OASIS 19 SCMIS

Content Management
Interoperability Services (CMIS)
Version 1.1 Plus Errata 01

OASIS Standard Incorporating Approved Errata 01

19 September 2015

Specification URIs

This version:
http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/0s/CMIS-v1.1-errata01-o0s-complete.pdf
(Authoritative)
http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/0s/CMIS-v1.1-errata01-0s-complete.html

Previous version:
http://docs.oasis-open.org/cmis/CMIS/v1.1/0s/CMIS-v1.1-0s.pdf (Authoritative)
http://docs.oasis-open.org/cmis/CMIS/v1.1/0s/CMIS-v1.1-0s.html

Latest version:
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.pdf (Authoritative)
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.html

Technical Committee:
OASIS Content Management Interoperability Services (CMIS) TC

Chair:
David Choy (david.choy500@gmail.com), Individual

Editors:
Florian Mdller (florian.mueller02@sap.com), SAP
Ken Baclawski (kenb@ccs.neu.edu), Northeastern University

Additional artifacts:
This prose specification is one component of a Work Product which also includes:

» Content Management Interoperability Services (CMIS) Version 1.1 Errata 01.
Edited by Florian Miller and Ken Baclawski. 19 September 2015.
OASIS Approved Errata 01.
http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/0s/CMIS-v1.1-errata01-os.pdf

* XML schemas, WSDL and Orderly schema:
http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/os/schema/

* XML and JSON examples:
http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/os/examples/

» TeX source files for this prose document:
http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/os/tex/

Related work:
This specification supersedes:
» Content Management Interoperability Services (CMIS) Version 1.1.
Edited by Florian Miller, Ryan McVeigh, and Jens Hubel. 23 May 2013.
OASIS Standard.
http://docs.oasis-open.org/cmis/CMIS/v1.1/0s/CMIS-v1.1-0s.pdf

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 1 of 334

http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/os/CMIS-v1.1-errata01-os-complete.pdf
http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/os/CMIS-v1.1-errata01-os-complete.html
http://docs.oasis-open.org/cmis/CMIS/v1.1/os/CMIS-v1.1-os.pdf
http://docs.oasis-open.org/cmis/CMIS/v1.1/os/CMIS-v1.1-os.html
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.pdf
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.html
http://www.oasis-open.org/committees/cmis/
mailto:david.choy500@gmail.com
mailto:florian.mueller02@sap.com
http://www.sap.com/
mailto:kenb@ccs.neu.edu
http://www.ccs.neu.edu/
http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/os/CMIS-v1.1-errata01-os.pdf
http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/os/schema/
http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/os/examples/
http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/os/tex/
http://docs.oasis-open.org/cmis/CMIS/v1.1/os/CMIS-v1.1-os.pdf

Declared XML namespaces:
* http://docs.oasis-open.org/ns/cmis/core/200908/
* http://docs.oasis-open.org/ns/cmis/restatom/200908/
* http://docs.oasis-open.org/ns/cmis/messaging/200908/
* http://docs.oasis-open.org/ns/cmis/ws/200908/
* http://docs.oasis-open.org/ns/cmis/link/200908/

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 2 of 334

http://docs.oasis-open.org/ns/cmis/core/200908/
http://docs.oasis-open.org/ns/cmis/restatom/200908/
http://docs.oasis-open.org/ns/cmis/messaging/200908/
http://docs.oasis-open.org/ns/cmis/ws/200908/
http://docs.oasis-open.org/ns/cmis/link/200908/

Abstract:

The Content Management Interoperability Services (CMIS) standard defines a domain model
and Web Services, Restful AtomPub and browser (JSON) bindings that can be used by applica-
tions to work with one or more Content Management repositories/systems.

The CMIS interface is designed to be layered on top of existing Content Management systems
and their existing programmatic interfaces. It is not intended to prescribe how specific features
should be implemented within those CM systems, nor to exhaustively expose all of the CM
system's capabilities through the CMIS interfaces. Rather, it is intended to define a generic/uni-
versal set of capabilities provided by a CM system and a set of services for working with those
capabilities.

Status:
This document was last revised or approved by the members of OASIS on the above date.
The level of approval is also listed above. Check the "Latest version" location noted above for
possible later revisions of this document. Any other numbered Versions and other technical work
produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=cmis#technical.
Technical Committee members should send comments on this specification to the Technical
Committee's email list. Others should send comments to the Technical Committee by using the
"Send A Comment" button on the Technical Committee's web page at http://www.oasis-open.
org/committees/cmis/.
For information on whether any patents have been disclosed that may be essential to imple-
menting this specification, and any offers of patent licensing terms, please refer to the Intellec-
tual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/
committees/cmis/ipr.php).

Citation format:
When referencing this specification the following citation format should be used:

[CMIS-v1.1-Plus-Errata01]

Content Management Interoperability Services (CMIS) Version 1.1 Plus Errata 01.

Edited by Florian Miller and Ken Baclawski. 19 September 2015.

OASIS Standard Incorporating Approved Errata 01.
http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/0s/CMIS-v1.1-errata01-o0s-complete.pdf.
Latest version: http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.pdf.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 3 of 334

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cmis#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cmis#technical
http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=cmis
http://www.oasis-open.org/committees/cmis/
http://www.oasis-open.org/committees/cmis/
http://www.oasis-open.org/committees/cmis/ipr.php
http://www.oasis-open.org/committees/cmis/ipr.php
http://docs.oasis-open.org/cmis/CMIS/v1.1/errata01/os/CMIS-v1.1-errata01-os-complete.pdf
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.pdf

Notices

Copyright © OASIS Open 2015. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that com-
ment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to OASIS, except as needed
for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in
which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or
assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to
notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such
patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced
this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any
patent claims that would necessarily be infringed by implementations of this specification by a patent holder
that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of
the OASIS Technical Committee that produced this specification. OASIS may include such claims on its
website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might
be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights
in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS
website. Copies of claims of rights made available for publication and any assurances of licenses to be
made available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard,
can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information
or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact,
Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and imple-
mentation and use of, specifications, while reserving the right to enforce its marks against misleading uses.
Please see http://www.oasis-open.org/policies-guidelines/trademark for above guidance.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 4 of 334

http://www.oasis-open.org/policies-guidelines/ipr
http://www.oasis-open.org/
http://www.oasis-open.org/policies-guidelines/trademark

Table of Contents

1 Introduction 12
1.1 Terminology o o o e e 12
1.2 Normative References L 12
1.3 Non-Normative References 13
1.4 Examples e e e 13
1.5 Changes for the CMIS 1.1 specification 14

1.5.1 Type Mutability e 14
1.5.2 Repository Features L 14
1.5.3 Secondaryobjecttypes 14
1.54 Retentionand Hold Support 14
1.55 BrowserBinding 14
1.5.6 Newcmisiitem Object Type 14
1.5.7 Service bulkUpdateProperties L 15
1.5.8 Appendtoacontentstream oL 15

2 Domain Model 16

21 DataModel e 16

211 Repository e 16
2.1.1.1 Optional Capabilities 16
2.1.1.2 Implementation Information oL 19
2113 Repository Features 19

2.1.2 Object o 20
2121 Property 21

2.1.3 Object-Type e e e e 23
2.1.3.1 Object-Type Hierarchy and Inheritance 23
2.1.3.2 Object-Type Attributes 24
2.1.3.3 Object-Type Property Definitions 26

214 DocumentObject. e 31
2141 ContentStream 31
21.4.2 Renditions e 31
2.1.4.3 Document Object-Type Definition 33

21.5 FolderObject 47
2151 File-able Objects 47
21.5.2 FolderHierarchy e 48
2153 Paths e 49
2.1.5.4 Folder Object-Type Definition 50

2.1.6 Relationship Object 57
2.1.6.1 Relationship Object-Type Definition 58

21.7 Policy Object 65
2.1.7.1 Policy Object-Type Definition 65

21.8 ltemObject e 72
2.1.8.1 Item Object-Type Definition 72

2.1.9 Secondary Object-Types e 78
2.1.9.1 Secondary Type Application 78
2.1.9.2 Secondary Object-Type Definition 79

2.1.10 Object-Type Creation, Modification and Deletion 81
2.1.10.1 General Constraints on MetadataChanges 81

2111 Object-Type Summary o e e 82
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

Page 4 of 334

2.1.12 Access Control e e e 85

2.1.12.1 ACL, ACE, Principal, and Permission 85
21122 CMIS Permissions 85
2.1.12.3 ACL Capabilities e 85

2113 Versioning L e e e e e 95
21131 Version Series e 95
2.1.13.2 Latest Version L 95
2.1.13.3 Behavioral constraints on non-Latest Versions 95
21.13.4 Major Versions e 95
2.1.13.5 Services that modify Version Series 96
2.1.13.6 Versioning Properties on Document Objects 98
2.1.13.7 Document Creation and Initial VersioningState 99
2.1.13.8 Version Specific/lndependent membership in Folders 99
2.1.13.9 Version Specific/lndependent membership in Relationships 99
2.1.13.10Versioning visibility in Query Services L. 100

2114 QUETY .« . o o o e e 101
2.1.14.1 Relational View Projection of the CMIS Data Model 101
2.1.14.2 Query Language Definition oo oo oo 105
21143 Escaping 113
2115 Change Log e 114
2.1.15.1 Completeness ofthe Changelog 114
2.1.15.2 Change Log Token e 114
2.1.15.3 "Latest Change Token" repository information 114
21.15.4 Change Event L 115

2116 Retentionsand Holds 116
2.1.16.1 Repository Managed Retentions 116
2.1.16.2 Client Managed Retentions 119
21163 Holds 124

2.2 SEIVICES . . o v o i e e e 127
2.21 Common Service Elements 127
2211 Paging e 127
2.2.1.2 Retrieving additional information on objects in CMIS servicecalls 127
2213 ChangeTokens i e 132
2214 EXxceptions e 133
2215 ACLS . . o o 134

2.2.2 Repository Services e e 135
2.2.2.1 getRepositories e 136
2.2.2.2 getRepositorylnfo 137
2.2.2.3 getTypeChildren e 139
2224 getTypeDescendants 140
2.2.2.5 getTypeDefinition 141
2226 createType e e 142
2227 updateType. e e e 143
2228 deleteType e e 144

2.2.3 Navigation Services e 145
2231 getChildren 146
2232 getDescendants 147
2.2.3.3 getFolderTree e 149
2.2.3.4 getFolderParent 151
2235 getObjectParents 152
22.3.6 getCheckedOutDocs 153

224 ObjectServices 154
2241 createDocument L 155
2242 createDocumentFromSource oo 157
2243 createFolder 159
2.24.4 createRelationship. 160
2245 createPolicy 161
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 5 of 334

2.2.4.6 createltem

2247 getAllowableActions 163
2248 getObject e 164
2249 getProperties 165
2.24.10 getObjectByPath e 166
2.24.11 getContentStream 167
22412 getRenditions 168
2.2.4.13 updateProperties 169
2.2.4.14 bulkUpdateProperties 170
2.2.4.15 moveObject 171
2.2.4.16 deleteObject e 172
22417 deleteTree 173
2.24.18 setContentStream 174
2.2.4.19 appendContentStream 175
2.2.4.20 deleteContentStream Lo 177

2.2.5 Multifiling Services e 178
2.2.5.1 addObjectToFolder e 179
2.2.5.2 removeObjectFromFolder. 180
2.2.6 Discovery ServiCes e e e e 181
2261 QUEIY . . o o e 182
2.2.6.2 getContentChanges e 184
2.2.7 Versioning SErviCes o i i e e e e 186
2271 checkOut e 187
2272 cancelCheckOut 188
2273 checklno 189
2.2.7.4 getObjectOfLatestVersion., 190
2.2.7.5 getPropertiesOfLatestVersion 191
227.6 getAllVersions e e 192
2.2.8 Relationship Services e 193
2.2.8.1 getObjectRelationships 194
229 PolicyServices e 196
2.2.9.1 applyPolicy e 197
2.29.2 removePolicy. e 198
2.29.3 getAppliedPolicies 199
2210 ACL Services o e 200
22101 applyACL 201
22102 getACL 202

3 AtomPub Binding 203
3.1 OVerview 203
3.1.1 NameSpPaces o i e e e e e e e e 203
3.1.2 Authentication e 203
3.1.3 ResponseFormats L 203
3.1.4 Optional Arguments e 204
3.1.5 Errorsand Exceptions L 204
3.1.6 Renditions e 204
3.1.7 ContentStreams e 204
3.1.8 Pagingof Feeds e 204
3.1.9 Servicesnot Exposed 205
3.1.91 removePolicy 205

3.2 HTTP e 205
321 HTTPRaAnNge e e e e e e e 205
3.2.2 HTTP OPTIONS Method et 205
3.23 HTTP StatusCodes e e e e e 206
3.2.3.1 General CMIS Exceptions 206
3.2.3.2 Notable HTTP StatusCodes 206

3.3 MediaTypes o e e e e 206
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

Page 6 of 334

3.3.1 CMISAtom e 207

3.3.2 CMISQuUEry o e e 207
3.3.3 CMIS Allowable Actions e 207
3.34 CMISTree @ i i i i e e e 208
3.35 CMISACL e e 208

3.4 Atom Extensionsfor CMIS e 208
3.4.1 Atom Element Extensions 208
3.4.1.1 AtomPubWorkspace 208

3412 AtomFeed 209

34.1.3 AtomEntry e 209

3.4.2 Attributes e e e e 210
3.4.21 cmisraid L e 210

3.4.2.2 cmisrarrenditionKind e 210

3.4.3 CMISLinkRelations e 211
3.4.3.1 Existing Link Relations 211

3.4.3.2 Hierarchy Navigation Internet Draft Link Relations 213

3.4.3.3 Versioning Internet Draft Link Relations 213

3.4.3.4 CMIS SpecificLinkRelations 213

3.5 AOMRESOUrCES e e e e e 215
3.5.1 Feeds e e e 215
3.5.2 Entries e e e e 216
3.5.2.1 Hierarchical Atom Entries 217

3.6 Resources OVErview i i i e e e e e e 218
3.7 AtomPub Service Document e 220
3.7.1 HTTP GET e e e e e e e 220
3711 URITemplates e 221

3.8 Service Collections e e 225
3.8.1 RootFolder Collection e 225
3.8.2 Query Collection e 225
3.8.21 HTTPPOST e e e e 225

3.8.3 Checked Out Collection e 226
3.83.1 HTTPGET e e e e e e e 226

3.8.3.2 HTTP POST e e e s s e e e 227

3.8.4 Unfiled Collection e 227
3.84.1 HTTP POST e e e e e 227

3.8.5 Type Children Collection 228
3.85.1 HTTPGET e e e e e e 228

3.85.2 HTTPPOST e e s e e e 229

3.8.6 Bulk Update Collection e 230
3.8.6.1 HTTPPOST e s e e e e 230

3.9 Collections e e e e e 231
3.9.1 Relationships Collection e 231
3.9.1.1 HTTPGET e e e e e e e e e s 231

3.91.2 HTTPPOST e e e s s e e e 232

3.9.2 Folder Children Collection e 232
3.9.21 HTTPGET e e e e 232

3.9.22 HTTPPOST e e e e 233

3.9.23 HTTPDELETE. e e e e 235

3.9.3 Policies Collection e 235
3.9.3.1 HTTP GET e e e e e e e 235

3.9.3.2 HTTPPOST e e s e e e 236

3.9.3.3 HTTPDELETE. e e e e 236

BA0 Feeds o e e 236
3.10.1 ObjectParents Feed e 236
31011 HTTP GET e e e e e e e e e e 237

3.10.2 Changes Feed e 237
3.10.2.1 HTTP GET o e e e e e e e 237
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 7 of 334

3.10.3 Folder Descendants Feed

3.10.3.1 HTTP GET e e e e e e s e 238

3.10.3.2 HTTP DELETE e e e e 239

3.10.4 Folder Tree Feed e 240
3.10.4.1 HTTP GET e e e e e e e e 240

3.10.4.2 HTTP DELETE e e e e e e e 241

3.10.5 All Versions Feed e 241
3.10.51 HTTP GET e e e e e e e s e 241

3.10.6 Type Descendants Feed 242
3.10.6.1 HTTP GET e e e e e e 242

311 RESOUrCES e e e e e e e e e 243
3111 Type Entry e e e 243
31111 HTTP GET e e e e e e e e e s e 243

311.1.2 HTTP PUT e e e e e e 244

3.11.1.3 HTTP DELETE e e e e e e 244

3.11.2 Document Entry L e e e 244
31121 HTTP GET e e e e e e e e s e e e e 244

3.11.22 HTTP PUT e e e e e e e e 246

3.11.23 HTTPDELETE e e e s e 246

313 PWCENtry . . . e 246
3.11.3.1 HTTP GET o e e e e e e e e e e 246

3.11.3.2 HTTP PUT e e e e s e e e e 247

311.3.3 HTTPDELETE e e e e e e 248

3.11.4 FolderEntry e 248
31141 HTTP GET e e e e e e e e e 248

3.11.4.2 HTTP PUT e e e e e e 249

3.11.4.3 HTTPDELETE e e e e e 250

3.11.5 Relationship Entry e e 250
3.11.51 HTTP GET e e e e e e e e e e s e 250

3.11.5.2 HTTP PUT e e e e s e 251

3.11.5.3 HTTPDELETE e e e e e e 251

3.11.6 Policy Entry e 252
3.11.6.1 HTTP GET e e e e e e e s e e e s e 252

3.11.6.2 HTTP PUT e e e e e e s e 252

3.11.6.3 HTTPDELETE e e s e 253

3117 ltem ENntry . . . o o e 253
31171 HTTP GET e e e e e e e e e e 253

311.7.2 HTTP PUT e e e e s s e e e e 254

311.7.3 HTTPDELETE e e e e e e 254

3.11.8 Content Stream e 255
3.11.8.1 HTTP GET e e e e e e e e e e 255

3.11.8.2 HTTP PUT e e e e e e 255

3.11.8.3 HTTPDELETE e e e e e e e e 256

3.11.9 AllowableActions Resource e 256
3.11.91 HTTP GET e e e e e e e s e e e 256
3.1110ACL RESOUICE o o e e e e e e e e e 256
BA110.THTTP GET e e e e e 256
BA110.2HTTP PUT . . o e e e e e e 257

4 Web Services Binding 258
4.1 OVEIVIEW o e e e e e e e 258
411 WS-l . . e 258
4.1.2 Authentication 258
41.3 ContentTransfer e e 258
414 Reporting Errors e 258

4.2 Web Services Binding Mapping 258
4.3 Additions to the Services section e 259
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

Page 8 of 334

4.3.1 updateProperties and checkln Semantics 259

432 ContentRanges e 259
4.3.3 EXtensions L 259
4.3.4 Web Services Specific Structures Lo 259
4.3.4.1 cmisFaultTypeandcmisFault. 259
4.3.4.2 cmisRepositoryEntryType e 259
4.3.4.3 cmisTypeContainer 259
4.3.4.4 cmisTypeDefinitionListType L. 259

4.3.4.5 cmisObjectinFolderType, cmisObjectParentsType and cmisObjectinFolder-
ContainerType e 260
4.3.4.6 cmisObjectListType and cmisObjectinFolderListType 260
4.3.4.7 cmisContentStreamType e 260
4.3.4.8 cmisACLTYype 261
4.3.4.9 cmisExtensionType 261
5 Browser Binding 262
51 OVerview e e 262
5.2 Common Service Elements 262
521 Protocol 262
5.2.2 DataRepresentation e 262
523 Schema e 262
5.2.4 Mapping Schema Elementsto JSON 262
525 URLPatterns e 263
526 Multipart Forms e 263
5.2.7 Propertiesina"valuenotset"state. L L L. 263
52.8 Callback. e 263
5.2.9 Authentication 264
5.2.9.1 Basic Authentication for Non-Browser Clients 264
5.2.9.2 Authentication with Tokens for Browser Clients 264
5.2.10 Error Handlingand Return Codes 266
5.2.11 Succinct Representation of Properties 267
53 URLS e 267
531 Service URL e 267
5.3.2 Repository URL 268
53.3 RootFolder URL e 268
534 ObjectURLS e e 268
5.4 ServiCes 268
541 Service URL e e e 269
5.4.2 Repository URL e 269
5.4.2.1 Selector "repositorylnfo" o 269
54.2.2 Selector "typeChildren" 270
5.4.2.3 Selector "typeDescendants" 271
5.4.2.4 Selector "typeDefinition" oL 271
5.4.2.5 Selector "checkedOut" 272
5.4.2.6 Action "createDocument" Lo Lo 273
5.4.2.7 Action "createDocumentFromSource"o oL 273
54.2.8 Action "createRelationship" o 274
5.4.2.9 Action "createPolicy" 274
5.4.2.10 Action "createltem" 275
5.4.2.11 Action "bulkUpdate" 275
5.4.2.12 Selector "query" e 276
5.4.2.13 Action "query" e e 276
5.4.2.14 Selector "contentChanges" 277
5.4.2.15 Action "createType" 278
5.4.2.16 Action "updateType" 278
5.4.2.17 Action "deleteType" 278
5.4.2.18 Selector "lastResult" L 279
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 9 of 334

543 ObjectURL e e e 279
5.4.3.1 Selector "children™ 279

5.4.3.2 Selector"descendants" 280

5.4.3.3 Selector "folderTree" 281

54.3.4 Selector"parent" 281

5.4.3.5 Selector "parents” e 282

5.4.3.6 Selector "checkedout" 283

5.4.3.7 Action "createDocument" 283

5.4.3.8 Action "createDocumentFromSource" 284

5.4.3.9 Action"createFolder" 284

5.4.3.10 Action "createPolicy"o 285

5.4.3.11 Action "createltem™o 285

5.4.3.12 Selector "allowableActions" 286

5.4.3.13 Selector "object" 286

5.4.3.14 Selector "properties" L L 287

5.4.3.15 Selector "object” 287

5.4.3.16 Selector "content™ e 288

5.4.3.17 Selector "renditions” e 288

5.4.3.18 Action "update" 289

5.4.3.19 Action "move" e e e 289

5.4.3.20 Action"delete" e 290

5.4.3.21 Action "deleteTree" 290

5.4.3.22 Action "setContent" 291

5.4.3.23 Action "appendContent" 291

5.4.3.24 Action "deleteContent" 292

5.4.3.25 Action "addObjectToFolder". 292

5.4.3.26 Action "removeObjectFromFolder", 293

5.4.3.27 Action "checkOut" e 293

5.4.3.28 Action "cancelCheckOut" 294

5.4.3.29 Action "checklIn" 294

5.4.3.30 Selector "object" 295

5.4.3.31 Selector "properties" e 296

5.4.3.32 Selector "versions" e e 296

5.4.3.33 Selector "relationships” 297

5.4.3.34 Selector "policies" 297

5.4.3.35 Action "applyPolicy" 298

5.4.3.36 Action "removePolicy" L e 298

5.4.3.37 Action "applyACL" 299

5.4.3.38 Selector "acl" 299

544 Useof HTMLForms e e e e e e 299
5441 Action e e 300

54.4.2 Structured and Array Parameters o oL 300

5443 CMISControls e 300

5.4.4.4 AccesstoFormResponseContent 310
Conformance 314
A IANA Considerations 316
A.1 Content-Type Registration 316
A1l CMISQUErY e e 316
A.1.2 CMIS AllowableActions e 316
A1.3 CMISTree e e e e 317
A14 CMISAtom e 318
A15 CMISACL . . . e 318

B Schema Language (Orderly) 320
B.1 Overview e e e 320
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

Page 10 of 334

B.2 Asubsetof JSONSchema e 320

B.3 A Non-Normative Tutorial e 321
B.3.1 Commentsand Whitespace 321

B.3.2 Property Names e 321

B.3.3 Common Properties e e e e e 321

B.3.4 String Types e e e e 322

B.3.5 Numberand Integertypes 322

B.3.6 Boolean Types e 322

B.3.7 Object Types o o 322

B.3.8 Array Types e e e e e 323

B.3.9 Additional properties inarraysandobjects L. 323

B.3 10O NUll Types o e 323

B.3.11 Any types 324
B.3.12Unions 324

B.3. 13 Maps e 324

B.3.14 Extensions or Extra Properties 324
B.3.A5ID's . . . e 325

B.3.16 References e e 325

B.3.17 Bases e e 325

B.3.18 More Complex Examples L 326

B.3.19 Cautions e 326

B.4 The Normative Grammar e e e 327

C Acknowledgements 330
D Change log 332
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 11 of 334

1 Introduction

The Content Management Interoperability Services (CMIS) standard defines a domain model and Web
Services, Restful AtomPub and browser (JSON) bindings that can be used by applications to work with one
or more Content Management repositories/systems.

The CMIS interface is designed to be layered on top of existing Content Management systems and their
existing programmatic interfaces. Itis notintended to prescribe how specific features should be implemented
within those CM systems, nor to exhaustively expose all of the CM system's capabilities through the CMIS
interfaces. Rather, it is intended to define a generic/universal set of capabilities provided by a CM system
and a set of services for working with those capabilities.

1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
[RFC2119].

1.2 Normative References

[RFC1867] E. Nebel, L. Masinter, Form-based File Upload in HTML,
http://lwww.ietf.org/rfc/rfc1867.txt, November 1995
[RFC2045] N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One:

Format of Internet Message Bodies,
http://www.ietf.org/rfc/rfc2045.txt, November 1996

[RFC2046] N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types,
http://www.ietf.org/rfc/rfc2046.txt, November 1996

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://wwwe.ietf.org/rfc/rfc2119.txt, March 1997

[RFC2388] L. Masinter, Returning Values from Forms: multipart/form-data
http://lwww.ietf.org/rfc/rfc2388.ixt, August 1998

[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,

Hypertext Transfer Protocol -- HTTP/1.1,
http://www.ietf.org/rfc/rfc2616.txt, June 1999

[RFC2617] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, L.
Stewart, HTTP Authentication: Basic and Digest Access Authentication,
http://lwww.ietf.org/rfc/rfc2617.ixt, June 1999

[RFC2818] Rescorla, E., HTTP Over TLS,
http://www.ietf.org/rfc/rfc2818.txt, May 2000

[RFC3023] M. Murata, S. St.Laurent, D. Kohn, XML Media Types,
http://www.ietf.org/rfc/rfc3023.txt, January 2001

[RFC3986] T. Berners-Lee, R. Fielding, L. Masinter, Unified Resource |dentifier,

http://www.ietf.org/rfc/rfc3986.txt, January 2005

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 12 of 334

http://www.ietf.org/rfc/rfc1867.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2388.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc3986.txt

[RFC4287] M. Nottingham, R. Sayre, Atom Syndication Format,
http://www.ietf.org/rfc/rfc4287.ixt, December 2005

[RFC4288] N. Freed, J. Klensin, Media Type Specifications and Registration Procedures,
http://lwww.ietf.org/rfc/rfc4288.txt, December 2005

[RFC4627] D. Crockford, The application/json Media Type for JavaScript Object Notation
(JSON),
http://wwwe.ietf.org/rfc/rfc4627 .txt, July 2006

[RFC4918] L. Dusseault, HTTP Extensions for Web Distributed Authoring and Versioning
(WebDAV),
http://lwww.ietf.org/rfc/rfc4918.ixt, June 2007

[RFC5023] J. Gregorio, B. de hOra, Atom Publishing Protocol,
http://www.ietf.org/rfc/rfc5023.txt, October 2007

[RFC6234] D. Eastlake 3rd, T. Hansen, US Secure Hash Algorithms (SHA and SHA-based

HMAC and HKDF),
http://www.ietf.org/rfc/rfc6234.txt, May 2011

[RFC6266] J. Reschke, Use of the Content-Disposition Header Field in the Hypertext Transfer
Protocol (HTTP),
http://www.ietf.org/rfc/rfc6266.txt, June 2011

[XMLSchema] W3C, XML Schema Part 2: Datatypes Second Edition,
http://www.w3.org/TR/xmIschema-2/, 28 October 2004

[SameOriginPolicy] W3C, Same Origin Policy,
http://www.w3.org/Security/wiki/Same_Origin_Policy, January 2010

[ID-Brown] J. Reschke Editor, A. Brown, G. Clemm, Link Relation Types for Simple Version
Navigation between Web Resources,
http://tools.ietf.org/id/draft-brown-versioning-link-relations-07.txt, 2010

[ID-WebL.inking] M. Nottingham, Web Linking,
http://tools.ietf.org/id/draft-nottingham-http-link-header-07.txt, 2010

1.3 Non-Normative References

1.4 Examples

A set of request and response examples is attached to this specification document. These examples are
non-normative and their sole purpose is to illustrate the data structures and bindings that are defined in this
specification.

