
Content Management
Interoperability Services (CMIS)
Version 1.1
Committee Specification 01

12 November 2012
Specification URIs

This version:
http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/CMIS-v1.1-cs01.pdf (Authoritative)
http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/CMIS-v1.1-cs01.html

Previous version:
http://docs.oasis-open.org/cmis/CMIS/v1.1/csprd01/CMIS-v1.1-csprd01.pdf (Authoritative)
http://docs.oasis-open.org/cmis/CMIS/v1.1/csprd01/CMIS-v1.1-csprd01.html

Latest version:
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.pdf (Authoritative)
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.html

Technical Committee:
OASIS Content Management Interoperability Services (CMIS) TC

Chair:
David Choy (david.choy500@gmail.com), Individual

Editors:
Florian Müller (florian.mueller02@sap.com), SAP
Ryan McVeigh (rmcveigh@ziaconsulting.com), Zia Consulting
Jens Hübel (j.huebel@sap.com), SAP

Additional artifacts:
This prose specification is one component of a Work Product which also includes:

• XML schemas, WSDL and Orderly schema:
http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/schema/

• XML and JSON examples:
http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/examples/

• TeX source files for this prose document:
http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/tex/

Related work:
This specification supersedes:

• Content Management Interoperability Services (CMIS) Version 1.0. OASIS Standard:
http://docs.oasis-open.org/cmis/CMIS/v1.0/cmis-spec-v1.0.html

• Content Management Interoperability Services (CMIS) Version 1.0 Errata 01:
http://docs.oasis-open.org/cmis/CMIS/v1.0/errata-01/cmis-spec-v1.0-errata-01.html

Declared XML namespaces:
• http://docs.oasis-open.org/ns/cmis/core/200908/
• http://docs.oasis-open.org/ns/cmis/restatom/200908/
• http://docs.oasis-open.org/ns/cmis/messaging/200908/
• http://docs.oasis-open.org/ns/cmis/ws/200908/
• http://docs.oasis-open.org/ns/cmis/link/200908/

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 1 of 331

http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/CMIS-v1.1-cs01.pdf
http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/CMIS-v1.1-cs01.html
http://docs.oasis-open.org/cmis/CMIS/v1.1/csprd01/CMIS-v1.1-csprd01.pdf
http://docs.oasis-open.org/cmis/CMIS/v1.1/csprd01/CMIS-v1.1-csprd01.html
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.pdf
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.html
http://www.oasis-open.org/committees/cmis/
mailto:david.choy500@gmail.com
mailto:florian.mueller02@sap.com
http://www.sap.com/
mailto:rmcveigh@ziaconsulting.com
http://www.ziaconsulting.com/
mailto:j.huebel@sap.com
http://www.sap.com/
http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/schema/
http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/examples/
http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/tex/
http://docs.oasis-open.org/cmis/CMIS/v1.0/cmis-spec-v1.0.html
http://docs.oasis-open.org/cmis/CMIS/v1.0/errata-01/cmis-spec-v1.0-errata-01.html
http://docs.oasis-open.org/ns/cmis/core/200908/
http://docs.oasis-open.org/ns/cmis/restatom/200908/
http://docs.oasis-open.org/ns/cmis/messaging/200908/
http://docs.oasis-open.org/ns/cmis/ws/200908/
http://docs.oasis-open.org/ns/cmis/link/200908/

Abstract:
The Content Management Interoperability Services (CMIS) standard defines a domain model
and Web Services, Restful AtomPub and browser (JSON) bindings that can be used by applica-
tions to work with one or more Content Management repositories/systems.
The CMIS interface is designed to be layered on top of existing Content Management systems
and their existing programmatic interfaces. It is not intended to prescribe how specific features
should be implemented within those CM systems, nor to exhaustively expose all of the CM
system's capabilities through the CMIS interfaces. Rather, it is intended to define a generic/uni-
versal set of capabilities provided by a CM system and a set of services for working with those
capabilities.

Status:
This document was last revised or approved by the OASIS Content Management Interoperability
Services (CMIS) TC on the above date. The level of approval is also listed above. Check the
"Latest version" location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
"Send A Comment" button on the Technical Committee’s web page at http://www.oasis-open.
org/committees/cmis/.
For information on whether any patents have been disclosed that may be essential to imple-
menting this specification, and any offers of patent licensing terms, please refer to the Intellec-
tual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/
committees/cmis/ipr.php).

Citation format:
When referencing this specification the following citation format should be used:

[CMIS-v1.1]
Content Management Interoperability Services (CMIS) Version 1.1. 12 November 2012. OASIS
Committee Specification 01. http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/CMIS-v1.1-cs01.
html.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 2 of 331

http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=cmis
http://www.oasis-open.org/committees/cmis/
http://www.oasis-open.org/committees/cmis/
http://www.oasis-open.org/committees/cmis/ipr.php
http://www.oasis-open.org/committees/cmis/ipr.php
http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/CMIS-v1.1-cs01.html
http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/CMIS-v1.1-cs01.html

Notices
Copyright © OASIS Open 2012. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that com-
ment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to OASIS, except as needed
for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in
which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or
assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS
ALLWARRANTIES, EXPRESSOR IMPLIED, INCLUDING BUT NOT LIMITED TO ANYWARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to
notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such
patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced
this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any
patent claims that would necessarily be infringed by implementations of this specification by a patent holder
that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of
the OASIS Technical Committee that produced this specification. OASIS may include such claims on its
website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might
be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights
in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS
website. Copies of claims of rights made available for publication and any assurances of licenses to be
made available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard,
can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information
or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact,
Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and imple-
mentation and use of, specifications, while reserving the right to enforce its marks against misleading uses.
Please see http://www.oasis-open.org/policies-guidelines/trademark for above guidance.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 3 of 331

http://www.oasis-open.org/policies-guidelines/ipr
http://www.oasis-open.org/
http://www.oasis-open.org/policies-guidelines/trademark

Table of Contents

1 Introduction 12
1.1 Terminology . 12
1.2 Normative References . 12
1.3 Non-Normative References . 13
1.4 Examples . 13
1.5 Changes for the CMIS 1.1 specification . 14

1.5.1 Type Mutability . 14
1.5.2 Repository Features . 14
1.5.3 Secondary object types . 14
1.5.4 Retention and Hold Support . 14
1.5.5 Browser Binding . 14
1.5.6 New cmis:item Object Type . 14
1.5.7 Service bulkUpdateProperties . 15
1.5.8 Append to a content stream . 15

2 Domain Model 16
2.1 Data Model . 16

2.1.1 Repository . 16
2.1.1.1 Optional Capabilities . 16
2.1.1.2 Implementation Information . 19
2.1.1.3 Repository Features . 19

2.1.2 Object . 20
2.1.2.1 Property . 21

2.1.3 Object-Type . 23
2.1.3.1 Object-Type Hierarchy and Inheritance . 23
2.1.3.2 Object-Type Attributes . 24
2.1.3.3 Object-Type Property Definitions . 25

2.1.4 Document Object . 31
2.1.4.1 Content Stream . 31
2.1.4.2 Renditions . 31
2.1.4.3 Document Object-Type Definition . 33

2.1.5 Folder Object . 47
2.1.5.1 File-able Objects . 47
2.1.5.2 Folder Hierarchy . 48
2.1.5.3 Paths . 49
2.1.5.4 Folder Object-Type Definition . 50

2.1.6 Relationship Object . 57
2.1.6.1 Relationship Object-Type Definition . 57

2.1.7 Policy Object . 65
2.1.7.1 Policy Object-Type Definition . 65

2.1.8 Item Object . 72
2.1.8.1 Item Object-Type Definition . 72

2.1.9 Secondary Object-Types . 78
2.1.9.1 Secondary Type Application . 78
2.1.9.2 Secondary Object-Type Definition . 78

2.1.10 Object-Type Creation, Modification and Deletion . 81
2.1.10.1 General Constraints on Metadata Changes 81

2.1.11 Object-Type Summary . 82

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 4 of 331

2.1.12 Access Control . 85
2.1.12.1 ACL, ACE, Principal, and Permission . 85
2.1.12.2 CMIS Permissions . 85
2.1.12.3 ACL Capabilities . 85

2.1.13 Versioning . 95
2.1.13.1 Version Series . 95
2.1.13.2 Latest Version . 95
2.1.13.3 Behavioral constraints on non-Latest Versions 95
2.1.13.4 Major Versions . 95
2.1.13.5 Services that modify Version Series . 96
2.1.13.6 Versioning Properties on Document Objects 97
2.1.13.7 Document Creation and Initial Versioning State 98
2.1.13.8 Version Specific/Independent membership in Folders 99
2.1.13.9 Version Specific/Independent membership in Relationships 99
2.1.13.10Versioning visibility in Query Services . 99

2.1.14 Query . 101
2.1.14.1 Relational View Projection of the CMIS Data Model 101
2.1.14.2 Query Language Definition . 103
2.1.14.3 Escaping . 112

2.1.15 Change Log . 113
2.1.15.1 Completeness of the Change Log . 113
2.1.15.2 Change Log Token . 113
2.1.15.3 "Latest Change Token" repository information 113
2.1.15.4 Change Event . 113

2.1.16 Retentions and Holds . 115
2.1.16.1 Repository Managed Retentions . 115
2.1.16.2 Client Managed Retentions . 118
2.1.16.3 Holds . 123

2.2 Services . 126
2.2.1 Common Service Elements . 126

2.2.1.1 Paging . 126
2.2.1.2 Retrieving additional information on objects in CMIS service calls 126
2.2.1.3 Change Tokens . 131
2.2.1.4 Exceptions . 132
2.2.1.5 ACLs . 133

2.2.2 Repository Services . 134
2.2.2.1 getRepositories . 135
2.2.2.2 getRepositoryInfo . 136
2.2.2.3 getTypeChildren . 138
2.2.2.4 getTypeDescendants . 139
2.2.2.5 getTypeDefinition . 140
2.2.2.6 createType . 141
2.2.2.7 updateType . 142
2.2.2.8 deleteType . 143

2.2.3 Navigation Services . 144
2.2.3.1 getChildren . 145
2.2.3.2 getDescendants . 146
2.2.3.3 getFolderTree . 148
2.2.3.4 getFolderParent . 150
2.2.3.5 getObjectParents . 151
2.2.3.6 getCheckedOutDocs . 152

2.2.4 Object Services . 153
2.2.4.1 createDocument . 154
2.2.4.2 createDocumentFromSource . 156
2.2.4.3 createFolder . 158
2.2.4.4 createRelationship . 159
2.2.4.5 createPolicy . 160

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 5 of 331

2.2.4.6 createItem . 161
2.2.4.7 getAllowableActions . 162
2.2.4.8 getObject . 163
2.2.4.9 getProperties . 164
2.2.4.10 getObjectByPath . 165
2.2.4.11 getContentStream . 166
2.2.4.12 getRenditions . 167
2.2.4.13 updateProperties . 168
2.2.4.14 bulkUpdateProperties . 169
2.2.4.15 moveObject . 170
2.2.4.16 deleteObject . 171
2.2.4.17 deleteTree . 172
2.2.4.18 setContentStream . 173
2.2.4.19 appendContentStream . 174
2.2.4.20 deleteContentStream . 175

2.2.5 Multi-filing Services . 176
2.2.5.1 addObjectToFolder . 177
2.2.5.2 removeObjectFromFolder . 178

2.2.6 Discovery Services . 179
2.2.6.1 query . 180
2.2.6.2 getContentChanges . 182

2.2.7 Versioning Services . 184
2.2.7.1 checkOut . 185
2.2.7.2 cancelCheckOut . 186
2.2.7.3 checkIn . 187
2.2.7.4 getObjectOfLatestVersion . 188
2.2.7.5 getPropertiesOfLatestVersion . 189
2.2.7.6 getAllVersions . 190

2.2.8 Relationship Services . 191
2.2.8.1 getObjectRelationships . 192

2.2.9 Policy Services . 194
2.2.9.1 applyPolicy . 195
2.2.9.2 removePolicy . 196
2.2.9.3 getAppliedPolicies . 197

2.2.10 ACL Services . 198
2.2.10.1 applyACL . 199
2.2.10.2 getACL . 200

3 AtomPub Binding 201
3.1 Overview . 201

3.1.1 Namespaces . 201
3.1.2 Authentication . 201
3.1.3 Response Formats . 201
3.1.4 Optional Arguments . 202
3.1.5 Errors and Exceptions . 202
3.1.6 Renditions . 202
3.1.7 Content Streams . 202
3.1.8 Paging of Feeds . 202
3.1.9 Services not Exposed . 203

3.1.9.1 removePolicy . 203
3.2 HTTP . 203

3.2.1 HTTP Range . 203
3.2.2 HTTP OPTIONS Method . 203
3.2.3 HTTP Status Codes . 204

3.2.3.1 General CMIS Exceptions . 204
3.2.3.2 Notable HTTP Status Codes . 204

3.3 Media Types . 204

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 6 of 331

3.3.1 CMIS Atom . 205
3.3.2 CMIS Query . 205
3.3.3 CMIS Allowable Actions . 205
3.3.4 CMIS Tree . 206
3.3.5 CMIS ACL . 206

3.4 Atom Extensions for CMIS . 206
3.4.1 Atom Element Extensions . 206

3.4.1.1 AtomPub Workspace . 206
3.4.1.2 Atom Feed . 207
3.4.1.3 Atom Entry . 207

3.4.2 Attributes . 208
3.4.2.1 cmisra:id . 208
3.4.2.2 cmisra:renditionKind . 208

3.4.3 CMIS Link Relations . 209
3.4.3.1 Existing Link Relations . 209
3.4.3.2 Hierarchy Navigation Internet Draft Link Relations 211
3.4.3.3 Versioning Internet Draft Link Relations . 211
3.4.3.4 CMIS Specific Link Relations . 211

3.5 Atom Resources . 213
3.5.1 Feeds . 213
3.5.2 Entries . 214

3.5.2.1 Hierarchical Atom Entries . 215
3.6 Resources Overview . 216
3.7 AtomPub Service Document . 218

3.7.1 HTTP GET . 218
3.7.1.1 URI Templates . 219

3.8 Service Collections . 223
3.8.1 Root Folder Collection . 223
3.8.2 Query Collection . 223

3.8.2.1 HTTP POST . 223
3.8.3 Checked Out Collection . 224

3.8.3.1 HTTP GET . 224
3.8.3.2 HTTP POST . 225

3.8.4 Unfiled Collection . 225
3.8.4.1 HTTP POST . 225

3.8.5 Type Children Collection . 226
3.8.5.1 HTTP GET . 226
3.8.5.2 HTTP POST . 227

3.8.6 Bulk Update Collection . 228
3.8.6.1 HTTP POST . 228

3.9 Collections . 229
3.9.1 Relationships Collection . 229

3.9.1.1 HTTP GET . 229
3.9.1.2 HTTP POST . 230

3.9.2 Folder Children Collection . 230
3.9.2.1 HTTP GET . 230
3.9.2.2 HTTP POST . 231
3.9.2.3 HTTP DELETE . 233

3.9.3 Policies Collection . 233
3.9.3.1 HTTP GET . 233
3.9.3.2 HTTP POST . 234
3.9.3.3 HTTP DELETE . 234

3.10 Feeds . 234
3.10.1 Object Parents Feed . 234

3.10.1.1 HTTP GET . 235
3.10.2 Changes Feed . 235

3.10.2.1 HTTP GET . 235

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 7 of 331

3.10.3 Folder Descendants Feed . 236
3.10.3.1 HTTP GET . 236
3.10.3.2 HTTP DELETE . 237

3.10.4 Folder Tree Feed . 238
3.10.4.1 HTTP GET . 238
3.10.4.2 HTTP DELETE . 239

3.10.5 All Versions Feed . 239
3.10.5.1 HTTP GET . 239

3.10.6 Type Descendants Feed . 240
3.10.6.1 HTTP GET . 240

3.11 Resources . 241
3.11.1 Type Entry . 241

3.11.1.1 HTTP GET . 241
3.11.1.2 HTTP PUT . 242
3.11.1.3 HTTP DELETE . 242

3.11.2 Document Entry . 242
3.11.2.1 HTTP GET . 242
3.11.2.2 HTTP PUT . 244
3.11.2.3 HTTP DELETE . 244

3.11.3 PWC Entry . 244
3.11.3.1 HTTP GET . 244
3.11.3.2 HTTP PUT . 245
3.11.3.3 HTTP DELETE . 246

3.11.4 Folder Entry . 246
3.11.4.1 HTTP GET . 246
3.11.4.2 HTTP PUT . 247
3.11.4.3 HTTP DELETE . 248

3.11.5 Relationship Entry . 248
3.11.5.1 HTTP GET . 248
3.11.5.2 HTTP PUT . 249
3.11.5.3 HTTP DELETE . 249

3.11.6 Policy Entry . 250
3.11.6.1 HTTP GET . 250
3.11.6.2 HTTP PUT . 250
3.11.6.3 HTTP DELETE . 251

3.11.7 Item Entry . 251
3.11.7.1 HTTP GET . 251
3.11.7.2 HTTP PUT . 252
3.11.7.3 HTTP DELETE . 252

3.11.8 Content Stream . 253
3.11.8.1 HTTP GET . 253
3.11.8.2 HTTP PUT . 253
3.11.8.3 HTTP DELETE . 254

3.11.9 AllowableActions Resource . 254
3.11.9.1 HTTP GET . 254

3.11.10ACL Resource . 254
3.11.10.1HTTP GET . 254
3.11.10.2HTTP PUT . 255

4 Web Services Binding 256
4.1 Overview . 256

4.1.1 WS-I . 256
4.1.2 Authentication . 256
4.1.3 Content Transfer . 256
4.1.4 Reporting Errors . 256

4.2 Web Services Binding Mapping . 256
4.3 Additions to the Services section . 257

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 8 of 331

4.3.1 updateProperties and checkIn Semantics . 257
4.3.2 Content Ranges . 257
4.3.3 Extensions . 257
4.3.4 Web Services Specific Structures . 257

4.3.4.1 cmisFaultType and cmisFault . 257
4.3.4.2 cmisRepositoryEntryType . 257
4.3.4.3 cmisTypeContainer . 257
4.3.4.4 cmisTypeDefinitionListType . 257
4.3.4.5 cmisObjectInFolderType, cmisObjectParentsType and cmisObjectInFolder-

ContainerType . 258
4.3.4.6 cmisObjectListType and cmisObjectInFolderListType 258
4.3.4.7 cmisContentStreamType . 258
4.3.4.8 cmisACLType . 259
4.3.4.9 cmisExtensionType . 259

5 Browser Binding 260
5.1 Overview . 260
5.2 Common Service Elements . 260

5.2.1 Protocol . 260
5.2.2 Data Representation . 260
5.2.3 Schema . 260
5.2.4 Mapping Schema Elements to JSON . 260
5.2.5 URL Patterns . 261
5.2.6 Multipart Forms . 261
5.2.7 Properties in a "value not set" state . 261
5.2.8 Callback . 261
5.2.9 Authentication . 262

5.2.9.1 Basic Authentication for Non-Browser Clients 262
5.2.9.2 Authentication with Tokens for Browser Clients 262

5.2.10 Error Handling and Return Codes . 264
5.2.11 Succinct Representation of Properties . 265

5.3 URLs . 265
5.3.1 Service URL . 265
5.3.2 Repository URL . 266
5.3.3 Root Folder URL . 266
5.3.4 Object URLs . 266

5.4 Services . 266
5.4.1 Service URL . 267
5.4.2 Repository URL . 267

5.4.2.1 Selector "repositoryInfo" . 267
5.4.2.2 Selector "typeChildren" . 268
5.4.2.3 Selector "typeDescendants" . 269
5.4.2.4 Selector "typeDefinition" . 269
5.4.2.5 Selector "checkedOut" . 270
5.4.2.6 Action "createDocument" . 271
5.4.2.7 Action "createDocumentFromSource" . 271
5.4.2.8 Action "createRelationship" . 272
5.4.2.9 Action "createPolicy" . 272
5.4.2.10 Action "createItem" . 273
5.4.2.11 Action "bulkUpdate" . 273
5.4.2.12 Selector "query" . 274
5.4.2.13 Action "query" . 274
5.4.2.14 Selector "contentChanges" . 275
5.4.2.15 Action "createType" . 276
5.4.2.16 Action "updateType" . 276
5.4.2.17 Action "deleteType" . 276
5.4.2.18 Selector "lastResult" . 277

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 9 of 331

5.4.3 Object URL . 277
5.4.3.1 Selector "children" . 277
5.4.3.2 Selector "descendants" . 278
5.4.3.3 Selector "folderTree" . 279
5.4.3.4 Selector "parent" . 279
5.4.3.5 Selector "parents" . 280
5.4.3.6 Selector "checkedout" . 281
5.4.3.7 Action "createDocument" . 281
5.4.3.8 Action "createDocumentFromSource" . 282
5.4.3.9 Action "createFolder" . 282
5.4.3.10 Action "createPolicy" . 283
5.4.3.11 Action "createItem" . 283
5.4.3.12 Selector "allowableActions" . 284
5.4.3.13 Selector "object" . 284
5.4.3.14 Selector "properties" . 285
5.4.3.15 Selector "object" . 285
5.4.3.16 Selector "content" . 286
5.4.3.17 Selector "renditions" . 286
5.4.3.18 Action "update" . 287
5.4.3.19 Action "move" . 287
5.4.3.20 Action "delete" . 288
5.4.3.21 Action "deleteTree" . 288
5.4.3.22 Action "setContent" . 289
5.4.3.23 Action "appendContent" . 289
5.4.3.24 Action "deleteContent" . 290
5.4.3.25 Action "addObjectToFolder" . 290
5.4.3.26 Action "removeObjectFromFolder" . 291
5.4.3.27 Action "checkOut" . 291
5.4.3.28 Action "cancelCheckOut" . 292
5.4.3.29 Action "checkIn" . 292
5.4.3.30 Selector "object" . 293
5.4.3.31 Selector "properties" . 294
5.4.3.32 Selector "versions" . 294
5.4.3.33 Selector "relationships" . 295
5.4.3.34 Selector "policies" . 295
5.4.3.35 Action "applyPolicy" . 296
5.4.3.36 Action "removePolicy" . 296
5.4.3.37 Action "applyACL" . 297
5.4.3.38 Selector "acl" . 297

5.4.4 Use of HTML Forms . 297
5.4.4.1 Action . 298
5.4.4.2 Structured and Array Parameters . 298
5.4.4.3 CMIS Controls . 298
5.4.4.4 Access to Form Response Content . 308

6 Conformance 312

A IANA Considerations 314
A.1 Content-Type Registration . 314

A.1.1 CMIS Query . 314
A.1.2 CMIS AllowableActions . 314
A.1.3 CMIS Tree . 315
A.1.4 CMIS Atom . 316
A.1.5 CMIS ACL . 316

B Schema Language (Orderly) 318
B.1 Overview . 318

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 10 of 331

B.2 A subset of JSONSchema . 318
B.3 A Non-Normative Tutorial . 319

B.3.1 Comments and Whitespace . 319
B.3.2 Property Names . 319
B.3.3 Common Properties . 319
B.3.4 String Types . 320
B.3.5 Number and Integer types . 320
B.3.6 Boolean Types . 320
B.3.7 Object Types . 320
B.3.8 Array Types . 321
B.3.9 Additional properties in arrays and objects . 321
B.3.10 Null Types . 321
B.3.11 Any types . 322
B.3.12 Unions . 322
B.3.13 Maps . 322
B.3.14 Extensions or Extra Properties . 322
B.3.15 ID's . 323
B.3.16 References . 323
B.3.17 Bases . 323
B.3.18 More Complex Examples . 323
B.3.19 Cautions . 324

B.4 The Normative Grammar . 325

C Acknowledgements 328

D Change log 330

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 11 of 331

1 Introduction

The Content Management Interoperability Services (CMIS) standard defines a domain model and Web
Services, Restful AtomPub and browser (JSON) bindings that can be used by applications to work with one
or more Content Management repositories/systems.

The CMIS interface is designed to be layered on top of existing Content Management systems and their
existing programmatic interfaces. It is not intended to prescribe how specific features should be implemented
within those CM systems, nor to exhaustively expose all of the CM system's capabilities through the CMIS
interfaces. Rather, it is intended to define a generic/universal set of capabilities provided by a CM system
and a set of services for working with those capabilities.

1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
[RFC2119].

1.2 Normative References

[RFC1867] E. Nebel, L. Masinter, Form-based File Upload in HTML,
http://www.ietf.org/rfc/rfc1867.txt, November 1995

[RFC2045] N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies,
http://www.ietf.org/rfc/rfc2045.txt, November 1996

[RFC2046] N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types,
http://www.ietf.org/rfc/rfc2046.txt, November 1996

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, March 1997

[RFC2388] L. Masinter, Returning Values from Forms: multipart/form-data
http://www.ietf.org/rfc/rfc2388.txt, August 1998

[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
Hypertext Transfer Protocol -- HTTP/1.1,
http://www.ietf.org/rfc/rfc2616.txt, June 1999

[RFC2617] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, L.
Stewart, HTTP Authentication: Basic and Digest Access Authentication,
http://www.ietf.org/rfc/rfc2617.txt, June 1999

[RFC2818] Rescorla, E., HTTP Over TLS,
http://www.ietf.org/rfc/rfc2818.txt, May 2000

[RFC3023] M. Murata, S. St.Laurent, D. Kohn, XML Media Types,
http://www.ietf.org/rfc/rfc3023.txt, January 2001

[RFC3986] T. Berners-Lee, R. Fielding, L. Masinter, Unified Resource Identifier,
http://www.ietf.org/rfc/rfc3986.txt, January 2005

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 12 of 331

http://www.ietf.org/rfc/rfc1867.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2388.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc3986.txt

[RFC4287] M. Nottingham, R. Sayre, Atom Syndication Format,
http://www.ietf.org/rfc/rfc4287.txt, December 2005

[RFC4288] N. Freed, J. Klensin, Media Type Specifications and Registration Procedures,
http://www.ietf.org/rfc/rfc4288.txt, December 2005

[RFC4627] D. Crockford, The application/json Media Type for JavaScript Object Notation
(JSON),
http://www.ietf.org/rfc/rfc4627.txt, July 2006

[RFC4918] L. Dusseault, HTTP Extensions for Web Distributed Authoring and Versioning
(WebDAV),
http://www.ietf.org/rfc/rfc4918.txt, June 2007

[RFC5023] J. Gregorio, B. de hOra, Atom Publishing Protocol,
http://www.ietf.org/rfc/rfc5023.txt, October 2007

[RFC6234] D. Eastlake 3rd, T. Hansen, US Secure Hash Algorithms (SHA and SHA-based
HMAC and HKDF),
http://www.ietf.org/rfc/rfc6234.txt, May 2011

[RFC6266] J. Reschke, Use of the Content-Disposition Header Field in the Hypertext Transfer
Protocol (HTTP),
http://www.ietf.org/rfc/rfc6266.txt, June 2011

[XMLSchema] W3C, XML Schema Part 2: Datatypes Second Edition,
http://www.w3.org/TR/xmlschema-2/, 28 October 2004

[SameOriginPolicy] W3C, Same Origin Policy,
http://www.w3.org/Security/wiki/Same_Origin_Policy, January 2010

[ID-Brown] J. Reschke Editor, A. Brown, G. Clemm, Link Relation Types for Simple Version
Navigation between Web Resources,
http://tools.ietf.org/id/draft-brown-versioning-link-relations-07.txt, 2010

[ID-WebLinking] M. Nottingham, Web Linking,
http://tools.ietf.org/id/draft-nottingham-http-link-header-07.txt, 2010

1.3 Non-Normative References

1.4 Examples

A set of request and response examples is attached to this specification document. These examples are
non-normative and their sole purpose is to illustrate the data structures and bindings that are defined in this
specification.

Boxes like the following point to appropriate example files throughout this document. There is usually a
request file describing the request sent from a CMIS client to a CMIS repository and a matching response
file that contains the content returned from the CMIS repository.

Example:
Request: atompub/getChildren-request.log
Response: atompub/getChildren-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 13 of 331

http://www.ietf.org/rfc/rfc4287.txt
http://www.ietf.org/rfc/rfc4288.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4918.txt
http://www.ietf.org/rfc/rfc5023.txt
http://www.ietf.org/rfc/rfc6234.txt
http://www.ietf.org/rfc/rfc6266.txt
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://tools.ietf.org/id/draft-brown-versioning-link-relations-07.txt
http://tools.ietf.org/id/draft-nottingham-http-link-header-07.txt

1.5 Changes for the CMIS 1.1 specification

This section provides a very brief description of each major new CMIS 1.1 feature along with links to the
sections of this document for complete descriptions.

1.5.1 Type Mutability

Defines the services and protocol binding extensions that allow CMIS clients to create, modify and delete
Type Definitions and Property Definitions for a given repository.

Please see section 2.1.10 Object-Type Creation, Modification and Deletion for a detailed discussion of this
feature.

1.5.2 Repository Features

Defines additional schema for the getRepositoryInfo service that allows CMIS clients to discover any
extensions or additional CMIS based standards supported on each repository.

Please see section 2.1.1.3 Repository Features for a detailed discussion of this feature.

1.5.3 Secondary object types

Defines named sets of properties that can be dynamically added and removed from CMIS objects.

Please see section 2.1.9 Secondary Object-Types for a detailed discussion of this feature.

1.5.4 Retention and Hold Support

Defines secondary types for formally representing Retentions and Holds on CMIS objects. These in turn
can be used by the repository to protect objects from being deleted or modified. A Retention describes a
period of time that a document must not be deleted, while a Hold marks the document as protected as long
as the Hold is applied.

Please see section 2.1.16 Retentions and Holds for a detailed discussion of these features.

1.5.5 Browser Binding

A new optional binding specifically designed to support applications running in a web browser or other client
without the need for any additional client libraries. Notable among the differences in this binding are the use
of JSON (Java Script Object Notation, [RFC4627]) instead of XML and the exclusive use of HTTP GET and
POST for all operations.

Please see section 5 Browser Binding for a detailed discussion of this feature.

1.5.6 New cmis:item Object Type

A new top level data model type that is an extension point for repositories that need to expose any other
object types via CMIS that do not fit the model's definition for document, folder, relationship or policy.

Please see section 2.1.8 Item Object for a detailed discussion of this feature.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 14 of 331

1.5.7 Service bulkUpdateProperties

A method for supporting bulk property updates on a set of objects within a single service call.

Please see section 2.2.4.14 bulkUpdateProperties for a detailed discussion of this feature.

1.5.8 Append to a content stream

Support for appending to a content stream. Enables clients to break very large uploads of document content
into numerous smaller calls.

Please see section 2.2.4.19 appendContentStream for a detailed discussion of this feature.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 15 of 331

2 Domain Model

2.1 Data Model

CMIS provides an interface for an application to access a repository. To do so, CMIS specifies a core data
model that defines the persistent information entities that are managed by the repository, and specifies a
set of basic services that an application can use to access and manipulate these entities. In accordance
with the CMIS objectives, this data model does not cover all the concepts that a full-function ECM repository
typically supports. Specifically, transient entities (such as programming interface objects), administrative
entities (such as user profiles), and extended concepts (such as compound or virtual document, work flow
and business process, event and subscription) are not included.

However, when an application connects to a CMIS service endpoint, the same endpoint MAY provide access
to more than one CMIS repository. (How an application obtains a CMIS service endpoint is outside the
scope of CMIS. How the application connects to the endpoint is a part of the protocol that the application
uses.) An application MUST use the CMIS getRepositories service to obtain a list of repositories that
are available at that endpoint. The repository id MUST uniquely identify an available repository at this
service endpoint. Both the repository name and the repository id are opaque to CMIS. Aside from the
getRepositories service, all other CMIS services are single-repository-scoped, and require a repository
id as an input parameter. In other words, except for the getRepositories service, multi-repository and
inter-repository operations are not supported by CMIS.

2.1.1 Repository

The repository itself is described by the CMIS "Get Repository Information" service. The service output is
fully described in section 2.2.2.2 getRepositoryInfo.

2.1.1.1 Optional Capabilities

Commercial ECM repositories vary in their designs. Moreover, some repositories are designed for a specific
application domain and may not provide certain capabilities that are not needed for their targeted domain.
Thus, a repository implementation may not necessarily be able to support all CMIS capabilities. A few CMIS
capabilities are therefore "optional" for a repository to be compliant. A repository's support for each of these
optional capabilities is discoverable using the getRepositoryInfo service. The following is the list of
these optional capabilities. All capabilities are "boolean" (i.e. the repository either supports the capability
entirely or not at all) unless otherwise noted.

Navigation Capabilities

capabilityGetDescendants
Ability for an application to enumerate the descendants of a folder via the getDescendants
service.
See section 2.2.3.2 getDescendants.

capabilityGetFolderTree
Ability for an application to retrieve the folder tree via the getFolderTree service.
See section 2.2.3.3 getFolderTree.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 16 of 331

capabilityOrderBy
Indicates the ordering capabilities of the repository.
Valid values are:

none Ordering is not supported.

common Only common CMIS properties are supported. See section 2.2.1.2.7 Object Order for
the list of properties.

custom Common CMIS properties and custom object-type properties are supported.

See section 2.2.1.2.7 Object Order.

Object Capabilities

capabilityContentStreamUpdatability
Indicates the support a repository has for updating a documents content stream.
Valid values are:

none The content stream may never be updated.

anytime The content stream may be updated any time.

pwconly The content stream may be updated only when checked out. Private Working Copy
(PWC) is described in section 2.1.13 Versioning.

See section 2.1.4.1 Content Stream.

capabilityChanges
Indicates what level of changes (if any) the repository exposes via the getContentChanges
service.
Valid values are:

none The repository does not support the change log feature.

objectidsonly The change log can return only the object ids for changed objects in the repository
and an indication of the type of change, not details of the actual change.

properties The change log can return properties and the object id for the changed objects.

all The change log can return the object ids for changed objects in the repository and more
information about the actual change.

See section 2.1.15 Change Log.

capabilityRenditions
Indicates whether or not the repository exposes renditions of document or folder objects.
Valid values are:

none The repository does not expose renditions at all.

read Renditions are provided by the repository and readable by the client.

See section 2.1.4.2 Renditions.

Filing Capabilities

capabilityMultifiling
Ability for an application to file a document or other file-able object in more than one folder.
See section 2.1.5 Folder Object.

capabilityUnfiling
Ability for an application to leave a document or other file-able object not filed in any folder.
See section 2.1.5 Folder Object.

capabilityVersionSpecificFiling
Ability for an application to file individual versions (i.e., not all versions) of a document in a folder.
See section 2.1.13 Versioning.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 17 of 331

Versioning Capabilities

capabilityPWCUpdatable
Ability for an application to update the "Private Working Copy" of a checked-out document.
See section 2.1.13 Versioning.

capabilityPWCSearchable
Ability of the Repository to include the "PrivateWorking Copy" of checked-out documents in query
search scope; otherwise PWC's are not searchable.
See section 2.1.13 Versioning.

capabilityAllVersionsSearchable
Ability of the Repository to include all versions of document. If False, typically either the latest or
the latest major version will be searchable.
See section 2.1.13 Versioning.

Query Capabilities

capabilityQuery
Indicates the types of queries that the Repository has the ability to fulfill. Query support levels
are:

none No queries of any kind can be fulfilled.

metadataonly Only queries that filter based on object properties can be fulfilled. Specifically,
the CONTAINS() predicate function is not supported.

fulltextonly Only queries that filter based on the full-text content of documents can be fulfilled.
Specifically, only the CONTAINS() predicate function can be included in the WHERE clause.

bothseparate The repository can fulfill queries that filter EITHER on the full-text content of docu-
ments OR on their properties, but NOT if both types of filters are included in the same query.

bothcombined The repository can fulfill queries that filter on both the full-text content of docu-
ments and their properties in the same query.

See section 2.1.14 Query.

capabilityJoin
Indicates the types of JOIN keywords that the Repository can fulfill in queries. Support levels are:

none The repository cannot fulfill any queries that include any JOIN clauses on two primary
types. If the Repository supports secondary types, JOINs on secondary types SHOULD be
supported, even if the support level is none.

inneronly The repository can fulfill queries that include an INNER JOIN clause, but cannot fulfill
queries that include other types of JOIN clauses.

innerandouter The repository can fulfill queries that include any type of JOIN clause defined by
the CMIS query grammar.

See section 2.1.14 Query.

Type Capabilities

capabilityCreatablePropertyTypes A list of all property data types that can be used by a client to
create or update an object-type definition. See sections 2.1.2.1 Property and 2.1.10.1 General
Constraints on Metadata Changes.

capabilityNewTypeSettableAttributes
Indicates which object-type attributes can be set by a client when a new object-type is created.
This capibility is a set of booleans; one for each of the following attributes:

• id
• localName
• localNamespace
• displayName

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 18 of 331

• queryName
• description
• creatable
• fileable
• queryable
• fulltextIndexed
• includedInSupertypeQuery
• controllablePolicy
• controllableACL

The repository MUST set the object-type attributes that cannot be set by a client or are not set
by a client.
See section 2.1.10 Object-Type Creation, Modification and Deletion.

ACL Capabilities

capabilityACL
Indicates the level of support for ACLs by the repository.

none The repository does not support ACL services.

discover The repository supports discovery of ACLs (getACL and other services).

manage The repository supports discovery of ACLs AND applying ACLs (getACL and apply-
ACL services).

See section 2.1.12 Access Control.

2.1.1.2 Implementation Information

The getRepositoryInfo service MUST also return implementation information including vendor name,
product name, product version, version of CMIS that it supports, the root folder id (see section 2.1.5.2 Folder
Hierarchy), and MAY include other implementation-specific information. The version of CMIS that the repos-
itory supports MUST be expressed as a String that matches the specification version. For this version it is
the string "1.1".

2.1.1.3 Repository Features

Repositories MAY provide information about additional features that are supported by the repository but that
are outside the CMIS specification. This information is returned by the getRepositoryInfo service.

Clients that don't understand this information SHOULD ignore it.

The repository MUST provide a unique id for each feature. This id SHOULD take the form of a URI (see
[RFC3986]). The repository MAY also provide a version label as well as a human-readable common name
and description for each feature.

Furthermore, each feature MAY supply an arbitrary number of key-value pairs. The semantics and rules for
these key-value pairs are not defined by CMIS but MAY be constrained by other specifications.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 19 of 331

2.1.2 Object

The entities managed by CMIS are modeled as typed objects. There are five primary base types of objects:
document objects, folder objects, relationship objects, policy objects, and item objects.

• A document object represents a standalone information asset. Document objects are the elementary
entities managed by a CMIS repository.

• A folder object represents a logical container for a collection of "file-able" objects, which include folder
objects, document objects, policy objects, and item objects. Folder objects are used to organize file-
able objects. Whether or not an object is file-able is specified in its object-type definition.

• A relationship object represents an instance of a directional relationship between two objects. The
support for relationship objects is optional. The getTypeChildren service when asked for the base
object-types MUST return the base relationship object-type if the repository supports relationships.

• A policy object represents an administrative policy, which may be "applied" to one or more "control-
lablePolicy" objects. Whether or not an object is controllable is specified in its object-type definition.
The support for policy objects is optional. The getTypeChildren service when asked for the base
object-types MUST return the base policy object-type if the repository supports policies.

• An item object represents a generic type of CMIS information asset. Item objects are not versionable
and do not have content streams like documents but have properties like all other CMIS objects. The
support for item objects is optional. The getTypeChildren service when asked for the base object-
types MUST return the base item object-type if the repository supports items.

Additional object-types MAY be defined in a repository as subtypes of these base types. CMIS services
are provided for the discovery of object-types that are defined in a repository. Furthermore, object-type
management services are provided to create, modify and delete object-types if that is supported by the
repository.

Every CMIS object has an opaque and immutable object id, which is assigned by the repository when the
object is created. An id uniquely identifies an object within a repository regardless of the type of the object.
Repositories SHOULD assign ids that are "permanent" -- that is, they remain unchanged during the lifespan
of the identified objects, and they are never reused or reassigned after the objects are deleted from the
repository.

Every CMIS object has a set of named, but not explicitly ordered, properties. (However, a repository
SHOULD always return object properties in a consistent order.) Within an object, each property is uniquely
identified by its property definition id. The object properties are defined by the object-type.

An object must have one and only one primary object-type, which cannot be changed. An object's primary
object-type may be simply called its object-type. The primary object-type of an object classifies the object
and defines the properties that the object must have.

An object MAY have zero or more secondary object types applied to it. A secondary type is a named
marking that may add extra properties to an object in addition to the properties defined by the object's
primary type. That is, applying a secondary type to an object adds the properties defined by this type to the
object. Removing a secondary type removes the properties. Secondary object-types can only be defined
as subtypes or descendant types of the cmis:secondary base type. All other base object types and their
descendant types are primary object-types.

Consequently, each instance of a primary object-type corresponds to a distinct object, whereas each in-
stance of a secondary object type does not. Therefore, the "creatable", "fileable", "controllablePolicy", and
"controllableACL" object type attributes are not applicable to a secondary object type and must be set to
FALSE.

The support for secondary types is optional, and may be discovered via the getTypeChildren service.
See section 2.1.9 Secondary Object-Types.

In addition, a document object MAY have a content stream, which may be used to hold a raw digital asset
such as an image or a word-processing document. A repository MUST specify, in each object-type definition,
whether document objects of that type MAY, MUST, or MUST NOT have a content stream. A document

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 20 of 331

MAY also have one or more renditions associated with it. A rendition can be a thumbnail or an alternate
representation of the content stream.

Objects MAY have one Access Control List (ACL), which controls access to the object. A set of policy objects
may also control access to the object. An ACL represents a list of Access Control Entries (ACEs). An ACE
in turn represents one or more permissions being granted to a principal (a user, group, role, or something
similar).

The notion of localization of the objects in the data model is entirely repository specific.

CMIS objects MAY expose additional information, such as vendor-specific workflow data, beyond the at-
tributes described above. In this respect, the data model can be extended as desired. This specification
does not standardize such extensions.

2.1.2.1 Property

A property MAY hold zero, one, or more typed data value(s). Each property MAY be single-valued or multi-
valued. A single-valued property contains a single data value, whereas a multi-valued property contains an
ordered list of data values of the same type. The ordering of values in a multi-valued property SHOULD be
preserved by the repository.

A property, either single-valued or multi-valued, MAY be in a "not set" state. CMIS does not support "null"
property value. If a multi-valued property is not in a "not set" state, its property value MUST be a non-empty
list of individual values. Each individual value in the list MUST NOT be in a "not set" state andMUST conform
to the property's property-type.

A multi-valued property is either set or not set in its entirety. An individual value of a multi-valued property
MUST NOT be in an individual "value not set" state and hold a position in the list of values. An empty list of
values MUST NOT be allowed.

Every property is typed. The property-type defines the data type of the data value(s) held by the property.
CMIS specifies the following property-types. They include the following data types defined by "XML Schema
Part 2: Datatypes Second Edition" (see [XMLSchema]):

string (xsd:string)

boolean (xsd:boolean)

decimal (xsd:decimal)
(see section 2.1.3.3.5 Attributes specific to Decmial Object-Type Property Definitions for attributes
specific to Decimal object-type property definitions.)

integer (xsd:integer)
(see section 2.1.3.3.3 Attributes specific to Integer Object-Type Property Definitions for attributes spe-
cific to Integer object-type property definitions.)

datetime (xsd:dateTime)
(see section 2.1.3.3.4 Attributes specific to DateTime Object-Type Property Definitions for attributes
specific to DateTime object-type property definitions.)

uri (xsd:anyURI)

In addition, the following property-types are also specified by CMIS:

id

html

Individual protocol bindings MAY override or re-specify these property-types.

For single valued String, Id and HTML properties, a repository MAY support the distinction between a set
value with an empty string (length = 0), and a "not set" value. In this case an empty value element (e.g.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 21 of 331

<cmis:value/>) inside of a property element will indicate a "set but empty" string property. A property
element without a <cmis:value/> will indicate a property in a "not set" state. For repositories that do not
support this distinction the latter example (absence of the <cmis:value> element) should be used for all
cases.

2.1.2.1.1 Id Property

An id property holds a system-generated, read-only identifier, such as an object id, an object-type id, etc.
(The id property-type is NOT defined by xsd:id.) The lexical representation of an id is an opaque string. As
such, an id cannot be assumed to be interpretable syntactically or assumed to be collate-able with other
ids, and can only be used in its entirety as a single atomic value. When used in a query predicate, an id can
only participate in an "equal" or a "not equal" comparison with a string literal or with another id.

While all CMIS identities share the same property-type, they do not necessarily share the same address
space. Unless explicitly specified, id properties NEEDNOTmaintain a referential integrity constraint. There-
fore, storing the id of one object in another object NEED NOT constrain the behavior of either object. A
repository MAY, however, support referential constraint underneath CMIS if the effect on CMIS services
remains consistent with an allowable behavior of the CMIS model. For example, a repository MAY return a
constraint exception when a CMIS service call violates an underlying referential constraint maintained
by the repository. In that case, an error message SHOULD be returned to the application to describe the
cause of the exception and suggest a remedial action. The content of such messages is outside the scope
of CMIS.

2.1.2.1.2 HTML Property

An HTML property holds a document or fragment of Hypertext Markup Language (HTML) content. HTML
properties are not guaranteed to be validated in any way. The validation behavior is entirely repository
specific.

2.1.2.1.3 Query Names

All properties MUST supply a string queryName attribute which is used for query and filter operations on
object-types. This is an opaque string with limitations. This string SHOULD NOT contain any characters
that negatively interact with the BNF grammar.
The string MUST NOT contain:

• whitespace " "
• comma ","
• double quotes '"'
• single quotes "'"
• backslash "\"
• the period "."
• the open "(" or close ")" parenthesis characters

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 22 of 331

2.1.3 Object-Type

An object-type defines a fixed and non-hierarchical set of properties ("schema") that all objects of that type
have. This schema is used by a repository to validate objects and enforce constraints, and is also used by
a user to compose object-type-based (structured) queries.

All CMIS objects are strongly typed. If a property not specified in an object's object-type definition is supplied
by an application, an exception SHOULD be thrown.

Each object-type is uniquely identified within a repository by a system-assigned and immutable object-type
identifier, which is of type Id.

A CMIS repository MUST expose exactly one collection of object-types via the "repository" services
(getTypeChildren, getTypeDescendants, getTypeDefinition).

While a repository MAY define additional object-types beyond the CMIS base object-types, these object-
types MUST NOT extend or alter the behavior or semantics of a CMIS service (for example, by adding new
services). A repository MAY attach additional constraints to an object-type underneath CMIS, provided that
the effect visible through the CMIS interface is consistent with the allowable behavior of CMIS.

2.1.3.1 Object-Type Hierarchy and Inheritance

Hierarchy and Inheritance for object-types are supported by CMIS in the following manner:

• A CMIS repository MUST have these base types:

– cmis:document object-type

– cmis:folder object-type

• A CMIS repository MAY have these base types:

– cmis:relationship object-type

– cmis:policy object-type

– cmis:item object-type

– cmis:secondary object-type

• Additional base types MUST NOT exist. Additional object-types MAY be defined as sub-types or
descendant types of these six base types.

• A base type does not have a parent type.

• A non-base type has one and only one parent type. An object-type's parent type is a part of the
object-type definition.

• An object-type definition includes a set of object-type attribute values (e.g. fileable, queryable, etc.)
and a property schema that will apply to objects of that type.

– There is no inheritance of object-type attributes from a parent object-type to its sub-types.

• The properties of a CMIS base type MUST be inherited by its descendant types.

• A child type whose immediate parent is NOT its base type SHOULD inherit all the property definitions
that are specified for its parent type. In addition, it MAY have its own property definitions.

– If a property is NOT inherited by a subtype, the exhibited behavior for query MUST be as if the
value of this property is "not set" for all objects of this sub-type.

• The scope of a query on a given object-type is automatically expanded to include all the descendant
types of the given object-type with the attribute includedInSuperTypeQuery equals TRUE. This
was added for synthetic types as well as to support different type hierarchies that are not necessarily
the same as CMIS. Only the properties of the given object-type, including inherited ones, MUST be
used in the query. Properties defined for its descendant types MAY NOT be used in the query, and
CAN NOT be returned by the query.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 23 of 331

– If a property of its parent type is not inherited by this type, the property MUST still appear as a
column in the corresponding virtual table in the relational view, but this column MUST contain a
"not set" value for all objects of this type. (See section 2.1.14 Query)

2.1.3.2 Object-Type Attributes

2.1.3.2.1 Attributes common to ALL Object-Type Definitions

All object-type definitions MUST contain the following attributes. Optional attributes MUST be defined but
MAY have "not set" values.

id Id
This opaque attribute identifies this object-type in the repository.

localName String
This attribute represents the underlying repository's name for the object-type. This field is
opaque and has no uniqueness constraint imposed by this specification.

localNamespace String (optional)
This attribute allows repositories to represent the internal namespace of the underlying repos-
itory's name for the object-type.

queryName String (optional)
Used for query and filter operations on object-types. This is an opaque string with limitations.
See 2.1.2.1.3 Query Names for details.

displayName String (optional)
Used for presentation by application.

baseId Enum
A value that indicates whether the base type for this object-type is the document, folder, rela-
tionship, policy, item, or secondary base type.

parentId Id
The id of the object-type's immediate parent type. It MUST be "not set" for a base type. De-
pending on the binding this means it might not exist on the base type object-type definition.

description String (optional)
Description of this object-type, such as the nature of content, or its intended use. Used for
presentation by application.

creatable Boolean
Indicates whether new objects of this type MAY be created. If the value of this attribute is
FALSE, the repository MAY contain objects of this type already, but MUST NOT allow new
objects of this type to be created.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 24 of 331

fileable Boolean
Indicates whether or not objects of this type are file-able.

queryable Boolean
Indicates whether or not this object-type can appear in the FROM clause of a query statement.
A non-queryable object-type is not visible through the relational view that is used for query, and
CAN NOT appear in the FROM clause of a query statement.

controllablePolicy Boolean
Indicates whether or not objects of this type are controllable via policies. Policy objects can
only be applied to controllablePolicy objects.

controllableACL Boolean
This attribute indicates whether or not objects of this type are controllable by ACL's. Only
objects that are controllableACL can have an ACL.

fulltextIndexed Boolean
Indicates whether objects of this type are indexed for full-text search for querying via the CON-
TAINS() query predicate. If the value of this attribute is TRUE, the full-text index MUST cover
the content and MAY cover the metadata.

includedInSupertypeQuery Boolean
Indicates whether this type and its subtypes appear in a query of this type's ancestor types.
For example: if Invoice is a sub-type of cmis:document, if this is TRUE on Invoice then
for a query on cmis:document, instances of Invoice will be returned if they match. If this
attribute is FALSE, no instances of Invoice will be returned even if they match the query.

typeMutability.create Boolean (optional)
Indicates whether new child types may be created with this type as the parent.

typeMutability.update Boolean (optional)
Indicates whether clients may make changes to this type per the constraints defined in this
specification.

typeMutability.delete Boolean (optional)
Indicates whether clients may delete this type if there are no instances of it in the repository.

2.1.3.3 Object-Type Property Definitions

Besides these object-type attributes, an object-type definition SHOULD contain inherited property definitions
and zero or more additional property definitions. All the properties of an object, including inherited properties,
MUST be retrievable through the "get" services, and MAY appear in the SELECT clause of a query.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 25 of 331

2.1.3.3.1 Property Types

Property types are defined in section 2.1.2.1 Property.

