CybOX™ Version 2.1.1. Part 25: GUI Dialogbox Object

Committee Specification Draft 01 / Public Review Draft 01

20 June 2016

Specification URIs
This version:
http://docs.oasis-open.org/cti/cybox/v2.1.1/csprd01/part25-gui-dialogbox/cybox-v2.1.1-csprd01-part25-gui-dialogbox.docx (Authoritative)
http://docs.oasis-open.org/cti/cybox/v2.1.1/csprd01/part25-gui-dialogbox/cybox-v2.1.1-csprd01-part25-gui-dialogbox.html

Previous version:
N/A

Latest version:

Technical Committee:
OASIS Cyber Threat Intelligence (CTI) TC

Chair:
Richard Struse (Richard.Struse@HQ.DHS.GOV), DHS Office of Cybersecurity and Communications (CS&C)

Editors:
Desiree Beck (dbeck@mitre.org), MITRE Corporation
Trey Darley (trey@kingfisherops.com), Individual member
Ivan Kirillov (ikirillov@mitre.org), MITRE Corporation
Rich Piazza (rpiazza@mitre.org), MITRE Corporation

Additional artifacts:
This prose specification is one component of a Work Product whose components are listed in http://docs.oasis-open.org/cti/cybox/v2.1.1/csprd01/cybox-v2.1.1-csprd01-additional-artifacts.html.

Related work:
This specification is related to:
Abstract:
The Cyber Observable Expression (CybOX™) is a standardized language for encoding and communicating high-fidelity information about cyber observables, whether dynamic events or stateful measures that are observable in the operational cyber domain. By specifying a common structured schematic mechanism for these cyber observables, the intent is to enable the potential for detailed automatable sharing, mapping, detection, and analysis heuristics. This specification document defines the GUI Dialogbox Object data model, which is one of the Object data models for CybOX content.

Status:
This document was last revised or approved by the OASIS Cyber Threat Intelligence (CTI) TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cti#technical.

TC members should send comments on this specification to the TC’s email list. Others should send comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/cti/.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-open.org/committees/cti/ipr.php).

Citation format:
When referencing this specification the following citation format should be used:

[CybOX-v2.1.1-gui-dialogbox]
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR FREEDOM FROM INFRINGEMENT, ANY WARRANTY THAT THE STANDARDS OR THEIR COMPONENT PARTS WILL BE ERROR FREE, OR ANY WARRANTY THAT THE DOCUMENTATION, IF PROVIDED, WILL CONFORM TO THE STANDARDS OR THEIR COMPONENT PARTS. IN NO EVENT SHALL THE UNITED STATES GOVERNMENT OR ITS CONTRACTORS OR SUBCONTRACTORS BE LIABLE FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF, RESULTING FROM, OR IN ANY WAY CONNECTED WITH THESE STANDARDS OR THEIR COMPONENT PARTS OR ANY PROVIDED DOCUMENTATION, WHETHER OR NOT BASED UPON WARRANTY, CONTRACT, TORT, OR OTHERWISE, WHETHER OR NOT INJURY WAS SUSTAINED BY PERSONS OR PROPERTY OR OTHERWISE, AND WHETHER OR NOT LOSS WAS SUSTAINED FROM, OR AROSE OUT OF THE RESULTS OF, OR USE OF, THE STANDARDS, THEIR COMPONENT PARTS, AND ANY PROVIDED DOCUMENTATION. THE UNITED STATES GOVERNMENT DISCLAIMS ALL WARRANTIES AND LIABILITIES REGARDING THE STANDARDS OR THEIR COMPONENT PARTS ATTRIBUTABLE TO ANY THIRD PARTY, IF PRESENT IN THE STANDARDS OR THEIR COMPONENT PARTS AND DISTRIBUTES IT OR THEM "AS IS."
Table of Contents

1 Introduction .. 6
 1.1 CybOX™ Specification Documents .. 6
1.2 Document Conventions ... 6
 1.2.1 Fonts ... 6
 1.2.2 UML Package References .. 7
 1.2.3 UML Diagrams ... 7
 1.2.4 Property Table Notation ... 8
 1.2.5 Property and Class Descriptions ... 8
1.3 Terminology ... 9
1.4 Normative References ... 9
2 Background Information ... 10
 2.1 Cyber Observables ... 10
 2.2 Objects .. 10
3 Data Model .. 11
 3.1 GUIDialogboxObjectType Class .. 11
4 Conformance .. 13
Appendix A. Acknowledgments ... 14
Appendix B. Revision History ... 18
1 Introduction

[All text is normative unless otherwise labeled.]

