII Servers SHOULD accept queries for a given status ID for at least 24 hours after the server has finished processing the request. Once a TAXII client receives a status resource where the status value is complete for a given status ID it SHOULD never pull for that status ID again. If the TAXII Server receives a request on the status endpoint for a status ID that is no longer available, the server MUST return an HTTP status of 404 (Not Found).

	GET
	 /{api-root}/status/{status-id}/

	
Implementation Notes
Get status information for a specific status ID

Requests

URL Parameters
{api-root}  - the base URL of the API Root
{status-id} - the identifier of the status message being requested

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
status

Failure Responses

Response Codes
401 - The client needs to authenticate
403 - The client does not have access to this resource
404 - The API Root or Status ID are not found, or the client does not have access to the resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/status/2d086da7-4bdc-4f91-900e-d77486753710/ HTTP/1.1
Host: example.com
Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK
Content-Type: application/taxii+json;version=2.1

{
  "id": "2d086da7-4bdc-4f91-900e-d77486753710",
  "status": "pending",
  "request_timestamp": "2016-11-02T12:34:34.12345Z",
  "total_count": 4,
  "success_count": 1,
  "successes": [
    {
      "id": "indicator--c410e480-e42b-47d1-9476-85307c12bcbf" ,
      "version": "2018-05-27T12:02:41.312Z"
    }
  ],
  "failure_count": 1,
  "failures": [
    {
      "id": "malware--664fa29d-bf65-4f28-a667-bdb76f29ec98",
      "version": "2018-05-28T14:03:42.543Z",
      "message": "Unable to process object"
    }
  ],
  "pending_count": 2,
  "pendings": [
    {
      "id": "indicator--252c7c11-daf2-42bd-843b-be65edca9f61",
      "version": "2018-05-18T20:16:21.148Z"
    },
    {
      "id": "relationship--045585ad-a22f-4333-af33-bfd503a683b5",
      "version": "2018-05-15T10:13:32.579Z"
    }
  ]
}



4.3.1 [bookmark: _21tzry6u9dbz][bookmark: _Toc26285806][bookmark: _Toc31107531]Status Resource
Resource Name: status
The status resource represents information about a request to add objects to a Collection. It contains information about the status of the request, such as whether or not it's completed (status) and MAY contain the status of individual objects within the request (i.e. whether they are still pending, completed and failed, or completed and succeeded).
The status resource is returned in two places: as a response to the initial POST request (see section 5.5) and in response to a get status request (see section 4.3), which can be made after the initial request to continuously monitor its status.
The list of objects that failed to be added, are still pending, or have been successfully added is a simple type, named status-details, that contains the identifier of the object (e.g., for STIX objects, their id), its version, and an optional  message indicating additional details. 

	Property Name
	Type
	Description

	id (required)
	identifier
	The identifier of this Status resource.

	status (required)
	string
	The overall status of a previous POST request where an HTTP 202 (Accept) was returned. The value of this property MUST be one of complete or pending. A value of complete indicates that this resource will not be updated further, and MAY be removed in the future. A status of pending indicates that this resource MAY be updated in the future.

	request_timestamp (optional)
	timestamp
	The datetime of the request that this status resource is monitoring.

	total_count (required)
	integer
	The total number of objects that were in the request, which would be the number of objects in the envelope. The value of the total_count MUST be a positive integer greater than or equal to zero. If this property has a value of 0, then the TAXII Server has not yet started processing the request.

	success_count (required)
	integer
	The number of objects that were successfully created. The value of the success_count MUST be a positive integer greater than or equal to zero.

	successes (optional)
	list of type status-details
	A list of objects that was successfully processed. 

	failure_count (required)
	integer
	The number of objects that failed to be created. The value of the failure_count MUST be a positive integer greater than or equal to zero.

	failures (optional)
	list of type status-details
	A list of objects that was not successfully processed.

	pending_count (required)
	integer
	The number of objects that have yet to be processed. The value of the pending_count MUST be a positive integer greater than or equal to zero.

	pendings (optional)
	list of type status-details
	A list of objects that have yet to be processed. 



Type Name: status-details
This type represents an object that was added, is pending, or not added to the Collection. It contains the id and version of the object along with a message describing any details about its status.

	Property Name
	Type
	Description

	id (required)
	string
	The identifier of the object that succeed, is pending, or failed to be created. For STIX objects the id MUST be the STIX Object id. For object types that do not have their own identifier, the server MAY use any value as the id.

	version (required)
	string
	The version of the object that succeeded, is pending, or failed to be created. For STIX objects the version MUST be the STIX modified timestamp Property. If a STIX object is not versioned (and therefore does not have a modified timestamp), the server MUST use the created timestamp. If the STIX object does not have a created or modified timestamp then the server SHOULD use a value for the version that is consistent to the server.

	message (optional)
	string
	A message indicating more information about the object being created, its pending state, or why the object failed to be created.



Status URL Examples
https://example.com/api1/status/2d086da7-4bdc-4f91-900e-d77486753710/
https://example.com/api2/status/88dc8293-827e-44f0-a592-4b5302fbe9d3/
https://example.org/trustgroup1/status/5d26743b-4ade-4b7d-8fea-f68119d4f909/

5 [bookmark: _7nxw9863gsvf][bookmark: _Toc26285807][bookmark: _Toc31107532]TAXII API - Collections
A TAXII Collection is a logical grouping of threat intelligence that enables the exchange of information between a TAXII Client and a TAXII Server in a request-response manner. Collections are hosted in the context of an API Root. Each API Root MAY have zero or more Collections. As with other TAXII Endpoints, the ability of TAXII Clients to read from and write to Collections can be restricted depending on their permissions level.
This section defines the TAXII API Collection Endpoints (URLs and methods), valid media types, and responses.
The following table provides a summary of the Endpoints (URLs and HTTP Methods) defined by TAXII and the Resources they operate on.