2.1.3.3.2 Attributes common to ALL Object-Type Property Definitions

All object-type property definitions MUST contain the following attributes. Optional attributes MUST be
defined but MAY have "not set" values.

id Id
This opaque attribute uniquely identifies the property in the repository. If two object-types each
contain property definitions with the same id, the basic property definitions (property type, query
name, cardinality) MUST be the same. Other attributes MAY be different for each type.

localName String (optional)
This attribute represents the underlying repository's name for the property. This field is opaque
and has no uniqueness constraint imposed by this specification.

localNamespace String (optional)
This attribute allows repositories to represent the internal namespace of the underlying repos-
itory's name for the property.

queryName String (optional)
Used for query operations on properties. This is an opaque string with limitations. See
2.1.2.1.3 Query Names for details.

displayName String (optional)
Used for presentation by application.

description String (optional)
This is an optional attribute containing a description of the property.

propertyType Enum
This attribute indicates the type of this property. It MUST be one of the allowed property types.
(See section 2.1.2.1 Property.)

cardinality Enum
Indicates whether the property can have "zero or one" or "zero or more" values.
Values:
single Property can have zero or one values (if property is not required), or exactly one value

(if property is required).
multi Property can have zero or more values (if property is not required), or one or more values

(if property is required).
Repositories SHOULD preserve the ordering of values in a multi-valued property. That is, the
order in which the values of a multi-valued property are returned in "get" services operations
SHOULD be the same as the order in which they were supplied during previous create/update
operation.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 26 of 331

updatability Enum
Indicates under what circumstances the value of this property MAY be updated.
Values:
readonly The value of this property MUST NOT ever be set directly by an application. It is

a system property that is either maintained or computed by the repository. The value
of a read-only property MAY be indirectly modified by other repository interactions (for
example, calling updateProperties on an object will change the object's last modi-
fied date, even though that property cannot be directly set via an updateProperties
service call.)

readwrite The property value can be modified using the updateProperties service.
whencheckedout The property value MUST only be update-able using a "private working

copy" document. That is, the update is either made on a "private working copy" object or
made using the checkIn service.

oncreate The property value MUST only be update-able during the create operation on that
object.

inherited Boolean
Indicates whether the property definition is inherited from the parent type when TRUE or it is
explicitly defined for this object-type when FALSE.

required Boolean
This attribute is only applicable to non-system properties, i.e. properties whose value is pro-
vided by the application.
If TRUE, then the value of this property MUST never be set to the "not set" state when an
object of this type is created/updated. If not provided during a create or update operation, the
repository MUST provide a value for this property. If a value is not provided, then the default
value defined for the property MUST be set. If no default value is provided and no default value
is defined, the repository MUST throw a constraint exception.
This attribute is not applicable when the "updatability" attribute is "readonly". In that case,
"required" SHOULD be set to FALSE.
Note: For CMIS-defined object-types, the value of a system property (such as
cmis:objectId, cmis:createdBy) MUST be set by the repository. However, the prop-
erty's "required" attribute SHOULD be FALSE because it is read-only to applications.

queryable Boolean
Indicates whether or not the property MAY appear in the WHERE clause of a CMIS query
statement.
This attribute MUST have a value of FALSE if the object-type's attribute for "queryable" is set
to FALSE.

orderable Boolean
Indicates whether the property can appear in the ORDERBY clause of a CMIS query statement
or an orderBy parameter of getChildren or getCheckedOutDocs.
This property MUST be FALSE for any property whose cardinality is "multi".

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 27 of 331

choices <PropertyChoiceType list> (multi-valued, optional)
Indicates an explicit ordered set of single values allowed for this property.
If the cardinatity of the property definition is "single" and the "openChoice" attribute is FALSE,
then the property value MUST be at most one of the values listed in this attribute.
If the cardinatity of the property definition is "single" and the "openChoice" attribute is TRUE,
then the property value MAY be one of the values listed in this attribute.
If the cardinatity of the property definition is "multi" and the "openChoice" attribute is FALSE,
then the property valueMUST be zero, one or more than one of the values listed in this attribute.
If the cardinatity of the property definition is "multi" and the "openChoice" attribute is TRUE,
then the property value MAY be zero, one, or more than one of the values listed in this attribute.
If this attribute is "not set", then any valid value for this property based on its type may be used.
Each choice includes a displayName and a value. The displayName is used for presentation
purpose. The value will be stored in the property when selected.
Choices MAY be hierarchically presented. For example: a value of "choices" for a geographic
location would be represented as follows:

• Europe:
– England
– France
– Germany

• North America
– Canada
– USA
– Mexico

openChoice Boolean (optional if choices is not set)
This attribute is only applicable to properties that provide a value for the "Choices" attribute.
If FALSE, then the data value for the property MUST only be one of the values specified in the
"Choices" attribute. If TRUE, then values other than those included in the "Choices" attribute
may be set for the property.

defaultValue <PropertyType> (optional)
The value that the repository MUST set for the property if a value is not provided by an appli-
cation when the object is created.
If no default value is specified and an application creates an object of this type without setting
a value for the property, the repository MUST attempt to store a "not set" property value. If this
occurs for a property that is defined to be required, then the creation attempt MUST throw an
exception.
The attributes on the default value element are the same as the attributes on the property
definition.

2.1.3.3.3 Attributes specific to Integer Object-Type Property Definitions

The following object attributes MUST only apply to property type definitions whose propertyType is "Integer",
in addition to the common attributes specified above. A repository MAY provide additional guidance on what
values can be accepted. If the following attributes are not present the repository behavior is undefined and
it MAY throw an exception if a runtime constraint is encountered.

minValue Integer
The minimum value allowed for this property.
If an application tries to set the value of this property to a value lower than minValue, the
repository MUST throw a constraint exception.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 28 of 331

maxValue Integer
The maximum value allowed for this property.
If an application tries to set the value of this property to a value higher than maxValue, the
repository MUST throw a constraint exception.

2.1.3.3.4 Attributes specific to DateTime Object-Type Property Definitions

The following object attributes MUST only apply to property type definitions whose propertyType is "Date-
Time", in addition to the common attributes specified above. A repository MAY provide additional guidance
on what values can be accepted. If the following attributes are not present the repository behavior is unde-
fined and it MAY throw an exception if a runtime constraint is encountered.

resolution Enum
This is the resolution supported for values of this property. Valid values for this attribute are:
year Year resolution is persisted. Date and time portion of the value should be ignored.
date Date resolution is persisted. Time portion of the value should be ignored.
time Time resolution is persisted.

2.1.3.3.5 Attributes specific to Decmial Object-Type Property Definitions

The following object attributes MUST only apply to property type definitions whose propertyType is "Deci-
mal", in addition to the common attributes specified above. A repository MAY provide additional guidance on
what values can be accepted. If the following attributes are not present the repository behavior is undefined
and it MAY throw an exception if a runtime constraint is encountered.

precision Enum
This is the precision in bits supported for values of this property. Valid values for this attribute
are:
32 32-bit precision ("single" as specified in IEEE-754-1985).
64 64-bit precision ("double" as specified in IEEE-754-1985).

minValue Decimal
The minimum value allowed for this property.
If an application tries to set the value of this property to a value lower than minValue, the
repository MUST throw a constraint exception.

maxValue Decimal
The maximum value allowed for this property.
If an application tries to set the value of this property to a value higher than maxValue, the
repository MUST throw a constraint exception.

2.1.3.3.6 Attributes specific to String Object-Type Property Definitions

The following object attributes MUST only apply to property type definitions whose propertyType is "String",
in addition to the common attributes specified above. A repository MAY provide additional guidance on what
values can be accepted. If the following attributes are not present the repository behavior is undefined and
it MAY throw an exception if a runtime constraint is encountered.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 29 of 331

maxLength Integer
The maximum length (in characters) allowed for a value of this property.
If an application attempts to set the value of this property to a string longer than the specified
maximum length, the repository MUST throw a constraint exception.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 30 of 331

2.1.4 Document Object

Document objects are the elementary information entities managed by the repository.

Depending on its object-type definition, a document object may be:

Version-able Can be acted upon via the Versioning Services (for example: checkOut, checkIn).

File-able Can be filed in zero, one, or more than one folder via the Multi-filing Services.

Query-able Can be located via the Discovery Services (for example: query).

Controllable-Policy Can have policies applied to it. (See section 2.1.7 Policy Object.)

Controllable-ACL Can have an ACL applied to it. (See section 2.1.12 Access Control.)

Additionally, whether a document object MUST, MAY or MUST NOT have a content stream is specified in
its object-type definition. A document object MAY be associated with zero or more renditions.

Note: When a document is versioned, each version of the document is a separate document object. Thus,
for document objects, an object id actually identifies a specific version of a document.

2.1.4.1 Content Stream

A content stream is a binary stream. Its maximum length is repository specific. Each content stream has a
MIME Media Type, as defined by [RFC2045] and [RFC2046]. A content stream's attributes are represented
as properties of the content stream's containing document object. There is no MIME type specific attribute
or name directly associated with the content stream outside of the document object.

CMIS provides basic CRUD1 services for content stream, using the id of a content stream's containing
document object for identification. A content stream also has a contentStreamIdwhich is used for access
to the stream. The setContentStream service either creates a new content stream for a document object
or replaces an existing content stream. The appendContentStream service either creates a new content
stream or appends content to an existing content stream. The getContentStream service retrieves a
content stream. The deleteContentStream service deletes a content stream from a document object.
In addition, the createDocument and checkIn services MAY also take a content stream as an optional
input. A content stream MUST be specified if required by the object-type definition. These are the only
services that operate on content stream. The getObject and query services, for example, do not return
a content stream.

setContentStream, appendContentStream and deleteContentStream services are considered
modifications to a content stream's containing document object, and SHOULD therefore change the ob-
ject's last modification date property upon successful completion.

The ability to set or delete a content stream is controlled by the capabilityContentStreamUpdata-
bility capability.

2.1.4.2 Renditions

Some ECM repositories provide a facility to retrieve alternative representations of a document. These al-
ternative representations are known as renditions. This could apply to a preview case which would enable
the client to preview the content of a document without needing to download the full content. Previews are
generally reduced fidelity representations such as thumbnails. Renditions can take on any general form,
such as a PDF version of a word processing document.

A CMIS repository MAY expose zero or more renditions for a document or folder in addition to a document's
content stream. CMIS provides no capability to create or update renditions accessed through the rendition
services. Renditions are specific to the version of the document or folder and may differ between document
versions. Each rendition consists of a set of rendition attributes and a rendition stream. Rendition attributes
are not object properties, and are not queryable. They can be retrieved using the getRenditions service.

1Create, Read, Update and Delete

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 31 of 331

A rendition stream can be retrieved using the getContentStream service with the rendition's streamId
parameter.

2.1.4.2.1 Rendition Attributes

A rendition has the following attributes:

streamId Id
Identifies the rendition stream.

mimeType String
The MIME type of the rendition stream.

length Integer
The length of the rendition stream in bytes.

title String (optional)
Human readable information about the rendition.

kind String
A categorization String associated with the rendition. See section 2.1.4.2.2 Rendition Kind.

height Integer (optional)
Typically used for 'image' renditions (expressed as pixels).
SHOULD be present if kind = cmis:thumbnail.

width Integer (optional)
Typically used for 'image' renditions (expressed as pixels).
SHOULD be present if kind = cmis:thumbnail.

renditionDocumentId Id (optional)
If specified, then the rendition can also be accessed as a document object in the CMIS ser-
vices. If not set, then the rendition can only be accessed via the rendition services. Referential
integrity of this id is repository specific.

2.1.4.2.2 Rendition Kind

A rendition may be categorized via its kind. The repository is responsible for assigning kinds to renditions,
including custom kinds. A rendition kind does not necessarily identify a single rendition for a given object.

CMIS defines the following kind:

cmis:thumbnail A rendition whose purpose is to provide an image preview of the document without requir-
ing the client to download the full document content stream. Thumbnails are generally reduced fidelity
representations.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 32 of 331

2.1.4.3 Document Object-Type Definition

This section describes the definition of the document object-type's attribute values and property definitions
which must be present on document instance objects. All attributes and property definitions are listed by
their id.

2.1.4.3.1 Attributes specific to Document Object-Types

The following object attributesMUST only apply to object-type definitions whose baseId is the cmis:document
object-type, in addition to the common attributes specified above:

versionable Boolean
Indicates whether or not objects of this type are version-able. (See section 2.1.13 Versioning.)
If this attribute is set to TRUE, then documents of this typeMUST be versionable. If this attribute
is set to FALSE, then documents of this type MUST NOT be versionable.

contentStreamAllowed Enum
A value that indicates whether a content stream MAY, MUST, or MUST NOT be included in
objects of this type.
Values:
notallowed A content stream MUST NOT be included.
allowed A content stream MAY be included.
required A content stream MUST be included (i.e. MUST be included when the object is cre-

ated, and MUST NOT be deleted).

2.1.4.3.2 Attribute Values

The document object-type MUST have the following attribute values.

Notes:

• A value of <repository-specific> indicates that the value of the property MAY be set to any valid value
for the attribute type.

• Unless explicitly stated otherwise, all values specified in the list MUST be followed for the object-type
definition.

id
Value: cmis:document

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:document

displayName
Value: <repository-specific>

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 33 of 331

baseId
Value: cmis:document

parentId
Value: MUST NOT be set

description
Value: <repository-specific>

creatable
Value: <repository-specific>

fileable
Value: SHOULD be TRUE

queryable
Value: SHOULD be TRUE

controllablePolicy
Value: <repository-specific>

controllableACL
Value: <repository-specific>

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

versionable
Value: <repository-specific>

contentStreamAllowed
Value: <repository-specific>

2.1.4.3.3 Property Definitions

The document base object-type MUST have the following property definitions, and MAY include additional
property definitions. Any attributes not specified for the property definition are repository specific. For all
property definitions on base types, the query name MUST be the same as the property id. The repository
MUST have the following property definitions on the document object-type:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 34 of 331

cmis:name Name of the object.

Property Type: String
Inherited: FALSE
Required: TRUE
Cardinality: single
Updatability: SHOULD be readwrite or whencheckedout
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: SHOULD be TRUE

cmis:description Description of the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: SHOULD be readwrite or whencheckedout
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

If the repository doesn't support object descriptions, the Updatability SHOULD be readonly and
the repository SHOULD return a "not set" value for this property.

cmis:objectId Id of the object.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 35 of 331

cmis:baseTypeId Id of the base object-type for the object.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:objectTypeId Id of the object's type.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:secondaryObjectTypeIds Ids of the object's secondary types.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: multi
Updatability: readwrite if secondary types are supported,

readonly otherwise
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: FALSE

If the repository does not support secondary types, the repository MUST return "not set".

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 36 of 331

cmis:createdBy User who created the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:creationDate DateTime when the object was created.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:lastModifiedBy User who last modified the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 37 of 331

cmis:lastModificationDate DateTime when the object was last modified.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:changeToken Opaque token used for optimistic locking and concurrency
checking. (See section 2.2.1.3 Change Tokens.)

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: FALSE
Orderable: FALSE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it. If the repository does not support change tokens, this property SHOULD not be set.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 38 of 331

cmis:isImmutable Defines if the object can be modified. If TRUE the repos-
itory MUST throw an error at any attempt to update or
delete the object.

Property Type: Boolean
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:isLatestVersion See section 2.1.13 Versioning.

Property Type: Boolean
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 39 of 331

cmis:isMajorVersion See section 2.1.13 Versioning.

Property Type: Boolean
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

cmis:isLatestMajorVersion See section 2.1.13 Versioning.

Property Type: Boolean
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 40 of 331

cmis:isPrivateWorkingCopy See section 2.1.13 Versioning.

Property Type: Boolean
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

cmis:versionLabel See section 2.1.13 Versioning.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 41 of 331

cmis:versionSeriesId See section 2.1.13 Versioning.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

cmis:isVersionSeriesCheckedOut See section 2.1.13 Versioning.

Property Type: Boolean
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does
not exclude it. Version property values are repository-specific when a document is defined as
non-versionable.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 42 of 331

cmis:versionSeriesCheckedOutBy See section 2.1.13 Versioning.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository SHOULD return this property with a non-empty value if the document is checked
out and the property filter does not exclude it. The repository MUST return "not set" if the
document is not checked out. Version property values are repository-specific when a document
is defined as non-versionable.

cmis:versionSeriesCheckedOutId See section 2.1.13 Versioning.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository SHOULD return this property with a non-empty value if the document is checked
out, the PWC is visible to the current user and the property filter does not exclude it. If the PWC
is not visible to the current user, the repository SHOULD return "not set". The repository MUST
return "not set" if the document is not checked out. Version property values are repository-
specific when a document is defined as non-versionable.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 43 of 331

cmis:checkinComment See section 2.1.13 Versioning.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

Version property values are repository-specific when a document is defined as non-
versionable.

cmis:contentStreamLength Length of the content stream (in bytes).
See also section 2.1.4.1 Content Stream.

Property Type: Integer
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the document has a content
stream and the property filter does not exclude it. If the document has no content stream, the
repository MUST return "not set".

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 44 of 331

cmis:contentStreamMimeType MIME type of the content stream.
See also section 2.1.4.1 Content Stream.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the document has a content
stream and the property filter does not exclude it. If the document has no content stream, the
repository MUST return "not set".

cmis:contentStreamFileName File name of the content stream.
See also section 2.1.4.1 Content Stream.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the document has a content
stream and the property filter does not exclude it. If the document has no content stream, the
repository MUST return "not set".

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 45 of 331

cmis:contentStreamId Id of the content stream.
See also section 2.1.4.1 Content Stream.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

If the document has no content stream, the repository MUST return "not set".

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 46 of 331

2.1.5 Folder Object

A folder object serves as the anchor for a collection of file-able objects. The folder object has an implicit
hierarchical relationship with each object in its collection, with the anchor folder object being the parent object
and each object in the collection being a child object. This implicit relationship has specific containment
semantics which MUST be maintained by the repository with implicit referential integrity. (That is, there will
never be a dangling parent-relationship or a dangling child-relationship. Furthermore, object A is a parent of
object B if and only if object B is a child of object A.) This system-maintained implicit relationship is distinct
from an explicit relationship which is instantiated by an application-maintained relationship object. (See
section 2.1.6 Relationship Object.)

A folder object does not have a content-stream and is not version-able. A folder object MAY be associated
with zero or more renditions (see section 2.1.4.2 Renditions).

2.1.5.1 File-able Objects

A file-able object is one that MAY be "filed" into a folder. That is, it MAY be a child object of a folder object.
The following list defines whether the base CMIS object-types are file-able:

cmis:folder MUST be file-able

cmis:document MAY be file-able

cmis:relationship MUST NOT be file-able

cmis:policy MAY be file-able

cmis:item MAY be file-able

2.1.5.1.1 Document Version Series and Filing

Since document objects are versionable, a document object's membership in a folder MAY be version-
specific or version-independent. That is, the folder membership MAY be restricted to that particular version
of the document or MAY apply to all versions of the document. Whether or not a repository supports version-
specific filing is discoverable via the getRepositoryInfo service.

When the child objects of a folder are retrieved, a specific version of a document MAY be returned. If the
repository supports version-specific filing, the specific version filed in that folder is returned. If the repository
does not support version-specific filing, the latest version or the latest major version of the document is
returned.

Likewise, this version sensitivity in child-binding also affects the behavior of parent retrieval for a document
object, as well as the scope of the IN_FOLDER() and IN_TREE() function calls in a query. For non-
versionable fileable objects, their membership in a folder does not have version sensitivity.

2.1.5.1.2 Filing Restrictions by Object-Type

A folder collection's membership MAY be restricted by object-type. Each folder object has a multi-valued
cmis:allowedChildObjectTypeIds property, which specifies that only objects of these types are al-
lowed to be its children. If this property is "not set", then objects of any file-able type MAY be filed in the
folder. It is repository-specific if subtypes of the types listed in the cmis:allowedChildObjectTypeIds
property MAY be filed in the folder.

Because of these filing constraints, when a new folder object is created, an existing folder object MUST be
specified as its parent.

When a non-file-able object is created, a parent folder MUST NOT be specified.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 47 of 331

When a file-able object is deleted, it is removed from any folder collection in which the object is a member.
In other words, when an object is deleted, all implicit parent-child relationships with the deleted object as a
child cease to exist.

2.1.5.2 Folder Hierarchy

CMIS imposes the following constraints on folder objects:

• Every folder object, except for one which is called the root folder, MUST have one and only one parent
folder. The root folder does not have a parent.

• A cycle in folder containment relationships is not allowed. That is, a folder object cannot have itself as
one of its descendant objects.

• A child object that is a folder object can itself be the parent object of other file-able objects.

With these constraints, the folder objects in a CMIS repository necessarily form a strict hierarchy, with the
root folder being the root of the hierarchy.

The child objects of a given folder object, their child objects, and grandchild objects, etc., are called descen-
dant objects of the given folder object. A folder object together with all its descendant objects are collectively
called a tree rooted at that folder object.

A non-folder object does not have any descendant objects. Thus, a folder graph that consists of all fileable
objects as nodes, and all the implicit folder containment relationships as directed edges from parent to child,
is a directed acyclic graph, possibly with some disconnected (orphan) nodes. It follows that the tree rooted
at any given folder object is also a directed acyclic graph, although a non-folder object in the tree MAY have
ancestors that are not ancestors of the rooted folder.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 48 of 331

A Folder Graph

Root Folder

A folder object

A non-folder fileable object (document or policy)

A multi-filed object

An unfiled object

An implicit folder containment
relationship from parent to child

Figure 2.1: Folder Graph

Folder objects are handled using the basic CRUD services for objects, and the folder graph is traversed
using the navigation services.

The root folder is a special folder such that it cannot be created, deleted, or moved using CMIS services.
Otherwise, it behaves like any other folder object.

2.1.5.3 Paths

A folder hierarchy MAY be represented in a canonical notation such as path. For CMIS, a path is represented
by:

• '/' for the root folder.

• All paths start with the root folder.

• A set of the folder and object path segments separated by '/' in order of closest to the root.

• Folder and object path segments are specified by pathSegment tokens which can be retrieved by all
services that take an includePathSegments parameter (for example getChildren).

• A pathSegment token MUST not include a '/' character.
It is repository specific how a repository chooses the value for pathSegment. Repositories might
choose to use cmis:name or content stream filename for pathSegment token.

• The pathSegment token for each item MUST uniquely identify the item in the folder.

That is, if folder A is under the root, and folder B is under A, then the path would be /A/B.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 49 of 331

A path for an object may be calculated in the following way:

• If the object is the root folder, the path is '/'.

• If the object is a direct child of the root folder, the path is the object's pathSegment prefixed by '/'.

• If the object is not a direct child of the root folder, the path is item's parent folder cmis:path property
appended by '/' and the object's pathSegment.

This constructed path may be given as input to the getObjectByPath service for object by path retrieval.

The getObjectParents service returns relativePathSegment tokens. These tokens are the path-
Segment of the input object relative to the parent folders.

2.1.5.4 Folder Object-Type Definition

This section describes the definition of the folder object-type's attribute values and property definitions which
must be present on folder instance objects. All attributes and property definitions are listed by their id.

2.1.5.4.1 Attribute Values

The folder object-type MUST have the following attribute values.

Notes:

• A value of <repository-specific> indicates that the value of the property MAY be set to any valid value
for the attribute type.

• Unless explicitly stated otherwise, all values specified in the list MUST be followed for the object-type
definition.

id
Value: cmis:folder

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:folder

displayName
Value: <repository-specific>

baseId
Value: cmis:folder

parentId
Value: MUST NOT be set

description
Value: <repository-specific>

creatable
Value: <repository-specific>

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 50 of 331

fileable
Value: TRUE

queryable
Value: SHOULD be TRUE

controllablePolicy
Value: <repository-specific>

controllableACL
Value: <repository-specific>

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

2.1.5.4.2 Property Definitions

The folder base object-type MUST have the following property definitions, and MAY include additional prop-
erty definitions. Any attributes not specified for the property definition are repository specific. For all property
definitions on base types, the query name MUST be the same as the property id. The repository MUST have
the following property definitions on the folder object-type:

cmis:name Name of the object.

Property Type: String
Inherited: FALSE
Required: TRUE
Cardinality: single
Updatability: SHOULD be readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: SHOULD be TRUE

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 51 of 331

cmis:description Description of the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: SHOULD be readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

If the repository doesn't support object descriptions, the Updatability SHOULD be readonly and
the repository SHOULD return a "not set" value for this property.

cmis:objectId Id of the object.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:baseTypeId Id of the base object-type for the object.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 52 of 331

cmis:objectTypeId Id of the object's type.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:secondaryObjectTypeIds Ids of the object's secondary types.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: multi
Updatability: readwrite if secondary types are supported,

readonly otherwise
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: FALSE

If the repository does not support secondary types, the repository MUST return "not set".

cmis:createdBy User who created the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 53 of 331

cmis:creationDate DateTime when the object was created.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:lastModifiedBy User who last modified the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:lastModificationDate DateTime when the object was last modified.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 54 of 331

cmis:changeToken Opaque token used for optimistic locking and concurrency
checking. (See section 2.2.1.3 Change Tokens.)

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: FALSE
Orderable: FALSE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it. If the repository does not support change tokens, this property SHOULD not be set.

cmis:parentId Id of the parent folder of the folder.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: FALSE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 55 of 331

cmis:path The fully qualified path to this folder.
See section 2.1.5.3 Paths.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:allowedChildObjectTypeIds Id's of the set of object-types that can be created, moved
or filed into this folder.
See section 2.1.5.1.2 Filing Restrictions by Object-Type.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: multi
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: FALSE
Orderable: FALSE

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 56 of 331

2.1.6 Relationship Object

A relationship object is semantically a dependent object. A relationship object MUST NOT have a content
stream, and MUST NOT be versionable, MAY be queryable, and MUST NOT be fileable, although it MAY
be controllable.

If a repository does not support relationship objects, the relationship base object-type SHOULD NOT be
returned by a getTypeChildren service call.

A relationship object instantiates an explicit, binary, directional, non-invasive, and typed relationship between
a source object and a target object. The source object and the target object MUST both be independent
objects, such as a document object, a folder object, a policy object, or an item object. Whether a policy
object is allowed to be the source or target object of a relationship object is repository-specific.

The relationship instantiated by a relationship object is explicit since it is explicitly represented by an object
and is explicitly managed by application.

This relationship is non-invasive in the sense that creating or removing this relationship SHOULD NOT
modify either the source or the target object. That is, it SHOULD NOT require an update capability (or
permission) on either object; SHOULD NOT affect the versioning state of either object; and SHOULD NOT
change their "Last Modification Date".

Explicit relationships can be used to create an arbitrary relationship graph among independent objects.
Such a relationship graph is only structural in nature. No inheritance or transitive properties are attached to
a relationship graph.

The notion of a source object and a target object of a relationship is used solely to indicate the direction of
the relationship. No semantics or implementation bias is implied by this terminology.

The binding of a relationship object to a source document object or to a target document object MAY be
either version-specific or version-independent. This version sensitivity is repository-specific, and is largely
transparent to CMIS. An independent object MAY participate in any number of explicit relationships, as the
source object for some and as the target object for others. Multiple relationships MAY exist between the
same pair of source and target objects.

Referential integrity, either between the source object and the target object, or between the relationship
object and the source or target object, is repository-specific. Therefore, creating an explicit relationship
between two objects MAY impose a constraint on any of the three objects, and removing a relationship or
deleting either the source or the target object MAY be restricted by such a constraint. If the source or the
target object of a relationship is deleted, the repository MAY automatically delete the relationship object.

Like all CMIS objects, relationship objects are typed. Typing relationship allows them to be grouped, identi-
fied, and traversed by type id, and for properties to be defined for individual relationship types.

Additionally, a relationship object-type MAY specify that only objects of a specific object-type can participate
as the source object or target object for relationship objects of that type. If no such constraints are specified,
then an independent object of any type MAY be the source or the target of a relationship object of that type.

When a relationship object is created, the source object id and the target object id MUST reference valid
non-relationship CMIS objects. When a relationship object is retrieved, its source object or target object
MAY no longer exist, since referential integrity MAY not be maintained by a repository.

In addition to object CRUD services, a getObjectRelationships service may be used to return a set
of relationship objects in which a given independent object is identified as the source or the target object,
according to the binding semantics maintained by the repository (i.e., either a version-specific or a version-
independent binding as described above).

2.1.6.1 Relationship Object-Type Definition

This section describes the definition of the relationship object-type's attribute values and property definitions
which must be present on relationship instance objects. All attributes and property definitions are listed by
their id.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 57 of 331

2.1.6.1.1 Attributes specific to Relationship Object-Types

The following object attributesMUST only apply to object-type definitions whose baseId is the cmis:relationship
object-type, in addition to the common attributes specified above:

allowedSourceTypes Id (multi-valued)
A list of object-type ids, indicating that the source object of a relationship object of this type
MUST only be one of the types listed.
If this attribute is "not set", then the source object MAY be of any type.

allowedTargetTypes Id (multi-valued)
A list of object-type ids, indicating that the target object of a relationship object of this type
MUST only be one of the types listed.
If this attribute is "not set", then the target object MAY be of any type.

2.1.6.1.2 Attribute Values

The relationship object-type MUST have the following attribute values.

Notes:

• A value of <repository-specific> indicates that the value of the property MAY be set to any valid value
for the attribute type.

• Unless explicitly stated otherwise, all values specified in the list MUST be followed for the object-type
definition.

id
Value: cmis:relationship

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:relationship

displayName
Value: <repository-specific>

baseId
Value: cmis:relationship

parentId
Value: MUST NOT be set

description
Value: <repository-specific>

creatable
Value: <repository-specific>

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 58 of 331

fileable
Value: FALSE

queryable
Value: <repository-specific>

controllablePolicy
Value: <repository-specific>

controllableACL
Value: <repository-specific>

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

allowedSourceTypes
Value: <repository-specific>

allowedTargetTypes
Value: <repository-specific>

2.1.6.1.3 Property Definitions

The relationship base object-type MUST have the following property definitions, and MAY include additional
property definitions. Any attributes not specified for the property definition are repository specific. For all
property definitions on base types, the query name MUST be the same as the property id. The repository
MUST have the following property definitions on the relationship object-type:

cmis:name Name of the object.

Property Type: String
Inherited: FALSE
Required: TRUE
Cardinality: single
Updatability: SHOULD be readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: SHOULD be TRUE

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 59 of 331

cmis:description Description of the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: SHOULD be readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

If the repository doesn't support object descriptions, the Updatability SHOULD be readonly and
the repository SHOULD return a "not set" value for this property.

cmis:objectId Id of the object.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:baseTypeId Id of the base object-type for the object.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 60 of 331

cmis:objectTypeId Id of the object's type.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:secondaryObjectTypeIds Ids of the object's secondary types.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: multi
Updatability: readwrite if secondary types are supported,

readonly otherwise
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: FALSE

If the repository does not support secondary types, the repository MUST return "not set".

cmis:createdBy User who created the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 61 of 331

cmis:creationDate DateTime when the object was created.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:lastModifiedBy User who last modified the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:lastModificationDate DateTime when the object was last modified.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 62 of 331

cmis:changeToken Opaque token used for optimistic locking and concurrency
checking. (See section 2.2.1.3 Change Tokens.)

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: FALSE
Orderable: FALSE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it. If the repository does not support change tokens, this property SHOULD not be set.

cmis:sourceId Id of the source object of the relationship.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 63 of 331

cmis:targetId Id of the target object of the relationship.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 64 of 331

2.1.7 Policy Object

A policy object represents an administrative policy that can be enforced by a repository. CMIS does not
specify what kinds of administrative policies that are specifically supported, nor attempts to model admin-
istrative policy of any particular kind. Only a base object-type is specified for policy objects. Each policy
object holds the text of an administrative policy as a repository-specific string, which is opaque to CMIS and
which may be used to support policies of various kinds. A repository may create subtypes of this base type
to support different kinds of administrative policies more specifically. If a repository does not support policy
objects, the policy base object-type SHOULD NOT be returned by a getTypeChildren service call. This
is an extension point for repositories that want to expose other capabilities via CMIS that are not supported
directly in CMIS.

Aside from allowing an application to create and maintain policy objects, CMIS allows an application to
"apply" a policy to an object, and to remove an applied policy from an object. An object to which a policy
may be applied is called a controllable object. A policy MAY be applied to multiple controllable objects.
Conversely, a repository MAY allow multiple policies applied to a controllable object. (A repository may, for
example, impose constraints such as only one policy of each kind can be applied to an object.) Whether
or not an object is controllable is specified by the object's type definition. Applying a policy to an object is
to place the object under the control of that policy (while the object may also be under the control of other
policies at the same time), and removing an applied policy from one of its controlled objects is to remove the
corresponding control from that object. This control may change the state of the object, may impose certain
constraints on service calls operating on this object, or may cause certain management actions to take place.
The effect of this control, when this effect takes place, and how this control interacts with other controls, are
repository-specific. Only directly/explicitly applied policies are covered by CMIS. Indirectly applying policy
to an object, e.g. through inheritance, is outside the scope of CMIS.

A policy object does not have a content stream and is not versionable. It may be fileable, queryable or
controllable. Policy objects are handled using the basic CRUD services for objects. If a policy is updated,
the changemay alter the corresponding control on objects that the policy is currently applied to. If a controlled
object is deleted, all the policies applied to that object, if there are any, are removed from that object. A policy
object that is currently applied to one or more controllable objects CAN NOT be deleted. That is, there is
an implicit referential constraint from a controlled object to its controlling policy object(s). Besides the basic
CRUD services, the applyPolicy and the removePolicy services may be used to apply a policy object
to a controllable object and respectively to remove an applied policy from one of its controlled objects. In
addition, the getAppliedPolicies service may be used to obtain the policy objects that are currently
applied to a controllable object.

2.1.7.1 Policy Object-Type Definition

This section describes the definition of the policy object-type's attribute values and property definitions which
must be present on policy instance objects. All attributes and property definitions are listed by their id.

2.1.7.1.1 Attribute Values

The policy object-type MUST have the following attribute values.

Notes:

• A value of <repository-specific> indicates that the value of the property MAY be set to any valid value
for the attribute type.

• Unless explicitly stated otherwise, all values specified in the list MUST be followed for the object-type
definition.

id
Value: cmis:policy

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 65 of 331

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:policy

displayName
Value: <repository-specific>

baseId
Value: cmis:policy

parentId
Value: MUST NOT be set

description
Value: <repository-specific>

creatable
Value: <repository-specific>

fileable
Value: <repository-specific>

queryable
Value: <repository-specific>

controllablePolicy
Value: <repository-specific>

controllableACL
Value: <repository-specific>

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 66 of 331

2.1.7.1.2 Property Definitions

The policy base object-type MUST have the following property definitions, and MAY include additional prop-
erty definitions. Any attributes not specified for the property definition are repository specific. For all property
definitions on base types, the query name MUST be the same as the property id. The repository MUST have
the following property definitions on the policy object-type:

cmis:name Name of the object.

Property Type: String
Inherited: FALSE
Required: TRUE
Cardinality: single
Updatability: SHOULD be readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: SHOULD be TRUE

cmis:description Description of the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: SHOULD be readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

If the repository doesn't support object descriptions, the Updatability SHOULD be readonly and
the repository SHOULD return a "not set" value for this property.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 67 of 331

cmis:objectId Id of the object.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:baseTypeId Id of the base object-type for the object.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:objectTypeId Id of the object's type.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 68 of 331

cmis:secondaryObjectTypeIds Ids of the object's secondary types.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: multi
Updatability: readwrite if secondary types are supported,

readonly otherwise
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: FALSE

If the repository does not support secondary types, the repository MUST return "not set".

cmis:createdBy User who created the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:creationDate DateTime when the object was created.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 69 of 331

cmis:lastModifiedBy User who last modified the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:lastModificationDate DateTime when the object was last modified.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:changeToken Opaque token used for optimistic locking and concurrency
checking.(See section 2.2.1.3 Change Tokens.)

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: FALSE
Orderable: FALSE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it. If the repository does not support change tokens, this property SHOULD not be set.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 70 of 331

cmis:policyText User-friendly description of the policy.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 71 of 331

2.1.8 Item Object

The item object is an extension point for repositories that want to expose other object types via CMIS that do
not fit the definition for document, folder, relationship or policy. For example an independently persistable
collection of properties that was not versionable and did not have content. Another example could be a base
identity object for users and groups.

A repository may create subtypes of this base type to support different kinds of generic base objects more
specifically. If a repository does not support item objects, the item base object-type SHOULD NOT be
returned by a getTypeChildren service call. Like the other CMIS objects (folder, policy and relationship),
item objects are not versionable and do not have content. Item objects are manipulated with the basic CRUD
operations as well as with query if the repository has them marked as queryable.

2.1.8.1 Item Object-Type Definition

This section describes the definition of the item object-type's attribute values and property definitions which
must be present on item instance objects. All attributes and property definitions are listed by their id.

2.1.8.1.1 Attribute Values

The item object-type MUST have the following attribute values.

Notes:

• A value of <repository-specific> indicates that the value of the property MAY be set to any valid value
for the attribute type.

• Unless explicitly stated otherwise, all values specified in the list MUST be followed for the object-type
definition.

id
Value: cmis:item

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:item

displayName
Value: <repository-specific>

baseId
Value: cmis:item

parentId
Value: MUST NOT be set

description
Value: <repository-specific>

creatable
Value: <repository-specific>

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 72 of 331

fileable
Value: <repository-specific>

queryable
Value: <repository-specific>

controllablePolicy
Value: <repository-specific>

controllableACL
Value: <repository-specific>

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

2.1.8.1.2 Property Definitions

The item base object-type MUST have the following property definitions, and MAY include additional prop-
erty definitions. Any attributes not specified for the property definition are repository specific. For all property
definitions on base types, the query name MUST be the same as the property id. The repository MUST have
the following property definitions on the item object-type:

cmis:name Name of the object.

Property Type: String
Inherited: FALSE
Required: TRUE
Cardinality: single
Updatability: SHOULD be readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: SHOULD be TRUE

If the repository does not support names for items, it MAY ignore the value of this property
when provided by a client. The repository MUST return a name even if the item has no name.
It MAY return the object id in this case.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 73 of 331

cmis:description Description of the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: SHOULD be readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository specific>
Orderable: <repository specific>

If the repository doesn't support object descriptions, the Updatability SHOULD be readonly and
the repository SHOULD return a "not set" value for this property.

cmis:objectId Id of the object.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:baseTypeId Id of the base object-type for the object.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 74 of 331

cmis:objectTypeId Id of the object's type.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository specific>

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:secondaryObjectTypeIds Ids of the object's secondary types.

Property Type: Id
Inherited: FALSE
Required: FALSE
Cardinality: multi
Updatability: readwrite if secondary types are supported, readonly oth-

erwise
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: FALSE

If the repository does not support secondary types, the repository MUST return "not set".

cmis:createdBy User who created the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 75 of 331

cmis:creationDate DateTime when the object was created.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:lastModifiedBy User who last modified the object.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

cmis:lastModificationDate DateTime when the object was last modified.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: TRUE
Orderable: TRUE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 76 of 331

cmis:changeToken Opaque token used for optimistic locking and concurrency
checking.(See section 2.2.1.3 Change Tokens.)

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readonly
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: FALSE
Orderable: FALSE

The repository MUST return this property with a non-empty value if the property filter does not
exclude it. If the repository does not support change tokens, this property SHOULD not be set.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 77 of 331

2.1.9 Secondary Object-Types

A secondary type defines a set of properties that can be dynamically added to and removed from objects.
That is, an object can get and lose additional properties that are not defined by its primary type during its
lifetime. Multiple secondary types can be applied to the same object at the same time.

Secondary types can be simple markers without properties. Alternatively, they can contain technical in-
formation about an object. For example, a repository might analyze the content of a document, detects a
photo and adds a secondary type that adds EXIF data to the document. Applications might want to attach
temporary data to an object such the state of the object in a workflow. Secondary types may also change
the behaviour of the repository.

The CMIS specification does not define the semantics of secondary types with the exception of secondary
types for retentions and holds (see section 2.1.16 Retentions and Holds). CMIS provides a way to apply
and remove secondary types to/from an object. Additionally, CMIS provides an optional ability to create,
update and remove secondary types.

If a repository does not support secondary types, the secondary type base object-type cmis:secondary
SHOULD NOT be returned by a getTypeChildren service call.

The base object-type does not specify any property definitions and its sole purpose is to be the root type of
all other secondary object-types. Repositories MAY provide property definitions on the base type that are
then inherited by other secondary object-types.

Secondary types can be applied to and removed from an object at any time. An object MAY have zero or
more secondary types assigned to it. When a secondary type is applied, the object provides the properties
that are defined by the secondary type. When a secondary type is removed, it loses these properties and
its values.

A repository MAY not allow applying or removing certain secondary object-types to certain objects based on
rules that are not determined in this specification. The repository SHOULD throw a constraint exception
if such an operation is not allowed. Secondary object-types CANNOT be used as primary object-types. That
is, when an object is created, its object-type has to be either one of the other base types or an object-type
that is derived from the other base types. Hence, a secondary object-type MUST NOT be creatable.

Whether an object is fileable, versionable or controllable is determined by its primary object-type.

2.1.9.1 Secondary Type Application

Secondary types can be applied at creation time by populating the multi-value property
cmis:secondaryObjectTypeIds with the ids of the secondary types. All properties defined by
these secondary types can be set as well.

Secondary types can be added and removed later by changing the cmis:secondaryObjectTypeIds
property, either through the updateProperties service or the checkIn service. Adding the id of a sec-
ondary type to this multi value property adds the secondary type. Removing the id of a secondary type from
this multi value property removes the type and all associated properties and values.

A repository MUST throw a constraint exception if a secondary type cannot be added or removed.

Adding a secondary type and providing values for the associated properties of this secondary type MAY be
done in the same operation.

2.1.9.2 Secondary Object-Type Definition

This section describes the definition of the secondary object-type's attribute values. All attributes are listed
by their id.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 78 of 331

2.1.9.2.1 Attribute Values

The secondary object-type MUST have the following attribute values.

Notes:

• A value of <repository-specific> indicates that the value of the property MAY be set to any valid value
for the attribute type.

• Unless explicitly stated otherwise, all values specified in the list MUST be followed for the object-type
definition.

id
Value: cmis:secondary

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:secondary

displayName
Value: <repository-specific>

baseId
Value: cmis:secondary

parentId
Value: MUST NOT be set

description
Value: <repository-specific>

creatable
Value: FALSE

fileable
Value: FALSE

queryable
Value: <repository-specific>

controllablePolicy
Value: FALSE

controllableACL
Value: FALSE

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 79 of 331

Note: This attribute defines if the properties of this secondary type are full-text indexed. It does not make a
statement about the content.

2.1.9.2.2 Property Definitions

The secondary base object-type has no properties. Repositories MAY provide custom property definitions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 80 of 331

2.1.10 Object-Type Creation, Modification and Deletion

A repository MAY support the creation, modification and deletion of primary and secondary object-types.

Each object-type definition SHOULD include a set of flags that indicate if the object-type can be used as a
parent type or if the object-type can be modified or deleted. Please see section 2.1.3.2.1 Attributes common
to ALL Object-Type Definitions for details.

These flags are not to be interpreted as the rights for the current user. These are the rights that would
apply to an administrator user or a user that has sufficient rights to modify metadata. For example, a non-
administrator would see that an object-type is extendable (the type mutability capabilities create flag is set
to TRUE) even though they would not be allowed to actually perform the operation. If a user tries to create,
modify or delete a type definition and does not have the required permissions, the repository MUST return
a permissionDenied error.

A repository MAY also place additional restrictions on these operations where necessary. These restrictions
are repository specific.

2.1.10.1 General Constraints on Metadata Changes

The optional capabilities capabilityNewTypeSettableAttributes and capabilityCreat-
ablePropertyTypes SHOULD indicate which object-type attributes can be set by a client and which
properties data types can be used to create or extend an object-type.

Note, that the client CANNOT define whether a new object-type can be used as a parent type, or can be
updated or deleted. How the repository determines a given object-type's mutability capabilities is repository
specific.

When an object-type is created the client MUST suggest a type id for the new object-type. The repository
may do the following with this suggested value:

• Use it exactly as specified.
e.g. input = invoice : returned value = invoice

• Modify it with the addition of a prefix, suffix or both.
e.g. input = invoice : returned value = invoice_FAF5D0C5-BBE9

• Return a completely different value.
e.g. input = invoice : returned value = FAF5D0C5-BBE9-4E47-BB17-C9FE63B4EE20

When a property definition is created the client MUST suggest a property definition id for the new property.
The repository may do the following with this suggested value:

• Use it exactly as specified.
e.g. input = amount : returned value = amount

• Modify it with the addition of a prefix, suffix or both.
e.g. input = amount: returned value = amount_12AB

• Return a completely different value.
e.g. input = amount: returned value = 12AB-23CD

When an object-type is created or updated, the repository MUST return the created or updated type defini-
tion whereby the order of ALL newly created property definitions MUST match the order of the input. This is
so that there will be no ambiguity for clients who need to know which property matches a specific suggested
Id value for a new property definition. This special ordering is only required for the return value for cre-
ateType and updateType. There is no special ordering of the properties returned for subsequent calls to
getTypeDefinition for this new or modified type.

When an object-type is updated the following rules MUST be obeyed:

• Inherited properties MUST NOT be modified. This includes constraints of any kind.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 81 of 331

• Properties defined by the CMIS specification MUST NOT be modified. This includes constraints of
any kind.

• Only leaf types may be modified. That is, if a type already has child types defined then it (and all of its
properties and constraints) MUST be considered read only.

• Any added properties marked as "required" MUST have a default value.

• Required properties MAY be changed to optional.

• Optional properties MUST NOT be changed to required.

• Property definitions MUST NOT be removed.

• Property choice constraints MAY be changed in the following manner:

– 'Open choice' MAY change from FALSE to TRUE.
– 'Open choice' MUST NOT change from TRUE to FALSE.
– Choices MAY be added or removed if 'open choice' is TRUE.
– Choices MUST NOT be removed if 'open choice' is FALSE.

• Validation constraints (min/max length, min/max value, etc.) on existing properties MAY be relaxed
but they MUST NOT be further restricted. For example, an integer property value that originally had a
minimum constraint of 100 and a maximum constraint of 1000 could change as follows:

– A new minimum could be changed to 50 but could not be changed to 150.
– A new maximum could be changed to 1100 but could not be changed to 900.

This ensures that the new constraints will not leave any existing data out of the permitted constraint
range.

• An existing property type's data type and cardinality MUST NOT be changed. For example, an Integer
property type MUST NOT be changed to a String.

The execution of the createType and updateType services MUST not affect the definition of any other
types or any other type's current property definitions. For example, any properties on the type being created
must not place constraints on other type's properties when/if other properties 'share' property definitions.

An object-type can only be deleted if there are no objects of this type and the object-type has no sub-types.
The deleteType service MUST return a constraint error if an instance of the object-type exists or the
object-type is a parent type of another object-type.

2.1.11 Object-Type Summary

The following diagrams illustrate the CMIS object model. Please note that they only reflect the logical model.
The CMIS bindings use slightly different data structures.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 82 of 331

cmis:document
cmis:isImmutable : DateTime
cmis:isLatestVersion : Boolean
cmis:isMajorVersion : Boolean
cmis:isPrivateWorkingCopy : Boolean
cmis:versionLabel : String
cmis:versionSeriesId : Id
cmis:isVersionSeriesCheckedOut : Boolean
cmis:versionSeriesCheckedOutBy : String
cmis:versionSeriesCheckedOutId : Id
cmis:checkinComment : String
cmis:contentStreamLength : Integer
cmis:contentStreamMimeType : String
cmis:contentStreamFileName : String
cmis:contentStreamId : Id

cmis:folder
cmis:parentId : Id
cmis:path : String
cmis:allowedChildObjectTypeIds : Id[]

cmis:relationship
cmis:sourceId : Id
cmis:targetId : Id

cmis:policy
cmis:policyText : String

Rendition
streamId : Id
mimeType : String
length : Integer
title : String
kind : String
height : Integer
width : Integer
renditionDocumentId : Id

1 0..*

1 0..*

ContentStream
length : Integer
mimeType : String
filename : String
stream : Binary

1

11 0..1

ACL
isExact : Boolean

ACE
permissions: String[]
isDirect : Boolean

1 1
Principal

principalId : String

1 0..1

1

0..*

cmis:item

cmis:secondary

cmis:rm_repMgtRetention

cmis:rm_hold
cmis:rm_holdIds : String[]

cmis:rm_clientMgtRetention
cmis:rm_expirationDate : DateTime
cmis:rm_startOfRetention : DateTime

cmis:rm_destructionRetention
cmis:rm_destructionDate : DateTime

CMIS Object
cmis:objectId : Id
cmis:baseTypeId : Id
cmis:objectTypeId : Id
cmis:secondaryObjectTypeIds : Id[]
cmis:name : String
cmis:description : String
cmis:createdBy : String
cmis:creationDate : DateTime
cmis:lastModifiedBy : String
cmis:lastModificationDate : DateTime
cmis:changeToken : String

0..*

0..*

1

0..*

target

1

0..*

source

Figure 2.2: CMIS Model

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 83 of 331

Property Type
id : Id
localName : String
localNamespace : String
queryName : String
displayName : String
description : String
propertyType : Enum
cardinality : Enum
updatability : Enum
inherited : Boolean
required : Boolean
queryable : Boolean
orderable : Boolean
openChoice : Boolean

Primary Object Type
id : Id
localName : String
localNamespace : String
queryName : String
displayName : String
baseId : Enum
parentId : Id
description : String
creatable : Boolean
fileable : Boolean
queryable : Boolean
controllablePolicy : Boolean
controllableACL : Boolean
fulltextIndexed : Boolean
includedInSupertypeQuery : Boolean
typeMutability.create : Boolean
typeMutability.update : Boolean
typeMutability.delete : Boolean

1

11..*

Integer Property Type
minValue : Integer
maxValue : Integer

DateTime Property Type
resolution : Enum

Decimal Property Type
precision : Enum
minValue : Decimal
maxValue : Decimal

String Property Type
maxLength : Integer

Boolean Property Type

URI Property Type

Id Property Type

HTML Property Type

Secondary Object Type
1

0..*

Document Object Type
versionable : Boolean
contentStreamAllowed : Enum

Folder Object Type

Policy Object Type

Relationship Object Type
allowedSourceTypes : Id[]
allowedTargetTypes : Id[]

Choice
displayName : String
value: <data type>

1 0..*

10..*

Default Value
value: <data type>1 0..1

Item Object Type

Figure 2.3: CMIS Object Types and Property Types

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 84 of 331

2.1.12 Access Control

A repository can support either a base set of CMIS-defined permissions and/or its own set of repository
specific permissions.

The getACL service allows the requestor to specify that the result be expressed using only the CMIS de-
fined permissions. Without this restriction, the response may include, or be solely expressed in repository
specific permissions. The applyACL service permits either CMIS permissions or repository permissions,
or a combination of both, to be used.

2.1.12.1 ACL, ACE, Principal, and Permission

An Access Control List (ACL) is a list of Access Control Entries (ACEs) and MAY hold zero
or more ACEs. If an ACL has no ACEs, the behavior is the same as if the ACL is not set.

An ACE holds:

• A principal that represents a user management object, e.g. a user, group, or role. It holds one string
with the principalId.

• One or more strings with the names of the permissions.

• A boolean flag direct which indicates if TRUE that the ACE is directly assigned to the object. If
FALSE, that the ACE is somehow derived or inherited.

2.1.12.2 CMIS Permissions

There are three basic permissions predefined by CMIS:

cmis:read Expresses the "permission to read" properties AND content of an object.

cmis:write Expresses the "permission to write" properties AND content of an object. It MAY include the
cmis:read permission.

cmis:all SHOULD express all the permissions of a repository. It SHOULD include all other basic CMIS
permissions.

How these basic permissions are mapped to the allowable actions is repository specific. However, the actual
repository semantics for the basic permissions with regard to allowable actions can be discovered by the
mappings parameter returned by the getRepositoryInfo service.

Repositories MAY extend this set with repository-specific permissions.

