STIX™ Version 1.2.1. Part 15: UML Model

Committee Specification 01

05 May 2016

Specification URIs

This version:
http://docs.oasis-open.org/cti/stix/v1.2.1/cs01/part15-uml-model/stix-v1.2.1-cs01-part15-uml-model.docx (Authoritative)
http://docs.oasis-open.org/cti/stix/v1.2.1/cs01/part15-uml-model/stix-v1.2.1-cs01-part15-uml-model.html

Previous version:
http://docs.oasis-open.org/cti/stix/v1.2.1/csprd01/part15-uml-model/stix-v1.2.1-csprd01-part15-uml-model.docx (Authoritative)
http://docs.oasis-open.org/cti/stix/v1.2.1/csprd01/part15-uml-model/stix-v1.2.1-csprd01-part15-uml-model.html

Latest version:
http://docs.oasis-open.org/cti/stix/v1.2.1/stix-v1.2.1-part15-uml-model.docx (Authoritative)
http://docs.oasis-open.org/cti/stix/v1.2.1/stix-v1.2.1-part15-uml-model.html
http://docs.oasis-open.org/cti/stix/v1.2.1/stix-v1.2.1-part15-uml-model.pdf

Technical Committee:
OASIS Cyber Threat Intelligence (CTI) TC

Chair:
Richard Struse (Richard.Struse@HQ.DHS.GOV), DHS Office of Cybersecurity and Communications (CS&C)

Editors:
Sean Barnum (sbarnum@mitre.org), MITRE Corporation
Desiree Beck (dbeck@mitre.org), MITRE Corporation
Aharon Chernin (achernin@soltra.com), Soltra
Rich Piazza (rpiazza@mitre.org), MITRE Corporation

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

- **STIX Version 1.2.1. Part 1: Overview.** http://docs.oasis-open.org/cti/stix/v1.2.1/cs01/part1-overview/stix-v1.2.1-cs01-part1-overview.html
- **STIX Version 1.2.1. Part 2: Common.** http://docs.oasis-open.org/cti/stix/v1.2.1/cs01/part2-common/stix-v1.2.1-cs01-part2-common.html
- **STIX Version 1.2.1. Part 3: Core.** http://docs.oasis-open.org/cti/stix/v1.2.1/cs01/part3-core/stix-v1.2.1-cs01-part3-core.html
- **STIX Version 1.2.1. Part 4: Indicator.** http://docs.oasis-open.org/cti/stix/v1.2.1/cs01/part4-indicator/stix-v1.2.1-cs01-part4-indicator.html
- **STIX Version 1.2.1. Part 5: TTP.** http://docs.oasis-open.org/cti/stix/v1.2.1/cs01/part5-ttp/stix-v1.2.1-cs01-part5-ttp.html
Abstract:
The Structured Threat Information Expression (STIX) is a collaborative, community-driven effort to define and develop a framework for expressing cyber threat information to enable cyber threat information sharing and cyber threat analysis. The STIX framework comprises a collection of extensible component specifications along with an overarching core specification and supporting specifications. This document describes the use of UML to create a data model for STIX.

Status:
This document was last revised or approved by the OASIS Cyber Threat Intelligence (CTI) TC on the above date. The level of approval is also listed above. Check the "Latest version" location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cti#technical.

TC members should send comments on this specification to the TC's email list. Others should send comments to the TC's public comment list, after subscribing to it by following the instructions at the "Send A Comment" button on the TC's web page at https://www.oasis-open.org/committees/cti/.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-open.org/committees/cti/ipr.php).

Citation format:
When referencing this specification the following citation format should be used:

[STIX-v1.2.1-UML-Model]

Related work:
This specification is related to:

- CybOX™ 2.1. https://cyboxproject.github.io/

Related work:
UML Model Serialization: http://docs.oasis-open.org/cti/stix/v1.2.1/cs01/part15-uml-model/
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR FREEDOM FROM INFRINGEMENT, ANY WARRANTY THAT THE STANDARDS OR THEIR COMPONENT PARTS WILL BE ERROR FREE, OR ANY WARRANTY THAT THE DOCUMENTATION, IF PROVIDED, WILL CONFORM TO THE STANDARDS OR THEIR COMPONENT PARTS. IN NO EVENT SHALL THE UNITED STATES GOVERNMENT OR ITS CONTRACTORS OR SUBCONTRACTORS BE LIABLE FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF, RESULTING FROM, OR IN ANY WAY CONNECTED WITH THESE STANDARDS OR THEIR COMPONENT PARTS OR ANY PROVIDED DOCUMENTATION, WHETHER OR NOT BASED UPON WARRANTY, CONTRACT, TORT, OR OTHERWISE, WHETHER OR NOT INJURY WAS SUSTAINED BY PERSONS OR PROPERTY OR OTHERWISE, AND WHETHER OR NOT LOSS WAS SUSTAINED FROM, OR AROSE OUT OF THE RESULTS OF, OR USE OF, THE STANDARDS, THEIR COMPONENT PARTS, AND ANY PROVIDED DOCUMENTATION. THE UNITED STATES GOVERNMENT DISCLAIMS ALL WARRANTIES AND LIABILITIES REGARDING THE STANDARDS OR THEIR COMPONENT PARTS ATTRIBUTABLE TO ANY THIRD PARTY, IF PRESENT IN THE STANDARDS OR THEIR COMPONENT PARTS AND DISTRIBUTES IT OR THEM "AS IS."
Table of Contents

1 Introduction.. 6
 1.1 STIX™ Specification Documents .. 6
 1.2 Document Conventions .. 7
 1.2.1 Fonts... 7
 1.3 Terminology .. 7
 1.4 Normative References ... 7
 1.5 Non-Normative References .. 7
2 UML Model Artifact .. 8
3 Data Model Conventions .. 9
 3.1 UML Packages .. 9
 3.2 Naming Conventions ... 11
 3.3 UML Diagrams .. 12
 3.3.1 Class Properties ... 13
 3.3.2 Diagram Icons and Arrow Types ... 13
 3.3.3 Color Coding .. 13
4 Conformance ... 14
Appendix A. Acknowledgments .. 15
Appendix B. Revision History ... 17
1 Introduction

[All text is normative unless otherwise labeled]

The objective of the Structured Threat Information Expression (STIX™) effort is to specify the structure and semantics of a language for capturing and characterizing cyber threat information. The normative specification of the language structure is defined in the form of a formal UML model and a set of textual specification documents that explain the UML model. The set of textual specification documents also provides clarification of language semantics that the UML model is unable to convey.

This specification document provides brief summary information on the form and use of the STIX Language UML model. In addition to this textual specification document, STIX Version 1.2.1 Part 15: UML Model consists of an actual digital serialization of the UML model and a set of relevant UML diagrams extracted from the UML model and used throughout the STIX Language specification.

In Section 1.1 we discuss the additional specification documents, in Section 1.2 we provide document conventions, and in Section 1.3 we provide terminology. References are given in Sections 1.4 and 1.5. In Section 2, we give summary information on the form of the digitally serialized UML model artifact, and in Section 3 we provide general information and conventions for how the UML model is used to define the individual data models. Conformance information is provided in Section 4.

1.1 STIX™ Specification Documents

Specification documents have been written for each of the key individual data models that compose the full STIX UML model.

The STIX Version 1.2.1 Part 1: Overview document provides a comprehensive overview of the full set of STIX data models, which in addition to the nine data models models (Observable, Indicator, Incident, TTP, ExploitTarget, CourseOfAction, Campaign, ThreatActor, and Report), includes a core data model, a common data model, a cross-cutting data marking data model, various extension data models, and a set of default controlled vocabularies. STIX Version 1.2.1 Part 1: Overview also summarizes the relationship of STIX to other languages and outlines general STIX data model conventions.

Figure 1-1 illustrates the set of specification documents that are available. The color black is used to indicate the specification overview document, altered shading differentiates the overarching Core and Common data models from the supporting data models (vocabularies, data marking, and default extensions), and the color white indicates the component data models. This STIX Language UML Model specification document is shown in yellow. For a list of all STIX documents and related information sources, please see STIX Version 1.2.1 Part 1: Overview.
1.2 Document Conventions

The following conventions are used in this document.

1.2.1 Fonts

The following font and font style conventions are used in the document:

- Capitalization is used for STIX high level concepts.

 Examples: Indicator, Course of Action, Threat Actor

- The **Courier New** font is used for writing UML objects.

 Examples: RelatedIndicatorsType, stixCommon:StatementType

Note that all high level concepts have a corresponding UML object. For example, the Course of Action high level concept is associated with a UML class named, CourseOfActionType.

- The ‘italic’ font (with single quotes) is used for noting actual, explicit values for STIX Language properties. The italic font (without quotes) is used for noting example values.