	URL
	Methods
	Resource Type

	{api-root}/collections/
	GET
	collections

	{api-root}/collections/{id}/
	GET
	collection

	{api-root}/collections/{id}/manifest/
	GET
	manifest

	{api-root}/collections/{id}/objects/
	GET, POST
	envelope

	{api-root}/collections/{id}/objects/{object-id}/
	GET, DELETE
	envelope

	{api-root}/collections/{id}/objects/{object-id}/versions/
	GET
	versions



5.1 [bookmark: _g5nhvit9iwpo][bookmark: _Toc26285808][bookmark: _Toc31107533]Get Collections
This Endpoint provides information about the Collections hosted under this API Root. This is similar to the response to get a Collection (see section 5.2), but rather than providing information about one Collection it provides information about all of the Collections. Most importantly, it provides the Collection's id, which is used to request objects or manifest entries from the Collection.

If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an HTTP 404 (Not Found).

	GET
	 /{api-root}/collections/

	
Implementation Notes
Get information about all collections

Requests

URL Parameters
{api-root} - the base URL of the API Root

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
collections

Failure Responses

Response Codes
400 - The server did not understand the request
401 - The client needs to authenticate
403 - The client does not have access to this collections resource
404 - The API Root is not found, or the client does not have access to the collections resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/collections/ HTTP/1.1
Host: example.com
Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK
Content-Type: application/taxii+json;version=2.1

{
  "collections": [
    {
      "id": "91a7b528-80eb-42ed-a74d-c6fbd5a26116",
      "title": "High Value Indicator Collection",
      "description": "This data collection contains high value IOCs",
      "can_read": true,
      "can_write": false,
      "media_types": [
        "application/stix+json;version=2.1"
      ]
    },
    {
      "id": "52892447-4d7e-4f70-b94d-d7f22742ff63",
      "title": "Indicators from the past 24-hours",
      "description": "This data collection is for collecting current IOCs",
      "can_read": true,
      "can_write": false,
      "media_types": [
        "application/stix+json;version=2.1"
      ]
    }
  ]
}



5.1.1 [bookmark: _tuwdlrft3p44][bookmark: _Toc26285809][bookmark: _Toc31107534]Collections Resource
Resource Name: collections
The collections resource is a simple wrapper around a list of collection resources.

	Property Name
	Type
	Description

	collections (optional)
	list of type collection
	A list of Collections. If there are no Collections in the list, this key MUST be omitted, and the response is an empty object. The collection resource is defined in section 5.2.1.



5.2 [bookmark: _8akkdelgbkrg][bookmark: _Toc26285810][bookmark: _Toc31107535]Get a Collection
This Endpoint provides general information about a Collection, which can be used to help users and clients decide whether and how they want to interact with it. For example, it will tell clients what it's called and what permissions they have to it.
If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an HTTP 404 (Not Found).

	GET
	 /{api-root}/collections/{id}/

	
Implementation Notes
Get information about a specific collection

Requests

URL Parameters
{api-root} - the base URL of the API Root
{id}       - the identifier of the Collection being requested

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
collection

Failure Responses

Response Codes
400 - The server did not understand the request
401 - The client needs to authenticate
403 - The client does not have access to this collection resource
404 - The API Root or Collection ID are not found, or the client does not have access to the collection resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/ HTTP/1.1
Host: example.com
Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK
Content-Type: application/taxii+json;version=2.1

{
  "id": "91a7b528-80eb-42ed-a74d-c6fbd5a26116",
  "title": "High Value Indicator Collection",
  "description": "This data collection contains high value IOCs",
  "can_read": true,
  "can_write": false,
  "media_types": [
    "application/stix+json;version=2.1"
  ]
}



5.2.1 [bookmark: _868250i2vzaz][bookmark: _Toc26285811][bookmark: _Toc31107536]Collection Resource
Resource Name: collection
The collection resource contains general information about a Collection, such as its id, a human-readable title and description, an optional list of supported media_types (representing the media type of objects can be requested from or added to it), and whether the TAXII Client, as authenticated, can get objects from the Collection and/or add objects to it.

	Property Name
	Type
	Description

	id (required)
	identifier
	The id property universally and uniquely identifies this Collection. It is used in the Get Collection Endpoint (see section 5.2) as the {id} parameter to retrieve the Collection.

	title (required)
	string
	A human readable plain text title used to identify this Collection.

	description (optional)
	string
	A human readable plain text description for this Collection.

	alias (optional)
	string
	A human readable collection name that can be used on systems to alias a collection ID. This could be used by organizations that want to preconfigure a known collection of data, regardless of the underlying collection ID that is configured on a specific implementations.

If defined, the alias MUST be unique within a single api-root on a single TAXII server. There is no guarantee that an alias is globally unique across api-roots or TAXII server instances.

Example: /{api-root}/collections/critical-high-value-indicators/

	can_read (required)
	boolean
	Indicates if the requester can read (i.e., GET) objects from this Collection. If true, users are allowed to access the Get Objects, Get an Object, or Get Object Manifests endpoints for this Collection. If false, users are not allowed to access these endpoints. 

	can_write (required)
	boolean
	Indicates if the requester can write (i.e., POST) objects to this Collection. If true, users are allowed to access the Add Objects endpoint for this Collection. If false, users are not allowed to access this endpoint.

	media_types (optional)
	list of type string
	A list of supported media types for Objects in this Collection. Absence of this property is equivalent to a single-value list containing  "application/stix+json". This list MUST describe all media types that the Collection can store.



5.3 [bookmark: _4jiwyx7i0uyw][bookmark: _Toc26285812][bookmark: _Toc31107537]Get Object Manifests
This Endpoint retrieves a manifest about the objects in a Collection. It supports filtering identical to the get objects Endpoint (see section 5.4) but rather than returning the object itself it returns metadata about the object. It can be used to retrieve metadata to decide whether it's worth retrieving the actual objects.
If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an HTTP 404 (Not Found).
If the Collection specifies can_read as false for a particular client, this Endpoint MUST return an HTTP HTTP 403 (Forbidden) or HTTP 404 (Not Found) error. 
Filtering is applied against the source object rather than the manifest entry for an object. Thus, searching the manifest for a type of indicator will return the manifest entries for objects with a type of indicator, even though the manifest doesn't have a type property.
If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an HTTP 404 (Not Found).

	GET
	 /{api-root}/collections/{id}/manifest/

	
Implementation Notes
Get manifest information about the contents of a specific collection.