2.1.12.3 ACL Capabilities

Whether a repository supports ACLs at all, may be discovered via capabilityACL attribute returned by
the getRepositoryInfo service (see section 2.1.1.1 Optional Capabilities). If the value of the capabil-
ityACL attribute is none, ACLs are not supported by the repository.

If the value of the capabilityACL attribute is discover or manage, additional information about the
repository's permission model and how ACL modifications are handled are provided by the getReposi-
toryInfo service:

Enum propagation specifies how non-direct ACEs can be handled by the repository using the following
values (see section 2.2.10.1 applyACL):

objectonly indicates that the repository is able to apply ACEs to an object without changing the ACLs
of other objects.

propagate indicates that the ACEs might be inherited by other objects. propagate includes the
support for objectonly.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 85 of 331

repositorydetermined indicates that the repository has its own mechanism of computing how chang-
ing an ACL for an object influences the non-direct ACEs of other objects.

<Array> PermissionDefinition repositoryPermissions A list of names and descriptions of the supported
permissions.

<Array> PermissionMapping mappings Contains a list of basic CMIS permissions to allowable actions
mapping.

2.1.12.3.1 Supported Permissions

The list of permission definitions returned by the getRepositoryInfo service lists all the permissions a
repository supports. This list also includes the CMIS permissions if supported by the repository.

A PermissionDefinition holds:

String permission The (technical) name of the permission. Permission names MUST be unique within the
permission definition list.

String description An optional description of the permission that SHOULD be used as the permission's
name to be presented to the user.

2.1.12.3.2 AllowableActions and Permission Mapping

CMIS provides a mechanism called Allowable Actions which allows an application to discover the set of
service operations that can currently be performed on a particular object by the current user, without having
to actually invoke the service.

The set of allowable actions on an object at a point in time are affected not only by CMIS ACLs, but also by
other factors such as:

• Constraints inherent in the CMIS Domain Model based on the object's base type or current versioning
state.

• Policies or other control mechanisms that are opaque to CMIS.

CMIS defines several services that applications can use at run-time to discover the allowable actions for an
object.

If a repository supports ACLs, then the repository MUST provide a mapping table that defines how the
permissions supported by the repository interact with the CMIS allowable actions, i.e. which permissions
are necessary for a principal to have on one or more objects in order to potentially perform each action,
subject to the other constraints on allowable actions mentioned above.

This section defines both the allowable actions as well as how those actions are presented in the permission
mapping table.

The permission mapping table contains a set of key--permissions pairs:

String key Since several allowable actions require permissions on more than one object, the mapping table
is defined in terms of permission "keys". (For example, moving a document from one folder to another
may require permissions on the document and each of the folders.) Each key combines the name of
the allowable action and the object for which the principal needs the required permission.
For example, the canMoveObject.Source key indicates the permissions that the principal must
have on the "source folder" to move an object from that folder into another folder.

<Array> String permissions The name of one or more permissions that the principal MUST have. If more
than one permission is specified, then the principal MUST be allowed to perform the operation if they
have ANY of the listed permissions.

The following list defines all mapping keys, as well as a permissions mapping that repositories SHOULD
use. Repositories MAY require additional permissions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 86 of 331

For convenience, the list groups all mapping entries by the underlying allowable actions, and includes de-
scriptive information. For each allowable action the following information is given:

Description The description and name of the service the allowable action enables.

Base Type The base object-types for which the allowable action MAY be TRUE.

Operand The object the permission applies to.

Key The permission mapping key.

Permissions The permission values.

2.1.12.3.2.1 Navigation Services

canGetDescendants
Description: Can get the descendants of the folder (getDescendants and getFold-

erTree).
Base Type: cmis:folder
Operand: Folder
Key: canGetDescendants.Folder
Permission: cmis:read

canGetChildren
Description: Can get the children of the folder (getChildren).
Base Type: cmis:folder
Operand: Folder
Key: canGetChildren.Folder
Permission: cmis:read

canGetFolderParent
Description: Can get the parent folder of the folder (getFolderParent).
Base Type: cmis:folder
Operand: Folder
Key: canGetFolderParent.Object
Permission: cmis:read

canGetObjectParents

Description: Can get the parent folders of the object (getObjectParents).
Base Type: cmis:document, cmis:policy, cmis:item
Operand: Object
Key: canGetParents.Folder
Permission: cmis:read

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 87 of 331

2.1.12.3.2.2 Object Services

canCreateDocument
Description: Can create a cmis:document object in the specified folder (createDocument).
Base Type: cmis:folder
Operand: Folder
Key: canCreateDocument.Folder
Permission: cmis:read

canCreateFolder
Description: Can create a cmis:folder object as a child of the specified folder

(createFolder).
Base Type: cmis:folder
Operand: Folder
Key: canCreateFolder.Folder
Permission: cmis:read

canCreatePolicy

Description: Can create a cmis:policy object as a child of the specified folder
(createPolicy).

Base Type: cmis:folder
Operand: Folder
Key: canCreatePolicy.Folder
Permission: cmis:read

canCreateRelationship

Description: Can create a relationship object with the object as its source
(createRelationship).

Base Type: cmis:document, cmis:folder, cmis:policy, cmis:item
Operand: Object
Key: canCreateRelationship.Source
Permission: cmis:read

canCreateRelationship

Description: Can create a relationship object with the object as its target
(createRelationship).

Base Type: cmis:document, cmis:folder, cmis:policy, cmis:item
Operand: Object
Key: canCreateRelationship.Target
Permission: cmis:read

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 88 of 331

canGetProperties

Description: Can read the properties of the specified object (getProperties, getObject
and getObjectByPath).

Base Type: cmis:document, cmis:folder, cmis:relationship, cmis:policy, cmis:item
Operand: Object
Key: canGetProperties.Object
Permission: cmis:read

canUpdateProperties

Description: Can update the properties of the specified object (updateProperties).
Base Type: cmis:document, cmis:folder, cmis:relationship, cmis:policy, cmis:item
Operand: Object
Key: canUpdateProperties.Object
Permission: cmis:write

canMoveObject

Description: Can move the specified object (moveObject).
Base Type: cmis:document, cmis:folder, cmis:policy, cmis:item
Operand: Object
Key: canMove.Object
Permission: cmis:write

canMoveObject

Description: Can move an object into this folder (moveObject).
Base Type: cmis:folder
Operand: Folder
Key: canMove.Target
Permission: cmis:read

canMoveObject

Description: Can move an object from this folder (moveObject).
Base Type: cmis:folder
Operand: Folder
Key: canMove.Source
Permission: cmis:read

canDeleteObject

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 89 of 331

Description: Can delete the specified object (deleteObject).
Base Type: cmis:document, cmis:folder, cmis:relationship, cmis:policy, cmis:item
Operand: Object
Key: canDelete.Object
Permission: cmis:write

canGetContentStream
Description: Can get the content stream for the document object (getContentStream).
Base Type: cmis:document
Operand: Object
Key: canViewContent.Object
Permission: cmis:write

canSetContentStream
Description: Can set the content stream for the document object (setContentStream).
Base Type: cmis:document
Operand: Object
Key: canSetContent.Document
Permission: cmis:write

canDeleteContentStream
Description: Can delete the content stream for the Document object

(deleteContentStream).
Base Type: cmis:document
Operand: Object
Key: canDeleteContent.Document
Permission: cmis:write

canDeleteTree
Description: Can delete the specified folder and all contained objects (deleteTree).
Base Type: cmis:folder
Operand: Object
Key: canDeleteTree.Folder
Permission: cmis:write

2.1.12.3.2.3 Filing Services

canAddObjectToFolder

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 90 of 331

Description: Can file the object in a folder (addObjectToFolder).
Base Type: cmis:document, cmis:policy, cmis:item
Operand: Object
Key: canAddToFolder.Object
Permission: cmis:read

canAddObjectToFolder

Description: Can file an object in the specified folder (addObjectToFolder).
Base Type: cmis:document, cmis:policy, cmis:item
Operand: Folder
Key: canAddToFolder.Folder
Permission: cmis:read

canRemoveObjectFromFolder

Description: Can unfile the specified document from a folder (removeObjectFromFolder).
Base Type: cmis:document, cmis:policy, cmis:item
Operand: Object
Key: canRemoveFromFolder.Object
Permission: cmis:read

canRemoveObjectFromFolder

Description: Can unfile an object from the specified folder (removeObjectFromFolder).
Base Type: cmis:document, cmis:policy
Operand: Folder
Key: canRemoveFromFolder.Folder
Permission: cmis:read

2.1.12.3.2.4 Versioning Services

canCheckOut
Description: Can check out the specified document (checkOut).
Base Type: cmis:document
Operand: Object
Key: canCheckout.Document
Permission: cmis:write

canCancelCheckOut

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 91 of 331

Description: Can cancel the check out the specified PWC (cancelCheckOut).
Base Type: cmis:document
Operand: Object
Key: canCancelCheckout.Document
Permission: cmis:write

canCheckIn
Description: Can check in the specified PWC (checkIn).
Base Type: cmis:document
Operand: Object
Key: canCheckin.Document
Permission: cmis:write

canGetAllVersions
Description: Can get the version series of the specified document (getAllVersions).
Base Type: cmis:document
Operand: Object
Key: canGetAllVersions.VersionSeries
Permission: cmis:read

2.1.12.3.2.5 Relationship Services

canGetObjectRelationships

Description: Can get the relationship in which this object is a source or a target
(getObjectRelationships).

Base Type: cmis:document, cmis:folder, cmis:policy, cmis:item
Operand: Object
Key: canGetObjectRelationships.Object
Permission: cmis:read

2.1.12.3.2.6 Policy Services

canApplyPolicy

Description: Can apply a policy to the specified object (applyPolicy).
Base Type: cmis:document, cmis:folder, cmis:policy, cmis:relationship, cmis:item
Operand: Object
Key: canAddPolicy.Object
Permission: cmis:read

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 92 of 331

canApplyPolicy

Description: Can apply the specified policy to an object (applyPolicy).
Base Type: cmis:policy
Operand: Object
Key: canAddPolicy.Policy
Permission: cmis:read

canRemovePolicy

Description: Can remove a policy from the specified object (removePolicy).
Base Type: cmis:document, cmis:folder, cmis:policy, cmis:relationship, cmis:item
Operand: Object
Key: canRemovePolicy.Object
Permission: cmis:read

canRemovePolicy

Description: Can remove the specified policy from an object (removePolicy).
Base Type: cmis:policy
Operand: Object
Key: canRemovePolicy.Policy
Permission: cmis:read

canGetAppliedPolicies

Description: Can get the list of policies applied to the specified object
(getAppliedPolicies).

Base Type: cmis:document, cmis:folder, cmis:policy, cmis:relationship, cmis:item
Operand: Object
Key: canGetAppliedPolicies.Object
Permission: cmis:read

2.1.12.3.2.7 ACL Services

canGetACL
Description: Can get ACL of the specified object (getACL).
Base Type: cmis:document, cmis:folder, cmis:relationship, cmis:policy, cmis:item
Operand: Object
Key: canGetACL.Object
Permission: cmis:read

canApplyACL

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 93 of 331

Description: Can apply ACL to this object (applyACL).
Base Type: cmis:document, cmis:folder, cmis:relationship, cmis:policy, cmis:item
Operand: Object
Key: canApplyACL.Object
Permission: cmis:write

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 94 of 331

2.1.13 Versioning

CMIS supports versioning of document objects. Folder objects, relationship objects, policy objects, and item
objects cannot be versioned.

Whether or not a document object is versionable (i.e. whether or not operations performed on the object via
the Versioning Services MUST be allowed) is specified by the "versionable" attribute on its object-type.

A version of a document object is an explicit/"deep" copy of the object, preserving its state at a certain point
in time. Each version of a document object is itself a document object, i.e. has its own object id, property
values, MAY be acted upon using all CMIS services that act upon document objects, etc.

2.1.13.1 Version Series

A version series for a document object is a transitively closed collection of all document objects, other
than any Private Working Copy (see section 2.1.13.5.1 Checkout), that have been created from an original
document in the repository. Each version series has a unique, system-assigned, and immutable version
series id.

The version series has transitive closure -- that is, if object B is a version of object A, and object C is a version
of object B, then object C is also a version of object A. The objects in a version series can be conceptually
sequenced by their respective creation date properties (cmis:creationDate).

Additionally, the repository MAY expose a textual version label (cmis:versionLabel) that describes to a
user the position of an individual object with respect to the version series. (For example, version 1.0).

Note: A document object that is NOT versionable will always have a single object in its version series. A
versionable document object MAY have one or more objects in its version series.

2.1.13.2 Latest Version

The version that has the most recent last modification date (cmis:lastModificationDate) is called the
latest version of the series, or equivalently, the latest version of any document object in the series.

When the latest version of a version series is deleted, a previous version (if there is one) becomes the latest
version.

2.1.13.3 Behavioral constraints on non-Latest Versions

Repositories NEEDNOT allow the non-latest versions in a version series to be updated, queried, or searched.

2.1.13.4 Major Versions

A document object in a version series MAY be designated as a major version.

The CMIS specification does not define any semantic/behavioral differences between major and non-major
versions in a version series. Repositories may enforce/apply additional constraints or semantics for major
versions, if the effect on CMIS services remains consistent with an allowable behavior of the CMIS model.

If the version series contains one or more major versions, the one that has the most recent last modification
date (property cmis:lastModificationDate) is the latest major version of the version series.

(Note that while a version series MUST always have a latest version, it NEED NOT have a latest major
version.)

When the latest major version is deleted, a previous major version (if there is one) becomes the latest major
version.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 95 of 331

2.1.13.5 Services that modify Version Series

2.1.13.5.1 Checkout

A new version of a versionable document object is created when the checkIn service is invoked on the
Private Working Copy (PWC) of this object. A PWC is created by invoking checkOut on a versionable
document object. A repository MAY allow any document object in a version series to be checked out, or
MAY only allow the latest version to be checked out.

The effects of invoking the checkOut service MUST be as follows:

• A new document object, referred to herein as the Private Working Copy (PWC), is created. The object
id of this new document object MUST be unique and MUST NOT be equal to the id of the object on
which the checkOut service was invoked.

• The PWC NEED NOT be visible to users who have permissions to view other document objects in the
version series.

• The value of the cmis:isPrivateWorkingCopy property MUST be TRUE.

• The PWC is NOT to be considered a version in the version series but inherits the version series id
from the document it was created from.

• Therefore, until it is checked in (using the checkIn service), the PWC MUST NOT be considered the
latest or latest major version in the version series. That is, the values of the cmis:isLatestVersion
and cmis:isLatestMajorVersion properties MUST be FALSE.

• The property values for the PWC SHOULD be identical to the properties of the document object on
which the checkOut service was invoked. Certain properties may be different. Properties such as
cmis:creationDate most likely will be different. The content stream of the PWC MAY be identical
to the content stream of the document object on which the checkOut service was invoked, or MAY
be "not set".

After a successful checkOut operation is completed, and until such time when the PWC is deleted (via the
cancelCheckOut service) or checked-in (via the checkIn service), the effects on the PWC or on other
documents in the version series MUST be as follows:

• The repository MUST throw an exception if the checkOut service is invoked on any document in the
version series. (I.e. there can only be one PWC for a version series at a time.)

• The value of the cmis:isVersionSeriesCheckedOut property MUST be TRUE.

• The value of the cmis:versionSeriesCheckedOutBy property SHOULD be set to a value indicat-
ing which user created the PWC. (The repository MAY still show the "not set" value for this property if,
for example, the information is not available or the current user has not sufficient permissions.)

• The value of the cmis:versionSeriesCheckedOutId property SHOULD be set to the object id of
the PWC. (The repository MAY still show the "not set" value for this property if the current user has no
permissions to see the PWC).

• The repository MAY prevent operations that modify or delete the other documents in the version series.

2.1.13.5.2 Updates to the Private Working Copy

If the repository supports the optional "PWCUpdatable" capability, then the repository MUST allow autho-
rized users to modify the PWC object using the object services (e.g. updateProperties and setCon-
tentStream).

If the repository doesNOT support the "PWCUpdatable" capability, then the PWCobject can only bemodified
as part of the checkIn service call.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 96 of 331

2.1.13.5.3 Discarding Check out

An authorized user MAY discard the check-out using the cancelCheckOut service on the PWC object or
by using the deleteObject service on the PWC object. The effects of discarding a check-out MUST be
as follows:

• The PWC Object MUST be deleted.

• For all other documents in the version series:

– The value of the cmis:isVersionSeriesCheckedOut property MUST be FALSE.

– The value of the cmis:versionSeriesCheckedOutBy property MUST be "not set".

– The value of the cmis:versionSeriesCheckedOutId property MUST be "not set".

– The repository MUST allow authorized users to invoke the checkOut service.

2.1.13.5.4 Checkin

An authorized user MAY "check in" the Private Working Copy object via the checkIn service.

The checkIn service allows users to provide update property values and a content stream for the PWC
object.

The effects of the checkIn service MUST be as follows for successful checkins:

• The PWC object MUST be updated as specified by the inputs to the checkIn service. (Note that
for repositories that do NOT support the "PWCUpdatable" property, this is the only way to update the
PWC object.)

• The document object resulting from the checkIn service MUST be considered the latest version in
the version series.

• If the inputs to the checkIn service specified that the PWC MUST be a "major version", then the newly
created version MUST be considered the latest major version in the version series.

• If the check-in returns a new cmis:objectId, then the PWC object MUST disappear if the checkIn
call was successful and the new checked in version will use the new specified id.

• For all documents in the version series:

– The value of the cmis:isVersionSeriesCheckedOut property MUST be FALSE.

– The value of the cmis:versionSeriesCheckedOutBy property MUST be "not set".

– The value of the cmis:versionSeriesCheckedOutId property MUST be "not set".

– The repository MUST allow authorized users to invoke the checkOut service.

Note: A repository MAY automatically create new versions of document objects without an explicit invocation
of the checkOut/checkIn services.

2.1.13.6 Versioning Properties on Document Objects

All document objects will have the following read-only property values pertaining to versioning:

cmis:isPrivateWorkingCopy Boolean
TRUE if the document object is a Private Working Copy. FALSE otherwise.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 97 of 331

cmis:isLatestVersion Boolean
TRUE if the document object is the latest version (most recent last modification date) in its
version series. FALSE otherwise. MUST be FALSE for Private Working Copy objects.

cmis:isMajorVersion Boolean
TRUE if the document object is a major version in its version series. FALSE otherwise. MUST
be FALSE for Private Working Copy objects.

cmis:isLatestMajorVersion Boolean
TRUE if the document object is the latest major version in its version series. FALSE otherwise.
MUST be FALSE for Private Working Copy objects.

cmis:versionLabel String
Textual description the position of an individual object with respect to the version series. (For
example, "version 1.0"). MAY be "not set".

cmis:versionSeriesId Id
Id of the version series for this object.

cmis:isVersionSeriesCheckedOut Boolean
TRUE if there currenly exists a Private Working Copy for this version series. FALSE otherwise.

cmis:versionSeriesCheckedOutBy String
If cmis:isVersionSeriesCheckedOut is TRUE: An identifier for the user who created the
Private Working Copy. "Not set" otherwise.

cmis:versionSeriesCheckedOutId String
If cmis:isVersionSeriesCheckedOut is TRUE: The object id for the Private Working
Copy. "Not set" otherwise.

cmis:checkinComment String
Textual comment associated with the given version. MAY be "not set".

Note: Changes made via the Versioning Services that affect the values of these properties MUST
NOT constitute modifications to the document objects in the version series (e.g. MUST NOT affect the
cmis:lastModificationDate, etc.).

2.1.13.7 Document Creation and Initial Versioning State

When calling the createDocument service or the createDocumentFromSource service, a version-
ingState parameter can be used to specify what the versioning state of the newly-created object MUST
be.

A repository MAY create new document objects in a "Private Working Copy" state. This state is logically
equivalent to having a version series that contains exactly one object (the PWC) and 0 other documents.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 98 of 331

The repository MAY also create new document objects in a "major version" state. This state is logically
equivalent to having a version series that contains exactly one major version and 0 other documents.

The repository MAY also create new document objects in a "non-major version" state. This state is logically
equivalent to having a version series that contains exactly one non-major version and 0 other documents.

If the repository does not support versioning the repositoryMUST ignore the value of the versioningState
parameter.

2.1.13.8 Version Specific/Independent membership in Folders

Repositories MAY treat membership of a document object in a folder collection as "version-specific" or
"version-independent".

Repositories MUST indicate whether they support version-specific membership in a folder via the "capabil-
ityVersionSpecificFiling" optional capability flag. (See section 2.1.1.1 Optional Capabilities.)

If the repository is treating folder collection membership as "version-independent", then:

• Moving or filing a document object into a folder MUST result in ALL documents in the version series
being moved/filed into the folder.

• The repository MAY return only the latest-version OR latest major-version document object in a version
series in the response to Navigation service requests (getChildren, getDescendants), and NEED
NOT return other document objects filed in the folder that are in the version series.

If the repository is treating folder collection membership as "version-specific", then moving or filing a docu-
ment object into a folder MUST NOT result in other documents in the version series being moved/filed.

2.1.13.9 Version Specific/Independent membership in Relationships

A relationship object MAY have either a version-specific or version-independent binding to its source and/or
target objects. This behavior MAY vary between repositories and between individual relationship types
defined for a repository.

If a relationship object has a version-independent binding to its source/target object, then:

• The getObjectRelationships service invoked on a document object MUST return the relationship
if relationship was source/target is set to ANY Document Object in the version series.

If a relationship object has a version-specific binding to its source/target object, then:

• The getObjectRelationships service invoked on a document object MUST return the relationship
if relationship was source/target is set to the id of the document object on which the service was
invoked.

2.1.13.10 Versioning visibility in Query Services

Repositories MAY include non-latest-versions of document objects in results to the query service.

Repositories MUST indicate whether they support querying for non-latest-versions via the "capabilityAllVer-
sionsSearchable" optional capability flag. (See section 2.1.1.1 Optional Capabilities.)

If "capabilityAllVersionsSearchable" is TRUE then the repository MUST include in the query results ANY
document object in the version series that matches the query criteria. (Subject to other query constraints
such as security.)

Additionally, repositories MAY include Private Working Copy objects in results to the query service. Repos-
itories MUST indicate whether they support querying for Private Working Copy objects via the "capabilityP-
WCSearchable" optional capability flag.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 99 of 331

If "capabilityPWCSearchable" is TRUE then the repository MUST include in the query results ANY Private
Working Copy Document objects that matches the query criteria. (Subject to other query constraints such
as security.)

If "capabilityPWCSearchable" is FALSE then the repository MUST NOT include in the query results ANY
Private Working Copy Document Objects that match the query criteria. (Subject to other query constraints
such as security.)

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 100 of 331

2.1.14 Query

CMIS provides a type-based query service for discovering objects that match specified criteria, by defining
a read-only projection of the CMIS data model into a relational view.

Through this relational view, queries may be performed via a simplified SQL SELECT statement. This
query language is based on a subset of the SQL-92 grammar (ISO/IEC 9075: 1992 – Database Language
SQL), with a few extensions to enhance its filtering capability for the CMIS data model, such as existential
quantification for multi-valued property, full-text search, and folder membership. Other statements of the
SQL language are not adopted by CMIS. The semantics of this query language is defined by the SQL-92
standard, plus the extensions, in conjunction with the model mapping defined by CMIS's relational view.

CMIS Query

Relational View

CMIS Data Model
Object Type, Type Inheritance, Object,
Property, Content Stream, Versioning

Table (è Object Type, Type Inheritance)
Row (è Object)
Column (è Property)

Syntax
SQL-92 subset + Extensions for
•  Multi-valued properties
•  Fulltext search
•  Folder membership

Semantics
SQL-92 subset
+ Extensions
+ Relational View mapping

Figure 2.4: CMIS Query

2.1.14.1 Relational View Projection of the CMIS Data Model

The relational view of a CMIS repository consists of a collection of virtual tables that are defined on top of
the CMIS data model. This relational view is used for query purposes only.

In this relational view a virtual table is implicitly defined for each queryable object-type defined in the repos-
itory. (Non-queryable object-types are NOT exposed through this relational view.)

In each virtual table, a virtual column is implicitly defined for each property defined in the object-type definition
AND for all properties defined on ANY ancestor-type of the object-type but NOT defined in the object-type
definition. Virtual columns for properties defined on ancestor-types of the object-type but NOT defined in
the object-Type definition MUST contain the SQL NULL value. Virtual columns for properties whose value
is "not set" MUST contain the SQL NULL value.

An object-type's queryName attribute is used as the table name for the corresponding virtual table, and a
property's queryName attribute is used as the column name for the corresponding table column. Please
see the restrictions on queryName in section 2.1.2.1.3 Query Names.

The virtual column for a multi-valued property MUST contain a single list value that includes all values of
the property.

2.1.14.1.1 Object-Type Hierarchy in the Relational View Projection

The relational view projection of the CMIS Data Model ensures that the virtual table for a particular object-
type is a complete super-set of the virtual table for any and all of its ancestor types.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 101 of 331

Additionally, an object-type definition's includedInSupertypeQuery specifies whether objects of that
object-type MUST be included in the virtual table for any of its ancestor types. If the includedInSuper-
typeQuery attribute of the object-type is FALSE, then objects of that object-type MUST NOT be included
in the virtual table for any of its ancestor types.

In each virtual table, a virtual column is implicitly defined for each property defined in the object-type defini-
tion. In addition, a virtual column is also implicitly defined for each property defined on ANY ancestor-type
of this object-type but NOT defined in this object-type definition. In addition, the virtual table for a secondary
object type has one more virtual column for the cmis:objectId property defined by each object's primary
type. If a secondary object type does not define any property, then its virtual table will have cmis:objectId
as the only column, identifying the objects to which the secondary type has been applied. Virtual columns
for properties defined on ancestor-types of the object-type but NOT defined (inherited) in the object-type
definition MUST contain the SQL NULL value. Virtual columns for properties whose value is "not set" MUST
contain the SQL NULL value. The rows of a virtual table corresponding to a queryable primary type rep-
resent the objects of that type. The rows of a virtual table corresponding to a queryable secondary type
represent objects of various primary types (which may or may not be queryable) that the secondary type is
applied to. To query on both an object's primary type properties and its secondary type properties, a SQL
JOIN of the respective tables on the cmis:objectId column may be performed. Explicit JOIN support,
as defined in 2.1.1.1 Optional Capabilities, is not required for a repository to provide join between a primary
type and secondary type tables based on cmis:objectId.

Implicit Virtual Table for
Queryable Primary Object Type P

PK

Properties defined by P

Implicit Virtual Table for
Queryable Secondary

Object Type S1

Properties
defined by

S1

PK

Implicit Virtual Table for
Queryable Secondary

Object Type S2

Properties
defined by

S2

PK

PK = cmis:objectId in every Virtual Table

An object of Primary Type P, and
with Secondary Types S1 and S2

applied to it

Figure 2.5: Virtual Tables

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 102 of 331

Objects of
Type A

Objects of
Type B

Objects of
Type C

= inherited property definition B is a subtype of A.
C is a subtype of B.

Relational View

Query Search Scope

Search scope
for query on C

Search scope
for query on B

Search scope
for query on A

Figure 2.6: Query Search Scope

2.1.14.1.2 Content Streams

Content streams are NOT exposed through this relational view.

2.1.14.1.3 Result Set

When a query is submitted, a set of pseudo CMIS objects will be returned. These pseudo objects are
comprised of the properties specified in the select clause of the query statement.

For each property in each object in the result set, the repository MUST include the property definition id as
well as either the query name (if no alias is used) or the alias in place of the query name (if an alias is used).

If the select clause of the query statement contains properties from a single type reference then the repository
MAY represent these pseudo-objects with additional object information.

2.1.14.2 Query Language Definition

This query languages is based on a subset of the SQL-92 grammar. CMIS-specific language extensions to
SQL-92 are called out explicitly.

The basic structure of a CMIS query is a SQL statement that MUST include the following clauses:

SELECT [virtual columns list] This clause identifies the set of virtual columns that will be included in the
query results for each row and optionally their aliases.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 103 of 331

FROM [virtual table names] This clause identifies which virtual table(s) the query will run against. Aliases
for the object-types are allowed in the BNF grammar.

Additionally, a CMIS query MAY include the following clauses:

WHERE [conditions] This clause identifies the constraints that rowsMUST satisfy to be considered a result
for the query.

ORDER BY [sort specification] This clause identifies the order in which the result rows MUST be sorted
in the result row set.

2.1.14.2.1 BNF Grammar

This BNF grammar is a "subset" of the SQL-92 grammar (ISO/IEC 9075: 1992 – Database Language SQL),
except for some production alternatives. Specifically, except for these extensions, the following production
rules are derived from the SQL-92 grammar. The non-terminals used in this grammar are also borrowed
from the SQL-92 grammar without altering their semantics. Accordingly, the non-terminal <column name>
is used for single-valued properties only so that the semantics of SQL can be preserved and borrowed.
This approach not only facilitates comparison of the two query languages, and simplifies the translation of
a CMIS query to a SQL query for a RDBMS-based implementation, but also allows future expansion of this
query language to cover a larger subset of SQL with minimum conflict. The CMIS extensions are introduced
primarily to support multi-valued properties and full-text search, and to test folder membership. Multi-valued
properties are handled separately from single-valued properties, using separate non-terminals and separate
production rules to prevent the extensions from corrupting SQL-92 semantics.

<CMIS 1.1 query statement> ::= <simple table> [<order by clause>]
<simple table> ::= SELECT <select list> <from clause> [<where clause>]
<select list> ::= "*" | <select sublist> [{ "," <select sublist> }...]
<select sublist> ::= <qualifier> ".*"
| <value expression> [[AS] <column name>]
| <multi-valued-column reference> [[AS] <column name>]

<value expression> ::= <column reference> | <numeric value function>
<column reference> ::= [<qualifier> "."] <column name>
| [<qualifier> "."] <secondary type table name> "." <secondary type column name>

<multi-valued-column reference> ::= [<qualifier> "."] <multi-valued-column name>
| [<qualifier> "."] <secondary type table name> "." <secondary type multi-valued-column name>

<numeric value function> ::= SCORE()
<qualifier> ::= <table name> | <correlation name>
<from clause> ::= FROM <table reference>
<table reference> ::= <table name> [[AS] <correlation name>] | <joined table>
<joined table> ::= "(" <joined table> ")"
| <table reference> [<join type>] JOIN <table reference> <join specification>

<join type> ::= INNER | LEFT [OUTER]
<join specification> ::= ON <column reference> "=" <column reference>
<where clause> ::= WHERE <search condition>
<search condition> ::= <boolean term> | <search condition> OR <boolean term>
<boolean term> ::= <boolean factor> | <boolean term> AND <boolean factor>
<boolean factor> ::= [NOT] <boolean test>
<boolean test> ::= <predicate> | "(" <search condition> ")"
<predicate> ::= <comparison predicate> | <in predicate> | <like predicate>
| <null predicate> | <quantified comparison predicate> | <quantified in predicate>
| <text search predicate> | <folder predicate>

<comparison predicate> ::= <value expression> <comp op> <literal>
<comp op> ::= "=" | "<>" | "<" | ">" | "<=" | ">="
<literal> ::= <signed numeric literal> | <character string literal>
| <datetime literal> | <boolean literal>

<in predicate> ::= <column reference> [NOT] IN "(" <in value list> ")"
<in value list> ::= <literal> [{ "," <literal> }...]
<like predicate> ::= <column reference> [NOT] LIKE <character string literal>
<null predicate> ::= { <column reference>
| <multi-valued-column reference> } IS [NOT] NULL

<quantified comparison predicate> ::=
<literal> "=" ANY <multi-valued-column reference>

<quantified in predicate> ::=

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 104 of 331

ANY <multi-valued-column reference> [NOT] IN "(" <in value list> ")"
<text search predicate> ::=
CONTAINS "(" [<qualifier> ","] <quote> <text search expression> <quote> ")"

<folder predicate> ::= { IN_FOLDER | IN_TREE } "(" [<qualifier> ","] <folder id> ")"
<order by clause> ::= ORDER BY <sort specification> [{ "," <sort specification> }...]
<sort specification> ::= <column reference> [ASC | DESC]
<correlation name> ::= <identifier>
<table name> ::= <identifier> !! This MUST be the name of a primary object-type.
<secondary type table name> ::= <identifier> !! This MUST be the name of a secondary

↪→ object-type.
<column name> ::= <identifier> !! This MUST be the name of a single-valued property, or an alias

↪→ for a scalar output value.
<secondary type column name> ::= <identifier> !! This MUST be the name of a single-valued

↪→ property for a scalar output value of a secondary type.
<multi-valued-column name> ::= <identifier> !! This MUST be the name of a multi-valued property.
<secondary type multi-valued-column name> ::= <identifier> !! This MUST be the name of a

↪→ multi-valued property of a secondary type.
<folder id> ::= <character string literal> !! This MUST be the object identity of a folder

↪→ object.
<identifier> ::= !! As defined by queryName attribute.
<signed numeric literal> ::= !! As defined by SQL-92 grammar.
<character string literal> ::= !! As defined by SQL-92 grammar. (i.e. enclosed in single-quotes)

!! This is an independent sub-grammar for full-text search criteria.
!! It is isolatable from the query statement grammar. (See Escaping)
<text search expression> ::= <conjunct> [{<space> OR <space> <conjunct>} ...]
<conjunct> ::= <term> [{<space> <term>} ...]
<term> ::= ['-'] <simple term>
<simple term> ::= <word> | <phrase>
<word> ::= <word element> {<word element>}
<phrase> ::= <double quote> <word> {<space> <word>} <double quote>
<quote symbol> ::= <quote><quote> | <backslash><quote>
<word element> ::= <char> - <space char> - <backslash char> - <quote> - <double quote>
| <quote symbol>

<space> ::= <space char> [{<space char>} ...]
<space char> ::= ' '
<backslash char> ::= <backslash><backslash>
<char> ::= !! Any character
<datetime literal> ::= TIMESTAMP <quote> <datetime string> <quote>
<datetime string> ::= YYYY-MM-DDThh:mm:ss.sss{Z | +hh:mm | -hh:mm}
<boolean literal> ::= TRUE | FALSE | true | false
<quote> ::= "'" !! Single-quote only, consistent with SQL-92 string literal
<double quote> ::= " !! U+0022
<backslash> ::= \ !! U+005C

2.1.14.2.2 SELECT Clause

The SELECT clause MUST contain exactly one of the following:

• A comma separated list of one or more column names. If an explicit column list is provided: A reposi-
tory MUST include in its result row set all of the columns specified in the SELECT clause.

• * : If this token is specified, then the repository MUST return columns for ALL single-valued properties
defined in the Object-Types whose virtual tables are listed in the FROM clause, and SHOULD also
return all multi-valued properties.

All column names MUST be valid "queryName" values for properties whose virtual tables are listed in the
FROM clause. For each "queryName" an alias MAY be defined by adding the string " AS " and the name
of the alias to the query name. Alias names MUST comply with the rules for query names. (See section
2.1.2.1.3 Query Names.)

2.1.14.2.3 FROM Clause

The FROM clause identifies which virtual table(s) the query will be run against, as described in the previous
section.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 105 of 331

The FROM clause MUST contain only the "queryNames" of object-types whose queryable attribute value is
TRUE. For each "queryName" an alias MAY be defined by adding the string " AS " and the name of the alias
to the query name. Alias names MUST comply with the rules for query names. (See section 2.1.2.1.3 Query
Names.)

2.1.14.2.3.1 Join Support

CMIS repositories MAY support the use of SQL JOIN queries, and MUST indicate their support level using
the optional capability attribute capabilityJoin.

• If the repository's value for the capabilityJoin attribute is none, then no JOIN clauses can be used
in queries.

• If the repository's value for the capabilityJoin attribute is inneronly, then only inner JOIN
clauses can be used in queries.

• If the repository's value for the capabilityJoin attribute is innerandouter, then inner and/or
outer JOIN clauses can be used in queries.

Only explicit joins using the "JOIN" keyword is supported. Queries MUST NOT include implicit joins as part
of the WHERE clause of a CMIS query.

CMIS queries MUST only support join operations using the "equality" predicate on single-valued properties.

2.1.14.2.4 WHERE Clause

This clause identifies the constraints that rows MUST satisfy to be considered a result for the query.

All column names MUST be valid "queryName" or their aliased values for properties that are defined as
"queryable" in the object-type(s) whose virtual tables are listed in the FROM clause.

Properties are defined to not support a "null" value, therefore the <null predicate> MUST be interpreted as
testing the not set or set state of the specified property.

2.1.14.2.4.1 Comparisons permitted in the WHERE clause

SQL's simple comparison predicate, IN predicate, and LIKE predicate are supported, for single-valued prop-
erties only (so that SQL's semantics is preserved). Boolean conjunction (AND), disjunction (OR), and nega-
tion (NOT) of predicates are also supported.

Repositories SHOULD support the comparisons for the property types as described in the list below. Repos-
itories MAY support additional comparisons and operators. Any additional operators not specified are
repository-specific:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 106 of 331

Property Type Operators supported on Type Supported type of Literal in
comparison

String =, <>, [NOT] LIKE String
String (IN) [NOT] IN List of Strings
Decimal =, <>, <, <=, >, >= Decimal
Decimal (IN) [NOT] IN List of Decimal
Integer =, <>, <, <=, >, >= Integer
Integer (IN) [NOT] IN List of Integer
Boolean = Boolean literal
DateTime =, <>, <1, <=1, >1, >=1 DateTime literal
DateTime (IN) [NOT] IN List of DateTime literals
ID =, <> String
ID (IN) [NOT] IN List of strings
URI =, <>, [NOT] LIKE String
URI (IN) [NOT] IN List of strings

Operations on the SCORE() output MUST be treated the same as decimal operations.

When using properties in a join statement, comparison MUST be allowed on properties of the same types
as defined by the table above. Repositories MAY extend this behavior.

The ANY operation argument MUST be one of the properties found in the table above which supports
equality operations.

2.1.14.2.4.2 Multi-valued property support (SQL-92 Extension)

The CMIS query language includes several new non-terminals to expose semantics for querying multi-
valued properties, in a way that does not alter the semantics of existing SQL-92 production rules.

2.1.14.2.4.3 Multi-valued column references

BNF grammar structure: <multi-valued-column reference>, <multi-valued-column name>

These are non-terminals defined for multi-valued properties whereas SQL-92's <column reference> and
<column name> are retained for single-valued properties only. This is to preserve the single-value semantics
of a regular "column" in the SQL-92 grammar.

Quantified comparison predicate

The SQL-92 production rule for <quantified comparison predicate> is extended to accept a multi-valued
property in place of a <table subquery>. This operation is restricted to equality tests only.

<Table subquery> is not supported in CMIS-SQL.

The SQL-92 <quantifier> is restricted to ANY only.

The SQL-92 <row value constructor> is restricted to a literal only.

1Comparison is based on chronological before or after date

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 107 of 331

Example:

SELECT Y.CLAIM_NUM, X.PROPERTY_ADDRESS, Y.DAMAGE_ESTIMATES, Z.BAND
FROM (POLICY AS X JOIN CLAIMS AS Y ON X.POLICY_NUM = Y.POLICY_NUM)

JOIN RISK AS Z ON X.cmis:objectId = Z.cmis:objectId
WHERE (100000 = ANY Y.DAMAGE_ESTIMATES) AND Z.BAND > 3

(Note: DAMAGE_ESTIMATES is a multi-valued Integer property and RISK is a secondary type.)

IN/ANY Predicate

CMIS-SQL exposes a new IN predicate defined for a multi-valued property. It is modeled after the SQL-92
IN predicate, but since the entire predicate is different semantically, it has its own production rule in the BNF
grammar.

The quantifier is restricted to ANY. The predicate MUST be evaluated to TRUE if at least one of the property's
values is (or, is not, if NOT is specified) among the given list of literal values. Otherwise the predicate is
evaluated to FALSE.

The ANY operation argument MUST be one of the properties found in the comparison list above which sup-
ports IN operations.

Example 1:

SELECT *
FROM CAR_REVIEW
WHERE (MAKE = 'buick') OR

(ANY FEATURES IN ('NAVIGATION SYSTEM', 'SATELLITE RADIO', 'MP3'))

(Note: FEATURES is a multi-valued String property.)

Example 2:

SELECT d.cmis:objectId, d.cmis:name, a.SPECIES
FROM cmis:document AS d JOIN ANIMAL AS a ON d.cmis:objectId = a.cmis:objectId
WHERE ANY a.SPECIES IN ('dog', 'cat')

(Note: ANIMAL is a secondary type and ANIMAL.SPECIES is a multi-valued String property.)

2.1.14.2.4.4 CONTAINS() predicate function (CMIS-SQL Extension)

BNF grammar structure: CONTAINS ([<qualifier> ,] ' <text search expression> ')

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 108 of 331

Usage:
This is a predicate function that encapsulates the full-text search capability that MAY be provided
by a repository. See the optional capability attribute capabilityQuery.

• If the repository's value for the capabilityQuery attribute is fulltextonly, then only
queries that filter based on the full-text content of documents can be fulfilled. Specifically,
only the CONTAINS() predicate function can be included in the WHERE clause.

• If the repository's value for the capabilityQuery attribute is bothseparate, then the
repository can fulfill queries that filter EITHER on the full-text content of documents OR on
their properties, but NOT if both types of filters are included in the same query.

• If the repository's value for the capabilityQuery attribute is bothcombined, then the
repository can fulfill queries that filter on both the full-text content of documents and their
properties in the same query.

Inputs:

<qualifier> The value of this optional parameter MUST be the name of one of the virtual tables
listed in the FROM clause for the query.

• If specified, then the predicate SHOULD only be applied to objects in the specified
virtual table, but a repository MAY ignore the value of the parameter.

• If not specified, applies to the single virtual table. If the query is a join, a server SHOULD
throw an exception if the qualifier is not specified.

<text search expression> The <text search expression> parameter MUST be a character string,
specifying the full-text search criteria.

• The Text Search Expression may be a set of terms or phrases with an optional '-' to
signal negation. A phrase is defined as a word or group of words. A group of words
must be surrounded by double quotes to be considered a single phrase.

• Terms may contain wildcards. The wildcard '*' substitutes for zero or more characters.
The wildcard '?' substitutes for exactly one character. The characters '%' and '_', which
are wildcards in LIKE expressions are not considered wildcards in text serach terms.

• Terms separated by whitespace are AND'ed together.
• Terms separated by "OR" are OR'ed together.
• Implicit "AND" has higher precedence than "OR".
• Within a word or phrase, each (single-)quote must also be escaped by a preceding
backslash '\'. Using double single-quotes (") as a SQL-92 way to escape a literal single-
quote (') character SHOULD BE supported as an allowable alternative to the double
character '.

Return value:
The predicate returns a Boolean value.

• The predicate MUST return TRUE if the object is considered by the repository as "relevant"
with respect to the given <text search expression> parameter.

• The predicate MUST return FALSE if the object is considered by the repository as not "rele-
vant" with respect to the given <text search expression> parameter.

Constraints:

• At most one CONTAINS() function MUST be included in a single query statement. The
repository MUST throw an exception if more than one CONTAINS() function is found.

• The return value of the CONTAINS() function MAY only be included conjunctively (ANDed)
with the aggregate of all other predicates, if there is any, in the WHERE clause.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 109 of 331

2.1.14.2.4.5 SCORE() predicate function

BNF grammar structure: SCORE ()

Usage:
This is a predicate function that encapsulates the full-text search capability that MAY be provided
by a repository. (See previous section.)

Inputs:
No inputs MUST be provided for this predicate function.

Return value:
The SCORE() predicate function returns a decimal value in the interval [0,1].

• A repository MUST return the value 0 if the object is considered by the repository as having
absolutely no relevance with respect to the CONTAINS() function specified in the query.

• A repository MUST return the value 1 if the object is considered by the repository as having
absolutely complete relevance with respect to the CONTAINS() function specified in the
query.

Constraints:

• The SCORE() function MUST only be used in queries that also include a CONTAINS() pred-
icate function.

• The SCORE() function MUST only be used in the SELECT clause of a query. It MUST NOT
be used in the WHERE clause or in the ORDER BY clause.

• An alias column name defined for the SCORE() function call in the SELECT clause (i.e.,
SELECT SCORE() AS column_name ...) may be used in the ORDER BY clause.

• If SCORE() is included in the SELECT clause and an alias column name is not provided, then
a query name of SEARCH_SCORE is used for the query output, and the property definition id
is repository-specific.

2.1.14.2.4.6 IN_FOLDER() predicate function

BNF grammar structure: IN_FOLDER([<qualifier>,] <folder id>)

Usage:
This is a predicate function that tests whether or not a candidate object is a child-object of the
folder object identified by the given <folder id>.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 110 of 331

Inputs:

<qualifier> The value of this optional parameter MUST be the name of one of the virtual tables
listed in the FROM clause for the query.

• If specified, then the predicate SHOULD only be applied to objects in the specified
virtual table, but a repository MAY ignore the value of the parameter.

• If the query is a join, a server SHOULD throw an exception if the qualifier is not specified.
<folder id> The value of this parameter MUST be the id of a folder object in the repository.

Return value:
The predicate returns a Boolean value.

• The predicate function MUST return TRUE if the object is a child-object of the folder specified
by <folder id>.

• The predicate function MUST return FALSE if the object is a NOT a child-object of the folder
specified by <folder id>.

2.1.14.2.4.7 IN_TREE() predicate function

BNF grammar structure: IN_TREE([<qualifier>,] <folder id>)

Usage:
This is a predicate function that tests whether or not a candidate object is a descendant-object of
the folder object identified by the given <folder id>.

Inputs:

<qualifier> The value of this optional parameter MUST be the name of one of the virtual tables
listed in the FROM clause for the query.

• If specified, then the predicate SHOULD only be applied to objects in the specified
virtual table, but a repository MAY ignore the value of the parameter.

• If the query is a join, a server SHOULD throw an exception if the qualifier is not specified.
<folder id> The value of this parameter MUST be the id of a folder object in the repository.

Return value:
The predicate returns a Boolean value.

• The predicate function MUST return TRUE if the object is a descendant-object of the folder
specified by <folder id>.

• The predicate function MUST return FALSE if the object is a NOT a descendant-object of
the folder specified by <folder id>.

2.1.14.2.5 ORDER BY Clause

This clause MUST contain a comma separated list of one or more column names.

All column names referenced in this clauseMUST be valid "queryName" or their aliased values for properties
defined as orderable in the object-type(s) whose virtual tables are listed in the FROM clause.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 111 of 331

Only columns in the SELECT clause MAY be in the ORDER BY clause.

Collation rules for the ORDER BY clause are repository specific.

2.1.14.3 Escaping

Character escaping for character strings differs from SQL-92's escaping. A repository MUST support the
escaping of certain literal characters in a character string, or in a text search expression, using a backslash
character (\) in the following manner. For a <character string literal>, which MUST BE a string enclosed in
single-quotes according to the SQL-92 grammar, any occurrence of the single-quote character (') and the
escape character (\) in the string MUST BE escaped. This applies to <folder id>, which is a <character string
literal>. Furthermore, when a <character string literal> is used in a LIKE predicate, any occurrence of the
percent character (%) and the underscore character (_) in the string as a literal MUST BE escaped also.
Therefore, within a quoted string in a query:

• The double character \' represents a literal single-quote (') character.

• The double character \\ represents a literal backslash (\) character.

• Within a LIKE string, the double characters \% and _ represent a literal percent (%) character and a
literal underscore (_) character respectively.

• Within a CONTAINS text search expression, the double characters * and \? represent a literal asterisk
(*) character and a literal question mark (?) character respectively.

• All other instances of a backslash (\) character are errors.

Using double single-quotes ('') as a SQL-92 way to escape a literal single-quote (') character SHOULD BE
supported as an allowable alternative to the double character \'.

For a <text search expression>, a second-level character escaping is required so that the <text search
expression> sub-grammar is isolatable from the query statement-level grammar. When a text search ex-
pression is composed for a query according to the <text search expression> sub-grammar, any occurrence
of the following four characters in the expression as a literal character MUST BE escaped: double-quote ("),
hyphen (-), single-quote ('), and the escape character (\). Then, before this expression is enclosed in single-
quotes and inserted into a CONTAINS() predicate, the query statement-level escaping rules described in
the above MUST BE applied. This two-level character escaping allows a query statement parser, using
statement-level escaping rules, to correctly extract a <text search expression> as a character string literal
independent of the <text search expression> sub-grammar. This extracted <text search expression> can
then be correctly interpreted by a full-text search parser independent of the query-statement grammar, using
second-level escaping rules. Since the <text search expression> sub-grammar is isolated from the SQL-92
grammar, double single-quotes is not a valid way to escape a literal single-quote character for second-level
character escaping.

An <identifier> in a query statement MUST conform to the SQL-92 identifier syntax, and MUST NOT require
character escaping.

Example:
A query statement that contains a full-text search for the literal string "John'sPresentation-Version2" may be
composed as:

SELECT ... FROM ... WHERE ... CONTAINS('John\\\'sPresentation\\-Version2') ...

A query parser extracts from this statement the text search expression "John\'sPresentation\-Version2" as
a character string literal, and passes it to a text-search parser, which interprets it as a single-word full-text
search criteria: John'sPresentation-Version2.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 112 of 331

2.1.15 Change Log

CMIS provides a "change log" mechanism, the getContentChanges service, to allow applications to easily
discover the set of changes that have occurred to objects stored in the repository since a previous point in
time. This change log can then be used by applications such as search services that maintain an external
index of the repository to efficiently determine how to synchronize their index to the current state of the
repository (rather than having to query for all objects currently in the repository).

Entries recorded in the change log are referred to below as "change events".

Note that change events in the change log MUST be returned in ascending order from the time when the
change event occurred.

2.1.15.1 Completeness of the Change Log

The change log mechanism exposed by a repository MAY be able to return an entry for every change ever
made to content in the repository, or may only be able to return an entry for all changes made since a par-
ticular point in time. This "completeness" level of the change log is indicated via the changesIncomplete
value found on the getRepositoryInfo service response.

However, repositories MUST ensure that if an application requests the entire contents of the repository's
change log, that the contents of the change log includes ALL changes made to any object in the repository
after the first change listed in the change log. (I.e. repositories MAY truncate events from the change log on
a "first-in first-out" basis, but not in any other order.)

A repository MAY record events such as filing/unfiling/moving of documents as change events on the doc-
uments, their parent folder(s), or both the documents and the parent folders.

2.1.15.2 Change Log Token

The primary index into the change log of a repository is the "change log token". The change log token is an
opaque string that uniquely identifies a particular change in the change log.

2.1.15.3 "Latest Change Token" repository information

Repositories that support the changeLogToken event MUST expose the latest change log token (i.e. the
change log token corresponding to the most recent change to any object in the repository) as a property
returned by the getRepositoryInfo service.

This will enable applications to begin "subscribing" to the change log for a repository by discovering what
change log token they should use on a going-forward basis to discover change events to the repository.

2.1.15.4 Change Event

A change event represents a single action that occurred to an object in the repository that affected the
persisted state of the object.

A repository that supports the change log capability MUST expose at least the following information for each
change object:

Id ObjectId The object id of the object to which the change occurred.

Enum ChangeType An enumeration that indicates the type of the change. Valid values are:

created The object was created.

updated The object was updated.

deleted The object was deleted.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 113 of 331

security The access control or security policy for the object were changed.

<Properties> properties Additionally, for events of changeType "updated", the repository MAY optionally
include the new values of properties on the object (if any).

Repositories MUST indicate whether they include properties for "updated" change events via the optional
capabilityChanges.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 114 of 331

2.1.16 Retentions and Holds

Retentions and Holds can be used to protect documents from being deleted or modified. A Retention de-
scribes a period of time where the document must not be deleted, while a Hold just marks the document as
protected as long as the Hold is applied to a document.