 Example: ‘PackageIntentVocab-1.0,’ high, medium, low

1.3 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

1.4 Normative References

1.5 Non-Normative References

2 UML Model Artifact

The STIX UML model is formally represented in the form of a digital serialization using the XML Metadata Interchange (XMI) language. The XMI language is intended to be an open standardized form supporting the expression of UML models in a non-proprietary manner. In reality, many UML modeling tools tend to include some proprietary elements in their XMI output. The STIX UML model was produced using Rational Software Architect (RSA) version 9.1, a product of the IBM Corporation. Effort has been made to minimize the level of proprietary content (from the RSA tool) in the XMI serialization but it should be noted that some portion may still remain.

For the broadest possible interoperability between UML tools the model is provided as an XMI serialization using UML2.2/XMI2.1 [XMI] containing only the model and not the diagrams. A set of relevant UML diagrams, extracted from the UML model and leveraged throughout the STIX Language specification documents, is also provided in a rastered (portable network graphics [PNG]) form.

In addition, for those with tools that can import the more complete RSA tool native .EMX format the model with embedded diagrams is also provided in this form.
3 Data Model Conventions

The following general information and conventions are used to define the individual data models in UML.

3.1 UML Packages

Each STIX data model is captured in a different UML package (e.g., Core package, Campaign package, etc.). To refer to a particular class of a specific package, we use the format package_prefix:class, where package_prefix corresponds to the appropriate UML package. Table 3-1 lists the packages used throughout the STIX data model specification documents, along with the prefix notation and an example.

Table 3-1. Package prefixes used by the STIX™ Language

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STIX Core</td>
<td>The STIX Core data model defines a STIX Package that encompasses all other objects of STIX.</td>
</tr>
<tr>
<td>stix</td>
<td>Example: stix:TTPsType</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STIX Common</td>
<td>The STIX Common data model defines classes that are shared across the various STIX data models.</td>
</tr>
<tr>
<td>stixCommon</td>
<td>Example: stixCommon:ConfidenceType</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STIX Data Marking</td>
<td>The STIX Data Marking data model enables data markings to be used.</td>
</tr>
<tr>
<td>marking</td>
<td>Example: marking:MarkingType</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STIX Default Vocabularies</td>
<td>The STIX default vocabularies define the classes for default controlled vocabularies used within STIX.</td>
</tr>
<tr>
<td>stixVocabs</td>
<td>Example: stixVocabs:MalwareTypeVocab</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packages used in STIX Default Extensions</td>
<td>Various packages are used by STIX extensions. Details are given in STIX Version 1.2.1 Part 12: Default Extensions.</td>
</tr>
<tr>
<td>Package</td>
<td>STIX Basic Data Types</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Prefix</td>
<td>basicDataTypes</td>
</tr>
<tr>
<td>Description</td>
<td>The STIX Basic Data Types data model defines the types used within STIX.</td>
</tr>
<tr>
<td>Example</td>
<td>basicDataTypes:URI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>STIX Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>indicator</td>
</tr>
<tr>
<td>Description</td>
<td>The STIX Indicator data model conveys specific Observable patterns combined with contextual information intended to represent artifacts and/or behaviors of interest within a cyber security context.</td>
</tr>
<tr>
<td>Example</td>
<td>indicator:TestMechanismType</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>STIX Incident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>incident</td>
</tr>
<tr>
<td>Description</td>
<td>The STIX Incident data model captures discrete instances of a specific set of observed events or properties affecting an organization.</td>
</tr>
<tr>
<td>Example</td>
<td>incident:AffectedAssetType</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>STIX TTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>ttp</td>
</tr>
<tr>
<td>Description</td>
<td>The STIX TTP data model captures the behavior or modus operandi of cyber adversaries.</td>
</tr>
<tr>
<td>Example</td>
<td>ttp:AttackPatternType</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>STIX Campaign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>campaign</td>
</tr>
<tr>
<td>Description</td>
<td>The STIX Campaign data model encompasses one or more Threat Actors pursuing an Intended Effect as observed through sets of Incidents and/or TTP, potentially across organizations.</td>
</tr>
<tr>
<td>Example</td>
<td>campaign:AttributionType</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>STIX Threat Actor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>ta</td>
</tr>
</tbody>
</table>
| Description | The STIX Threat Actor data model captures characterizations of malicious actors (or adversaries) representing a cyber attack threat including presumed intent and historically
observed behavior.

Example
\texttt{ta:ObservedTTPsType}

Package
STIX Exploit Target

Prefix
et

Description
The STIX Exploit Target data model conveys a vulnerability or weakness in software, systems, networks or configurations that is targeted for exploitation by the TTP of a Threat Actor.