Requests

URL Parameters
{api-root}  - the base URL of the API Root
{id}        - the identifier of the Collection being requested

URL Filtering Parameters
added_after  - a single timestamp            (e.g., ?added_after=...)
limit        - a single integer              (e.g., ?limit=...)
next         - a single string               (e.g., ?next=...)
id           - an id(s) of an object         (e.g., ?match[id]=...)
type         - the type(s) of an object      (e.g., ?match[type]=...)
version      - the version(s) of an object   (e.g., ?match[version]=...)
spec_version - the specification version(s)  (e.g., ?match[spec_version]=...)

Filtering is based on properties of the objects that the manifest entries represent. For example, filtering by type=indicator will return manifest entries for objects with a type of indicator.

Required Headers
Accept: application/taxii+json;version=2.1,application/stix+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1
X-TAXII-Date-Added-First: timestamp 
X-TAXII-Date-Added-Last: timestamp

Payload
manifest

Failure Responses

Response Codes
400 - The server did not understand the request or filter parameters
401 - The client needs to authenticate
403 - The client does not have access to this manifest resource
404 - The API Root or Collection ID are not found, or the client does not have access to the manifest resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/manifest/ HTTP/1.1
Host: example.com
Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK
Content-Type: application/taxii+json;version=2.1
X-TAXII-Date-Added-First: timestamp
X-TAXII-Date-Added-Last: timestamp

{
  "objects": [
    {
      "id": "indicator--29aba82c-5393-42a8-9edb-6a2cb1df070b",
      "date_added": "2016-11-04T03:04:051Z",
      "version": "2016-11-03T12:30:59.000Z",
      "media_type": "application/stix+json;version=2.1"
    },
    {
      "id": "indicator--ef0b28e1-308c-4a30-8770-9b4851b260a5",
      "date_added": "2016-11-04T10:29:061Z",
      "version": "2016-11-03T12:35:10.000Z",
      "media_type": "application/stix+json;version=2.1"
    }
  ]
}



5.3.1 [bookmark: _1e8i1z1cmxi8][bookmark: _Toc26285813][bookmark: _Toc31107538]Manifest Resource
Resource Name: manifest
The manifest resource is a simple wrapper around a list of manifest-record items.

	Property Name
	Type
	Description

	more (optional)
	boolean
	This property identifies if there is more content available based on the search criteria. The absence of this property means the value is false.

	objects (optional)
	list of type manifest-record
	The list of manifest entries for objects returned by the request. If there are no manifest-record items in the list, this key MUST be omitted, and the response is an empty object.



Type Name: manifest-record
The manifest-record type captures metadata about a single version of an object, indicated by the id property. The metadata includes information such as when that version of the object was added to the Collection, the version of the object itself, and the media type that this specific version of the object is available in.

	Property Name
	Type
	Description

	id (required)
	string
	The identifier of the object that this manifest entry describes. For STIX objects the id MUST be the STIX Object id. For object types that do not have their own identifier, the server MAY use any value as the id.

	date_added (required)
	timestamp
	The date and time this object was added.

	version (required)
	string
	The version of this object.

For objects in STIX format, the STIX modified property is the version. If a STIX object is not versioned (and therefore does not have a modified timestamp), the server MUST use the created timestamp. If the STIX object does not have a created or modified timestamp then the server SHOULD use a value for the version that is consistent to the server.

	media_type (optional)
	string
	The media type that this specific version of the object can be requested in. This value MUST be one of the media types listed on the collection resource.



5.4 [bookmark: _xlss9yvcfjov][bookmark: _Toc26285814][bookmark: _Toc31107539]Get Objects
This Endpoint retrieves objects from a Collection. Clients can search for objects in the Collection, retrieve all objects in a Collection, or paginate through objects in the Collection. Pagination is supported by the limit URL query parameter (see section 3.4) and the more property of the envelope (see section 3.7).
If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an HTTP 404 (Not Found)
If the Collection specifies can_read as false for a particular client, this Endpoint MUST return an HTTP HTTP 403 (Forbidden) or HTTP 404 (Not Found) error.
To support searching the Collection, this Endpoint supports filtering as defined in section 3.4. Clients can provide one or more filter parameters to get objects with a specific ID, of a specific type, or with a specific version. Future versions of TAXII will add more advanced filtering capabilities.
When requesting STIX 2 content, that content will always be delivered in a TAXII envelope even if there only one object returned. If no STIX objects are returned, the response MUST include an empty envelope. An envelope is returned even when requesting a specific object ID, as there may be multiple versions of that object that are returned.

	GET
	 /{api-root}/collections/{id}/objects/

	
Implementation Notes
Get all objects from a collection

Requests

URL Parameters
{api-root} - the base URL of the API Root
{id}       - the identifier of the Collection being requested

URL Filtering Parameters
added_after  - a single timestamp            (e.g., ?added_after=...)
limit        - a single integer              (e.g., ?limit=...)
next         - a single string               (e.g., ?next=...)
id           - an id(s) of an object         (e.g., ?match[id]=...)
type         - the type(s) of an object      (e.g., ?match[type]=...)
version      - the version(s) of an object   (e.g., ?match[version]=...)
spec_version - the specification version(s)  (e.g., ?match[spec_version]=...)

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1
X-TAXII-Date-Added-First: timestamp 
X-TAXII-Date-Added-Last: timestamp

Payload
envelope

Failure Responses

Response Codes
400 - The server did not understand the request or filter parameters
401 - The client needs to authenticate
403 - The client does not have access to this objects resource
404 - The API Root or Collection ID are not found, or the client does not have access to the objects resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error 

Example

GET Request
GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/objects/ HTTP/1.1
Host: example.com
Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK
Content-Type: application/taxii+json;version=2.1
X-TAXII-Date-Added-First: timestamp 
X-TAXII-Date-Added-Last: timestamp

{
  "objects": [
    {
      "type": "indicator",
      ...
    }
  ]
}



5.5 [bookmark: _4miz6vh6cpf5][bookmark: _Toc26285815][bookmark: _Toc31107540]Add Objects
This Endpoint adds objects to a Collection.
If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an HTTP 404 (Not Found).
If the Collection specifies can_write as false for a particular client, this Endpoint MUST return an HTTP HTTP 403 (Forbidden) or HTTP 404 (Not Found) error.
Successful responses to this Endpoint will contain a status resource describing the status of the request. The status resource contains an id, which can be used to make requests to the get status Endpoint (see section 4.3), a status flag to indicate whether the request is completed or still being processed, and information about the status of the particular objects in the request. If a client publishes an exact duplicate of an Object already present in the Collection, the server MUST not return an error for that Object.
If the request is marked pending in the status property, the client SHOULD periodically poll the get status Endpoint to get an updated status until such a time that the status property returns a value of complete. At that point, the request can be considered complete.
When adding STIX 2 content, clients MUST deliver all objects in a TAXII envelope.