This specification defines a basic interface for end user operations. Administrative operations such as
managing a file plan or shortening retention periods are out of scope. A repository MAY support settings
that require administrative privileges and bend the rules described in the following section. The implications
are repository specific.

Retentions and Holds can be applied to documents by applying predefined secondary types for Retentions
and Holds. CMIS specifies secondary types for:

• Repository Managed Retentions

• Client Managed Retentions (with a subtype for Destruction Retentions)

• Holds

If a repository does not support one of the predefined types for Retention and Hold management, the cor-
responding secondary type MUST NOT be returned by a getTypeChildren service call.

All secondary types for retention and hold management SHOULD be able to be applied to objects derived
from the cmis:document base type. Applying such types to other CMIS objects and its behavior is repos-
itory specific. A repository MUST throw a constraint exception if the operation is not supported.

Retentions and Holds are applied to document versions. How this affects other versions in the version series
is repository specfic.

Retentions and Holds protect at least the content of a document from modifications. If this protection also
applies to the properties, ACL, policies, relationships, etc. of a document, is repository specific. Clients may
use the Allowable Actions to discover what they can do with protected documents.

2.1.16.1 Repository Managed Retentions

Repository Managed Retentions are used in scenarios where the repository is responsible for calculating the
concrete expiration date and potential destruction date for a document. As a first step a records manager
usually creates a file plan in the repository and assigns rules which are used to calculate the retention period
for a specific entry in the file plan. Creating a file plan is out-of-scope for CMIS. It has to be done using the
native (user) interfaces of the repository. In order to enable a client to classify documents according to this
file plan, the repository exposes the file plan as a secondary type hierarchy. The CMIS client can now apply
one of the exposed file plan categories to a document. This process is called classification:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 115 of 331

Doc 4

Doc 2

Doc 3

Doc 1

Doc 5

Doc 6

Finance

Travel

Incidents

Audits

Reports

Inspections

Requests

Fileplan

Retention Rule 1

Retention Rule 2

Retention Rule 3

Retention Rule 4

Retention Rule 5

Retention Rule 6

Retention Rule 7

Retention Rule 8

Classification
Retention Schedule

Figure 2.7: Classification

Support for Repository Managed Retentions is optional. A repository that does not support Repository Man-
aged Retentions will not expose a file plan via the secondary type hierarchy. Repositories that support
Repository Managed Retentions MUST expose the categories of the file plan as a subtype of the CMIS de-
fined secondary type cmis:rm_repMgtRetention. The secondary type cmis:rm_repMgtRetention
does not require any properties. A repository MAY add repository specific properties. A secondary type hier-
archy for Repository Managed Retentions could look like this (white boxes are CMIS defined types, orange
boxes are repository specific):

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 116 of 331

cmis:secondary

cmis:rm_repMgtReten3on	

FilePlanCategory1	
 FilePlanCategory2	

FilePlanCategory2.1	
 FilePlanCategory2.2	
 FilePlanCategory1.1	
 FilePlanCategory1.2	

Figure 2.8: Repository Managed Retentions Types

The usage of Repository Managed Retentions allows support of support advanced scenarios where the
retention period is not fixed at creation time, but managed more dynamically (e.g. depending on certain
property changes like "3 years after setting status to released"). The capabilities that are kind of rules are
supported and how they are enforced varies widely between repository implementations. Some may do this
automatically, some may require manually triggered batch runs, require an approval or workflow for certain
actions etc. This model has minimal requirements for the application but can use much of the functionality
that a repository provides.

This specification only defines the classification process, that is applying a Repository Managed Retention
to a document. Creating and managing the rules and how rules are mapped to file plan categories is out-
of-scope and repository specific. Which set of Repository Managed Retentions can be assigned to which
objects is also repository specific.

Whether a user is allowed to apply a Repository Managed Retention is repository specific. If the user has
no permission to do so, a permissionDenied exception MUST be thrown. In case of others constraints,
a constraint exception MUST be thrown.

2.1.16.1.1 Repository Managed Retention Type

2.1.16.1.1.1 Attribute Values

The Repository Managed Retention object-type MUST have the following attribute values.

id
Value: cmis:rm_repMgtRetention

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:rm_repMgtRetention

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 117 of 331

displayName
Value: <repository-specific>

baseId
Value: cmis:secondary

parentId
Value: cmis:secondary

description
Value: <repository-specific>

creatable
Value: FALSE

fileable
Value: FALSE

queryable
Value: SHOULD be TRUE

controllablePolicy
Value: FALSE

controllableACL
Value: FALSE

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

2.1.16.1.1.2 Property Definitions

This type has no properties defined by this specification. A repository MAY add repository specific property
definitions.

2.1.16.2 Client Managed Retentions

Client Managed Retentions are used in scenarios where the CMIS client is responsible to calculate the
concrete expiration date for a document. This is usually required when documents are related to other
objects (like a Business Object in an ERP system) and the documents must get the same retention period
than the object where they are related to. In this case a CMIS client can apply a retention period to a
document using the Client Managed Retention object-type.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 118 of 331

If a repository supports Client Managed Retentions, it exposes the secondary type
cmis:rm_clientMgtRetention via the secondary type hierarchy. The CMIS defined secondary
type cmis:rm_clientMgtRetention defines two properties:

cmis:rm_expirationDate contains the date until the document must be preserved.

cmis:rm_startOfRetention contains the date from which the retention time was calculated (for documen-
tation purposes only).

A repository MAY define its own secondary types for Client Managed Retentions with additional properties.
Those types MUST be derived from the type cmis:rm_clientMgtRetention.

Repositories that support a process to dispose documents after a certain period of time, MAY expose the
type cmis:rm_destructionRetention which is derived from cmis:rm_clientMgtRetention. This
type provides an additional property that defines the date when destruction process SHOULD be triggered:

cmis:rm_destructionDate holds the date when the destruction process SHOULD be triggered.

A repository MAY define its own Destruction Retentions. A repository specific Destruction Retention MUST
be derived from the type cmis:rm_destructionRetention.

The repository MAY round up the dates used for expiration and destruction dates according to its internal
capabilities. A secondary type hierarchy for Client Managed Retentions could look like this (white boxes are
CMIS defined types, orange boxes are repository specific):

cmis:secondary

cmis:rm_clientMgtReten3on	

cmis:rm_destruc3onReten3on	
 RepositorySpecifcType1	

RepositorySpecifcType2	
 RepositorySpecifcType3	

Figure 2.9: Client Managed Retentions Types

2.1.16.2.1 Semantics and Rules to be checked for the Expiration Date Property

The property cmis:rm_expirationDate either contains a concrete date or (if not known yet) is in the
state "not set". In the first case ("specific expiration date"), the affected object MUST NOT be deletable until
the specified date (including the specified date). That does NOT imply that the object is being automatically
deleted by the storage system after it expired. In the second case (expiration date "not set"), the affected
object MUST NOT be deletable at all. If a new expiration date is applied to an object, the following rules
MUST be obeyed:

Assignment rule:

1. A specific expiration date MUST NOT be removable or replaced by an expiration date "not set". The
reverse MUST be allowed. That is, it MUST be possible to set a specific expiration date as long as
the expiration date is not set.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 119 of 331

2. A new expiration date SHALL only be applicable if the expiration date does not lie in the past. Only an
expiration date with a current or a future date MUST be assignable to an object.

Prolongation rule:

1. In case an object has already an expiration date assigned, the repository SHALL check whether the
new expiration date is equal or greater than the one already assigned. The repository MUST prevent
a client from shortening the retention time.

2. Once a Client Managed Retention has been set (with a specific expiration date or expiration date "not
set") the Client Managed Retention MUST NOT be removable, even if the expiration date is expired.
A violation of any aspect of these rules MUST result in a constraint exception. A prolongation of
an expiration date MUST succeed regardless of whether the previous expiration date is expired or not.

3. The destruction date, if set, MUST always be the same as the expiration date or greater than the
expiration date. When the retention is prolonged, the destruction date may have to be adjusted as
well by the client. The repository SHOULD NOT automatically adjust the destruction date.

Whether a user is allowed to apply a Client Managed Retention or Destruction Retention is repository spe-
cific. If the user has no permission to do so, a permissionDenied exception MUST be thrown. In case
of others constraints, a constraint exception MUST be thrown.

2.1.16.2.2 Client Managed Retention Type

2.1.16.2.2.1 Attribute Values

The Client Managed Retentions object-type MUST have the following attribute values.

id
Value: cmis:rm_clientMgtRetention

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:rm_clientMgtRetention

displayName
Value: <repository-specific>

baseId
Value: cmis:secondary

parentId
Value: cmis:secondary

description
Value: <repository-specific>

creatable
Value: FALSE

fileable
Value: FALSE

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 120 of 331

queryable
Value: SHOULD be TRUE

controllablePolicy
Value: FALSE

controllableACL
Value: FALSE

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

2.1.16.2.2.2 Property Definitions

The Client Managed Retentions object-type MUST have the following property definitions, and MAY include
additional property definitions. Any attributes not specified for the property definition are repository specific.
The repository MUST have the following property definitions on the Client Managed Retentions object-type:

cmis:rm_expirationDate Expiration date.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: <repository-specific>

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 121 of 331

cmis:rm_startOfRetention Start of retention.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: SHOULD be readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository-specific>
Orderable: <repository-specific>

2.1.16.2.3 Destruction Retention Type

2.1.16.2.3.1 Attribute Values

The Destruction Retention object-type MUST have the following attribute values.

id
Value: cmis:rm_destructionRetention

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:rm_destructionRetention

displayName
Value: <repository-specific>

baseId
Value: cmis:secondary

parentId
Value: cmis:rm_clientMgtRetention

description
Value: <repository-specific>

creatable
Value: FALSE

fileable
Value: FALSE

queryable
Value: SHOULD be TRUE

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 122 of 331

controllablePolicy
Value: FALSE

controllableACL
Value: FALSE

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

2.1.16.2.3.2 Property Definitions

The Destruction Retention object-type MUST have the following property definition, inherits all property
defintions from cmis:rm_clientMgtRetention, and MAY include additional property definitions. Any
attributes not specified for the property definition are repository specific. The repository MUST have the
following property definitions on the Destruction Retentions object-type:

cmis:rm_destructionDate Destruction date.

Property Type: DateTime
Inherited: FALSE
Required: FALSE
Cardinality: single
Updatability: readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: <repository-specific>
Orderable: <repository-specific>

2.1.16.3 Holds

AHold assures that a document can be restored to the state it was in when the hold has been applied (usually
by protecting the document from being deleted or modified). Support for other objects than documents is
repository specific.

If a repository supports holds, it exposes the secondary type cmis:rm_hold. This type defines the multi-
valued property cmis:rm_holdIds which contains a list of identifiers for the affected litigations or audits.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 123 of 331

As long as the property cmis:rm_holdIds is "not set", the document is not protected by a hold. To protect
a document, this property must contain at least one value. The hold type CANNOT be removed from an
object as long as the property cmis:rm_holdIds contains values.

A repository MAY define its own secondary types for holds with additional properties. Those types MUST
be derived from cmis:rm_hold.

A secondary type hierarchy for holds could look like this (white boxes are CMIS defined types, orange boxes
are repository specific):

cmis:secondary

cmis:rm_hold	

RepositorySpecificHoldType	

Figure 2.10: Hold Type

Whether a user is allowed to apply a hold is repository-specific. If the user has no permission to do so, a
permissionDenied exception MUST be thrown. In case of others constraints, a constraint exception
MUST be thrown.

2.1.16.3.1 Hold Type Definition

2.1.16.3.1.1 Attribute Values

The Hold object-type MUST have the following attribute values.

id
Value: cmis:rm_hold

localName
Value: <repository-specific>

localNamespace
Value: <repository-specific>

queryName
Value: cmis:rm_hold

displayName
Value: <repository-specific>

baseId
Value: cmis:secondary

parentId
Value: cmis:secondary

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 124 of 331

description
Value: <repository-specific>

creatable
Value: FALSE

fileable
Value: FALSE

queryable
Value: SHOULD be TRUE

controllablePolicy
Value: FALSE

controllableACL
Value: FALSE

includedInSupertypeQuery
Value: <repository-specific>

fulltextIndexed
Value: <repository-specific>

typeMutability.create
Value: <repository-specific>

typeMutability.update
Value: <repository-specific>

typeMutability.delete
Value: <repository-specific>

2.1.16.3.1.2 Property Definitions

The hold object-type MUST have the following property definitions, and MAY include additional property def-
inition. Any attributes not specified for the property definition are repository specific. The repository MUST
have the following property definitions on the hold object-type:

cmis:rm_holdIds Hold Identifiers.

Property Type: String
Inherited: FALSE
Required: FALSE
Cardinality: multi
Updatability: SHOULD be readwrite
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: SHOULD be TRUE
Orderable: FALSE

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 125 of 331

2.2 Services

TheServices section of the CMIS specification defines a set of services that are described in a protocol/binding-
agnostic fashion.

Every protocol binding of the CMIS specificationMUST implement all of themethods described in this section
or explain why the service is not implemented.

However, the details of how each service and operation is implemented will be described in those protocol
binding specifications.

2.2.1 Common Service Elements

The following elements are common across many of the CMIS services.

2.2.1.1 Paging

All of the methods that allow for the retrieval of a collection of CMIS objects support paging of their result
sets except where explicitly stated otherwise. The following pattern is used:

Input Parameters:

Integer maxItems (optional) This is the maximum number of items to return in a response. The
repository MUST NOT exceed this maximum. Default is repository-specific.

Integer skipCount (optional) This is the number of potential results that the repository MUST
skip/page over before returning any results. Defaults to 0.

Output Parameters:

Boolean hasMoreItems TRUE if the Repository contains additional items after those contained
in the response. FALSE otherwise. If TRUE, a request with a larger skipCount or larger
maxItems is expected to return additional results (unless the contents of the repository has
changed).

Integer numItems If the repository knows the total number of items in a result set, the repository
SHOULD include the number here. If the repository does not know the number of items in
a result set, this parameter SHOULD not be set. The value in the parameter MAY NOT be
accurate the next time the client retrieves the result set or the next page in the result set.

If the caller of a method does not specify a value for maxItems, then the repository MAY select an appro-
priate number of items to return, and MUST use the hasMoreItems output parameter to indicate if any
additional results were not returned.

Repositories MAY return a smaller number of items than the specified value for maxItems. A repository
SHOULD NOT throw an exception if maxItems exceeds the internally supported page size. It SHOULD
return a smaller number of items instead.

Each binding will express the above in context and may have different mechanisms for communicating
hasMoreItems and numItems.

2.2.1.2 Retrieving additional information on objects in CMIS service calls

Several CMIS services that return object information have the ability to return dependent object information
as part of their response, such as the allowable actions for an object, rendition information, etc.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 126 of 331

The CMIS service operations that support returning a result set of objects will include the ability to return
the following object information:

• Properties (retrieves a subset instead of additional information)
• Relationships
• Renditions
• ACLs
• AllowableActions

This section describes the input parameter and output pattern for those services. All these input parameters
are optional.

2.2.1.2.1 Properties

Description:
All services that allow for the retrieval of properties for CMIS objects have a "property filter" as an
optional parameter, which allows the caller to specify a subset of properties for objects that MUST
be returned by the repository in the output of the operation.

Optional Input Parameter:

String filter Value indicating which properties for objects MUST be returned. This filter
is a list of property query names and NOT a list of property ids. The query names
of secondary type properties MUST follow the pattern <secondaryTypeQuery-
Name>.<propertyQueryName>.
Example: cmis:name,amount,worflow.stage

Valid values are:
Not set The set of properties to be returned MUST be determined by the repository.
A comma-delimited list of property definition queryNames The properties listed MUST

be returned.
* All properties MUST be returned for all objects.

If a property is requested by a filter, a property element MUST be returned for that property. A repository
MAY return additional properties. If a property filter specifies a property which value is "not set", it MUST be
represented as a property element without a value element.

Unknown query names or query names that are not defined for the object-type SHOULD be ignored. For ex-
ample, if getChildren is called with a filter that contains the property cmis:contentStreamMimeType,
it SHOULD return all non-document objects without this property and SHOULD NOT return an error.

2.2.1.2.2 Relationships

Description:
Used to retrieve the relationships in which the object(s) are participating.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 127 of 331

Optional Input Parameter:

Enum includeRelationships Value indicating what relationships in which the objects re-
turned participate MUST be returned, if any. Values are:
none No relationships MUST be returned. (Default)
source Only relationships in which the objects returned are the source MUST be returned.
target Only relationships in which the objects returned are the target MUST be returned.
both Relationships in which the objects returned are the source or the target MUST be

returned.

Output Parameter for each object:

<Array> Relationships A collection of the relationship objects.

2.2.1.2.3 Policies

Description:
Used to retrieve the policies currently applied to the object(s).

Optional Input Parameter:

Boolean includePolicyIds If TRUE, then the Repository MUST return the Ids of the policies
applied to the object. Defaults to FALSE.

Output Parameter for each object:

<Array> Policies A collection of the policy objects.

2.2.1.2.4 Renditions

Description:
Used to retrieve the renditions of the object(s).

Optional Input Parameter:

String renditionFilter The Repository MUST return the set of renditions whose kind
matches this filter. See section below for the filter grammar. Defaults to "cmis:none".

Output Parameter for each object:

<Array> Renditions The set of renditions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 128 of 331

2.2.1.2.4.1 Rendition Filter Grammar

The Rendition Filter grammar is defined as follows:

<renditionInclusion> ::= <none> | <wildcard> | <termlist>
<termlist> ::= <term> | <term> ',' <termlist>
<term> ::= <kind> | <mimetype>
<kind> ::= <text>
<mimetype> ::= <type> '/' <subtype>
<type> ::= <text>
<subtype> ::= <text> | <wildcard>
<text> ::= !! any char except whitespace
<wildcard> ::= '*'
<none> ::= 'cmis:none'

An inclusion pattern allows:

* Include all associated renditions.
Comma-separated list of Rendition kinds or mimetypes Include only those renditions that

match one of the specified kinds or mimetypes.
cmis:none Exclude all associated renditions. (Default)

Examples:

• * (include all renditions)
• cmis:thumbnail (include only thumbnails)
• image/* (include all image renditions)
• application/pdf,application/x-shockwave-flash (include web ready rendi-
tions)

• cmis:none (exclude all renditions)

2.2.1.2.5 ACLs

Description:
Used to retrieve the ACLs for the object(s) described in the service response.

Optional Input Parameter:

Boolean includeACL If TRUE, then the repository MUST return the ACLs for each object in the
result set. Defaults to FALSE.

Output Parameter for each object:

<Array> ACEs The list of access control entries of the ACL for the object.

If the repository does not support ACLs, it should not return an error if includeACL is set to TRUE but
ignore this parameter.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 129 of 331

2.2.1.2.6 Allowable Actions

Description:
Used to retrieve the allowable actions for the object(s) described in the service response.

Optional Input Parameter:

Boolean includeAllowableActions If TRUE, then the Repository MUST return the available
actions for each object in the result set. Defaults to FALSE.

Output Parameter for each object:

<Array> AllowableActions The list of allowable actions for the object.

2.2.1.2.7 Object Order

Description:
Used to define the order of the list of objects returned by getChildren and getCheckedOut-
Docs.
If the optional capability capabilityOrderBy is "none" and this parameter is set, the repository
SHOULD return an invalidArgument error.
If the optional capability capabilityOrderBy is "common" and this parameter contains a query
name that is not in the set of common properties (see below), the repository SHOULD return an
invalidArgument error.
If a repository only supports a certain number of orderBy properties, it SHOULD ignore all addi-
tional properties.
If this parameter contains a query name that is unknown or a query name that belongs to a property
that is not queryable, the repository SHOULD ignore it.
The query names of secondary type properties MUST follow this pattern: <secondaryType-
QueryName>.<propertyQueryName>

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 130 of 331

Common CMIS properties:
The following set of properties SHOULD be supported by the repository if the optional capability
capabilityOrderBy is common or custom.

• cmis:name
• cmis:objectId
• cmis:objectTypeId
• cmis:baseTypeId
• cmis:createdBy
• cmis:creationDate
• cmis:lastModifiedBy
• cmis:lastModificationDate
• cmis:isImmutable
• cmis:isPrivateWorkingCopy
• cmis:isLatestVersion
• cmis:isMajorVersion
• cmis:isLatestMajorVersion
• cmis:versionLabel
• cmis:versionSeriesId
• cmis:isVersionSeriesCheckedOut
• cmis:versionSeriesCheckedOutBy
• cmis:versionSeriesCheckedOutId
• cmis:checkinComment
• cmis:contentStreamLength
• cmis:contentStreamMimeType
• cmis:contentStreamFileName
• cmis:contentStreamId
• cmis:parentId
• cmis:allowedChildObjectTypeIds
• cmis:path

Optional Input Parameter:

String orderBy A comma-separated list of query names and an optional ascending modifier
"ASC" or descending modifier "DESC" for each query name. If the modifier is not stated,
"ASC" is assumed.

Example:
cmis:baseTypeId,cmis:contentStreamLength DESC,cmis:name

2.2.1.3 Change Tokens

The CMIS base object-type definitions include an opaque string cmis:changeToken property that a repos-
itory MAY use for optimistic locking and/or concurrency checking to ensure that user updates do not conflict.

If a repository provides a value for the cmis:changeToken property for an object, then all invocations of the
"update" methods on that object (updateProperties, bulkUpdateProperties, setContentStream,
appendContentStream, deleteContentStream, etc.) MUST provide the value of the cmis:changeToken
property as an input parameter, and the repository MUST throw an updateConflictException if the
value specified for the change token does NOT match the change token value for the object being updated.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 131 of 331

2.2.1.4 Exceptions

The following sections list the complete set of exceptions that MAY be returned by a repository in response
to a CMIS service method call.

2.2.1.4.1 General Exceptions

The following exceptions MAY be returned by a repository in response to ANY CMIS service method call.

The "Cause" field indicates the circumstances under which a repository SHOULD return a particular excep-
tion.

invalidArgument
Cause: One or more of the input parameters to the service method is missing or invalid.

notSupported
Cause: The service method invoked requires an optional capability not supported by the repository.

objectNotFound
Cause: The service call has specified an object, an object-type or a repository that does not exist.

permissionDenied
Cause: The caller of the service method does not have sufficient permissions to perform the operation.

runtime
Cause: Any other cause not expressible by another CMIS exception.

2.2.1.4.2 Specific Exceptions

The following exceptionsMAY be returned by a repositiory in response to one or more CMIS servicemethods
calls.

For each exception, the general intent is listed.

constraint
Intent: The operation violates a repository- or object-level constraint defined in the CMIS domain
model.

contentAlreadyExists
Intent: The operation attempts to set the content stream for a document that already has a content
stream without explicitly specifying the "overwriteFlag" parameter.

filterNotValid
Intent: The property filter or rendition filter input to the operation is not valid. The repository SHOULD
NOT throw this expection if the filter syntax is correct but one or more elements in the filter is unknown.
Unknown elements SHOULD be ignored.

nameConstraintViolation
Intent: The repository is not able to store the object that the user is creating/updating due to a name
constraint violation.

storage
Intent: The repository is not able to store the object that the user is creating/updating due to an internal
storage problem.

streamNotSupported
Intent: The operation is attempting to get or set a content stream for a document whose object-type
specifies that a content stream is not allowed for document's of that type.

updateConflict
Intent: The operation is attempting to update an object that is no longer current (as determined by the
repository). See also section 2.2.1.3 Change Tokens.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 132 of 331

versioning
Intent: The operation is attempting to perform an action on a non-current version of a document that
cannot be performed on a non-current version.

2.2.1.5 ACLs

Those services which allow for the setting of ACLs MAY take the optional macro cmis:user which allows
the caller to indicate the operation applies to the current authenticated user.

If the repository info provides a value for principalAnonymous, this value can be used to in an ACE to
specify permissions for anonymous users.

If the repository info provides a value for principalAnyone, this value can be used to in an ACE to specify
permissions for any authenticated user.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 133 of 331

2.2.2 Repository Services

The Repository Services are used to discover information about the repository, including information about
the repository and the object-types defined for the repository. Furthermore, it provides operations to create,
modify and delete object-type definitions if that is supported by the repository.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 134 of 331

2.2.2.1 getRepositories

Description: Returns a list of CMIS repositories available from this CMIS service endpoint.

2.2.2.1.1 Inputs

None.

2.2.2.1.2 Outputs

• Id repositoryId: The identifier for the repository.

• String repositoryName: A display name for the repository.

2.2.2.1.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 135 of 331

2.2.2.2 getRepositoryInfo

Description: Returns information about the CMIS repository, the optional capabilities it supports and its
access control information if applicable.

2.2.2.2.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

2.2.2.2.2 Outputs

• Id repositoryId: The identifier for the repository.
Note: This MUST be the same identifier as the input to the method.

• String repositoryName: A display name for the repository.

• String repositoryDescription: A display description for the repository.

• String vendorName: A display name for the vendor of the repository's underlying application.

• String productName: A display name for the repository's underlying application.

• String productVersion: A display name for the version number of the repository's underlying
application.

• Id rootFolderId: The id of the root folder object for the repository.

• List<Capabilities> capabilities: The set of values for the repository-optional capabilities speci-
fied in section 2.1.1.1 Optional Capabilities.

• String latestChangeLogToken: The change log token corresponding to the most recent change
event for any object in the repository. See section 2.1.15 Change Log.

• String cmisVersionSupported: A Decimal as String that indicates what version of the CMIS
specification this repository supports as specified in section 2.1.1.2 Implementation Information. This
value MUST be "1.1".

• URI thinClientURI: A optional repository-specific URI pointing to the repository's web interface.
MAY be not set.

• Boolean changesIncomplete: Indicates whether or not the repository's change log can return all
changes ever made to any object in the repository or only changes made after a particular point in
time. Applicable when the repository's optional capability capabilityChanges is not none.

– If FALSE, then the change log can return all changes ever made to every object.

– If TRUE, then the change log includes all changes made since a particular point in time, but not
all changes ever made.

• <Array> Enum changesOnType: Indicates whether changes are available for base types in the
repository. Valid values are from enumBaseObjectTypeIds. See section 2.1.15 Change Log.

– cmis:document
– cmis:folder
– cmis:policy
– cmis:relationship
– cmis:item

Note: The base type cmis:secondary MUST NOT be used here. Only primary base types can be
in this list.

• Enum supportedPermissions: Specifies which types of permissions are supported.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 136 of 331

basic Indicates that the CMIS basic permissions are supported.

repository Indicates that repository specific permissions are supported.

both Indicates that both CMIS basic permissions and repository specific permissions are supported.

• Enum propagation: The allowed value(s) for applyACL, which control how non-direct ACEs are
handled by the repository. See section 2.1.12.3 ACL Capabilities.

• <Array> Permission permissions: The list of repository-specific permissions the repository sup-
ports for managing ACEs. See section 2.1.12 Access Control.

• <Array> PermissionMapping mapping: The list of mappings for the CMIS basic permissions to
allowable actions. See section 2.1.12 Access Control.

• String principalAnonymous: If set, this field holds the principal who is used for anonymous
access. This principal can then be passed to the ACL services to specify what permissions anonymous
users should have.

• String principalAnyone: If set, this field holds the principal who is used to indicate any authen-
ticated user. This principal can then be passed to the ACL services to specify what permissions any
authenticated user should have.

• <Array> RepositoryFeatures extendedFeatures: Optional list of additional repository features.
See section 2.1.1.3 Repository Features.

2.2.2.2.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 137 of 331

2.2.2.3 getTypeChildren

Description: Returns the list of object-types defined for the repository that are children of the specified type.

2.2.2.3.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

Optional:

• Id typeId: The typeId of an object-type specified in the repository.

– If specified, then the repository MUST return all of child types of the specified type.

– If not specified, then the repository MUST return all base object-types.

• Boolean includePropertyDefinitions: If TRUE, then the repository MUST return the property
definitions for each object-type. If FALSE (default), the repository MUST return only the attributes for
each object-type.

• Integer maxItems: See section 2.2.1.1 Paging.

• Integer skipCount: See section 2.2.1.1 Paging.

2.2.2.3.2 Outputs

• <Array> Object-Type types: The list of child object-types defined for the given typeId.

• Boolean hasMoreItems: See section 2.2.1.1 Paging.

• Integer numItems: See section 2.2.1.1 Paging.

2.2.2.3.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 138 of 331

2.2.2.4 getTypeDescendants

Description: Returns the set of the descendant object-types defined for the Repository under the specified
type.

Notes:

• This method does NOT support paging as defined in the 2.2.1.1 Paging section.

• The order in which results are returned is respository-specific.

2.2.2.4.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

Optional:

• Id typeId: The typeId of an object-type specified in the repository.

– If specified, then the repository MUST return all of descendant types of the specified type.

– If not specified, then the Repository MUST return all types and MUST ignore the value of the
depth parameter.

• Integer depth: The number of levels of depth in the type hierarchy from which to return results. Valid
values are:

1 Return only types that are children of the type. See also getTypeChildren.

<Integer value greater than 1> Return only types that are children of the type and descendants up
to <value> levels deep.

-1 Return ALL descendant types at all depth levels in the CMIS hierarchy.

The default value is repository specific and SHOULD be at least 2 or -1.

• Boolean includePropertyDefinitions: If TRUE, then the repository MUST return the property
definitions for each object-type. If FALSE (default), the repository MUST return only the attributes for
each object-type.

2.2.2.4.2 Outputs

• <Array> Object-Type types: The hierarchy of object-types defined for the repository.

2.2.2.4.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• invalidArgument If the service is invoked with "depth = 0" or "depth < -1".

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 139 of 331

2.2.2.5 getTypeDefinition

Description: Gets the definition of the specified object-type.

2.2.2.5.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id typeId: The typeId of an object-type specified in the repository.

2.2.2.5.2 Outputs

• Object-Type type: Object-type including all property definitions. See section 2.1.3 Object-Type for
further details.

2.2.2.5.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 140 of 331

2.2.2.6 createType

Description: Creates a new type definition that is a subtype of an existing specified parent type.

Notes: Only properties that are new to this type (not inherited) are passed to this service.

See section 2.1.10 Object-Type Creation, Modification and Deletion for further details.

2.2.2.6.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Object-Type type: A fully populated type definition including all new property definitions.

2.2.2.6.2 Outputs

• Object-Type type: The newly created object-type including all property definitions. See sections
2.1.3 Object-Type and 2.1.10 Object-Type Creation, Modification and Deletion for further details.

2.2.2.6.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• invalidArgument If the specified parent type does not exist or the specified parent type cannot be
used as the parent type.

• constraint If the type definition violates repository specifc rules.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 141 of 331

2.2.2.7 updateType

Description: Updates a type definition.

Notes: If you add an optional property to a type in error. There is no way to remove it/correct it - without
deleting the type. See section 2.1.10 Object-Type Creation, Modification and Deletion for further details.

2.2.2.7.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Object-Type type: A type definition object with the property definitions that are to change. Reposi-
tories MUST ignore all fields in the type definition except for the type id and the list of properties.

Properties that are not changing MUST NOT be included, including any inherited property definitions.

For the properties that are being included, an entire copy of the property definition should be present
(with the exception of the choice values – see special note), even values that are not changing.

Special note about choice values. There are only two types of changes permitted.

– New choice added to the list.

– Changing the displayname for an existing choice.

For any choice that is being added or having its display name changed, both the displayName and
value MUST be present.

2.2.2.7.2 Outputs

• Object-Type type: The updated object-type including all property definitions. See sections 2.1.3Object-
Type and 2.1.10 Object-Type Creation, Modification and Deletion for further details.

2.2.2.7.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the rules listed in section 2.1.10 Object-Type Creation, Modification and Deletion are
not obeyed.

• constraint If the property definitions violate repository specifc rules.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 142 of 331

2.2.2.8 deleteType

Description: Deletes a type definition.

Notes: If there are object instances present of the type being deleted then this operation MUST fail.

See sections 2.1.10 Object-Type Creation, Modification and Deletion for further details.

2.2.2.8.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id typeId: The typeId of an object-type specified in the repository.

2.2.2.8.2 Outputs

• None.

2.2.2.8.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If objects of this object-type exist in the repository.

• constraint If the object-type has a sub-type.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 143 of 331

2.2.3 Navigation Services

The Navigation Services are used to traverse the folder hierarchy in a CMIS repository, and to locate doc-
uments that are checked out.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 144 of 331

2.2.3.1 getChildren

Description: Gets the list of child objects contained in the specified folder.

Notes: If the repository supports the optional capability capabilityVersionSpecificFiling, then the
repository MUST return the document versions filed in the specified folder. Otherwise, the latest version or
the latest major version of the documents MUST be returned.

2.2.3.1.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id folderId: The identifier for the folder.

Optional:

• Integer maxItems: See section 2.2.1.1 Paging.

• Integer skipCount: See section 2.2.1.1 Paging.

• String orderBy: See section 2.2.1.2.7 Object Order.

• String filter: See section 2.2.1.2.1 Properties.

• Enum includeRelationships: See section 2.2.1.2.2 Relationships.

• String renditionFilter: See section 2.2.1.2.4 Renditions.

• Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

• Boolean includePathSegment: If TRUE, returns a PathSegment for each child object for use in
constructing that object's path. Defaults to FALSE. See section 2.1.5.3 Paths.

2.2.3.1.2 Outputs

• <Array> objects objects: A list of the child objects for the specified folder. Each object result
MUST include the following elements if they are requested:

Properties See section 2.2.1.2.1 Properties.

Relationships See section 2.2.1.2.2 Relationships.

Renditions See section 2.2.1.2.4 Renditions.

AllowableActions See section 2.2.1.2.6 Allowable Actions.

PathSegment If includePathSegment was TRUE. See section 2.1.5.3 Paths.

• Boolean hasMoreItems: See section 2.2.1.1 Paging.

• Integer numItems: See section 2.2.1.1 Paging.

2.2.3.1.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property or rendition filter input parameter is not valid.

• invalidArgument If the specified folder is not a folder.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 145 of 331

2.2.3.2 getDescendants

Description: Gets the set of descendant objects contained in the specified folder or any of its child-folders.

Notes:

• This operation does NOT support paging as defined in the 2.2.1.1 Paging section.

• The order in which results are returned is respository-specific.

• If the repository supports the optional capability capabilityVersionSpecificFiling, then the
repository MUST return the document versions filed in the specified folder or its descendant folders.
Otherwise, the latest version or latest major version of the documents MUST be returned.

• If the repository supports the optional capability capabilityMultifiling and the same document
is encountered multiple times in the hierarchy, then the repository MUST return that document each
time it is encountered.

2.2.3.2.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id folderId: The identifier for the folder.

Optional:

• Integer depth: The number of levels of depth in the folder hierarchy from which to return results.
Valid values are:

1 Return only objects that are children of the folder. See also getChildren.

<Integer value greater than 1> Return only objects that are children of the folder and descendants
up to <value> levels deep.

-1 Return ALL descendant objects at all depth levels in the CMIS hierarchy.

The default value is repository specific and SHOULD be at least 2 or -1.

• String filter: See section 2.2.1.2.1 Properties.

• Enum includeRelationships: See section 2.2.1.2.2 Relationships.

• String renditionFilter: See section 2.2.1.2.4 Renditions.

• Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

• Boolean includePathSegment: If TRUE, returns a PathSegment for each child object for use in
constructing that object's path. Defaults to FALSE. See section 2.1.5.3 Paths.

2.2.3.2.2 Outputs

• <Array> objects objects: A tree of the child objects for the specified folder. Each object result
MUST include the following elements if they are requested:

Properties See section 2.2.1.2.1 Properties.

Relationships See section 2.2.1.2.2 Relationships.

Renditions See section 2.2.1.2.4 Renditions.

AllowableActions See section 2.2.1.2.6 Allowable Actions.

PathSegment If includePathSegment was TRUE. See section 2.1.5.3 Paths.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 146 of 331

2.2.3.2.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property or rendition filter input parameter is not valid.

• invalidArgument If the specified folder is not a folder.

• invalidArgument If the service is invoked with "depth = 0" or "depth < -1".

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 147 of 331

2.2.3.3 getFolderTree

Description: Gets the set of descendant folder objects contained in the specified folder.

Notes:

• This operation does NOT support paging as defined in the 2.2.1.1 Paging section.

• The order in which results are returned is respository-specific.

2.2.3.3.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id folderId: The identifier for the folder.

Optional:

• Integer depth: The number of levels of depth in the folder hierarchy from which to return results.
Valid values are:

1 Return only objects that are children of the folder.

<Integer value greater than 1> Return only objects that are children of the folder and descendants
up to <value> levels deep.

-1 Return ALL descendant objects at all depth levels in the CMIS hierarchy.

The default value is repository specific and SHOULD be at least 2 or -1.

• String filter: See section 2.2.1.2.1 Properties.

• Enum includeRelationships: See section 2.2.1.2.2 Relationships.

• String renditionFilter: See section 2.2.1.2.4 Renditions.

• Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

• Boolean includePathSegment: If TRUE, returns a PathSegment for each child object for use in
constructing that object's path. Defaults to FALSE. See section 2.1.5.3 Paths.

2.2.3.3.2 Outputs

• <Array> objects objects: A tree of the child objects for the specified folder. Each object result
MUST include the following elements if they are requested:

Properties See section 2.2.1.2.1 Properties.

Relationships See section 2.2.1.2.2 Relationships.

Renditions See section 2.2.1.2.4 Renditions.

AllowableActions See section 2.2.1.2.6 Allowable Actions.

PathSegment If includePathSegment was TRUE. See section 2.1.5.3 Paths.

2.2.3.3.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property or rendition filter input parameter is not valid.

• invalidArgument If the specified folder is not a folder.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 148 of 331

• invalidArgument If the service is invoked with "depth = 0" or "depth < -1".

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 149 of 331

2.2.3.4 getFolderParent

Description: Gets the parent folder object for the specified folder object.

2.2.3.4.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id folderId: The identifier for the folder.

Optional:

• String filter: See section 2.2.1.2.1 Properties.

2.2.3.4.2 Outputs

• Object object: The parent folder object of the specified folder.

The repository SHOULD return an object that is equal to the object returned by getObjectwith default
parameters.

2.2.3.4.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property filter input parameter is not valid.

• invalidArgument If the specified folder is not a folder.

• invalidArgument If the specified folder is the root folder.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 150 of 331

2.2.3.5 getObjectParents

Description: Gets the parent folder(s) for the specified fileable object.

2.2.3.5.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the object.

Optional:

• String filter: See section 2.2.1.2.1 Properties.

• Enum includeRelationships: See section 2.2.1.2.2 Relationships.

• String renditionFilter: See section 2.2.1.2.4 Renditions.

• Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

• Boolean includeRelativePathSegment: See section 2.1.5.3 Paths.

2.2.3.5.2 Outputs

• <Array> objects objects: A list of the parent folder(s) of the specified objects. Empty for the
root folder and unfiled objects. Each object result MUST include the following elements if they are
requested:

Properties See section 2.2.1.2.1 Properties.

Relationships See section 2.2.1.2.2 Relationships.

Renditions See section 2.2.1.2.4 Renditions.

AllowableActions See section 2.2.1.2.6 Allowable Actions.

RelativePathSegment If includeRelativePathSegment was TRUE. See section 2.1.5.3 Paths.

• Boolean hasMoreItems: See section 2.2.1.1 Paging.

• Integer numItems: See section 2.2.1.1 Paging.

2.2.3.5.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property or rendition filter input parameter is not valid.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 151 of 331

2.2.3.6 getCheckedOutDocs

Description: Gets the list of documents that are checked out that the user has access to.

2.2.3.6.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

Optional:

• Id folderId: The identifier for the folder.

If specified, the repository MUST only return checked out documents that are child-objects of the
specified folder.

If not specified, the repository MUST return checked out documents from anywhere in the repository
hierarchy.

• Integer maxItems: See section 2.2.1.1 Paging.

• Integer skipCount: See section 2.2.1.1 Paging.

• String orderBy: See section 2.2.1.2.7 Object Order.

• String filter: See section 2.2.1.2.1 Properties.

• Enum includeRelationships: See section 2.2.1.2.2 Relationships.

• String renditionFilter: See section 2.2.1.2.4 Renditions.

• Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.3.6.2 Outputs

• <Array> objects objects: A list of checked out documents. Each object result MUST include the
following elements if they are requested:

Properties See section 2.2.1.2.1 Properties.

Relationships See section 2.2.1.2.2 Relationships.

Renditions See section 2.2.1.2.4 Renditions.

AllowableActions See section 2.2.1.2.6 Allowable Actions.

• Boolean hasMoreItems: See section 2.2.1.1 Paging.

• Integer numItems: See section 2.2.1.1 Paging.

2.2.3.6.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property or rendition filter input parameter is not valid.

• invalidArgument If a folder is specified but the folder is not a folder.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 152 of 331

2.2.4 Object Services

CMIS provides id-based CRUD (Create, Retrieve, Update, Delete) operations on objects in a repository.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 153 of 331

2.2.4.1 createDocument

Description: Creates a document object of the specified type (given by the cmis:objectTypeId property)
in the (optionally) specified location.

2.2.4.1.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• <Array> Property properties: The property values that MUST be applied to the newly-created
document object.

Optional:

• Id folderId: If specified, the identifier for the folder that MUST be the parent folder for the newly-
created document object. This parameter MUST be specified if the repository does NOT support the
optional "unfiling" capability.

• <contentStream> contentStream: The content stream that MUST be stored for the newly-created
document object. The method of passing the contentStream to the server and the encoding mecha-
nism will be specified by each specific binding. MUST be required if the type requires it.

• Enum versioningState: An enumeration specifying what the versioning state of the newly-
created object MUST be. Valid values are:

none (default, if the object-type is not versionable) The documentMUST be created as a non-versionable
document.

checkedout The document MUST be created in the checked-out state. The checked-out document
MAY be visible to other users.

major (default, if the object-type is versionable) The document MUST be created as a major version.

minor The document MUST be created as a minor version.

• <Array> Id policies: A list of policy ids that MUST be applied to the newly-created document
object.

• <Array> ACE addACEs: A list of ACEs that MUST be added to the newly-created document object,
either using the ACL from folderId if specified, or being applied if no folderId is specified.

• <Array> ACE removeACEs: A list of ACEs that MUST be removed from the newly-created document
object, either using the ACL from folderId if specified, or being ignored if no folderId is specified.

2.2.4.1.2 Outputs

• Id objectId: The id of the newly-created document.

2.2.4.1.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the cmis:objectTypeId property value is not an object-type whose base type is
cmis:document.

• constraint If the cmis:objectTypeId property value is NOT in the list of AllowedChildOb-
jectTypeIds of the parent-folder specified by folderId.

• constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 154 of 331

• constraint If the contentStreamAllowed attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to "required" and no contentStream input parameter is
provided.

• constraint If the versionable attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and the value for the versioningState input
parameter is provided that is something other than none or "not set".

• constraintIf the versionable attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to TRUE and the value for the versioningState input pa-
rameter provided is none.

• constraint If the controllablePolicy attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and at least one policy is provided.

• constraint If the controllableACL attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and at least one ACE is provided.

• constraint If any permission referenced in a provided ACE is not supported by the repository. (see
also applyACL).

• nameConstraintViolation If the repository detects a violation with the given cmis:name property
value, the repository MAY throw this exception or chose a name which does not conflict.

• storage See section 2.2.1.4.2 Specific Exceptions.

• streamNotSupported See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 155 of 331

2.2.4.2 createDocumentFromSource

Description: Creates a document object as a copy of the given source document in the (optionally) specified
location.

2.2.4.2.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id sourceId: The identifier for the source document.

Optional:

• <Array> Property properties: The property values that MUST be applied to the object. This list
of properties SHOULD only contain properties whose values differ from the source document.

• Id folderId: If specified, the identifier for the folder that MUST be the parent folder for the newly-
created document object. This parameter MUST be specified if the repository does NOT support the
optional "unfiling" capability.

• Enum versioningState: An enumeration specifying what the versioning state of the newly-
created object MUST be. Valid values are:

none (default, if the object-type is not versionable) The documentMUST be created as a non-versionable
document.

checkedout The document MUST be created in the checked-out state. The checked-out document
MAY be visible to other users.

major (default, if the object-type is versionable) The document MUST be created as a major version.

minor The document MUST be created as a minor version.

• <Array> Id policies: A list of policy ids that MUST be applied to the newly-created document
object.

• <Array> ACE addACEs: A list of ACEs that MUST be added to the newly-created document object,
either using the ACL from folderId if specified, or being applied if no folderId is specified.

• <Array> ACE removeACEs: A list of ACEs that MUST be removed from the newly-created document
object, either using the ACL from folderId if specified, or being ignored if no folderId is specified.

2.2.4.2.2 Outputs

• Id objectId: The id of the newly-created document.

2.2.4.2.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the sourceId is not an object whose baseType is cmis:document.

• constraint If the cmis:objectTypeId property value is NOT in the list of AllowedChildOb-
jectTypeIds of the parent-folder specified by folderId.

• constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 156 of 331

• constraint If the versionable attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and the value for the versioningState input
parameter is provided that is something other than none or "not set".

• constraintIf the versionable attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to TRUE and the value for the versioningState input pa-
rameter provided is none.

• constraint If the controllablePolicy attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and at least one policy is provided.

• constraint If the controllableACL attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and at least one ACE is provided.

• constraint If any permission referenced in a provided ACE is not supported by the repository. (see
also applyACL).

• nameConstraintViolation If the repository detects a violation with the given cmis:name property
value, the repository MAY throw this exception or chose a name which does not conflict.

• storage See section 2.2.1.4.2 Specific Exceptions.

• streamNotSupported See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 157 of 331

2.2.4.3 createFolder

Description: Creates a folder object of the specified type in the specified location.

2.2.4.3.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• <Array> Property properties: The property values that MUST be applied to the newly-created
folder object.

• Id folderId: The identifier for the folder that MUST be the parent folder for the newly-created folder
object.

Optional:

• <Array> Id policies: A list of policy ids that MUST be applied to the newly-created folder object.

• <Array> ACE addACEs: A list of ACEs that MUST be added to the newly-created folder object, either
using the ACL from folderId if specified, or being applied if no folderId is specified.

• <Array> ACE removeACEs: A list of ACEs that MUST be removed from the newly-created folder
object, either using the ACL from folderId if specified, or being ignored if no folderId is specified.

2.2.4.3.2 Outputs

• Id objectId: The id of the newly-created folder.

2.2.4.3.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the cmis:objectTypeId property value is not an object-type whose base type is
cmis:folder.

• constraint If the cmis:objectTypeId property value is NOT in the list of AllowedChildOb-
jectTypeIds of the parent-folder specified by folderId.

• constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

• constraint If the controllablePolicy attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and at least one policy is provided.

• constraint If the controllableACL attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and at least one ACE is provided.

• constraint If at least one of the specified values for permission in ANY of the ACEs does not match
ANY of the permission names returned by the ACL Capabilities in the Repository Info (see section
2.1.12.3.1 Supported Permissions) and is not a CMIS basic permission.

• nameConstraintViolation If the repository detects a violation with the given cmis:name property
value, the repository MAY throw this exception or chose a name which does not conflict.

• storage See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 158 of 331

2.2.4.4 createRelationship

Description: Creates a relationship object of the specified type.

2.2.4.4.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• <Array> Property properties: The property values that MUST be applied to the newly-created
relationship object.

Optional:

• <Array> Id policies: A list of policy ids that MUST be applied to the newly-created relationship
object.

• <Array> ACE addACEs: A list of ACEs that MUST be added to the newly-created relationship object,
either using the ACL from folderId if specified, or being applied if no folderId is specified.

• <Array> ACE removeACEs: A list of ACEs that MUST be removed from the newly-created relation-
ship object, either using the ACL from folderId if specified, or being ignored if no folderId is specified.

2.2.4.4.2 Outputs

• Id objectId: The id of the newly-created relationship.

2.2.4.4.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the cmis:objectTypeId property value is not an object-type whose base type is
cmis:relationship.

• constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

• constraint If the source object's object-type is not in the list of "allowedSourceTypes" specified by
the object-type definition specified by cmis:objectTypeId property value.

• constraint If the target object's object-type is not in the list of "allowedTargetTypes" specified by
the object-type definition specified by cmis:objectTypeId property value.

• constraint If the controllablePolicy attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and at least one policy is provided.

• constraint If the controllableACL attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and at least one ACE is provided.

• constraint If at least one of the specified values for permission in ANY of the ACEs does not match
ANY of the permission names returned by the ACL Capabilities in the Repository Info (see section
2.1.12.3.1 Supported Permissions) and is not a CMIS basic permission.

• nameConstraintViolation If the repository detects a violation with the given cmis:name property
value, the repository MAY throw this exception or chose a name which does not conflict.

• storage See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 159 of 331

2.2.4.5 createPolicy

Description: Creates a policy object of the specified type.

2.2.4.5.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• <Array> Property properties: The property values that MUST be applied to the newly-created
policy object.

Optional:

• Id folderId: If specified, the identifier for the folder that MUST be the parent folder for the newly-
created policy object. This parameter MUST be specified if the repository does NOT support the
optional "unfiling" capability.

• <Array> Id policies: A list of policy ids that MUST be applied to the newly-created policy object.

• <Array> ACE addACEs: A list of ACEs that MUST be added to the newly-created policy object, either
using the ACL from folderId if specified, or being applied if no folderId is specified.

• <Array> ACE removeACEs: A list of ACEs that MUST be removed from the newly-created policy
object, either using the ACL from folderId if specified, or being ignored if no folderId is specified.

2.2.4.5.2 Outputs

• Id objectId: The id of the newly-created policy.

2.2.4.5.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the cmis:objectTypeId property value is not an object-type whose base type is
cmis:policy.

• constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

• constraint If the cmis:objectTypeId property value is NOT in the list of AllowedChildOb-
jectTypeIds of the parent-folder specified by folderId.

• constraint If the controllablePolicy attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and at least one policy is provided.

• constraint If the controllableACL attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and at least one ACE is provided.

• constraint If at least one of the specified values for permission in ANY of the ACEs does not match
ANY of the permission names returned by the ACL Capabilities in the Repository Info (see section
2.1.12.3.1 Supported Permissions) and is not a CMIS basic permission.

• nameConstraintViolation If the repository detects a violation with the given cmis:name property
value, the repository MAY throw this exception or chose a name which does not conflict.

• storage See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 160 of 331

2.2.4.6 createItem

Description: Creates an item object of the specified type.

2.2.4.6.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• <Array> Property properties: The property values that MUST be applied to the newly-created
item object.

Optional:

• Id folderId: If specified, the identifier for the folder that MUST be the parent folder for the newly-
created item object. This parameter MUST be specified if the repository does NOT support the optional
"unfiling" capability.

• <Array> Id policies: A list of policy ids that MUST be applied to the newly-created item object.

• <Array> ACE addACEs: A list of ACEs that MUST be added to the newly-created item object, either
using the ACL from folderId if specified, or being applied if no folderId is specified.

• <Array> ACE removeACEs: A list of ACEs that MUST be removed from the newly-created item
object, either using the ACL from folderId if specified, or being ignored if no folderId is specified.

2.2.4.6.2 Outputs

• Id objectId: The id of the newly-created item.

2.2.4.6.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the cmis:objectTypeId property value is not an object-type whose base type is
cmis:item.

• constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

• constraint If the cmis:objectTypeId property value is NOT in the list of AllowedChildOb-
jectTypeIds of the parent-folder specified by folderId.

• constraint If the controllablePolicy attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and at least one policy is provided.

• constraint If the controllableACL attribute of the object-type definition specified by the
cmis:objectTypeId property value is set to FALSE and at least one ACE is provided.

• constraint If at least one of the specified values for permission in ANY of the ACEs does not match
ANY of the permission names returned by the ACL Capabilities in the Repository Info (see section
2.1.12.3.1 Supported Permissions) and is not a CMIS basic permission.

• nameConstraintViolation If the repository detects a violation with the given cmis:name property
value, the repository MAY throw this exception or chose a name which does not conflict.