Boxes like the following point to appropriate example files throughout this document. There is usually a
request file describing the request sent from a CMIS client to a CMIS repository and a matching response
file that contains the content returned from the CMIS repository.

Example:
Request: atompub/getChildren-request.log
Response: atompub/getChildren-response.log

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 13 of 334

http://www.ietf.org/rfc/rfc4287.txt
http://www.ietf.org/rfc/rfc4288.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4918.txt
http://www.ietf.org/rfc/rfc5023.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6266.txt
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://tools.ietf.org/id/draft-brown-versioning-link-relations-07.txt
http://tools.ietf.org/id/draft-nottingham-http-link-header-07.txt

1.5 Changes for the CMIS 1.1 specification

This section provides a very brief description of each major new CMIS 1.1 feature along with links to the
sections of this document for complete descriptions.

1.5.1 Type Mutability
Defines the services and protocol binding extensions that allow CMIS clients to create, modify and delete
Type Definitions and Property Definitions for a given repository.

Please see section 2.1.10 Object-Type Creation, Modification and Deletion for a detailed discussion of this
feature.

1.5.2 Repository Features
Defines additional schema for the getRepositoryInfo service that allows CMIS clients to discover any
extensions or additional CMIS based standards supported on each repository.

Please see section 2.1.1.3 Repository Features for a detailed discussion of this feature.

1.5.3 Secondary object types

Defines named sets of properties that can be dynamically added and removed from CMIS objects.

Please see section 2.1.9 Secondary Object-Types for a detailed discussion of this feature.

1.5.4 Retention and Hold Support

Defines secondary types for formally representing Retentions and Holds on CMIS objects. These in turn
can be used by the repository to protect objects from being deleted or modified. A Retention describes a
period of time that a document must not be deleted, while a Hold marks the document as protected as long
as the Hold is applied.

Please see section 2.1.16 Retentions and Holds for a detailed discussion of these features.

1.5.5 Browser Binding

A new optional binding specifically designed to support applications running in a web browser or other client
without the need for any additional client libraries. Notable among the differences in this binding are the use
of JSON (Java Script Object Notation, [RFC4627]) instead of XML and the exclusive use of HTTP GET and
POST for all operations.

Please see section 5 Browser Binding for a detailed discussion of this feature.

1.5.6 New cmis:item Object Type

A new top level data model type that is an extension point for repositories that need to expose any other
object types via CMIS that do not fit the model's definition for document, folder, relationship or policy.

Please see section 2.1.8 ltem Object for a detailed discussion of this feature.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 14 of 334

1.5.7 Service bulkUpdateProperties

A method for supporting bulk property updates on a set of objects within a single service call.

Please see section 2.2.4.14 bulkUpdateProperties for a detailed discussion of this feature.

1.5.8 Append to a content stream

Support for appending to a content stream. Enables clients to break very large uploads of document content
into numerous smaller calls.

Please see section 2.2.4.19 appendContentStream for a detailed discussion of this feature.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 15 of 334

2 Domain Model

2.1 Data Model

CMIS provides an interface for an application to access a repository. To do so, CMIS specifies a core data
model that defines the persistent information entities that are managed by the repository, and specifies a
set of basic services that an application can use to access and manipulate these entities. In accordance
with the CMIS objectives, this data model does not cover all the concepts that a full-function ECM repository
typically supports. Specifically, transient entities (such as programming interface objects), administrative
entities (such as user profiles), and extended concepts (such as compound or virtual document, work flow
and business process, event and subscription) are not included.

However, when an application connects to a CMIS service endpoint, the same endpoint MAY provide access
to more than one CMIS repository. (How an application obtains a CMIS service endpoint is outside the
scope of CMIS. How the application connects to the endpoint is a part of the protocol that the application
uses.) An application MUST use the CMIS getRepositories service to obtain a list of repositories that
are available at that endpoint. The repository id MUST uniquely identify an available repository at this
service endpoint. Both the repository name and the repository id are opaque to CMIS. Aside from the
getRepositories service, all other CMIS services are single-repository-scoped, and require a repository
id as an input parameter. In other words, except for the getRepositories service, multi-repository and
inter-repository operations are not supported by CMIS.

2.1.1 Repository

The repository itself is described by the CMIS "Get Repository Information” service. The service output is
fully described in section 2.2.2.2 getRepositorylnfo.

2.1.1.1 Optional Capabilities

Commercial ECM repositories vary in their designs. Moreover, some repositories are designed for a specific
application domain and may not provide certain capabilities that are not needed for their targeted domain.
Thus, a repository implementation may not necessarily be able to support all CMIS capabilities. A few CMIS
capabilities are therefore "optional" for a repository to be compliant. A repository's support for each of these
optional capabilities is discoverable using the getRepositoryInfo service. The following is the list of
these optional capabilities. All capabilities are "boolean" (i.e. the repository either supports the capability
entirely or not at all) unless otherwise noted.

Navigation Capabilities

capabilityGetDescendants
Ability for an application to enumerate the descendants of a folder via the getDescendants
service.
See section 2.2.3.2 getDescendants.

capabilityGetFolderTree
Ability for an application to retrieve the folder tree via the getFolderTree service.
See section 2.2.3.3 getFolderTree.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 16 of 334

capabilityOrderBy
Indicates the ordering capabilities of the repository.
Valid values are:

none Ordering is not supported.

common Only common CMIS properties are supported. See section 2.2.1.2.7 Object Order for
the list of properties.

custom Common CMIS properties and custom object-type properties are supported.
See section 2.2.1.2.7 Object Order.
Object Capabilities

capabilityContentStreamUpdatability
Indicates the support a repository has for updating a documents content stream.
Valid values are:

none The content stream may never be updated.
anytime The content stream may be updated any time.

pwconly The content stream may be updated only when checked out. Private Working Copy
(PWC) is described in section 2.1.13 Versioning.

See section 2.1.4.1 Content Stream.

capabilityChanges
Indicates what level of changes (if any) the repository exposes via the getContentChanges
service.
Valid values are:

none The repository does not support the change log feature.

objectidsonly The change log can return only the object ids for changed objects in the repository
and an indication of the type of change, not details of the actual change.

properties The change log can return properties and the object id for the changed objects.

all The change log can return the object ids for changed objects in the repository and more
information about the actual change.

See section 2.1.15 Change Log.

capabilityRenditions
Indicates whether or not the repository exposes renditions of document or folder objects.
Valid values are:

none The repository does not expose renditions at all.
read Renditions are provided by the repository and readable by the client.
See section 2.1.4.2 Renditions.

Filing Capabilities

capabilityMultifiling
Ability for an application to file a document or other file-able object in more than one folder.
See section 2.1.5 Folder Object.

capabilityUnfiling
Ability for an application to leave a document or other file-able object not filed in any folder.
See section 2.1.5 Folder Object.

capabilityVersionSpecificFiling
Ability for an application to file individual versions (i.e., not all versions) of a document in a folder.
See section 2.1.13 Versioning.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 17 of 334

Versioning Capabilities

capabilityPWCUpdatable
Ability for an application to update the "Private Working Copy" of a checked-out document.
See section 2.1.13 Versioning.

capabilityPWCSearchable
Ability of the Repository to include the "Private Working Copy" of checked-out documents in query
search scope; otherwise PWC's are not searchable.
See section 2.1.13 Versioning.

capabilityAllVersionsSearchable
Ability of the Repository to include all versions of document. If False, typically either the latest or
the latest major version will be searchable.
See section 2.1.13 Versioning.

Query Capabilities

capabilityQuery
Indicates the types of queries that the Repository has the ability to fulfill. Query support levels
are:

none No queries of any kind can be fulfilled.

metadataonly Only queries that filter based on object properties can be fulfilled. Specifically,
the CONTAINS() predicate function is not supported.

fulltextonly Only queries that filter based on the full-text content of documents can be fulfilled.
Specifically, only the CONTAINS() predicate function can be included in the WHERE clause.

bothseparate The repository can fulfill queries that filter EITHER on the full-text content of docu-
ments OR on their properties, but NOT if both types of filters are included in the same query.

bothcombined The repository can fulfill queries that filter on both the full-text content of docu-
ments and their properties in the same query.

See section 2.1.14 Query.

capabilityJoin
Indicates the types of JOIN keywords that the Repository can fulfill in queries. Support levels are:

none The repository cannot fulfill any queries that include any JOIN clauses on two primary
types. If the Repository supports secondary types, JOINs on secondary types SHOULD be
supported, even if the support level is none.

inneronly The repository can fulfill queries that include an INNER JOIN clause, but cannot fulfill
queries that include other types of JOIN clauses.

innerandouter The repository can fulfill queries that include any type of JOIN clause defined by
the CMIS query grammar.

See section 2.1.14 Query.
Type Capabilities

capabilityCreatablePropertyTypes A list of all property data types that can be used by a client to
create or update an object-type definition. See sections 2.1.2.1 Property and 2.1.10.1 General
Constraints on Metadata Changes.

capabilityNewTypeSettableAttributes
Indicates which object-type attributes can be set by a client when a new object-type is created.
This capibility is a set of booleans; one for each of the following attributes:
*id
* localName
* localNamespace
+ displayName

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 18 of 334

» queryName

+ description

* creatable

« fileable

* queryable

» fulltextindexed

* includedIinSupertypeQuery
+ controllablePolicy

+ controllableACL

The repository MUST set the object-type attributes that cannot be set by a client or are not set
by a client.
See section 2.1.10 Object-Type Creation, Modification and Deletion.

ACL Capabilities

capabilityACL
Indicates the level of support for ACLs by the repository.

none The repository does not support ACL services.
discover The repository supports discovery of ACLs (getACL and other services).

manage The repository supports discovery of ACLs AND applying ACLs (getACL and apply-
ACL services).

See section 2.1.12 Access Control.

2.1.1.2 Implementation Information

The getRepositoryInfo service MUST also return implementation information including vendor name,
product name, product version, version of CMIS that it supports, the root folder id (see section 2.1.5.2 Folder
Hierarchy), and MAY include other implementation-specific information. The version of CMIS that the repos-
itory supports MUST be expressed as a String that matches the specification version. For this version it is
the string "1.1".

2.1.1.3 Repository Features

Repositories MAY provide information about additional features that are supported by the repository but that
are outside the CMIS specification. This information is returned by the getRepositoryInfo service.
Clients that don't understand this information SHOULD ignore it.

The repository MUST provide a unique id for each feature. This id SHOULD take the form of a URI (see
[RFC3986]). The repository MAY also provide a version label as well as a human-readable common name
and description for each feature.

Furthermore, each feature MAY supply an arbitrary number of key-value pairs. The semantics and rules for
these key-value pairs are not defined by CMIS but MAY be constrained by other specifications.

The CMIS Technical Committee defines feature extensions over time and publishes them on the CMIS TC
web site: https://www.oasis-open.org/committees/cmis

These optional extensions are describing features that can be supported by a wide range of repositories
and are likely to become part of the next CMIS specification version.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 19 of 334

https://www.oasis-open.org/committees/cmis

2.1.2 Object

The entities managed by CMIS are modeled as typed objects. There are five primary base types of objects:
document objects, folder objects, relationship objects, policy objects, and item objects.

» A document object represents a standalone information asset. Document objects are the elementary
entities managed by a CMIS repository.

+ A folder object represents a logical container for a collection of "file-able" objects, which include folder
objects, document objects, policy objects, and item objects. Folder objects are used to organize file-
able objects. Whether or not an object is file-able is specified in its object-type definition.

* A relationship object represents an instance of a directional relationship between two objects. The
support for relationship objects is optional. The getTypeChildren service when asked for the base
object-types MUST return the base relationship object-type if the repository supports relationships.

* A policy object represents an administrative policy, which may be "applied" to one or more "control-
lablePolicy" objects. Whether or not an object is controllable is specified in its object-type definition.
The support for policy objects is optional. The getTypeChildren service when asked for the base
object-types MUST return the base policy object-type if the repository supports policies.

» An item object represents a generic type of CMIS information asset. Item objects are not versionable
and do not have content streams like documents but have properties like all other CMIS objects. The
support for item objects is optional. The getTypeChildren service when asked for the base object-
types MUST return the base item object-type if the repository supports items.

Additional object-types MAY be defined in a repository as subtypes of these base types. CMIS services
are provided for the discovery of object-types that are defined in a repository. Furthermore, object-type
management services are provided to create, modify and delete object-types if that is supported by the
repository.

Every CMIS object has an opaque and immutable object id, which is assigned by the repository when the
object is created. An id uniquely identifies an object within a repository regardless of the type of the object.
Repositories SHOULD assign ids that are "permanent" -- that is, they remain unchanged during the lifespan
of the identified objects, and they are never reused or reassigned after the objects are deleted from the
repository.

Every CMIS object has a set of named, but not explicitly ordered, properties. (However, a repository
SHOULD always return object properties in a consistent order.) Within an object, each property is uniquely
identified by its property definition id. The object properties are defined by the object-type.

An object must have one and only one primary object-type, which cannot be changed. An object's primary
object-type may be simply called its object-type. The primary object-type of an object classifies the object
and defines the properties that the object must have.

An object MAY have zero or more secondary object types applied to it. A secondary type is a hamed
marking that may add extra properties to an object in addition to the properties defined by the object's
primary type. That is, applying a secondary type to an object adds the properties defined by this type to the
object. Removing a secondary type removes the properties. Secondary object-types can only be defined
as subtypes or descendant types of the cmi s : secondary base type. All other base object types and their
descendant types are primary object-types.

Consequently, each instance of a primary object-type corresponds to a distinct object, whereas each in-
stance of a secondary object type does not. Therefore, the "creatable", "fileable", "controllablePolicy", and
"controllableACL" object type attributes are not applicable to a secondary object type and must be set to

FALSE.

The support for secondary types is optional, and may be discovered via the getTypeChildren service.
See section 2.1.9 Secondary Object-Types.

In addition, a document object MAY have a content stream, which may be used to hold a raw digital asset
such as an image or a word-processing document. A repository MUST specify, in each object-type definition,
whether document objects of that type MAY, MUST, or MUST NOT have a content stream. A document

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 20 of 334

MAY also have one or more renditions associated with it. A rendition can be a thumbnail or an alternate
representation of the content stream.

Objects MAY have one Access Control List (ACL), which controls access to the object. A set of policy objects
may also control access to the object. An ACL represents a list of Access Control Entries (ACEs). An ACE
in turn represents one or more permissions being granted to a principal (a user, group, role, or something
similar).

The notion of localization of the objects in the data model is entirely repository specific.

CMIS objects MAY expose additional information, such as vendor-specific workflow data, beyond the at-
tributes described above. In this respect, the data model can be extended as desired. This specification
does not standardize such extensions.

2.1.21 Property

A property MAY hold zero, one, or more typed data value(s). Each property MAY be single-valued or multi-
valued. A single-valued property contains a single data value, whereas a multi-valued property contains an
ordered list of data values of the same type. The ordering of values in a multi-valued property SHOULD be
preserved by the repository.

A property, either single-valued or multi-valued, MAY be in a "not set" state. CMIS does not support "null"
property value. If a multi-valued property is not in a "not set" state, its property value MUST be a non-empty
list of individual values. Each individual value in the list MUST NOT be in a "not set" state and MUST conform
to the property's property-type.

A multi-valued property is either set or not set in its entirety. An individual value of a multi-valued property
MUST NOT be in an individual "value not set" state and hold a position in the list of values. An empty list of
values MUST NOT be allowed.

Every property is typed. The property-type defines the data type of the data value(s) held by the property.
CMIS specifies the following property-types. They include the following data types defined by "XML Schema
Part 2: Datatypes Second Edition" (see [XMLSchemal):

string (xsd:string)
boolean (xsd:boolean)

decimal (xsd:decimal)
(see section 2.1.3.3.5 Attributes specific to Decmial Object-Type Property Definitions for attributes
specific to Decimal object-type property definitions.)

integer (xsd:integer)
(see section 2.1.3.3.3 Attributes specific to Integer Object-Type Property Definitions for attributes spe-
cific to Integer object-type property definitions.)

datetime (xsd:dateTime)
(see section 2.1.3.3.4 Attributes specific to DateTime Object-Type Property Definitions for attributes
specific to DateTime object-type property definitions.)

uri (xsd:anyURI)

In addition, the following property-types are also specified by CMIS:
id
html

Individual protocol bindings MAY override or re-specify these property-types.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 21 of 334

For single valued String, Id and HTML properties, a repository MAY support the distinction between a set
value with an empty string (length = 0), and a "not set" value. In this case an empty value element (e.g.
<cmis:value/>) inside of a property element will indicate a "set but empty" string property. A property
element without a <cmis:value/> will indicate a property in a "not set" state. For repositories that do not
support this distinction the latter example (absence of the <cmis:value> element) should be used for all
cases.

2.1.21.1 Id Property

An id property holds a system-generated, read-only identifier, such as an object id, an object-type id, etc.
(The id property-type is NOT defined by xsd:id.) The lexical representation of an id is an opaque string. As
such, an id cannot be assumed to be interpretable syntactically or assumed to be collate-able with other
ids, and can only be used in its entirety as a single atomic value. When used in a query predicate, an id can
only participate in an "equal" or a "not equal" comparison with a string literal or with another id.

While all CMIS identities share the same property-type, they do not necessarily share the same address
space. Unless explicitly specified, id properties NEED NOT maintain a referential integrity constraint. There-
fore, storing the id of one object in another object NEED NOT constrain the behavior of either object. A
repository MAY, however, support referential constraint underneath CMIS if the effect on CMIS services
remains consistent with an allowable behavior of the CMIS model. For example, a repository MAY return a
constraint exception when a CMIS service call violates an underlying referential constraint maintained
by the repository. In that case, an error message SHOULD be returned to the application to describe the
cause of the exception and suggest a remedial action. The content of such messages is outside the scope
of CMIS.

2.1.21.2 HTML Property

An HTML property holds a document or fragment of Hypertext Markup Language (HTML) content. HTML
properties are not guaranteed to be validated in any way. The validation behavior is entirely repository
specific.

21.21.3 Query Names

All object types and properties MUST supply a string queryName attribute which is used for query and
filter operations on object-types. This is an opaque string with limitations. This string SHOULD NOT contain
any characters that negatively interact with the BNF grammar.

The string MUST NOT contain:

» whitespace
 comma","
+ double quotes
* single quotes ""

» backslash "\"

* the period "."

« the open "(" or close ")" parenthesis characters

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 22 of 334

2.1.3 Object-Type

An object-type defines a fixed and non-hierarchical set of properties ("schema") that all objects of that type
have. This schema is used by a repository to validate objects and enforce constraints, and is also used by
a user to compose object-type-based (structured) queries.

All CMIS objects are strongly typed. If a property not specified in an object's object-type definition is supplied
by an application, an exception SHOULD be thrown.

Each object-type is uniquely identified within a repository by a system-assigned and immutable object-type
identifier, which is of type Id.

A CMIS repository MUST expose exactly one collection of object-types via the "repository" services
(getTypeChildren, getTypeDescendants, getTypeDefinition).

While a repository MAY define additional object-types beyond the CMIS base object-types, these object-
types MUST NOT extend or alter the behavior or semantics of a CMIS service (for example, by adding new
services). A repository MAY attach additional constraints to an object-type underneath CMIS, provided that
the effect visible through the CMIS interface is consistent with the allowable behavior of CMIS.

2.1.3.1 Object-Type Hierarchy and Inheritance

Hierarchy and Inheritance for object-types are supported by CMIS in the following manner:

* A CMIS repository MUST have these base types:
— cmis:document object-type
— cmis: folder object-type

* A CMIS repository MAY have these base types:
— cmis:relationship object-type
— cmis:policy object-type
— cmis:item object-type
— cmis:secondary object-type

» Additional base types MUST NOT exist. Additional object-types MAY be defined as sub-types or
descendant types of these six base types.

» A base type does not have a parent type.
» A non-base type has one and only one parent type. An object-type's parent type is a part of the
object-type definition.
» An object-type definition includes a set of object-type attribute values (e.g. fileable, queryable, etc.)
and a property schema that will apply to objects of that type.
— There is no inheritance of object-type attributes from a parent object-type to its sub-types.
» The properties of a CMIS base type MUST be inherited by its descendant types.

+ A child type whose immediate parent is NOT its base type SHOULD inherit all the property definitions
that are specified for its parent type. In addition, it MAY have its own property definitions.

— If a property is NOT inherited by a subtype, the exhibited behavior for query MUST be as if the
value of this property is "not set" for all objects of this sub-type.

» The scope of a query on a given object-type is automatically expanded to include all the descendant
types of the given object-type with the attribute inectudedInSuperTypeguery includedInSu-
pertypeQuery equals TRUE. This was added for synthetic types as well as to support different type
hierarchies that are not necessarily the same as CMIS. Only the properties of the given object-type,
including inherited ones, MUST be used in the query. Properties defined for its descendant types MAY
NOT be used in the query, and CAN NOT be returned by the query.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 23 of 334

— If a property of its parent type is not inherited by this type, the property MUST still appear as a
column in the corresponding virtual table in the relational view, but this column MUST contain a
"not set" value for all objects of this type. (See section 2.1.14 Query)

2.1.3.2 Object-Type Attributes
2.1.3.2.1 Attributes common to ALL Object-Type Definitions

All object-type definitions MUST contain the following attributes. Optional attributes MUST be defined but
MAY have "not set" values.

id Id
This opaque attribute identifies this object-type in the repository.

localName String

This attribute represents the underlying repository's name for the object-type. This field is
opaque and has no uniqueness constraint imposed by this specification.

localNamespace String (optional)

This attribute allows repositories to represent the internal namespace of the underlying repos-
itory's name for the object-type.

queryName String (optional)

Used for query and filter operations on object-types. This is an opaque string with limitations.
See 2.1.2.1.3 Query Names for details.

displayName String (optional)
Used for presentation by application.

baseIld Enum

A value that indicates whether the base type for this object-type is the document, folder, rela-
tionship, policy, item, or secondary base type.

parentId Id

The id of the object-type's immediate parent type. It MUST be "not set" for a base type. De-
pending on the binding this means it might not exist on the base type object-type definition.

description String (optional)

Description of this object-type, such as the nature of content, or its intended use. Used for
presentation by application.

creatable Boolean

Indicates whether new objects of this type MAY be created. If the value of this attribute is
FALSE, the repository MAY contain objects of this type already, but MUST NOT allow new
objects of this type to be created.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 24 of 334

fileable Boolean

Indicates whether or not objects of this type are file-able.

queryable Boolean

Indicates whether or not this object-type can appear in the FROM clause of a query statement.
A non-queryable object-type is not visible through the relational view that is used for query, and
CAN NOT appear in the FROM clause of a query statement.

controllablePolicy Boolean

Indicates whether or not objects of this type are controllable via policies. Policy objects can
only be applied to controllablePolicy objects.

controllableACL Boolean

This attribute indicates whether or not objects of this type are controllable by ACL's. Only
objects that are controllableACL can have an ACL.

fulltextIndexed Boolean

Indicates whether objects of this type are indexed for full-text search for querying via the CON-
TAINS() query predicate. If the value of this attribute is TRUE, the full-text index MUST cover
the content and MAY cover the metadata.

includedInSupertypeQuery Boolean

Indicates whether this type and its subtypes appear in a query of this type's ancestor types.
For example: if Invoice is a sub-type of cmis:document, if this is TRUE on Invoice then
for a query on cmis:document, instances of Invoice will be returned if they match. If this
attribute is FALSE, no instances of Invoice will be returned even if they match the query.

typeMutability.create Boolean (optional)
Indicates whether new child types may be created with this type as the parent.

typeMutability.update Boolean (optional)
Indicates whether clients may make changes to this type per the constraints defined in this
specification.

typeMutability.delete Boolean (optional)

Indicates whether clients may delete this type if there are no instances of it in the repository.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 25 of 334

2.1.3.3 Object-Type Property Definitions

Besides these object-type attributes, an object-type definition SHOULD contain inherited property definitions
and zero or more additional property definitions. All the properties of an object, including inherited properties,
MUST be retrievable through the "get" services, and MAY appear in the SELECT clause of a query.

2.1.3.3.1 Property Types

Property types are defined in section 2.1.2.1 Property.

2.1.3.3.2 Attributes common to ALL Object-Type Property Definitions

All object-type property definitions MUST contain the following attributes. Optional attributes MUST be
defined but MAY have "not set" values.

id Id

This opaque attribute uniquely identifies the property in the repository. If two object-types each
contain property definitions with the same id, the basic property definitions (property type, query
name, cardinality) MUST be the same. Other attributes MAY be different for each type.

localName String (optional)

This attribute represents the underlying repository's name for the property. This field is opaque
and has no uniqueness constraint imposed by this specification.

localNamespace String (optional)

This attribute allows repositories to represent the internal namespace of the underlying repos-
itory's name for the property.

queryName String (optional)

Used for query operations on properties. This is an opaque string with limitations. See
2.1.2.1.3 Query Names for details.

displayName String (optional)
Used for presentation by application.

description String (optional)
This is an optional attribute containing a description of the property.

propertyType Enum

This attribute indicates the type of this property. It MUST be one of the allowed property types.
(See section 2.1.2.1 Property.)

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 26 of 334

cardinality Enum

Indicates whether the property can have "zero or one" or "zero or more" values.

Values:

single Property can have zero or one values (if property is not required), or exactly one value
(if property is required).

multi Property can have zero or more values (if property is not required), or one or more values
(if property is required).

Repositories SHOULD preserve the ordering of values in a multi-valued property. That is, the

order in which the values of a multi-valued property are returned in "get" services operations

SHOULD be the same as the order in which they were supplied during previous create/update

operation.

updatability Enum

Indicates under what circumstances the value of this property MAY be updated.

Values:

readonly The value of this property MUST NOT ever be set directly by an application. It is
a system property that is either maintained or computed by the repository. The value
of a read-only property MAY be indirectly modified by other repository interactions (for
example, calling updateProperties on an object will change the object's last modi-
fied date, even though that property cannot be directly set via an updateProperties
service call.)

readwrite The property value can be modified using the updateProperties service.

whencheckedout The property value MUST only be update-able using a "private working
copy" document. That is, the update is either made on a "private working copy" object or
made using the checkIn service.

oncreate The property value MUST only be update-able during the create operation on that
object.

inherited Boolean

Indicates whether the property definition is inherited from the parent type when TRUE or it is
explicitly defined for this object-type when FALSE.

required Boolean

This attribute is only applicable to non-system properties, i.e. properties whose value is pro-
vided by the application.

If TRUE, then the value of this property MUST never be set to the "not set" state when an
object of this type is created/updated. If not provided during a create or update operation, the
repository MUST provide a value for this property. If a value is not provided, then the default
value defined for the property MUST be set. If no default value is provided and no default value
is defined, the repository MUST throw a constraint exception.

This attribute is not applicable when the "updatability” attribute is "readonly". In that case,
"required" SHOULD be set to FALSE.

Note: For CMIS-defined object-types, the value of a system property (such as
cmis:objectId, cmis:createdBy) MUST be set by the repository. However, the prop-
erty's "required" attribute SHOULD be FALSE because it is read-only to applications.

queryable Boolean
Indicates whether or not the property MAY appear in the WHERE clause of a CMIS query
statement.
This attribute MUST have a value of FALSE if the object-type's attribute for "queryable" is set
to FALSE.
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 27 of 334

orderable Boolean

Indicates whether the property can appear in the ORDER BY clause of a CMIS query statement
or an orderBy parameter of getChildren or getCheckedOutDocs.
This property MUST be FALSE for any property whose cardinality is "multi".

choices <PropertyChoiceType list> (multi-valued, optional)

Indicates an explicit ordered set of single values allowed for this property.
If the cardinatity of the property definition is "single" and the "openChoice" attribute is FALSE,
then the property value MUST be at most one of the values listed in this attribute.
If the cardinatity of the property definition is "single" and the "openChoice" attribute is TRUE,
then the property value MAY be one of the values listed in this attribute.
If the cardinatity of the property definition is "multi" and the "openChoice" attribute is FALSE,
then the property value MUST be zero, one or more than one of the values listed in this attribute.
If the cardinatity of the property definition is "multi" and the "openChoice" attribute is TRUE,
then the property value MAY be zero, one, or more than one of the values listed in this attribute.
If this attribute is "not set", then any valid value for this property based on its type may be used.
Each choice includes a displayName and a value. The displayName is used for presentation
purpose. The value will be stored in the property when selected.
Choices MAY be hierarchically presented. For example: a value of "choices" for a geographic
location would be represented as follows:
» Europe:

— England

— France

— Germany

* North America

— Canada

- USA

— Mexico

openChoice Boolean (optional if choices is not set)

This attribute is only applicable to properties that provide a value for the "Choices" attribute.