	POST
	 /{api-root}/collections/{id}/objects/

	
Implementation Notes
Add a new object to a specific collection

Requests

URL Parameters
{api-root} - the base URL of the API Root
{id}       - the identifier of the Collection where objects are being added

Required Headers
Accept: application/taxii+json;version=2.1
Content-Type: application/taxii+json;version=2.1

Payload
envelope

Successful Responses

Response Codes
202 - The request was successful accepted

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
status

Failure Responses

Response Codes
400 - The server did not understand the request
401 - The client needs to authenticate
403 - The client does not have access to write to this objects resource
404 - The API Root or Collection ID are not found, or the client can not write to this objects resource
406 - The media type provided in the Accept header is invalid
413 - The POSTed payload exceeds the max_content_length of the API Root
415 - The client attempted to POST a payload with a content type the server does not support
422 - The object type or version is not supported or could not be processed. This can happen, for example, when sending a version of STIX that this TAXII Server does not support and cannot process, when sending a malformed body, or other unprocessable content

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

POST Request
POST /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/objects/ HTTP/1.1
Host: example.com
Accept: application/taxii+json;version=2.1
Content-Type: application/taxii+json;version=2.1

{
  "objects": [
    {
      "type": "indicator",
      "id": "indicator--c410e480-e42b-47d1-9476-85307c12bcbf",
      ...
    }
  ]
}

POST Response
HTTP/1.1 202 Accepted
Content-Type: application/taxii+json;version=2.1

{
  "id": "2d086da7-4bdc-4f91-900e-d77486753710",
  "status": "pending",
  "request_timestamp": "2016-11-02T12:34:34.12345Z",
  "total_count": 4,
  "success_count": 1,
  "successes": [
    {
      "id": "indicator--c410e480-e42b-47d1-9476-85307c12bcbf"
    }
  ],
  "failure_count": 0,
  "pending_count": 3
}



5.6 [bookmark: _9y37u2nt5euw][bookmark: _Toc26285816][bookmark: _Toc31107541]Get an Object
This Endpoint gets an object from a Collection by its id. It can be thought of as a search where the match[id] parameter is set to the {object-id} in the path. For STIX 2 objects, the {object-id} MUST be the STIX id.
If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an HTTP 404 (Not Found).
If the Collection specifies can_read as false for a particular client, this Endpoint MUST return an HTTP HTTP 403 (Forbidden) or HTTP 404 (Not Found) error. 
To support getting a particular version of an object, this Endpoint supports filtering as defined in section 3.4. The only valid match parameter is version.
When requesting STIX 2 content, that content will always be delivered in a TAXII envelope even if there only one object returned. If no STIX objects are returned, the response MUST include an empty envelope. An envelope is returned even when requesting a specific object ID, as there may be multiple versions of that object that are returned.

	GET
	 /{api-root}/collections/{id}/objects/{object-id}/

	
Implementation Notes
Get a specific object from a collection

Requests

URL Parameters
{api-root}  - the base URL of the API Root
{id}        - the identifier of the Collection being requested
{object-id} - the ID of the object being requested

URL Filtering Parameters
added_after  - a single timestamp            (e.g., ?added_after=...)
limit        - a single integer              (e.g., ?limit=...)
next         - a single string               (e.g., ?next=...)
version      - the version(s) of an object   (e.g., ?match[version]=...)
spec_version - the specification version(s)  (e.g., ?match[spec_version]=...)

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful      

Required Headers
Content-Type: application/taxii+json;version=2.1
X-TAXII-Date-Added-First: timestamp 
X-TAXII-Date-Added-Last: timestamp

Payload
envelope 

Failure Responses

Response Codes
400 - The server did not understand the request or filter parameters
401 - The client needs to authenticate
403 - The client does not have access to this object resource
404 - The API Root, Collection ID and/or Object ID are not found, or the client does not have access to the object resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/object/
indicator--252c7c11-daf2-42bd-843b-be65edca9f61/ HTTP/1.1
Host: example.com
Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK
Content-Type: application/taxii+json;version=2.1
X-TAXII-Date-Added-First: timestamp 
X-TAXII-Date-Added-Last: timestamp

{
  "objects": [
    {
      "type": "indicator",
      "id": "indicator--252c7c11-daf2-42bd-843b-be65edca9f61",
      ...,
    }
  ]
}



5.7 [bookmark: _kh75cbpovqfk][bookmark: _Toc26285817][bookmark: _Toc31107542]Delete an Object
This Endpoint deletes an object from a Collection by its id. For STIX 2 objects, the {object-id} MUST be the STIX id.
To support removing a particular version of an object, this Endpoint supports filtering as defined in section 3.4. The only valid match parameter is version.
When a TAXII Server returns a successful response code of 200 to a DELETE, any subsequent attempts to fetch that object/version from the collection by an authorized client using the Get Objects Endpoint MUST return an HTTP 404 (Not Found) response. Furthermore, any subsequent attempts to fetch the collection manifest or its contents MUST NOT return the object in the result. Subsequent attempts to fetch the object from other collections present on the TAXII server MAY also return an HTTP 404 (Not Found) response, and subsequent attempts to fetch the collection manifest or its contents of other collections which contained the object MAY not return the object in the result. 
If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an HTTP 404 (Not Found).
The following table defines the conditions and error codes that can be returned once a client has  successfully authenticated to this endpoint. If the collection specifies the following permissions for the authenticated client and the client attempts to delete an object at this endpoint, then this endpoint MUST return the error codes as defined in the following table. 