The Cyber Observable Expression (CybOX™) provides a common structure for representing cyber observables across and among the operational areas of enterprise cyber security. CybOX improves the consistency, efficiency, and interoperability of deployed tools and processes, and it increases overall situational awareness by enabling the potential for detailed automatable sharing, mapping, detection, and analysis heuristics.

This document serves as the specification for the CybOX GUI Dialogbox Object Version 2.1.1 data model, which is one of eighty-eight CybOX Object data models.

In Section 1.1 we discuss additional specification documents, in Section 1.2 we provide document conventions, and in Section 1.3 we provide terminology. Reference are given in Sections 1.4. In Section 2, we give background information necessary to fully understand the GUI Dialogbox Object data model. We present the GUI Dialogbox Object data model specification details in Section 3 and conformance information in Section 4.

1.1 CybOX™ Specification Documents

The CybOX specification consists of a formal UML model and a set of textual specification documents that explain the UML model. Specification documents have been written for each of the individual data models that compose the full CybOX UML model.

CybOX has a modular design comprising two fundamental data models and a collection of Object data models. The fundamental data models – CybOX Core and CybOX Common – provide essential CybOX structure and functionality. The CybOX Objects, defined in individual data models, are precise characterizations of particular types of observable cyber entities (e.g., HTTP session, Windows registry key, DNS query).

Use of the CybOX Core and Common data models is required; however, use of the CybOX Object data models is purely optional: users select and use only those Objects and corresponding data models that are needed. Importing the entire CybOX suite of data models is not necessary.

The CybOX™ Version 2.1.1 Part 1: Overview document provides a comprehensive overview of the full set of CybOX data models, which in addition to the Core, Common, and numerous Object data models, includes various extension data models and a vocabularies data model, which contains a set of default controlled vocabularies. CybOX™ Version 2.1.1 Part 1: Overview also summarizes the relationship of CybOX to other languages, and outlines general CybOX data model conventions.

1.2 Document Conventions

The following conventions are used in this document.

1.2.1 Fonts

The following font and font style conventions are used in the document:

- Capitalization is used for CybOX high-level concepts, which are defined in CybOX™ Version 2.1.1 Part 1: Overview.
Examples: Action, Object, Event, Property

- The Courier New font is used for writing UML objects.

Examples: ActionType, cyboxCommon:BaseObjectPropertyType

Note that all high-level concepts have a corresponding UML object. For example, the Action high-level concept is associated with a UML class named, ActionType.

- The ‘italic’ font (with single quotes) is used for noting actual, explicit values for CybOX Language properties. The italic font (without quotes) is used for noting example values.

Example: 'HashNameVocab-1.0,' high, medium, low

1.2.2 UML Package References

Each CybOX data model is captured in a different UML package (e.g., Core package) where the packages together compose the full CybOX UML model. To refer to a particular class of a specific package, we use the format package_prefix:class, where package_prefix corresponds to the appropriate UML package.

The package_prefix for the GUI DialogBox data model is GUIDialogBoxObj. Note that in this specification document, we do not explicitly specify the package prefix for any classes that originate from the GUI Dialogbox Object data model.

1.2.3 UML Diagrams

This specification makes use of UML diagrams to visually depict relationships between CybOX Language constructs. Note that the diagrams have been extracted directly from the full UML model for CybOX; they have not been constructed purely for inclusion in the specification documents. Typically, diagrams are included for the primary class of a data model, and for any other class where the visualization of its relationships between other classes would be useful. This implies that there will be very few diagrams for classes whose only properties are either a data type or a class from the CybOX Common data model. Other diagrams that are included correspond to classes that specialize a superclass and abstract or generalized classes that are extended by one or more subclasses.

In UML diagrams, classes are often presented with their attributes elided, to avoid clutter. The fully described class can usually be found in a related diagram. A class presented with an empty section at the bottom of the icon indicates that there are no attributes other than those that are visualized using associations.

1.2.3.1 Class Properties

Generally, a class property can be shown in a UML diagram as either an attribute or an association (i.e., the distinction between attributes and associations is somewhat subjective). In order to make the size of UML diagrams in the specifications manageable, we have chosen to capture most properties as attributes and to capture only higher-level properties as associations, especially in the main top-level component diagrams. In particular, we will always capture properties of UML data types as attributes.