If FALSE, then the data value for the property MUST only be one of the values specified in the
"Choices" attribute. If TRUE, then values other than those included in the "Choices" attribute
may be set for the property.

defaultValue <Property Type> (optional)

The value that the repository MUST set for the property if a value is not provided by an appli-
cation when the object is created.

If no default value is specified and an application creates an object of this type without setting
a value for the property, the repository MUST attempt to store a "not set" property value. If this
occurs for a property that is defined to be required, then the creation attempt MUST throw an

exception.
The attributes on the default value element are the same as the attributes on the property
definition.

CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 28 of 334

2.1.3.3.3 Attributes specific to Integer Object-Type Property Definitions

The following object attributes MUST only apply to property type definitions whose propertyType is "Integer”,
in addition to the common attributes specified above. A repository MAY provide additional guidance on what
values can be accepted. If the following attributes are not present the repository behavior is undefined and
it MAY throw an exception if a runtime constraint is encountered.

minValue Integer

The minimum value allowed for this property.
If an application tries to set the value of this property to a value lower than minValue, the
repository MUST throw a constraint exception.

maxValue Integer

The maximum value allowed for this property.
If an application tries to set the value of this property to a value higher than maxValue, the
repository MUST throw a constraint exception.

2.1.3.3.4 Attributes specific to DateTime Object-Type Property Definitions

The following object attributes MUST only apply to property type definitions whose propertyType is "Date-
Time", in addition to the common attributes specified above. A repository MAY provide additional guidance
on what values can be accepted. If the following attributes are not present the repository behavior is unde-
fined and it MAY throw an exception if a runtime constraint is encountered.

resolution Enum

This is the resolution supported for values of this property. Valid values for this attribute are:
year Year resolution is persisted. Date and time portion of the value should be ignored.
date Date resolution is persisted. Time portion of the value should be ignored.

time Time resolution is persisted.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 29 of 334

2.1.3.3.5 Attributes specific to Decmial Object-Type Property Definitions

The following object attributes MUST only apply to property type definitions whose propertyType is "Deci-
mal", in addition to the common attributes specified above. A repository MAY provide additional guidance on
what values can be accepted. If the following attributes are not present the repository behavior is undefined
and it MAY throw an exception if a runtime constraint is encountered.

precision Enum

This is the precision in bits supported for values of this property. Valid values for this attribute
are:

32 32-bit precision ("single" as specified in IEEE-754-1985).

64 64-bit precision ("double" as specified in IEEE-754-1985).

minValue Decimal

The minimum value allowed for this property.
If an application tries to set the value of this property to a value lower than minValue, the
repository MUST throw a constraint exception.

maxValue Decimal

The maximum value allowed for this property.
If an application tries to set the value of this property to a value higher than maxValue, the
repository MUST throw a constraint exception.

2.1.3.3.6 Attributes specific to String Object-Type Property Definitions

The following object attributes MUST only apply to property type definitions whose property Type is "String",
in addition to the common attributes specified above. A repository MAY provide additional guidance on what
values can be accepted. If the following attributes are not present the repository behavior is undefined and
it MAY throw an exception if a runtime constraint is encountered.

maxLength Integer

The maximum length (in characters) allowed for a value of this property.
If an application attempts to set the value of this property to a string longer than the specified
maximum length, the repository MUST throw a constraint exception.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 30 of 334

2.1.4 Document Object

Document objects are the elementary information entities managed by the repository.

Depending on its object-type definition, a document object may be:

Version-able Can be acted upon via the Versioning Services (for example: checkOut, checkIn).
File-able Can be filed in zero, one, or more than one folder via the Multi-filing Services.
Query-able Can be located via the Discovery Services (for example: query).
Controllable-Policy Can have policies applied to it. (See section 2.1.7 Policy Object.)
Controllable-ACL Can have an ACL applied to it. (See section 2.1.12 Access Control.)

Additionally, whether a document object MUST, MAY or MUST NOT have a content stream is specified in
its object-type definition. A document object MAY be associated with zero or more renditions.

Note: When a document is versioned, each version of the document is a separate document object. Thus,
for document objects, an object id actually identifies a specific version of a document.

2.1.4.1 Content Stream

A content stream is a binary stream. Its maximum length is repository specific. Each content stream has a
MIME Media Type, as defined by [RFC2045] and [RFC2046]. A content stream's attributes are represented
as properties of the content stream's containing document object. There is no MIME type specific attribute
or name directly associated with the content stream outside of the document object.

CMIS provides basic CRUD" services for content stream, using the id of a content stream's containing
document object for identification. A content stream also has a contentStreamId whichis used for access
to the stream. The setContentStream service either creates a new content stream for a document object
or replaces an existing content stream. The appendContentStream service either creates a new content
stream or appends content to an existing content stream. The getContentStream service retrieves a
content stream. The deleteContentStream service deletes a content stream from a document object.
In addition, the createDocument and checkIn services MAY also take a content stream as an optional
input. A content stream MUST be specified if required by the object-type definition. These are the only
services that operate on content stream. The getObject and query services, for example, do not return
a content stream.

setContentStream, appendContentStream and deleteContentStream services are considered
modifications to a content stream's containing document object, and SHOULD therefore change the ob-
ject's last modification date property upon successful completion.

The ability to set or delete a content stream is controlled by the capabilityContentStreamUpdata-
bility capability.

2.1.4.2 Renditions

Some ECM repositories provide a facility to retrieve alternative representations of a document. These al-
ternative representations are known as renditions. This could apply to a preview case which would enable
the client to preview the content of a document without needing to download the full content. Previews are
generally reduced fidelity representations such as thumbnails. Renditions can take on any general form,
such as a PDF version of a word processing document.

A CMIS repository MAY expose zero or more renditions for a document or folder in addition to a document's
content stream. CMIS provides no capability to create or update renditions accessed through the rendition
services. Renditions are specific to the version of the document or folder and may differ between document
versions. Each rendition consists of a set of rendition attributes and a rendition stream. Rendition attributes
are not object properties, and are not queryable. They can be retrieved using the getRenditions service.

1Create, Read, Update and Delete

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 31 of 334

A rendition stream can be retrieved using the getContentStream service with the rendition's streamld
parameter.

2.1.4.2.1 Rendition Attributes

A rendition has the following attributes:

streamId Id

Identifies the rendition stream.

mimeType String
The MIME type of the rendition stream.

length Integer

The length of the rendition stream in bytes.

title String (optional)

Human readable information about the rendition.

kind String

A categorization String associated with the rendition. See section 2.1.4.2.2 Rendition Kind.

height Integer (optional)

Typically used for 'image' renditions (expressed as pixels).
SHOULD be present if kind = cmis:thumbnail.

width Integer (optional)

Typically used for 'image' renditions (expressed as pixels).
SHOULD be present if kind = cmis:thumbnail.

renditionDocumentId Id (optional)

If specified, then the rendition can also be accessed as a document object in the CMIS ser-
vices. If not set, then the rendition can only be accessed via the rendition services. Referential
integrity of this id is repository specific.

2.1.4.2.2 Rendition Kind

A rendition may be categorized via its kind. The repository is responsible for assigning kinds to renditions,
including custom kinds. A rendition kind does not necessarily identify a single rendition for a given object.

CMIS defines the following kind:

cmis:thumbnail A rendition whose purpose is to provide an image preview of the document without requir-
ing the client to download the full document content stream. Thumbnails are generally reduced fidelity
representations.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 32 of 334

2.1.4.3 Document Object-Type Definition

This section describes the definition of the document object-type's attribute values and property definitions
which must be present on document instance objects. All attributes and property definitions are listed by
their id.

2.1.4.3.1 Attributes specific to Document Object-Types

The following object attributes MUST only apply to object-type definitions whose baseld is the cmi s : document
object-type, in addition to the common attributes specified above:

versionable Boolean

Indicates whether or not objects of this type are version-able. (See section 2.1.13 Versioning.)
If this attribute is set to TRUE, then documents of this type MUST be versionable. If this attribute
is set to FALSE, then documents of this type MUST NOT be versionable.

contentStreamAllowed Enum
A value that indicates whether a content stream MAY, MUST, or MUST NOT be included in
objects of this type.
Values:

notallowed A content stream MUST NOT be included.

allowed A content stream MAY be included.

required A content stream MUST be included (i.e. MUST be included when the object is cre-
ated, and MUST NOT be deleted).

2.1.4.3.2 Attribute Values

The document object-type MUST have the following attribute values.
Notes:

* A value of <repository-specific> indicates that the value of the property MAY be set to any valid value
for the attribute type.

» Unless explicitly stated otherwise, all values specified in the list MUST be followed for the object-type
definition.
id
Value: cmis:document

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:document

displayName
Value: <repository-specific>

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 33 of 334

baseId
Value: cmis:document

parentId
Value: MUST NOT be set

description
Value: <repository-specific>

creatable
Value: <repository-specific>

fileable
Value: SHOULD be TRUE

queryable
Value: SHOULD be TRUE

controllablePolicy
Value: <repository-specific>

controllableACL
Value: <repository-specific>

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

versionable
Value: <repository-specific>

contentStreamAllowed
Value: <repository-specific>

2.1.4.3.3 Property Definitions

The document base object-type MUST have the following property definitions, and MAY include additional
property definitions. Any attributes not specified for the property definition are repository specific. For all
property definitions on base types, the query name MUST be the same as the property id. The repository
MUST have the following property definitions on the document object-type:

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 34 of 334

cmis:name

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

cmis:description

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Name of the object.

String

FALSE

TRUE

single

SHOULD be readwrite or whencheckedout
Not Applicable

Not Applicable

SHOULD be TRUE

SHOULD be TRUE

Description of the object.

String

FALSE

FALSE

single

SHOULD be readwrite or whencheckedout
Not Applicable

Not Applicable

<repository specific>

<repository specific>

If the repository doesn't support object descriptions, the Updatability SHOULD be readonly and
the repository SHOULD return a "not set" value for this property.

cmis:objectId

Property Type:
Inherited:
Required:
Cardinality:
Updatability:

Choices:
Open Choice:
Queryable:
Orderable:

Id of the object.

Id
FALSE
FALSE
single

readonly oncreate
Not Applicable

Not Applicable
TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 35 of 334

cmis:baseTypeld

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Id of the base object-type for the object.

Id

FALSE

FALSE

single

readonly

Not Applicable

Not Applicable
SHOULD be TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:objectTypeld

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Id of the object's type.

Id

FALSE

FALSE

single

readonly

Not Applicable

Not Applicable
SHOULD be TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:secondaryObjectTypeIds
Property Type:
Inherited:
Required:
Cardinality:
Updatability:

Choices:
Open Choice:
Queryable:
Orderable:

Ids of the object's secondary types.

Id
FALSE
FALSE
multi

readwrite if secondary types are supported,
readonly otherwise

Not Applicable

Not Applicable
SHOULD be TRUE
FALSE

If the repository does not support secondary types, the repository MUST return "not set".

CMIS-v1.1-errata01-os-complete

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 36 of 334

cmis:createdBy

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

User who created the object.

String

FALSE

FALSE

single
readonly

Not Applicable
Not Applicable
TRUE

TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:creationDate

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

DateTime when the object was created.

DateTime
FALSE

FALSE

single
readonly

Not Applicable
Not Applicable
TRUE

TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:lastModifiedBy
Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

User who last modified the object.

String

FALSE

FALSE

single
readonly

Not Applicable
Not Applicable
TRUE

TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 37 of 334

cmis:lastModificationDate DateTime when the object was last modified.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.
cmis:changeToken Opaque token used for optimistic locking and concurrency
checking. (See section 2.2.1.3 Change Tokens.)
Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: FALSE
Orderable: FALSE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it. If the repository does not support change tokens, this property SHOULD not be set.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 38 of 334

cmis:isImmutable Defines if the object can be modified. If TRUE the repos-
itory MUST throw an error at any attempt to update or
delete the object.

Property Type: Boolean

Inherited: FALSE

Required: FALSE

Cardinality: single

Updatability: readonly

Choices: Not Applicable

Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.
cmis:isLatestVersion See section 2.1.13 Versioning.
Property Type: Boolean
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 39 of 334

cmis:isMajorVersion See section 2.1.13 Versioning.

Property Type: Boolean

Inherited: FALSE

Required: FALSE

Cardinality: single

Updatability: readonly

Choices: Not Applicable

Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

cmis:isLatestMajorVersion See section 2.1.13 Versioning.
Property Type: Boolean
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 40 of 334

cmis:isPrivateWorkingCopy See section 2.1.13 Versioning.

Property Type: Boolean

Inherited: FALSE

Required: FALSE

Cardinality: single

Updatability: readonly

Choices: Not Applicable

Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

cmis:versionLabel See section 2.1.13 Versioning.
Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 41 of 334

cmis:versionSeriesId See section 2.1.13 Versioning.

Property Type: Id

Inherited: FALSE

Required: FALSE

Cardinality: single

Updatability: readonly

Choices: Not Applicable

Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

cmis:isVersionSeriesCheckedOut See section 2.1.13 Versioning.

Property Type: Boolean

Inherited: FALSE

Required: FALSE

Cardinality: single

Updatability: readonly

Choices: Not Applicable

Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 42 of 334

cmis:versionSeriesCheckedOutBy See section 2.1.13 Versioning.

Property Type: String

Inherited: FALSE

Required: FALSE

Cardinality: single

Updatability: readonly

Choices: Not Applicable

Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository SHOULD return this property with a non-empty value if the document is checked
out and the property filter does not exclude it. The repository MUST return "not set" if the
document is not checked out. Version property values are repository-specific when a document
is defined as non-versionable.

cmis:versionSeriesCheckedOutId See section 2.1.13 Versioning.

Property Type: Id

Inherited: FALSE

Required: FALSE

Cardinality: single

Updatability: readonly

Choices: Not Applicable

Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository SHOULD return this property with a non-empty value if the document is checked
out, the PWC is visible to the current user and the property filter does not exclude it. If the PWC
is not visible to the current user, the repository SHOULD return "not set". The repository MUST
return "not set" if the document is not checked out. Version property values are repository-
specific when a document is defined as non-versionable.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 43 of 334

cmis:checkinComment See section 2.1.13 Versioning.

Property Type: String

Inherited: FALSE

Required: FALSE

Cardinality: single

Updatability: readonly

Choices: Not Applicable

Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

Version property values are repository-specific when a document is defined as non-

versionable.
cmis:contentStreamLength Length of the content stream (in bytes).
See also section 2.1.4.1 Content Stream.
Property Type: Integer
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the document has a content
stream and the property filter does not exclude it. If the document has no content stream, the
repository MUST return "not set".

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 44 of 334

cmis:contentStreamMimeType MIME type of the content stream.

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

See also section 2.1.4.1 Content Stream.

String

FALSE

FALSE

single

readonly

Not Applicable

Not Applicable
<repository specific>
<repository specific>

The repository MUST return this property with a non-empty value if the document has a content
stream and the property filter does not exclude it. If the document has no content stream, the
repository MUST return "not set".

cmis:contentStreamFileName File name of the content stream.

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

See also section 2.1.4.1 Content Stream.

String

FALSE

FALSE

single

readonly

Not Applicable

Not Applicable
<repository specific>
<repository specific>

The repository MUST return this property with a non-empty value if the document has a content
stream and the property filter does not exclude it. If the document has no content stream, the
repository MUST return "not set".

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 45 of 334

cmis:contentStreamId

Property Type:

Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

If the document has no content stream, the repository MUST return "not set".

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Id of the content stream.
See also section 2.1.4.1 Content Stream.

String Id

FALSE

FALSE

single

readonly

Not Applicable

Not Applicable
<repository specific>
<repository specific>

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 46 of 334

2.1.5 Folder Object

A folder object serves as the anchor for a collection of file-able objects. The folder object has an implicit
hierarchical relationship with each object in its collection, with the anchor folder object being the parent object
and each object in the collection being a child object. This implicit relationship has specific containment
semantics which MUST be maintained by the repository with implicit referential integrity. (That is, there will
never be a dangling parent-relationship or a dangling child-relationship. Furthermore, object A is a parent of
object B if and only if object B is a child of object A.) This system-maintained implicit relationship is distinct
from an explicit relationship which is instantiated by an application-maintained relationship object. (See
section 2.1.6 Relationship Object.)

A folder object does not have a content-stream and is not version-able. A folder object MAY be associated
with zero or more renditions (see section 2.1.4.2 Renditions).

2.1.5.1 File-able Objects

A file-able object is one that MAY be "filed" into a folder. That is, it MAY be a child object of a folder object.
The following list defines whether the base CMIS object-types are file-able:

cmis:folder MUST be file-able

cmis:document MAY be file-able
cmis:relationship MUST NOT be file-able
cmis:policy MAY be file-able

cmis:item MAY be file-able

2.1.5.1.1 Document Version Series and Filing

Since document objects are versionable, a document object's membership in a folder MAY be version-
specific or version-independent. That is, the folder membership MAY be restricted to that particular version
of the document or MAY apply to all versions of the document. Whether or not a repository supports version-
specific filing is discoverable via the getRepositoryInfo service.

When the child objects of a folder are retrieved, a specific version of a document MAY be returned. If the
repository supports version-specific filing, the specific version filed in that folder is returned. If the repository
does not support version-specific filing, the latest version or the latest major version of the document is
returned.

Likewise, this version sensitivity in child-binding also affects the behavior of parent retrieval for a document
object, as well as the scope of the IN_FOLDER () and IN TREE () function calls in a query. For non-
versionable fileable objects, their membership in a folder does not have version sensitivity.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 47 of 334

2.1.5.1.2 Filing Restrictions by Object-Type

A folder collection's membership MAY be restricted by object-type. Each folder object has a multi-valued
cmis:allowedChildObjectTypelIds property, which specifies that only objects of these types are al-
lowed to be its children. If this property is "not set", then objects of any file-able type MAY be filed in the
folder. It is repository-specific if subtypes of the types listed in the cmis:allowedChildObjectTypelds
property MAY be filed in the folder.

Because of these filing constraints, when a new folder object is created, an existing folder object MUST be
specified as its parent.

When a non-file-able object is created, a parent folder MUST NOT be specified.

When a file-able object is deleted, it is removed from any folder collection in which the object is a member.
In other words, when an object is deleted, all implicit parent-child relationships with the deleted object as a
child cease to exist.

2.1.5.2 Folder Hierarchy

CMIS imposes the following constraints on folder objects:

 Every folder object, except for one which is called the root folder, MUST have one and only one parent
folder. The root folder does not have a parent.

» A cycle in folder containment relationships is not allowed. That is, a folder object cannot have itself as
one of its descendant objects.

+ A child object that is a folder object can itself be the parent object of other file-able objects.

With these constraints, the folder objects in a CMIS repository necessarily form a strict hierarchy, with the
root folder being the root of the hierarchy.

The child objects of a given folder object, their child objects, and grandchild objects, etc., are called descendant
objects of the given folder object. A folder object together with all its descendant objects are collectively
called a tree rooted at that folder object.

A non-folder object does not have any descendant objects. Thus, a folder graph that consists of all fileable
objects as nodes, and all the implicit folder containment relationships as directed edges from parent to child,
is a directed acyclic graph, possibly with some disconnected (orphan) nodes. It follows that the tree rooted
at any given folder object is also a directed acyclic graph, although a non-folder object in the tree MAY have
ancestors that are not ancestors of the rooted folder.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 48 of 334

A Folder Graph

A folder object

A non-folder fileable object (document or policy)
A multi-filed object
-

An unfiled object

An implicit folder containment
relationship from parent to child

Figure 2.1: Folder Graph

Folder objects are handled using the basic CRUD services for objects, and the folder graph is traversed
using the navigation services.

The root folder is a special folder such that it cannot be created, deleted, or moved using CMIS services.
Otherwise, it behaves like any other folder object.

2.1.5.3 Paths
A folder hierarchy MAY be represented in a canonical notation such as path. For CMIS, a path is represented
by:

+ /' for the root folder.

+ All paths start with the root folder.

* A set of the folder and object path segments separated by '/' in order of closest to the root.

» Folder and object path segments are specified by pathSegment tokens which can be retrieved by all
services that take an includePathSegments parameter (for example getChildren).

* ApathSegment token MUST not include a '/' character.
It is repository specific how a repository chooses the value for pathSegment. Repositories might
choose to use cmis:name or content stream filename for pathSegment token.

* The pathSegment token for each item MUST uniquely identify the item in the folder.

That is, if folder A is under the root, and folder B is under A, then the path would be /A/B.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 49 of 334

A path for an object may be calculated in the following way:
+ If the object is the root folder, the path is '/'.
« If the object is a direct child of the root folder, the path is the object's pathSegment prefixed by '/".

« If the object is not a direct child of the root folder, the path is item's parent folder cmis : path property
appended by '/' and the object's pathSegment.

This constructed path may be given as input to the getObjectByPath service for object by path retrieval.

The getObjectParents service returns relativePathSegment tokens. These tokens are the path-
Segment of the input object relative to the parent folders.

2.1.5.4 Folder Object-Type Definition

This section describes the definition of the folder object-type's attribute values and property definitions which
must be present on folder instance objects. All attributes and property definitions are listed by their id.

2.1.5.4.1 Attribute Values

The folder object-type MUST have the following attribute values.
Notes:

+ A value of <repository-specific> indicates that the value of the property MAY be set to any valid value
for the attribute type.

» Unless explicitly stated otherwise, all values specified in the list MUST be followed for the object-type
definition.
id
Value: cmis:folder

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:folder

displayName
Value: <repository-specific>

baselId
Value: cmis:folder

parentId
Value: MUST NOT be set

description
Value: <repository-specific>

creatable
Value: <repository-specific>

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 50 of 334

fileable
Value: TRUE

queryable
Value: SHOULD be TRUE

controllablePolicy
Value: <repository-specific>

controllableACL
Value: <repository-specific>

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

2.1.5.4.2 Property Definitions

The folder base object-type MUST have the following property definitions, and MAY include additional prop-
erty definitions. Any attributes not specified for the property definition are repository specific. For all property
definitions on base types, the query name MUST be the same as the property id. The repository MUST have
the following property definitions on the folder object-type:

cmis:name Name of the object.
Property Type: String
Inherited: FALSE
Required: TRUE
Cardinality: single
Updatability: SHOULD be readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: SHOULD be TRUE

CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 51 of 334

cmis:description

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Description of the object.

String

FALSE

FALSE

single

SHOULD be readwrite
Not Applicable

Not Applicable
<repository specific>
<repository specific>

If the repository doesn't support object descriptions, the Updatability SHOULD be readonly and
the repository SHOULD return a "not set" value for this property.

cmis:objectId

Property Type:
Inherited:
Required:
Cardinality:
Updatability:

Choices:
Open Choice:
Queryable:
Orderable:

Id of the object.

Id
FALSE
FALSE
single

readonly oncreate
Not Applicable

Not Applicable
TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:baseTypeld

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Id of the base object-type for the object.

Id

FALSE

FALSE

single

readonly

Not Applicable

Not Applicable
SHOULD be TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 52 of 334

cmis:objectTypeld

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Id of the object's type.

Id

FALSE

FALSE

single

readonly

Not Applicable

Not Applicable
SHOULD be TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:secondaryObjectTypelIds
Property Type:
Inherited:
Required:
Cardinality:
Updatability:

Choices:
Open Choice:
Queryable:
Orderable:

Ids of the object's secondary types.

Id
FALSE
FALSE
multi

readwrite if secondary types are supported,
readonly otherwise

Not Applicable

Not Applicable
SHOULD be TRUE
FALSE

If the repository does not support secondary types, the repository MUST return "not set".

cmis:createdBy
Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

User who created the object.

String

FALSE

FALSE

single
readonly

Not Applicable
Not Applicable
TRUE

TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 53 of 334

cmis:creationDate DateTime when the object was created.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:lastModifiedBy User who last modified the object.
Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:lastModificationDate DateTime when the object was last modified.
Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 54 of 334

cmis:changeToken

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Opaque token used for optimistic locking and concurrency
checking. (See section 2.2.1.3 Change Tokens.)

String

FALSE

FALSE

single
readonly

Not Applicable
Not Applicable
FALSE

FALSE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it. If the repository does not support change tokens, this property SHOULD not be set.

cmis:parentId
Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Id of the parent folder of the folder.

Id

FALSE

FALSE

single

readonly

Not Applicable

Not Applicable
<repository specific>
FALSE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 55 of 334

cmis:path The fully qualified path to this folder.
See section 2.1.5.3 Paths.

Property Type: String

Inherited: FALSE

Required: FALSE

Cardinality: single

Updatability: readonly

Choices: Not Applicable

Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:allowedChildObjectTypeIds Id's of the set of object-types that can be created, moved
or filed into this folder.
See section 2.1.5.1.2 Filing Restrictions by Object-Type.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: multi
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: FALSE
Orderable: FALSE
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 56 of 334

2.1.6 Relationship Object

A relationship object is semantically a dependent object. A relationship object MUST NOT have a content
stream, and MUST NOT be versionable, MAY be queryable, and MUST NOT be fileable, although it MAY
be controllable.

If a repository does not support relationship objects, the relationship base object-type SHOULD NOT be
returned by a getTypeChildren service call.

A relationship object instantiates an explicit, binary, directional, non-invasive, and typed relationship between
a source object and a target object. The source object and the target object MUST both be independent
objects, such as a document object, a folder object, a policy object, or an item object. Whether a policy
object is allowed to be the source or target object of a relationship object is repository-specific.

The relationship instantiated by a relationship object is explicit since it is explicitly represented by an object
and is explicitly managed by application.

This relationship is non-invasive in the sense that creating or removing this relationship SHOULD NOT
modify either the source or the target object. That is, it SHOULD NOT require an update capability (or
permission) on either object; SHOULD NOT affect the versioning state of either object; and SHOULD NOT
change their "Last Modification Date".

Explicit relationships can be used to create an arbitrary relationship graph among independent objects.
Such a relationship graph is only structural in nature. No inheritance or transitive properties are attached to
a relationship graph.

The notion of a source object and a target object of a relationship is used solely to indicate the direction of
the relationship. No semantics or implementation bias is implied by this terminology.

The binding of a relationship object to a source document object or to a target document object MAY be
either version-specific or version-independent. This version sensitivity is repository-specific, and is largely
transparent to CMIS. An independent object MAY participate in any number of explicit relationships, as the
source object for some and as the target object for others. Multiple relationships MAY exist between the
same pair of source and target objects.

Referential integrity, either between the source object and the target object, or between the relationship
object and the source or target object, is repository-specific. Therefore, creating an explicit relationship
between two objects MAY impose a constraint on any of the three objects, and removing a relationship or
deleting either the source or the target object MAY be restricted by such a constraint. If the source or the
target object of a relationship is deleted, the repository MAY automatically delete the relationship object.

Like all CMIS objects, relationship objects are typed. Typing relationship allows them to be grouped, identi-
fied, and traversed by type id, and for properties to be defined for individual relationship types.

Additionally, a relationship object-type MAY specify that only objects of a specific object-type can participate
as the source object or target object for relationship objects of that type. If no such constraints are specified,
then an independent object of any type MAY be the source or the target of a relationship object of that type.

When a relationship object is created, the source object id and the target object id MUST reference valid
non-relationship CMIS objects. When a relationship object is retrieved, its source object or target object
MAY no longer exist, since referential integrity MAY not be maintained by a repository.

In addition to object CRUD services, a getObjectRelationships service may be used to return a set
of relationship objects in which a given independent object is identified as the source or the target object,
according to the binding semantics maintained by the repository (i.e., either a version-specific or a version-
independent binding as described above).

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 57 of 334

2.1.6.1 Relationship Object-Type Definition

This section describes the definition of the relationship object-type's attribute values and property definitions
which must be present on relationship instance objects. All attributes and property definitions are listed by
their id.

2.1.6.1.1 Attributes specific to Relationship Object-Types

The following object attributes MUST only apply to object-type definitions whose baseld isthe cmis:relationship
object-type, in addition to the common attributes specified above:

allowedSourceTypes Id (multi-valued)

A list of object-type ids, indicating that the source object of a relationship object of this type
MUST only be one of the types listed.
If this attribute is "not set", then the source object MAY be of any type.

allowedTargetTypes Id (multi-valued)

A list of object-type ids, indicating that the target object of a relationship object of this type
MUST only be one of the types listed.
If this attribute is "not set", then the target object MAY be of any type.

2.1.6.1.2 Attribute Values

The relationship object-type MUST have the following attribute values.
Notes:

* A value of <repository-specific> indicates that the value of the property MAY be set to any valid value
for the attribute type.