NOTE, the DELETE endpoint is only supported for collections where both can_read is true and can_write is true. 

	Client
can_read
	Client
can_write
	Mandatory Responses

	false
	false
	HTTP 404 (Not Found)

	true
	false
	HTTP 403 (Forbidden)

	false
	true
	HTTP 403 (Forbidden)

	true
	true
	< See the Successful and Failure Response sections below > 



	DELETE
	 /{api-root}/collections/{id}/objects/{object-id}/

	
Implementation Notes
Delete a specific object from a collection

Requests

URL Parameters
{api-root}  - the base URL of the API Root
{id}        - the identifier of the Collection being requested
{object-id} - the ID of the object being deleted

URL Filtering Parameters
version      - the version(s) of an object   (e.g., ?match[version]=...)
spec_version - the specification version(s)  (e.g., ?match[spec_version]=...)

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful
 
Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
n/a

Failure Responses

Response Codes
400 - The server did not understand the request
401 - The client needs to authenticate
403 - The client has access to the object, but not to delete it
404 - The API Root, Collection ID and/or Object ID are not found, or the client does not have access to the object
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

DELETE Request
DELETE /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/object/
indicator--252c7c11-daf2-42bd-843b-be65edca9f61/ HTTP/1.1
Host: example.com
Accept: application/taxii+json;version=2.1

DELETE Response
HTTP/1.1 200 OK
Content-Type: application/taxii+json;version=2.1



5.8 [bookmark: _vi1n8ct1mrup][bookmark: _Toc26285818][bookmark: _Toc31107543]Get Object Versions
This Endpoint retrieves a list of one or more versions of an object in a Collection. This list can be used to decide whether it's worth retrieving the actual objects, or if new versions have been added. If a STIX object is not versioned (and therefore does not have a modified timestamp), the server MUST use created timestamp.
If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an HTTP 404 (Not Found).
If the Collection specifies can_read as false for a particular client, this Endpoint MUST return an HTTP HTTP 403 (Forbidden) or HTTP 404 (Not Found) error.

	GET
	 /{api-root}/collections/{id}/objects/{object-id}/
 versions/

	
Implementation Notes
Get a list of object versions from a collection

Requests

URL Parameters
{api-root}  - the base URL of the API Root
{id}        - the identifier of the Collection being requested
{object-id} - the ID of the object being requested

URL Filtering Parameters
added_after  - a single timestamp            (e.g., ?added_after=...)
limit        - a single integer              (e.g., ?limit=...)
next         - a single string               (e.g., ?next=...)
spec_version - the specification version(s)  (e.g., ?match[spec_version]=...)

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful      

Required Headers
Content-Type: application/taxii+json;version=2.1
X-TAXII-Date-Added-First: timestamp 
X-TAXII-Date-Added-Last: timestamp

Payload
versions 

Failure Responses

Response Codes
400 - The server did not understand the request or filter parameters
401 - The client needs to authenticate
403 - The client does not have access to this versions resource
404 - The API Root, Collection ID and/or Object ID are not found, or the client does not have access to the versions resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/object/
indicator--252c7c11-daf2-42bd-843b-be65edca9f61/versions/ HTTP/1.1
Host: example.com
Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK
Content-Type: application/taxii+json;version=2.1
X-TAXII-Date-Added-First: timestamp 
X-TAXII-Date-Added-Last: timestamp

{
  "versions": [
    "2016-11-03T12:30:59.000Z",
    "2016-11-03T12:31:00.000Z"
  ]
}



5.8.1 [bookmark: _mtefrk4286s1][bookmark: _Toc26285819][bookmark: _Toc31107544]Versions Resource
Resource Name: versions
The versions resource is a simple wrapper around a list of versions.

	Property Name
	Type
	Description

	more (optional)
	boolean
	This property identifies if there is more content available based on the search criteria. The absence of this property means the value is false.

	versions (optional)
	list of type string
	The list of object versions returned by the request. If there are no versions returned, this key MUST be omitted, and the response is an empty object.


6 [bookmark: _d4js0k3tp7u5][bookmark: _Toc26285820][bookmark: _Toc31107545]TAXII API - Channels
RESERVED
7 [bookmark: _5yvf1ocdaid0][bookmark: _Toc26285821][bookmark: _Toc31107546]Customizing TAXII Resources
This section defines how to extend TAXII in an interoperable manner.
7.1 [bookmark: _cuhggiw0s7fa][bookmark: _Toc26285822][bookmark: _Toc31107547]Custom Properties
It is understood that there will be cases where certain information exchanges can be improved by adding properties that are not specified nor reserved in this document; these properties are called Custom Properties. This section provides guidance and requirements for how TAXII Servers and Clients should use and interpret Custom Properties in order to extend TAXII in an interoperable manner.

Note: The presence of Custom Properties may introduce variability of behavior depending on whether or not the TAXII Server or Client understands the Custom Properties. A reasonable strategy to minimize unwanted variations in behavior is to provide well defined and consistent rules for processing Custom Properties to any TAXII Server or Client that would be reasonably expected to parse them.
7.1.1 [bookmark: _3a2x3jdr23tq][bookmark: _Toc26285823][bookmark: _Toc31107548]Requirements
· A TAXII resource MAY have any number of Custom Properties.
· Custom Property names MUST be in ASCII and MUST only contain the characters a–z (lowercase ASCII), 0–9, and underscore (_).
· Custom Property names SHOULD start with “x_” followed by a source unique identifier (such as a domain name with dots replaced by underscores), an underscore and then the name. For example, x_example_com_customfield. 
· Custom Property names MUST have a minimum length of 3 ASCII characters.
· Custom Property names MUST be no longer than 250 ASCII characters in length.
· Custom Property names that are not prefixed with “x_” may be used in a future version of the specification for a different meaning. If compatibility with future versions of this specification is required, the “x_” prefix MUST be used.
· Custom Properties SHOULD only be used when there are no existing properties defined by the TAXII specification that fulfill that need.