• storage See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 161 of 331

2.2.4.7 getAllowableActions

Description: Gets the list of allowable actions for an object (see section 2.2.1.2.6 Allowable Actions).

2.2.4.7.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the object.

2.2.4.7.2 Outputs

• <Array> AllowableActions AllowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.4.7.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 162 of 331

2.2.4.8 getObject

Description: Gets the specified information for the object.

2.2.4.8.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the object.

Optional:

• String filter: See section 2.2.1.2.1 Properties.

• Enum includeRelationships: See section 2.2.1.2.2 Relationships.

• Boolean includePolicyIds: See section 2.2.1.2.3 Policies.

• String renditionFilter: See section 2.2.1.2.4 Renditions.

• Boolean includeACL: See section 2.2.1.2.5 ACLs.

• Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.4.8.2 Outputs

• <Array> Properties properties: See section 2.2.1.2.1 Properties.

• <Array> Relationships relationships: See section 2.2.1.2.2 Relationships.

• <Array> PolicyId policies: See section 2.2.1.2.3 Policies.

• <Array> Renditions renditions: See section 2.2.1.2.4 Renditions.

• ACL acl: See section 2.2.1.2.5 ACLs.

• AllowableActions allowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.4.8.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property or rendition filter input parameter is not valid.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 163 of 331

2.2.4.9 getProperties

Description: Gets the list of properties for the object.

2.2.4.9.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the object.

Optional:

• String filter: See section 2.2.1.2.1 Properties.

2.2.4.9.2 Outputs

• <Array> Properties properties: See section 2.2.1.2.1 Properties.

2.2.4.9.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property filter input parameter is not valid.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 164 of 331

2.2.4.10 getObjectByPath

Description: Gets the specified information for the object.

2.2.4.10.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• String path: The path to the object. See section 2.1.5.3 Paths.

Optional:

• String filter: See section 2.2.1.2.1 Properties.

• Enum includeRelationships: See section 2.2.1.2.2 Relationships.

• Boolean includePolicyIds: See section 2.2.1.2.3 Policies.

• String renditionFilter: See section 2.2.1.2.4 Renditions.

• Boolean includeACL: See section 2.2.1.2.5 ACLs.

• Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.4.10.2 Outputs

• <Array> Properties properties: See section 2.2.1.2.1 Properties.

• <Array> Relationships relationships: See section 2.2.1.2.2 Relationships.

• <Array> PolicyId policies: See section 2.2.1.2.3 Policies.

• <Array> Renditions renditions: See section 2.2.1.2.4 Renditions.

• ACL acl: See section 2.2.1.2.5 ACLs.

• AllowableActions allowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.4.10.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property or rendition filter input parameter is not valid.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 165 of 331

2.2.4.11 getContentStream

Description: Gets the content stream for the specified document object, or gets a rendition stream for a
specified rendition of a document or folder object.

Notes: Each CMIS protocol binding MAY provide a way for fetching a sub-range within a content stream,
in a manner appropriate to that protocol.

2.2.4.11.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the object.

Optional:

• Id streamId: The identifier for the rendition stream, when used to get a rendition stream. For
documents, if not provided then this method returns the content stream. For folders, it MUST be
provided.

2.2.4.11.2 Outputs

• <Stream> ContentStream contentStream: The specified content stream or rendition stream for
the object.

2.2.4.11.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the object specified by objectId does NOT have a content stream or rendition stream.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 166 of 331

2.2.4.12 getRenditions

Description: Gets the list of associated renditions for the specified object. Only rendition attributes are
returned, not rendition stream.

2.2.4.12.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the object.

Optional:

• String renditionFilter: See section 2.2.1.2.4 Renditions.

• Integer maxItems: See section 2.2.1.1 Paging.

• Integer skipCount: See section 2.2.1.1 Paging.

2.2.4.12.2 Outputs

• <Array> Renditions rendition: The set of renditions available on this object.

2.2.4.12.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 167 of 331

2.2.4.13 updateProperties

Description: Updates properties and secondary types of the specified object.

Notes:

• A repository MAY automatically create new document versions as part of an update properties oper-
ation. Therefore, the objectId output NEED NOT be identical to the objectId input.

• Only properties whose values are different than the original value of the object SHOULD be provided.

2.2.4.13.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the object.

• <Array> Properties properties: The updated property values that MUST be applied to the object.

Optional:

• String changeToken: See section 2.2.1.3 Change Tokens.

2.2.4.13.2 Outputs

• Id objectId: The identifier for the object.

• String changeToken: See section 2.2.1.3 Change Tokens.

2.2.4.13.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the value of any of the properties violates the constraints (min/max/required/length
etc.) specified in the property definition in the object-type.

• nameConstraintViolation If the repository detects a violation with the given cmis:name property
value, the repository MAY throw this exception or chose a name which does not conflict.

• storage See section 2.2.1.4.2 Specific Exceptions.

• updateConflict See section 2.2.1.4.2 Specific Exceptions.

• versioning If the object is not checked out and ANY of the properties being updated are defined in
their object-type definition to have an attribute value of Updatability whencheckedout.

• versioning The repository MAY throw this exception if the object is a non-current document version.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 168 of 331

2.2.4.14 bulkUpdateProperties

Description: Updates properties and secondary types of one or more objects.

Notes:

• A repository MAY automatically create new document versions as part of an update properties oper-
ation. Therefore, the objectId output NEED NOT be identical to the objectId input.

• Only properties whose values are different than the original value of the object SHOULD be provided.

• This service is not atomic. If the update fails, some objects might have been updated and others might
not have been updated.

• This service MUST NOT throw an exception if the update of an object fails. If an update fails, the
object id of this particular object MUST be omitted from the result.

2.2.4.14.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• <Array> <Id, String> objectIdAndChangeToken: The identifiers of the objects to be updated and
their change tokens. Invalid object ids, for example ids of objects that don't exist, MUST be ignored.

Change tokens are optional. See section 2.2.1.3 Change Tokens.

Optional:

• <Array> Properties properties: The updated property values that MUST be applied to the ob-
jects.

• <Array> Id addSecondaryTypeIds: A list of secondary type ids that SHOULD be added to the
objects.

• <Array> Id removeSecondaryTypeIds: A list of secondary type ids that SHOULD be removed from
the objects. Secondary type ids in this list that are not attached to an object SHOULD be ignored.

2.2.4.14.2 Outputs

• <Array> <Id, Id, String> objectIdAndChangeToken: A triple for each updated object composed
of:

1. The original object id. MUST always be set.
2. The new object id if the update triggered a new version. MUST NOT be set if no new version has

been created.
3. The new change token of the object. MUST be set if the repository supports change tokens.

Objects that have not been updated MUST NOT be returned. This service does not disclose why
updates failed. Clients may call updateProperties for each failed object to retrieve individual ex-
ceptions.

2.2.4.14.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• invalidArgument If the input list of object ids is empty.

• invalidArgument If secondary type ids are provided that don't exist in the repository.

• constraint If the number of objects is too high for the repository.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 169 of 331

2.2.4.15 moveObject

Description: Moves the specified file-able object from one folder to another.

2.2.4.15.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the object.

• Id targetFolderId: The folder into which the object is to be moved.

• Id sourceFolderId: The folder from which the object is to be moved.

2.2.4.15.2 Outputs

• Id objectId: The identifier for the object. The identifier SHOULD NOT change. If the repository
has to change the id, this is the new identifier for the object.

2.2.4.15.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• invalidArgument If the service is invoked with a missing sourceFolderId or the sourceFolderId
doesn't match the specified object's parent folder (or one of the parent folders if the repository supports
multifiling.).

• constraint If the cmis:objectTypeId property value of the given object is NOT in the list of
AllowedChildObjectTypeIds of the parent-folder specified by targetFolderId.

• nameConstraintViolation If the repository detects a violation with the cmis:name property
value, the repository MAY throw this exception or chose a name which does not conflict.

• storage See section 2.2.1.4.2 Specific Exceptions.

• updateConflict See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 170 of 331

2.2.4.16 deleteObject

Description: Deletes the specified object.

Notes: If the object is a PWC the checkout is discarded. See section 2.1.13.5.3 Discarding Check out.

2.2.4.16.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the object.

Optional:

• Boolean allVersions: If TRUE (default), then delete all versions of the document. If FALSE,
delete only the document object specified. The repository MUST ignore the value of this parameter
when this service is invoke on a non-document object or non-versionable document object.

2.2.4.16.2 Outputs

• None.

2.2.4.16.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the method is invoked on a folder object that contains one or more objects.

• updateConflict See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 171 of 331

2.2.4.17 deleteTree

Description: Deletes the specified folder object and all of its child- and descendant-objects.

Notes:

• A repository MAY attempt to delete child- and descendant-objects of the specified folder in any order.

• Any child- or descendant-object that the repository cannot delete MUST persist in a valid state in the
CMIS domain model.

• This service is not atomic.

• However, if deletesinglefiled is chosen and some objects fail to delete, then single-filed objects
are either deleted or kept, never just unfiled. This is so that a user can call this command again to
recover from the error by using the same tree.

2.2.4.17.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id folderId: The identifier of the folder to be deleted.

Optional:

• Boolean allVersions: If TRUE (default), then delete all versions of all documents. If FALSE,
delete only the document versions referenced in the tree. The repository MUST ignore the value of this
parameter when this service is invoked on any non-document objects or non-versionable document
objects.

• Enum unfileObjects: An enumeration specifying how the repository MUST process file-able
child- or descendant-objects. Valid values are:

unfile Unfile all fileable objects.

deletesinglefiled Delete all fileable non-folder objects whose only parent-folders are in the current
folder tree. Unfile all other fileable non-folder objects from the current folder tree.

delete (default) Delete all fileable objects.

• Boolean continueOnFailure: If TRUE, then the repository SHOULD continue attempting to per-
form this operation even if deletion of a child- or descendant-object in the specified folder cannot be
deleted.

If FALSE (default), then the repository SHOULD abort this method when it fails to delete a single child
object or descendant object.

2.2.4.17.2 Outputs

• <Array> Id failedToDelete: A list of identifiers of objects in the folder tree that were not deleted.

2.2.4.17.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the method is invoked on a non-folder object.

• updateConflict See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 172 of 331

2.2.4.18 setContentStream

Description: Sets the content stream for the specified document object.

Notes: A repository MAY automatically create new document versions as part of this service operations.
Therefore, the objectId output NEED NOT be identical to the objectId input.

2.2.4.18.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the document object.

• ContentStream contentStream: The content stream.

Optional:

• Boolean overwriteFlag: If TRUE (default), then the repository MUST replace the existing content
stream for the object (if any) with the input contentStream.

If FALSE, then the repository MUST only set the input contentStream for the object if the object cur-
rently does not have a content stream.

• String changeToken: See section 2.2.1.3 Change Tokens.

2.2.4.18.2 Outputs

• Id objectId: The identifier for the object.

• String changeToken: See section 2.2.1.3 Change Tokens.

2.2.4.18.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• contentAlreadyExists If the input parameter overwriteFlag is FALSE and the object already has
a content stream.

• storage See section 2.2.1.4.2 Specific Exceptions.

• streamNotSupported See section 2.2.1.4.2 Specific Exceptions.

• updateConflict See section 2.2.1.4.2 Specific Exceptions.

• versioning The repository MAY throw this exception if the object is a non-current document version.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 173 of 331

2.2.4.19 appendContentStream

Description: Appends to the content stream for the specified document object.

Notes:

• A repository MAY automatically create new document versions as part of this service method. There-
fore, the objectId output NEED NOT be identical to the objectId input.

• The document may or may not have a content stream prior to calling this service. If there is no content
stream, this service has the effect of setting the content stream with the value of the input con-
tentStream.

• This service is intended to be used by a single client. It should support the upload of very huge
content streams. The behavior is repository specific if multiple clients call this service in succession
or in parallel for the same document.

2.2.4.19.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the document object.

• ContentStream contentStream: The content stream that should be appended to the existing
content.

Optional:

• Boolean isLastChunk: If TRUE, then this is the last chunk of the content and the client does not
intend to send another chunk. If FALSE (default), then the repository should except another chunk
from the client.

Clients SHOULD always set this parameter but repositories SHOULD be prepared that clients don't
provide it.

Repositories may use this flag to trigger some sort of content processing. For example, only if is-
LastChunk is TRUE the repsoitory could generate renditions of the content.

• String changeToken: See section 2.2.1.3 Change Tokens.

2.2.4.19.2 Outputs

• Id objectId: The identifier for the object.

• String changeToken: See section 2.2.1.3 Change Tokens.

2.2.4.19.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the client sends more then one "last chunk". If a repository can accept multiple chunks
that are marked as "last chunk", it MAY not throw this exception.

• storage See section 2.2.1.4.2 Specific Exceptions.

• streamNotSupported See section 2.2.1.4.2 Specific Exceptions.

• updateConflict See section 2.2.1.4.2 Specific Exceptions.

• versioning The repository MAY throw this exception if the object is a non-current document version.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 174 of 331

2.2.4.20 deleteContentStream

Description: Deletes the content stream for the specified document object.

Notes: A repository MAY automatically create new document versions as part of this servicemethod. There-
fore, the obejctId output NEED NOT be identical to the objectId input.

2.2.4.20.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the document object.

Optional:

• String changeToken: See section 2.2.1.3 Change Tokens.

2.2.4.20.2 Outputs

• Id objectId: The identifier for the object.

• String changeToken: See section 2.2.1.3 Change Tokens.

2.2.4.20.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the object's object-type definition "contentStreamAllowed" attribute is set to "required".

• storage See section 2.2.1.4.2 Specific Exceptions.

• updateConflict See section 2.2.1.4.2 Specific Exceptions.

• versioning The repository MAY throw this exception if the object is a non-current document version.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 175 of 331

2.2.5 Multi-filing Services

The Multi-filing services are supported only if the repository supports the multifiling or unfiling optional ca-
pabilities (capabilityMultifiling). The Multi-filing Services are used to file/un-file objects into/from
folders.

This service is NOT used to create or delete objects in the repository.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 176 of 331

2.2.5.1 addObjectToFolder

Description: Adds an existing fileable non-folder object to a folder.

2.2.5.1.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the object.

• Id folderId: The folder into which the object is to be filed.

Optional:

• Boolean allVersions: Add all versions of the object to the folder if the repository supports version-
specific filing. Defaults to TRUE.

2.2.5.1.2 Outputs

• None.

2.2.5.1.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the cmis:objectTypeId property value of the given object is NOT in the list of
AllowedChildObjectTypeIds of the parent-folder specified by folderId.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 177 of 331

2.2.5.2 removeObjectFromFolder

Description: Removes an existing fileable non-folder object from a folder.

2.2.5.2.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the object.

Optional:

• Id folderId: The folder from which the object is to be removed.

If no value is specified, then the repository MUST remove the object from all folders in which it is
currently filed.

2.2.5.2.2 Outputs

• None.

2.2.5.2.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the repository does not support unfiled objects (capabilityUnfiling = false) and
this operation would unfile the object from the last folder.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 178 of 331

2.2.6 Discovery Services

The Discovery Services are used to search for query-able objects within the repository.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 179 of 331

2.2.6.1 query

Description: Executes a CMIS query statement against the contents of the repository.

2.2.6.1.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• String statement: CMIS query to be executed. See section 2.1.14 Query.
Note: The AtomPub and the Browser Binding also use the name q.

Optional:

• Boolean searchAllVersions: If TRUE, then the repository MUST include latest and non-latest
versions of document objects in the query search scope.

If FALSE (default), then the repository MUST only include latest versions of documents in the query
search scope.

If the repository does not support the optional capabilityAllVersionsSearchable capability,
then this parameter value MUST be set to FALSE.

• Enum includeRelationships: See section 2.2.1.2.2 Relationships.

For query statements where the SELECT clause contains properties from only one virtual table ref-
erence (i.e. referenced object-type), any value for this enum may be used. If the SELECT clause
contains properties from more than one table, then the value of this parameter MUST be none. De-
faults to none.

• String renditionFilter: See section 2.2.1.2.4 Renditions.

If the SELECT clause contains properties from more than one table, then the value of this parameter
MUST not be set.

• Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

For query statements where the SELECT clause contains properties from only one virtual table refer-
ence (i.e. referenced object-type), any value for this parameter may be used. If the SELECT clause
contains properties from more than one table, then the value of this parameter MUST be "FALSE".
Defaults to FALSE.

• Integer maxItems: See section 2.2.1.1 Paging.

• Integer skipCount: See section 2.2.1.1 Paging.

2.2.6.1.2 Outputs

• <Array> Object queryResults: The set of results for the query. (See section 2.2.1.2.2 Relation-
ships.)

Each object result MUST include the following elements if they are requested:

Relationships See section 2.2.1.2.2 Relationships.

Renditions See section 2.2.1.2.4 Renditions.

AllowableActions See section 2.2.1.2.6 Allowable Actions.

• Boolean hasMoreItems: See section 2.2.1.1 Paging.

• Integer numItems: See section 2.2.1.1 Paging.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 180 of 331

2.2.6.1.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• invalidArgument If the select clause includes properties from more than a single type reference
and if includeRelationships is something other than "none" or includeAllowableActions
is specified as TRUE.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 181 of 331

2.2.6.2 getContentChanges

Description: Gets a list of content changes. This service is intended to be used by search crawlers or
other applications that need to efficiently understand what has changed in the repository. See section
2.1.15 Change Log.

Notes:

• The content stream is NOT returned for any change event.

• The definition of the authority needed to call this service is repository specific.

• The latest change log token for a repository can be acquired via the getRepositoryInfo service.

2.2.6.2.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

Optional:

• String changeLogToken: If specified, then the repository MUST return the change event corre-
sponding to the value of the specified change log token as the first result in the output.

If not specified, then the repository MUST return the first change event recorded in the change log.

• Boolean includeProperties: If TRUE, then the repository MUST include the updated property
values for "updated" change events if the repository supports returning property values as specified
by capbilityChanges.

If FALSE (default), then the repository MUST NOT include the updated property values for "updated"
change events. The single exception to this is that the property cmis:objectId MUST always be
included.

• Boolean includePolicyIds: If TRUE, then the repository MUST include the ids of the policies
applied to the object referenced in each change event, if the change event modified the set of policies
applied to the object.

If FALSE (default), then the repository MUST not include policy information.

• Boolean includeACL: See section 2.2.1.2.5 ACLs.

• Integer maxItems: See section 2.2.1.1 Paging.

2.2.6.2.2 Outputs

• <Array> ChangeEvents changeEvents: A collection of CMIS objects that MUST include the in-
formation as specified in 2.1.15.4 Change Event. Each result MUST include the following elements if
they are requested:

policyIds The ids of policies applied to the object referenced in the change event.

ACL The ACL applied to the object reference in the change event.

• String latestChangeLogToken: The change log token corresponding to the last change event in
changeEvents.

• Boolean hasMoreItems: See section 2.2.1.1 Paging.

• Integer numItems: See section 2.2.1.1 Paging.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 182 of 331

2.2.6.2.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• invalidArgument if the event corresponding to the change log token provided as an input parameter
is no longer available in the change log. (E.g. because the change log was truncated).

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 183 of 331

2.2.7 Versioning Services

The Versioning services are used to navigate or update a document version series. See section 2.1.13 Ver-
sioning.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 184 of 331

2.2.7.1 checkOut

Description: Create a private working copy (PWC) of the document. See section 2.1.13.5.1 Checkout.

2.2.7.1.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the document version object that should be checked out.

2.2.7.1.2 Outputs

• Id objectId: The identifier for the "Private Working Copy" document.

• Boolean contentCopied: TRUE if the content stream of the Private Working Copy is a copy of the
contentStream of the document that was checked out.

FALSE if the content stream of the Private Working Copy is "not set".

2.2.7.1.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint if the document's object-type definition's versionable attribute is FALSE.

• storage See section 2.2.1.4.2 Specific Exceptions.

• updateConflict See section 2.2.1.4.2 Specific Exceptions.

• versioning The repository MAY throw this exception if the object is a non-current document version.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 185 of 331

2.2.7.2 cancelCheckOut

Description: Reverses the effect of a check-out (checkOut). Removes the Private Working Copy of the
checked-out document, allowing other documents in the version series to be checked out again. If the
private working copy has been created by createDocument, cancelCheckOutMUST delete the created
document. See section 2.1.13.5.3 Discarding Check out.

2.2.7.2.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier of the Private Working Copy.

2.2.7.2.2 Outputs

• None.

2.2.7.2.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint if the document's object-type definition's versionable attribute is FALSE.

• updateConflict See section 2.2.1.4.2 Specific Exceptions.

• versioning The repository MAY throw this exception if the object is a non-current document version.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 186 of 331

2.2.7.3 checkIn

Description: Checks-in the Private Working Copy document. See section 2.1.13.5.4 Checkin.

Notes:

• For repositories that do NOT support the optional capabilityPWCUpdatable capability, the prop-
erties and contentStream input parameters MUST be provided on the checkIn service for updates
to happen as part of checkIn.

• Each CMIS protocol binding MUST specify whether the checkin service MUST always include all
updatable properties, or only those properties whose values are different than the original value of the
object.

2.2.7.3.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier for the Private Working Copy.

Optional:

• Boolean major: TRUE (default) if the checked-in document object MUST be a major version.

FALSE if the checked-in document object MUST NOT be a major version but a minor version.

• <Array> Property properties: The property values that MUST be applied to the checked-in doc-
ument object.

• <contentStream> contentStream: The content stream that MUST be stored for the checked-in
document object. The method of passing the contentStream to the server and the encoding mecha-
nism will be specified by each specific binding. MUST be required if the type requires it.

• String checkinComment: See section 2.1.13.6 Versioning Properties on Document Objects.

• <Array> Id policies: A list of policy ids that MUST be applied to the newly-created document
object.

• <Array> ACE addACEs: A list of ACEs that MUST be added to the newly-created document object.

• <Array> ACE removeACEs: A list of ACEs that MUST be removed from the newly-created document
object.

2.2.7.3.2 Outputs

• Id objectId: The id of the checked-in document.

2.2.7.3.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint if the object is not a Private Working Copy.

• storage See section 2.2.1.4.2 Specific Exceptions.

• updateConflict See section 2.2.1.4.2 Specific Exceptions.

• streamNotSupported See section 2.2.1.4.2 Specific Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 187 of 331

2.2.7.4 getObjectOfLatestVersion

Description: Get the latest document object in the version series.

2.2.7.4.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id versionSeriesId: The identifier for the version series.

Optional:

• Boolean major: If TRUE, then the repository MUST return the properties for the latest major version
object in the version series.

If FALSE (default), the repository MUST return the properties for the latest (major or non-major) version
object in the version series.

• String filter: See section 2.2.1.2.1 Properties.

• Enum includeRelationships: See section 2.2.1.2.2 Relationships.

• Boolean includePolicyIds: See section 2.2.1.2.3 Policies.

• String renditionFilter: See section 2.2.1.2.4 Renditions.

• Boolean includeACL: See section 2.2.1.2.5 ACLs.

• Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.7.4.2 Outputs

• <Array> Properties properties: See section 2.2.1.2.1 Properties.

• <Array> Relationships relationships: See section 2.2.1.2.2 Relationships.

• <Array> PolicyId policies: See section 2.2.1.2.3 Policies.

• <Array> Renditions renditions: See section 2.2.1.2.4 Renditions.

• ACL acl: See section 2.2.1.2.5 ACLs.

• AllowableActions allowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.7.4.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property or rendition filter input parameter is not valid.

• objectNotFound If the input parameter major is TRUE and the version series contains no major
versions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 188 of 331

2.2.7.5 getPropertiesOfLatestVersion

Description: Get a subset of the properties for the latest document object in the version series.

2.2.7.5.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id versionSeriesId: The identifier for the version series.

Optional:

• Boolean major: If TRUE, then the repository MUST return the properties for the latest major version
object in the version series.

If FALSE (default), the repository MUST return the properties for the latest (major or non-major) version
object in the version series.

• String filter: See section 2.2.1.2.1 Properties.

2.2.7.5.2 Outputs

• <Array> Properties properties: See section 2.2.1.2.1 Properties.

2.2.7.5.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property filter input parameter is not valid.

• objectNotFound If the input parameter major is TRUE and the version series contains no major
versions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 189 of 331

2.2.7.6 getAllVersions

Description: Returns the list of all document objects in the specified version series, sorted by cmis:creationDate
descending.

Notes: If a Private Working Copy exists for the version series and the caller has permissions to access it,
then it MUST be returned as the first object in the result list.

2.2.7.6.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id versionSeriesId: The identifier for the version series.

Optional:

• String filter: See section 2.2.1.2.1 Properties.

• Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.7.6.2 Outputs

• <Array> ObjectResults objects: A list of document objects in the specified version series. Each
object result MUST include the following elements if they are requested:

Properties See section 2.2.1.2.1 Properties.

AllowableActions See section 2.2.1.2.6 Allowable Actions.

2.2.7.6.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property filter input parameter is not valid.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 190 of 331

2.2.8 Relationship Services

The Relationship Services are used to retrieve the dependent relationship objects associated with an inde-
pendent object.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 191 of 331

2.2.8.1 getObjectRelationships

Description: Gets all or a subset of relationships associated with an independent object.

2.2.8.1.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier of the object.

Optional:

• Boolean includeSubRelationshipTypes: If TRUE, then the repository MUST return all relation-
ships whose object-types are descendant-types of the object-type specified by the typeId parameter
value as well as relationships of the specified type.

If FALSE (default), then the repository MUST only return relationships whose object-types is equivalent
to the object-type specified by the typeId parameter value.

If the typeId input is not specified, then this input MUST be ignored.

• Enum relationshipDirection: An enumeration specifying whether the repository MUST return
relationships where the specified object is the source of the relationship, the target of the relationship,
or both. Valid values are:

source (default) The repository MUST return only relationship objects where the specified object is
the source object.

target The repository MUST return only relationship objects where the specified object is the target
object.

either The repository MUST return relationship objects where the specified object is either the source
or the target object.

• Id typeId: If specified, then the repository MUST return only relationships whose object-type is of
the type specified. See also parameter includeSubRelationshipTypes.

If not specified, then the repository MUST return relationship objects of all types.

• Integer maxItems: See section 2.2.1.1 Paging.

• Integer skipCount: See section 2.2.1.1 Paging.

• String filter: See section 2.2.1.2.1 Properties.

• Boolean includeAllowableActions: See section 2.2.1.2.6 Allowable Actions.

2.2.8.1.2 Outputs

• <Array> Object objects: A list of the relationship objects. Each object result MUST include the
following elements if they are requested:

Properties See section 2.2.1.2.1 Properties.

AllowableActions See section 2.2.1.2.6 Allowable Actions.

• Boolean hasMoreItems: See section 2.2.1.1 Paging.

• Integer numItems: See section 2.2.1.1 Paging.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 192 of 331

2.2.8.1.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property or rendition filter input parameter is not valid.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 193 of 331

2.2.9 Policy Services

The Policy Services are used to apply or remove a policy object to a controllablePolicy object.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 194 of 331

2.2.9.1 applyPolicy

Description: Applies a specified policy to an object.

2.2.9.1.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id policyId: The identifier for the policy to be applied.

• Id objectId: The identifier of the object.

2.2.9.1.2 Outputs

• None.

2.2.9.1.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint The repository MUST throw this exception if the specified object's object-type definition's
attribute for controllablePolicy is FALSE.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 195 of 331

2.2.9.2 removePolicy

Description: Removes a specified policy from an object.

2.2.9.2.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id policyId: The identifier for the policy to be removed.

• Id objectId: The identifier of the object.

2.2.9.2.2 Outputs

• None.

2.2.9.2.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 196 of 331

2.2.9.3 getAppliedPolicies

Description: Gets the list of policies currently applied to the specified object.

2.2.9.3.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier of the object.

Optional:

• String filter: See section 2.2.1.2.1 Properties.

2.2.9.3.2 Outputs

• <Array> Object objects: A list of the policy objects.

2.2.9.3.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• filterNotValid If the property filter input parameter is not valid.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 197 of 331

2.2.10 ACL Services

The ACL Services are used to discover and manage Access Control Lists.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 198 of 331

2.2.10.1 applyACL

Description: Adds or removes the given ACEs to or from the ACL of an object .

Notes: This service MUST be supported by the repository, if the optional capability capabilityACL is
manage.

How ACEs are added or removed to or from the object is repository specific – with respect to the ACLProp-
agation parameter.

Some ACEs that make up an object's ACL may not be set directly on the object, but determined in other
ways, such as inheritance. A repository MAY merge the ACEs provided with the ACEs of the ACL already
applied to the object (i.e. the ACEs provided MAY not be completely added or removed from the effective
ACL for the object).

2.2.10.1.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier of the object.

Optional:

• <Array> AccessControlEntryType addACEs: The ACEs to be added.

• <Array> AccessControlEntryType removeACEs: The ACEs to be removed.

• Enum ACLPropagation: Specifies how ACEs should be handled. Valid values are:

objectonly ACEs must be applied without changing the ACLs of other objects.

propagate ACEs must be applied by propagate the changes to all "inheriting" objects.

repositorydetermined (default) Indicates that the client leaves the behavior to the repository.

2.2.10.1.2 Outputs

• <Array> AccessControlEntryType acl: The list of access control entries of the ACL for the object
after the new ACEs have been applied. The repository MAY return an empty list if the user has no
permissions to access the ACL of this object anymore after calling this service.

• Boolean exact: An indicator that the ACL returned fully describes the permission for this object.
That is, there are no other security constraints applied to this object. Not provided defaults to FALSE.

2.2.10.1.3 Exceptions Thrown & Conditions

• See section 2.2.1.4.1 General Exceptions.

• constraint If the specified object's object-type definition's attribute for controllableACL is
FALSE.

• constraint If the value for ACLPropagation does not match the values as returned by the ACL
Capabilities in the Repository Info. (See section 2.1.12.3 ACL Capabilities.)

• constraint If at least one of the specified values for permission in ANY of the ACEs does not match
ANY of the permission names returned by the ACL Capabilities in the Repository Info (see section
2.1.12.3.1 Supported Permissions) and is not a CMIS basic permission.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 199 of 331

2.2.10.2 getACL

Description: Get the ACL currently applied to the specified object.

Notes: This service MUST be supported by the repository, if the optional capability capabilityACL is
discover or manage. A client MUST NOT assume that the returned ACEs can be applied via applyACL.

2.2.10.2.1 Inputs

Required:

• Id repositoryId: The identifier for the repository.

• Id objectId: The identifier of the object.

Optional:

• Boolean onlyBasicPermissions: See section 2.1.12 Access Control. The repository SHOULD
make a best effort to fully express the native security applied to the object.

– TRUE (default) indicates that the client requests that the returned ACL be expressed using only
the CMIS basic permissions.

– FALSE indicates that the server may respond using either solely CMIS basic permissions, or
repository specific permissions or some combination of both.

2.2.10.2.2 Outputs

• <Array> AccessControlEntryType acl: The list of access control entries of the ACL for the object.
The repository MAY return an empty list if the user has no permissions to access the ACL of this
object.

• Boolean exact: An indicator that the ACL returned fully describes the permission for this object.
That is, there are no other security constraints applied to this object. Not provided defaults to FALSE.

2.2.10.2.3 Exceptions Thrown & Conditions

See section 2.2.1.4.1 General Exceptions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 200 of 331

3 AtomPub Binding

3.1 Overview

This binding is based upon the Atom ([RFC4287]) and Atom Publishing Protocol ([RFC5023]). Implemen-
tations of CMIS MUST be compliant with [RFC4287] and [RFC5023].

In this binding, the client interacts with the repository by acquiring the service document. The client will
request the service document by the URI provided by the vendor. The client will then choose a CMIS
collection, and then start accessing the repository by following the references in the returned documents.

This binding consists of a service document specifying at least CMIS service collections, Atom collections,
feeds and entry documents. CMIS extends the Atom and AtomPub documents utilizing the Atom and Atom-
Pub extension mechanism. CMIS also leverages link tags to specify additional resources related to the
requested resource.

When requesting a resource, optional parameters may be specified to change default behavior via query
parameters.

3.1.1 Namespaces

This specification uses the following namespaces and prefixes when referring to XML or XML schema ele-
ments in the text or examples:

• CMIS-Core: http://docs.oasis-open.org/ns/cmis/core/200908/
Prefix: cmis

• CMIS-RestAtom: http://docs.oasis-open.org/ns/cmis/restatom/200908/
Prefix: cmisra

• Atom : http://www.w3.org/2005/Atom
Prefix: atom

• AtomPub: http://www.w3.org/2007/app
Prefix: app

3.1.2 Authentication

Authentication SHOULD be handled by the transport protocol. Please see AtomPub [RFC5023] section 14.

If the provided credentials are incorrect or unknown or entirely missing, a repository MAY return the HTTP
status code 403 (Forbidden) instead of the HTTP status code 401 (Unauthorized). This may prevent attacks
against the Browser Binding. See also section 5.2.9 Authentication.

3.1.3 Response Formats

The client can specify, in HTTP the Accept header, which formats are acceptable to the client. With this
mechanism the client can choose which response format the CMIS implementation should respond with.
The CMIS compliant implementation MUST support the appropriate Media Types specified in this document.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 201 of 331

3.1.4 Optional Arguments

The binding supports adding optional parameters to CMIS resources to modify the default behavior. CMIS
implementations MUST support arguments being specified as HTTP query string parameters.

Names and valid values for HTTP query string parameters are as described in the appropriate CMIS Service
descriptions (see section 2.2 Services). Valid values of enumeration types are also represented in the CMIS
Core XML Schema.

3.1.5 Errors and Exceptions

Exceptions MUST be mapped to the appropriate HTTP status code.

Repositories SHOULD provide sufficient information in the body of the HTTP response for a user to deter-
mine corrective action.

See section 3.2.3 HTTP Status Codes for more information.

3.1.6 Renditions

Each rendition included in a CMIS AtomPub response is represented as an Atom link with a relationship
alternate.

The following attributes SHOULD be included on the link element:

href URI to the rendition content stream

type The Media Type of the rendition

cmisra:renditionKind The Rendition Kind for the rendition

The following attributes MAY be included:

title The filename (or name property if object) of rendition

length The length of the rendition in bytes

3.1.7 Content Streams

The content stream for a document SHOULD be referenced by the content src attribute as well as the
edit-media link relation. A CMIS Repository MAY use different URIs for both content src attribute and
the edit-media link relation for the same content stream.

The following attributes SHOULD be included on the link element:

href URI to the content stream

type The Media Type of the content stream

3.1.8 Paging of Feeds

For paging, please see the AtomPub RFC. CMIS leverages first, next, previous, and last link relations to
express paging.

If the repository can include the number of items (numItems in CMIS Domain Model) in a feed, then the
repository SHOULD include the cmisra:numItems extension element in the feed.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 202 of 331

3.1.9 Services not Exposed

The following services are not exposed in this binding:

• getRenditions: This is exposed as part of getObject.

• getProperties: This is exposed as part of getObject.

• getPropertiesOfLatestVersion: This is exposed as part of getObjectOfLatestVersion.

• createDocumentFromSource: This is not exposed in this binding except as the client saving the
resource and resubmitting it without the cmis:objectId.

• Adding and removing ACEs on Create or CheckIn operations: This is not possible with the AtomPub
binding. The Create or CheckIn operation must be performed first. Then the dependent resource,
ACL, must be retrieved and updated.

• setContentStream: This does not return the new object id and change token as specified by the
domain model. This is not possible without introducing a new HTTP header.

• deleteContentStream: This does not return the new object id and change token as specified by
the domain model. This is not possible without introducing a new HTTP header.

• checkOut: This does not return whether or not content was copied. This is not possible with-
out introducing a new HTTP header. Clients may check content related properties such as the
cmis:contentStreamLength property if the Private Working Copy has a content stream.

• deleteTree: This does not return which objects have not been deleted. If the deletion of a folder
fails, the client can call getChildren or getDescendants to determine which objects could not
been deleted.

3.1.9.1 removePolicy

This service is exposed from the domainmodel in the AtomPub binding. However, it is not as straightforward.
To remove a policy from an object, one must do:

• Get the object.

• Fetch the policies collection of the object.

• Walk through the feed and find the policy object where cmis:objectId == policy id to remove.

• Get the self link of this policy object.

• Perform a DELETE on this URL.

This is also the only case in the AtomPub Binding where an URI in a collection (policies) is specific to that
collection.

3.2 HTTP

3.2.1 HTTP Range

Repositories MAY support HTTP Range requests on content streams.

3.2.2 HTTP OPTIONS Method

The repository MAY support the HTTP OPTIONS method on all the resources defined in this specification.
If the repository supports OPTIONS, then the repository MUST at least return the HTTP methods specified
for that resource in the Allow header.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 203 of 331

3.2.3 HTTP Status Codes

Please see the HTTP specification for more information on the HTTP status codes. These are provided as
guidance from the HTTP specification. If any conflict arises, the HTTP specification is authoritative.

3.2.3.1 General CMIS Exceptions

The following listing defines the HTTP status codes that repositories MUST return for the various common
exceptions defined in CMIS Domain Model.

CMIS Services Exception HTTP Status Code
General Exceptions
invalidArgument 400
notSupported 405
objectNotFound 404
permissionDenied 403
runtime 500
Specific Exceptions
constraint 409
contentAlreadyExists 409
filterNotValid 400
nameConstraintViolation 409
storage 500
streamNotSupported 403
updateConflict 409
versioning 409

3.2.3.2 Notable HTTP Status Codes

415 Unsupported Media Type
When a document is POST'ed to a collection that does not support the media type of the document,
this status code MUST be returned

422 Unprocessable Entity (Defined in [RFC4918] Section 11.2)
When a request has been POST'ed but cannot be processed, this status code MUST be returned.

Please see [RFC2616] Section 10 for more information.

3.3 Media Types

CMIS introduces new media types for:

• a CMIS Query document (application/cmisquery+xml)

• a CMIS AllowableActions document (application/cmisallowableactions+xml)

• an Atom document (Entry or Feed) with any CMIS Markup (application/cmisatom+xml)

• an Atom Feed document with CMIS Hierarchy extensions (application/cmistree+xml)

• a CMIS ACL document (application/cmisacl+xml)

In addition to those media types specified by CMIS, CMIS also leverages these media types:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 204 of 331

• AtomPub Service (application/atomsvc+xml)

• Atom Entry (application/atom+xml;type=entry)

• Atom Feed (application/atom+xml;type=feed)

3.3.1 CMIS Atom

Media Type: application/cmisatom+xml

Starting tag: atom:feed or atom:entry
Type Parameters: type: the semantics of the type parameter MUST be the same as the media

type parameter for Atom documents.

This allows clients to differentiate between repositories that require Atom media type with CMIS extensions
(application/cmisatom+xml) for creation and repositories that allow generic Atom media type without
CMIS extensions (application/atom+xml).

This is only used for CMIS repositories to advertise what media types are accepted for adding to a collection
(e.g., creating resources in a collection). As such CMIS does not require specifying whether an Atom feed
has CMIS markup. It is included to be consistent with the Atom media type.

All feeds and entries from a CMIS repository MUST utilize the Atommedia type for exposing Atom resources.
Please see the individual resources for more information on themedia type. This provides the interoperability
with Atom clients.

Example:
Request: atompub/getObject-request.log
Response: atompub/getObject-response.log

3.3.2 CMIS Query

Media Type: application/cmisquery+xml

Starting tag: cmis:query

This document contains the representation of a query to be executed in a CMIS repository.

Example:
Request: atompub/doQuery-request.log
Response: atompub/doQuery-response.log

3.3.3 CMIS Allowable Actions

Media Type: application/cmisallowableactions+xml

Starting tag: cmis:allowableActions

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 205 of 331

This document contains the representation of the allowable actions the user may perform on the referenced
object.

Example:
Request: atompub/getAllowableActions-request.log
Response: atompub/getAllowableActions-response.log

3.3.4 CMIS Tree

Media Type: application/cmistree+xml

Starting tag: atom:feed

This document is an Atom feed (application/atom+xml;type=feed) with CMIS markup to nest a hi-
erarchy.

Please see section 3.5.2.1 Hierarchical Atom Entries.

Example:
Request: atompub/getDescendants-request.log
Response: atompub/getDescendants-response.log

Note: This media type is used on links with relation down (see section 3.4.3.2 Hierarchy Navigation Internet
Draft Link Relations). When the individual resources are returned by the CMIS repository they will use the
Atom media type (application/atom+xml)

3.3.5 CMIS ACL

Media Type: application/cmisacl+xml

Starting tag: cmis:acl

This document specifies an Access Control List based on the schema in CMIS Domain Model.

Example:
Request: atompub/getAcl-request.log
Response: atompub/getAcl-response.log

3.4 Atom Extensions for CMIS

3.4.1 Atom Element Extensions

3.4.1.1 AtomPub Workspace

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 206 of 331

3.4.1.1.1 cmisra:collectionType

This element is included inside the app:collection element. This specifies the CMIS collection type.

3.4.1.1.2 cmisra:repositoryInfo

This element is included inside the app:workspace element. This specifies information about the CMIS
repository.

3.4.1.1.3 cmis:uritemplate

This element is included inside the app:workspace element. This specifies information about URI tem-
plates

3.4.1.2 Atom Feed

3.4.1.2.1 cmisra:numItems

This element is included inside the atom:feed element. This specifies the number of items in the feed.

3.4.1.3 Atom Entry

3.4.1.3.1 cmisra:children

This element is included inside the atom:entry element. This includes the children of the Atom entry. This
element MUST include an atom:feed element.

3.4.1.3.2 cmisra:object

This element is included inside the atom:entry element for CMIS document, folder, relationship, policy,
and item objects. This specifies the CMIS object information for the Atom entry.

3.4.1.3.3 cmisra:pathSegment

This element is included inside the atom:entry element. This specifies the pathSegment for this object in
the folder representing the feed.

3.4.1.3.4 cmisra:relativePathSegment

This element is included inside the atom:entry element. This specifies the relative pathSegment for the
object in that particular folder. This MUST be used only inside an object parents feed.

3.4.1.3.5 cmisra:type

This element is included inside the atom:entry element for CMIS Type Definitions. This specifies the type
definition the Atom entry represents.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 207 of 331

3.4.1.3.6 cmisra:content

This element specifies the content of the atom:entry element. The content is base64 encoded in the
base64 element. The elements of a cmisra:content element are:

cmisra:mediaType This contains the media type of the content as described by [RFC4288].

cmisra:base64 This contains the base64 content of the file

This element MUST take precedence over atom:content on submission of an Atom entry to a repository.

A repository MUST use the atom:content element to return back to the client the content of the document.

Note: This is required when the client has an XML document stored that might not be well formed and thus
would not be able to be included inside atom:content element.

3.4.1.3.7 cmisra:bulkUpdate

This element is included inside the atom:entry element. It specifics bulk update data.

See the bulkUpdateProperties service for details.

3.4.2 Attributes

These attributes are in the CMIS RestAtom namespace (cmisra).

3.4.2.1 cmisra:id

This attribute is used on the atom:link element to specify the CMIS id of the resource. This attribute
SHOULD be on all link relations that point to a CMIS object.

This attribute MAY also be on cmisra:type. The value of the attribute on cmis:typeMUST be the same
as the type definition id.

Example
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<atom:link xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
xmlns:cmism="http://docs.oasis-open.org/ns/cmis/messaging/200908/"
xmlns:atom="http://www.w3.org/2005/Atom"
xmlns:app="http://www.w3.org/2007/app"
xmlns:cmisra="http://docs.oasis-open.org/ns/cmis/restatom/200908/"
type="application/atom+xml;type=feed"
rel="down"
href="http://example.com/rep1/children/e170da7d-d322-472d-b1eb-67bdb1ec18ca/1"
cmisra:id="e170da7d-d322-472d-b1eb-67bdb1ec18ca"/>

3.4.2.2 cmisra:renditionKind

This attribute is used on the atom:link element with relation alternate to specify the renditionKind of the
resource. This attribute SHOULD be on all link elements with relation alternate that are a CMIS rendition.

Example
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<atom:link xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
xmlns:cmism="http://docs.oasis-open.org/ns/cmis/messaging/200908/"
xmlns:atom="http://www.w3.org/2005/Atom"
xmlns:app="http://www.w3.org/2007/app"
xmlns:cmisra="http://docs.oasis-open.org/ns/cmis/restatom/200908/"
type="text/html"
rel="alternate"

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 208 of 331

href="http://example.com/rep1/rendition/e170da7d-d322-472d-b1eb-67bdb1ec18ca/1"
cmisra:renditionKind="cmis:thumbnail"/>

3.4.3 CMIS Link Relations

The listing below outlines the different link relation types in CMIS. This is in addition to the link relations
specified by Atom and Atom Publishing Protocol. The registry for link relations is located at http://www.iana.
org/assignments/link-relations/link-relations.xhtml.

The link element with a specified relation MUST be included if client can perform the operation. The reposi-
tory SHOULD omit the link relation if the operation is not available. The operation may not be available due
to a variety of reasons such as access control, administrative policies, or other mechanisms.

Links may have the following attribute in addition to the ones specified by Atom and Atom Publishing Proto-
col:

cmisra:id Specifies the CMIS Id of the resource referenced by the link. Repositories SHOULD include this
attribute for elements such as atom:link that point to CMIS resources that have an id.

3.4.3.1 Existing Link Relations

Existing link relations should be used where appropriate by the implementation. In addition, the following
link relations are leveraged for the CMIS specification:

self

• This link relation provides the URI to retrieve this resource again.

• Service: The appropriate service that generated the Atom entry or feed.

• Resources: All except AllowableActions, ACL and Content Streams

service

• The service link relation when provided on a CMIS resource MUST point to an AtomPub service doc-
ument with only one workspace element. This workspace element MUST represent the repository
containing that resource.

• Media Type: application/atomsvc+xml

• Resources: All except AllowableActions, ACL and Content Streams

describedby

• When used on a CMIS resource, this link relation MUST point to an Atom entry that describes the type
of that resource.

• Service: getTypeDefinition on specified object

• Media Type: application/atom+xml;type=entry

• Resources: CMIS document, CMIS folder, CMIS relationship, CMIS policy, CMIS item objects and
CMIS types

via

• When used on an Atom feed document, this link relation MUST point to the Atom entry representing
the CMIS resource from whom this feed is derived.

• Media Type: application/atom+xml;type=entry

• Resources: All CMIS Feeds and Collections

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 209 of 331

http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml

edit-media

• When used on a CMIS document resource, this link relation MUST point to the URI for content stream
of the CMIS document. This URI MUST be used to set or delete the content stream. This URI MAY
be used to retrieve the content stream for the document.

• Service: setContentStream (PUT), appendContentStream (PUT), deleteContentStream (DELETE)

• Media Type: Specific to resource

• Resources: CMIS document

edit

• When used on a CMIS resource, this link relation MUST provide an URI that can be used with the
HTTP PUT method to modify the atom:entry for the CMIS resource.

• Service: getObject (GET), updateProperties (PUT)

• Media Type: application/atom+xml;type=entry

• Resources: CMIS documents, CMIS folders, CMIS relationships, CMIS policies, and CMIS items

alternate

• This is used to express renditions on a CMIS resource. See section 2.1.4.2 Renditions.

• Service: getContentStream for specified rendition

• Resources: CMIS documents and folders

first

• This is used for paging. Please see the AtomPub specification.

• Media Type: application/atom+xml;type=feed

• Resources: All Feeds

previous

• This is used for paging. Please see the AtomPub specification.

• Media Type: application/atom+xml;type=feed

• Resources: All Feeds

next

• This is used for paging. Please see the AtomPub specification.

• Media Type:application/atom+xml;type=feed

• Resources: All Feeds

last

• This is used for paging. Please see the AtomPub specification.

• Media Type: application/atom+xml;type=feed

• Resources: All Feeds

Please see http://www.iana.org/assignments/link-relations/link-relations.xhtml for more information on these
link relations.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 210 of 331

http://www.iana.org/assignments/link-relations/link-relations.xhtml

3.4.3.2 Hierarchy Navigation Internet Draft Link Relations

CMIS leverages the following link relations:

up

• Service: getFolderParent, getObjectParents, getTypeDefinition, getObject

• Media Type: application/atom+xml;type=feed, application/atom+xml;type=entry

• Resources: CMIS documents, folders, policies, items, type definitions, folder children, folder descen-
dants, folder tree, type children, type descendants

• This link relation MUST not be included on CMIS base type definitions or the CMIS root folder

down

• Service: getChildren, getDescendants, getTypeChildren, getTypeDescendants

• Media Type:

– For children: application/atom+xml;type=feed
– For descendants: application/cmistree+xml
– The descendants feed resource when retrieved from the CMIS repository will use the Atom Feed
Media Type (application/atom+xml;type=feed)

• Resources: CMIS folders, types

3.4.3.3 Versioning Internet Draft Link Relations

CMIS leverages the following link relations from the Internet Draft:

version-history

• Service: getAllVersions

• Media Type: application/atom+xml;type=feed

• Resources: CMIS documents

current-version

• Service: getObjectOfLatestVersion (major == FALSE)

• Media Type: application/atom+xml;type=entry

• Resources: CMIS documents

working-copy

• Service: getObject for Private Working Copy specified by cmis:versionSeriesCheckedOutId
property

• Media Type: application/atom+xml;type=entry

• Resources: CMIS documents if a PWC exists

3.4.3.4 CMIS Specific Link Relations

CMIS defines the following link relations:

http://docs.oasis-open.org/ns/cmis/link/200908/allowableactions

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 211 of 331

• This link relation MUST point to a resource containing a CMIS AllowableActions document for the
CMIS resource containing this link relation.

• Service: getAllowableActions

• Media Type: application/cmisallowableactions+xml

• Resources: CMIS documents, folders, policies, relationships, and items

http://docs.oasis-open.org/ns/cmis/link/200908/relationships

• This link relation MUST point to a resource containing an Atom feed of CMIS relationship resources
for the CMIS resource containing this link relation.

• Service: getObjectRelationships

• Media Type: application/atom+xml;type=feed

• Resources: CMIS documents, folders, policies, and items

http://docs.oasis-open.org/ns/cmis/link/200908/source

• When used on a CMIS relationship resource, this link relation MUST point to an Atom entry document
for the CMIS Resource specified by the cmis:sourceId property on the relationship.

• Source Link on Relationship

• Service: getObject

• Media Type: application/atom+xml;type=entry

• Resources: CMIS relationships

http://docs.oasis-open.org/ns/cmis/link/200908/target

• When used on a CMIS relationship resource, this link relation MUST point to an Atom entry document
for the CMIS Resource specified by the cmis:targetId property on the relationship.

• Target Link on Relationship

• Service: getObject

• Media Type: application/atom+xml;type=entry

• Resources: CMIS relationships

http://docs.oasis-open.org/ns/cmis/link/200908/policies

• This link relation MUST point to a resource containing an Atom feed of CMIS policy resources for the
CMIS resource containing this link relation.

• Service: getAppliedPolicies

• Media Type: application/atom+xml;type=feed

• Resources: CMIS documents, folders, relationships, policies, and items

http://docs.oasis-open.org/ns/cmis/link/200908/acl

• This link relation MUST point to a resource containing a CMIS ACL document for the CMIS resource
containing this link relation.

• Service: getACL

• Media Type: application/cmisacl+xml

• Resources: CMIS documents, folders, relationships, policies, and items that are securable

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 212 of 331

http://docs.oasis-open.org/ns/cmis/link/200908/changes

• This link relation MUST point to an Atom feed containing the set of changes.

• Service: getContentChanges

• Media Type: application/atom+xml;type=feed

• Resources: AtomPub Workspace Element in Service document

http://docs.oasis-open.org/ns/cmis/link/200908/foldertree

• Used in AtomPub Service document to identify the folder tree for a specified folder.

• Service: getFolderTree

• Media Type: application/atom+xml;type=feed

• Resources: CMIS folders, also used in AtomPub Service document for root folder

http://docs.oasis-open.org/ns/cmis/link/200908/typedescendants

• Used in AtomPub Service document to identify the base types descendants.