» Unless explicitly stated otherwise, all values specified in the list MUST be followed for the object-type
definition.
id
Value: cmis:relationship

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:relationship

displayName
Value: <repository-specific>

baseId
Value: cmis:relationship

parentId
Value: MUST NOT be set

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 58 of 334

description
Value: <repository-specific>

creatable
Value: <repository-specific>

fileable
Value: FALSE

queryable
Value: <repository-specific>

controllablePolicy
Value: <repository-specific>

controllableACL
Value: <repository-specific>

includedInSupertypeQuery

Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

allowedSourceTypes
Value: <repository-specific>

allowedTargetTypes
Value: <repository-specific>

2.1.6.1.3 Property Definitions

The relationship base object-type MUST have the following property definitions, and MAY include additional
property definitions. Any attributes not specified for the property definition are repository specific. For all
property definitions on base types, the query name MUST be the same as the property id. The repository
MUST have the following property definitions on the relationship object-type:

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

19 September 2015
Copyright © OASIS Open 2015. All Rights Reserved. Page 59 of 334

cmis:name

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

cmis:description
Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Name of the object.

String

FALSE

TRUE

single

SHOULD be readwrite
Not Applicable

Not Applicable
SHOULD be TRUE
SHOULD be TRUE

Description of the object.

String

FALSE

FALSE

single

SHOULD be readwrite
Not Applicable

Not Applicable
<repository specific>
<repository specific>

If the repository doesn't support object descriptions, the Updatability SHOULD be readonly and
the repository SHOULD return a "not set" value for this property.

cmis:objectId
Property Type:
Inherited:
Required:
Cardinality:
Updatability:

Choices:
Open Choice:
Queryable:
Orderable:

Id of the object.

Id
FALSE
FALSE
single

readonly oncreate
Not Applicable

Not Applicable
TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 60 of 334

cmis:baseTypeld

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Id of the base object-type for the object.

Id

FALSE

FALSE

single

readonly

Not Applicable

Not Applicable
SHOULD be TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:objectTypeld

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Id of the object's type.

Id

FALSE

FALSE

single

readonly

Not Applicable

Not Applicable
SHOULD be TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:secondaryObjectTypeIds
Property Type:
Inherited:
Required:
Cardinality:
Updatability:

Choices:
Open Choice:
Queryable:
Orderable:

Ids of the object's secondary types.

Id
FALSE
FALSE
multi

readwrite if secondary types are supported,
readonly otherwise

Not Applicable

Not Applicable
SHOULD be TRUE
FALSE

If the repository does not support secondary types, the repository MUST return "not set".

CMIS-v1.1-errata01-os-complete

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 61 of 334

cmis:createdBy

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

User who created the object.

String

FALSE

FALSE

single
readonly

Not Applicable
Not Applicable
TRUE

TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:creationDate

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

DateTime when the object was created.

DateTime
FALSE

FALSE

single
readonly

Not Applicable
Not Applicable
TRUE

TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:lastModifiedBy
Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

User who last modified the object.

String

FALSE

FALSE

single
readonly

Not Applicable
Not Applicable
TRUE

TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 62 of 334

cmis:lastModificationDate DateTime when the object was last modified.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.
cmis:changeToken Opaque token used for optimistic locking and concurrency
checking. (See section 2.2.1.3 Change Tokens.)
Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: FALSE
Orderable: FALSE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it. If the repository does not support change tokens, this property SHOULD not be set.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 63 of 334

cmis:sourceld
Property Type:
Inherited:
Required:
Cardinality:
Updatability:

Choices:
Open Choice:
Queryable:
Orderable:

Id of the source object of the relationship.

Id
FALSE
FALSE
single

readoenly SHOULD be oncreate
Not Applicable

Not Applicable

<repository specific>
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:targetId

Property Type:
Inherited:
Required:
Cardinality:
Updatability:

Choices:
Open Choice:
Queryable:
Orderable:

Id of the target object of the relationship.

Id
FALSE
FALSE
single

readonty SHOULD be oncreate
Not Applicable

Not Applicable

<repository specific>
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 64 of 334

2.1.7 Policy Object

A policy object represents an administrative policy that can be enforced by a repository. CMIS does not
specify what kinds of administrative policies that are specifically supported, nor attempts to model admin-
istrative policy of any particular kind. Only a base object-type is specified for policy objects. Each policy
object holds the text of an administrative policy as a repository-specific string, which is opaque to CMIS and
which may be used to support policies of various kinds. A repository may create subtypes of this base type
to support different kinds of administrative policies more specifically. If a repository does not support policy
objects, the policy base object-type SHOULD NOT be returned by a getTypeChildren service call. This
is an extension point for repositories that want to expose other capabilities via CMIS that are not supported
directly in CMIS.

Aside from allowing an application to create and maintain policy objects, CMIS allows an application to
"apply" a policy to an object, and to remove an applied policy from an object. An object to which a policy
may be applied is called a controllable object. A policy MAY be applied to multiple controllable objects.
Conversely, a repository MAY allow multiple policies applied to a controllable object. (A repository may, for
example, impose constraints such as only one policy of each kind can be applied to an object.) Whether
or not an object is controllable is specified by the object's type definition. Applying a policy to an object is
to place the object under the control of that policy (while the object may also be under the control of other
policies at the same time), and removing an applied policy from one of its controlled objects is to remove the
corresponding control from that object. This control may change the state of the object, may impose certain
constraints on service calls operating on this object, or may cause certain management actions to take place.
The effect of this control, when this effect takes place, and how this control interacts with other controls, are
repository-specific. Only directly/explicitly applied policies are covered by CMIS. Indirectly applying policy
to an object, e.g. through inheritance, is outside the scope of CMIS.

A policy object does not have a content stream and is not versionable. It may be fileable, queryable or
controllable. Policy objects are handled using the basic CRUD services for objects. If a policy is updated,
the change may alter the corresponding control on objects that the policy is currently applied to. If a controlled
object is deleted, all the policies applied to that object, if there are any, are removed from that object. A policy
object that is currently applied to one or more controllable objects CAN NOT be deleted. That is, there is
an implicit referential constraint from a controlled object to its controlling policy object(s). Besides the basic
CRUD services, the applyPolicy and the removePolicy services may be used to apply a policy object
to a controllable object and respectively to remove an applied policy from one of its controlled objects. In
addition, the getAppliedPolicies service may be used to obtain the policy objects that are currently
applied to a controllable object.

2.1.7.1 Policy Object-Type Definition

This section describes the definition of the policy object-type's attribute values and property definitions which
must be present on policy instance objects. All attributes and property definitions are listed by their id.

2.1.7.1.1 Attribute Values

The policy object-type MUST have the following attribute values.
Notes:

+ A value of <repository-specific> indicates that the value of the property MAY be set to any valid value
for the attribute type.

» Unless explicitly stated otherwise, all values specified in the list MUST be followed for the object-type
definition.
id
Value: cmis:policy

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 65 of 334

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:policy

displayName
Value: <repository-specific>

baseIld
Value: cmis:policy

parentId
Value: MUST NOT be set

description
Value: <repository-specific>

creatable
Value: <repository-specific>

fileable
Value: <repository-specific>

queryable
Value: <repository-specific>

controllablePolicy
Value: <repository-specific>

controllableACL
Value: <repository-specific>

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

CMIS-v1.1-errata01-os-complete

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 66 of 334

2.1.7.1.2 Property Definitions

The policy base object-type MUST have the following property definitions, and MAY include additional prop-
erty definitions. Any attributes not specified for the property definition are repository specific. For all property
definitions on base types, the query name MUST be the same as the property id. The repository MUST have
the following property definitions on the policy object-type:

cmis:name

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

cmis:description
Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Name of the object.

String

FALSE

TRUE

single

SHOULD be readwrite
Not Applicable

Not Applicable
SHOULD be TRUE
SHOULD be TRUE

Description of the object.

String

FALSE

FALSE

single

SHOULD be readwrite
Not Applicable

Not Applicable
<repository specific>
<repository specific>

If the repository doesn't support object descriptions, the Updatability SHOULD be readonly and
the repository SHOULD return a "not set" value for this property.

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 67 of 334

cmis:objectId
Property Type:
Inherited:
Required:
Cardinality:
Updatability:

Choices:
Open Choice:
Queryable:
Orderable:

Id of the object.

Id
FALSE
FALSE
single

readeonly oncreate
Not Applicable

Not Applicable
TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:baseTypeld

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Id of the base object-type for the object.

Id

FALSE

FALSE

single

readonly

Not Applicable

Not Applicable
SHOULD be TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:objectTypeld

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Id of the object's type.

Id

FALSE

FALSE

single

readonly

Not Applicable

Not Applicable
SHOULD be TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 68 of 334

cmis:secondaryObjectTypeIds

Property Type:
Inherited:
Required:
Cardinality:
Updatability:

Choices:
Open Choice:
Queryable:
Orderable:

Ids of the object's secondary types.

Id
FALSE
FALSE
multi

readwrite if secondary types are supported,
readonly otherwise

Not Applicable

Not Applicable
SHOULD be TRUE
FALSE

If the repository does not support secondary types, the repository MUST return "not set".

cmis:createdBy
Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

User who created the object.

String

FALSE

FALSE

single
readonly

Not Applicable
Not Applicable
TRUE

TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:creationDate

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

DateTime when the object was created.

DateTime
FALSE

FALSE

single
readonly

Not Applicable
Not Applicable
TRUE

TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

CMIS-v1.1-errata01-os-complete

19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 69 of 334

cmis:lastModifiedBy User who last modified the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:lastModificationDate DateTime when the object was last modified.
Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 70 of 334

cmis:changeToken Opaque token used for optimistic locking and concurrency
checking.(See section 2.2.1.3 Change Tokens.)

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: FALSE
Orderable: FALSE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it. If the repository does not support change tokens, this property SHOULD not be set.

cmis:policyText User-friendly description of the policy.
Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability:
readonly readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 71 of 334

2.1.8 Item Object

The item object is an extension point for repositories that want to expose other object types via CMIS that do
not fit the definition for document, folder, relationship or policy. For example an independently persistable
collection of properties that was not versionable and did not have content. Another example could be a base
identity object for users and groups.

A repository may create subtypes of this base type to support different kinds of generic base objects more
specifically. If a repository does not support item objects, the item base object-type SHOULD NOT be
returned by a getTypeChildren service call. Like the other CMIS objects (folder, policy and relationship),
item objects are not versionable and do not have content. ltem objects are manipulated with the basic CRUD
operations as well as with query if the repository has them marked as queryable.

2.1.8.1 Item Object-Type Definition

This section describes the definition of the item object-type's attribute values and property definitions which
must be present on item instance objects. All attributes and property definitions are listed by their id.

2.1.8.1.1 Attribute Values

The item object-type MUST have the following attribute values.
Notes:

» A value of <repository-specific> indicates that the value of the property MAY be set to any valid value
for the attribute type.

» Unless explicitly stated otherwise, all values specified in the list MUST be followed for the object-type
definition.
id
Value: cmis:item

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:item

displayName
Value: <repository-specific>

baseId
Value: cmis:item

parentId
Value: MUST NOT be set

description
Value: <repository-specific>

creatable
Value: <repository-specific>

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 72 of 334

fileable
Value: <repository-specific>

queryable
Value: <repository-specific>

controllablePolicy
Value: <repository-specific>

controllableACL
Value: <repository-specific>

includedInSupertypeQuery

Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

2.1.8.1.2 Property Definitions

The item base object-type MUST have the following property definitions, and MAY include additional prop-
erty definitions. Any attributes not specified for the property definition are repository specific. For all property
definitions on base types, the query name MUST be the same as the property id. The repository MUST have
the following property definitions on the item object-type:

cmis:name

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Name of the object.

String

FALSE

TRUE

single

SHOULD be readwrite
Not Applicable

Not Applicable
SHOULD be TRUE
SHOULD be TRUE

If the repository does not support names for items, it MAY ignore the value of this property
when provided by a client. The repository MUST return a name even if the item has no name.
It MAY return the object id in this case.

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

19 September 2015
Copyright © OASIS Open 2015. All Rights Reserved. Page 73 of 334

cmis:description

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Description of the object.

String

FALSE

FALSE

single

SHOULD be readwrite
Not Applicable

Not Applicable
<repository specific>
<repository specific>

If the repository doesn't support object descriptions, the Updatability SHOULD be readonly and
the repository SHOULD return a "not set" value for this property.

cmis:objectId

Property Type:
Inherited:
Required:
Cardinality:
Updatability:

Choices:
Open Choice:
Queryable:
Orderable:

Id of the object.

Id
FALSE
FALSE
single

readonly oncreate
Not Applicable

Not Applicable
TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:baseTypeld

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

Id of the base object-type for the object.

Id

FALSE

FALSE

single

readonly

Not Applicable

Not Applicable
SHOULD be TRUE
<repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 74 of 334

cmis:objectTypeId Id of the object's type.

Property Type: Id

Inherited: FALSE

Required: FALSE

Cardinality: single

Updatability: readonly

Choices: Not Applicable

Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.
cmis:secondaryObjectTypelds Ids of the object's secondary types.

Property Type: Id

Inherited: FALSE

Required: FALSE

Cardinality: multi

Updatability: readwrite if secondary types are supported, readonly oth-
erwise

Choices: Not Applicable

Open Choice: Not Applicable

Queryable: SHOULD be TRUE

Orderable: FALSE

If the repository does not support secondary types, the repository MUST return "not set".

cmis:createdBy User who created the object.
Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 75 of 334

cmis:creationDate DateTime when the object was created.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:lastModifiedBy User who last modified the object.
Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not

exclude it.

cmis:lastModificationDate DateTime when the object was last modified.
Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 76 of 334

cmis:changeToken Opaque token used for optimistic locking and concurrency
checking.(See section 2.2.1.3 Change Tokens.)

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: FALSE
Orderable: FALSE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it. If the repository does not support change tokens, this property SHOULD not be set.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 77 of 334

2.1.9 Secondary Object-Types

A secondary type defines a set of properties that can be dynamically added to and removed from objects.
That is, an object can get and lose additional properties that are not defined by its primary type during its
lifetime. Multiple secondary types can be applied to the same object at the same time.

Secondary types can be simple markers without properties. Alternatively, they can contain technical in-
formation about an object. For example, a repository might analyze the content of a document, detects a
photo and adds a secondary type that adds EXIF data to the document. Applications might want to attach
temporary data to an object such the state of the object in a workflow. Secondary types may also change
the behaviour of the repository.

The CMIS specification does not define the semantics of secondary types with the exception of secondary
types for retentions and holds (see section 2.1.16 Retentions and Holds). CMIS provides a way to apply
and remove secondary types to/from an object. Additionally, CMIS provides an optional ability to create,
update and remove secondary types.

If a repository does not support secondary types, the secondary type base object-type cmis:secondary
SHOULD NOT be returned by a getTypeChildren service call.

The base object-type does not specify any property definitions and its sole purpose is to be the root type of
all other secondary object-types. Repositories MAY provide property definitions on the base type that are
then inherited by other secondary object-types.

Secondary types can be applied to and removed from an object at any time. An object MAY have zero or
more secondary types assigned to it. When a secondary type is applied, the object provides the properties
that are defined by the secondary type. When a secondary type is removed, it loses these properties and
its values.

A repository MAY not allow applying or removing certain secondary object-types to certain objects based on
rules that are not determined in this specification. The repository SHOULD throw a constraint exception
if such an operation is not allowed. Secondary object-types CAN NOT be used as primary object-types. That
is, when an object is created, its object-type has to be either one of the other base types or an object-type
that is derived from the other base types. Hence, a secondary object-type MUST NOT be creatable.

Whether an object is fileable, versionable or controllable is determined by its primary object-type.

2.1.9.1 Secondary Type Application

Secondary types can be applied at creation time by populating the multi-value property
cmis:secondaryObjectTypelIds with the ids of the secondary types. All properties defined by
these secondary types can be set as well.

Secondary types can be added and removed later by changing the cmis:secondaryObjectTypelIds
property, either through the updateProperties service or the checkIn service. Adding the id of a sec-
ondary type to this multi value property adds the secondary type. Removing the id of a secondary type from
this multi value property removes the type and all associated properties and values.

A repository MUST throw a constraint exception if a secondary type cannot be added or removed.

Adding a secondary type and providing values for the associated properties of this secondary type MAY be
done in the same operation.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 78 of 334

2.1.9.2 Secondary Object-Type Definition

This section describes the definition of the secondary object-type's attribute values. All attributes are listed

by their id.

2.1.9.2.1 Attribute Values

The secondary object-type MUST have the following attribute values.

Notes:

+ A value of <repository-specific> indicates that the value of the property MAY be set to any valid value

for the attribute type.

» Unless explicitly stated otherwise, all values specified in the list MUST be followed for the object-type

definition.
id
Value: cmis:secondary

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:secondary

displayName
Value: <repository-specific>

baseIld
Value: cmis:secondary

parentId
Value: MUST NOT be set

description
Value: <repository-specific>

creatable
Value: FALSE

fileable
Value: FALSE

queryable
Value: <repository-specific>

controllablePolicy
Value: FALSE

controllableACL
Value: FALSE

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 79 of 334

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed

Value: <repository-specific>

Note: This attribute defines if the properties of this secondary type are full-text indexed. It does not make a
statement about the content.

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

2.1.9.2.2 Property Definitions

The secondary base object-type has no properties. Repositories MAY provide custom property definitions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 80 of 334

2.1.10 Object-Type Creation, Modification and Deletion

A repository MAY support the creation, modification and deletion of primary and secondary object-types.

Each object-type definition SHOULD include a set of flags that indicate if the object-type can be used as a
parent type or if the object-type can be modified or deleted. Please see section 2.1.3.2.1 Attributes common
to ALL Object-Type Definitions for details.

These flags are not to be interpreted as the rights for the current user. These are the rights that would
apply to an administrator user or a user that has sufficient rights to modify metadata. For example, a non-
administrator would see that an object-type is extendable (the type mutability capabilities create flag is set
to TRUE) even though they would not be allowed to actually perform the operation. If a user tries to create,
modify or delete a type definition and does not have the required permissions, the repository MUST return
a permissionDenied error.

A repository MAY also place additional restrictions on these operations where necessary. These restrictions
are repository specific.

2.1.10.1 General Constraints on Metadata Changes

The optional capabilities capabilityNewTypeSettableAttributes and capabilityCreat-
ablePropertyTypes SHOULD indicate which object-type attributes can be set by a client and which
properties data types can be used to create or extend an object-type.

Note, that the client CANNOT define whether a new object-type can be used as a parent type, or can be
updated or deleted. How the repository determines a given object-type's mutability capabilities is repository
specific.

When an object-type is created the client MUST suggest a type id for the new object-type. The repository
may do the following with this suggested value:

» Use it exactly as specified.
e.g. input = invoice : returned value = invoice

» Modify it with the addition of a prefix, suffix or both.
e.g. input = invoice : returned value = invoice_ FAF5D0C5-BBE9

» Return a completely different value.
e.g. input = invoice : returned value = FAF5D0C5-BBE9-4E47-BB17-COFEG3B4EE20

When a property definition is created the client MUST suggest a property definition id for the new property.
The repository may do the following with this suggested value:

» Use it exactly as specified.
e.g. input = amount : returned value = amount

» Modify it with the addition of a prefix, suffix or both.
e.g. input = amount: returned value = amount_12AB

* Return a completely different value.
e.g. input = amount: returned value = 12AB-23CD

When an object-type is created or updated, the repository MUST return the created or updated type defini-
tion whereby the order of ALL newly created property definitions MUST match the order of the input. This is
so that there will be no ambiguity for clients who need to know which property matches a specific suggested
Id value for a new property definition. This special ordering is only required for the return value for cre-
ateType and updateType. There is no special ordering of the properties returned for subsequent calls to
getTypeDefinition for this new or modified type.

When an object-type is updated the following rules MUST be obeyed:
* Inherited properties MUST NOT be modified. This includes constraints of any kind.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 81 of 334

* Properties defined by the CMIS specification MUST NOT be modified. This includes constraints of
any kind.

» Only leaf types may be modified. That is, if a type already has child types defined then it (and all of its
properties and constraints) MUST be considered read only.

» Any added properties marked as "required" MUST have a default value.
* Required properties MAY be changed to optional.

» Optional properties MUST NOT be changed to required.

* Property definitions MUST NOT be removed.

* Property choice constraints MAY be changed in the following manner:

— 'Open choice' MAY change from FALSE to TRUE.

— 'Open choice' MUST NOT change from TRUE to FALSE.

— Choices MAY be added or removed if 'open choice' is TRUE.
— Choices MUST NOT be removed if 'open choice' is FALSE.

+ Validation constraints (min/max length, min/max value, etc.) on existing properties MAY be relaxed
but they MUST NOT be further restricted. For example, an integer property value that originally had a
minimum constraint of 100 and a maximum constraint of 1000 could change as follows:

— A new minimum could be changed to 50 but could not be changed to 150.
— A new maximum could be changed to 1100 but could not be changed to 900.

This ensures that the new constraints will not leave any existing data out of the permitted constraint
range.

* An existing property type's data type and cardinality MUST NOT be changed. For example, an Integer
property type MUST NOT be changed to a String.

The execution of the createType and updateType services MUST not affect the definition of any other
types or any other type's current property definitions. For example, any properties on the type being created
must not place constraints on other type's properties when/if other properties 'share' property definitions.

An object-type can only be deleted if there are no objects of this type and the object-type has no sub-types.
The deleteType service MUST return a constraint error if an instance of the object-type exists or the
object-type is a parent type of another object-type.

2.1.11 Object-Type Summary

The following diagrams illustrate the CMIS object model. Please note that they only reflect the logical model.
The CMIS bindings use slightly different data structures.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 82 of 334

CMIS Object

cmis:objectld : Id

cmis:baseTypeld : Id
cmis:objectTypeld : Id
cmis:secondaryObjectTypelds : Id[]
cmis:name : String
cmis:description : String
cmis:createdBy : String
cmis:creationDate : DateTime
cmis:lastModifiedBy : String
cmis:lastModificationDate : DateTime
cmis:changeToken : String

N

cmis:document

01 o1 ACL
B isExact : Boolean
ACE Principal
0.* permissions: String[] 1 principalld : String
a isDirect : Boolean
<%”*
0“*
0..*

ContentStream

cmis:isimmutable : DateTime
cmis:isLatestVersion : Boolean
cmis:isMajorVersion : Boolean
cmis:isPrivateWorkingCopy : Boolean
cmis:versionLabel : String
cmis:versionSeriesld : Id
cmis:isVersionSeriesCheckedOut : Boolean
cmis:versionSeriesCheckedOutBy : String
cmis:versionSeriesCheckedOutld : Id
cmis:checkinComment : String
cmis:contentStreamLength : Integer
cmis:contentStreamMimeType : String
cmis:contentStreamFileName : String
cmis:contentStreamld : Id

¢ length : Integer
. mimeType : String

filename : String
stream : Binary

cmis:folder

cmis:parentld : Id
— cmis:path : String
cmis:allowedChildObjectTypelds : Id[]

cmis:relationship

cmis:sourceld : Id
cmis:targetld : Id

cmis:policy

1 cmis:policyText : String

cmis:item

cmis:secondary

cmis:rm_repMgtRetention

[|

cmis:rm_clientMgtRetention

cmis:rm_expirationDate : DateTime
cmis:rm_startOfRetention : DateTime

7

cmis:rm_destructionRetention

cmis:rm_destructionDate : DateTime

cmis:rm_hold

cmis:rm_holdlds : String[]

Rendition soyrce tarpet
‘1? streamld : Id
" | mimeType : String

length : Integer

title : String ®

kind : String

height : Integer

width : Integer
‘1? renditionDocumentld : Id
<7
<

0..*

Figure 2.2: CMIS Model

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

19 September 2015

Copyright © OASIS Open 2015. All Rights Reserved. Page 83 of 334

Primary Object Type

Property Type

id : Id

localName : String
localNamespace : String
queryName : String
displayName : String
baseld : Enum

parentld : Id

description : String
creatable : Boolean
fileable : Boolean
queryable : Boolean
controllablePolicy : Boolean
controllableACL : Boolean
fulltextindexed : Boolean

includedInSupertypeQuery : Boolean

typeMutability.create : Boolean
typeMutability.update : Boolean
typeMutability.delete : Boolean

id : Id

localName : String
localNamespace : String
gueryName : String
displayName : String
description : String
propertyType : Enum
cardinality : Enum
updatability : Enum
inherited : Boolean
required : Boolean
queryable : Boolean
orderable : Boolean
openChoice : Boolean

PN

Document Object Type

| | versionable : Boolean

contentStreamAllowed : Enum

_I Folder Object Type

Relationship Object Type

| | allowedSourceTypes : Id[]
allowedTargetTypes : Id[]

_I Policy Object Type

_| Item Object Type

Secondary Object Type

-

Figure 2.3: CMIS Object Types and Property Types

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

1

A

String Property Type
maxLength : Integer

Boolean Property Type

Decimal Property Type
precision : Enum
minValue : Decimal
maxValue : Decimal

Integer Property Type
minValue : Integer
maxValue : Integer

DateTime Property Type
resolution : Enum

URI Property Type |
HTML Property Type |

Id Property Type |

Copyright © OASIS Open 2015. All Rights Reserved.

Choice

displayName : String
value: <data type>

Default Value

0..1

value: <data type>

19 September 2015
Page 84 of 334

2.1.12 Access Control

A repository can support either a base set of CMIS-defined permissions and/or its own set of repository
specific permissions.

The getACL service allows the requestor to specify that the result be expressed using only the CMIS de-
fined permissions. Without this restriction, the response may include, or be solely expressed in repository
specific permissions. The applyACL service permits either CMIS permissions or repository permissions,
or a combination of both, to be used.

2.1.12.1 ACL, ACE, Principal, and Permission

An Access Control List (ACL) isalistof Access Control Entries (ACEs) and MAY hold zero
or more ACEs. If an ACL has no ACEs, the behavior is the same as if the ACL is not set.

An ACE holds:

A principal that represents a user management object, e.g. a user, group, or role. It holds one string
with the principalld.

» One or more strings with the names of the permissions.

* A boolean flag direct which indicates if TRUE that the ACE is directly assigned to the object. If
FALSE, that the ACE is somehow derived or inherited.

2.1.12.2 CMIS Permissions

There are three basic permissions predefined by CMIS:
cmis:read Expresses the "permission to read" properties AND content of an object.

cmis:write Expresses the "permission to write" properties AND content of an object. It MAY include the
cmis:read permission.

cmis:all SHOULD express all the permissions of a repository. It SHOULD include all other basic CMIS
permissions.

How these basic permissions are mapped to the allowable actions is repository specific. However, the actual
repository semantics for the basic permissions with regard to allowable actions can be discovered by the
mappings parameter returned by the getRepositoryInfo service.

Repositories MAY extend this set with repository-specific permissions.

2.1.12.3 ACL Capabilities

Whether a repository supports ACLs at all, may be discovered via capabilityACL attribute returned by
the getRepositoryInfo service (see section 2.1.1.1 Optional Capabilities). If the value of the capabil-
ityACL attribute is none, ACLs are not supported by the repository.

If the value of the capabilityACL attribute is discover or manage, additional information about the
repository's permission model and how ACL modifications are handled are provided by the getReposi-
toryInfo service:

Enum propagation specifies how non-direct ACEs can be handled by the repository using the following
values (see section 2.2.10.1 applyACL):

objectonly indicates that the repository is able to apply ACEs to an object without changing the ACLs
of other objects.

propagate indicates that the ACEs might be inherited by other objects. propagate includes the
support for objectonly.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 85 of 334

repositorydetermined indicates that the repository has its own mechanism of computing how chang-
ing an ACL for an object influences the non-direct ACEs of other objects.

<Array> PermissionDefinition repositoryPermissions A list of names and descriptions of the supported
permissions.

<Array> PermissionMapping mappings Contains a list of basic CMIS permissions to allowable actions
mapping.

2.1.12.3.1 Supported Permissions

The list of permission definitions returned by the getRepositoryInfo service lists all the permissions a
repository supports. This list also includes the CMIS permissions if supported by the repository.

A PermissionDefinition holds:

String permission The (technical) name of the permission. Permission names MUST be unique within the
permission definition list.

String description An optional description of the permission that SHOULD be used as the permission's
name to be presented to the user.

2.1.12.3.2 AllowableActions and Permission Mapping

CMIS provides a mechanism called Allowable Actions which allows an application to discover the set of
service operations that can currently be performed on a particular object by the current user, without having
to actually invoke the service.

The set of allowable actions on an object at a point in time are affected not only by CMIS ACLs, but also by
other factors such as:

» Constraints inherent in the CMIS Domain Model based on the object's base type or current versioning
state.

+ Policies or other control mechanisms that are opaque to CMIS.

CMIS defines several services that applications can use at run-time to discover the allowable actions for an
object.

If a repository supports ACLs, then the repository MUST provide a mapping table that defines how the
permissions supported by the repository interact with the CMIS allowable actions, i.e. which permissions
are necessary for a principal to have on one or more objects in order to potentially perform each action,
subject to the other constraints on allowable actions mentioned above.