TAXII Servers that receive a TAXII Resource with one or more Custom Properties it does not understand MAY respond in one of two ways: 
1. Either refuse to process the content further and respond to the message with an HTTP 422 (Unprocessable Entity) status code, 
2. or silently ignore non-understood properties and continue processing the message. 

TAXII Clients that receive a TAXII Resource with one or more Custom Properties it does not understand MAY silently ignore non-understood properties and continue processing the message. 

The reporting and logging of errors originating from the processing of Custom Properties depends on the TAXII Server and Client implementations and is therefore not covered in this specification.

Examples
{
  ...,
  "x_acmeinc_scoring": {
    "impact": "high",
    "probability": "low"
  },
  ...
}

8 [bookmark: _ff4eavl2wq4u][bookmark: _Toc26285824][bookmark: _Toc31107549]Conformance
8.1 [bookmark: _w0ae8z5bfs3m][bookmark: _Toc26285825][bookmark: _Toc31107550]TAXII Servers
This section describes the types of TAXII Servers that can be implemented and which normative requirements those types of servers must conform to.
8.1.1 [bookmark: _to4kk5s2xwpn][bookmark: _Toc26285826][bookmark: _Toc31107551]TAXII 2.1 Server
A "TAXII 2.1 Server" is any software that conforms to the following normative requirements:
1. It MUST support all requirements for a TAXII Collections Server as defined in section 8.1.2.
8.1.2 [bookmark: _hek0yi1k51kf][bookmark: _Toc26285827][bookmark: _Toc31107552]TAXII 2.1 Collections Server
A "TAXII 2.1 Collections Server" is any software that conforms to the following normative requirements:
1. It MUST support all requirements as defined in section 3, section 4 and section 5. 
2. It MUST include all required properties within TAXII Resources, as defined in section 4 and section 5.
3. It MUST support all features listed in section 8.2, Mandatory Server Features.
4. It MAY support any features listed in section 8.3, Optional Server Features. Software supporting an optional feature MUST comply with the normative requirements of that feature.
8.2 [bookmark: _o9lxh48xtvrs][bookmark: _Toc26285828][bookmark: _Toc31107553]Mandatory Server Features
This section defines the mandatory features that all TAXII Servers must implement.
8.2.1 [bookmark: _9661cpulvu2z][bookmark: _Toc26285829][bookmark: _Toc31107554]TAXII Server Core Requirements
1. It MUST define the URL of the Discovery API to be /taxii2/ and it MUST be located at the root of the server, e.g., https://example.com/taxii2/
2. It MUST support at least one API Root.
3. It MAY support multiple API Roots.
4. It MAY implement other HTTP Methods, Content Types, and/or URLs beyond those defined in this specification.
5. It MUST be capable of sending HTTP responses for features that it supports whose content is valid TAXII as defined in sections 3, 4, 5, and 6 or STIX as defined in [STIX Version 2.1].
6. All properties MUST conform to the data type and normative requirements for that property.
7. It SHOULD NOT reject a valid request that is missing the client User-Agent header.  
8.2.2 [bookmark: _gygtg7mt1jza][bookmark: _Toc26285830][bookmark: _Toc31107555]HTTPS and Authentication Server Requirements
1. It MUST accept TAXII 2.1 requests using HTTPS [RFC7230].
2. It MUST accept connections using TLS version 1.2 [RFC5246] and SHOULD accept connections using TLS version 1.3 [RFC8446] or higher.
3. It MUST NOT use the 0-RTT feature of TLS 1.3 [RFC8446].
4. It SHOULD NOT accept any TLS 1.2 connections that use any of the cipher suites that are listed in the cipher suite blacklist in Appendix A of [RFC7540].
5. It SHOULD implement the HTTP Basic authentication scheme per [RFC 7617].
6. It MAY permit configurations that enable and/or disable all authentication schemes, including HTTP Basic authentication.
7. It MAY implement additional authentication and authorization schemes beyond HTTP Basic, see section 1.6.9.
8. It MAY restrict access to clients by omitting specific objects, information, or optional properties from any TAXII response.
9. It MAY permit operators to disable all authentication.
10. It MAY choose to not respond to (a.k.a. silently ignore) unauthorized requests.
8.3 [bookmark: _9br2xarjg19b][bookmark: _Toc26285831][bookmark: _Toc31107556]Optional Server Features
This section defines the optional features that a TAXII Server MAY implement.
8.3.1 [bookmark: _k3nrnw6y9yge][bookmark: _Toc26285832][bookmark: _Toc31107557]Client Certificate Verification
TAXII 2.1 servers MAY choose to verify a client’s certificate and use it for authentication. TAXII Servers supporting client certificate verification and authentication MUST follow the normative requirements listed in this section.
· The default strategy for TAXII Servers authenticating and verifying certificates SHOULD be PKIX as defined in [RFC5280], [RFC6818], [RFC6125] et al.
· It MAY support other certificate verification policies such as Certificate Pinning.
8.4 [bookmark: _ydom5yp4zsh2][bookmark: _Toc26285833][bookmark: _Toc31107558]TAXII Clients
This section describes the types of TAXII Clients that can be implemented and which normative requirements those types of clients must conform to.
8.4.1 [bookmark: _h1uzliyzw8h9][bookmark: _Toc26285834][bookmark: _Toc31107559]TAXII 2.1 Client
A "TAXII 2.1 Client" is any software that conforms to the following normative requirements:
1. It MUST support all requirements for a TAXII Collections Client as defined in section 8.4.2.
2. It SHOULD use an HTTP User-Agent string to correctly identify the software name and version as defined in section 5.5.3 of [RFC7231].
8.4.2 [bookmark: _ns8dtm1a8v3h][bookmark: _Toc26285835][bookmark: _Toc31107560]TAXII 2.1 Collections Client
A "TAXII 2.1 Collections Client" is any software that exchanges CTI data with a TAXII 2.1 Collections Server or a TAXII 2.1 Server. A TAXII 2.1 Collections Client conforms to the following normative requirements:
1. It SHOULD be capable of looking up and using the TAXII SRV record from DNS.
2. It MUST support parsing all properties for resources defined in section 4 and section 5.
3. It MUST support all features listed in section 8.5, Mandatory Client Features.
8.5 [bookmark: _mjg6k7au91bo][bookmark: _Toc26285836][bookmark: _Toc31107561]Mandatory Client Features
This section defines the mandatory features that all TAXII Clients MUST support.
8.5.1 [bookmark: _9qk2tpsyb8e3][bookmark: _Toc26285837][bookmark: _Toc31107562]HTTPS and Authentication Client Requirements
1. It MUST initiate TAXII 2.1 requests to a TAXII 2.1 Server using HTTPS [RFC7230].
2. It MUST support TLS 1.2 and SHOULD use TLS version 1.3 [RFC8446] or higher
3. It SHOULD NOT use TLS 1.2 with any of the cipher suites that are listed in the cipher suite blacklist in Appendix A of [RFC7540].
4. It MUST implement the HTTP Basic authentication scheme as a client per [RFC 7617].
5. It MAY implement additional authentication and authorization schemes beyond HTTP Basic, see section 1.6.9.
8.5.2 [bookmark: _yl8ld05xh8vh][bookmark: _Toc26285838][bookmark: _Toc31107563]Server Certificate Verification
· The default strategy for TAXII Clients authenticating and verifying the server's TLS certificate SHOULD be PKIX as defined in [RFC5280], [RFC6818], [RFC6125] et al.
· TAXII Clients MAY support other certification verification policies such as:
· Certificate Pinning: A single or limited set of either hard-coded or physically distributed pinned certificate authorities or end-entity certificates. 
· DANE: DNS-based Authentication of Named Entities [RFC7671]. Systems implementing DANE SHOULD also implement DNSSEC [RFC4033].
· Note that Self-Signed Certificates (like other certificates which cannot be verified by PKIX) MAY be supported via Certificate Pinning and/or DANE as noted above.
Appendix A. [bookmark: _m6e6flvsaafq][bookmark: _Toc26285839][bookmark: _Toc31107564]Glossary