Example
\texttt{et:ConfigurationType}

Package
STIX Course of Action

Prefix
\texttt{coa}

Description
The STIX Course of Action data model conveys specific measures to be taken to address threats whether they are corrective or preventative to address Exploit Targets, or responsive to counter or mitigate the potential impacts of Incidents.

Example
\texttt{coa:StructuredCOAType}

Package
STIX Report

Prefix
\texttt{report}

Description
The STIX Report defines a contextual wrapper for a grouping of STIX content, which could include content specified using any of the other eight top-level constructs, or even other related Reports.

Example
\texttt{report:RelatedReportsType}

CybOX Core

Prefix
\texttt{cybox}

Description
The CybOX core data model defines the core constructs used in CybOX.

Example
\texttt{cybox:ObservablesType}

3.2 Naming Conventions

The UML classes, enumerations, and properties defined in STIX follow the particular naming conventions outlined in **Table 3-2**.

Table 3-2. Naming formats of different object types

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>CamelCase ending with “Type”</td>
<td>IndicatorBaseType</td>
</tr>
<tr>
<td>Property (simple)</td>
<td>Lowercase with underscores between words</td>
<td>capec_id</td>
</tr>
</tbody>
</table>
3.3 UML Diagrams

This document indicates how UML diagrams are used to visually depict relationships between STIX Language constructs in the rest of the specification. Note that the example diagrams have been extracted directly from the full UML model for STIX; they have not been constructed purely for inclusion in this or the other specification documents. Typically, diagrams are included where the visualization of their relationships between classes is useful for illustration purposes. This implies that there will be very few diagrams for classes whose only properties are either a data type or a class from the STIX Common data model. All component data models include a top-level diagram (see Figure 3-1).

Figure 3-1. Top-level package diagram (Campaign data model)

In UML diagrams, classes are often presented with their attributes elided, to avoid clutter. The fully described class can usually be found in a related diagram. A class presented with an empty section at the bottom of the icon indicates that there are no attributes other than those that are visualized using associations (see Figure 3-2).

Figure 3-2. Different presentations of class attributes

<table>
<thead>
<tr>
<th>Property (complex)</th>
<th>Capitalized with underscores between words</th>
<th>Associated_Actor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enumeration</td>
<td>CamelCase ending with “Enum” or “Type”</td>
<td>DateTimePrecisionEnum; IndicatorVersionType</td>
</tr>
<tr>
<td>Enumeration value</td>
<td>varies</td>
<td>Flash drive; Public Disclosure; Externally-Located</td>
</tr>
<tr>
<td>Data type</td>
<td>CamelCase or if the words are acronyms, all capitalized with underscores between words.</td>
<td>PositiveInteger; CVE_ID</td>
</tr>
</tbody>
</table>
3.3.1 Class Properties

Generally, a class property can be shown in a UML diagram as either an attribute or an association (i.e., the distinction between attributes and associations is somewhat subjective). In order to make the size of UML diagrams in the specifications manageable, we have chosen to capture most properties as attributes and to capture only higher level properties as associations, especially in the main top-level component diagrams. In particular, we will always capture properties of UML data types as attributes. For example, properties of a class that are identifiers, titles, and timestamps will be represented as attributes.

3.3.2 Diagram Icons and Arrow Types

Diagram icons are used in a UML diagram to indicate whether a shape is a class, enumeration or data type, and decorative icons are used to indicate whether an element is an attribute of a class or an enumeration literal. In addition, two different arrow styles indicate either a directed association relationship (regular arrowhead) or a generalization relationship (triangle-shaped arrowhead). The icons and arrow styles we use are shown and described in Table 3-3.

Table 3-3. UML diagram icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![class icon]</td>
<td>This diagram icon indicates a class. If the name is in italics, it is an abstract class.</td>
</tr>
<tr>
<td>![enumeration icon]</td>
<td>This diagram icon indicates an enumeration.</td>
</tr>
<tr>
<td>![data type icon]</td>
<td>This diagram icon indicates a data type.</td>
</tr>
<tr>
<td>![attribute icon]</td>
<td>This decorator icon indicates an attribute of a class. The green circle means its visibility is public. If the circle is red or yellow, it means its visibility is private or protected.</td>
</tr>
<tr>
<td>![enumeration literal icon]</td>
<td>This decorator icon indicates an enumeration literal.</td>
</tr>
<tr>
<td>![directed association arrow]</td>
<td>This arrow type indicates a directed association relationship.</td>
</tr>
<tr>
<td>![generalization arrow]</td>
<td>This arrow type indicates a generalization relationship.</td>
</tr>
</tbody>
</table>

3.3.3 Color Coding

The shapes of the UML diagrams are color coded to indicate the data model associated with a class. The colors used in the collection of specification documents via exemplars are illustrated in Figure 3-3.
4 Conformance

Implementations have discretion over which parts (components, properties, extensions, controlled vocabularies, etc.) of STIX they implement (e.g., Indicator/Suggested_COAs).