This section defines both the allowable actions as well as how those actions are presented in the permission
mapping table.

The permission mapping table contains a set of key--permissions pairs:

String key Since several allowable actions require permissions on more than one object, the mapping table
is defined in terms of permission "keys". (For example, moving a document from one folder to another
may require permissions on the document and each of the folders.) Each key combines the name of
the allowable action and the object for which the principal needs the required permission.

For example, the canMoveObject.Source key indicates the permissions that the principal must
have on the "source folder" to move an object from that folder into another folder.

<Array> String permissions The name of one or more permissions that the principal MUST have. If more
than one permission is specified, then the principal MUST be allowed to perform the operation if they
have ANY of the listed permissions.

The following list defines all mapping keys, as well as a permissions mapping that repositories SHOULD
use. Repositories MAY require additional permissions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 86 of 334

For convenience, the list groups all mapping entries by the underlying allowable actions, and includes de-
scriptive information. For each allowable action the following information is given:

Description The description and name of the service the allowable action enables.
Base Type The base object-types for which the allowable action MAY be TRUE.
Operand The object the permission applies to.

Key The permission mapping key.

Permissions The permission values.

2.1.12.3.2.1 Navigation Services

canGetDescendants
Description: Can get the descendants of the folder (getDescendants and getFold-
erTree).
Base Type: cmis:folder
Operand: Folder
Key: canGetDescendants.Folder
Permission: cmis:read
canGetChildren
Description: Can get the children of the folder (getChildren).
Base Type: cmis:folder
Operand: Folder
Key: canGetChildren.Folder
Permission: cmis:read
canGetFolderParent
Description: Can get the parent folder of the folder (getFolderParent).
Base Type: cmis:folder
Operand: Folder
Key: canGetFolderParent.Object
Permission: cmis:read
canGetObjectParents
Description: Can get the parent folders of the object (getObjectParents).
Base Type: cmis:document, cmis:policy, cmis:item
Operand: Object
Key: canGetParents.Folder
Permission: cmis:read
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 87 of 334

canCreateFolder

2.1.12.3.2.2 Object Services

canCreateDocument
Description: Can create a cmis:document object in the specified folder (createDocument).
Base Type: cmis:folder
Operand: Folder
Key: canCreateDocument.Folder
Permission: cmis:read

Description: Can create a cmis:folder object as a child of the specified folder
(createFolder).

Base Type: cmis:folder

Operand: Folder

Key: canCreateFolder.Folder

Permission: cmis:read

canCreatePolicy

Description: Can create a cmis:policy object as a child of the specified folder
(createPolicy).

Base Type: cmis:folder

Operand: Folder

Key: canCreatePolicy.Folder

Permission: cmis:read

The canCreatePolicy.Folder key has not been defined in the CMIS schema. CMIS implementations must
ignore this permission mapping.

canCreateRelationship

Description: Can create a relationship object with the object as its source
(createRelationship).

Base Type: cmis:document, cmis:folder, cmis:policy, cmis:item

Operand: Object

Key: canCreateRelationship.Source

Permission: cmis:read

canCreateRelationship

Description: Can create a relationship object with the object as its target
(createRelationship).

Base Type: cmis:document, cmis:folder, cmis:policy, cmis:item

Operand: Object

Key: canCreateRelationship.Target

Permission: cmis:read

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

19 September 2015

Copyright © OASIS Open 2015. All Rights Reserved. Page 88 of 334

canGetProperties

Description: Can read the properties of the specified object (getProperties, getObject
and getObjectByPath).
Base Type: cmis:document, cmis:folder, cmis:relationship, cmis:policy, cmis:item
Operand: Object
Key: canGetProperties.Object
Permission: cmis:read
canUpdateProperties
Description: Can update the properties of the specified object (updateProperties).
Base Type: cmis:document, cmis:folder, cmis:relationship, cmis:policy, cmis:item
Operand: Object
Key: canUpdateProperties.Object
Permission: cmis:write
canMoveObject
Description: Can move the specified object (moveObject).
Base Type: cmis:document, cmis:folder, cmis:policy, cmis:item
Operand: Object
Key: canMove.Object
Permission: cmis:write
canMoveObject
Description: Can move an object into this folder (moveObject).
Base Type: cmis:folder
Operand: Folder
Key: canMove.Target
Permission: cmis:read
canMoveObject
Description: Can move an object from this folder (moveObject).
Base Type: cmis:folder
Operand: Folder
Key: canMove.Source
Permission: cmis:read

canDeleteObject

19 September 2015
Page 89 of 334

CMIS-v1.1-errata01-os-complete

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

Description:
Base Type:
Operand:
Key:
Permission:

canGetContentStream
Description:
Base Type:
Operand:
Key:
Permission:

canSetContentStream
Description:
Base Type:
Operand:
Key:
Permission:

Can delete the specified object (deleteObject).

cmis:document, cmis:folder, cmis:relationship, cmis:policy, cmis:item
Object

canDelete.Object

cmis:write

Can get the content stream for the document object (getContentStream).
cmis:document

Object

canViewContent.Object

cmis:write

Can set the content stream for the document object (setContentStream).
cmis:document

Object

canSetContent.Document

cmis:write

canDeleteContentStream

Description:

Base Type:
Operand:
Key:
Permission:

canDeleteTree

Can delete the content stream for the Document object
(deleteContentStream).

cmis:document

Object
canDeleteContent.Document
cmis:write

Description: Can delete the specified folder and all contained objects (deleteTree).
Base Type: cmis:folder
Operand: Object
Key: canDeleteTree.Folder
Permission: cmis:write
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved. Page 90 of 334

2.1.12.3.2.3 Filing Services

canAddObjectToFolder

Description:
Base Type:
Operand:
Key:
Permission:

canAddObjectToFolder

Description:
Base Type:

Operand:
Key:
Permission:

Can file the object in a folder (addObjectToFolder).
cmis:document, cmis:policy, cmis:item

Object

canAddToFolder.Object

cmis:read

Can file an object in the specified folder (addObjectToFolder).

cmis:folder

Folder
canAddToFolder.Folder
cmis:read

canRemoveObjectFromFolder

Description:
Base Type:
Operand:
Key:
Permission:

Can unfile the specified document from a folder (removeObjectFromFolder).
cmis:document, cmis:policy, cmis:item

Object

canRemoveFromFolder.Object

cmis:read

canRemoveObjectFromFolder

Description:
Base Type:

Operand:
Key:
Permission:

Can unfile an object from the specified folder (removeObjectFromFolder).

emis:doeument,emis:poliey cmis:folder
Folder

canRemoveFromFolder.Folder
cmis:read

2.1.12.3.2.4 \Versioning Services

canCheckOut
Description: Can check out the specified document (checkOut).
Base Type: cmis:document
Operand: Object
Key: canCheckout.Document
Permission: cmis:write
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 91 of 334

canCancelCheckOut

Description:
Base Type:
Operand:
Key:
Permission:

canChecklin
Description:
Base Type:
Operand:
Key:
Permission:

canGetAllVersions

Description:
Base Type:
Operand:
Key:
Permission:

Can cancel the check out the specified PWC (cancelCheckOut).
cmis:document

Object

canCancelCheckout.Document

cmis:write

Can check in the specified PWC (checkIn).
cmis:document

Object

canCheckin.Document

cmis:write

Can get the version series of the specified document (getAl1vVersions).
cmis:document

Object

canGetAllVersions.VersionSeries

cmis:read

2.1.12.3.2.5 Relationship Services

canGetObjectRelationships

Description:

Base Type:
Operand:
Key:
Permission:

Can get the relationship in which this object is a source or a target
(getObjectRelationships).

cmis:document, cmis:folder, cmis:policy, cmis:item
Object

canGetObjectRelationships.Object

cmis:read

2.1.12.3.2.6 Policy Services

canApplyPolicy

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 92 of 334

Description: Can apply a policy to the specified object (applyPolicy).

Base Type: cmis:document, cmis:folder, cmis:policy, cmis:relationship, cmis:item
Operand: Object

Key: canAddPolicy.Object

Permission: cmis:read

canApplyPolicy

Description: Can apply the specified policy to an object (applyPolicy).
Base Type: cmis:policy

Operand: Object

Key: canAddPolicy.Policy

Permission: cmis:read

canRemovePolicy

Description: Can remove a policy from the specified object (removePolicy).
Base Type: cmis:document, cmis:folder, cmis:policy, cmis:relationship, cmis:item
Operand: Object

Key: canRemovePolicy.Object

Permission: cmis:read

canRemovePolicy

Description: Can remove the specified policy from an object (removePolicy).
Base Type: cmis:policy

Operand: Object

Key: canRemovePolicy.Policy

Permission: cmis:read

canGetAppliedPolicies

Description: Can get the list of policies applied to the specified object
(getAppliedPolicies).

Base Type: cmis:document, cmis:folder, cmis:policy, cmis:relationship, cmis:item

Operand: Object

Key: canGetAppliedPolicies.Object

Permission: cmis:read

2.1.12.3.2.7 ACL Services

canGetACL

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 93 of 334

Description: Can get ACL of the specified object (getACL).

Base Type: cmis:document, cmis:folder, cmis:relationship, cmis:policy, cmis:item
Operand: Object
Key: canGetACL.Object
Permission: cmis:read
canApplyACL
Description: Can apply ACL to this object (app1yACL).
Base Type: cmis:document, cmis:folder, cmis:relationship, cmis:policy, cmis:item
Operand: Object
Key: canApplyACL.Object
Permission: cmis:write
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 94 of 334

2.1.13 Versioning

CMIS supports versioning of document objects. Folder objects, relationship objects, policy objects, and item
objects cannot be versioned.

Whether or not a document object is versionable (i.e. whether or not operations performed on the object via
the Versioning Services MUST be allowed) is specified by the "versionable" attribute on its object-type.

A version of a document object is an explicit/"deep" copy of the object, preserving its state at a certain point
in time. Each version of a document object is itself a document object, i.e. has its own object id, property
values, MAY be acted upon using all CMIS services that act upon document objects, etc.

2.1.13.1 Version Series

A version series for a document object is a transitively closed collection of all document objects, other
than any Private Working Copy (see section 2.1.13.5.1 Checkout), that have been created from an original
document in the repository. Each version series has a unique, system-assigned, and immutable version
series id.

The version series has transitive closure -- that is, if object B is a version of object A, and object C is a version
of object B, then object C is also a version of object A. The objects in a version series can be conceptually
sequenced by their respective creation date properties (cmis:creationDate).

Additionally, the repository MAY expose a textual version label (cmis:versionLabel) that describes to a
user the position of an individual object with respect to the version series. (For example, version 1.0).

Note: A document object that is NOT versionable will always have a single object in its version series. A
versionable document object MAY have one or more objects in its version series.

2.1.13.2 Latest Version
The version that has the most recent last modification date (cmis:lastModificationDate)is called the
latest version of the series, or equivalently, the latest version of any document object in the series.

When the latest version of a version series is deleted, a previous version (if there is one) becomes the latest
version.

2.1.13.3 Behavioral constraints on non-Latest Versions

Repositories NEED NOT allow the non-latest versions in a version series to be updated, queried, or searched.

2.1.13.4 Major Versions

A document object in a version series MAY be designated as a major version.

The CMIS specification does not define any semantic/behavioral differences between major and non-major
versions in a version series. Repositories may enforce/apply additional constraints or semantics for major
versions, if the effect on CMIS services remains consistent with an allowable behavior of the CMIS model.

If the version series contains one or more major versions, the one that has the most recent last modification
date (property cmis:lastModificationDate) is the latest major version of the version series.

(Note that while a version series MUST always have a latest version, it NEED NOT have a latest major
version.)

When the latest major version is deleted, a previous major version (if there is one) becomes the latest major
version.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 95 of 334

2.1.13.5 Services that modify Version Series

2.1.13.5.1 Checkout

A new version of a versionable document object is created when the checkIn service is invoked on the
Private Working Copy (PWC) of this object. A PWC is created by invoking checkOut on a versionable
document object. A repository MAY allow any document object in a version series to be checked out, or
MAY only allow the latest version to be checked out.

The effects of invoking the checkout service MUST be as follows:

* A new document object, referred to herein as the Private Working Copy (PWC), is created. The object
id of this new document object MUST be unique and MUST NOT be equal to the id of the object on
which the checkOut service was invoked.

+ The PWC NEED NOT be visible to users who have permissions to view other document objects in the
version series.

» The value of the cmis:isPrivateWorkingCopy property MUST be TRUE.

* The PWC is NOT to be considered a version in the version series but inherits the version series id
from the document it was created from.

» Therefore, until it is checked in (using the checkIn service), the PWC MUST NOT be considered the
latest or latest major version in the version series. That s, the values ofthe cmis:isLatestVersion
and cmis:isLatestMajorVersion properties MUST be FALSE.

» The property values for the PWC SHOULD be identical to the properties of the document object on
which the checkoOut service was invoked. Certain properties may be different. Properties such as
cmis:creationDate most likely will be different. The content stream of the PWC MAY be identical
to the content stream of the document object on which the checkoOut service was invoked, or MAY
be "not set".

After a successful checkOut operation is completed, and until such time when the PWC is deleted (via the
cancelCheckOut service) or checked-in (via the checkIn service), the effects on the PWC or on other
documents in the version series MUST be as follows:

» The repository MUST throw an exception if the checkoOut service is invoked on any document in the
version series. (l.e. there can only be one PWC for a version series at a time.)

* The value of the cmis:isVersionSeriesCheckedOut property MUST be TRUE.

* The value of the cmis:versionSeriesCheckedOutBy property SHOULD be set to a value indicat-
ing which user created the PWC. (The repository MAY still show the "not set" value for this property if,
for example, the information is not available or the current user has not sufficient permissions.)

* The value of the cmis:versionSeriesCheckedOutId property SHOULD be set to the object id of
the PWC. (The repository MAY still show the "not set" value for this property if the current user has no
permissions to see the PWC).

» The repository MAY prevent operations that modify or delete the other documents in the version series.

2.1.13.5.2 Updates to the Private Working Copy

If the repository supports the optional "PWCUpdatable" capability, then the repository MUST allow autho-
rized users to modify the PWC object using the object services (e.g. updateProperties and setCon-
tentStream).

If the repository does NOT support the "PWCUpdatable" capability, then the PWC object can only be modified
as part of the checkIn service call.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 96 of 334

2.1.13.5.3 Discarding Check out

An authorized user MAY discard the check-out using the cancelCheckOut service on the PWC object or
by using the deleteObject service on the PWC object. The effects of discarding a check-out MUST be
as follows:

» The PWC Object MUST be deleted.

+ For all other documents in the version series:
— The value of the cmis:isVersionSeriesCheckedOut property MUST be FALSE.
— The value of the cmis:versionSeriesCheckedOutBy property MUST be "not set".
— The value of the cmis:versionSeriesCheckedOutId property MUST be "not set".

— The repository MUST allow authorized users to invoke the checkOut service.

2.1.13.5.4 Checkin

An authorized user MAY "check in" the Private Working Copy object via the checkIn service.

The checkIn service allows users to provide update property values and a content stream for the PWC
object.

The effects of the checkIn service MUST be as follows for successful checkins:

» The PWC object MUST be updated as specified by the inputs to the checkIn service. (Note that
for repositories that do NOT support the "PWCUpdatable" property, this is the only way to update the
PWC object.)

» The document object resulting from the checkIn service MUST be considered the latest version in
the version series.

+ If the inputs to the checkln service specified that the PWC MUST be a "major version", then the newly
created version MUST be considered the latest major version in the version series.

* If the check-in returns a new cmis:objectId, then the PWC object MUST disappear if the checkIn
call was successful and the new checked in version will use the new specified id.

* For all documents in the version series:
— The value of the cmis:isVersionSeriesCheckedOut property MUST be FALSE.
— The value of the cmis:versionSeriesCheckedOutBy property MUST be "not set".
— The value of the cmis:versionSeriesCheckedOutId property MUST be "not set".
— The repository MUST allow authorized users to invoke the checkOut service.

Note: A repository MAY automatically create new versions of document objects without an explicit invocation
of the checkOut/checkIn services.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 97 of 334

2.1.13.6 Versioning Properties on Document Objects

All document objects will have the following read-only property values pertaining to versioning:

cmis:

cmis

cmis:

cmis:

cmis

cmis

cmis:

cmis

cmis

cmis:

Note:

NOT constitute modifications to the document objects in the version series (e.g. MUST NOT affect the

isPrivateWorkingCopy Boolean
TRUE if the document object is a Private Working Copy. FALSE otherwise.

:isLatestVersion Boolean

TRUE if the document object is the latest version (most recent last modification date) in its
version series. FALSE otherwise. MUST be FALSE for Private Working Copy objects.

isMajorVersion Boolean

TRUE if the document object is a major version in its version series. FALSE otherwise. MUST
be FALSE for Private Working Copy objects.

isLatestMajorVersion Boolean

TRUE if the document object is the latest major version in its version series. FALSE otherwise.
MUST be FALSE for Private Working Copy objects.

:versionLabel String
Textual description the position of an individual object with respect to the version series. (For
example, "version 1.0"). MAY be "not set".
:versionSeriesId Id
Id of the version series for this object.
isVersionSeriesCheckedOut Boolean
TRUE if there currenly exists a Private Working Copy for this version series. FALSE otherwise.
:versionSeriesCheckedOutBy String
If cmis:isVersionSeriesCheckedOut is TRUE: An identifier for the user who created the
Private Working Copy. "Not set" otherwise.
:versionSeriesCheckedOutId String
If cmis:isVersionSeriesCheckedOut is TRUE: The object id for the Private Working
Copy. "Not set" otherwise.
checkinComment String
Textual comment associated with the given version. MAY be "not set".
Changes made via the Versioning Services that affect the values of these properties MUST

cmis:lastModificationDate, efc.).

CMIS-v1.1-errata01-os-complete
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 98 of 334

19 September 2015

2.1.13.7 Document Creation and Initial Versioning State

When calling the createDocument service or the createDocumentFromSource Service, a version-
ingState parameter can be used to specify what the versioning state of the newly-created object MUST
be.

A repository MAY create new document objects in a "Private Working Copy" state. This state is logically
equivalent to having a version series that contains exactly one object (the PWC) and 0 other documents.

The repository MAY also create new document objects in a "major version" state. This state is logically
equivalent to having a version series that contains exactly one major version and 0 other documents.

The repository MAY also create new document objects in a "non-major version" state. This state is logically
equivalent to having a version series that contains exactly one non-major version and 0 other documents.

If the repository does not support versioning the repository MUST ignore the value of the versioningState
parameter.

2.1.13.8 Version Specific/Independent membership in Folders
Repositories MAY treat membership of a document object in a folder collection as "version-specific" or
"version-independent".

Repositories MUST indicate whether they support version-specific membership in a folder via the "capabil-
ityVersionSpecificFiling" optional capability flag. (See section 2.1.1.1 Optional Capabilities.)

If the repository is treating folder collection membership as "version-independent", then:

» Moving or filing a document object into a folder MUST result in ALL documents in the version series
being moved/filed into the folder.

» The repository MAY return only the latest-version OR latest major-version document object in a version
series in the response to Navigation service requests (getChildren, getDescendants), and NEED
NOT return other document objects filed in the folder that are in the version series.

If the repository is treating folder collection membership as "version-specific", then moving or filing a docu-
ment object into a folder MUST NOT result in other documents in the version series being moved/filed.

2.1.13.9 Version Specific/lndependent membership in Relationships

A relationship object MAY have either a version-specific or version-independent binding to its source and/or
target objects. This behavior MAY vary between repositories and between individual relationship types
defined for a repository.

If a relationship object has a version-independent binding to its source/target object, then:

» ThegetObjectRelationships service invoked on a document object MUST return the relationship
if relationship was source/target is set to ANY Document Object in the version series.

If a relationship object has a version-specific binding to its source/target object, then:

* The getObjectRelationships service invoked on a document object MUST return the relationship
if relationship was source/target is set to the id of the document object on which the service was
invoked.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 99 of 334

2.1.13.10 Versioning visibility in Query Services

Repositories MAY include non-latest-versions of document objects in results to the query service.

Repositories MUST indicate whether they support querying for non-latest-versions via the "capabilityAllVer-
sionsSearchable" optional capability flag. (See section 2.1.1.1 Optional Capabilities.)

If "capabilityAllVersionsSearchable" is TRUE then the repository MUST include in the query results ANY
document object in the version series that matches the query criteria. (Subject to other query constraints
such as security.)

Additionally, repositories MAY include Private Working Copy objects in results to the query service. Repos-
itories MUST indicate whether they support querying for Private Working Copy objects via the "capabilityP-
WCSearchable" optional capability flag.

If "capabilityPWCSearchable" is TRUE then the repository MUST include in the query results ANY Private
Working Copy Document objects that matches the query criteria. (Subject to other query constraints such
as security.)

If "capabilityPWCSearchable" is FALSE then the repository MUST NOT include in the query results ANY
Private Working Copy Document Objects that match the query criteria. (Subject to other query constraints
such as security.)

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 100 of 334

2114 Query

CMIS provides a type-based query service for discovering objects that match specified criteria, by defining
a read-only projection of the CMIS data model into a relational view.

Through this relational view, queries may be performed via a simplified SQL SELECT statement. This
query language is based on a subset of the SQL-92 grammar (ISO/IEC 9075: 1992 — Database Language
SQL), with a few extensions to enhance its filtering capability for the CMIS data model, such as existential
quantification for multi-valued property, full-text search, and folder membership. Other statements of the
SQL language are not adopted by CMIS. The semantics of this query language is defined by the SQL-92
standard, plus the extensions, in conjunction with the model mapping defined by CMIS's relational view.

CMIS Query

Syntax Semantics

SQL-92 subset + Extensions for SQL-92 subset

+ Multi-valued properties + Extensions

* Fulltext search + Relational View mapping

* Folder membership

Table (= Object Type, Type Inheritance)
Row (2 Object) : q
Column (9 Property) / Relational View /
CMIS Data Model
Object Type, Type Inheritance, Object,

Property, Content Stream, Versioning

Figure 2.4: CMIS Query

2.1.14.1 Relational View Projection of the CMIS Data Model

The relational view of a CMIS repository consists of a collection of virtual tables that are defined on top of
the CMIS data model. This relational view is used for query purposes only.

In this relational view a virtual table is implicitly defined for each queryable object-type defined in the repos-
itory. (Non-queryable object-types are NOT exposed through this relational view.)

In each virtual table, a virtual column is implicitly defined for each property defined in the object-type definition
AND for all properties defined on ANY ancestor-type of the object-type but NOT defined in the object-type
definition. Virtual columns for properties defined on ancestor-types of the object-type but NOT defined in
the object-Type definition MUST contain the SQL NULL value. Virtual columns for properties whose value
is "not set" MUST contain the SQL NULL value.

An object-type's queryName attribute is used as the table name for the corresponding virtual table, and a
property's queryName attribute is used as the column name for the corresponding table column. Please
see the restrictions on queryName in section 2.1.2.1.3 Query Names.

The virtual column for a multi-valued property MUST contain a single list value that includes all values of
the property.

Please note that the following text and the BNF grammar are inconsistent. The text allows the use of
secondary object types in FROM clauses and the BNF grammar does not. Because the BNF grammar is
the formal description of the query language, it takes precedence over the text. That is, secondary object
types MUST NOT be used in FROM clauses.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 101 of 334

The next version of the CMIS specification will correct the BNF grammar and allow the use of secondary
object types in FROM clauses.

A CMIS feature extension has been defined by the CMIS Technical Committee that allows support of sec-
ondary object types in FROM clauses also for CMIS 1.1 repositories.

211411 Object-Type Hierarchy in the Relational View Projection

The relational view projection of the CMIS Data Model ensures that the virtual table for a particular object-
type is a complete super-set of the virtual table for any and all of its ancestor types.

Additionally, an object-type definition's includedInSupertypeQuery specifies whether objects of that
object-type MUST be included in the virtual table for any of its ancestor types. If the includedInSuper-
typeQuery attribute of the object-type is FALSE, then objects of that object-type MUST NOT be included
in the virtual table for any of its ancestor types.

In each virtual table, a virtual column is implicitly defined for each property defined in the object-type defini-
tion. In addition, a virtual column is also implicitly defined for each property defined on ANY ancestor-type
of this object-type but NOT defined in this object-type definition. In addition, the virtual table for a secondary
object type has one more virtual column for the cmis:objectId property defined by each object's primary
type. If a secondary object type does not define any property, then its virtual table will have cmis:objectId
as the only column, identifying the objects to which the secondary type has been applied. Virtual columns
for properties defined on ancestor-types of the object-type but NOT defined (inherited) in the object-type
definition MUST contain the SQL NULL value. Virtual columns for properties whose value is "not set" MUST
contain the SQL NULL value. The rows of a virtual table corresponding to a queryable primary type rep-
resent the objects of that type. The rows of a virtual table corresponding to a queryable secondary type
represent objects of various primary types (which may or may not be queryable) that the secondary type is
applied to. To query on both an object's primary type properties and its secondary type properties, a SQL
JOIN of the respective tables on the cmis:objectId column may be performed. Explicit JOIN support,
as defined in 2.1.1.1 Optional Capabilities, is not required for a repository to provide join between a primary
type and secondary type tables based on cmis:objectId.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 102 of 334

Implicit Virtual Table for Implicit Virtual Table for Implicit Virtual Table for

Queryable Primary Object Type P Queryable Secondary Queryable Secondary
Object Type S1 Object Type S2
PK PK PK

| Y J \ J \ J

Properties defined by P Properties Properties
defined by defined by
S1 S2

PK = cmis:objectld in every Virtual Table

An object of Primary Type P, and
with Secondary Types S1 and S2
applied to it

Figure 2.5: Virtual Tables

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 103 of 334

Query Search Scope

B is a subtype of A.
C is a subtype of B.

= inherited property definition

Relational View

Search scope
Objects of for query on A
Type A
T T
Search scope
Objects of i | for query on B
Type B ! I
. 1
S
] Search scope
Objects of | [1T} forqueryonc
Type C | I

Figure 2.6: Query Search Scope

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 104 of 334

2.1.14.1.2 Content Streams

Content streams are NOT exposed through this relational view.

2.1.14.1.3 Result Set

When a query is submitted, a set of pseudo CMIS objects will be returned. These pseudo objects are
comprised of the properties specified in the select clause of the query statement.

For each property in each object in the result set, the repository MUST include the property definition id as
well as either the query name (if no alias is used) or the alias in place of the query name (if an alias is used).

If the select clause of the query statement contains properties from a single type reference then the repository
MAY represent these pseudo-objects with additional object information.

2.1.14.2 Query Language Definition

This query languages is based on a subset of the SQL-92 grammar. CMIS-specific language extensions to
SQL-92 are called out explicitly.

The basic structure of a CMIS query is a SQL statement that MUST include the following clauses:

SELECT [virtual columns list] This clause identifies the set of virtual columns that will be included in the
query results for each row and optionally their aliases.

FROM [virtual table names] This clause identifies which virtual table(s) the query will run against. Aliases
for the object-types are allowed in the BNF grammar.

Additionally, a CMIS query MAY include the following clauses:

WHERE [conditions] This clause identifies the constraints that rows MUST satisfy to be considered a result
for the query.

ORDER BY [sort specification] This clause identifies the order in which the result rows MUST be sorted
in the result row set.

2.1.14.2.1 BNF Grammar

This BNF grammar is a "subset" of the SQL-92 grammar (ISO/IEC 9075: 1992 — Database Language SQL),
except for some production alternatives. Specifically, except for these extensions, the following production
rules are derived from the SQL-92 grammar. The non-terminals used in this grammar are also borrowed
from the SQL-92 grammar without altering their semantics. Accordingly, the non-terminal <column name>
is used for single-valued properties only so that the semantics of SQL can be preserved and borrowed.
This approach not only facilitates comparison of the two query languages, and simplifies the translation of
a CMIS query to a SQL query for a RDBMS-based implementation, but also allows future expansion of this
query language to cover a larger subset of SQL with minimum conflict. The CMIS extensions are introduced
primarily to support multi-valued properties and full-text search, and to test folder membership. Multi-valued
properties are handled separately from single-valued properties, using separate non-terminals and separate
production rules to prevent the extensions from corrupting SQL-92 semantics.