API Root - A grouping of TAXII Channels, Collections, and related functionality. 
Channel - A publish-subscribe communications method where messages are exchanged.
CTI - Cyber Threat Intelligence
Collection - A logical group of CTI objects.
Endpoint - A combination of a URL and HTTP method with defined behavior in TAXII.
STIX - Structured Threat Information Expression (STIX) is a language and serialization format used to exchange cyber threat intelligence (CTI).
STIX Content - STIX documents, including STIX Objects, grouped as STIX Bundles.
STIX Object - A STIX Domain Object (SDO) or STIX Relationship Object (SRO).
TAXII - Trusted Automated eXchange of Intelligence Information (TAXII) is an application layer protocol for the communication of cyber threat intelligence (CTI). 
TAXII Client - A software package that connects to a TAXII Server and supports the exchange of CTI.
TAXII Server - A software package that supports the exchange of CTI.
Appendix B. [bookmark: _mi5yomixcq3a][bookmark: _Toc26285840][bookmark: _Toc31107565]IANA Considerations

This appendix contains the required information to register the TAXII media type with IANA. While some of the information here is only for IANA, implementers of TAXII should pay close attention to the security considerations and privacy considerations outlined in this appendix. 

This document defines the "application/taxii+json" media type

Media type name:  application

Media subtype name:  taxii+json

Required parameters:  None

Optional parameters:  version
This parameter is used to designate the specification version of TAXII that is being used during HTTP content negotiation. Example: "application/taxii+json;version=2.1". The parameter value is of the form 'n.m', where n is the major version and m the minor version, both unsigned integer values.

Encoding considerations:  binary
Encoding considerations are identical to those specified for the "application/json" media type. See [RFC8259].

Security considerations:
These considerations are, in part, derived from Section 9 of the Resource-Oriented Lightweight Information Exchange [RFC8322].

This document defines a resource-oriented approach for exchanging cyber threat intelligence using HTTP [RFC7230] over TLS [RFC5246] and the JSON [RFC8259] Format.  As such, implementers must understand the security considerations described in those specifications.

Security considerations relating to the generation and consumption of TAXII messages are similar to application/json and are discussed in Section 12 of [RFC8259].

The discovery API contains one or multiple URLs, therefor the security considerations stated in Section 6 of [RFC1738] should be consulted especially in regard to parsing relative URLs and attempts of path traversal. 

Documents of "application/taxii+json" are simply request and response messages for an RPC like mechanism for searching, uploading and downloading Cyber Threat Intelligence (CTI) documents, most commonly STIX. The documents only contain metadata about the TAXII server, such as descriptions, versions of CTI or status response of the request. Documents do not contain active or executable content.

Unicode is used to represent text such as descriptions in the format. The considerations documented by Unicode Technical Report #36: Unicode Security Considerations [UNICODE] should be taken into account.

To protect the confidentiality of a given resource provided by a TAXII implementation, requests for retrieval of a resource need to be authenticated to prevent unauthorized users from accessing the resource. It can also be useful to log and audit access to sensitive resources to verify that proper access controls remain in place over time.

Access control to content made available using TAXII should use mechanisms that are appropriate to the sensitivity of the information. While the primitive authentication mechanism of HTTP Basic Authentication [RFC7617] is mandatory to implement for base level interoperability it is rarely appropriate for sensitive information.  A number of authentication schemes are defined in the "HTTP Authentication Schemes" registry at IANA [IANA AUTH].  Of these, HTTP Origin-Bound Authentication (HOBA) [RFC7486] and SCRAM-SHA-256 [RFC7804] ("SCRAM" stands for "Salted Challenge Response Authentication Mechanism") provide improved security properties over HTTP Basic [RFC7617] and Digest [RFC7616] authentication schemes. However, sharing communities that are engaged in sensitive collaborative analysis and/or operational response for indicators and incidents targeting high-value information systems should adopt a suitably stronger user authentication solution, such as a risk-based or multi-factor approach.