• Service: getTypeDescendants

• Media Type: application/atom+xml;type=feed

• Resources: AtomPub Workspace Element in Service document

http://docs.oasis-open.org/ns/cmis/link/200908/rootdescendants

• Used in AtomPub Service document to identify the root folder descendants.

• Service: getDescendants for root folder

• Media Type: application/atom+xml;type=feed

• Resources: AtomPub Workspace Element in Service document

3.5 Atom Resources

For all Atom resources used in this specification, the following MUST be followed:

3.5.1 Feeds

Any feed MUST be a valid Atom Feed document and conform to the guidelines below for CMIS objects:

• atom:updated SHOULD be the latest time the folder or its contents was updated. If unknown by the
underlying repository, it MUST be the current time.

• atom:author/atom:name MUST be the CMIS property cmis:createdBy.

• atom:title MUST be the CMIS property cmis:name.

• The atom:link with relation selfMUST be generated to return the URI of the feed. If paging or any
other mechanism is used to filter, sort, or change the representation of the feed, the URI MUST point
back a resource with the same representation.

• A feed SHOULD contain the element app:collection, describing the appropriate media types sup-
ported for creation of new entries in the feed

• atom:id SHOULD be derived from cmis:objectId. This id MUST be compliant with atom's spec-
ification and be a valid URI.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 213 of 331

• Feeds MAY be paged via the link relations specified in AtomPub. If more items are available than
contained in the feed, then a link with the relation next MUST be included in the feed.

Any feed MUST be a valid Atom Feed document and conform to the guidelines below for CMIS types:

• atom:updated SHOULD be the latest time type definition was updated. If unknown by the underlying
repository, it MUST be the current time.

• atom:author/atom:name is repository specific.

• atom:title MUST be the displayName attribute of the CMIS type definition.

• The atom:link with relation self MUST be generated to return the IRI of the feed.

• atom:id SHOULD be derived from the id attribute of the CMIS type definition. This id MUST be
compliant with atom's specification and be a valid URI.

• Feeds MAY be paged via the link relations specified in AtomPub. If more items are available than
contained in the feed, then a link with the relation next MUST be included in the feed.

If on the root type, all fields are repository specific.

Ordering of entries in a feed is repository-specific if the orderBy argument is not specified. If the orderBy
argument is specified, the order of the entries in the feed SHOULD conform to the ordering specified by
the orderBy argument. If a repository only supports a certain number of orderBy properties, it SHOULD
ignore all additional properties.

3.5.2 Entries

At any point where an Atom document of type Entry is sent or returned, it must be a valid Atom Entry
document and conform to the guidelines below for a cmis object:

• atom:title MUST be the cmis:name property.

• app:edited MUST be cmis:lastModificationDate.

• atom:updated MUST be cmis:lastModificationDate.

• atom:published MUST be cmis:creationDate.

• atom:author/atom:name MUST be cmis:createdBy.

• atom:summary SHOULD be cmis:description.

• All CMIS properties MUST be exposed in CMIS cmis:properties elements even if they are dupli-
cated in an Atom element.

• atom:id SHOULD be derived from cmis:objectId. This id MUST be compliant with atom's spec-
ification and be a valid IRI.

For documents that support content streams:
The repository SHOULD use the atom:content/src attribute to point to the content stream.
The client SHOULD use cmisra:content if the content is not well-formed or would have trou-
ble fitting inside an atom:content element. The repository MUST use the cmisra:content
element if provided by the client over the atom:content element.

Other objects:
(Folders, relationships, policies, items, and other document types that do not support content
streams, etc.)
The repository SHOULD provide an atom:summary element and no atom:content element in
order to comply with the Atom specification. Any value in the content field MUST be ignored if
the Atom entry represents a non-document object by the CMIS repository when the Atom entry is
POST'ed to a collection or sent to the repository via a PUT.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 214 of 331

When POSTing an Atom Document, the Atom elements MUST take precedence over the corresponding
writable CMIS property. For example, atom:title will overwrite cmis:name.

At any point where an Atom document of CMIS type is sent or returned, it must be a valid Atom Entry
document and conform to the guidelines below for a CMIS type definition:

• atom:title MUST be the cmis:displayName

• The repository SHOULD populate the atom:summary tag with text that best represents a summary
of the object. For example, the type description if available.

Any Atom element that is not specified is repository-specific.

3.5.2.1 Hierarchical Atom Entries

The repository SHOULD NOT provide any links to hierarchical objects if those capabilities are not supported
with the exception of getTypeDescendants which is required.

For Atom entries that are hierarchical such as Folder Trees or Descendants, the repository MUST populate a
cmisra:children element in the atom:entry with the enclosing feed of its direct children. This pattern
continues until the depth is satisfied.

The cmisra:children element MUST include an atom:feed element that contains the children entries
of this resource.

If an entry does not contain cmisra:children element, then the entry MAY have children even though it
is not represented in the Atom entry.

Please see section 3.3.4 CMIS Tree.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 215 of 331

3.6 Resources Overview

Service Resource HTTP Method
R
ep
os
ito
ry

getRepositories AtomPub Service Document GET
getRepositoryInfo AtomPub Service Document GET
getTypeChildren Type Children Collection GET
getTypeDescendants Type Descendants Feed GET
getTypeDefinition Type Entry GET
createType Type Children Collection POST
updateType Type Entry PUT
deleteType Type Entry DELETE

N
av
ig
at
io
n

getChildren Folder Children Collection GET
getDescendants Folder Descendants Feed GET
getFolderTree Folder Tree Feed GET
getFolderParent Folder Entry GET
getObjectParents Object Parents Feed GET
getCheckedOutDocs Checked Out Collection GET

O
bj
ec
t

createDocument Folder Children Collection or
Unfiled Collection

POST

createDocumentFromSource See 3.1.9 Services not Exposed
createFolder Folder Children Collection POST
createRelationship Relationships Collection POST
createPolicy Folder Children Collection or

Unfiled Collection
POST

getAllowableActions AllowableActions Resource GET
getObject Document Entry or

PWC Entry or
Folder Entry or
Relationship Entry or
Policy Entry or
Item Entry or
objectbyid URI template

GET

getProperties See 3.1.9 Services not Exposed
getObjectByPath objectbypath URI template GET
getContentStream Content Stream GET
getRenditions See 3.1.9 Services not Exposed
updateProperties Document Entry or

PWC Entry or
Folder Entry or
Relationship Entry or
Policy Entry or
Item Entry

PUT

bulkUpdateProperties Bulk Update Collection POST
moveObject Folder Children Collection POST

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 216 of 331

Service Resource HTTP Method
deleteObject Document Entry or

Folder Entry or
Relationship Entry or
Policy Entry or
Item Entry

DELETE

deleteTree Folder Tree Feed DELETE
setContentStream Content Stream PUT
appendContentStream Content Stream PUT
deleteContentStream Content Stream DELETE

M
ul
ti addObjectToFolder Folder Children Collection POST

removeObjectFromFolder Unfiled Collection POST

D
is
c query Query Collection POST

getContentChanges Changes Feed GET

Ve
rs
io
ni
ng

checkOut Checked Out Collection POST
cancelCheckOut PWC Entry DELETE
checkIn PWC Entry PUT
getObjectOfLatestVersion Document Entry PUT
getPropertiesOfLatestVersion See 3.1.9 Services not Exposed
getAllVersions All Versions Feed GET

R
el getObjectRelationships Relationships Collection GET

P
ol
ic
y applyPolicy Policies Collection POST

removePolicy Policies Collection DELETE
getAppliedPolicies Policies Collection GET

A
C
L applyACL ACL Resource PUT

getACL ACL Resource GET

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 217 of 331

3.7 AtomPub Service Document

The AtomPub Service Document contains the set of repositories that are available.

How the client will get the initial AtomPub (APP) service document or the URI for the service document is
repository specific. Examples are via URI, or loading the service document from disk.

The service document will also be available from Atom Entry and Atom Feed documents via a link relation-
ship service. That AtomPub service document MUST then only contain one workspace element which
MUST be the workspace representing the repository containing the Atom Entry or Atom Feed document.

3.7.1 HTTP GET

CMIS Services:

• getRepositories
• getRepositoryInfo

Arguments:

repositoryId (optional)

• This query parameter allows a client to specify a different repository than the one that is referenced
by the URI.

• If specified, the repository MUST return the AtomPub services document for the specified repos-
itory if that repository exists.

• If not specified, the repository MUST return the service document for the repository that is refer-
enced by URI.

Media Type:

• application/atomsvc+xml

Each repository is mapped to a app:workspace element in the AtomPub Service document. A workspace
element MUST have a collection element for each of following collections. Each collection MUST also
contain a cmisra:collectionType element with the given value.

• Root Folder Children Collection: Root folder of the repository

– 'root' for the children collection of the root folder
– cmisra:collectiontype = 'root'

• Types Children Collection: Collection containing the base types in the repository

– 'types' for the children collection
– cmisra:collectiontype = 'types'

The workspace element SHOULD also contain these collections if the repository supports this functionality:

• CheckedOut collection: collection containing all checked out documents user can see

– cmisra:collectiontype = 'checkedout'

• Query collection: Collection for posting queries to be executed

– cmisra:collectiontype = 'query'

• Unfiled collection: Collection for posting documents to be unfiled; read can be disabled

– cmisra:collectiontype = 'unfiled'

• Bulk update collection: Collection for posting property updates for multiple objects at once

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 218 of 331

– cmisra:collectiontype = 'update'

The workspace element MUST also contain the following link element with the relation:

http://docs.oasis-open.org/ns/cmis/link/200908/typedescendants

• This link relation points to the Type Descendants Feed for the base types in the repository.

Theworkspace element MUST contain the following link elements of the following relations for those services
which are supported by the repository:

http://docs.oasis-open.org/ns/cmis/link/200908/foldertree

• This link relation points to the Folder Tree Feed for the root folder.

http://docs.oasis-open.org/ns/cmis/link/200908/rootdescendants

• This link relation points to the Folder Descendants Feed for the root folder.

http://docs.oasis-open.org/ns/cmis/link/200908/changes

• This link relation points to the Changes Feed for the repository.

The workspace element may include app:collection elements for the collections that represent folders
in the repository. However, an alternative approach, especially for a repository with many folders, is to not
enumerate those collections here, but include the app:collection element per [RFC5023] in the Atom
Feed document.

The repository MUST include the URI templates in the workspace elements.

3.7.1.1 URI Templates

CMIS defines the following URI templates:

• objectbyid
• objectbypath
• query
• typebyid

Repositories MUST provide the following URI templates:

• objectbyid
• objectbypath
• typebyid

Repositories MUST provide the URI template query if the repository supports query.

Repositories MAY extend that set of templates. Those URI template types will be repository specific. Repos-
itories MAY have more than one entry per URI template type if the entries have different media types.

URI templates are simple replacement of the template parameter with the specified value. If a client does
not want to specify a value for some of these variables, then the client MUST substitute an empty string for
the variable.

For example, if the URI template that supports the variable {id} is:

http://example.com/rep1/getbyid/{id}

If the client wants to find the entry for an object with an id of 'obj_1' then the URI would be:

http://example.com/rep1/getbyid/obj_1

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 219 of 331

URI Templates MUST only be used with HTTP GET.

Arguments that are substituted for URI template parametersMUST be percent escaped according to [RFC3986].
Please see that RFC for more information.

All variables MUST be in the template.

3.7.1.1.1 Structure of URI Templates

Structure
<xs:complexType name="cmisUriTemplateType">
<xs:sequence>

<xs:element name="template" type="xs:string" />
<xs:element name="type" type="xs:string" />
<xs:element name="mediatype" type="xs:string" />
<xs:any processContents="lax" namespace="##other" minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>
</xs:complexType>

Example
<cmisra:uritemplate xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
xmlns:cmism="http://docs.oasis-open.org/ns/cmis/messaging/200908/"
xmlns:atom="http://www.w3.org/2005/Atom"
xmlns:app="http://www.w3.org/2007/app"
xmlns:cmisra="http://docs.oasis-open.org/ns/cmis/restatom/200908/">
<cmisra:template>http://example.com/rep1/objectbyid/{id}?filter={filter}&

↪→ includeAllowableActions={includeAllowableActions}&
↪→ includePolicyIds={includePolicyIds}&includeRelationships={includeRelationships}&
↪→ includeACL={includeACL}</cmisra:template>

<cmisra:type>objectbyid</cmisra:type>
<cmisra:mediatype>application/atom+xml;type=entry</cmisra:mediatype>

</cmisra:uritemplate>

3.7.1.1.2 Object By Id

This URI template provides a method for creating an URI that directly accesses an Atom entry representing
document, folder, policy, relationship, or item objects. See section 3.11 Resources for more information.

Type: objectbyid

Media Type: application/atom+xml;type=entry

Service: getObject or getObjectOfLatestVersion

Variables that are supported by the template:

{id} maps to service parameter objectId.

{filter} maps to service parameter filter.

{includeAllowableActions} maps to service parameter includeAllowableActions.

{includePolicyIds} maps to service parameter includePolicyIds.

{includeRelationships} maps to service parameter includeRelationships.

{includeACL} maps to service parameter includeACL.

{renditionFilter} maps to service parameter renditionFilter.

{returnVersion} • If no value is present or the value is 'this', getObject MUST be called.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 220 of 331

• If the value is 'latest' getObjectOfLatestVersionMUST be called with the parameter major
set to FALSE.

• If the value is 'latestmajor' getObjectOfLatestVersion MUST be called with the parameter
major set to TRUE.

Example
<cmisra:uritemplate xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
xmlns:cmism="http://docs.oasis-open.org/ns/cmis/messaging/200908/"
xmlns:atom="http://www.w3.org/2005/Atom"
xmlns:app="http://www.w3.org/2007/app"
xmlns:cmisra="http://docs.oasis-open.org/ns/cmis/restatom/200908/">
<cmisra:template>http://example.com/rep1/objectbyid/{id}?filter={filter}&

↪→ includeAllowableActions={includeAllowableActions}&
↪→ includePolicyIds={includePolicyIds}&includeRelationships={includeRelationships}&
↪→ includeACL={includeACL}& returnVersion={returnVersion}</cmisra:template>

<cmisra:type>objectbyid</cmisra:type>
<cmisra:mediatype>application/atom+xml;type=entry</cmisra:mediatype>

</cmisra:uritemplate>

3.7.1.1.3 Object By Path

This URI template provides a method for creating an URI that directly accesses an Atom entry representing
document, folder, policy, relationship, or item objects. See section 3.11 Resources for more information.

Type: objectbyid

Media Type: application/atom+xml;type=entry

Service: getObjectByPath

Variables that are supported by the template:

{path} maps to service parameter path.

{filter} maps to service parameter filter.

{includeAllowableActions} maps to service parameter includeAllowableActions.

{includePolicyIds} maps to service parameter includePolicyIds.

{includeRelationships} maps to service parameter includeRelationships.

{includeACL} maps to service parameter includeACL.

{renditionFilter} maps to service parameter renditionFilter.

Example
<cmisra:uritemplate xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
xmlns:cmism="http://docs.oasis-open.org/ns/cmis/messaging/200908/"
xmlns:atom="http://www.w3.org/2005/Atom"
xmlns:app="http://www.w3.org/2007/app"
xmlns:cmisra="http://docs.oasis-open.org/ns/cmis/restatom/200908/">
<cmisra:template>http://example.com/rep1/objectbypath?p={path}&filter={filter}&

↪→ includeAllowableActions={includeAllowableActions}&
↪→ includePolicyIds={includePolicyIds}&includeRelationships={includeRelationships}&
↪→ includeACL={includeACL}</cmisra:template>

<cmisra:type>objectbypath</cmisra:type>
<cmisra:mediatype>application/atom+xml;type=entry</cmisra:mediatype>

</cmisra:uritemplate>

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 221 of 331

3.7.1.1.4 Query

This URI template provides a method for creating an URI that performs a query.

Type: query

Media Type: application/atom+xml;type=feed

Service: query

Variables that are supported by the template:

{q} maps to service parameter statement.

{searchAllVersions} maps to service parameter searchAllVersions.

{maxItems} maps to service parameter maxItems.

{skipCount} maps to service parameter skipCount.

{includeAllowableActions} maps to service parameter includeAllowableActions.

{includeRelationships} maps to service parameter includeRelationships.

{renditionFilter} maps to service parameter renditionFilter.

Example
<cmisra:uritemplate xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
xmlns:cmism="http://docs.oasis-open.org/ns/cmis/messaging/200908/"
xmlns:atom="http://www.w3.org/2005/Atom"
xmlns:app="http://www.w3.org/2007/app"
xmlns:cmisra="http://docs.oasis-open.org/ns/cmis/restatom/200908/">
<cmisra:template>http://example.com/rep1/query?q={q}&

↪→ searchAllVersions={searchAllVersions}&maxItems={maxItems}&
↪→ skipCount={skipCount}&includeAllowableActions={includeAllowableActions}=&
↪→ includeRelationships={includeRelationships}&renditionFilter={renditionFilter}
↪→ </cmisra:template>

<cmisra:type>query</cmisra:type>
<cmisra:mediatype>application/atom+xml;type=feed</cmisra:mediatype>

</cmisra:uritemplate>

3.7.1.1.5 Type By Id

This URI template provides a method for creating an URI that directly accesses a type definition.

Type: typebyid

Media Type: application/atom+xml;type=entry

Service: getTypeDefinition

Variables that are supported by the template:

{id} maps to service parameter typeId.

Example
<cmisra:uritemplate xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
xmlns:cmism="http://docs.oasis-open.org/ns/cmis/messaging/200908/"
xmlns:atom="http://www.w3.org/2005/Atom"
xmlns:app="http://www.w3.org/2007/app"
xmlns:cmisra="http://docs.oasis-open.org/ns/cmis/restatom/200908/">
<cmisra:template>http://example.com/rep1/type?id={id}</cmisra:template>
<cmisra:type>query</cmisra:type>

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 222 of 331

<cmisra:mediatype>application/atom+xml;type=entry</cmisra:mediatype>
</cmisra:uritemplate>

3.8 Service Collections

These are the collections that are included on an AtomPub Service document in the workspace element.

For any HTTP verb not specified on a resource, each implementation MAY chose to implement that HTTP
verb in a repository-specific manner.

3.8.1 Root Folder Collection

This collection provides access to the children of the root folder. Please see section 3.9.2 Folder Children
Collection.

3.8.2 Query Collection

This is a collection for processing queries. If the implementation supports GET on this collection, then the
implementation SHOULD at least return a feed consisting of zero or more Atom entries. These Atom entries
should represent persisted objects related to query such as persisted queries, long running queries or search
templates.

3.8.2.1 HTTP POST

CMIS Services:

• query

Accept:

• MUST support CMIS query document (application/cmisquery+xml)
• MAY support other media type

Media Type:

• application/atom+xml;type=feed

The feed returned MUST contain a set of Atom entries representing the result set from the query.

The Atom entries should contain the bare minimum necessary for Atom compliance [RFC4287]. The Atom
entries MUST contain the CMIS extension element (cmisra:object) containing the properties specified
by the query in the select clause of the query statement.

If all the selected properties can be mapped to the same type reference, then the repository MAY include
additional information in the Atom entry.

Please see [RFC5023] Section 5.3.

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

first, next, previous, last Paging link relations as appropriate.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 223 of 331

The following CMIS Atom extension element MAY be included inside the Atom feed:

• cmisra:numItems

The following CMIS Atom extension element MUST be included inside the Atom entries:

• cmisra:object inside atom:entry

Success Status Codes:

• 201 Created

Headers returned:

• Location
• Content-Location

Upon submission (creation) of a query document, a response must be returned with a Location header
representing the feed for that query. If the query cannot be performed and an Atom feed returned, the
repository MUST return the appropriate HTTP status code. In addition, the server SHOULD return the feed
directly. If the server does so, the server SHOULD also return the Content-Location header.

Example:
Request: atompub/doQuery-request.log
Response: atompub/doQuery-response.log

3.8.3 Checked Out Collection

3.8.3.1 HTTP GET

This is a collection described in the service document that contains the Private Working Copies (PWCs) of
the checked-out documents in the repository.

CMIS Services:

• getCheckedOutDocs

Arguments:

• filter
• folderId
• maxItems
• skipCount
• renditionFilter
• includeAllowableActions
• includeRelationships

Media Type:

• application/atom+xml;type=feed

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 224 of 331

first, next, previous, last Paging link relations as appropriate.

The following CMIS Atom extension element MAY be included inside the Atom feed:

• cmisra:numItems

The following CMIS Atom extension element MUST be included inside the Atom entries:

• cmisra:object inside atom:entry

Success Status Codes:

• 200 OK

3.8.3.2 HTTP POST

When an AtomEntry is POSTed to this collection, the document will be checked out. A Content-Location
header MUST be returned containing the location of the Private Working Copy. The newly created PWC
Entry MUST be returned.

CMIS Services:

• checkOut

Accept:

• MUST support Atom Entry documents with CMIS extensions
application/atom+xml;type=entry or application/cmisatom+xml

• MAY support other media type

Media Type:

• application/atom+xml;type=entry

Success Status Codes:

• 201 Created

Headers returned:

• Content-Location

Example:
Request: atompub/checkOut-request.log
Response: atompub/checkOut-response.log

3.8.4 Unfiled Collection

This is a collection described in the service document to manage unfiled document, policy, and item objects.

3.8.4.1 HTTP POST

If this is called with an existing object, the object will be removed from all folders in the repository by default.
If the optional argument removeFrom is specified, the object will only be removed from that folder.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 225 of 331

If this is called with an entry that doesn't have an object id, a new, unfiled object will be created.

The removed or newly created Document Entry, Policy Entry, or Item Entry MUST be returned.

CMIS Services:

• removeObjectFromFolder
• createDocument
• createPolicy
• createItem

If the Atom Entry POSTed has a valid cmis:objectId property, removeObjectFromFolder will be per-
formed. If the AtomEntry POSTed has no cmis:objectId property, the value of the cmis:objectTypeId
property decides if createDocument, createPolicy, or createItem will be performed. In all other
cases (invalid object id, the object does not exist, the object is not in that folder, the object type id is invalid,
the base type is neither cmis:document nor cmis:policy nor cmis:item, etc.) the appropriate HTTP
status code MUST be returned. See also 3.9.2 Folder Children Collection.

Arguments:

• removeFrom
• versioningState

Accept:

• MUST support Atom Entry documents with CMIS extensions
application/atom+xml;type=entry or application/cmisatom+xml

• MAY support other media type

Media Type:

• application/atom+xml;type=entry

Success Status Codes:

• 201 Created

Headers returned:

• Location

Example:
Request: atompub/removeObjectFromFolder-request.log
Response: atompub/removeObjectFromFolder-response.log

3.8.5 Type Children Collection

This is a collection described in the service document that contains the types in the repository under the
specified parent type. If no parent type is specified, then the base types are returned in the feed. This feed
does not include any nesting and is a flat feed.

3.8.5.1 HTTP GET

This feed contains a set of Atom entries for each child type definition.

CMIS Services:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 226 of 331

• getTypeChildren

Arguments:

• typeId
• includePropertyDefinitions
• maxItems
• skipCount

Media Type:

• application/atom+xml;type=feed

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

via Points to the type definition entry whose children represent this feed.

down Points to the Atom feed document representing the descendants collection for this same type.
Media Type: application/cmistree+xml

up Points to the parent type definition. If this is a children feed for a base object type, this link is not
present.

first, next, previous, last Paging link relations as appropriate.

The following CMIS Atom extension element MAY be included inside the Atom feed:

• cmisra:numItems

The following CMIS Atom extension element MUST be included inside the Atom entries:

• cmisra:object inside atom:entry

Success Status Codes:

• 200 OK

Example:
Request: atompub/getTypeChildren-request.log
Response: atompub/getTypeChildren-response.log

3.8.5.2 HTTP POST

This creates a new object-type.

The server MUST return the appropriate HTTP status code if the specified parent type doesn't match this
collection.

The created object-type entry MUST be returned.

CMIS Services:

• createType

Accept:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 227 of 331

• MUST support Atom Entry documents with CMIS type extensions
application/atom+xml;type=entry or application/cmisatom+xml

Media Type:

• application/atom+xml;type=entry

Success Status Codes:

• 201 Created

Headers returned:

• Location

3.8.6 Bulk Update Collection

This collection is used for bulk updates.

3.8.6.1 HTTP POST

The POSTed entry MUST include a CMIS Atom extension element cmisra:bulkUpdate. It contains the
set of objects that should be updated, the new property values and secondary type modifications.

CMIS Services:

• bulkUpdateProperties

Accept:

• MUST support Atom Entry documents with CMIS extensions
application/atom+xml;type=entry

• MAY support other media type

Media Type:

• application/atom+xml;type=feed

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

The following CMIS Atom extension element MAY be included inside the Atom feed:

• cmisra:numItems

The following CMIS Atom extension element MUST be included inside the Atom entries:

• cmisra:object inside atom:entry

The returned object entries MUST follow these rules:

• The property cmis:objectId MUST be set. The value MUST be the original object id even if the
repository created a new version and therefore generated a new object id. New object ids are not
exposed by this binding.

• The property cmis:changeToken MUST be set if the repository supports change tokens.

• All other properties are optional.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 228 of 331

Success Status Codes:

• 201 Created

3.9 Collections

For any HTTP verb not specified on a resource, each implementation MAY chose to implement that HTTP
verb in a repository-specific manner.

3.9.1 Relationships Collection

This collection manages relationships.

3.9.1.1 HTTP GET

This collection contains the set of relationships available (either source or target or both) from a specific item
such as a document, folder, policy, or item.

CMIS Services:

• getObjectRelationships

Arguments:

• typeId
• includeSubRelationshipTypes
• relationshipDirection
• maxItems
• skipCount
• filter
• includeAllowableActions

Media Type:

• application/atom+xml;type=feed

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

first, next, previous, last Paging link relations as appropriate.

The following CMIS Atom extension element MAY be included inside the Atom feed:

• cmisra:numItems

The following CMIS Atom extension element MUST be included inside the Atom entries:

• cmisra:object inside atom:entry

Success Status Codes:

• 200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 229 of 331

3.9.1.2 HTTP POST

When an Atom entry with CMIS markup is POSTed to this collection, if that Atom entry represents a new
CMIS relationship, then that relationship will be created.

The server MUST return the appropriate HTTP status code if the source is different than the sourceId or
target different than the targetId for the source and targets specified in this collection.

The server MUST return the appropriate status code if the cmis:objectTypeId is not specified.

CMIS Services:

• createRelationship

Accept:

• MUST support Atom Entry documents with CMIS extensions
application/atom+xml;type=entry or application/cmisatom+xml

• MAY support other media type

Media Type:

• application/atom+xml;type=entry

Success Status Codes:

• 201 Created

Headers returned:

• Location

3.9.2 Folder Children Collection

This collection managed folder children.

3.9.2.1 HTTP GET

CMIS Services:

• getChildren

Arguments:

• maxItems
• skipCount
• filter
• includeAllowableActions
• includeRelationships
• renditionFilter
If specified, renditions will be returned as links with relation alternate.

• orderBy
• includePathSegment

Media Type:

• application/atom+xml;type=feed

Link Relations:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 230 of 331

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

via Points to the Atom entry of the folder generating this collection.

up Points to the Atom entry document for this folder’s parent. If the root folder, this link relation MUST
NOT be included.
Media Type: application/atom+xml;type=entry

down Points to the Atom feed document representing the descendants feed. This is represented as a
feedwith CMIS hierarchy extensions. If a repository does not support capabilityGetDescendants,
then this link SHOULD NOT be included.
Media Type: application/cmistree+xml

http://docs.oasis-open.org/ns/cmis/link/200908/foldertree Points to the folder tree for this folder.
This is represented as a feed with CMIS hierarchy extensions. If a repository does not support
capabilityGetFolderTree, then this link SHOULD NOT be included.
Media Type: application/atom+xml;type=feed

first, next, previous, last Paging link relations as appropriate.

The following CMIS Atom extension element MAY be included inside the Atom feed:

• cmisra:numItems

The following CMIS Atom extension element MUST be included inside the Atom entries:

• cmisra:object inside atom:entry
• cmisra:pathSegment inside atom:entry if includePathSegment is TRUE

Success Status Codes:

• 200 OK

Example:
Request: atompub/getChildren-request.log
Response: atompub/getChildren-response.log

3.9.2.2 HTTP POST

CMIS Services:

• createDocument
• createFolder
• createPolicy
• createItem
• moveObject
• addObjectToFolder

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 231 of 331

POSTing an Atom Entry document with CMIS markup:
If the Atom entry has a CMIS property cmis:objectId that is valid for the repository, the object
(document, folder, policy, or item) will be added to the folder.
When an object is added to the folder, in repositories that do not support multi-filing it will be
removed from the previous folder and the operation treated as move. If the repository supports
multiple folders, it will be added to the new folder. If the optional argument sourceFolderId is
specified, then the object will be removed from the folder specified.

Creating a new CMIS object in that folder:
If the cmis:objectId property is missing, the object will be created and then added to the
folder. If the cmis:objectId property is present but not a valid object Id, the repository MUST
return the appropriate HTTP status code.

For documents:
• If Content Stream is not provided and it is required by the type definition, the repository
MUST return the appropriate HTTP status code.

• Content Streams MAY be provided by any of the following mechanisms:
– As part of the Atom entry via the src attribute on the content element. Implementers
MAY support external references to content. If the URI in the src attribute is not reach-
able, then an appropriate HTTP status code should be returned.

– As part of the Atom entry inlining via the AtomPub content element. Please see the
AtomPub specification [RFC5023] for the processing model of the content element.

– If the cmisra:content is provided by the client inside the atom:entry, the
cmisra:content element MUST take precedence over the atom:content element.
This element cmisra:content contains the content base64 encoded.

– At a later time by replacing the edit-media link with a new content.
• The optional argument versioningState MAY specify additional versioning behavior such as
checkin.

POSTing other document formats (AtomPub):
The behavior is repository specific when a non Atom entry or an atom document without the CMIS
elements is posted to a folder collection.
For example, the repository MAY auto-create a document with a specific type (document) the client
could edit.
If the repository does not support this scenario or another exception occurs, then the repository
MUST return the appropriate HTTP status code.

Arguments:

sourceFolderId This parameter indicates the folder from which the object shall be moved from to the
current specified folder. This parameter is not allowed for create operations.
If specified moveObject will be performed. If not specified, addObjectToFolder will be per-
formed.

versioningState This optional argument MAY specify additional versioning behavior such as checkIn
as major or minor. Please see CMIS Domain Model for more information on this parameter.

Accept:

• MUST support Atom Entry documents with CMIS extensions
application/atom+xml;type=entry or application/cmisatom+xml

• MAY support other media type

Media Type:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 232 of 331

• application/atom+xml;type=entry

Success Status Codes:

• 201 Created

Headers returned:

• Location

Example:
Request: atompub/createDocument-request.log
Response: atompub/createDocument-response.log

3.9.2.3 HTTP DELETE

See HTTP DELETE description in section 3.10.4 Folder Tree Feed.

3.9.3 Policies Collection

This collection managed policies applied to an object.

3.9.3.1 HTTP GET

The policy entries displayed here are specific to the object generating this collection.

CMIS Services:

• getAppliedPolicies

Arguments:

• filter

Media Type:

• application/atom+xml;type=feed

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

via Points to the Atom entry of the resource generating this collection.

first, next, previous, last Paging link relations as appropriate.

The following CMIS Atom extension element MAY be included inside the Atom feed:

• cmisra:numItems

The following CMIS Atom extension element MUST be included inside the Atom entries:

• cmisra:object inside atom:entry

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 233 of 331

Success Status Codes:

• 200 OK

3.9.3.2 HTTP POST

When an Atom Entry representing a Policy is posted to this collection, the policy will be applied to the object.

CMIS Services:

• applyPolicy (to object representing this collection of policies)

Accept:

• MUST support Atom Entry documents with CMIS extensions
application/atom+xml;type=entry or application/cmisatom+xml

• MAY support other media type

Media Type:

• application/atom+xml;type=entry

Success Status Codes:

• 201 Created

Headers returned:

• Location

3.9.3.3 HTTP DELETE

This is the only collection where the URI's of the objects in the collection MUST be specific to that collection.
A DELETE on the policy object in the collection is a removal of the policy from the object NOT a deletion of
the policy object itself.

CMIS Services:

• removePolicy

Success Status Codes:

• 204 No Content

3.10 Feeds

For any HTTP verb not specified on a resource, each implementation MAY chose to implement that HTTP
verb in a repository-specific manner.

3.10.1 Object Parents Feed

This is the set of parents for a specific object.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 234 of 331

3.10.1.1 HTTP GET

CMIS Services:

• getObjectParents

Arguments:

• filter
• includeAllowableActions
• includeRelationships
• renditionFilter
• includeRelativePathSegment

Media Type:

• application/atom+xml;type=feed

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

first, next, previous, last Paging link relations as appropriate.

The following CMIS Atom extension element MUST be included inside the Atom entries:

• cmisra:object inside atom:entry
• cmisra:relativePathSegment inside atom:entry if includeRelativePathSegment is TRUE

Success Status Codes:

• 200 OK

Example:
Request: atompub/getObjectParents-request.log
Response: atompub/getObjectParents-response.log

3.10.2 Changes Feed

This is a link relationship described in the service document that contains the changes in the repository in
the workspace element. The link relation pointing to this feed is http://docs.oasis-open.org/ns/
cmis/link/200908/changes.

The ChangeLog Token is specified in the URI specified by the paging link notations. Through this binding it
is not possible to retrieve the ChangeLog Token from the URIs.

3.10.2.1 HTTP GET

This feed MUST be ordered from oldest first to newest.

If the next changes does not exist yet, the link relation next MAY be available. If the next link relation is not
available, the client should revisit the feed in the future and look for new items and the next link relation.

CMIS Services:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 235 of 331

• getContentChanges

Arguments:

• filter
• maxItems
• includeACL
• includePolicyIds
• includeProperties
• changeLogToken
If this parameter is specified, start the changes from the specified token. The changeLogToken
is embedded in the paging link relations for normal iteration through the change list.

Media Type:

• application/atom+xml;type=feed

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

first, next, previous, last Paging link relations as appropriate. ChangeLogToken is incorporated into
the URI specified by the next link relation.

The following CMIS Atom extension element MAY be included inside the Atom feed:

• cmisra:numItems

The following CMIS Atom extension element MUST be included inside the Atom entries:

• cmisra:object inside atom:entry

Success Status Codes:

• 200 OK

Example:
Request: atompub/getContentChanges-request.log
Response: atompub/getContentChanges-response.log

3.10.3 Folder Descendants Feed

This is a hierarchical feed comprising items under a specified folder to a specified depth. This is avail-
able via the link relation down with the application/cmistree+xml media type. Please see section
3.5.2.1 Hierarchical Atom Entries for more information on format.

If a repository does not support capabilityGetDescendants, then these resources SHOULD NOT be
exposed.

3.10.3.1 HTTP GET

CMIS Services:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 236 of 331

• getDescendants

Arguments:

• filter
• depth
• includeAllowableActions
• includeRelationships
• renditionFilter
• includePathSegment

Media Type:

• application/atom+xml;type=feed

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

via Points to the Atom entry of the folder generating this collection.

up Points to the Atom entry document for this folder's parent. If the root folder, this link relation MUST
NOT be included.
Media Type: application/atom+xml;type=entry

down Points to the Atom feed document representing the children feed for this same folder.
Media Type: application/atom+xml;type=feed
Since this is the descendants, the descendants link SHOULD NOT be included.

http://docs.oasis-open.org/ns/cmis/link/200908/foldertree Points to the folder tree for this folder. If
a repository does not support capabilityGetFolderTree, then this link SHOULD NOT be
included.

The following CMIS Atom extension element MAY be included inside the Atom feed:

• cmisra:numItems

The following CMIS Atom extension element MUST be included inside the Atom entries:

• cmisra:object inside atom:entry
• cmisra:pathSegment inside atom:entry if includePathSegment is TRUE
• cmisra:children inside atom:entry

Success Status Codes:

• 200 OK

Example:
Request: atompub/getDescendants-request.log
Response: atompub/getDescendants-response.log

3.10.3.2 HTTP DELETE

See HTTP DELETE description in section 3.10.4 Folder Tree Feed.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 237 of 331

3.10.4 Folder Tree Feed

This is a hierarchical feed comprising all the folders under a specified folder. This is available via the link
relation foldertree with media type application/atom+xml;type=feed. Please see section 3.5.2.1 Hi-
erarchical Atom Entries for more information on format.

3.10.4.1 HTTP GET

CMIS Services:

• getFolderTree

Arguments:

• filter
• depth
• includeAllowableActions
• includeRelationships
• renditionFilter
• includePathSegment

Media Type:

• application/atom+xml;type=feed

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

via Points to the Atom entry of the folder generating this collection.

up Points to the Atom entry document for this folder's parent. If the root folder, this link relation MUST
not be included.
Media Type: application/atom+xml;type=entry

down Points to the Atom feed document representing the children feed for this same folder.
Media Type: application/atom+xml;type=feed

down Points to the descendants feed of the same folder. If a repository does not support capabilityGetDescendants,
then this link SHOULD NOT be included.
Media Type: application/cmistree+xml

The following CMIS Atom extension element MAY be included inside the Atom feed:

• cmisra:numItems

The following CMIS Atom extension element MUST be included inside the Atom entries:

• cmisra:object inside atom:entry
• cmisra:pathSegment inside atom:entry if includePathSegment is TRUE
• cmisra:children inside atom:entry

Success Status Codes:

• 200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 238 of 331

3.10.4.2 HTTP DELETE

This deletes the folder and all sub-folders.

If the DELETE method does not delete all items, invoking GET with infinite depth on the Folder Descendants
Feed will return the items not deleted. Subsequent DELETE methods can be invoked on this URI.

Note: If the repository does not implement the Folder Descendants Feed, there is no mechanism to identify
the resources that were not removed.

CMIS Services:

• deleteTree

Arguments:

• continueOnFailure
• unfileObjects

Success Status Codes:

• 200 OK, if successful. Body contains entity describing the status
• 202 Accepted, if accepted but deletion not yet taking place
• 204 No Content, if successful with no content
• 401 Unauthorized, if not authenticated
• 403 Forbidden, if permission is denied
• 500 Internal Server Error. The body SHOULD contain an entity describing the status

3.10.5 All Versions Feed

This is a feed comprised of all the versions of the given document. The feed MUST contain the newest
versions at the beginning of the feed.

3.10.5.1 HTTP GET

CMIS Services:

• getAllVersions

Arguments:

• filter
• includeAllowableActions

Media Type:

• application/atom+xml;type=feed

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

via Points to the Atom entry of the resource generating this collection.

first, next, previous, last Paging link relations as appropriate.

The following CMIS Atom extension element MUST be included inside the Atom entries:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 239 of 331

• cmisra:object inside atom:entry

Success Status Codes:

• 200 OK

Example:
Request: atompub/getAllVersions-request.log
Response: atompub/getAllVersions-response.log

3.10.6 Type Descendants Feed

This is a feed described in the service document that contains all the types under a specific type in the
repository to a specific depth. If no parent type is specified, then the base types and their descendants are
returned in the feed which is equivalent to all types in the repository if depth is infinite. The link relation is
http://docs.oasis-open.org/ns/cmis/link/200908/typedescendants.

Types are nested using the CMIS hierarchy extension. Please see section 3.5.2.1 Hierarchical Atom Entries
for more information on format.

3.10.6.1 HTTP GET

CMIS Services:

• getTypeDescendants

Arguments:

• typeId
• depth
• includePropertyDefinitions

Media Type:

• application/atom+xml;type=feed

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

via Points to the type definition whose descendants represent this feed. This link is not present if no
parent type is specified.

up Points to the parent type definition. If this is a descendants feed for a base object type, this link is
not present.

down Points to the children feed for the same type.

The following CMIS Atom extension element MAY be included inside the Atom feed:

• cmisra:numItems

The following CMIS Atom extension element MUST be included inside the Atom entries:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 240 of 331

• cmisra:type inside atom:entry

Success Status Codes:

• 200 OK

3.11 Resources

For any HTTP verb not specified on a resource,each implementation MAY chose to implement that HTTP
verb in a repository-specific manner.

3.11.1 Type Entry

This represents a type definition in the repository. This is enclosed as an Atom entry.

3.11.1.1 HTTP GET

CMIS Services:

• getTypeDefinition

Media Type:

• application/atom+xml;type=entry

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

up Points to the parent type as Atom entry if applicable.

down Points to the children feed of this type as Atom feed if applicable.
Media Type: application/atom+xml;type=feed

down Points to the descendants feed of this type as Atom feed if applicable.
Media Type: application/cmistree+xml

describedby Points to the type definition Atom entry of the base type of this type definition.

The following CMIS Atom extension element MUST be included inside the Atom entry:

• cmisra:type

Success Status Codes:

• 200 OK

Example:
Request: atompub/getTypeDefinition-request.log
Response: atompub/getTypeDefinition-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 241 of 331

3.11.1.2 HTTP PUT

This updates the object-type.

The updated object-type entry MUST be returned. See section 2.1.10 Object-Type Creation, Modification
and Deletion for details.

CMIS Services:

• updateType

Accept:

• MUST support Atom Entry documents with CMIS type extensions
application/atom+xml;type=entry or application/cmisatom+xml

Media Type:

• application/atom+xml;type=entry

Success Status Codes:

• 200 OK

Headers returned:

• Location

3.11.1.3 HTTP DELETE

This deletes the object-type.

CMIS Services:

• deleteType

Success Status Codes:

• 204 No Content

3.11.2 Document Entry

This is a CMIS Document instance.

3.11.2.1 HTTP GET

This returns the document.

CMIS Services:

• getObject
• getObjectOfLatestVersion

Arguments:

• returnVersion
Used to differentiate between getObject and getObjectOfLatestVersion. Valid values are
are described by the schema element cmisra:enumReturnVersion. If not specified, return
the version specified by the URI.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 242 of 331

• includeAllowableActions
• includeRelationships
• includePolicyIds
• includeACL
• filter
• renditionFilter

Media Type:

• application/atom+xml;type=entry

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

self Points to an URI that returns the Atom entry for this document. Please see Atom for more infor-
mation.

edit Points to an URI that accepts PUT of Atom entry. Please see AtomPub for more information.

up Points to the atom feed containing the set of parents. If there is only one parent, the repository
MAY point this link relation directly to the Atom entry of the parent.

version-history Points to Atom feed containing the versions of this document. If the document is not
versionable, this link relation may not be on the resource.

current-version Points to the latest version of the document. Uses query parameter 'returnVersion'
and enumReturnVersion. If this version is the current-version, this link relation MAY not be on the
resource.

edit-media Same as setContentStream. Allows updating the content stream on this document.
Please see AtomPub for more information.

working-copy Points to the private working copy if it exists.

describedby Points to the type definition as an Atom entry for the type of this document.

alternate This is used to identify the renditions available for the specified object. Please see section
3.1.6 Renditions.

http://docs.oasis-open.org/ns/cmis/link/200908/allowableactions Points to the allowable actions
document for this object.

http://docs.oasis-open.org/ns/cmis/link/200908/relationships Points to the relationships feed for
this object.

http://docs.oasis-open.org/ns/cmis/link/200908/policies Points to the policies feed for this object.

http://docs.oasis-open.org/ns/cmis/link/200908/acl Points to the ACL document for this object.

The following CMIS Atom extension element MUST be included inside the Atom entry:

• cmisra:object

Success Status Codes:

• 200 OK

Example:
Request: atompub/getObject-request.log
Response: atompub/getObject-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 243 of 331

3.11.2.2 HTTP PUT

This does a replacement of the Atom entry with the Atom entry document specified. If readwrite properties
are not included, the repository SHOULD NOT modify them. The updated entry SHOULD be returned.

CMIS Services:

• updateProperties

Accept:

• Atom Entry documents with CMIS extensions
application/atom+xml;type=entry or application/cmisatom+xml

Media Type:

• application/atom+xml;type=entry

Success Status Codes:

• 200 OK

Headers returned:

• Location

3.11.2.3 HTTP DELETE

This removes the document or all versions of the version series.

CMIS Services:

• deleteObject

Arguments:

• allVersions

Success Status Codes:

• 204 No Content

Example:
Request: atompub/deleteObject-request.log
Response: atompub/deleteObject-response.log

3.11.3 PWC Entry

This is the private working copy of the document (checkedout version of document).

3.11.3.1 HTTP GET

CMIS Services:

• getObject

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 244 of 331

Arguments:

• includeAllowableActions
• includeRelationships
• includePolicyIds
• includeACL
• filter
• renditionFilter

Media Type:

• application/atom+xml;type=entry

Media Type:

• application/atom+xml;type=entry

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

self Points to the URI to retrieve this Atom entry. Please see Atom for more information.

edit Points to the URI to update this Atom entry via PUT. Please see AtomPub for more information.

up Points to the Atom feed containing the set of parents. If there is only one parent, the repository
MAY point this link relation directly to the Atom entry of the parent.

version-history Points to Atom feed containing the versions of this document.

edit-media Same as setContentStream. Allows updating the content stream on this document.
Please see AtomPub for more information.

via Atom entry that created this PWC.

describedby Points to the type definition as an Atom entry for the type of this PWC entry.

alternate This is used to identify the renditions available for the specified object. Please see section
3.1.6 Renditions.

http://docs.oasis-open.org/ns/cmis/link/200908/allowableactions Points to the allowable actions
document for this object.

http://docs.oasis-open.org/ns/cmis/link/200908/relationships Points to the relationships feed for
this object.

http://docs.oasis-open.org/ns/cmis/link/200908/policies Points to the policies feed for this object.

http://docs.oasis-open.org/ns/cmis/link/200908/acl Points to ACL document for this object.

The following CMIS Atom extension element MUST be included inside the Atom entry:

• cmisra:object

Success Status Codes:

• 200 OK

3.11.3.2 HTTP PUT

This does a replacement of the Atom entry with the Atom entry document specified. If modifiable properties
(whencheckedout or readwrite) are not included, the repository SHOULD NOT modify them. The updated
entry SHOULD be returned.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 245 of 331

CMIS Services:

• updateProperties
• checkIn

Media Type:

• application/atom+xml;type=entry

Arguments:

• checkinComment
• major
• checkin
Used to differentiate between updateProperties or checkIn services. If TRUE, execute
checkIn service.

Success Status Codes:

• 200 OK

Headers returned:

• Location

Example:
Request: atompub/checkIn-request.log
Response: atompub/checkIn-response.log

3.11.3.3 HTTP DELETE

This removes the document entry, in this case, cancels the check out. The PWC will be removed.

CMIS Services:

• cancelCheckOut

Success Status Codes:

• 204 No Content

3.11.4 Folder Entry

This is a CMIS Folder instance.

3.11.4.1 HTTP GET

CMIS Services:

• getObject

Arguments:

• includeAllowableActions
• includeRelationships

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 246 of 331

• includePolicyIds
• includeACL
• filter
• renditionFilter

Media Type:

• application/atom+xml;type=entry

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

self Points to an URI that returns the Atom entry for this folder. Please see Atom for more information.

edit Points to an URI that accepts PUT of Atom entry. Please see AtomPub for more information.

down Points to the feed document representing the children feed for this same folder.
Media Type: application/atom+xml;type=feed

down Points to the descendants feed of the same folder.
Media Type: application/cmistree+xml

up Points Atom entry of the parent. If the root folder, this link will not be present.

describedby Points to the type definition as an Atom entry for the type of this folder.

alternate This is used to identify the renditions available for the specified object. Please see section
3.1.6 Renditions.

http://docs.oasis-open.org/ns/cmis/link/200908/allowableactions Points to the allowable actions
document for this object.

http://docs.oasis-open.org/ns/cmis/link/200908/relationships Points to the relationships feed for
this object.

http://docs.oasis-open.org/ns/cmis/link/200908/policies Points to the policies feed for this object.

http://docs.oasis-open.org/ns/cmis/link/200908/acl Points to ACL document for this object.

The following CMIS Atom extension element MUST be included inside the Atom entry:

• cmisra:object

Success Status Codes:

• 200 OK

3.11.4.2 HTTP PUT

This does a replacement of the Atom entry with the Atom entry document specified. If readwrite properties
are not included, the repository SHOULD NOT modify them. The updated entry SHOULD be returned.

CMIS Services:

• updateProperties

Accept:

• Atom Entry documents with CMIS extensions
application/atom+xml;type=entry or application/cmisatom+xml

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 247 of 331

Media Type:

• application/atom+xml;type=entry

Success Status Codes:

• 200 OK

Headers returned:

• Location

Example:
Request: atompub/updateProperties-request.log
Response: atompub/updateProperties-response.log

3.11.4.3 HTTP DELETE

This removes the folder from the repository. This is deletion of the folder only and not any contained objects.

CMIS Services:

• deleteObject

Success Status Codes:

• 204 No Content

3.11.5 Relationship Entry

This is a CMIS relationship instance. These objects are exposed via 'relationships' link type.

3.11.5.1 HTTP GET

CMIS Services:

• getObject

Arguments:

• includeAllowableActions
• includeRelationships
• includePolicyIds
• includeACL
• filter

Media Type:

• application/atom+xml;type=entry

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 248 of 331

self Points to an URI that returns the Atom entry for this relationship. Please see Atom for more
information.

edit Points to an URI that accepts PUT of Atom entry. Please see AtomPub for more information.

describedby Points to the type definition as an Atom entry for the type of this relationship.

http://docs.oasis-open.org/ns/cmis/link/200908/allowableactions Points to the allowable actions
document for this object.

http://docs.oasis-open.org/ns/cmis/link/200908/policies Points to the policies feed for this object.

http://docs.oasis-open.org/ns/cmis/link/200908/acl Points to the ACL document for this object.

http://docs.oasis-open.org/ns/cmis/link/200908/source Points to the Atom entry of the source ob-
ject.

http://docs.oasis-open.org/ns/cmis/link/200908/target Points to the Atom entry of the target object.

The following CMIS Atom extension element MUST be included inside the Atom entry:

• cmisra:object

Success Status Codes:

• 200 OK

3.11.5.2 HTTP PUT

This does a replacement of the Atom entry with the Atom entry document specified. If readwrite properties
are not included, the repository SHOULD NOT modify them. The updated entry SHOULD be returned.

CMIS Services:

• updateProperties

Accept:

• Atom Entry documents with CMIS extensions
application/atom+xml;type=entry or application/cmisatom+xml

Media Type:

• application/atom+xml;type=entry

Success Status Codes:

• 200 OK

Headers returned:

• Location

3.11.5.3 HTTP DELETE

This removes the relationship from the repository.

CMIS Services:

• deleteObject

Success Status Codes:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 249 of 331

• 204 No Content

3.11.6 Policy Entry

This is a CMIS policy instance.

3.11.6.1 HTTP GET

CMIS Services:

• getObject

Arguments:

• includeAllowableActions
• includeRelationships
• includePolicyIds
• includeACL
• filter

Media Type:

• application/atom+xml;type=entry

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

self Points to an URI that returns the Atom entry for this policy. Please see Atom for more information.

edit Points to an URI that accepts PUT of Atom entry. Please see AtomPub for more information.

describedby Points to the type definition as an Atom entry for the type of this policy.

http://docs.oasis-open.org/ns/cmis/link/200908/allowableactions Points to the allowable actions
document for this object.

http://docs.oasis-open.org/ns/cmis/link/200908/relationships Points to the relationships feed for
this object.

http://docs.oasis-open.org/ns/cmis/link/200908/acl Points to the ACL document for this object.

The following CMIS Atom extension element MUST be included inside the Atom entry:

• cmisra:object

Success Status Codes:

• 200 OK

3.11.6.2 HTTP PUT

This does a replacement of the Atom entry with the Atom entry document specified. If readwrite properties
are not included, the repository SHOULD NOT modify them. The updated entry SHOULD be returned.