<CMIS 1.1 query statement> ::= <simple table> [<order by clause>]
<simple table> 1= SELECT <select list> <from clause> [<where clause>]
<select list> = "*" | <select sublist> [{ "," <select sublist> }...]
<select sublist> ::= <qualifier> ".x"
| <value expression> [[AS] <column name>]
| <multi-valued-column reference> [[AS] <column name>]
<value expression> ::= <column reference> | <numeric value function>
<column reference> ::= [<qualifier> "."] <column name>
CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 105 of 334

non

| [<qualifier> "."] <secondary type table name> <secondary type column name>

<multi-valued-column reference> ::= [<qualifier> "."] <multi-valued-column name>
| [<qualifier> "."] <secondary type table name> "." <secondary type multi-valued-column name>
<numeric value function> ::= SCORE ()
<qualifier> = <table name> | <correlation name>
<from clause> ::= FROM <table reference>
<table reference> = <table name> [[AS] <correlation name>] | <joined table>
<joined table> ::= " (" <joined table> ")"
| <table reference> [<join type>] JOIN <table reference> <join specification>
<join type> ::= INNER | LEFT [OUTER]
<join specification> ::= ON <column reference> "=" <column reference>
<where clause> ::= WHERE <search condition>
<search condition> ::= <boolean term> | <search condition> OR <boolean term>
<boolean term> = <boolean factor> | <boolean term> AND <boolean factor>
<boolean factor> ::= [NOT] <boolean test>
<boolean test> = <predicate> | " (" <search condition> ")"
<predicate> ::= <comparison predicate> | <in predicate> | <like predicate>

| <null predicate> | <quantified comparison predicate> | <quantified in predicate>
| <text search predicate> | <folder predicate>

<comparison predicate> ::= <value expression> <comp op> <literal>
<comp oOp> ::= "=" | "KM | onM | ov>To|ong=" | onsen
<literal> ::= <signed numeric literal> | <character string literal>
| <datetime literal> | <boolean literal>
<in predicate> = <column reference> [NOT] IN " (" <in value list> ")"
<in value list> ::= <literal> [{ "," <literal> }...]
<like predicate> ::= <column reference> [NOT] LIKE <character string literal>
<null predicate> ::= { <column reference>

| <multi-valued-column reference> } IS [NOT] NULL
<quantified comparison predicate> ::=

<literal> "=" ANY <multi-valued-column reference>
<quantified in predicate> ::=
ANY <multi-valued-column reference> [NOT] IN " (" <in value list> ")"
<text search predicate> ::=
CONTAINS " (" [<qualifier> ","] <quote> <text search expression> <quote> ")"
<folder predicate> ::= { IN FOLDER | IN TREE } " (" [<qualifier> ","] <folder id> ")"
<order by clause> ::= ORDER BY <sort specification> [{ "," <sort specification> }...]
<sort specification> ::= <column reference> [ASC | DESC]
<correlation name> ::= <identifier>
<table name> ::= <identifier> !! This MUST be the name of a primary object-type.
<secondary type table name> ::= <identifier> !! This MUST be the name of a secondary
— object-type.
<column name> ::= <identifier> !! This MUST be the name of a single-valued property, or an alias
— for a scalar output value.
<secondary type column name> ::= <identifier> !! This MUST be the name of a single-valued
— property for a scalar output value of a secondary type.
<multi-valued-column name> ::= <identifier> !! This MUST be the name of a multi-valued property.
<secondary type multi-valued-column name> ::= <identifier> !! This MUST be the name of a
— multi-valued property of a secondary type.
<folder id> ::= <character string literal> 'l This MUST be the object identity of a folder
— object.
<identifier> ::= 'l As defined by queryName attribute.
<signed numeric literal> ::= !l As defined by SQL-92 grammar.
<character string literal> ::= !! As defined by SQL-92 grammar. (i.e. enclosed in single-quotes)

!'!l This is an independent sub-grammar for full-text search criteria.

'l It is isolatable from the query statement grammar. (See Escaping)

<text search expression> ::= <conjunct> [{<space> OR <space> <conjunct>} ...]

<conjunct> ::= <term> [{<space> <term>} ...]

<term> r:= ['-'] <simple term>

<simple term> ::= <word> | <phrase>

<word> ::= <word element> {<word element>}

<phrase> ::= <double quote> <word> {<space> <word>} <double quote>

<quote symbol> ::= <quote><quote> | <backslash><quote>

<word element> ::= <char> - <space char> - <backslash char> - <quote> - <double quote>
| <quote symbol>

<space> ::= <space char> [{<space char>} ...]

<space char> ::= "' '

<backslash char> ::= <backslash><backslash>

<char> ::= !! Any character

<datetime literal> ::= TIMESTAMP <quote> <datetime string> <quote>

<datetime string> ::= YYYY-MM-DDThh:mm:ss.sss{Z | +hh:mm | -hh:mm}

<boolean literal> ::= TRUE | FALSE | true | false

CMIS-v1.1-errata01-os-complete 19 September 2015

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 106 of 334

<quote> ::= "'" /! Single-quote only, consistent with SQL-92 string literal
<double quote> ::= " [!! U+0022
<backslash> ::= \ !! U+005C

2.1.14.2.2 SELECT Clause

The SELECT clause MUST contain exactly one of the following:

» A comma separated list of one or more column names. If an explicit column list is provided: A reposi-
tory MUST include in its result row set all of the columns specified in the SELECT clause.

« *: If this token is specified, then the repository MUST return columns for ALL single-valued properties
defined in the Object-Types whose virtual tables are listed in the FROM clause, and SHOULD also
return all multi-valued properties.

All column names MUST be valid "queryName" values for properties whose virtual tables are listed in the
FROM clause. For each "queryName" an alias MAY be defined by adding the string " AS " and the name
of the alias to the query name. Alias names MUST comply with the rules for query names. (See section
2.1.2.1.3 Query Names.)

2.1.14.2.3 FROM Clause

The FROM clause identifies which virtual table(s) the query will be run against, as described in the previous
section.

The FROM clause MUST contain only the "queryNames" of object-types whose queryable attribute value is
TRUE. For each "queryName" an alias MAY be defined by adding the string " AS " and the name of the alias
to the query name. Alias names MUST comply with the rules for query names. (See section 2.1.2.1.3 Query
Names.)

2.1.14.2.3.1 Join Support

CMIS repositories MAY support the use of SQL JOIN queries, and MUST indicate their support level using
the optional capability attribute capabilityJoin.

« If the repository's value for the capabilityJoin attribute is none, then no JOIN clauses can be used
in queries.

« If the repository's value for the capabilityJoin attribute is inneronly, then only inner JOIN
clauses can be used in queries.

« If the repository's value for the capabilityJoin attribute is innerandouter, then inner and/or
outer JOIN clauses can be used in queries.

Only explicit joins using the "JOIN" keyword is supported. Queries MUST NOT include implicit joins as part
of the WHERE clause of a CMIS query.

CMIS queries MUST only support join operations using the "equality" predicate on single-valued properties.

2.1.14.2.4 WHERE Clause

This clause identifies the constraints that rows MUST satisfy to be considered a result for the query.

All column names MUST be valid "queryName" or their aliased values for properties that are defined as
"queryable" in the object-type(s) whose virtual tables are listed in the FROM clause.

Properties are defined to not support a "null" value, therefore the <null predicate> MUST be interpreted as
testing the not set or set state of the specified property.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 107 of 334

21.14.2.41 Comparisons permitted in the WHERE clause

SQL's simple comparison predicate, IN predicate, and LIKE predicate are supported, for single-valued prop-
erties only (so that SQL's semantics is preserved). Boolean conjunction (AND), disjunction (OR), and nega-
tion (NOT) of predicates are also supported.

Repositories SHOULD support the comparisons for the property types as described in the list below. Repos-
itories MAY support additional comparisons and operators. Any additional operators not specified are
repository-specific:

Property Type Operators supported on Type | Supported type of Literal in
comparison

String =, <>, [NOT] LIKE String

String (IN) [NOT] IN List of Strings

Decimal =, <>, <, <=, >, >= Decimal

Decimal (IN) [NOT]IN List of Decimal

Integer =, <>, <, <=, >, >= Integer

Integer (IN) [NOT] IN List of Integer

Boolean = Boolean literal

DateTime =, <> < <=1 51 5T DateTime literal

DateTime (IN) [NOT]IN List of DateTime literals

ID =, <> String

ID (IN) [NOT] IN List of strings

URI =, <>, [NOT] LIKE String

URI (IN) [NOT]IN List of strings

Operations on the SCORE () output MUST be treated the same as decimal operations.

When using properties in a join statement, comparison MUST be allowed on properties of the same types
as defined by the table above. Repositories MAY extend this behavior.

The ANY operation argument MUST be one of the properties found in the table above which supports
equality operations.

The collation rules used to evaluate comparison predicates for String properties are repository specific. For
example, a predicate of the form

where cmis:name LIKE 'a%'

MUST match a cmis:name starting with 'a’ and MAY match a cmis:name starting with 'A'.

2.1.14.2.4.2 Multi-valued property support (SQL-92 Extension)

The CMIS query language includes several new non-terminals to expose semantics for querying multi-
valued properties, in a way that does not alter the semantics of existing SQL-92 production rules.

1Comparison is based on chronological before or after date

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

19 September 2015

Copyright © OASIS Open 2015. All Rights Reserved. Page 108 of 334

2.1.14.2.4.3 Multi-valued column references

BNF grammar structure: <multi-valued-column reference>, <multi-valued-column name>

These are non-terminals defined for multi-valued properties whereas SQL-92's <column reference> and
<column name> are retained for single-valued properties only. This is to preserve the single-value semantics
of a regular "column" in the SQL-92 grammar.

Quantified comparison predicate

The SQL-92 production rule for <quantified comparison predicate> is extended to accept a multi-valued
property in place of a <table subquery>. This operation is restricted to equality tests only.

<Table subquery> is not supported in CMIS-SQL.
The SQL-92 <quantifier> is restricted to ANY only.

The SQL-92 <row value constructor> is restricted to a literal only.

Example:

SELECT Y.CLAIM NUM, X.PROPERTY ADDRESS, Y.DAMAGE ESTIMATES, Z.BAND

FROM (POLICY AS X JOIN CLAIMS AS Y ON X.POLICY NUM = Y.POLICY NUM)
JOIN RISK AS Z ON X.cmis:objectId = Z.cmis:objectId
WHERE (100000 = ANY Y.DAMAGE ESTIMATES) AND Z.BAND > 3

(Note: DAMAGE_ESTIMATES is a multi-valued Integer property and RISK is a secondary type.)

IN/ANY Predicate

CMIS-SQL exposes a new IN predicate defined for a multi-valued property. It is modeled after the SQL-92
IN predicate, but since the entire predicate is different semantically, it has its own production rule in the BNF
grammar.

The quantifier is restricted to ANY. The predicate MUST be evaluated to TRUE if at least one of the property's
values is (or, is not, if NOT is specified) among the given list of literal values. Otherwise the predicate is
evaluated to FALSE.

The ANY operation argument MUST be one of the properties found in the comparison list above which sup-
ports IN operations.

Example 1:

SELECT *
FROM CAR REVIEW
WHERE (MAKE = 'buick') OR
(ANY FEATURES IN ('NAVIGATION SYSTEM', 'SATELLITE RADIO', 'MP3'))

(Note: FEATURES is a multi-valued String property.)

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 109 of 334

Example 2:

SELECT d.cmis:objectId, d.cmis:name, a.SPECIES
FROM cmis:document AS d JOIN ANIMAL AS a ON d.cmis:objectId = a.cmis:objectId
WHERE ANY a.SPECIES IN ('dog', 'cat')

(Note: ANIMAL is a secondary type and ANIMAL.SPECIES is a multi-valued String property.)

2.1.14.2.4.4 CONTAINS() predicate function (CMIS-SQL Extension)

BNF grammar structure: CONTAINS ([<qualifier>,] ' <text search expression>")

Usage:

This is a predicate function that encapsulates the full-text search capability that MAY be provided
by a repository. See the optional capability attribute capabilityQuery.

* If the repository's value for the capabilityQuery attribute is fulltextonly, then only
queries that filter based on the full-text content of documents can be fulfilled. Specifically,
only the CONTAINS() predicate function can be included in the WHERE clause.

« If the repository's value for the capabilityQuery attribute is bothseparate, then the
repository can fulfill queries that filter EITHER on the full-text content of documents OR on
their properties, but NOT if both types of filters are included in the same query.

* If the repository's value for the capabilityQuery attribute is bothcombined, then the
repository can fulfill queries that filter on both the full-text content of documents and their
properties in the same query.

Inputs:

<qualifier> The value of this optional parameter MUST be the name of one of the virtual tables
listed in the FROM clause for the query.

« If specified, then the predicate SHOULD only be applied to objects in the specified
virtual table, but a repository MAY ignore the value of the parameter.

* If not specified, applies to the single virtual table. If the query is a join, a server SHOULD
throw an exception if the qualifier is not specified.

<text search expression> The <text search expression> parameter MUST be a character string,
specifying the full-text search criteria.

» The Text Search Expression may be a set of terms or phrases with an optional '-' to
signal negation. A phrase is defined as a word or group of words. A group of words
must be surrounded by double quotes to be considered a single phrase.

» Terms may contain wildcards. The wildcard "' substitutes for zero or more characters.
The wildcard '?" substitutes for exactly one character. The characters '%'and'_', which
are wildcards in LIKE expressions are not considered wildcards in text serach terms.

» Terms separated by whitespace are AND'ed together.

» Terms separated by "OR" are OR'ed together.

 Implicit "AND" has higher precedence than "OR".

» Within a word or phrase, each (single-)quote must also be escaped by a preceding
backslash '\'. Using double single-quotes (") as a SQL-92 way to escape a literal single-
quote (') character SHOULD BE supported as an allowable alternative to the double
character .

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 110 of 334

Return value:

The predicate returns a Boolean value.
» The predicate MUST return TRUE if the object is considered by the repository as "relevant”
with respect to the given <text search expression> parameter.
» The predicate MUST return FALSE if the object is considered by the repository as not "rele-
vant" with respect to the given <text search expression> parameter.

Constraints:

* At most one CONTAINS () function MUST be included in a single query statement. The
repository MUST throw an exception if more than one CONTAINS () function is found.

* The return value of the CONTAINS () function MAY only be included conjunctively (ANDed)
with the aggregate of all other predicates, if there is any, in the WHERE clause.

2.1.14.2.4.5 SCORE() predicate function

BNF grammar structure: SCORE ()

Usage:

This is a predicate function that encapsulates the full-text search capability that MAY be provided
by a repository. (See previous section.)

Inputs:
No inputs MUST be provided for this predicate function.

Return value:

The SCORE () predicate function returns a decimal value in the interval [0,1].
» A repository MUST return the value O if the object is considered by the repository as having
absolutely no relevance with respect to the CONTAINS () function specified in the query.
» A repository MUST return the value 1 if the object is considered by the repository as having
absolutely complete relevance with respect to the CONTAINS () function specified in the

query.

Constraints:

* The SCORE () function MUST only be used in queries that also include a CONTAINS () pred-
icate function.

* The SCORE () function MUST only be used in the SELECT clause of a query. It MUST NOT
be used in the WHERE clause or in the ORDER BY clause.

* An alias column name defined for the SCORE () function call in the SELECT clause (i.e.,
SELECT SCORE() AS column name ...)may be used inthe ORDER BY clause.

* If SCORE () isincluded in the SELECT clause and an alias column name is not provided, then
a query name of SEARCH_SCORE is used for the query output, and the property definition id
is repository-specific.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 111 of 334

2.1.14.2.4.6 IN_FOLDER() predicate function

BNF grammar structure: IN_FOLDER([<qualifier>,] <folder id>)

Usage:

This is a predicate function that tests whether or not a candidate object is a child-object of the
folder object identified by the given <folder id>.

Inputs:

<qualifier> The value of this optional parameter MUST be the name of one of the virtual tables
listed in the FROM clause for the query.
« If specified, then the predicate SHOULD only be applied to objects in the specified
virtual table, but a repository MAY ignore the value of the parameter.
+ Ifthe query is ajoin, a server SHOULD throw an exception if the qualifier is not specified.
<folder id> The value of this parameter MUST be the id of a folder object in the repository.

Return value:

The predicate returns a Boolean value.
» The predicate function MUST return TRUE if the object is a child-object of the folder specified
by <folder id>.
» The predicate function MUST return FALSE if the object is a NOT a child-object of the folder
specified by <folder id>.

2.1.14.2.4.7 IN_TREE() predicate function

BNF grammar structure: IN_TREE([<qualifier>,] <folder id>)

Usage:

This is a predicate function that tests whether or not a candidate object is a descendant-object of
the folder object identified by the given <folder id>.

Inputs:

<qualifier> The value of this optional parameter MUST be the name of one of the virtual tables
listed in the FROM clause for the query.
« If specified, then the predicate SHOULD only be applied to objects in the specified
virtual table, but a repository MAY ignore the value of the parameter.
« Ifthe query s a join, a server SHOULD throw an exception if the qualifier is not specified.
<folder id> The value of this parameter MUST be the id of a folder object in the repository.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 112 of 334

Return value:

The predicate returns a Boolean value.
» The predicate function MUST return TRUE if the object is a descendant-object of the folder
specified by <folder id>.
» The predicate function MUST return FALSE if the object is a NOT a descendant-object of
the folder specified by <folder id>.

21.14.2.5 ORDER BY Clause

This clause MUST contain a comma separated list of one or more column names.

All column names referenced in this clause MUST be valid "queryName" or their aliased values for properties
defined as orderable in the object-type(s) whose virtual tables are listed in the FROM clause.

Only columns in the SELECT clause MAY be in the ORDER BY clause.

Collation rules for the ORDER BY clause are repository specific.

2.1.14.3 Escaping

Character escaping for character strings differs from SQL-92's escaping. A repository MUST support the
escaping of certain literal characters in a character string, or in a text search expression, using a backslash
character (\) in the following manner. For a <character string literal>, which MUST BE a string enclosed in
single-quotes according to the SQL-92 grammar, any occurrence of the single-quote character (') and the
escape character (\) in the string MUST BE escaped. This applies to <folder id>, which is a <character string
literal>. Furthermore, when a <character string literal> is used in a LIKE predicate, any occurrence of the
percent character (%) and the underscore character (_) in the string as a literal MUST BE escaped also.
Therefore, within a quoted string in a query:

» The double character \' represents a literal single-quote (') character.
» The double character \\ represents a literal backslash (\) character.

» Within a LIKE string, the double characters \% and _ represent a literal percent (%) character and a
literal underscore (_) character respectively.

» Within a CONTAINS text search expression, the double characters * and \? represent a literal asterisk
(*) character and a literal question mark (?) character respectively.

 All other instances of a backslash (\) character are errors.

Using double single-quotes (") as a SQL-92 way to escape a literal single-quote (') character SHOULD BE
supported as an allowable alternative to the double character \'.

For a <text search expression>, a second-level character escaping is required so that the <text search
expression> sub-grammar is isolatable from the query statement-level grammar. When a text search ex-
pression is composed for a query according to the <text search expression> sub-grammar, any occurrence
of the following four characters in the expression as a literal character MUST BE escaped: double-quote ("),
hyphen (-), single-quote ('), and the escape character (\). Then, before this expression is enclosed in single-
quotes and inserted into a CONTAINS() predicate, the query statement-level escaping rules described in
the above MUST BE applied. This two-level character escaping allows a query statement parser, using
statement-level escaping rules, to correctly extract a <text search expression> as a character string literal
independent of the <text search expression> sub-grammar. This extracted <text search expression> can
then be correctly interpreted by a full-text search parser independent of the query-statement grammar, using
second-level escaping rules. Since the <text search expression> sub-grammar is isolated from the SQL-92
grammar, double single-quotes is not a valid way to escape a literal single-quote character for second-level
character escaping.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 113 of 334

An <identifier> in a query statement MUST conform to the SQL-92 identifier syntax, and MUST NOT require
character escaping.

Example:
A query statement that contains a full-text search for the literal string "John'sPresentation-Version2" may be
composed as:

SELECT ... FROM ... WHERE ... CONTAINS('John\\\'sPresentation\\-Version2')

A query parser extracts from this statement the text search expression "John\'sPresentation\-Version2" as
a character string literal, and passes it to a text-search parser, which interprets it as a single-word full-text
search criteria: John'sPresentation-Version2.

2.1.15 Change Log

CMIS provides a "change log" mechanism, the getContentChanges service, to allow applications to easily
discover the set of changes that have occurred to objects stored in the repository since a previous point in
time. This change log can then be used by applications such as search services that maintain an external
index of the repository to efficiently determine how to synchronize their index to the current state of the
repository (rather than having to query for all objects currently in the repository).

Entries recorded in the change log are referred to below as "change events".

Note that change events in the change log MUST be returned in ascending order from the time when the
change event occurred.

2.1.15.1 Completeness of the Change Log

The change log mechanism exposed by a repository MAY be able to return an entry for every change ever
made to content in the repository, or may only be able to return an entry for all changes made since a par-
ticular point in time. This "completeness" level of the change log is indicated via the changesIncomplete
value found on the getRepositoryInfo service response.

However, repositories MUST ensure that if an application requests the entire contents of the repository's
change log, that the contents of the change log includes ALL changes made to any object in the repository
after the first change listed in the change log. (l.e. repositories MAY truncate events from the change log on
a "first-in first-out" basis, but not in any other order.)

A repository MAY record events such as filing/unfiling/moving of documents as change events on the doc-
uments, their parent folder(s), or both the documents and the parent folders.

2.1.15.2 Change Log Token

The primary index into the change log of a repository is the "change log token". The change log token is an
opaque string that uniquely identifies a particular change in the change log.

2.1.15.3 "Latest Change Token" repository information

Repositories that support the changeLogToken event MUST expose the latest change log token (i.e. the
change log token corresponding to the most recent change to any object in the repository) as a property
returned by the getRepositoryInfo service.

This will enable applications to begin "subscribing" to the change log for a repository by discovering what
change log token they should use on a going-forward basis to discover change events to the repository.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 114 of 334

2.1.15.4 Change Event
A change event represents a single action that occurred to an object in the repository that affected the
persisted state of the object.

A repository that supports the change log capability MUST expose at least the following information for each
change object:

Id Objectld The object id of the object to which the change occurred.
Enum ChangeType An enumeration that indicates the type of the change. Valid values are:
created The object was created.
updated The object was updated.
deleted The object was deleted.
security The access control or security policy for the object were changed.

<Properties> properties Additionally, for events of changeType "updated”, the repository MAY optionally
include the new values of properties on the object (if any).

Repositories MUST indicate whether they include properties for "updated" change events via the optional
capabilityChanges.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 115 of 334

2.1.16 Retentions and Holds

Retentions and Holds can be used to protect documents from being deleted or modified. A Retention de-
scribes a period of time where the document must not be deleted, while a Hold just marks the document as
protected as long as the Hold is applied to a document.

This specification defines a basic interface for end user operations. Administrative operations such as
managing a file plan or shortening retention periods are out of scope. A repository MAY support settings
that require administrative privileges and bend the rules described in the following section. The implications
are repository specific.

Retentions and Holds can be applied to documents by applying predefined secondary types for Retentions
and Holds. CMIS specifies secondary types for:

* Repository Managed Retentions
+ Client Managed Retentions (with a subtype for Destruction Retentions)
* Holds

If a repository does not support one of the predefined types for Retention and Hold management, the cor-
responding secondary type MUST NOT be returned by a getTypeChildren service call.

All secondary types for retention and hold management SHOULD be able to be applied to objects derived
from the cmis:document base type. Applying such types to other CMIS objects and its behavior is repos-
itory specific. A repository MUST throw a constraint exception if the operation is not supported.

Retentions and Holds are applied to document versions. How this affects other versions in the version series
is repository specfic.

Retentions and Holds protect at least the content of a document from modifications. If this protection also
applies to the properties, ACL, policies, relationships, etc. of a document, is repository specific. Clients may
use the Allowable Actions to discover what they can do with protected documents.

2.1.16.1 Repository Managed Retentions

Repository Managed Retentions are used in scenarios where the repository is responsible for calculating the
concrete expiration date and potential destruction date for a document. As a first step a records manager
usually creates a file plan in the repository and assigns rules which are used to calculate the retention period
for a specific entry in the file plan. Creating a file plan is out-of-scope for CMIS. It has to be done using the
native (user) interfaces of the repository. In order to enable a client to classify documents according to this
file plan, the repository exposes the file plan as a secondary type hierarchy. The CMIS client can now apply
one of the exposed file plan categories to a document. This process is called classification:

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 116 of 334

a1 | classification Fileplan Retention Schedule

Doc 1 <>
t------4+ Retention Rule 1 |
”’
”

4— ’f’
-

-
I
Doc 2

Retention Rule 2 |

Retention Rule 3 |

1

Doc3 R Retention Rule 4 |
| Retention Rule 5 |
Doc 4 7I‘ Reports |€ -~
= ~| Retention Rule 6 |
Y e
Doc 5 - S~ »I Retention Rule 7 |
~ ~ - e
~ < P -
>J
4_ p P - -~ ~ d
i RetentionRues |
Doc 6

Figure 2.7: Classification

Support for Repository Managed Retentions is optional. A repository that does not support Repository Man-
aged Retentions will not expose a file plan via the secondary type hierarchy. Repositories that support
Repository Managed Retentions MUST expose the categories of the file plan as a subtype of the CMIS de-
fined secondary type cmis:rm repMgtRetention. The secondary type cmis:rm repMgtRetention
does not require any properties. A repository MAY add repository specific properties. A secondary type hier-
archy for Repository Managed Retentions could look like this (white boxes are CMIS defined types, orange
boxes are repository specific):

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 117 of 334

cmis:secondary

AN

cmis:rm_repMgtRetention

/\

FilePlanCategory1 FilePlanCategory2
FilePlanCategoryl.1 FilePlanCategory1.2 FilePlanCategory2.1 FilePlanCategory2.2

Figure 2.8: Repository Managed Retentions Types

The usage of Repository Managed Retentions allows support of support advanced scenarios where the
retention period is not fixed at creation time, but managed more dynamically (e.g. depending on certain
property changes like "3 years after setting status to released"). The capabilities that are kind of rules are
supported and how they are enforced varies widely between repository implementations. Some may do this
automatically, some may require manually triggered batch runs, require an approval or workflow for certain
actions etc. This model has minimal requirements for the application but can use much of the functionality
that a repository provides.

This specification only defines the classification process, that is applying a Repository Managed Retention
to a document. Creating and managing the rules and how rules are mapped to file plan categories is out-
of-scope and repository specific. Which set of Repository Managed Retentions can be assigned to which
objects is also repository specific.

Whether a user is allowed to apply a Repository Managed Retention is repository specific. If the user has
no permission to do so, a permissionDenied exception MUST be thrown. In case of others constraints,
a constraint exception MUST be thrown.

2.1.16.1.1 Repository Managed Retention Type
2.1.16.1.1.1 Attribute Values

The Repository Managed Retention object-type MUST have the following attribute values.
id

Value: cmis:rm_repMgtRetention

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:rm_repMgtRetention

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 118 of 334

displayName
Value: <repository-specific>

baseld
Value: cmis:secondary

parentId
Value: cmis:secondary

description
Value: <repository-specific>

creatable
Value: FALSE

fileable
Value: FALSE

queryable
Value: SHOULD be TRUE

controllablePolicy
Value: FALSE

controllableACL
Value: FALSE

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

2.1.16.1.1.2 Property Definitions

This type has no properties defined by this specification. A repository MAY add repository specific property
definitions.

2.1.16.2 Client Managed Retentions

Client Managed Retentions are used in scenarios where the CMIS client is responsible to calculate the
concrete expiration date for a document. This is usually required when documents are related to other
objects (like a Business Object in an ERP system) and the documents must get the same retention period
than the object where they are related to. In this case a CMIS client can apply a retention period to a
document using the Client Managed Retention object-type.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 119 of 334

If a repository supports Client Managed Retentions, it exposes the secondary type
cmis:rm clientMgtRetention via the secondary type hierarchy. The CMIS defined secondary
type cmis:rm clientMgtRetention defines two properties:

cmis:rm_expirationDate contains the date until the document must be preserved.

cmis:rm_startOfRetention contains the date from which the retention time was calculated (for documen-
tation purposes only).

A repository MAY define its own secondary types for Client Managed Retentions with additional properties.
Those types MUST be derived from the type cmis:rm clientMgtRetention.

Repositories that support a process to dispose documents after a certain period of time, MAY expose the
type cmis:rm destructionRetention which is derived from cmis:rm clientMgtRetention. This
type provides an additional property that defines the date when destruction process SHOULD be triggered:

cmis:rm_destructionDate holds the date when the destruction process SHOULD be triggered.

A repository MAY define its own Destruction Retentions. A repository specific Destruction Retention MUST
be derived from the type cmis:rm destructionRetention.