1.2.3.2 Diagram Icons and Arrow Types

Diagram icons are used in a UML diagram to indicate whether a shape is a class, enumeration, or a data type, and decorative icons are used to indicate whether an element is an attribute of a class or an enumeration literal. In addition, two different arrow styles indicate either a directed association relationship (regular arrowhead) or a generalization relationship (triangle-shaped arrowhead). The icons and arrow styles we use are shown and described in Table 1-1.
Table 1-1. UML diagram icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram icon]</td>
<td>This diagram icon indicates a class. If the name is in italics, it is an abstract class.</td>
</tr>
<tr>
<td>![Enumeration icon]</td>
<td>This diagram icon indicates an enumeration.</td>
</tr>
<tr>
<td>![DataType icon]</td>
<td>This diagram icon indicates a data type.</td>
</tr>
<tr>
<td>![Attribute icon]</td>
<td>This decorator icon indicates an attribute of a class. The green circle means its visibility is public. If the circle is red or yellow, it means its visibility is private or protected.</td>
</tr>
<tr>
<td>![Literal icon]</td>
<td>This decorator icon indicates an enumeration literal.</td>
</tr>
<tr>
<td>![Association icon]</td>
<td>This arrow type indicates a directed association relationship.</td>
</tr>
<tr>
<td>![Generalization icon]</td>
<td>This arrow type indicates a generalization relationship.</td>
</tr>
</tbody>
</table>

1.2.4 Property Table Notation

Throughout Section 3, tables are used to describe the properties of each data model class. Each property table consists of a column of names to identify the property, a type column to reflect the datatype of the property, a multiplicity column to reflect the allowed number of occurrences of the property, and a description column that describes the property. Package prefixes are provided for classes outside of the GUI Dialogbox Object data model (see Section 1.2.2).

Note that if a class is a specialization of a superclass, only the properties that constitute the specialization are shown in the property table (i.e., properties of the superclass will not be shown). However, details of the superclass may be shown in the UML diagram.

1.2.5 Property and Class Descriptions

Each class and property defined in CybOX is described using the format, “The X property verb Y.” For example, in the specification for the CybOX Core data model, we write, “The id property specifies a globally unique identifier for the Action.” In fact, the verb “specifies” could have been replaced by any number of alternatives: “defines,” “describes,” “contains,” “references,” etc.

However, we thought that using a wide variety of verb phrases might confuse a reader of a specification document because the meaning of each verb could be interpreted slightly differently. On the other hand, we didn’t want to use a single, generic verb, such as “describes,” because although the different verb choices may or may not be meaningful from an implementation standpoint, a distinction could be useful to those interested in the modeling aspect of CybOX.

Consequently, we have preferred to use the three verbs, defined as follows, in class and property descriptions:
<table>
<thead>
<tr>
<th>Verb</th>
<th>CybOX Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>captures</td>
<td>Used to record and preserve information without implying anything about the structure of a class or property. Often used for properties that encompass general content. This is the least precise of the three verbs.</td>
</tr>
<tr>
<td></td>
<td>Examples:</td>
</tr>
<tr>
<td></td>
<td>The <code>Observable_Source</code> property characterizes the source of the Observable information. Examples of details captured include identifying characteristics, time-related attributes, and a list of the tools used to collect the information.</td>
</tr>
<tr>
<td></td>
<td>The <code>Description</code> property captures a textual description of the Action.</td>
</tr>
<tr>
<td>characterizes</td>
<td>Describes the distinctive nature or features of a class or property. Often used to describe classes and properties that themselves comprise one or more other properties.</td>
</tr>
<tr>
<td></td>
<td>Examples:</td>
</tr>
<tr>
<td></td>
<td>The <code>Action</code> property characterizes a cyber observable Action.</td>
</tr>
<tr>
<td></td>
<td>The <code>Obfuscation_Technique</code> property characterizes a technique an attacker could potentially leverage to obfuscate the Observable.</td>
</tr>
<tr>
<td>specifies</td>
<td>Used to clearly and precisely identify particular instances or values associated with a property. Often used for properties that are defined by a controlled vocabulary or enumeration; typically used for properties that take on only a single value.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>The <code>cybox_major_version</code> property specifies the major version of the CybOX Language used for the set of Observables.</td>
</tr>
</tbody>
</table>

1.3 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

1.4 Normative References

[RFC2119]
2 Background Information

In this section, we provide high-level information about the GUI Dialogbox Object data model that is necessary to fully understand the specification details given in Section 3.