CMIS Services:

• updateProperties

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 250 of 331

Accept:

• Atom Entry documents with CMIS extensions
application/atom+xml;type=entry or application/cmisatom+xml

Media Type:

• application/atom+xml;type=entry

Success Status Codes:

• 200 OK

Headers returned:

• Location

3.11.6.3 HTTP DELETE

This removes the policy from the repository. If this policy entry was discovered through a policy collection
on an object, then removePolicy is performed rather than deleteObject on the policy itself.

CMIS Services:

• deleteObject

Success Status Codes:

• 204 No Content

3.11.7 Item Entry

This is a CMIS item instance.

3.11.7.1 HTTP GET

CMIS Services:

• getObject

Arguments:

• includeAllowableActions
• includeRelationships
• includePolicyIds
• includeACL
• filter

Media Type:

• application/atom+xml;type=entry

Link Relations:

service Points to the service document containing the CMIS repository. The service document MUST
contain only one workspace element.
Media Type: application/atomsvc+xml

self Points to an URI that returns the Atom entry for this item. Please see Atom for more information.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 251 of 331

edit Points to an URI that accepts PUT of Atom entry. Please see AtomPub for more information.

describedby Points to the type definition as an Atom entry for the type of this item.

http://docs.oasis-open.org/ns/cmis/link/200908/allowableactions Points to the allowable actions
document for this object.

http://docs.oasis-open.org/ns/cmis/link/200908/relationships Points to the relationships feed for
this object.

http://docs.oasis-open.org/ns/cmis/link/200908/acl Points to the ACL document for this object.

The following CMIS Atom extension element MUST be included inside the Atom entry:

• cmisra:object

Success Status Codes:

• 200 OK

3.11.7.2 HTTP PUT

This does a replacement of the Atom entry with the Atom entry document specified. If readwrite properties
are not included, the repository SHOULD NOT modify them. The updated entry SHOULD be returned.

CMIS Services:

• updateProperties

Accept:

• Atom Entry documents with CMIS extensions
application/atom+xml;type=entry or application/cmisatom+xml

Media Type:

• application/atom+xml;type=entry

Success Status Codes:

• 200 OK

Headers returned:

• Location

3.11.7.3 HTTP DELETE

This removes the item from the repository.

CMIS Services:

• deleteObject

Success Status Codes:

• 204 No Content

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 252 of 331

3.11.8 Content Stream

This is the content stream portion of the document object.

3.11.8.1 HTTP GET

This returns the content stream.

It is RECOMMENDED that HTTP Range requests are supported on this resource. Please see [RFC2616]
for more information on HTTP Range requests. It is RECOMMENDED that HTTP compression is also
supported.

CMIS Services:

• getContentStream

Arguments:

• streamId

Media Type:

• MIME type of the resource

Success Status Codes:

• 200 OK
• 206 Partial Content

3.11.8.2 HTTP PUT

Sets or replaces the content stream or appends a chunk of content to the existing content stream.

If the client wishes to set a new filename, it MAY add a Content-Disposition header, which carries the
new filename. The disposition type MUST be "attachment". The repository SHOULD use the "filename"
parameter and SHOULD ignore all other parameters. (See [RFC2183] and [RFC2231].)

CMIS Services:

• setContentStream
• appendContentStream

Arguments:

• overwriteFlag
If not specified, this defaults to TRUE in this binding and behaves consistent with AtomPub.

• changeToken
• append
If specified and set to true, appendContentStream is called. Otherwise setContentStream
is called.

• isLastChunk

Success Status Codes:

• 200 OK, if the resource is updated
• 204 No Content, if the resource is updated
• 201 Created, if a new resource is created

Headers returned:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 253 of 331

• Content-Location
• Location

3.11.8.3 HTTP DELETE

This removes the content stream.

CMIS Services:

• deleteObject

Success Status Codes:

• 204 No Content

3.11.9 AllowableActions Resource

This is an AllowableActions document.

3.11.9.1 HTTP GET

This returns the CMIS AllowableActions for a specified object.

CMIS Services:

• getAllowableActions

Media Type:

• application/cmisallowableactions+xml

Success Status Codes:

• 200 OK

Example:
Request: atompub/getAllowableActions-request.log
Response: atompub/getAllowableActions-response.log

3.11.10 ACL Resource

This is an ACL document.

3.11.10.1 HTTP GET

This returns the CMIS ACL for a specified object.

CMIS Services:

• getACL

Arguments:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 254 of 331

• onlyBasicPermissions

Media Type:

• application/cmisacl+xml

Success Status Codes:

• 200 OK

Example:
Request: atompub/getAcl-request.log
Response: atompub/getAcl-response.log

3.11.10.2 HTTP PUT

This applies the CMIS ACL for a specified object. The updated ACL SHOULD be returned.

CMIS Services:

• applyACL

Arguments:

• ACLPropagation

Accept:

• application/cmisacl+xml

Media Type:

• application/cmisacl+xml

Success Status Codes:

• 200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 255 of 331

4 Web Services Binding

4.1 Overview

All services and operations defined in the domain model specification are presented in the Web Services
binding.

The WSDL for these services reference two XSD documents. One defines elements for the primary data
types of documents, folders, relationships, policies, items, and secondary types as well as collections of
these types of objects. The second XSD defines the message formats for each of the CMIS services; the
messages often refer to the data types defined in the first XSD schema. The WSDL presents exactly the
abstract services defined in the Services section.

The normative CMIS Web Services binding is defined by the WSDL and XSD as well as the details given
here in this part of the CMIS specification.

4.1.1 WS-I

A CMIS Web Services binding MUST comply with WS-I Basic Profile 1.1 and Basic Security Profile 1.0.

4.1.2 Authentication

A CMIS Web Services binding SHOULD support WS-Security 1.1 for Username Token Profile 1.1 and MAY
also support other authentication mechanisms. A CMIS repository MAY grant access to all or a subset of
the CMIS services to unauthenticated clients.

4.1.3 Content Transfer

All endpoints of the Web Services binding MUST be MTOM enabled.

4.1.4 Reporting Errors

Services MUST report errors via SOAP faults. The CMIS-Messaging.xsd defines a basic fault structure
that includes an error code and an error message and the WSDL for each service defines specific messages
that have the basic fault format.

4.2 Web Services Binding Mapping

The Domain Model defines all services, operations, parameters and objects of CMIS. The Web Services
binding is an exact one-to-one mapping of this definition with small exceptions that are explained in the next
section. Operations and parameters are named exactly after their counterparts in the Services section. All
rules and exceptions defined there apply to the Web Services binding. Optional parameters and optional
return values are not set if they are missing or their value is NULL.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 256 of 331

4.3 Additions to the Services section

4.3.1 updateProperties and checkIn Semantics

This binding supports partial properties updates. All properties passed to updateProperties or checkIn
will be updated to their new values. Properties that are passed without a value will be set to their default
value or un-set if no default value is defined. All others property values remain untouched.

4.3.2 Content Ranges

This binding supports the retrieval of content ranges. The operation getContentStream accepts two
optional parameters:

Integer offset The first byte of the content to retrieve. Default value is 0.

Integer length The length of the range in bytes. Default value is the size of the content minus the offset.

If the offset value is greater than the size of the content the repository SHOULD throw a constraint exception.
If offset + length is greater than the size of the content the repository should deliver the content from the
offset to the end of the content.

4.3.3 Extensions

On all input messages and some output messages exists an element called extension. This element is used
to provide vendor or repository-specific information between client and server.

All of the types referenced by the schema also support xs:any for vendor or repository-specific information.

4.3.4 Web Services Specific Structures

This binding requires specific structures that are not part of the general CMIS schema.

4.3.4.1 cmisFaultType and cmisFault

cmisFaultType and cmisFault SHOULD be used to generate SOAP faults.

See section 4.1.4 Reporting Errors.

4.3.4.2 cmisRepositoryEntryType

cmisRepositoryEntryType is the return structure of getRepositories. It contains the id and the
name of a repository.

4.3.4.3 cmisTypeContainer

cmisTypeContainer is the return structure of getTypeDescendants. It holds a type hierarchy.

4.3.4.4 cmisTypeDefinitionListType

cmisTypeDefinitionListType is the return structure of getTypeChildren. It contains a list of types,
the hasMoreItems flag and the numItem element.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 257 of 331

Example:
Request: webservices/getTypeChildren-request.log
Response: webservices/getTypeChildren-response.log

4.3.4.5 cmisObjectInFolderType, cmisObjectParentsType and cmisObjectInFolderContainerType

cmisObjectInFolderType holds, in addition to a cmisObjectType object, a path segment string. It
is used in all operations that support the includePathSegments parameter. cmisObjectParentsType is
similar but has a relative path segment string instead of a path segment. For details about path segments
and relative path segments see section 2.1.5.3 Paths.

cmisObjectInFolderContainerType contains a folder hierarchy.

Example:
Request: webservices/getChildren-request.log
Response: webservices/getChildren-response.log

Example:
Request: webservices/getDecendants-request.log
Response: webservices/getDecendants-response.log

4.3.4.6 cmisObjectListType and cmisObjectInFolderListType

cmisObjectListType and cmisObjectInFolderListType hold lists of cmisObjectType and
cmisObjectInFolderType structures. They also contain the hasMoreItems flag and the numItems ele-
ment that are returned by operations that return these lists.

4.3.4.7 cmisContentStreamType

cmisContentStreamType wraps a content stream and additional information about the stream.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 258 of 331

Client to
Repository

Repository
to Client

length Length of the content stream in bytes.
If set, it MUST be a positive number.
If the length is unknown it MUST NOT be set. If it is
used in the context of appendContentStream this is
the size of the chunk in bytes.

SHOULD
be set

SHOULD
be set

mimeType MIME Media Type of the content stream.
For the primary content of a document it
SHOULD match the value of the property
cmis:contentStreamMimeType. If it is used
in the context of appendContentStream this either
MUST NOT be set or MUST match the MIME Media
Type of the document. If it is the first chunk it SHOULD
be set and defines the MIME Media Type of the
document.

SHOULD
be set

MUST be
set

filename Filename of the content stream.
For the primary content of a document it
SHOULD match the value of the property
cmis:contentStreamFileName.

SHOULD
be set

SHOULD
be set

stream The content stream.
MUST be present even if the content stream has 0
bytes.

MUST be
set

MUST be
set

4.3.4.8 cmisACLType

cmisACLType is the return structure of getACL and applyACL. It contains the current Access Control List
(ACL) of the object and the exact flag that indicates if the ACL fully describes the permission of this object.

Example:
Request: webservices/getAcl-request.log
Response: webservices/getAcl-response.log

4.3.4.9 cmisExtensionType

cmisExtensionType is a placeholder for extensions. See section 4.3.3 Extensions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 259 of 331

5 Browser Binding

5.1 Overview

TheCMIS Browser Binding is based upon JSON (Java Script Object Notation, [RFC4627]) and patterns used
in Web applications. This binding is specifically designed to support applications running in a web browser
but is not restricted to them. It is based on technologies that developers who build such applications already
understand, including HTML, HTML Forms, JavaScript and JSON (Java Script Object Notation). Importantly,
it does not require a JavaScript library, but rather takes advantage of capabilities already built into modern
browsers.

While this binding is optimized for use in browser applications, it can also serve as an easy to use binding
in other application models.

5.2 Common Service Elements

5.2.1 Protocol

HTTP MUST be used as the protocol for service requests. HTTP GET MUST be used for reading content
and HTTP POST MUST be used for creating, updating and deleting content. Using just those two HTTP
verbs makes it possible to develop applications that rely on built-in browser capabilities (e.g. HTML Forms)
and typical server configurations.

The use of HTTPS is RECOMMENDED for repositories that contain non-public data.

5.2.2 Data Representation

Browser applications are typically written in JavaScript. A popular lightweight data representation format
amongst JavaScript developers is JavaScript Object Notation (JSON) as described in [RFC4627]. JSON
MUST be used to represent the various CMIS objects described by the data model.

5.2.3 Schema

This specification provides a formal definition of the CMIS JSON elements. The formal definition is short
and precise and allows implementations to validate CMIS JSON at runtime.

Since there is not yet a JSON schema language approved by a standards body, this specification uses
a schema language called Orderly that is introduced by Lloyd Hilaiel on http://orderly-json.org/. Since the
definition of Orderly on http://orderly-json.org/ may proceed independently of this specification, and because
we may need to extend Orderly to define some elements of CMIS, we provide a description of Orderly in
appendix B Schema Language (Orderly) of this document.

5.2.4 Mapping Schema Elements to JSON

JSON only defines a few types, including Object, String, Number, Boolean, Null and Array. Not all types
used in the CMIS schema have direct JSONequivalents. The following table describes themapping between

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 260 of 331

http://orderly-json.org/
http://orderly-json.org/

CMIS and JSON types.

CMIS JSON
string string
boolean boolean
decimal number
integer number
datetime number

(Dates are represented in milliseconds from 1970/01/01 00:00:00 UTC with a
day containing 86,400,000 milliseconds. Negative numbers represent dates
before 1970/01/01 00:00:00 UTC.)

uri string
id string
html string

5.2.5 URL Patterns

The URLs used by the Browser Binding are meant to be predictable in order to simplify client development.
The URL patterns allow objects to be referenced by either object Id or path. Section 5.3 URLs provides the
details of how clients can construct these URLs.

5.2.6 Multipart Forms

Browser applications typically use HTTP multipart forms as described in [RFC2388] to create and update
content. This is especially useful for updating file content with the addition of the FILE attribute in [RFC1867].
In this binding, HTTP POST of multipart/form-data MUST be used to update content streams.

5.2.7 Properties in a "value not set" state

The JSON value "null" MUST be used by the server when returning values that have not been set.

5.2.8 Callback

Modern browsers restrict a JavaScript function from making HTTP calls to servers other than the one on
which the function originated. This set of restrictions is called the "same-origin policy" (see [SameOriginPol-
icy]). A CMIS client web application and the CMIS repositories it uses may often be deployed to different
servers. This specification allows JavaScript clients to access repositories on other servers, within the con-
straints of the same-origin policy, by using the "JSON with Padding" (JSONP) pattern.

This binding introduces a parameter called callback to allow CMIS clients to use this pattern.

The callback MAY be included by clients on read operations defined by this protocol that answer a JSON
object. The server MUST respond to valid read requests containing this token by answering the token,
followed by an open parenthesis, followed by the JSON object returned, followed by a close parenthesis. If
the parameter is included in a request, the server MUST validate that its value is not empty but the server
MUSTNOT do any additional validation of the token, such as, for example, assuring it conforms to JavaScript
function naming conventions. If the parameter value is empty, or if the parameter is used on a service for
which it is not allowed, then the invalidArgument exception MUST be used to signal the error.

Example:

showRepositoryInfo (
{

"A1":{

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 261 of 331

"repositoryId":"A1",
"repositoryDescription":"A Repository",
"vendorName":"OASIS",
"productName":"Repository Server",
"productVersion":"1.0",
"cmisVersionSupported":"1.1",
"changesIncomplete":true,
"rootFolderUrl":"http:\/\/example.com\/cmis\/repository\/123\/root",
"latestChangeLogToken":"0",
"rootFolderId":"100",
"repositoryName":"Apache Chemistry OpenCMIS InMemory Repository",
"repositoryUrl":"http:\/\/example.com\/cmis\/repository\/123",
"changesOnType":[].
"capabilities":{

"capabilityContentStreamUpdatability":"anytime",
"capabilityPWCSearchable":false,
"capabilityQuery":"bothcombined",
"capabilityRenditions":"none",
"capabilityACL":"none",
"capabilityGetFolderTree":true,
"capabilityGetDescendants":true,
"capabilityVersionSpecificFiling":false,
"capabilityUnfiling":true,
"capabilityJoin":"none",
"capabilityAllVersionsSearchable":false,
"capabilityMultifiling":true,
"capabilityChanges":"none",
"capabilityPWCUpdatable":true

},
}

}
)

5.2.9 Authentication

This specification RECOMMENDS the authenticationmechanisms described in the following sections. Repos-
itories MAY provide more, other or no authentication mechanisms.

Furthermore, this specification RECOMMENDS the use of HTTPS (see [RFC2818]) to protect credentials
and data.

5.2.9.1 Basic Authentication for Non-Browser Clients

Repositories SHOULD accept HTTP Basic Authentication (see [RFC2617] Section 2).

If the provided credentials are incorrect or unknown or entirely missing, a repository MAY return the HTTP
status code 403 (Forbidden) instead of the HTTP status code 401 (Unauthorized). This prevents web
browsers from providing a login dialog and subsequently remembering the credentials. This in turn can
prevent a form of cross-site request forgery (CSRF).

5.2.9.2 Authentication with Tokens for Browser Clients

The authentication mechanism described in this section addresses the following scenario:

A web application is hosted on one domain; the CMIS browser binding interface is served from another
domain. There is no proxy process on the server that hosts the web application. That is, all communication
between the application and the repository has to happen in the web browser via JavaScript. The "same-
origin policy" (see [SameOriginPolicy]) enforced by the web browser prohibits a direct and secure two-way
communication between the application and the repository.

To access the repository, a user has to authenticate and has to authorize the application (and only this
application, not all scripts in the web browser) to make CMIS calls.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 262 of 331

5.2.9.2.1 JSONP and Form Requests

Cross-domain requests should use JSONP and callbacks (see section 5.2.8 Callback) for GET requests
and should use HTML forms for POST requests.

A token SHOULD be added to each request to prevent cross-site request forgery (CSRF) attacks. For this
purpose, a parameter token MUST be added to the parameters of a GET request and a control token
MUST be added to the controls of a HTML form.

The repository SHOULD return a permissionDenied error if the client sends an invalid token.

If the client sends any other form of authentication (Basic Authentication, OAuth, etc.), the token MAY be
omitted. It is RECOMMENDED for web applications always to provide a token, even if another form of
authentication is in place.

5.2.9.2.2 Login and Tokens

Tokens are obtained from the repository in the following way.

The repository provides a JavaScript script that the web application includes into its HTML page via the
HTML <script> tag.

This script provides four functions:

cmisServiceURL() This function returns the Service URL. See section 5.3.1 Service URL.

cmisLogin(callback) This function triggers the login process. The web application MUST call this function
before it calls any other functions. How the login works is repository specific. A repository MAY replace
the application page in the web browser with a login page and later return back to the application page.

The function takes a callback function. It is called when the login process has been completed. The
callback function MUST accept a boolean parameter. The repository MUST provide TRUE if the login
process was successful and FALSE if it was not successful.

cmisLogout(callback) This function triggers the logout process. How the logout works is repository spe-
cific. After a successful logout, cmisNextToken() MUST NOT return a valid token. The application
MAY call cmisLogin() again to trigger a new login.

The function takes a callback function. It is called when the logout process has been completed. The
callback function MUST accept a boolean parameter. The repository MUST provide TRUE if the logout
process was successful and FALSE if it was not successful.

cmisNextToken(callback) This function calls the provided callback function with a new token. How this
token is generated and obtained is repository specific. Whether the repository returns unique tokens
or the same token for a user or for all users is repository specific. The repository SHOULD signal an
invalid state (e.g. no logged in user) with an empty token (empty string).

The flow in a web application could looks like this:

<script src="http://cmis.example.com/cmis.js"/>
<script>
cmisLogin(function(success) {

if (success) {
displayRootFolder();

} else {
showLoginErrorMessage();

}
});

function displayRootFolder() {
cmisNextToken(function(token) {
loadChildren('/', ..., token);

});
}

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 263 of 331

...

</script>

5.2.10 Error Handling and Return Codes

HTTP status codes MUST be used to indicate success or failure of an operation. Please see the HTTP
specification for more information on the HTTP status codes. These are provided as guidance from the
HTTP specification. If any conflict arises, the HTTP specification is authoritative.

CMIS Services Exception HTTP Status Code
General Exceptions
invalidArgument 400
notSupported 405
objectNotFound 404
permissionDenied 403
runtime 500
Specific Exceptions
constraint 409
contentAlreadyExists 409
filterNotValid 400
nameConstraintViolation 409
storage 500
streamNotSupported 403
updateConflict 409
versioning 409

This binding also introduces an object to return additional information about the response. CMIS repositories
SHOULD include this object in responses. When present, the object MUST include the following JSON
properties.

string exception A string containing one of the CMIS services exceptions describe in section 2.2.1.4 Ex-
ceptions.

string message A string containing a message that provides more information about what caused the ex-
ception.

Example:
GET /cmis/repository/123/myFolder?maxItems=abc HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0

HTTP/1.1 400 Bad Request
Content-Type: application/json
Content-Length: xxxx

{
"exception": "invalidArgument",
"message": "The parameter 'maxItems' is not valid."

}

If the query parameter suppressResponseCodes=true is set, the repository MUST always return the
HTTP status code 200.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 264 of 331

Example:

GET /cmis/repository/123/myFolder?maxItems=abc&suppressResponseCodes=true HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: xxxx

{
"exception": "invalidArgument",
"message": "The parameter 'maxItems' is not valid."

}

5.2.11 Succinct Representation of Properties

The default representation of properties may contain redundant information such as the display name, prop-
erty type, cardinality, etc. to simplify JavaScript code in a web application. This extra data is superfluous for
clients that cache type and property definitions. In order to reduce the message sizes, the Browser Binding
supports a parameter, which advises the repository to send a compact form of the properties.

A client MAY add the query parameter succinct (HTTP GET) or the control succinct (HTTP
POST) with the value "true" to a request. If this is set, the repository MUST return properties
in a succinct format. That is, whenever the repository renders an object or a query result, it
MUST populate the succinctProperties value and MUST NOT populate the properties value.
See the schema elements http://docs.oasis-open.org/ns/cmis/browser/201103/object and
http://docs.oasis-open.org/ns/cmis/browser/201103/queryResult.

Example of a folder representation with succinct flag set to "true":

{
"succinctProperties" : {

"cmis:allowedChildObjectTypeIds" : ["*"],
"cmis:objectTypeId" : "cmis:folder",
"cmis:lastModifiedBy" : "unknown",
"cmis:path" : "\/My_Folder-0-0\/My_Folder-1-0",
"cmis:name" : "My_Folder-1-0",
"cmis:createdBy" : "unknown",
"cmis:objectId" : "102",
"cmis:creationDate" : 1342160009207,
"cmis:changeToken" : "1342160009207",
"cmis:baseTypeId" : "cmis:folder",
"cmis:lastModificationDate" : 1342160009207,
"cmis:parentId" : "101"

}
}

5.3 URLs

5.3.1 Service URL

The document returned by the Service URL provides the repository information for all available repositories.
How the client will get the Service URL is repository specific.

The Service URLMUST return the repository infos of all available repositories (see section 2.1.1 Repository).
Each repository info MUST contain two additional properties:

• The Repository URL (repository info property: repositoryUrl)

• The Root Folder URL (repository info property: rootFolderUrl)

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 265 of 331

5.3.2 Repository URL

The Repository URL provides access to data that is independent of the folder hierarchy such as type defini-
tions, query and content changes. It can be obtained using the getRepositories or getRepositoryInfo
services.

5.3.3 Root Folder URL

The Root Folder URL is used to build Object URLs (see section 5.3.4 Object URLs). It can be obtained
using the getRepositories or getRepositoryInfo services.

5.3.4 Object URLs

An object is either identified by a parameter objectId added to the Root Folder URL or by a path that is
appended to the Root Folder URL. If the parameter objectId is set, it takes precedence over the path.

The two forms of an Object URL are:

• <root>?objectId=<objectId>
where <root> is the Root Folder URL and <objectId> is a CMIS object id.

• <root>/<path>
where <root> is the Root Folder URL and <path> is an absolute CMIS path to an object.

Examples:

• If the Root Folder URL is http://example.com/cmis/repository/123 and the object id is
1a2b-3c4d-5e6f then the Object URL is:
http://example.com/cmis/repository/123?objectId=1a2b-3c4d-5e6f

• If the Root Folder URL is http://example.com/cmis/repository/123 and the object path is
/myFolder/myDocument then the Object URL is:
http://example.com/cmis/repository/123/myFolder/myDocument

5.4 Services

Read operations use HTTP GET. The particular data that is returned by a read operation is determined by
the query parameter cmisselector.

If the cmisselector parameter is absent, the following default values are used:

Base Type cmisselector
cmis:document content

cmis:folder children

cmis:relationship object

cmis:policy object

cmis:item object

The value of the cmisselector parameter is case insensitive.

All operations that create, modify, or delete objects or change the state of the repository in any way use
HTTP POST. Since this binding is optimized for use in browser applications, the format of the transferred
data is aligned to the capabilities of HTML forms and described in this specification in HTML terms. See
section 5.4.4 Use of HTML Forms for a description of how HTML forms are used for CMIS services.

All operations that return the HTTP status code 201 SHOULD also return a HTTP Location header.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 266 of 331

The Schema Elements mentioned in the following sections refer to the CMIS Orderly schema. See also
section 5.2.3 Schema.

5.4.1 Service URL

Service: getRepositories

HTTP method: GET

Argument
cmisselector:
Arguments:

• token

Response: JSON representation of the repository infos of all repositories

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
repositories

Success HTTP
status code:

200 OK

The Service URL has no selector.

Example:
Request: browser/getRepositoryInfos-request.log
Response: browser/getRepositoryInfos-response.log

5.4.2 Repository URL

5.4.2.1 Selector "repositoryInfo"

Service: getRepositoryInfo

HTTP method: GET

Argument
cmisselector:

repositoryInfo

Arguments:
• token

Response: JSON representation of the repository info of the specified repository

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
repositories

Success HTTP
status code:

200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 267 of 331

Example:
Request: browser/getRepositoryInfo-request.log
Response: browser/getRepositoryInfo-response.log

5.4.2.2 Selector "typeChildren"

Service: getTypeChildren

HTTP method: GET

Argument
cmisselector:

typeChildren

Arguments:
• typeId
• includePropertyDefinitions
• maxItems
• skipCount
• token

Response: JSON representation of the types that are immediate children of the specified
typeId, or the base types if no typeId is provided

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
typeList

Success HTTP
status code:

200 OK

Example:
Request: browser/getTypeChildren-request.log
Response: browser/getTypeChildren-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 268 of 331

5.4.2.3 Selector "typeDescendants"

Service: getTypeDescendants

HTTP method: GET

Argument
cmisselector:

typeDescendants

Arguments:
• typeId
• depth
• includePropertyDefinitions
• token

Response: JSON representation of all types descended from the specified typeId, or all
the types in the repository if no typeId is provided

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
typeContainer

Success HTTP
status code:

200 OK

5.4.2.4 Selector "typeDefinition"

Service: getTypeDefinition

HTTP method: GET

Argument
cmisselector:

typeDefinition

Arguments:
• typeId
• token

Response: JSON representation of the specified type

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
typeDefinitionType

Success HTTP
status code:

200 OK

Example:
Request: browser/getTypeDefinition-request.log
Response: browser/getTypeDefinition-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 269 of 331

5.4.2.5 Selector "checkedOut"

Service: getCheckedOutDocs

HTTP method: GET

Argument
cmisselector:

checkedOut

Arguments:
• filter
• maxItems
• skipCount
• orderBy
• renditionFilter
• includeAllowableActions
• includeRelationships
• succinct
• token

Response: JSON representation of the documents that have been checked out in the
repository

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
objectList

Success HTTP
status code:

200 OK

Example:
Request: browser/checkOut-request.log
Response: browser/checkOut-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 270 of 331

5.4.2.6 Action "createDocument"

Service: createDocument

HTTP method: POST

Control cmisaction: createDocument

Relevant
CMIS Controls: • Single-value Properties

• Multi-value Properties
• Content
• Versioning State
• Policies
• Adding Access Control Entries (ACEs)
• Removing Access Control Entries (ACEs)
• Succinct
• Token

Response: JSON representation of the newly created, unfiled document

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

Example:
Request: browser/createDocument-request.log
Response: browser/createDocument-response.log

5.4.2.7 Action "createDocumentFromSource"

Service: createDocumentFromSource

HTTP method: POST

Control cmisaction: createDocumentFromSource

Relevant
CMIS Controls: • Source Id

• Single-value Properties
• Multi-value Properties
• Content
• Versioning State
• Policies
• Adding Access Control Entries (ACEs)
• Removing Access Control Entries (ACEs)
• Succinct
• Token

Response: JSON representation of the newly created, unfiled document

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 271 of 331

5.4.2.8 Action "createRelationship"

Service: createRelationship

HTTP method: POST

Control cmisaction: createRelationship

Relevant
CMIS Controls: • Single-value Properties

• Multi-value Properties
• Policies
• Adding Access Control Entries (ACEs)
• Removing Access Control Entries (ACEs)
• Succinct
• Token

Response: JSON representation of the newly created relationship

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

5.4.2.9 Action "createPolicy"

Service: createPolicy

HTTP method: POST

Control cmisaction: createPolicy

Relevant
CMIS Controls: • Single-value Properties

• Multi-value Properties
• Policies
• Adding Access Control Entries (ACEs)
• Removing Access Control Entries (ACEs)
• Succinct
• Token

Response: JSON representation of the newly created, unfiled policy

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 272 of 331

5.4.2.10 Action "createItem"

Service: createItem

HTTP method: POST

Control cmisaction: createItem

Relevant
CMIS Controls: • Single-value Properties

• Multi-value Properties
• Policies
• Adding Access Control Entries (ACEs)
• Removing Access Control Entries (ACEs)
• Succinct
• Token

Response: JSON representation of the newly created, unfiled item

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

5.4.2.11 Action "bulkUpdate"

Service: bulkUpdateProperties

HTTP method: POST

Control cmisaction: bulkUpdate

Relevant
CMIS Controls: • Object Ids

• Change Tokens
• Single-value Properties
• Multi-value Properties
• Adding Secondary Type Ids
• Removing Secondary Type Ids
• Token

Response: List of ids of the updated objects with their new ids and change tokens

Schema Element: <Array>http://docs.oasis-open.org/ns/cmis/browser/
201103/objectIdAndChangeToken

Success HTTP
status code:

200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 273 of 331

5.4.2.12 Selector "query"

Service: query

HTTP method: GET

Argument
cmisselector:

query

Arguments:
• q (maps to the parameter statement)
• searchAllVersions
• maxItems
• skipCount
• includeAllowableActions
• includeRelationships
• renditionFilter
• succinct
• token

Response: JSON representation of the results of the query

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
queryResultList

Success HTTP
status code:

200 OK

Example:
Request: browser/doQuery-request.log
Response: browser/doQuery-response.log

5.4.2.13 Action "query"

Service: query

HTTP method: POST

Control cmisaction: query

Relevant
CMIS Controls: • Query

• Succinct
• Token

Response: JSON representation of the results of the query

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
queryResultList

Success HTTP
status code:

200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 274 of 331

Example:
Request: browser/doQuery-request.log
Response: browser/doQuery-response.log

5.4.2.14 Selector "contentChanges"

Service: getContentChanges

HTTP method: GET

Argument
cmisselector:

contentChanges

Arguments:
• changeLogToken
• includeProperties
• includePolicyIds
• includeACL
• maxItems
• succinct
• token

Response: JSON representation of the changed objects. The list object SHOULD contain
the next change log token.

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
objectList

Success HTTP
status code:

200 OK

Example:
Request: browser/getContentChanges-request.log
Response: browser/getContentChanges-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 275 of 331

5.4.2.15 Action "createType"

Service: createType

HTTP method: POST

Control cmisaction: createType

Relevant
CMIS Controls: • Type

• Token

Response: JSON representation of the newly created type

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
typeDefinitionType

Success HTTP
status code:

201 Created

5.4.2.16 Action "updateType"

Service: updateType

HTTP method: POST

Control cmisaction: updateType

Relevant
CMIS Controls: • Type

• Token

Response: JSON representation of the updated type

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
typeDefinitionType

Success HTTP
status code:

200 OK

5.4.2.17 Action "deleteType"

Service: deleteType

HTTP method: POST

Control cmisaction: deleteType

Relevant
CMIS Controls: • Type Id

• Token

Response: empty

Schema Element:

Success HTTP
status code:

200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 276 of 331

5.4.2.18 Selector "lastResult"

HTTP method: GET

Argument
cmisselector:

lastResult

Arguments:
• token

Response: See section 5.4.4.4 Access to Form Response Content

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
transaction

Success HTTP
status code:

200 OK

5.4.3 Object URL

5.4.3.1 Selector "children"

Service: getChildren

HTTP method: GET

Argument
cmisselector:

children

Arguments:
• maxItems
• skipCount
• filter
• includeAllowableActions
• includeRelationships
• renditionFilter
• orderBy
• includePathSegment
• succinct
• token

Response: JSON representation of the children of the specified folder

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
objectInFolderList

Success HTTP
status code:

200 OK

The selector can be omitted since getChildren only works on folders and the selector "children" is the
default selector for folders.

Example:
Request: browser/getChildren-request.log
Response: browser/getChildren-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 277 of 331

5.4.3.2 Selector "descendants"

Service: getDescendants

HTTP method: GET

Argument
cmisselector:

descendants

Arguments:
• filter
• depth
• includeAllowableActions
• includeRelationships
• renditionFilter
• includePathSegment
• succinct
• token

Response: JSON representation of the descendants of the specified folder

Schema Element: <Array>http://docs.oasis-open.org/ns/cmis/browser/
201103/objectContainer

Success HTTP
status code:

200 OK

Example:
Request: browser/getDecendants-request.log
Response: browser/getDecendants-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 278 of 331

5.4.3.3 Selector "folderTree"

Service: getFolderTree

HTTP method: GET

Argument
cmisselector:

folderTree

Arguments:
• filter
• depth
• includeAllowableActions
• includeRelationships
• renditionFilter
• includePathSegment
• succinct
• token

Response: JSON representation of the folder tree of the specified folder

Schema Element: <Array>http://docs.oasis-open.org/ns/cmis/browser/
201103/objectContainer

Success HTTP
status code:

200 OK

5.4.3.4 Selector "parent"

Service: getFolderParent

HTTP method: GET

Argument
cmisselector:

parent

Arguments:
• filter
• succinct
• token

Response: JSON representation of the parent folder of the specified folder

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 279 of 331

5.4.3.5 Selector "parents"

Service: getObjectParents

HTTP method: GET

Argument
cmisselector:

parents

Arguments:
• filter
• includeRelationships
• renditionFilter
• includeAllowableActions
• includeRelativePathSegment
• succinct
• token

Response: JSON representation of the folders that are the parents of the specified object

Schema Element: <Array>http://docs.oasis-open.org/ns/cmis/browser/
201103/objectParent

Success HTTP
status code:

200 OK

Example:
Request: browser/getObjectParents-request.log
Response: browser/getObjectParents-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 280 of 331

5.4.3.6 Selector "checkedout"

Service: getCheckedOutDocs

HTTP method: GET

Argument
cmisselector:

checkedout

Arguments:
• filter
• maxItems
• skipCount
• orderBy
• renditionFilter
• includeAllowableActions
• includeRelationships
• succinct
• token

Response: JSON representation of the documents that have been checked out in this
folder

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
objectList

Success HTTP
status code:

200 OK

5.4.3.7 Action "createDocument"

Service: createDocument

HTTP method: POST

Control cmisaction: createDocument

Relevant
CMIS Controls: • Single-value Properties

• Multi-value Properties
• Content
• Versioning State
• Policies
• Adding Access Control Entries (ACEs)
• Removing Access Control Entries (ACEs)
• Succinct
• Token

Response: JSON representation of the newly created document in this folder

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

Example:
Request: browser/createDocument-request.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 281 of 331

Response: browser/createDocument-response.log

5.4.3.8 Action "createDocumentFromSource"

Service: createDocumentFromSource

HTTP method: POST

Control cmisaction: createDocumentFromSource

Relevant
CMIS Controls: • Source Id

• Single-value Properties
• Multi-value Properties
• Content
• Versioning State
• Policies
• Adding Access Control Entries (ACEs)
• Removing Access Control Entries (ACEs)
• Succinct
• Token

Response: JSON representation of the newly created document in this folder

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

5.4.3.9 Action "createFolder"

Service: createFolder

HTTP method: POST

Control cmisaction: createFolder

Relevant
CMIS Controls: • Single-value Properties

• Multi-value Properties
• Policies
• Adding Access Control Entries (ACEs)
• Removing Access Control Entries (ACEs)
• Succinct
• Token

Response: JSON representation of the newly created folder in this folder

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 282 of 331

5.4.3.10 Action "createPolicy"

Service: createPolicy

HTTP method: POST

Control cmisaction: createPolicy

Relevant
CMIS Controls: • Single-value Properties

• Multi-value Properties
• Policies
• Adding Access Control Entries (ACEs)
• Removing Access Control Entries (ACEs)
• Succinct
• Token

Response: JSON representation of the newly created policy in this folder

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

5.4.3.11 Action "createItem"

Service: createItem

HTTP method: POST

Control cmisaction: createItem

Relevant
CMIS Controls: • Single-value Properties

• Multi-value Properties
• Policies
• Adding Access Control Entries (ACEs)
• Removing Access Control Entries (ACEs)
• Succinct
• Token

Response: JSON representation of the newly created item in this folder

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 283 of 331

5.4.3.12 Selector "allowableActions"

Service: getAllowableActions

HTTP method: GET

Argument
cmisselector:

allowableActions

Arguments:
• token

Response: JSON representation of the allowable actions of the specified object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
allowableActions

Success HTTP
status code:

200 OK

Example:
Request: browser/getAllowableActions-request.log
Response: browser/getAllowableActions-response.log

5.4.3.13 Selector "object"

Service: getObject

HTTP method: GET

Argument
cmisselector:

object

Arguments:
• filter
• includeRelationships
• includePolicyIds
• renditionFilter
• includeACL
• includeAllowableActions
• succinct
• token

Response: JSON representation of the specified object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

200 OK

Example:
Request: browser/getObject-request.log
Response: browser/getObject-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 284 of 331

5.4.3.14 Selector "properties"

Service: getProperties

HTTP method: GET

Argument
cmisselector:

properties

Arguments:
• filter
• succinct
• token

Response: JSON representation of the properties of the specified object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
properties

Success HTTP
status code:

200 OK

5.4.3.15 Selector "object"

Service: getObjectByPath

HTTP method: GET

Argument
cmisselector:

object

Arguments:
• filter
• includeRelationships
• includePolicyIds
• renditionFilter
• includeACL
• includeAllowableActions
• succinct
• token

Response: JSON representation of the specified object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 285 of 331

5.4.3.16 Selector "content"

Service: getContentStream

HTTP method: GET

Argument
cmisselector:

content

Arguments:
• streamId
• download
• token

Response: The content stream

Schema Element:

Success HTTP
status code:

200 OK

The selector can be omitted since getContentStream only works on documents and the selector content
is the default selector for documents.

If the request is not authenticated (no authentication HTTP header, no token, etc.) or the authentication
details are invalid (wrong credentials, expired token, etc.), the repository MAY redirect the request to a login
page (using HTTP status code 307 (Temporary Redirect)).

How the login works is repository specific. If the user can be logged on, the repository either returns the
requested document content directly or redirects to a URL that provides the document content.

To control if the web browser should load and show the content or offer it for download, an application
can ask the repository to set the HTTP header Content-Disposition (see [RFC6266]) by setting the
download parameter. Valid values are inline (default) and attachment. These values correspond to
the disposition-type in [RFC6266]. If the download parameter is not provides, the repository SHOULD
set a Content-Disposition header with the disposition type inline.

5.4.3.17 Selector "renditions"

Service: getRenditions

HTTP method: GET

Argument
cmisselector:

renditions

Arguments:
• renditionFilter
• maxItems
• skipCount
• token

Response: JSON representation of the renditions for the specified object

Schema Element: <Array>http://docs.oasis-open.org/ns/cmis/browser/
201103/rendition

Success HTTP
status code:

200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 286 of 331

5.4.3.18 Action "update"

Service: updateProperties

HTTP method: POST

Control cmisaction: update

Relevant
CMIS Controls: • Single-value Properties

• Multi-value Properties
• Change Token
• Succinct
• Token

Response: JSON representation of the updated object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

200 OK, if the object has been updated
201 Created, if a new version has been created

Example:
Request: browser/updateProperties-request.log
Response: browser/updateProperties-response.log

5.4.3.19 Action "move"

Service: moveObject

HTTP method: POST

Control cmisaction: move

Relevant
CMIS Controls: • Target folder Id

• Source folder Id
• Succinct
• Token

Response: JSON representation of the moved object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 287 of 331

5.4.3.20 Action "delete"

Service: deleteObject

HTTP method: POST

Control cmisaction: delete

Relevant
CMIS Controls: • All Versions

• Token

Response: empty

Schema Element:

Success HTTP
status code:

200 OK

Example:
Request: browser/deleteObject-request.log
Response: browser/deleteObject-response.log

5.4.3.21 Action "deleteTree"

Service: deleteTree

HTTP method: POST

Control cmisaction: deleteTree

Relevant
CMIS Controls: • All Versions

• Unfile Objects
• Continue On Failure
• Token

Response: empty if successful. A list of Ids if at least one object could not been deleted.

Schema Element:

Success HTTP
status code:

200 OK

When the operation fails, meaning that some objects in the tree are not deleted, an instance of type http:
//docs.oasis-open.org/ns/cmis/browser/201103/ids containing a list of ids of the objects not
deleted MUST be returned.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 288 of 331

5.4.3.22 Action "setContent"

Service: setContentStream

HTTP method: POST

Control cmisaction: setContent

Relevant
CMIS Controls: • Overwrite Flag

• Change Token
• Content
• Succinct
• Token

Response: JSON representation of the object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

5.4.3.23 Action "appendContent"

Service: appendContentStream

HTTP method: POST

Control cmisaction: appendContent

Relevant
CMIS Controls: • IsLastChunk

• Change Token
• Content
• Succinct
• Token

Response: JSON representation of the object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 289 of 331

5.4.3.24 Action "deleteContent"

Service: deleteContentStream

HTTP method: POST

Control cmisaction: deleteContent

Relevant
CMIS Controls: • Change Token

• Succinct
• Token

Response: JSON representation of the object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

200 OK

5.4.3.25 Action "addObjectToFolder"

Service: addObjectToFolder

HTTP method: POST

Control cmisaction: addObjectToFolder

Relevant
CMIS Controls: • Folder Id

• All Versions
• Succinct
• Token

Response: JSON representation of the object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 290 of 331

5.4.3.26 Action "removeObjectFromFolder"

Service: removeObjectFromFolder

HTTP method: POST

Control cmisaction: removeObjectFromFolder

Relevant
CMIS Controls: • Folder Id

• Succinct
• Token

Response: JSON representation of the object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

Example:
Request: browser/removeObjectFromFolder-request.log
Response: browser/removeObjectFromFolder-response.log

5.4.3.27 Action "checkOut"

Service: checkOut

HTTP method: POST

Control cmisaction: checkOut

Relevant
CMIS Controls: • succinct

• token

Response: JSON representation of the Private Working Copy
Note: The contentCopied flag is not returned. Clients may check content
related properties such as the cmis:contentStreamLength property if the
the Private Working Copy has a content stream.

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

Example:
Request: browser/checkOut-request.log
Response: browser/checkOut-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 291 of 331

5.4.3.28 Action "cancelCheckOut"

Service: cancelCheckOut

HTTP method: POST

Control cmisaction: cancelCheckOut

Relevant
CMIS Controls: • token

Response: empty

Schema Element:

Success HTTP
status code:

200 OK

5.4.3.29 Action "checkIn"

Service: checkIn

HTTP method: POST

Control cmisaction: checkIn

Relevant
CMIS Controls: • Major

• Single-value Properties
• Multi-value Properties
• Content
• Checkin Comment
• Policies
• Adding Access Control Entries (ACEs)
• Removing Access Control Entries (ACEs)
• Succinct
• Token

Response: JSON representation of the new version

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

201 Created

Example:
Request: browser/checkIn-request.log
Response: browser/checkIn-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 292 of 331

5.4.3.30 Selector "object"

Service: getObjectOfLatestVersion

HTTP method: GET

Argument
cmisselector:

object

Arguments:
• filter
• includeRelationships
• includePolicyIds
• renditionFilter
• includeACL
• includeAllowableActions
• returnVersion

– If no value is present or the value is 'this', getObject MUST be
called.

– If the value is 'latest' getObjectOfLatestVersion MUST be
called with the parameter major set to FALSE.

– If the value is 'latestmajor' getObjectOfLatestVersion MUST
be called with the parameter major set to TRUE.

• succinct
• token

Response: JSON representation of the specified object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 293 of 331

5.4.3.31 Selector "properties"

Service: getPropertiesOfLatestVersion

HTTP method: GET

Argument
cmisselector:

properties

Arguments:
• filter
• returnVersion

– If no value is present or the value is 'this', getProperties MUST
be called.

– If the value is 'latest' getPropertiesOfLatestVersion MUST
be called with the parameter major set to FALSE.

– If the value is 'latestmajor' getPropertiesOfLatestVersion
MUST be called with the parameter major set to TRUE.

• succinct
• token

Response: JSON representation of the properties of the specified object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
properties

Success HTTP
status code:

200 OK

5.4.3.32 Selector "versions"

Service: getAllVersions

HTTP method: GET

Argument
cmisselector:

versions

Arguments:
• filter
• includeAllowableActions
• succinct
• token

Response: JSON representation of all the versions in the Version Series

Schema Element: <array>http://docs.oasis-open.org/ns/cmis/browser/
201103/object

Success HTTP
status code:

200 OK

Example:
Request: browser/getAllVersions-request.log
Response: browser/getAllVersions-response.log

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 294 of 331

5.4.3.33 Selector "relationships"

Service: getObjectRelationships

HTTP method: GET

Argument
cmisselector:

relationships

Arguments:
• includeSubRelationshipTypes
• relationshipDirection
• typeId
• maxItems
• skipCount
• filter
• includeAllowableActions
• succinct
• token

Response: JSON representations of the relationships of the specified object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/
objectList

Success HTTP
status code:

200 OK

5.4.3.34 Selector "policies"

Service: getAppliedPolicies

HTTP method: GET

Argument
cmisselector:

policies

Arguments:
• filter
• succinct
• token

Response: JSON representations of the policies applied to the specified object

Schema Element: <array>http://docs.oasis-open.org/ns/cmis/browser/
201103/object

Success HTTP
status code:

200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 295 of 331

5.4.3.35 Action "applyPolicy"

Service: applyPolicy

HTTP method: POST

Control cmisaction: applyPolicy

Relevant
CMIS Controls: • Policy Id

• Succinct
• Token

Response: JSON representation of the updated object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

200 OK

5.4.3.36 Action "removePolicy"

Service: removePolicy

HTTP method: POST

Control cmisaction: removePolicy

Relevant
CMIS Controls: • Policy Id

• Succinct
• Token

Response: JSON representation of the updated object

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/object

Success HTTP
status code:

200 OK

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 296 of 331

5.4.3.37 Action "applyACL"

Service: applyACL

HTTP method: POST

Control cmisaction: applyACL

Relevant
CMIS Controls: • Adding Access Control Entries (ACEs)

• Removing Access Control Entries (ACEs)
• ACL propagation
• Token

Response: JSON representation of the updated ACL

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/acl

Success HTTP
status code:

200 OK

5.4.3.38 Selector "acl"

Service: getACL

HTTP method: GET

Argument
cmisselector:

acl

Arguments:
• onlyBasicPermissions
• token

Response: JSON representation of the ACL

Schema Element: http://docs.oasis-open.org/ns/cmis/browser/201103/acl

Success HTTP
status code:

200 OK

Example:
Request: browser/getAcl-request.log
Response: browser/getAcl-response.log

5.4.4 Use of HTML Forms

As described in section 5.4 Services HTML forms are used to create, update and delete CMIS content.

The form submission method (HTML form attribute "method") MUST be "POST". If a content stream
is not attached to the form, the encoding type (HTML form attribute "enctype") MUST be either
application/x-www-form-urlencoded or multipart/form-data. If a content stream is attached,
the encoding type MUST be multipart/form-data.

The names of the controls within the form are defined by the patterns in the following sections. All control
names are case-insensitive as defined by the HTML specification. Control names MUST be unique within

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 297 of 331

a form. If the control value of an optional parameter is set to an empty string ("") the default value MUST be
used.

A client MAY add controls to a form that are not defined by CMIS as long as the control names don't conflict
with the patterns described in this specification.

Since control values are strings, all other data types have to be serialized to strings. The same rules that
apply to the serialization to JSON apply here.

5.4.4.1 Action

An HTML form used to POST CMIS content MUST include a control named "cmisaction" that indicates the
CMIS operation to be performed. See section 5.4 Services for valid control values. The value of the control
is case insensitive.

Example:

<input name="cmisaction" type="hidden" value="createDocument" />

5.4.4.2 Structured and Array Parameters

SomeCMIS operations require structured parameters and arrays of values. Since HTML forms don't support
that usage, some CMIS operation parameters are split into multiple controls in a form.

For example, a CMIS property is split into a control that holds the property id and another control that hold
property value. The association between the two controls is done by convention.

The entirety of all properties is made up of an array of these property controls.

Names of controls that are part of an array end with "[<index>]" where <index> is a positive integer.
Arrays MUST always start with the index 0 and MUST be gapless.

Example:

An array of three properties looks like this in a HTML form:

<input name="propertyId[0]" type="hidden" value="cmis:name" />
<input name="propertyValue[0]" type="text" value="my document" />

<input name="propertyId[1]" type="hidden" value="cmis:objectTypeId" />
<input name="propertyValue[1]" type="hidden" value="my:firstObjectType" />

<input name="propertyId[2]" type="hidden" value="my:intProperty" />
<input name="propertyValue[2]" type="text" value="42" />

If a client sends invalid, incomplete or inconsistent data the repository SHOULD throw an invalidArgument
exception.

5.4.4.3 CMIS Controls

This section lists all HTML form controls used by CMIS services.

5.4.4.3.1 Succinct

This flag indicates that the property presentation must be succinct. See section 5.2.11 Succinct Represen-
tation of Properties.

Control name: succinct

Control value: "true" or not set

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 298 of 331

Example:

<input name="succinct" type="hidden" value="true" />

5.4.4.3.2 Token

This is used to authorize the request. See section 5.2.9.2 Authentication with Tokens for Browser Clients.

Control name: token

Control value: Token String

Example:

<input name="token" type="hidden" value="e45ab575d6fe4aab901e9" />

5.4.4.3.3 Object Id

This is used if one object should be addressed.

Control name: objectId

Control value: Object Id

Example:

<input name="objectId" type="hidden" value="1234-abcd-5678" />

5.4.4.3.4 Object Ids

This is used if multiple objects should be addressed. (Only applies to bulkUpdateProperties.)

Control name: objectId[<idIndex>]

Control value: Object Id

Example:

<input name="objectId[0]" type="hidden" value="1234-abcd-5678" />
<input name="objectId[1]" type="hidden" value="9876-bcde-5432" />
<input name="objectId[2]" type="hidden" value="7654-qwer-2345" />

5.4.4.3.5 Folder Id

Control name: folderId

Control value: Folder Id

Example:

<input name="folderId" type="hidden" value="1234-abcd-5678" />

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 299 of 331

5.4.4.3.6 Source Id

Control name: sourceId

Control value: Source Id

Example:

<input name="sourceId" type="hidden" value="1234-abcd-5678" />

5.4.4.3.7 Source folder Id

Control name: sourceFolderId

Control value: Folder Id

Example:

<input name="sourceFolderId" type="hidden" value="1234-abcd-5678" />

5.4.4.3.8 Target folder Id

Control name: targetFolderId

Control value: Folder Id

Example:

<input name="targetFolderId" type="hidden" value="1234-abcd-5678" />

5.4.4.3.9 Policy Id

Control name: policyId

Control value: Policy Id

Example:

<input name="policyId" type="hidden" value="1234-abcd-5678" />

5.4.4.3.10 Type Id

Control name: typeId

Control value: Object-type Id

Example:

<input name="typeId" type="hidden" value="my:type" />

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 300 of 331

5.4.4.3.11 Single-value Properties

A single-value property is made up of a pair of a propertyId control and a propertyValue control with
the same <propIndex>. To unset the property, the client must submit form data in which the propertyId
MUST be present and the propertyValue control MUST NOT be present.