[1] Conformant implementations must conform to all normative structural specifications of the UML model or additional normative statements within this document that apply to the portions of STIX they implement (e.g., Implementers of the entire TTP component must conform to all normative structural specifications of the UML model or additional normative statements within this document regarding the TTP component).

[2] Conformant implementations are free to ignore normative structural specifications of the UML model or additional normative statements within this document that do not apply to the portions of STIX they implement (e.g., Non-implementers of any particular properties of the TTP component are free to ignore all normative structural specifications of the UML model or additional normative statements within this document regarding those properties of the TTP component).

The conformance section of this document is intentionally broad and attempts to reiterate what already exists in this document. The STIX 1.2 Specifications, which this specification is based on, did not have a conformance section. Instead, the STIX 1.2 Specifications relied on normative statements and the non-mandatory implementation of STIX profiles. STIX 1.2.1 represents a minimal change from STIX 1.2, and in that spirit no requirements have been added, modified, or removed by this section.
Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants:
Dean Thompson, Australia and New Zealand Banking Group (ANZ Bank)
Bret Jordan, Blue Coat Systems, Inc.
Adnan Baykal, Center for Internet Security (CIS)
Jyoti Verma, Cisco Systems
Liron Schiff, Comilion (mobile) Ltd.
Jane Ginn, Cyber Threat Intelligence Network, Inc. (CTIN)
Richard Struse, DHS Office of Cybersecurity and Communications (CS&C)
Marlon Taylor, DHS Office of Cybersecurity and Communications (CS&C)
David Eilken, Financial Services Information Sharing and Analysis Center (FS-ISAC)
Sarah Brown, Fox-IT
Ryusuke Masuoka, Fujitsu Limited
Eric Burger, Georgetown University
Jason Keirstead, IBM
Paul Martini, iboss, Inc.
Jerome Athias, Individual
Terry MacDonald, Individual
Alex Pinto, Individual
Patrick Maroney, Integrated Networking Technologies, Inc.
Wouter Bolsterlee, Intelworks BV
Joep Gommers, Intelworks BV
Sergey Polzunov, Intelworks BV
Rutger Prins, Intelworks BV
Andrei Sirghi, Intelworks BV
Raymon van der Velde, Intelworks BV
Jonathan Baker, MITRE Corporation
Sean Barnum, MITRE Corporation
Desiree Beck, MITRE Corporation
Mark Davidson, MITRE Corporation
Ivan Kirillov, MITRE Corporation
Jon Salwen, MITRE Corporation
John Wunder, MITRE Corporation
Mike Boyle, National Security Agency
Jessica Fitzgerald-Mckay, National Security Agency
Takahiro Kakumaru, NEC Corporation
John-Mark Gurney, New Context Services, Inc.
Christian Hunt, New Context Services, Inc.
Daniel Riedel, New Context Services, Inc.
Andrew Storms, New Context Services, Inc.
John Tolbert, Queralt, Inc.
Igor Baikalov, Securonix
Bernd Grobauer, Siemens AG
Jonathan Bush, Soltra
Aharon Chernin, Soltra
Trey Darley, Soltra
Paul Dion, Soltra
Ali Khan, Soltra
Natalie Suarez, Soltra
Cedric LeRoux, Splunk Inc.
Brian Luger, Splunk Inc.
Crystal Hayes, The Boeing Company
Brad Butts, U.S. Bank
Mona Magathan, U.S. Bank
Adam Cooper, United Kingdom Cabinet Office
Mike McLellan, United Kingdom Cabinet Office
Chris O’Brien, United Kingdom Cabinet Office
Julian White, United Kingdom Cabinet Office
Anthony Rutkowski, Yaana Technologies, LLC

The authors would like to thank the STIX Community for its input and help in reviewing this document.
Appendix B. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Editors</th>
<th>Changes Made</th>
</tr>
</thead>
<tbody>
<tr>
<td>wd01</td>
<td>11 September 2015</td>
<td>Sean Barnum</td>
<td>Initial authored draft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Desiree Beck</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aharon Chernin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rich Piazza</td>
<td></td>
</tr>
</tbody>
</table>

Notes

\footnote{1}{The CybOX Observable data model is actually defined in the CybOX Language, not in STIX.}