The repository MAY round up the dates used for expiration and destruction dates according to its internal
capabilities. A secondary type hierarchy for Client Managed Retentions could look like this (white boxes are
CMIS defined types, orange boxes are repository specific):

cmis:secondary

AN

cmis:rm_clientMgtRetention

A

cmis:rm_destructionRetention RepositorySpecifcTypel

/\

RepositorySpecifcType2 RepositorySpecifcType3

Figure 2.9: Client Managed Retentions Types

2.1.16.2.1 Semantics and Rules to be checked for the Expiration Date Property

The property cmis:rm expirationDate either contains a concrete date or (if not known yet) is in the
state "not set". In the first case ("specific expiration date"), the affected object MUST NOT be deletable until
the specified date (including the specified date). That does NOT imply that the object is being automatically
deleted by the storage system after it expired. In the second case (expiration date "not set"), the affected
object MUST NOT be deletable at all. If a new expiration date is applied to an object, the following rules
MUST be obeyed:

Assignment rule:

1. A specific expiration date MUST NOT be removable or replaced by an expiration date "not set". The
reverse MUST be allowed. That is, it MUST be possible to set a specific expiration date as long as
the expiration date is not set.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 120 of 334

2. A new expiration date SHALL only be applicable if the expiration date does not lie in the past. Only an
expiration date with a current or a future date MUST be assignable to an object.

Prolongation rule:

1. In case an object has already an expiration date assigned, the repository SHALL check whether the
new expiration date is equal or greater than the one already assigned. The repository MUST prevent
a client from shortening the retention time.

2. Once a Client Managed Retention has been set (with a specific expiration date or expiration date "not
set") the Client Managed Retention MUST NOT be removable, even if the expiration date is expired.
A violation of any aspect of these rules MUST result in a constraint exception. A prolongation of
an expiration date MUST succeed regardless of whether the previous expiration date is expired or not.

3. The destruction date, if set, MUST always be the same as the expiration date or greater than the
expiration date. When the retention is prolonged, the destruction date may have to be adjusted as
well by the client. The repository SHOULD NOT automatically adjust the destruction date.

Whether a user is allowed to apply a Client Managed Retention or Destruction Retention is repository spe-
cific. If the user has no permission to do so, a permissionDenied exception MUST be thrown. In case
of others constraints, a constraint exception MUST be thrown.

2.1.16.2.2 Client Managed Retention Type
2.1.16.2.2.1 Attribute Values

The Client Managed Retentions object-type MUST have the following attribute values.
id

Value: cmis:rm_clientMgtRetention

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:rm_clientMgtRetention

displayName
Value: <repository-specific>

baseId
Value: cmis:secondary

parentId
Value: cmis:secondary

description
Value: <repository-specific>

creatable
Value: FALSE

fileable

Value: FALSE

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 121 of 334

queryable
Value: SHOULD be TRUE

controllablePolicy
Value: FALSE

controllableACL
Value: FALSE

includedInSupertypeQuery

Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

2.1.16.2.2.2 Property Definitions

The Client Managed Retentions object-type MUST have the following property definitions, and MAY include
additional property definitions. Any attributes not specified for the property definition are repository specific.
The repository MUST have the following property definitions on the Client Managed Retentions object-type:

cmis:rm expirationDate

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Expiration date.

DateTime

FALSE

FALSE

single

readwrite

Not Applicable

Not Applicable
SHOULD be TRUE
<repository-specific>

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 122 of 334

cmis:rm startOfRetention

Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

2.1.16.2.3 Destruction Retention Type

2.1.16.2.3.1 Attribute Values

The Destruction Retention object-type MUST have the following attribute values.

id
Value: cmis:rm_destructionRetention

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:rm_destructionRetention

displayName
Value: <repository-specific>

baseId
Value: cmis:secondary

parentId
Value: cmis:rm_clientMgtRetention

description
Value: <repository-specific>

creatable
Value: FALSE

fileable
Value: FALSE

queryable
Value: SHOULD be TRUE

CMIS-v1.1-errata01-os-complete

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

Start of retention.

DateTime

FALSE

FALSE

single

SHOULD be readwrite
Not Applicable

Not Applicable
<repository-specific>
<repository-specific>

19 September 2015
Page 123 of 334

controllablePolicy
Value: FALSE

controllableACL
Value: FALSE

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

2.1.16.2.3.2 Property Definitions

The Destruction Retention object-type MUST have the following property definition, inherits all property
defintions from cmis:rm clientMgtRetention, and MAY include additional property definitions. Any
attributes not specified for the property definition are repository specific. The repository MUST have the
following property definitions on the Destruction Retentions object-type:

cmis:rm destructionDate Destruction date.
Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository-specific>
Orderable: <repository-specific>

2.1.16.3 Holds

A Hold assures that a document can be restored to the state it was in when the hold has been applied (usually
by protecting the document from being deleted or modified). Support for other objects than documents is
repository specific.

If a repository supports holds, it exposes the secondary type cmis:rm hold. This type defines the multi-
valued property cmis:rm_holdIds which contains a list of identifiers for the affected litigations or audits.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 124 of 334

As long as the property cmis:rm _holdIds is "not set", the documentis not protected by a hold. To protect
a document, this property must contain at least one value. The hold type CANNOT be removed from an
object as long as the property cmis:rm holdIds contains values.

A repository MAY define its own secondary types for holds with additional properties. Those types MUST
be derived from cmis:rm hold.

A secondary type hierarchy for holds could look like this (white boxes are CMIS defined types, orange boxes

are repository specific):

cmis:secondary

AN

cmis:rm_hold

AN

RepositorySpecificHoldType

Figure 2.10: Hold Type

Whether a user is allowed to apply a hold is repository-specific. If the user has no permission to do so, a
permissionDenied exception MUST be thrown. In case of others constraints, a constraint exception

MUST be thrown.

2.1.16.3.1 Hold Type Definition

2.1.16.3.1.1 Attribute Values

The Hold object-type MUST have the following attribute values.

id
Value: cmis:rm_hold

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:rm_hold

displayName
Value: <repository-specific>

baseId
Value: cmis:secondary

parentId
Value: cmis:secondary

CMIS-v1.1-errata01-os-complete
Standards Track Work Product

Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 125 of 334

description
Value: <repository-specific>

creatable
Value: FALSE

fileable
Value: FALSE

queryable
Value: SHOULD be TRUE

controllablePolicy
Value: FALSE

controllableACL
Value: FALSE

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

2.1.16.3.1.2 Property Definitions

The hold object-type MUST have the following property definitions, and MAY include additional property def-
inition. Any attributes not specified for the property definition are repository specific. The repository MUST
have the following property definitions on the hold object-type:

cmis:rm holdIds
Property Type:
Inherited:
Required:
Cardinality:
Updatability:
Choices:
Open Choice:
Queryable:
Orderable:

CMIS-v1.1-errata01-os-complete

Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

Hold Identifiers.

String

FALSE

FALSE

multi

SHOULD be readwrite
Not Applicable

Not Applicable
SHOULD be TRUE
FALSE

19 September 2015
Page 126 of 334

2.2 Services

The Services section of the CMIS specification defines a set of services that are described in a protocol/binding-
agnostic fashion.

Every protocol binding of the CMIS specification MUST implement all of the methods described in this section
or explain why the service is not implemented.

However, the details of how each service and operation is implemented will be described in those protocol
binding specifications.

2.2.1 Common Service Elements

The following elements are common across many of the CMIS services.

2.21.1 Paging

All of the methods that allow for the retrieval of a collection of CMIS objects support paging of their result
sets except where explicitly stated otherwise. The following pattern is used:

Input Parameters:

Integer maxItems (optional) This is the maximum number of items to return in a response. The
repository MUST NOT exceed this maximum. Default is repository-specific.

Integer skipCount (optional) This is the number of potential results that the repository MUST
skip/page over before returning any results. Defaults to 0.

Output Parameters:

Boolean hasMoreItems TRUE if the Repository contains additional items after those contained
in the response. FALSE otherwise. If TRUE, a request with a larger skipCount or larger
maxltems is expected to return additional results (unless the contents of the repository has
changed).

Integer numItems [f the repository knows the total number of items in a result set, the repository
SHOULD include the number here. If the repository does not know the number of items in
a result set, this parameter SHOULD not be set. The value in the parameter MAY NOT be
accurate the next time the client retrieves the result set or the next page in the result set.

If the caller of a method does not specify a value for maxItems, then the repository MAY select an appro-
priate number of items to return, and MUST use the hasMoreItems output parameter to indicate if any
additional results were not returned.

Repositories MAY return a smaller number of items than the specified value for maxItems. A repository
SHOULD NOT throw an exception if maxItems exceeds the internally supported page size. It SHOULD
return a smaller number of items instead.

Each binding will express the above in context and may have different mechanisms for communicating
hasMoreItems and numItems.

2.2.1.2 Retrieving additional information on objects in CMIS service calls

Several CMIS services that return object information have the ability to return dependent object information
as part of their response, such as the allowable actions for an object, rendition information, etc.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 127 of 334

The CMIS service operations that support returning a result set of objects will include the ability to return
the following object information:

* Properties (retrieves a subset instead of additional information)
* Relationships

» Renditions

» ACLs

* AllowableActions

This section describes the input parameter and output pattern for those services. All these input parameters
are optional.

2.2.1.2.1 Properties

Description:

All services that allow for the retrieval of properties for CMIS objects have a "property filter" as an
optional parameter, which allows the caller to specify a subset of properties for objects that MUST
be returned by the repository in the output of the operation.

Optional Input Parameter:

String £filter Value indicating which properties for objects MUST be returned. This filter
is a list of property query names and NOT a list of property ids. The query names
of secondary type properties MUST follow the pattern <secondaryTypeQuery-
Name>.<propertyQueryName>.

Example: cmis:name, amount, werflew-stage workflow.stage

Valid values are:

Not set The set of properties to be returned MUST be determined by the repository.

A comma-delimited list of property definition queryNames The properties listed MUST
be returned.

* All properties MUST be returned for all objects.

If a property is requested by a filter, a property element MUST be returned for that property. A repository
MAY return additional properties. If a property filter specifies a property which value is "not set", it MUST be
represented as a property element without a value element.

Unknown query names or query names that are not defined for the object-type SHOULD be ignored. For ex-
ample, if getChildren is called with a filter that contains the property cmis:contentStreamMimeType,
it SHOULD return all non-document objects without this property and SHOULD NOT return an error.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 128 of 334

2.2.1.2.2 Relationships

Description:
Used to retrieve the relationships in which the object(s) are participating.
Optional Input Parameter:
Enum includeRelationships Value indicating what relationships in which the objects re-
turned participate MUST be returned, if any. Values are:
none No relationships MUST be returned. (Default)
source Only relationships in which the objects returned are the source MUST be returned.
target Only relationships in which the objects returned are the target MUST be returned.

both Relationships in which the objects returned are the source or the target MUST be
returned.

Output Parameter for each object:

<Array> Relationships A collection of the relationship objects.

2.2.1.2.3 Policies

Description:

Used to retrieve the policies currently applied to the object(s).

Optional Input Parameter:

Boolean includePolicyIds If TRUE, then the Repository MUST return the Ids of the policies
applied to the object. Defaults to FALSE.

Output Parameter for each object:

<Array> Policies A collection of the policy objects.

2.2.1.2.4 Renditions

Description:
Used to retrieve the renditions of the object(s).

Optional Input Parameter:

String renditionFilter The Repository MUST return the set of renditions whose kind
matches this filter. See section below for the filter grammar. Defaults to "cmis:none".

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 129 of 334

Output Parameter for each object:

<Array> Renditions The set of renditions.

2.2.1.2.4.1 Rendition Filter Grammar

The Rendition Filter grammar is defined as follows:

<renditionInclusion> ::= <none> | <wildcard> | <termlist>
<termlist> ::= <term> | <term> ',' <termlist>

<term> ::= <kind> | <mimetype>

<kind> ::= <text>

<mimetype> ::= <type> '/' <subtype>

<type> ::= <text>

<subtype> ::= <text> | <wildcard>

<text> ::= !! any char except whitespace

<wildcard> ::= '*'

<none> ::= 'cmis:none'

An inclusion pattern allows:

* Include all associated renditions.

Comma-separated list of Rendition kinds or mimetypes Include only those renditions that
match one of the specified kinds or mimetypes.

cmis:none Exclude all associated renditions. (Default)

Examples:
* * (include all renditions)
* cmis:thumbnail (include only thumbnails)
* image/* (include all image renditions)
* application/pdf, application/x-shockwave-flash (include web ready rendi-
tions)
* cmis:none (exclude all renditions)

221.25 ACLs

Description:
Used to retrieve the ACLs for the object(s) described in the service response.
Optional Input Parameter:

Boolean includeACL If TRUE, then the repository MUST return the ACLs for each object in the
result set. Defaults to FALSE.

Output Parameter for each object:

<Array> ACEs The list of access control entries of the ACL for the object.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 130 of 334

If the repository does not support ACLs, it should not return an error if includeACL is set to TRUE but
ignore this parameter.

2.2.1.2.6 Allowable Actions

Description:
Used to retrieve the allowable actions for the object(s) described in the service response.

Optional Input Parameter:

Boolean includeAllowableActions If TRUE, then the Repository MUST return the available
actions for each object in the result set. Defaults to FALSE.

Output Parameter for each object:

<Array> AllowableActions The list of allowable actions for the object.

2.2.1.2.7 Object Order

Description:

Used to define the order of the list of objects returned by getChildren and getCheckedOut-
Docs.

If the optional capability capabilityOrderBy is "none" and this parameter is set, the repository
SHOULD return an invalidArgument error.

If the optional capability capabilityOrderBy is "common" and this parameter contains a query
name that is not in the set of common properties (see below), the repository SHOULD return an
invalidArgument error.

If a repository only supports a certain number of orderBy properties, it SHOULD ignore all addi-
tional properties.

If this parameter contains a query name that is unknown or a query name that belongs to a property
that is not queryable, the repository SHOULD ignore it.

The query names of secondary type properties MUST follow this pattern: <secondaryType-
QueryName>.<propertyQueryName>

When mixed-type objects are returned (e.g. getChildren), an "orderBy" property may be orderable
for one type but not orderable for another type. The order is then repository specific.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 131 of 334

Common CMIS properties:

The following set of properties SHOULD be supported by the repository if the optional capability
capabilityOrderBy is common OF custom.
* cmis:name
* cmis:objectId
* cmis:objectTypeld
* cmis:baseTypeld
* cmis:createdBy
* cmis:creationDate
* cmis:lastModifiedBy
e cmis:lastModificationDate
* cmis:isImmutable
* cmis:isPrivateWorkingCopy
* cmis:isLatestVersion
* cmis:isMajorVersion
* cmis:isLatestMajorVersion
* cmis:versionLabel
* cmis:versionSeriesId
* cmis:isVersionSeriesCheckedOut
* cmis:versionSeriesCheckedOutBy
* cmis:versionSeriesCheckedOutId
* cmis:checkinComment
* cmis:contentStreamLength
* cmis:contentStreamMimeType
* cmis:contentStreamFileName
* cmis:contentStreamId
* cmis:parentId

* cmis:path

Optional Input Parameter:

String orderBy A comma-separated list of query names and an optional ascending modifier
"ASC" or descending modifier "DESC" for each query name. If the modifier is not stated,
"ASC" is assumed.

Example:

cmis:baseTypeld,cmis:contentStreamlLength DESC, cmis:name

2.2.1.3 Change Tokens

The CMIS base object-type definitions include an opaque string cmis : changeToken property that a repos-
itory MAY use for optimistic locking and/or concurrency checking to ensure that user updates do not conflict.

If a repository provides a value for the cmis : changeToken property for an object, then all invocations of the
"update" methods on that object (updateProperties, bulkUpdateProperties, setContentStream
appendContentStream, deleteContentStream, etc.) MUST provide the value ofthe cmis:changeToken
property as an input parameter, and the repository MUST throw an updateConflictException if the
value specified for the change token does NOT match the change token value for the object being updated.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 132 of 334

2.2.1.4 Exceptions

The following sections list the complete set of exceptions that MAY be returned by a repository in response
to a CMIS service method call.

2.2.1.41 General Exceptions

The following exceptions MAY be returned by a repository in response to ANY CMIS service method call.

The "Cause" field indicates the circumstances under which a repository SHOULD return a particular excep-
tion.

invalidArgument
Cause: One or more of the input parameters to the service method is missing or invalid.

notSupported
Cause: The service method invoked requires an optional capability not supported by the repository.

objectNotFound
Cause: The service call has specified an object, an object-type or a repository that does not exist.

permissionDenied
Cause: The caller of the service method does not have sufficient permissions to perform the operation.

runtime
Cause: Any other cause not expressible by another CMIS exception.

2.2.1.4.2 Specific Exceptions

The following exceptions MAY be returned by a repositiory in response to one or more CMIS service methods
calls.

For each exception, the general intent is listed.

constraint
Intent: The operation violates a repository- or object-level constraint defined in the CMIS domain
model.

contentAlreadyExists
Intent: The operation attempts to set the content stream for a document that already has a content
stream without explicitly specifying the "overwriteFlag" parameter.

filterNotValid
Intent: The property filter or rendition filter input to the operation is not valid. The repository SHOULD
NOT throw this expection if the filter syntax is correct but one or more elements in the filter is unknown.
Unknown elements SHOULD be ignored.

nameConstraintViolation
Intent: The repository is not able to store the object that the user is creating/updating due to a name
constraint violation.

storage
Intent: The repository is not able to store the object that the user is creating/updating due to an internal
storage problem.

streamNotSupported
Intent: The operation is attempting to get or set a content stream for a document whose object-type
specifies that a content stream is not allowed for document's of that type.

updateConflict
Intent: The operation is attempting to update an object that is no longer current (as determined by the
repository). See also section 2.2.1.3 Change Tokens.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 133 of 334

versioning
Intent: The operation is attempting to perform an action on a non-current version of a document that
cannot be performed on a non-current version.

2215 ACLs
Those services which allow for the setting of ACLs MAY take the optional macro cmis:user which allows
the caller to indicate the operation applies to the current authenticated user.

If the repository info provides a value for principalAnonymous, this value can be used to in an ACE to
specify permissions for anonymous users.

If the repository info provides a value for principalAnyone, this value can be used to in an ACE to specify
permissions for any authenticated user.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 134 of 334

2.2.2 Repository Services

The Repository Services are used to discover information about the repository, including information about
the repository and the object-types defined for the repository. Furthermore, it provides operations to create,
modify and delete object-type definitions if that is supported by the repository.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 135 of 334

2.2.21 getRepositories

Description: Returns a list of CMIS repositories available from this CMIS service endpoint.

2.2.21.1 Inputs

None.

2.2.2.1.2 Outputs

* Id repositoryId: The identifier for the repository.

» String repositoryName: A display name for the repository.

2.2.2.1.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 136 of 334

2.2.2.2 getRepositoryinfo

Description: Returns information about the CMIS repository, the optional capabilities it supports and its
access control information if applicable.

2.2.2.21 Inputs

Required:
* Id repositoryId: The identifier for the repository.

2.2.2.2.2 Outputs

* Id repositoryId: The identifier for the repository.
Note: This MUST be the same identifier as the input to the method.

» String repositoryName: A display name for the repository.

» String repositoryDescription: A display description for the repository.

» String vendorName: A display name for the vendor of the repository's underlying application.
» String productName: A display name for the repository's underlying application.

» String productVersion: A display name for the version number of the repository's underlying
application.

* Id rootFolderid: The id of the root folder object for the repository.

 List<Capabilities> capabilities: The set of values for the repository-optional capabilities speci-
fied in section 2.1.1.1 Optional Capabilities.

» String latestChangeLogToken: The change log token corresponding to the most recent change
event for any object in the repository. See section 2.1.15 Change Log.

» String cmisVersionSupported: A Decimal as String that indicates what version of the CMIS
specification this repository supports as specified in section 2.1.1.2 Implementation Information. This
value MUST be "1.1".

* URI thinClientURI: A optional repository-specific URI pointing to the repository's web interface.
MAY be not set.

* Boolean changesIncomplete: Indicates whether or not the repository's change log can return all
changes ever made to any object in the repository or only changes made after a particular point in
time. Applicable when the repository's optional capability capabilityChanges is not none.

— If FALSE, then the change log can return all changes ever made to every object.

— If TRUE, then the change log includes all changes made since a particular point in time, but not
all changes ever made.

» <Array> Enum changesOnType: Indicates whether changes are available for base types in the
repository. Valid values are from enumBaseObjectTypelds. See section 2.1.15 Change Log.

— cmis:document

— cmis:folder

— cmis:policy

— cmis:relationship
— cmis:item

Note: The base type cmis:secondary MUST NOT be used here. Only primary base types can be
in this list.

* Enum supportedPermissions: Specifies which types of permissions are supported.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 137 of 334

basic Indicates that the CMIS basic permissions are supported.
repository Indicates that repository specific permissions are supported.
both Indicates that both CMIS basic permissions and repository specific permissions are supported.

* Enum propagation: The allowed value(s) for app1yACL, which control how non-direct ACEs are
handled by the repository. See section 2.1.12.3 ACL Capabilities.

» <Array> Permission permissions: The list of repository-specific permissions the repository sup-
ports for managing ACEs. See section 2.1.12 Access Control.

» <Array> PermissionMapping mapping: The list of mappings for the CMIS basic permissions to
allowable actions. See section 2.1.12 Access Control.

» String principalAnonymous: If set, this field holds the principal who is used for anonymous
access. This principal can then be passed to the ACL services to specify what permissions anonymous
users should have.

» String principalAnyone: If set, this field holds the principal who is used to indicate any authen-
ticated user. This principal can then be passed to the ACL services to specify what permissions any
authenticated user should have.

» <Array> RepositoryFeatures extendedFeatures: Optional list of additional repository features.
See section 2.1.1.3 Repository Features.

2.2.2.2.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 138 of 334

2.2.2.3 getTypeChildren

Description: Returns the list of object-types defined for the repository that are children of the specified type.

2.2.2.31 Inputs

Required:
* Id repositoryId: The identifier for the repository.
Optional:
* Id typeId: The typeld of an object-type specified in the repository.
— If specified, then the repository MUST return all of child types of the specified type.
— If not specified, then the repository MUST return all base object-types.

* Boolean includePropertyDefinitions: If TRUE, then the repository MUST return the property
definitions for each object-type. If FALSE (default), the repository MUST return only the attributes for
each object-type.

* Integer maxItems: See section 2.2.1.1 Paging.

* Integer skipCount: See section 2.2.1.1 Paging.

2.2.2.3.2 Outputs

» <Array> Object-Type types: The list of child object-types defined for the given typeld.
» Boolean hasMoreItems: See section 2.2.1.1 Paging.

* Integer numItems: See section 2.2.1.1 Paging.

2.2.2.3.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 139 of 334

2.2.2.4 getTypeDescendants

Description: Returns the set of the descendant object-types defined for the Repository under the specified
type.

Notes:
» This method does NOT support paging as defined in the 2.2.1.1 Paging section.

» The order in which results are returned is respository-specific.

2.2.2.41 Inputs

Required:
* Id repositoryId: The identifier for the repository.
Optional:
* Id typeId: The typeld of an object-type specified in the repository.
— If specified, then the repository MUST return all of descendant types of the specified type.

— If not specified, then the Repository MUST return all types and MUST ignore the value of the
depth parameter.

* Integer depth: The number of levels of depth in the type hierarchy from which to return results. Valid
values are:

1 Return only types that are children of the type. See also getTypeChildren.

<Integer value greater than 1> Return only types that are children of the type and descendants up
to <value> levels deep.

-1 Return ALL descendant types at all depth levels in the CMIS hierarchy.
The default value is repository specific and SHOULD be at least 2 or -1.

* Boolean includePropertyDefinitions: If TRUE, then the repository MUST return the property
definitions for each object-type. If FALSE (default), the repository MUST return only the attributes for
each object-type.

2.2.2.4.2 Outputs

» <Array> Object-Type types: The hierarchy of object-types defined for the repository.

2.2.2.4.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

* invalidArgument If the service is invoked with "depth = 0" or "depth < -1".

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 140 of 334

2.2.2.5 getTypeDefinition

Description: Gets the definition of the specified object-type.

2.2.2.51 Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Id typeId: The typeld of an object-type specified in the repository.

2.2.2.5.2 Outputs

» Object-Type type: Object-type including all property definitions. See section 2.1.3 Object-Type for
further details.

2.2.2.5.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 141 of 334

2.2.2.6 createType

Description: Creates a new type definition that is a subtype of an existing specified parent type.

Notes: Only properties that are new to this type (not inherited) are passed to this service.

See section 2.1.10 Object-Type Creation, Modification and Deletion for further details.

2.2.2.6.1 Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Object-Type type: A fully populated type definition including all new property definitions.

2.2.2.6.2 Outputs

» Object-Type type: The newly created object-type including all property definitions. See sections
2.1.3 Object-Type and 2.1.10 Object-Type Creation, Modification and Deletion for further details.

2.2.2.6.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

* invalidArgument If the specified parent type does not exist or the specified parent type cannot be
used as the parent type.

* constraint If the type definition violates repository specifc rules.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 142 of 334

2.2.2.7 updateType

Description: Updates a type definition.

Notes: If you add an optional property to a type in error. There is no way to remove it/correct it - without
deleting the type. See section 2.1.10 Object-Type Creation, Modification and Deletion for further details.

2.2.2.7.1 Inputs

Required:
* Id repositoryId: The identifier for the repository.

» Object-Type type: A type definition object with the property definitions that are to change. Reposi-
tories MUST ignore all fields in the type definition except for the type id and the list of properties.

Properties that are not changing MUST NOT be included, including any inherited property definitions.

For the properties that are being included, an entire copy of the property definition should be present
(with the exception of the choice values — see special note), even values that are not changing.

Special note about choice values. There are only two types of changes permitted.
— New choice added to the list.
— Changing the displayname for an existing choice.

For any choice that is being added or having its display name changed, both the displayName and
value MUST be present.

2.2.2.7.2 Outputs

» Object-Type type: The updated object-type including all property definitions. See sections 2.1.3 Object-
Type and 2.1.10 Object-Type Creation, Modification and Deletion for further details.

2.2.2.7.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

» constraint If the rules listed in section 2.1.10 Object-Type Creation, Modification and Deletion are
not obeyed.

» constraint If the property definitions violate repository specifc rules.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 143 of 334

2.2.2.8 deleteType

Description: Deletes a type definition.

Notes: If there are object instances present of the type being deleted then this operation MUST fail.

See sections 2.1.10 Object-Type Creation, Modification and Deletion for further details.

2.2.2.8.1 Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Id typeId: The typeld of an object-type specified in the repository.

2.2.2.8.2 Outputs

* None.

2.2.2.8.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.
* constraint If objects of this object-type exist in the repository.

* constraint If the object-type has a sub-type.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 144 of 334

2.2.3 Navigation Services

The Navigation Services are used to traverse the folder hierarchy in a CMIS repository, and to locate doc-
uments that are checked out.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 145 of 334

2.2.3.1 getChildren

Description: Gets the list of child objects contained in the specified folder.

Notes: If the repository supports the optional capability capabilityVersionSpecificFiling, thenthe
repository MUST return the document versions filed in the specified folder. Otherwise, the latest version or
the latest major version of the documents MUST be returned.

2.2.3.1.1 Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Id folderId: The identifier for the folder.
Optional:
* Integer maxItems: See section 2.2.1.1 Paging.
* Integer skipCount: See section 2.2.1.1 Paging.
» String orderBy: See section 2.2.1.2.7 Object Order.
» String filter: See section 2.2.1.2.1 Properties.
* Enum includeRelationships: See section 2.2.1.2.2 Relationships.
» String renditionFilter: See section 2.2.1.2.4 Renditions.
* Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

* Boolean includePathSegment: If TRUE, returns a PathSegment for each child object for use in
constructing that object's path. Defaults to FALSE. See section 2.1.5.3 Paths.

2.2.3.1.2 Outputs

» <Array> objects objects: A list of the child objects for the specified folder. Each object result
MUST include the following elements if they are requested:

Properties See section 2.2.1.2.1 Properties.

Relationships See section 2.2.1.2.2 Relationships.

Renditions See section 2.2.1.2.4 Renditions.

AllowableActions See section 2.2.1.2.6 Allowable Actions.

PathSegment If includePathSegment was TRUE. See section 2.1.5.3 Paths.
* Boolean hasMoreItems: See section 2.2.1.1 Paging.

* Integer numItems: See section 2.2.1.1 Paging.

2.2.3.1.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.
* filterNotValid If the property or rendition filter input parameter is not valid.

* invalidArgument If the specified folder is not a folder.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 146 of 334

2.2.3.2 getDescendants

Description: Gets the set of descendant objects contained in the specified folder or any of its child-folders.

Notes:
» This operation does NOT support paging as defined in the 2.2.1.1 Paging section.
» The order in which results are returned is respository-specific.

« If the repository supports the optional capability capabilityVersionSpecificFiling, then the
repository MUST return the document versions filed in the specified folder or its descendant folders.
Otherwise, the latest version or latest major version of the documents MUST be returned.