Collaborating consortiums may benefit from the adoption of a federated identity solution, such as those based upon OAuth [RFC6749] with the JSON Web Token (JWT) [RFC7797], or SAML-core [SAML-core] ("SAML" stands for "Security Assertion Markup Language"), SAML-bind [SAML-bind], and SAML-prof [SAML-prof] for web-based authentication and cross-organizational single sign-on.  Dependency on a trusted third-party identity provider implies that appropriate care must be exercised to sufficiently secure the identity provider.  Any attacks on the federated identity system would present a risk to the consortium, as a relying party. Potential mitigations include deployment of a federation-aware identity provider that is under the control of the information-sharing consortium, with suitably stringent technical and management controls.

It is recommended that all TAXII servers authenticate and authorize access to all collection data on a per-client basis using robust security methods. While this specification defines HTTP Basic as a minimum suggested authentication mechanism, more advanced security authentication methods are recommended when products or deployments require stronger authentication and authorization frameworks for accessing or posting data to the TAXII server.

Authorization of resource representations is the responsibility of the source system, i.e., based on the authenticated user identity associated with an HTTP(S) request.  The required authorization policies that are to be enforced must therefore be managed by the security administrators of the source system.  Various authorization architectures would be suitable for this purpose, such as Role-Based Access Control (RBAC) [NIST RBAC] and/or Attribute-Based Access Control (ABAC), as embodied in the eXtensible Access Control Markup Language (XACML) [XACML].  In particular, implementers adopting XACML may benefit from the capability to represent their authorization policies in a standardized, interoperable format.  Note that implementers are free to choose any suitable authorization mechanism that is capable of fulfilling the policy enforcement requirements relevant to their consortium and/or organization.

While the authentication and confidentiality for the TAXII session is done at a lower level via the transport mechanism (HTTPS), this does not obviate the consumer (server or client) from validating the format and contents of the documents sent in a session. This validation should includes checking various limits, such as document size limits, to limit the risk of the other party attempting to attack the service.

Additional security requirements such as enforcing message-level security at the destination system could supplement the security enforcements performed at the source system; however, these destination-provided policy enforcements are out of scope for this specification. Implementers requiring this capability should consider leveraging, for example, the <RIDPolicy> element in the RID schema. Refer to Section 9 of [RFC6545] for more information. Additionally, the underlying JSON serialization used in the representation can offer encryption and message authentication capabilities. For example, JSON Web Encryption [RFC7516] and JSON Web Signature [RFC7515], can provide such mechanisms.

TAXII Servers may manage response volume in different ways. Implementers should be aware that a search request may return more objects than is prudent to return in a single HTTP Response. To mitigate this, TAXII servers should consider implementing restrictions on the number of objects it will return in a single HTTP response.

TAXII provides clients a rich set of filtering and query options to return specific results from repositories of CTI data. As such, TAXII servers should implement protections against queries that can potentially consume a significant amount of resources and prevent the server from functioning in a normal way. 

TAXII defines an optional error message that may contain sensitive application data. Implementers should ensure that they do not leak descriptive text or application return codes for things that a user may not have access to, for example leak info about existence of something, implementation of something, vs. just not having access. 

Note: Despite TAXII searching and returning STIX objects, this format does not encapsulate any CTI content. It is expected that CTI documents will be sent with the appropriate mime-type. For these, consult their own security consideration sections.

As the next URL parameter is a client provided property, care must be taken that it is not blindly trusted as the same value that the server returned as part of the TAXII Envelope. This means it MUST NOT be implicitly trusted, and the value MUST be reevaluated in the context of the provided query such that incorrect data (data that the client is not authorized to have or not part of the query set) is not returned.

Privacy considerations 
These considerations are, in part, derived from Section 10 of the Resource-Oriented Lightweight Information Exchange [RFC8322].

The documents contain various descriptions and other text. There is no expectation that these will contain private information, but as some may be user provided, there is no guarantee that a user will not inadvertently include private data. It is expected that the client or server authenticate the other party through the transport mechanism before sending any possible private data. As the protocol is about sharing data, it is expected that the parties understand their obligations in keeping relevant data private.

Adoption of the information-sharing approach described in this document will enable users to more easily perform correlations across separate, and potentially unrelated, cybersecurity information providers.  A client may succeed in assembling a data set that would not have been permitted within the context of the authorization policies of either provider when considered individually.  Thus, providers may face a risk of an attacker obtaining an access that constitutes an undetected separation of duties (SOD) violation. It is important to note that this risk is not unique to this specification, and a similar potential for abuse exists with any other cybersecurity information-sharing protocol.  However, the wide availability of tools for HTTP clients implies that the resources and technical skills required for a successful exploit may be less than it was previously.  This risk can be best mitigated through appropriate vetting of the client at the time of account provisioning.  In addition, any increase in the risk of this type of abuse should be offset by the corresponding increase in effectiveness that this specification affords to the defenders.

Overall, privacy concerns in TAXII can be mitigated by following security considerations and by the careful use of the content exchanged via TAXII.

Interoperability considerations:
The TAXII specification specifies the format of conforming messages and the interpretation thereof. In addition, the OASIS Cyber Threat Intelligence (CTI) Technical Committee has defined interoperability tests to ensure conforming products and solutions can exchange TAXII documents.

Published specification:
TAXII Version 2.1 OASIS Committee Specification 01
http://docs.oasis-open.org/cti/taxii/v2.1/cs01/taxii-v2.1-cs01.html
Cited in the "OASIS Standards" document:
https://www.oasis-open.org/standards#oasiscommiteespecs, from
https://www.oasis-open.org/standards#taxii2.1

Applications which use this media:
TAXII is an application layer protocol for the communication of cyber threat information including STIX in a simple and scalable manner.

Fragment identifier considerations:  None

Restrictions on usage:  None

Additional information:

1. Deprecated alias names for this type: application/vnd.oasis.taxii+json
2. Magic number(s): n/a [RFC8259]
3. File extension(s): None
4. Macintosh file type code: TEXT [RFC8259]
5. Object Identifiers: None

Person and email to contact for further information:  Chet Ensign (chet.ensign@oasis-open.org)

Intended usage:  COMMON

Author:
OASIS Cyber Threat Intelligence (CTI) Technical Committee; 
URI reference: https://www.oasis-open.org/committees/cti/. 

Change controller:  OASIS

Provisional registration:  No
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