2.1 Cyber Observables

A cyber observable is a dynamic event or a stateful property that occurs, or may occur, in the operational cyber domain. Examples of stateful properties include the value of a registry key, the MD5 hash of a file, and an IP address. Examples of events include the deletion of a file, the receipt of an HTTP GET request, and the creation of a remote thread.

A cyber observable is different than a cyber indicator. A cyber observable is a statement of fact, capturing what was observed or could be observed in the cyber operational domain. Cyber indicators are cyber observable patterns, such as a registry key value associated with a known bad actor or a spoofed email address used on a particular date.

2.2 Objects

Cyber observable objects (Files, IP Addresses, etc) in CybOX are characterized with a combination of two levels of data models.

The first level is the Object data model which specifies a base set of properties universal to all types of Objects and enables them to integrate with the overall cyber observable framework specified in the CybOX Core data model.

The second level are the object property models which specify the properties of a particular type of Object via individual data models each focused on a particular cyber entity, such as a Windows registry key, or an Email Message. Accordingly, each release of the CybOX language includes a particular set of Objects that are part of the release. The data model for each of these Objects is defined by its own specification that describes the context-specific classes and properties that compose the Object.

Any specific instance of an Object is represented utilizing the particular object properties data model within the general Object data model.
3 Data Model

3.1 GUIDialogboxObjectType Class

The GUIDialogboxObjectType class is intended to characterize GUI dialog boxes. The UML diagram corresponding to the GUIDialogboxObjectType class is shown in Figure 3-1.

![UML diagram of the GUIDialogboxObjectType class](image)

The property table of the GUIDialogboxObjectType class is given in Table 3-1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Multiplicity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box_Caption</td>
<td>cyboxCommon:StringObjectPropertyType</td>
<td>0..1</td>
<td>The Box_Caption property specifies the caption associated with the dialog box.</td>
</tr>
<tr>
<td>Box_Text</td>
<td>cyboxCommon:StringObjectPropertyType</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **Box_Text** property specifies the text contained inside the dialog box.
4 Conformance

Implementations have discretion over which parts (components, properties, extensions, controlled vocabularies, etc.) of CybOX they implement (e.g., Observable/Object).

[1] Conformant implementations must conform to all normative structural specifications of the UML model or additional normative statements within this document that apply to the portions of CybOX they implement (e.g., implementers of the entire Observable class must conform to all normative structural specifications of the UML model regarding the Observable class or additional normative statements contained in the document that describes the Observable class).

[2] Conformant implementations are free to ignore normative structural specifications of the UML model or additional normative statements within this document that do not apply to the portions of CybOX they implement (e.g., non-implementers of any particular properties of the Observable class are free to ignore all normative structural specifications of the UML model regarding those properties of the Observable class or additional normative statements contained in the document that describes the Observable class).

The conformance section of this document is intentionally broad and attempts to reiterate what already exists in this document.
Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully acknowledged.

Aetna
David Crawford

AIT Austrian Institute of Technology
Roman Fiedler
Florian Skopik

Australia and New Zealand Banking Group (ANZ Bank)
Dean Thompson

Blue Coat Systems, Inc.
Owen Johnson
Bret Jordan

Century Link
Cory Kennedy

CIRCL
Alexandre Dulaunoy
Andras Iklody
Raphaël Vinot

Citrix Systems
Joey Peloquin

Dell
Will Urbanski
Jeff Williams

DTCC
Dan Brown
Gordon Hundley
Chris Koutras

EMC
Robert Griffin
Jeff Odom
Ravi Sharda

Financial Services Information Sharing and Analysis Center (FS-ISAC)
David Eilken
Chris Ricard

Fortinet Inc.
Gavin Chow
Kenichi Terashita

Airbus Group SAS
Joerg Eschweiler
Marcos Orallo

Anomali
Ryan Clough
Wei Huang
Hugh Njemanze
Katie Pelusi
Aaron Shelmire
Jason Trost

Bank of America
Alexander Foley

Center for Internet Security (CIS)
Sarah Kelley

Check Point Software Technologies
Ron Davidson

Cisco Systems
Syam Appala
Ted Bedwell
David McGrew
Pavan Reddy
Omar Santos
Jyoti Verma

Cyber Threat Intelligence Network, Inc. (CTIN)
Doug DePeppe
Jane Ginn
Ben Othman

DHS Office of Cybersecurity and Communications (CS&C)
Richard Struse
Marlon Taylor