« If the repository supports the optional capability capabilityMultifiling and the same document
is encountered multiple times in the hierarchy, then the repository MUST return that document each
time it is encountered.

2.2.3.21 Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Id folder1d: The identifier for the folder.
Optional:

* Integer depth: The number of levels of depth in the folder hierarchy from which to return results.
Valid values are:

1 Return only objects that are children of the folder. See also getChildren.

<Integer value greater than 1> Return only objects that are children of the folder and descendants
up to <value> levels deep.

-1 Return ALL descendant objects at all depth levels in the CMIS hierarchy.
The default value is repository specific and SHOULD be at least 2 or -1.
» String filter: See section 2.2.1.2.1 Properties.
* Enum includeRelationships: See section 2.2.1.2.2 Relationships.
» String renditionFilter: See section 2.2.1.2.4 Renditions.
* Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

* Boolean includePathSegment: If TRUE, returns a PathSegment for each child object for use in
constructing that object's path. Defaults to FALSE. See section 2.1.5.3 Paths.

2.2.3.2.2 Outputs

» <Array> objects objects: A tree of the child objects for the specified folder. Each object result
MUST include the following elements if they are requested:

Properties See section 2.2.1.2.1 Properties.
Relationships See section 2.2.1.2.2 Relationships.
Renditions See section 2.2.1.2.4 Renditions.
AllowableActions See section 2.2.1.2.6 Allowable Actions.

PathSegment If includePathSegment was TRUE. See section 2.1.5.3 Paths.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 147 of 334

2.2.3.2.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.
* filterNotValid If the property or rendition filter input parameter is not valid.
* invalidArgument If the specified folder is not a folder.

* invalidArgument If the service is invoked with "depth = 0" or "depth < -1".

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 148 of 334

2.2.3.3 getFolderTree

Description: Gets the set of descendant folder objects contained in the specified folder.

Notes:
+ This operation does NOT support paging as defined in the 2.2.1.1 Paging section.

» The order in which results are returned is respository-specific.

2.2.3.3.1 Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Id folderId: The identifier for the folder.
Optional:

* Integer depth: The number of levels of depth in the folder hierarchy from which to return results.
Valid values are:

1 Return only objects that are children of the folder.

<Integer value greater than 1> Return only objects that are children of the folder and descendants
up to <value> levels deep.

-1 Return ALL descendant objects at all depth levels in the CMIS hierarchy.
The default value is repository specific and SHOULD be at least 2 or -1.
» String filter: See section 2.2.1.2.1 Properties.
* Enum includeRelationships: See section 2.2.1.2.2 Relationships.
» String renditionFilter: See section 2.2.1.2.4 Renditions.
* Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

* Boolean includePathSegment: If TRUE, returns a PathSegment for each child object for use in
constructing that object's path. Defaults to FALSE. See section 2.1.5.3 Paths.

2.2.3.3.2 Outputs

» <Array> objects objects: A tree of the child objects for the specified folder. Each object result
MUST include the following elements if they are requested:

Properties See section 2.2.1.2.1 Properties.
Relationships See section 2.2.1.2.2 Relationships.
Renditions See section 2.2.1.2.4 Renditions.
AllowableActions See section 2.2.1.2.6 Allowable Actions.

PathSegment If includePathSegment was TRUE. See section 2.1.5.3 Paths.

2.2.3.3.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.
* filterNotvalid If the property or rendition filter input parameter is not valid.

* invalidArgument If the specified folder is not a folder.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 149 of 334

* invalidArgument If the service is invoked with "depth = 0" or "depth < -1".

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 150 of 334

2.2.3.4 getFolderParent

Description: Gets the parent folder object for the specified folder object.

2.2.3.41 Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Id folder1d: The identifier for the folder.
Optional:
» String filter: See section 2.2.1.2.1 Properties.

2.2.3.4.2 Outputs

* Object object: The parent folder object of the specified folder.

The repository SHOULD return an object that is equal to the object returned by getObject with default
parameters.

2.2.3.4.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.
* filterNotVvalid If the property filter input parameter is not valid.
* invalidArgument If the specified folder is not a folder.

* invalidArgument If the specified folder is the root folder.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 151 of 334

2.2.3.5 getObjectParents

Description: Gets the parent folder(s) for the specified fileable object.

2.2.3.5.1 Inputs

Required:

Id repositoryId: The identifier for the repository.
Id object1d: The identifier for the object.

Optional:

String filter: See section 2.2.1.2.1 Properties.

Enum includeRelationships: See section 2.2.1.2.2 Relationships.

String renditionFilter: See section 2.2.1.2.4 Renditions.

Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

Boolean includeRelativePathSegment: If TRUE, returns a relativePathSegment for each
parent object for use in constructing that object's paths. The default is repository specific. ~ See
section 2.1.5.3 Paths.

2.2.3.5.2 Outputs

<Array> objects objects: A list of the parent folder(s) of the specified objects. Empty for the
root folder and unfiled objects. Each object result MUST include the following elements if they are
requested:

Properties See section 2.2.1.2.1 Properties.

Relationships See section 2.2.1.2.2 Relationships.

Renditions See section 2.2.1.2.4 Renditions.

AllowableActions See section 2.2.1.2.6 Allowable Actions.

RelativePathSegment If includeRelativePathSegment was TRUE. See section 2.1.5.3 Paths.
Boolean hasMoreItems: See section 2.2.1.1 Paging.

Integer numItems: See section 2.2.1.1 Paging.

2.2.3.5.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

filterNotValid If the property or rendition filter input parameter is not valid.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 152 of 334

2.2.3.6 getCheckedOutDocs

Description: Gets the list of documents that are checked out that the user has access to.

2.2.3.6.1 Inputs

Required:

Id repositoryId: The identifier for the repository.

Optional:

Id folderId: The identifier for the folder.

If specified, the repository MUST only return checked out documents that are child-objects of the
specified folder.

If not specified, the repository MUST return checked out documents from anywhere in the repository
hierarchy.

Integer maxItems: See section 2.2.1.1 Paging.

Integer skipCount: See section 2.2.1.1 Paging.

String orderBy: See section 2.2.1.2.7 Object Order.

String filter: See section 2.2.1.2.1 Properties.

Enum includeRelationships: See section 2.2.1.2.2 Relationships.
String renditionFilter: See section 2.2.1.2.4 Renditions.

Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.3.6.2 Outputs

<Array> objects objects: A list of checked out documents. Each object result MUST include the
following elements if they are requested:

Properties See section 2.2.1.2.1 Properties.
Relationships See section 2.2.1.2.2 Relationships.
Renditions See section 2.2.1.2.4 Renditions.
AllowableActions See section 2.2.1.2.6 Allowable Actions.
Boolean hasMoreItems: See section 2.2.1.1 Paging.

Integer numItems: See section 2.2.1.1 Paging.

2.2.3.6.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.
filterNotVvalid If the property or rendition filter input parameter is not valid.

invalidArgument If a folder is specified but the folder is not a folder.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 153 of 334

2.2.4 Object Services

CMIS provides id-based CRUD (Create, Retrieve, Update, Delete) operations on objects in a repository.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 154 of 334

2.2.4.1 createDocument

Description: Creates a document object of the specified type (given by the cmis: objectTypeId property)
in the (optionally) specified location.

22411 Inputs

Required:
* Id repositoryId: The identifier for the repository.

» <Array> Property properties: The property values that MUST be applied to the newly-created
document object.

Optional:

* Id folderId: If specified, the identifier for the folder that MUST be the parent folder for the newly-
created document object. This parameter MUST be specified if the repository does NOT support the
optional "unfiling" capability.

» <contentStream> contentStream: The content stream that MUST be stored for the newly-created
document object. The method of passing the contentStream to the server and the encoding mecha-
nism will be specified by each specific binding. MUST be required if the type requires it.

* Enum versioningState: An enumeration specifying what the versioning state of the newly-
created object MUST be. Valid values are:

none (default, if the object-type is not versionable) The document MUST be created as a non-versionable
document.

checkedout The document MUST be created in the checked-out state. The checked-out document
MAY be visible to other users.

major (default, if the object-type is versionable) The document MUST be created as a major version.
minor The document MUST be created as a minor version.

» <Array> Id policies: A list of policy ids that MUST be applied to the newly-created document
object.

» <Array> ACE addACEs: A list of ACEs that MUST be added to the newly-created document object,
either using the ACL from folderld if specified, or being applied if no folderld is specified.

» <Array> ACE removeACEs: A listof ACEs that MUST be removed from the newly-created document
object, either using the ACL from folderld if specified, or being ignored if no folderld is specified.

2.2.4.1.2 Outputs

* Id objectid: The id of the newly-created document.

2.2.41.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

* constraint If the cmis:objectTypeld property value is not an object-type whose base type is
cmis:document.

* constraint If the cmis:objectTypeld property value is NOT in the list of A11lowedChildOb-
jectTypeIds of the parent-folder specified by folderld.

* constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 155 of 334

* constraint If the contentStreamaAllowed attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to "required" and no contentStream input parameter is
provided.

* constraint If the versionable attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to FALSE and the value for the versioningState input
parameter is provided that is something other than none or "not set".

* constraintlf the versionable attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to TRUE and the value for the versioningState input pa-
rameter provided is none.

* constraint If the controllablePolicy attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to FALSE and at least one policy is provided.

* constraint If the controllableACL attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to FALSE and at least one ACE is provided.

» constraint If any permission referenced in a provided ACE is not supported by the repository. (see
also applyACL).

* nameConstraintViolation Ifthe repository detects a violation with the given cmi s : name property
value, the repository MAY throw this exception or chose a name which does not conflict.

* storage See section 2.2.1.4.2 Specific Exceptions.

* streamNotSupported See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 156 of 334

2.2.4.2 createDocumentFromSource

Description: Creates a document object as a copy of the given source document in the (optionally) specified
location.

2.2.4.21 Inputs

Required:

* Id repositoryId: The identifier for the repository.

* Id source1d: The identifier for the source document.
Optional:

» <Array> Property properties: The property values that MUST be applied to the object. This list
of properties SHOULD only contain properties whose values differ from the source document.

* Id folder1d: If specified, the identifier for the folder that MUST be the parent folder for the newly-
created document object. This parameter MUST be specified if the repository does NOT support the
optional "unfiling" capability.

* Enum versioningState: An enumeration specifying what the versioning state of the newly-
created object MUST be. Valid values are:

none (default, if the object-type is not versionable) The document MUST be created as a non-versionable
document.

checkedout The document MUST be created in the checked-out state. The checked-out document
MAY be visible to other users.

major (default, if the object-type is versionable) The document MUST be created as a major version.
minor The document MUST be created as a minor version.

» <Array> Id policies: A list of policy ids that MUST be applied to the newly-created document
object.

» <Array> ACE addacCEs: A list of ACEs that MUST be added to the newly-created document object,
either using the ACL from folderld if specified, or being applied if no folderld is specified.

» <Array> ACE removeACEs: A listof ACEs that MUST be removed from the newly-created document
object, either using the ACL from folderld if specified, or being ignored if no folderld is specified.

2.2.4.2.2 Outputs

* Id objectId: The id of the newly-created document.

2.2.4.2.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.
* constraint If the sourceld is not an object whose baseType is cmis:document.

* constraint If the cmis:objectTypeId property value is NOT in the list of A11owedChi1dOb-
jectTypeIds of the parent-folder specified by folderld.

» constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 157 of 334

* constraint If the versionable attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to FALSE and the value for the versioningState input
parameter is provided that is something other than none or "not set".

* constraintlf the versionable attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to TRUE and the value for the versioningState input pa-
rameter provided is none.

* constraint If the controllablePolicy attribute of the object-type definition specified by the
cmis:objectTypelId property value is set to FALSE and at least one policy is provided.

* constraint If the controllableACL attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to FALSE and at least one ACE is provided.

* constraint If any permission referenced in a provided ACE is not supported by the repository. (see
also applyACL).

* nameConstraintViolation Ifthe repository detects a violation with the given cmi s : name property
value, the repository MAY throw this exception or chose a name which does not conflict.

* storage See section 2.2.1.4.2 Specific Exceptions.

* streamNotSupported See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 158 of 334

2.2.4.3 createFolder

Description: Creates a folder object of the specified type in the specified location.

2.2.4.31 Inputs

Required:
* Id repositoryId: The identifier for the repository.

» <Array> Property properties: The property values that MUST be applied to the newly-created
folder object.

* Id folderid: The identifier for the folder that MUST be the parent folder for the newly-created folder
object.

Optional:
» <Array> Ild policies: A list of policy ids that MUST be applied to the newly-created folder object.

» <Array> ACE addACEs: A list of ACEs that MUST be added to the newly-created folder object, either
using the ACL from folderld if specified, or being applied if no folderld is specified.

» <Array> ACE removeACEs: A list of ACEs that MUST be removed from the newly-created folder
object, either using the ACL from folderld if specified, or being ignored if no folderld is specified.

2.2.4.3.2 Outputs

* Id objectid: The id of the newly-created folder.

2.2.4.3.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

* constraint If the cmis:objectTypelId property value is not an object-type whose base type is
cmis:folder.

* constraint If the cmis:objectTypeld property value is NOT in the list of A11lowedChildOb-
jectTypeIds of the parent-folder specified by folderld.

* constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

» constraint If the controllablePolicy attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to FALSE and at least one policy is provided.

* constraint If the controllableACL attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to FALSE and at least one ACE is provided.

* constraint If at least one of the specified values for permission in ANY of the ACEs does not match
ANY of the permission names returned by the ACL Capabilities in the Repository Info (see section
2.1.12.3.1 Supported Permissions) and is not a CMIS basic permission.

* nameConstraintViolation If the repository detects a violation with the given cmis : name property
value, the repository MAY throw this exception or chose a name which does not conflict.

* storage See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 159 of 334

2.2.4.4 createRelationship

Description: Creates a relationship object of the specified type.

2.2.4.41 Inputs

Required:
* Id repositoryId: The identifier for the repository.

» <Array> Property properties: The property values that MUST be applied to the newly-created
relationship object.

Optional:

» <Array> Id policies: A list of policy ids that MUST be applied to the newly-created relationship
object.

» <Array> ACE addacCEs: A list of ACEs that MUST be added to the newly-created relationship object,
either using the ACL from folderld if specified, or being applied if no folderld is specified.

* <Array> ACE removeACEs: A list of ACEs that MUST be removed from the newly-created relation-
ship object, either using the ACL from folderld if specified, or being ignored if no folderld is specified.

2.2.4.4.2 Outputs

* Id objectId: The id of the newly-created relationship.

2.2.4.4.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

* constraint If the cmis:objectTypeld property value is not an object-type whose base type is
cmis:relationship.

» constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

* constraint If the source object's object-type is not in the list of "allowedSourceTypes" specified by
the object-type definition specified by cmis:objectTypeId property value.

* constraint If the target object's object-type is not in the list of "allowedTargetTypes" specified by
the object-type definition specified by cmis:objectTypeId property value.

» constraint If the controllablePolicy attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to FALSE and at least one policy is provided.

* constraint If the controllableACL attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to FALSE and at least one ACE is provided.

* constraint If at least one of the specified values for permission in ANY of the ACEs does not match
ANY of the permission names returned by the ACL Capabilities in the Repository Info (see section
2.1.12.3.1 Supported Permissions) and is not a CMIS basic permission.

* nameConstraintViolation Ifthe repository detects a violation with the given cmi s : name property
value, the repository MAY throw this exception or chose a name which does not conflict.

* storage See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 160 of 334

2.2.4.5 createPolicy

Description: Creates a policy object of the specified type.

2.2.4.51 Inputs

Required:
* Id repositoryId: The identifier for the repository.

» <Array> Property properties: The property values that MUST be applied to the newly-created
policy object.

Optional:

* Id folderId: If specified, the identifier for the folder that MUST be the parent folder for the newly-
created policy object. This parameter MUST be specified if the repository does NOT support the
optional "unfiling" capability.

» <Array> Id policies: A list of policy ids that MUST be applied to the newly-created policy object.

» <Array> ACE addACEs: Alist of ACEs that MUST be added to the newly-created policy object, either
using the ACL from folderld if specified, or being applied if no folderld is specified.

» <Array> ACE removeACEs: A list of ACEs that MUST be removed from the newly-created policy
object, either using the ACL from folderld if specified, or being ignored if no folderld is specified.

2.2.4.5.2 Outputs

* Id objectid: The id of the newly-created policy.

2.2.45.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

* constraint If the cmis:objectTypeld property value is not an object-type whose base type is
cmis:policy.

» constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

* constraint If the cmis:objectTypeld property value is NOT in the list of AllowedChildOb-
jectTypelIds of the parent-folder specified by folderld.

» constraint If the controllablePolicy attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to FALSE and at least one policy is provided.

* constraint If the controllableACL attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to FALSE and at least one ACE is provided.

* constraint If at least one of the specified values for permission in ANY of the ACEs does not match
ANY of the permission names returned by the ACL Capabilities in the Repository Info (see section
2.1.12.3.1 Supported Permissions) and is not a CMIS basic permission.

* nameConstraintViolation Ifthe repository detects a violation with the given cmi s : name property
value, the repository MAY throw this exception or chose a name which does not conflict.

* storage See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 161 of 334

2.2.4.6 createltem

Description: Creates an item object of the specified type.

2.2.4.6.1 Inputs

Required:
* Id repositoryId: The identifier for the repository.

» <Array> Property properties: The property values that MUST be applied to the newly-created
item object.

Optional:

* Id folderId: If specified, the identifier for the folder that MUST be the parent folder for the newly-
created item object. This parameter MUST be specified if the repository does NOT support the optional
"unfiling" capability.

» <Array> Ild policies: A list of policy ids that MUST be applied to the newly-created item object.

» <Array> ACE addACEs: A list of ACEs that MUST be added to the newly-created item object, either
using the ACL from folderld if specified, or being applied if no folderld is specified.

» <Array> ACE removeACEs: A list of ACEs that MUST be removed from the newly-created item
object, either using the ACL from folderld if specified, or being ignored if no folderld is specified.

2.2.4.6.2 Outputs

* Id objectid: The id of the newly-created item.

2.2.4.6.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

* constraint If the cmis:objectTypeld property value is not an object-type whose base type is
cmis:item.

» constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

* constraint If the cmis:objectTypeld property value is NOT in the list of AllowedChildOb-
jectTypelIds of the parent-folder specified by folderld.

» constraint If the controllablePolicy attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to FALSE and at least one policy is provided.

* constraint If the controllableACL attribute of the object-type definition specified by the
cmis:objectTypeld property value is set to FALSE and at least one ACE is provided.

* constraint If at least one of the specified values for permission in ANY of the ACEs does not match
ANY of the permission names returned by the ACL Capabilities in the Repository Info (see section
2.1.12.3.1 Supported Permissions) and is not a CMIS basic permission.

* nameConstraintViolation Ifthe repository detects a violation with the given cmi s : name property
value, the repository MAY throw this exception or chose a name which does not conflict.

* storage See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 162 of 334

2.24.7 getAllowableActions

Description: Gets the list of allowable actions for an object (see section 2.2.1.2.6 Allowable Actions).

2.2.4.71 Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Id object1d: The identifier for the object.

2.2.4.7.2 Outputs

» <Array> AllowableActions AllowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.4.7.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 163 of 334

2.2.4.8 getObject

Description: Gets the specified information for the object.

2.2.4.81 Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Id object1d: The identifier for the object.
Optional:
» String filter: See section 2.2.1.2.1 Properties.
* Enum includeRelationships: See section 2.2.1.2.2 Relationships.
* Boolean includePolicyIds: See section 2.2.1.2.3 Policies.
» String renditionFilter: See section 2.2.1.2.4 Renditions.
* Boolean includeACL: See section 2.2.1.2.5 ACLs.

* Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.4.8.2 Outputs

» <Array> Properties properties: See section 2.2.1.2.1 Properties.

» <Array> Relationships relationships: See section 2.2.1.2.2 Relationships.
» <Array> Policyld policies: See section 2.2.1.2.3 Policies.

» <Array> Renditions renditions: See section 2.2.1.2.4 Renditions.

* ACL acl: See section 2.2.1.2.5 ACLs.

» AllowableActions allowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.4.8.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

* filterNotValid If the property or rendition filter input parameter is not valid.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 164 of 334

2.249 getProperties

Description: Gets the list of properties for the object.

2.2.491 Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Id object1d: The identifier for the object.
Optional:
» String filter: See section 2.2.1.2.1 Properties.

2.2.4.9.2 Outputs

» <Array> Properties properties: See section 2.2.1.2.1 Properties.

2.2.49.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

» filterNotValid If the property filter input parameter is not valid.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 165 of 334

2.2.410 getObjectByPath

Description: Gets the specified information for the object.

2.2.410.1 Inputs

Required:

* Id repositoryId: The identifier for the repository.

» String path: The path to the object. See section 2.1.5.3 Paths.
Optional:

» String filter: See section 2.2.1.2.1 Properties.

* Enum includeRelationships: See section 2.2.1.2.2 Relationships.

* Boolean includePolicyIds: See section 2.2.1.2.3 Policies.

» String renditionFilter: See section 2.2.1.2.4 Renditions.

* Boolean includeACL: See section 2.2.1.2.5 ACLs.

* Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.4.10.2 Outputs

» <Array> Properties properties: See section 2.2.1.2.1 Properties.

» <Array> Relationships relationships: See section 2.2.1.2.2 Relationships.
» <Array> Policyld policies: See section 2.2.1.2.3 Policies.

» <Array> Renditions renditions: See section 2.2.1.2.4 Renditions.

* ACL acl: See section 2.2.1.2.5 ACLs.

» AllowableActions allowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.410.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

* filterNotValid If the property or rendition filter input parameter is not valid.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 166 of 334

2.2.411 getContentStream

Description: Gets the content stream for the specified document object, or gets a rendition stream for a
specified rendition of a document or folder object.

Notes: Each CMIS protocol binding MAY provide a way for fetching a sub-range within a content stream,
in a manner appropriate to that protocol.

2.2.411.1 |Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Id objectId: The identifier for the object.
Optional:

* Id streamId: The identifier for the rendition stream, when used to get a rendition stream. For
documents, if not provided then this method returns the content stream. For folders, it MUST be
provided.

2.2.411.2 Outputs

» <Stream> ContentStream contentStream: The specified content stream or rendition stream for
the object.

2.2.411.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

* constraint If the object specified by objectld does NOT have a content stream or rendition stream.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 167 of 334

2.2412 getRenditions

Description: Gets the list of associated renditions for the specified object. Only rendition attributes are

returned, not rendition stream.

2.2.412.1 |Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Id object1d: The identifier for the object.
Optional:
» String renditionFilter: See section 2.2.1.2.4 Renditions.
* Integer maxItems: See section 2.2.1.1 Paging.

* Integer skipCount: See section 2.2.1.1 Paging.

2.2.412.2 Outputs

» <Array> Renditions rendition: The set of renditions available on this object.

2.2.412.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-errata01-os-complete
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

19 September 2015
Page 168 of 334

2.2.413 updateProperties

Description: Updates properties and secondary types of the specified object.

Notes:

* A repository MAY automatically create new document versions as part of an update properties oper-
ation. Therefore, the objectld output NEED NOT be identical to the objectld input.

» Only properties whose values are different than the original value of the object SHOULD be provided.

2.2.413.1 Inputs

Required:

* Id repositoryId: The identifier for the repository.

* Id object1d: The identifier for the object.

» <Array> Properties properties: The updated property values that MUST be applied to the object.
Optional:

» String changeToken: See section 2.2.1.3 Change Tokens.

2.2.4.13.2 Outputs

* Id object1d: The identifier for the object.
» String changeToken: See section 2.2.1.3 Change Tokens.

2.2.413.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

* constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

* nameConstraintViolation Ifthe repository detects a violation with the given cmi s : name property
value, the repository MAY throw this exception or chose a name which does not conflict.

* storage See section 2.2.1.4.2 Specific Exceptions.
* updateConflict See section 2.2.1.4.2 Specific Exceptions.

» versioning If the object is not checked out and ANY of the properties being updated are defined in
their object-type definition to have an attribute value of Updatability whencheckedout.

* versioning The repository MAY throw this exception if the object is a non-current document version.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 169 of 334

2.2.4.14 bulkUpdateProperties

Description: Updates properties and secondary types of one or more objects.

Notes:

* A repository MAY automatically create new document versions as part of an update properties oper-
ation. Therefore, the objectld output NEED NOT be identical to the objectld input.

» Only properties whose values are different than the original value of the object SHOULD be provided.

 This service is not atomic. If the update fails, some objects might have been updated and others might
not have been updated.

» This service MUST NOT throw an exception if the update of an object fails. If an update fails, the
object id of this particular object MUST be omitted from the resuilt.

2.2.4141 Inputs

Required:
* Id repositoryId: The identifier for the repository.

» <Array> <ld, String> objectIdAndChangeToken: The identifiers of the objects to be updated and
their change tokens. Invalid object ids, for example ids of objects that don't exist, MUST be ignored.

Change tokens are optional. See section 2.2.1.3 Change Tokens.
Optional:

» <Array> Properties properties: The updated property values that MUST be applied to the ob-
jects.

» <Array> Id addSecondaryTypelds: A list of secondary type ids that SHOULD be added to the
objects.

» <Array> Ild removeSecondaryTypeIds: A listofsecondary type idsthat SHOULD be removed from
the objects. Secondary type ids in this list that are not attached to an object SHOULD be ignored.

2.2.4.14.2 Outputs

» <Array> <lId, Id, String> objectIdAndChangeToken: A triple for each updated object composed
of:

1. The original object id. MUST always be set.

2. The new object id if the update triggered a new version. MUST NOT be set if no new version has
been created.

3. The new change token of the object. MUST be set if the repository supports change tokens.

Objects that have not been updated MUST NOT be returned. This service does not disclose why
updates failed. Clients may call updateProperties for each failed object to retrieve individual ex-
ceptions.

2.2.414.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.
* invalidArgument If the input list of object ids is empty.
* invalidArgument If secondary type ids are provided that don't exist in the repository.

» constraint If the number of objects is too high for the repository.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 170 of 334

2.2.415 moveObject

Description: Moves the specified file-able object from one folder to another.

2.2.4151 Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Id object1d: The identifier for the object.
* Id targetFolderId: The folder into which the object is to be moved.

* Id sourceFolderId: The folder from which the object is to be moved.

2.2.4.15.2 Outputs

* Id objectId: The identifier for the object. The identifier SHOULD NOT change. If the repository
has to change the id, this is the new identifier for the object.

2.2.415.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.

* invalidArgument If the service is invoked with a missing sourceFolderld or the sourceFolderld
doesn't match the specified object's parent folder (or one of the parent folders if the repository supports
multifiling.).

* constraint If the cmis:objectTypeld property value of the given object is NOT in the list of
AllowedChildObjectTypelds of the parent-folder specified by targetFolderld.

* nameConstraintViolation If the repository detects a violation with the cmis:name property
value, the repository MAY throw this exception or chose a name which does not conflict.

* storage See section 2.2.1.4.2 Specific Exceptions.

* updateConflict See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 171 of 334

2.2.4.16 deleteObject

Description: Deletes the specified object.

Notes: If the object is a PWC the checkout is discarded. See section 2.1.13.5.3 Discarding Check out.

2.2.416.1 Inputs

Required:
* Id repositoryId: The identifier for the repository.
* Id object1d: The identifier for the object.
Optional:

* Boolean allversions: If TRUE (default), then delete all versions of the document. If FALSE,
delete only the document object specified. The repository MUST ignore the value of this parameter
when this service is invoke on a non-document object or non-versionable document object.

2.2.4.16.2 Outputs

* None.

2.2.416.3 Exceptions Thrown & Conditions

» See section 2.2.1.4.1 General Exceptions.
* constraint If the method is invoked on a folder object that contains one or more objects.

* updateConflict See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-errata01-os-complete 19 September 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 172 of 334

2.2.4.17 deleteTree

Description: Deletes the specified folder object and all of its child- and descendant-objects.

Notes:
» A repository MAY attempt to delete child- and descendant-objects of the specified folder in any order.

» Any child- or descendant-object that the repository cannot delete MUST persist in a valid state in the
CMIS domain model.

* This service is not atomic.

* However, if deletesinglefiled is chosen and some objects fail to delete, then single-filed objects
are either deleted or kept, never just unfiled. This is so that a user can call this command again to
recover from the error by using the same tree.

2.2.4171 Inputs

Required:

* Id repositoryId: The identifier for the repository.

* Id folderId: The identifier of the folder to be deleted.
Optional:

* Boolean allversions: If TRUE (default), then delete all versions of all documents. If FALSE,
delete only the document versions referenced in the tree. The repository MUST ignore the value of this
parameter when this service is invoked on