<propIndex> does not imply any order.

5.4.4.3.11.1 Property Id

Control name: propertyId[<propIndex>]

Control value: Property Id

5.4.4.3.11.2 Property Value

Control name: propertyValue[<propIndex>]

Control value: Property Value

Example:

<input name="propertyId[0]" type="hidden" value="my:firstname" />
<input name="propertyValue[0]" type="text" value="John" />

<input name="propertyId[1]" type="hidden" value="my:lastname" />
<input name="propertyValue[1]" type="text" value="Smith" />

5.4.4.3.12 Multi-value Properties

A multi-value property is made up of a propertyId control and a series of propertyValue controls
with the same <propIndex>. The propertyValue controls MUST have a second index <seqIndex>.
This array MUST also always start with the index 0 and MUST be gapless. To unset the property, NO
propertyValue control MUST be present.

<propIndex> does not imply any order, but <seqIndex> defines the order of the values.

5.4.4.3.12.1 Property Id

Control name: propertyId[<propIndex>]

Control value: Property Id

5.4.4.3.12.2 Property Value

Control name: propertyValue[<propIndex>][<seqIndex>]

Control value: Property value at position <seqIndex>

Example:

<input name="propertyId[0]" type="hidden" value="my:countries" />
<input name="propertyValue[0][0]" type="text" value="Germany" />
<input name="propertyValue[0][1]" type="text" value="United States" />
<input name="propertyValue[0][2]" type="text" value="France" />
<input name="propertyValue[0][3]" type="text" value="United Kingdom" />

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 301 of 331

<input name="propertyValue[0][4]" type="text" value="Switzerland" />

<input name="propertyId[1]" type="hidden" value="my:colors" />
<input name="propertyValue[1][0]" type="text" value="red" />
<input name="propertyValue[1][1]" type="text" value="green" />
<input name="propertyValue[1][2]" type="text" value="blue" />

5.4.4.3.13 Adding Secondary Type Ids

Secondary type ids can be added by providing a list of ids.

Control name: addSecondaryTypeId[<typeIndex>]

Control value: Secondary Type Id

Example:

<input name="addSecondaryTypeId[0]" type="hidden" value="my:audit" />
<input name="addSecondaryTypeId[1]" type="hidden" value="my:comment" />

5.4.4.3.14 Removing Secondary Type Ids

Secondary type ids can be removed by providing a list of ids.

Control name: removeSecondaryTypeId[<typeIndex>]

Control value: Secondary Type Id

Example:

<input name="removeSecondaryTypeId[0]" type="hidden" value="my:favorite" />
<input name="removeSecondaryTypeId[1]" type="hidden" value="my:workflow123" />

5.4.4.3.15 Adding Access Control Entries (ACEs)

In order to add an ACE to a CMIS object, a client passes a control named addACEPrincipal along with
a set of corresponding addACEPermission controls. An index value <addACEIndex> links the principal
with its permissions, and a second index <permIndex> differentiates the permissions.

<addACEIndex> and <permIndex> don't imply any order.

5.4.4.3.15.1 Principal

Control name: addACEPrincipal[<addACEIndex>]

Control value: Principal Id

5.4.4.3.15.2 Permission

Control name: addACEPermission[<addACEIndex>][<permIndex>]

Control value: Permission String

Example:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 302 of 331

<input name="addACEPrincipal[0]" type="hidden" value="john" />
<input name="addACEPermission[0][0]" type="hidden" value="cmis:read" />
<input name="addACEPermission[0][1]" type="hidden" value="perm:publish" />

<input name="addACEPrincipal[1]" type="hidden" value="mary" />
<input name="addACEPermission[1][0]" type="hidden" value="cmis:all" />

5.4.4.3.16 Removing Access Control Entries (ACEs)

In order to remove an ACE to a CMIS object, a client passes a control named removeACEPrincipal along
with a set of corresponding removeACEPermission controls. An index value <removeACEIndex> links
the principal with its permissions, and a second index <permIndex> differentiates the permissions.

<removeACEIndex> and <permIndex> don't imply any order.

5.4.4.3.16.1 Principal

Control name: removeACEPrincipal[<removeACEIndex>]

Control value: Principal Id

5.4.4.3.16.2 Permission

Control name: removeACEPermission[<removeACEIndex>][<permIndex>]

Control value: Permission String

Example:

<input name="removeACEPrincipal[0]" type="hidden" value="tom" />
<input name="removeACEPermission[0][0]" type="hidden" value="cmis:write" />
<input name="removeACEPermission[0][1]" type="hidden" value="perm:publish" />

<input name="removeACEPrincipal[1]" type="hidden" value="bob" />
<input name="removeACEPermission[1][0]" type="hidden" value="perm:forward" />

5.4.4.3.17 ACL propagation

In order to specify how to propagate ACE's, a control named ACLPropagation is used.

Control name: ACLPropagation

Control value: ACL propagation enum ("objectonly", "propagate", "repositorydetermined")

Example:

<input name="ACLPropagation" type="hidden" value="propagate" />

5.4.4.3.18 Policies

Policies are assigned and removed to CMIS objects by including a control named policy with an index of
<policyIndex>. A policy list is made up of a series of these policy controls.

<policyIndex> does not imply any order.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 303 of 331

Control name: policy[<policyIndex>]

Control value: Policy Id

Example:

<input name="policy[0]" type="hidden" value="1111-aaaa-2222" />
<input name="policy[1]" type="hidden" value="3333-bbbb-4444" />
<input name="policy[2]" type="hidden" value="5555-cccc-6666" />

5.4.4.3.19 Change Token

A CMIS change token is included by using a form control named changeToken. If the value of the control
is set to the empty string, then the repository MUST treat the change token as not set.

Control name: changeToken

Control value: Change Token

Example:

<input name="changeToken" type="hidden" value="8923653942" />

5.4.4.3.20 Change Tokens

If multiple objects are addressed, this list of change tokens matches the list of object ids (see section
5.4.4.3.4 Object Ids). The index of each change token MUST match the index of the corresponding ob-
ject id.

The rules defined in section 5.4.4.3.19 Change Token apply to each change token.

Control name: changeToken[<idIndex>]

Control value: Change Token

Example:

<input name="changeToken[0]" type="hidden" value="8923653942" />
<input name="changeToken[1]" type="hidden" value="1234567890" />
<input name="changeToken[2]" type="hidden" value="5555555555" />

5.4.4.3.21 All Versions

Indicates if only this version or all versions should be affected.

Control name: allVersions

Control value: Boolean ("true", "false")

Example:

<input name="allVersions" type="hidden" value="true" />

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 304 of 331

5.4.4.3.22 Unfile Objects

Indicates how deleteTree should delete objects.

Control name: unfileObjects

Control value: enumUnfileObject ("unfile", "deletesinglefiled", "delete")

Example:
<input name="unfileObjects" type="hidden" value="delete" />

5.4.4.3.23 Continue On Failure

Indicates if deleteTree should continue on failure.

Control name: continueOnFailure

Control value: Boolean ("true", "false")

Example:
<input name="continueOnFailure" type="hidden" value="true" />

5.4.4.3.24 Overwrite Flag

Indicates if setContentStream should overwrite the existing content.

Control name: overwriteFlag

Control value: Boolean ("true", "false")

Example:
<input name="overwriteFlag" type="hidden" value="true" />

5.4.4.3.25 IsLastChunk

Indicates if appendContentStream should consider this chunk the last chunk of the document content.

Control name: isLastChunk

Control value: Boolean ("true", "false")

Example:
<input name="isLastChunk" type="hidden" value="true" />

5.4.4.3.26 Major

Indicates if the major or minor version is expected.

Control name: major

Control value: Boolean ("true", "false")

Example:
<input name="major" type="hidden" value="true" />

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 305 of 331

5.4.4.3.27 Versioning State

When a document is checked in, a control named versioningState is used to set the versioning state.

Control name: versioningState

Control value: Versioning state enum ("none", "major", "minor", "checkedout")

Example:
<input name="versioningState" type="hidden" value="major" />

5.4.4.3.28 Checkin Comment

When a document is checked in, a control named checkinComment is used to include the checkin com-
ment.

Control name: checkinComment

Control value: Checkin comment

Example:
<input name="checkinComment" type="text" value="My comment" />

5.4.4.3.29 Query

A CMIS query can be constructed using a control named statement and set of controls to specify the
query options.

5.4.4.3.29.1 Statement

Control name: statement

Control value: CMIS query statement

5.4.4.3.29.2 Search all versions

Control name: searchAllVersions

Control value: Boolean ("true", "false")

5.4.4.3.29.3 Include relationships

Control name: includeRelationships

Control value: includeRelationships enum ("none", "source" ,"target", "both")

5.4.4.3.29.4 Rendition filter

Control name: renditionFilter

Control value: Rendition filter. See section 2.2.1.2.4 Renditions.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 306 of 331

5.4.4.3.29.5 Include allowable actions

Control name: includeAllowableActions

Control value: Boolean ("true", "false")

5.4.4.3.29.6 Max Items

Control name: maxItems

Control value: Non-negative integer. See section 2.2.1.1 Paging.

5.4.4.3.29.7 Skip Count

Control name: skipCount

Control value: Non-negative integer. See section 2.2.1.1 Paging.

Example:

<input name="statement" type="text" value="SELECT * FROM cmis:document" />
<input name="searchAllVersions" type="hidden" value="false" />
<input name="includeRelationships" type="hidden" value="none" />
<input name="renditionFilter" type="hidden" value="cmis:none" />
<input name="includeAllowableActions" type="hidden" value="false" />
<input name="maxItems" type="hidden" value="100" />
<input name="skipCount" type="hidden" value="0" />

5.4.4.3.30 Content

A "file" select control SHOULD be used to attach content. See [RFC1867].

Control name: content

Control value: none

<input name="content" type="file" />

5.4.4.3.31 Type

Control name: type

Control value: JSON representation of the type definition.
Schema element:
http://docs.oasis-open.org/ns/cmis/browser/201103/typeDefinitionType

<textarea name="type">
{

"id":"my:documentType",
"baseId":"cmis:document",
"parentId":"cmis:document",
"displayName":"My Document Type",
"description":"My new type",
"localNamespace":"local",
"localName":"my:documentType",
"queryName":"my:documentType",
"fileable":true,

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 307 of 331

"includedInSupertypeQuery":true,
"creatable":true,
"fulltextIndexed":false,
"queryable":false,
"controllableACL":true,
"controllablePolicy":false,
"propertyDefinitions":{

"my:stringProperty":{
"id":"my:stringProperty",
"localNamespace":"local",
"localName":"my:stringProperty",
"queryName":"my:stringProperty",
"displayName":"My String Property",
"description":"This is a String.",
"propertyType":"string",
"updatability":"readwrite",
"inherited":false,
"openChoice":false,
"required":false,
"cardinality":"single",
"queryable":true,
"orderable":true,

}
}

}
</textarea>

5.4.4.4 Access to Form Response Content

JSON response content is subject to the same security constraints as any other kind of JavaScript which
means that a browser will not allow JavaScript in a page to access JSON objects included in an HTML Form
response if that response came from a different domain than the rest of the page content. For example,
suppose a browser displayed an HTML Form from Web Server foo.example.com to create a document
in a CMIS repository on server bar.example.com. When the user submits the form, there is no way for
the page to access the JSON object representing the new document created as a response to the submitted
form.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 308 of 331

 Application
Web Server

GET HTML form

1

HTML form response 2

POST HTML form

3

JSON Object returned 4 X

Web Browser

Repository

foo.example.com

bar.example.com

https://foo.example.com/app

CMIS Web Application

Create new document

Name: ____________
File:

Upload

Figure 5.1: Web application cannot retrieve the JSON object returned by the repository

To make it possible for a browser client to access the JSON content answered from the CMIS repository,
the repository MUST keep the core result details (the status code, object id and potential error message) of
a completed request and make those details available to the client in a later request.

To correlate the result of a CMIS request with the later call to retrieve the result of that request, the "token"
is used (see section 5.2.9.2 Authentication with Tokens for Browser Clients).

After the operation has been performed, the client can retrieve the result by sending a HTTP GET requested
to the Repository URL with the selector set to lastResult and an parameter token which is set to the
same token string previously sent with the form.

The result details MUST be answered as a JSON object containing these elements.

integer code An integer containing the HTTP status code for the operation.

string objectId A string containing the id of the object, if the operation was successful. If the operation
was not successful, the value of this string is undefined.

string exception A string containing the exception, if the operation was not successful. If the operation
was successful, the value of this string is undefined.

string message A string containing the error message, if the operation was not successful. If the operation
was successful, the value of this string is undefined.

The result details SHOULD

• only be available to the same client (as defined by the client's IP address) that called the operation.

• not be kept longer than an hour, since they are supposed to be retrieved immediately after the operation
by the client.

• only be retrievable once. That is, a second attempt SHOULD return an invalidArgument error
(code = 0).

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 309 of 331

If the value of the parameter token is invalid, the "code" field of this JSON object MUST be set to 0.

If the token control is not specified in the form, the repository does not need to keep the result details be-
cause there is no way for the client to retrieve them. Note that in this case some other form of authentication
SHOULD be in place.

If the token control is specified, the repository MUST return the HTTP status code 200 and a HTML page.
This is necessary to avoid problems with certain web browsers, which cannot display a JSON response or
ask the end user to save the JSON response. Since the purpose of this method is to fetch the result of the
request at a later point in time, the immediate response doesn't matter and can be empty.

Example:

 Application
Web Server

GET HTML form

1

HTML form response 2

POST HTML form
with token

3

Empty HTML page 4

Web Browser

Repository

foo.example.com

bar.example.com

https://foo.example.com/app

CMIS Web Application

Create new document

Name: ____________
File:

Upload

GET cmisselector =
 “lastResult” 5

Object Id returned 6

Figure 5.2: Selector "lastResult" returns the last service result from the repository

When the client submits the HTML form, it can include a form control with the name "token" like this:

<input name="token" type="hidden" value="e45ab575d6fe4aab901e9" />

Soon thereafter, the client could retrieve the results of the form post by making a request like this

http://example.com/cmis/repository/123?cmisselector=lastResult&
callback=showNewDocumentId&token=e45ab575d6fe4aab901e9

and then, the repository would answer a JSON object that contains the result details, like

{
"code" : 201,
"objectId" : "1234-abcd-5678",
"exception" : null,
"message" : null

}

The client can then retrieve the details for the object using its objectId.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 310 of 331

5.4.4.4.1 Client Implementation Hints

Whenever the token control is used, the repository must respond with a HTML page. The content of this
page is not defined in this specification and might be empty. In general, the response is not useful for an
end-user.

Therefore, clients should redirect the response to a hidden HTML iframe. The iframe's onLoad event can
be used as an operation status notification. When it is triggered the operation is complete on the repository
side and it is safe then to retrieve the results.

5.4.4.4.2 Server Implementation Hints

The use of this method can make CMIS stateful since the server has to remember details of a previous
service request. However, the state can be kept entirely on the client, to eliminate the need for the server
to be stateful at all.

5.4.4.4.2.1 State on Server

Result details are non-permanent data and don't need to be persisted. The repository might store the state
in-memory or in shared session state.

When a repository receives a lastResult request it should check the IP address of the client and the
expiration time of the result details before it replies. This ensures that the data is not being retrieved by a
malicious client, and that the requested data is relevant.

5.4.4.4.2.2 State on Client

The state can be managed on the client side using browser cookies, which keeps the repository stateless.

When a token control is sent with the form data, the repository can attach a cookie to its POST response.
The cookie name is derived from the token value and the cookie value would contain the result details.

When the repository receives a lastResult request, it also receives the cookies from the browser. So, if
the repository can find a cookie that matches the token parameter value it can send back the cookie value
and delete the cookie. If there is no corresponding cookie, it can reply with an error message.

Since the browser takes care of the cookie expiration and cookies can only be sent from the originating
client, there are no new additional security and lifecycle issues for the repository to handle.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 311 of 331

6 Conformance

Specification:
This specification references a number of other specifications. In order to comply with this speci-
fication, an implementation MUST implement the portions of referenced specifications necessary
to comply with the required provisions of this specification. Additionally, the implementation of
the portions of the referenced specifications that are specifically cited in this specification MUST
comply with the rules for those portions as established in the referenced specification.
An implementation conforms to this specification if it satisfies all of the MUST or REQUIRED level
requirements defined within this specification.

Domain Model:
Normative text within this specification takes precedence over the CMIS schemas.
That is, the normative text in this specification further constrains the schemas and/or WSDL that
are part of this specification; and this specification contains further constraints on the elements
defined in referenced schemas.

Clients:
Client implementations MAY implement the AtomPub Binding or the Web Services Binding or the
Browser Binding.

Repositories:
Repositories MUST implement the following CMIS protocol bindings:

• AtomPub Binding
• Web Services Binding

Repositories SHOULD implement the following CMIS protocol binding:
• Browser Binding

AtomPub Binding:
This specification references a number of other specifications. In order to comply with this speci-
fication, an implementation MUST implement the portions of referenced specifications necessary
to comply with the required provisions of this specification. Additionally, the implementation of
the portions of the referenced specifications that are specifically cited in this specification MUST
comply with the rules for those portions as established in the referenced specification. Additionally
normative text within this specification takes precedence over the CMIS RestAtom XML Schema.
That is, the normative text in this specification further constrains the schemas that are part of
this specification; and this specification contains further constraints on the elements defined in
referenced schemas.
The CMIS RestAtom XML takes precedence over any examples or non-normative outlines in-
cluded either in this document or as standalone examples.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 312 of 331

Web Services Binding:
Normative text within this specification takes precedence over the CMIS Messaging XML and
CMIS WSDL. That is, the normative text in this specification further constrains the schemas and
WSDL that are part of this specification; and this specification contains further constraints on the
elements defined in referenced schemas.
The CMIS Messaging XML and CMIS WSDL takes precedence over any examples or non-
normative outlines included either in this document or as standalone examples.

Browser Binding:
Normative text within this specification takes precedence over the CMIS Orderly Schema. That is,
the normative text in this specification further constrains the schema that is part of this specifica-
tion; and this specification contains further constraints on the elements defined in the referenced
schema.
The CMIS Orderly Schema takes precedence over any examples or non- normative outlines in-
cluded either in this document or as standalone examples.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 313 of 331

Appendix A. IANA Considerations

A.1 Content-Type Registration

A.1.1 CMIS Query

A CMIS Query Document, when serialized as XML 1.0, can be identified with the following media type:

MIME media type name: application

MIME subtype name: cmisquery +xml

Mandatory parameters: None

Optional parameters: "charset": This parameter has semantics identical to the charset parameter of the
"application/xml" media type as specified in [RFC3023].

Encoding considerations: Identical to those of "application/xml" as described in [RFC3023], Section 3.2.

Security considerations: As defined in this specification. In addition, as this media type uses the "+xml"
convention, it shares the same security considerations as described in [RFC3023], Section 10.

Interoperability considerations: There are no known interoperability issues.

Published specification: This specification.

Applications that use this media type: No known applications currently use this media type.

Additional information:

Magic number(s): As specified for "application/xml" in [RFC3023], Section 3.2.

File extension: .cmisquery

Fragment identifiers: As specified for "application/xml" in [RFC3023], Section 5.

Base URI: As specified in [RFC3023], Section 6.

Macintosh File Type code: TEXT

Person and email address to contact for further information: OASIS CMIS TC <cmis@lists.oasis-
open.org>

Intended usage: COMMON

Author/Change controller: IESG

A.1.2 CMIS AllowableActions

A CMIS Allowable Actions Document, when serialized as XML 1.0, can be identified with the following media
type:

MIME media type name: application

MIME subtype name: cmisallowableactions +xml

Mandatory parameters: None.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 314 of 331

Optional parameters: "charset": This parameter has semantics identical to the charset parameter of the
"application/xml" media type as specified in [RFC3023].

Encoding considerations: Identical to those of "application/xml" as described in [RFC3023], Section 3.2.

Security considerations: As defined in this specification. In addition, as this media type uses the "+xml"
convention, it shares the same security considerations as described in [RFC3023], Section 10.

Interoperability considerations: There are no known interoperability issues.

Published specification: This specification.

Applications that use this media type: No known applications currently use this media type.

Additional information:

Magic number(s): As specified for "application/xml" in [RFC3023], Section 3.2.

File extension: .cmisallowableactions

Fragment identifiers: As specified for "application/xml" in [RFC3023], Section 5.

Base URI: As specified in [RFC3023], Section 6.

Macintosh File Type code: TEXT

Person and email address to contact for further information: OASIS CMIS TC <cmis@lists.oasis-
open.org>

Intended usage: COMMON

Author/Change controller: IESG

A.1.3 CMIS Tree

A CMIS Tree Document, when serialized as XML 1.0, can be identified with the following media type:

MIME media type name: application

MIME subtype name: cmistree +xml

Mandatory parameters: None.

Optional parameters: "charset": This parameter has semantics identical to the charset parameter of the
"application/xml" media type as specified in [RFC3023].

Encoding considerations: Identical to those of "application/xml" as described in [RFC3023], Section 3.2.

Security considerations: As defined in this specification. In addition, as this media type uses the "+xml"
convention, it shares the same security considerations as described in [RFC3023], Section 10.

Interoperability considerations: There are no known interoperability issues.

Published specification: This specification.

Applications that use this media type: No known applications currently use this media type.

Additional information:

Magic number(s): As specified for "application/xml" in [RFC3023], Section 3.2.

File extension: .cmistree

Fragment identifiers: As specified for "application/xml" in [RFC3023], Section 5.

Base URI: As specified in [RFC3023], Section 6.

Macintosh File Type code: TEXT

Person and email address to contact for further information: OASIS CMIS TC <cmis@lists.oasis-
open.org>

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 315 of 331

Intended usage: COMMON

Author/Change controller: IESG

A.1.4 CMIS Atom

A CMIS Atom Document, when serialized as XML 1.0, can be identified with the following media type:

MIME media type name: application

MIME subtype name: cmisatom +xml

Mandatory parameters: None.

Optional parameters: "charset": This parameter has semantics identical to the charset parameter of the
"application/xml" media type as specified in [RFC3023]. "type": This parameter has semantics identical to
the type parameter of the "application/atom+xml" as specified in [RFC4287]

Encoding considerations: Identical to those of "application/xml" as described in [RFC3023], Section 3.2.

Security considerations: As defined in this specification. In addition, as this media type uses the "+xml"
convention, it shares the same security considerations as described in [RFC3023], Section 10.

Interoperability considerations: There are no known interoperability issues.

Published specification: This specification.

Applications that use this media type: No known applications currently use this media type.

Additional information:

Magic number(s): As specified for "application/xml" in [RFC3023], Section 3.2.

File extension: .cmisatom

Fragment identifiers: As specified for "application/xml" in [RFC3023], Section 5.

Base URI: As specified in [RFC3023], Section 6.

Macintosh File Type code: TEXT

Person and email address to contact for further information: OASIS CMIS TC <cmis@lists.oasis-
open.org>

Intended usage: COMMON

Author/Change controller: IESG

Please see section 3.1.1 on why this media type is needed above the Atom Media Type.

A.1.5 CMIS ACL

A CMIS ACL Document, when serialized as XML 1.0, can be identified with the following media type:

MIME media type name: application

MIME subtype name: cmisacl +xml

Mandatory parameters: None.

Optional parameters: "charset": This parameter has semantics identical to the charset parameter of the
"application/xml" media type as specified in [RFC3023].

Encoding considerations: Identical to those of "application/xml" as described in [RFC3023], Section 3.2.

Security considerations: As defined in this specification. In addition, as this media type uses the "+xml"
convention, it shares the same security considerations as described in [RFC3023], Section 10.

Interoperability considerations: There are no known interoperability issues.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 316 of 331

Published specification: This specification.

Applications that use this media type: No known applications currently use this media type.

Additional information:

Magic number(s): As specified for "application/xml" in [RFC3023], Section 3.2.

File extension: .cmisacl

Fragment identifiers: As specified for "application/xml" in [RFC3023], Section 5.

Base URI: As specified in [RFC3023], Section 6.

Macintosh File Type code: TEXT

Person and email address to contact for further information: OASIS CMIS TC <cmis@lists.oasis-
open.org>

Intended usage: COMMON

Author/Change controller: IESG

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 317 of 331

Appendix B. Schema Language (Orderly)

We wish to thank Lloyd Hilaiel for his work in defining the Orderly language, and express our gratitude for
allowing the use of Orderly in this specification.

The following is a description of the Orderly Language. In this description, we have liberally copied sections
from the original Orderly definition from http://Orderly-json.org/. In some cases, there may be differences
between the description here and the description from http://Orderly-json.org/. In any case, the description
of Orderly in this specification SHALL be used to describe the JSON elements of this specification.

B.1 Overview

Orderly is an ergonomic micro-language that can represent a subset of JSONSchema. Orderly is designed
to feel familiar to the average programmer and to be extremely easy to learn and remember. This document
provides a conversational overview of Orderly as well as a normative grammar.

B.2 A subset of JSONSchema

JSONSchema attempts to provide a representation for three distinct types of information about JSON struc-
tures:

• Data structure (for documentation and validation purposes)
• Storage attributes (information pertinent to tools that wish to persist JSON data)
• Interaction Control (providing hints on how to render a UI where data can be manipulated).

Orderly purposefuly ignores all features of JSONSchema which aren't useful for validation, including the
following attributes:

• options (label/value)
• title
• description
• transient
• hidden
• disallow
• extends
• identity

An exhaustive list of the differences between Orderly and JSONSchema is below.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 318 of 331

http://Orderly-json.org/
http://Orderly-json.org/

B.3 A Non-Normative Tutorial

A collection of Non-normative examples of Orderly:

B.3.1 Comments and Whitespace

Orderly supports comments, comments are initiated with either '#' or '//' and continue to the first encountered
newline ('\n').

Orderly doesn't rely overmuch on whitespace, leaving the decision of how to format your schema up to you.

B.3.2 Property Names

Property names may be anything that is allowed inside JSON strings. Unlike JSON itself, however, Orderly
provides a shorthand that allows a subset of strings to be represented without quotes.

For instance these are all valid Orderly:

string foo;
string "foo";
string "this is a property name with spaces";

B.3.3 Common Properties

From the JSONSchema specification, four options exist which apply to all data types:

The optional property indicates a value which is not required in a conformant JSON instance. Optional
values are represented in Orderly with a trailing question mark:

string name?;
string "name"?;

The requires property says that if a value is present in the instance JSON, another named value MUST also
be present. In Orderly a requirement on another type is expressed by placing the property name (optionally
quoted) enclosed in angle brackets at the end of a type definition:

string town <state>;

Multiple properties MAY be required, and SHOULD be separated with commas:

string town <state,zip>;

The enum property specifies a set of allowable values for a key in the JSON document.

string mood ["happy", "sad", "meh"];
integer secretOfLife [7, 42];

In a JSONSchema document the default property specifies a default value for a property. One could imagine
that as an input object passes validation it will be automatically augmented with default values for required
properties missing in the instance object. The specification of default values in Orderly looks something like
assignment in most programming languages:

string mood ["happy", "sad", "meh"] = "happy"; # optimistically default to "happy"

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 319 of 331

B.3.4 String Types

Strings are specified in Orderly using the string type specifier. Strings in JSONSchema support "minLength"
and "maxLength" properties, which are represented in Orderly using curly braces immediately after the type:

string{4,12} login;

Omission of a specification of either minimum or maximum is allowed:

string{4,} login; # login requires at least 4 chars
string{,32} name; # name may not be longer than 32 chars

Regular expressions are supported in JSONSchema for string values. In Orderly you may directly provide
a regular expression using '/' syntax to denote the beginning and end of the regular expression:

string mood /^((happy)|(sad)|(meh))$/;

B.3.5 Number and Integer types

Numbers are specified in Orderly using the number type specifier. In JSONSchema numbers and integers
support ranges, in Orderly these ranges for numbers are specified in the same way we specify ranges for
strings:

number{0.02, 0.98} numNum;
integer{0,10} rating

Syntactically, numbers in Orderly follow the same rules as numbers in JSON.

B.3.6 Boolean Types

Boolean types are represented in Orderly using the boolean type specifier:

boolean iShouldStay;

B.3.7 Object Types

Objects are represented in Orderly using the object type specifier:

object {
string foo;
integer bar;
number baz;

};

Object definitions may be "closed", meaning that properties that are not explicitly mentioned are not allowed,
or "open". A trailing star (*) indicates an "open" object defintion:

object {
string foo;
whatever other properties you want, thanks to that star

}*;

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 320 of 331

B.3.8 Array Types

Arrays are specified using the array type specifier. Schemas for arrays elements may be specified in one of
two ways. First, we can specify a single schema that governs all array members, with the schema enclosed
by square brackets:
array [

numbers{0.00, 1.00};
] weights; # an array of floating point weights between 0 and 1.

Alternately, "tuple typing" may be used to specify the allowable values for an array, in this case a list of
schemas that apply to each member of the array in sequence:
array {

integer;
string;
number;

} artificial;

When tuple typing is used, the * operator may be used to allow additional elements at the end of an array.
For instance, to specify an array where the first element is an integer and the remaining are of arbitrary
number and type, one might use the following schema:
array { integer; }* intFollowedByWhatever;

Finally, array types also support range semantics, for min/max number of elements:
array { integer; } {0,10} myArrayOfSmallInts;

B.3.9 Additional properties in arrays and objects

JSONSchema provides the additionalProperties attribute, which allows a schema author to either:

• specify that a valid instance object/array may not have any properties not in the schema

• specify an additional schema that applies to any additional properties in the instance object or array
that are not explicitly mentioned in the schema

Orderly allows you to specify if additional properties SHOULD be allowed, but does not allow you to specify
a schema which governs these additional properties. A trailing * in Orderly indicates additional properties
are allowed, and occurs immediately after the definition of nested schemas (the closing curly brace) for both
objects:
object {

string name;
string title;

}* employee;

And for arrays:
array { integer; string; }* myOpenTupleTypedArray

B.3.10 Null Types

The null type in JSONSchema specifies a value that MUST be null. The null type specifier is Orderly's
equivalent:
null likeAir;

As explained in the JSONSchema proposal, null is useful "mainly for purpose of being able use union types
to define nullability". For example:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 321 of 331

union {
string ["Sr.", "Jr.", "III"];
null;

} suffix;

B.3.11 Any types

"Any types" are represented in Orderly using the any type specifier:

any notes;

B.3.12 Unions

It is possible in JSONSchema to specify a property that may be of one of many different types. In Orderly
this functionality is represented using the union type specifier:

union {
string;
number;

} myUnion;

A key syntactic feature to note is the supported (required?) omission of property names where they would
be meaningless.

B.3.13 Maps

Associative arrays are neither defined in Orderly nor in JSONSchema. The CMIS Browser Binding intro-
duces associative arrays (“maps”) to describe a collection of unique keys and a collection of values.

Maps describe JSON objects without fixing the property names and the number of properties. The keys
become JSON object property names and have to be non-null strings. Keys can be restricted, for example,
by defining a min and max length, regular expressions, an enum, etc. The values data type can be defined
by any unnamed entry including null.

Maps are specified using the map type specifier. Key and value types are defined within curly braces. The
key type first, followed by “=>”, followed by the value type:

For example:

map { string => boolean } isAllowed;
map { string{2,10} => union { string; integer; null; } } things;
map { string ["happy", "sad", "meh"] => integer } intMapping;

B.3.14 Extensions or Extra Properties

Orderly is capable of concisely representing a subset of JSONSchema, however at times it might be desir-
able to be able to represent properties in JSONSchema that are not supported natively in Orderly. For this
reason the backtick operators will allow you to encode a JSON object as part of an Orderly schema.

For example to attach a description to a schema entry one might generate something like:

string `{"description": "The name of the service"}`;

The author has full control over formatting, as whitespace is ignored:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 322 of 331

string `{
"title": "Service Name",
"description": "The name of the service",
"ui_hints": "Use the blink tag"

}`;

B.3.15 ID's

Schema elements can have an id, specified using the property “id”.

For example:

object {
id "http://docs.oasis-open.org/ns/cmis/browser/201103/ACLcapabilities";
string supportedPermissions ["basic", "repository", "both"];
string propagation ["repositorydetermined", "objectonly", "propagate"];
array { ref "http://docs.oasis-open.org/ns/cmis/browser/201103/permissionDefinition" }

↪→ permissions;
ref "http://docs.oasis-open.org/ns/cmis/browser/201103/permissionMapping" mapping?;

}*;

B.3.16 References

The reference type specifier “ref” is used to refer to another Orderly schema element using the “id” described
in section B.3.15. For example:

object {
string name;
string title;
ref "http://json-schema.org/card" secretary;
array {

ref "http://json-schema.org/card";
} reports;

} employee;

B.3.17 Bases

The specifier "base" is used to define the base schema element of the element. All properties are inherited
from the base element. For example:

object {
id "http://example.com/person";
string firstname;
string lastname;

} person;

object {
id "http://example.com/employee";
base "http://example.com/person";
integer employee_number;

} employee;

// The schema element "http://example.com/employee" consists of
// the properties "firstname", "lastname" and "employee_number".

B.3.18 More Complex Examples

A number with a range, enumerated possible values, and a default value:

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 323 of 331

integer{0,256} powerOfTwo[1,2,4,8,16,32,64,128,256] = 1;

An object with enumerated possible values and a default.

object {
string beast;
number normalTemperature;

} temps [{ "beast": "canine", "normalTemperature": 101.2 },
{ "beast": "human", "normalTemperature": 98.6 }]

= { "beast": "canine", "normalTemperature": 101.2 };

B.3.19 Cautions

When you stare hard enough at the grammar of a non-trivial language you usually learn quite a deal. Some-
times what you learn can be surprising or downright confusing. Here's a tour of the darker parts alleys of
Orderly:

Brackets and braces -- visually a tad confusing:

integer{7,42} secretOfLife[7,42];

And a little bit more confusing:

array { integer{7,42}[7,42]; } secretOfLife;

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 324 of 331

B.4 The Normative Grammar

Orderly_schema
unnamed_entry ';'
unnamed_entry

named_entries
named_entry ';' named_entries
named_entry
nothing

unnamed_entries
unnamed_entry ';' unnamed_entries
unnamed_entry
nothing

named_entry
definition_prefix property_name definition_suffix
string_prefix property_name string_suffix

unnamed_entry
definition_prefix definition_suffix
string_prefix string_suffix

definition_prefix
'id'
'integer' optional_range
'number' optional_range
'boolean'
'null'
'any'
a tuple-typed array
'array' '{' unnamed_entries '}' optional_additional_marker optional_range
a simple-typed array (notice the '*' marker is disallowed)
'array' '[' unnamed_entry ']' optional_range
'object' '{' named_entries '}' optional_additional_marker
'union' '{' unnamed_entries '}'
'map' '{' map_key '=>' unnamed_entries '}' optional_optional_marker
'ref' ref_string
'base' ref_string

string_prefix
'string' optional_range

string_suffix
optional_perl_regex definition_suffix

definition_suffix
optional_enum_values optional_default_value optional_requires \

optional_optional_marker optional_extra_properties
nothing

map_key
string_prefix string_suffix

ref_string
'"' json_string '"'

csv_property_names
property_name "," csv_property_names
property_name

optional_extra_properties
'`' json_object '`'
nothing

optional_requires
'<' csv_property_names '>'
nothing

optional_optional_marker

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 325 of 331

'?'
nothing

optional_additional_marker
'*'
nothing

optional_enum_values
json_array
nothing

optional_default_value
'=' json_value
nothing

optional_range
'{' json_number ',' json_number '}'
'{' json_number ',' '}'
'{' ',' json_number '}'
'{' ',' '}' # meaningless, yes.
nothing

property_name
json_string
[A-Za-z_\-]+ # (alpha & underbar & dash)

optional_perl_regex # perl compatible regular expressions are supported
'/' ([^/]|\/) '/' # a Perl 5 compatible regular expression
#nothing

--
---------- [The JSON Grammar] ----------
--

json_object
{}
{ members }

members
pair
pair , members

pair
json_string : json_value

json_array
[]
[elements]

elements
json_value
json_value , elements

json_value
json_string
json_number
json_object
json_array
'true'
'false'
'null'

--

json_string
""
" chars "

chars
char
char chars

char
any-Unicode-character-

except-quote-or-backslash-or-
control-character

\" #double quote (")
\\
\/

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 326 of 331

\b
\f
\n
\r
\t
\u four-hex-digits

json_number
int
int frac
int exp
int frac exp

int
digit
digit1-9 digits
- digit
- digit1-9 digits

frac
. digits

exp
e digits

digits
digit
digit digits

e
e
e+
e-
E
E+
E-

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 327 of 331

Appendix C. Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowl-
edged:

Allart, Philippe Adullact
Boses, Michael Quark
Brown, Mr. Jay IBM
Carlson, Mr Mark Oracle Corporation
Carr, Mr. Derek IBM
Caruana, Mr. David Alfresco Software
Cava, Mr. Bill Ektron
Chan, Mr. Eric Oracle Corporation
Charles, Mr. Sameer Magnolia International AG
Chow, Alexander Liferay, Inc.
Chow, Derek Genus Technologies, LLC
Choy, David Individual
Churchland, Mr. David Hewlett-Packard
Croisier, Mr. Stephane RSD
Davis, Cornelia EMC Corporation
de Kruijff, Mr. Bram GX Software
Doong, Ms. Jane IBM
Duerig, Mr. Michael Adobe Systems
Dufault, Randy Genus Technologies, LLC
Eberding, Karsten Individual
Ewing, Mr. Andrew Hewlett-Packard
Fanning, Betsy AIIM
Frederiksen, Steffen Content Technologies ApS
Garroni, Mr. Paolo ISIS Papyrus America Inc.
Geisert, Mr. Uwe Open Text Corporation
Goetz, Mr. Paul SAP AG
Guillaume, Florent Nuxeo
Haag, Mr. Alexander WeWebU Software AG
Harmetz, Adam Microsoft Corporation
Hemmert, Mr. Valentin WeWebU Software AG
Hermes, Mr. Martin SAP AG
Hind, Dr. Andrew Alfresco Software
Hübel, Mr. Jens SAP AG
Janssen, Mr. Gershon Individual
Jean, Mr. Raphael Entropysoft

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 328 of 331

Joyer, Mr. Neil Microsoft Corporation
Kadlabalu, Hareesh FatWire
Klamerus, Mr. Mark Individual
Klevenz, Mr. Stephan SAP AG
Kraft, Mr. Boris Magnolia International AG
Lee, Mr. GI Zia Consulting, Inc.
Macmillan, Ms. Alison Oracle Corporation
Malabarba, Mr. Scott IBM
McVeigh, Mr. Ryan Zia Consulting, Inc.
Melahn, Mr. Gregory IBM
Michel, Mr. James WeWebU Software AG
Miller, Mr. Pat Microsoft Corporation
Monks, Peter Alfresco Software
Mooty, Mr. Mathew Microsoft
Müller, Mr. Florian SAP AG
Newton, John Alfresco Software
Nuescheler, David Adobe Systems
OBrien, Tom Ektron
Palmer, Dr. Jody Open Text Corporation
Patel, Mr. Alpesh Ektron
Pausch, Rainer WeWebU Software AG
Piegaze, Mr. Peeter Adobe Systems
Pitfield, Mr. David Oracle Corporation
Pole, Thomas Harris Corp
Quinn, Norrie EMC Corporation
Randall, Craig Adobe Systems
Rodriguez, Celso ASG Software Solutions
Roth, Steve Oracle Corporation
Ryan, Mr. Patrick IBM
Schnabel, Bryan Individual
Schreiber, Angela Adobe Systems
Tazbaz, Paul Wells Fargo
Ward, Mr. Patrick Booz Allen Hamilton

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 329 of 331

Appendix D. Change log

The following changes have been made to CMIS 1.0 Errata 1:

CMIS-580 CONTAINS escaping needs additional clarification

CMIS-587 objectbyid template should support returnVersion parameter

CMIS-653 WSDL needs soapAction value in operation declarations for increased interoperability with .NET

CMIS-654 Missing XML attribute types in CMIS schema

CMIS-655 Folder Children (restrict acceptable values for OrderBy)

CMIS-658 Standardize queryName for properties

CMIS-669 add CMIS Type Mutability for next version of spec

CMIS-673 Add {renditionFilter} to CMIS URI template for query

CMIS-692 applyAcL should allow empty response

CMIS-693 CMIS Repository Extensions

CMIS-707 Add recommendation to use Content-Disposition header with AtomPub setContentStream oper-
ation

CMIS-708 Clarify Browser Binding DateTime property values

CMIS-709 In Section 2.2.4.9.2, list of outputs for getObjectByPath appears to be incomplete

CMIS-711 Allow creation of unfiled documents with AtomPub

CMIS-712 Add a description property to all base types

CMIS-713 Add secondary object types

CMIS-714 Proposal to add Retention and Legal Hold Policies for next version of spec

CMIS-715 API for cross site request forgery defense

CMIS-719 Browser Binding

CMIS-720 The keys of the maps returned by a Browser Binding query should be the query names/aliases

CMIS-721 Add queryable cmis:isPrivateWorkingCopy property

CMIS-723 Need to express other cmis:object types to clients.

CMIS-727 Add bulkUpdateProperties operation

CMIS-728 Clarify whether PWC is a latest version or not

CMIS-729 Add new Wildcard section in Query

CMIS-730 Timezone should not be optional in a datetime string in the query BNF (fulltext syntax)

CMIS-732 Clarification limitation of Date value range in browser binding

CMIS-734 Rename "clientToken" to "callback"

CMIS-735 Add capability to append to a content stream

CMIS-736 Remove ETAG recommendation from AtomPub section

CMIS-737 CMIS specification should include a UML diagram for the domain data model

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 330 of 331

CMIS-738 Add introduction sub-section to 1.1 draft to enumerate new 1.1 features.

CMIS-739 Client hint with iframe as target does not work in all browsers

CMIS-741 New proposal for section 5.2.9.3 "Authentication with Tokens for Browser Clients"

CMIS-743 Add a download type parameter to the Browser Binding getContentStream() service

CMIS-744 Clarify the meaning fo fullTextIndexed and use consistently.

CMIS-745 The type ids for the secondary types defined in 2.1.6 are not valid QNames

CMIS-746 2.1.14.3 Character escape for text search expression should include literal double-quote.

CMIS-747 Metadata inclusion in reponses for properties is verbose and there is no option to control it.
Objects do not include any type metadata which is not consistent.

CMIS-v1.1-cs01
Standards Track Work Product Copyright © OASIS Open 2012. All Rights Reserved.

12 November 2012
Page 331 of 331

	Introduction
	Terminology
	Normative References
	Non-Normative References
	Examples
	Changes for the CMIS 1.1 specification
	Type Mutability
	Repository Features
	Secondary object types
	Retention and Hold Support
	Browser Binding
	New cmis:item Object Type
	Service bulkUpdateProperties
	Append to a content stream

	Domain Model
	Data Model
	Repository
	Optional Capabilities
	Implementation Information
	Repository Features

	Object
	Property

	Object-Type
	Object-Type Hierarchy and Inheritance
	Object-Type Attributes
	Object-Type Property Definitions

	Document Object
	Content Stream
	Renditions
	Document Object-Type Definition

	Folder Object
	File-able Objects
	Folder Hierarchy
	Paths
	Folder Object-Type Definition

	Relationship Object
	Relationship Object-Type Definition

	Policy Object
	Policy Object-Type Definition

	Item Object
	Item Object-Type Definition

	Secondary Object-Types
	Secondary Type Application
	Secondary Object-Type Definition

	Object-Type Creation, Modification and Deletion
	General Constraints on Metadata Changes

	Object-Type Summary
	Access Control
	ACL, ACE, Principal, and Permission
	CMIS Permissions
	ACL Capabilities

	Versioning
	Version Series
	Latest Version
	Behavioral constraints on non-Latest Versions
	Major Versions
	Services that modify Version Series
	Versioning Properties on Document Objects
	Document Creation and Initial Versioning State
	Version Specific/Independent membership in Folders
	Version Specific/Independent membership in Relationships
	Versioning visibility in Query Services

	Query
	Relational View Projection of the CMIS Data Model
	Query Language Definition
	Escaping

	Change Log
	Completeness of the Change Log
	Change Log Token
	"Latest Change Token" repository information
	Change Event

	Retentions and Holds
	Repository Managed Retentions
	Client Managed Retentions
	Holds

	Services
	Common Service Elements
	Paging
	Retrieving additional information on objects in CMIS service calls
	Change Tokens
	Exceptions
	ACLs

	Repository Services
	getRepositories
	getRepositoryInfo
	getTypeChildren
	getTypeDescendants
	getTypeDefinition
	createType
	updateType
	deleteType

	Navigation Services
	getChildren
	getDescendants
	getFolderTree
	getFolderParent
	getObjectParents
	getCheckedOutDocs

	Object Services
	createDocument
	createDocumentFromSource
	createFolder
	createRelationship
	createPolicy
	createItem
	getAllowableActions
	getObject
	getProperties
	getObjectByPath
	getContentStream
	getRenditions
	updateProperties
	bulkUpdateProperties
	moveObject
	deleteObject
	deleteTree
	setContentStream
	appendContentStream
	deleteContentStream

	Multi-filing Services
	addObjectToFolder
	removeObjectFromFolder

	Discovery Services
	query
	getContentChanges

	Versioning Services
	checkOut
	cancelCheckOut
	checkIn
	getObjectOfLatestVersion
	getPropertiesOfLatestVersion
	getAllVersions

	Relationship Services
	getObjectRelationships

	Policy Services
	applyPolicy
	removePolicy
	getAppliedPolicies

	ACL Services
	applyACL
	getACL

	AtomPub Binding
	Overview
	Namespaces
	Authentication
	Response Formats
	Optional Arguments
	Errors and Exceptions
	Renditions
	Content Streams
	Paging of Feeds
	Services not Exposed
	removePolicy

	HTTP
	HTTP Range
	HTTP OPTIONS Method
	HTTP Status Codes
	General CMIS Exceptions
	Notable HTTP Status Codes

	Media Types
	CMIS Atom
	CMIS Query
	CMIS Allowable Actions
	CMIS Tree
	CMIS ACL

	Atom Extensions for CMIS
	Atom Element Extensions
	AtomPub Workspace
	Atom Feed
	Atom Entry

	Attributes
	cmisra:id
	cmisra:renditionKind

	CMIS Link Relations
	Existing Link Relations
	Hierarchy Navigation Internet Draft Link Relations
	Versioning Internet Draft Link Relations
	CMIS Specific Link Relations

	Atom Resources
	Feeds
	Entries
	Hierarchical Atom Entries

	Resources Overview
	AtomPub Service Document
	HTTP GET
	URI Templates

	Service Collections
	Root Folder Collection
	Query Collection
	HTTP POST

	Checked Out Collection
	HTTP GET
	HTTP POST

	Unfiled Collection
	HTTP POST

	Type Children Collection
	HTTP GET
	HTTP POST

	Bulk Update Collection
	HTTP POST

	Collections
	Relationships Collection
	HTTP GET
	HTTP POST

	Folder Children Collection
	HTTP GET
	HTTP POST
	HTTP DELETE

	Policies Collection
	HTTP GET
	HTTP POST
	HTTP DELETE

	Feeds
	Object Parents Feed
	HTTP GET

	Changes Feed
	HTTP GET

	Folder Descendants Feed
	HTTP GET
	HTTP DELETE

	Folder Tree Feed
	HTTP GET
	HTTP DELETE

	All Versions Feed
	HTTP GET

	Type Descendants Feed
	HTTP GET

	Resources
	Type Entry
	HTTP GET
	HTTP PUT
	HTTP DELETE

	Document Entry
	HTTP GET
	HTTP PUT
	HTTP DELETE

	PWC Entry
	HTTP GET
	HTTP PUT
	HTTP DELETE

	Folder Entry
	HTTP GET
	HTTP PUT
	HTTP DELETE

	Relationship Entry
	HTTP GET
	HTTP PUT
	HTTP DELETE

	Policy Entry
	HTTP GET
	HTTP PUT
	HTTP DELETE

	Item Entry
	HTTP GET
	HTTP PUT
	HTTP DELETE

	Content Stream
	HTTP GET
	HTTP PUT
	HTTP DELETE

	AllowableActions Resource
	HTTP GET

	ACL Resource
	HTTP GET
	HTTP PUT

	Web Services Binding
	Overview
	WS-I
	Authentication
	Content Transfer
	Reporting Errors

	Web Services Binding Mapping
	Additions to the Services section
	updateProperties and checkIn Semantics
	Content Ranges
	Extensions
	Web Services Specific Structures
	cmisFaultType and cmisFault
	cmisRepositoryEntryType
	cmisTypeContainer
	cmisTypeDefinitionListType
	cmisObjectInFolderType, cmisObjectParentsType and cmisObjectInFolderContainerType
	cmisObjectListType and cmisObjectInFolderListType
	cmisContentStreamType
	cmisACLType
	cmisExtensionType

	Browser Binding
	Overview
	Common Service Elements
	Protocol
	Data Representation
	Schema
	Mapping Schema Elements to JSON
	URL Patterns
	Multipart Forms
	Properties in a "value not set" state
	Callback
	Authentication
	Basic Authentication for Non-Browser Clients
	Authentication with Tokens for Browser Clients

	Error Handling and Return Codes
	Succinct Representation of Properties

	URLs
	Service URL
	Repository URL
	Root Folder URL
	Object URLs

	Services
	Service URL
	Repository URL
	Selector "repositoryInfo"
	Selector "typeChildren"
	Selector "typeDescendants"
	Selector "typeDefinition"
	Selector "checkedOut"
	Action "createDocument"
	Action "createDocumentFromSource"
	Action "createRelationship"
	Action "createPolicy"
	Action "createItem"
	Action "bulkUpdate"
	Selector "query"
	Action "query"
	Selector "contentChanges"
	Action "createType"
	Action "updateType"
	Action "deleteType"
	Selector "lastResult"

	Object URL
	Selector "children"
	Selector "descendants"
	Selector "folderTree"
	Selector "parent"
	Selector "parents"
	Selector "checkedout"
	Action "createDocument"
	Action "createDocumentFromSource"
	Action "createFolder"
	Action "createPolicy"
	Action "createItem"
	Selector "allowableActions"
	Selector "object"
	Selector "properties"
	Selector "object"
	Selector "content"
	Selector "renditions"
	Action "update"
	Action "move"
	Action "delete"
	Action "deleteTree"
	Action "setContent"
	Action "appendContent"
	Action "deleteContent"
	Action "addObjectToFolder"
	Action "removeObjectFromFolder"
	Action "checkOut"
	Action "cancelCheckOut"
	Action "checkIn"
	Selector "object"
	Selector "properties"
	Selector "versions"
	Selector "relationships"
	Selector "policies"
	Action "applyPolicy"
	Action "removePolicy"
	Action "applyACL"
	Selector "acl"

	Use of HTML Forms
	Action
	Structured and Array Parameters
	CMIS Controls
	Access to Form Response Content

	Conformance
	IANA Considerations
	Content-Type Registration
	CMIS Query
	CMIS AllowableActions
	CMIS Tree
	CMIS Atom
	CMIS ACL

	Schema Language (Orderly)
	Overview
	A subset of JSONSchema
	A Non-Normative Tutorial
	Comments and Whitespace
	Property Names
	Common Properties
	String Types
	Number and Integer types
	Boolean Types
	Object Types
	Array Types
	Additional properties in arrays and objects
	Null Types
	Any types
	Unions
	Maps
	Extensions or Extra Properties
	ID's
	References
	Bases
	More Complex Examples
	Cautions

	The Normative Grammar

	Acknowledgements
	Change log