EclecticIQ
Marko Dragoljevic
Joep Gommers
Sergey Polzunov
Rutger Prins
Fujitsu Limited
 Neil Edwards
 Frederick Hirsch
 Ryusuke Masuoka
 Daisuke Murabayashi

Google Inc.
 Mark Risher

Hitachi, Ltd.
 Kazuo Noguchi
 Akihito Sawada
 Masato Terada

iboss, Inc.
 Paul Martini

Individual
 Jerome Athias
 Peter Brown
 Elysa Jones
 Sanjiv Kalkar
 Bar Lockwood
 Terry MacDonald
 Alex Pinto

Intel Corporation
 Tim Casey
 Kent Landfield

JPMorgan Chase Bank, N.A.
 Terrence Driscoll
 David Laurance

LookingGlass
 Allan Thomson
 Lee Vorthman

Mitre Corporation
 Greg Back
 Jonathan Baker
 Sean Barnum
 Desiree Beck
 Nicole Gong
 Jasen Jacobsen
 Ivan Kirillov
 Richard Piazza
 Jon Salwen
 Charles Schmidt

eSentire, Inc.
 Andrei Sîrghî
 Raymon van der Velde

FireEye, Inc.
 Phillip Boles
 Pavan Gorakav
 Anuj Kumar
 Shyamal Pandya
 Paul Patrick
 Scott Shreve

Fox-IT
 Sarah Brown

Georgetown University
 Eric Burger

Hewlett Packard Enterprise (HPE)
 Tomas Sander

IBM
 Peter Allor
 Eldan Ben-Haim
 Sandra Hernandez
 Jason Keirstead
 John Morris
 Laura Rusu
 Ron Williams

IID
 Chris Richardson

Integrated Networking Technologies, Inc.
 Patrick Maroney

Johns Hopkins University Applied Physics Laboratory
 Karin Marr
 Julie Modlin
 Mark Moss
 Pamela Smith

Kaiser Permanente
 Russell Culpepper
 Beth Pumo

Lumeta Corporation
 Brandon Hoffman

MTG Management Consultants, LLC.
 James Cabral
Emmanuelle Vargas-Gonzalez
John Wunder
National Council of ISACs (NCI)
Scott Algeier
Denise Anderson
Josh Poster
NEC Corporation
Takahiro Kakumaru
North American Energy Standards Board
David Darnell
Object Management Group
Cory Casanave
Palo Alto Networks
Vishaal Hariprasad
Queralt, Inc.
John Tolbert
Resilient Systems, Inc.
Ted Julian
Securonix
Igor Baikalov
Siemens AG
Bernd Grobauer
Soltra
John Anderson
Aishwarya Asok Kumar
Peter Ayasse
Jeff Beekman
Michael Butt
Cynthia Camacho
Aharon Chernin
Mark Clancy
Brady Cotton
Trey Darley
Mark Davidson
Paul Dion
Daniel Dye
Robert Hutto
Raymond Keckler
Ali Khan
Chris Kiehl
Clayton Long
National Security Agency
Mike Boyle
Jessica Fitzgerald-McKay
New Context Services, Inc.
John-Mark Gurney
Christian Hunt
James Moler
Daniel Riedel
Andrew Storms
OASIS
James Bryce Clark
Robin Cover
Chet Ensign
Open Identity Exchange
Don Thibeau
PhishMe Inc.
Josh Larkins
Raytheon Company-SAS
Daniel Wyschogrod
Retail Cyber Intelligence Sharing Center (R-CISC)
Brian Engle
Semper Fortis Solutions
Joseph Brand
Splunk Inc.
Cedric LeRoux
Brian Luger
Kathy Wang
TELUS
Greg Reaume
Alan Steer
Threat Intelligence Pty Ltd
Tyron Miller
Andrew van der Stock
ThreatConnect, Inc.
Wade Baker
Cole Iliff
Andrew Pendergast
Ben Schmoker
Jason Spies
TruSTAR Technology
Chris Roblee
The authors would also like to thank the larger CybOX Community for its input and help in reviewing this document.
Appendix B. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Editor</th>
<th>Changes Made</th>
</tr>
</thead>
<tbody>
<tr>
<td>wd01</td>
<td>15 December 2015</td>
<td>Desiree Beck, Trey Darley, Ivan Kirillov, Rich Piazza</td>
<td>Initial transfer to OASIS template</td>
</tr>
</tbody>
</table>