
OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 1 of 68

Customer Information Quality
Specifications Version 3.0
Name (xNL), Address (xAL), Name and
Address (xNAL) and Party (xPIL)
Public Review Draft 03
08 April 2008
Specification URIs:
This Version:

http://docs.oasis-open.org/ciq/v3.0/prd03/specs/ciq-specs-v3-prd3.html
http://docs.oasis-open.org/ciq/v3.0/prd03/specs/ciq-specs-v3-prd3.doc (Authoritative)
http://docs.oasis-open.org/ciq/v3.0/prd03/specs/ciq-specs-v3-prd3.pdf

Previous Version:
http://docs.oasis-open.org/ciq/v3.0/prd02/specs/ciq-specs-v3-prd2.html
http://docs.oasis-open.org/ciq/v3.0/prd02/specs/ciq-specs-v3-prd2.doc
http://docs.oasis-open.org/ciq/v3.0/prd02/specs/ciq-specs-v3-prd2.pdf

Latest Version:
http://docs.oasis-open.org/ciq/v3.0/specs/ciq-specs-v3.html
http://docs.oasis-open.org/ciq/v3.0/specs/ciq-specs-v3.doc
http://docs.oasis-open.org/ciq/v3.0/specs/ciq-specs-v3.pdf

Technical Committee:

OASIS Customer Information Quality
Chair:

Ram Kumar (kumar.sydney@gmail.com)
Editor:

Ram Kumar (kumar.sydney@gmail.com)
Related work:

This version of the CIQ specification replaces or supercedes OASIS CIQ V3.0 Committee
Specification released in November 2007

Declared XML Namespace(s):
urn:oasis:names:tc:ciq:3.0

Abstract:
This Technical Specification defines the OASIS Customer Information Quality Specifications
Version 3.0 namely, Name (xNL), Address (xAL), Name and Address (xNAL) and Party
Information (xPIL) specifications. This specification replaces the earlier version of the committee
specifications released in November 2007.

http://docs.oasis-open.org/ciq/v3.0/prd03/specs/ciq-specs-v3-prd3.html
http://docs.oasis-open.org/ciq/v3.0/prd03/specs/ciq-specs-v3-prd3.doc
http://docs.oasis-open.org/ciq/v3.0/prd03/specs/ciq-specs-v3-prd3.pdf
http://docs.oasis-open.org/ciq/v3.0/prd02/specs/ciq-specs-v3-prd2.html
http://docs.oasis-open.org/ciq/v3.0/prd02/specs/ciq-specs-v3-prd2.doc
http://docs.oasis-open.org/ciq/v3.0/prd02/specs/ciq-specs-v3-prd2.pdf
http://docs.oasis-open.org/ciq/v3.0/specs/ciq-specs-v3.html�
http://docs.oasis-open.org/ciq/v3.0/specs/ciq-specs-v3.doc�
http://docs.oasis-open.org/ciq/v3.0/specs/ciq-specs-v3.pdf�
http://www.oasis-open.org/committees/ciq/�

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 2 of 68

This specification also includes changes to OASIS CIQ V3.0 xAL schema (both for default code
list and genericode approaches). The changes to xAL V3.0 schema is documented as “OASIS
CIQ v3.0 xAL Schema (xAL.xsd) Changes.doc” under “supp” directory of the specification
package. This is the only change in this specification compared to the V3.0 committee
specifications released in November 2007.

Status:
This document was last revised or approved by the OASIS CIQ Technical Committee (TC) on the
above date. The level of approval is also listed above. Check the current location noted above for
possible later revisions of this document. This document is updated periodically on no particular
schedule.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/ciq/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/ciq/ipr.php.
The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/ciq/.

http://www.oasis-open.org/committees/ciq/�
http://www.oasis-open.org/committees/ciq/�
http://www.oasis-open.org/committees/ciq/ipr.php�
http://www.oasis-open.org/committees/ciq/ipr.php�
http://www.oasis-open.org/committees/ciq/�
http://www.oasis-open.org/committees/ciq/�

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 3 of 68

Notices
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS", “CIQ”, “xNL”, “xAL”, xNAL”, “xPIL”, “xPRL”, “xCIL”, “xCRL” , “Genericode”, and
“UBL” are trademarks of OASIS, the owner and developer of this specification, and should be used only
to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and
use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see
http://www.oasis-open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/trademark.php�

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 4 of 68

Table of Contents

Table of Contents

1 NAME, ADDRESS, PARTY AND PARTY RELATIONSHIP ... 7

1.1 TERMINOLOGY ... 7
1.2 DEFINITIONS ... 7

2 CIQ SPECIFICATIONS VERSION 3.0 .. 8

2.1 FORMAL DESIGN REQUIREMENTS ... 8
2.2 MAJOR CIQ SPECIFICATION ENTITIES .. 8
2.3 VERSION 3.0 XML SCHEMA FILES ... 9
2.4 COMMON DESIGN CONCEPTS USED .. 9
2.5 NAMESPACES USED .. 10
2.6 OTHER INDUSTRY SPECIFICATIONS/STANDARDS USED .. 10

3 ENTITY “NAME” (EXTENSIBLE NAME LANGUAGE) ... 11

3.1 SEMANTICS OF “NAME” .. 11
3.1.1 Example 1 – No Semantics (Unstructured/Free Text Data) ... 12
3.1.2 Example 2 – Minimal Semantics (Partially Structured Data) .. 12
3.1.3 Example 3 – Full Semantics (Fully Structured Data) ... 13

3.2 DATA TYPES ... 13
3.3 CODE LISTS (ENUMERATIONS) ... 13

3.3.1 What is a Code List? ... 13
3.3.2 The importance of Code Lists for CIQ Specifications .. 14
3.3.3 Customisable Code Lists ... 15
3.3.4 Improving Interoperability using Code Lists .. 16

3.4 USING CODE LISTS IN CIQ SPECIFICATIONS – TWO OPTIONS ... 16
3.4.1 Why Two Options .. 16
3.4.2 Option 1 – “Include” Code Lists (The Default Approach) ... 17
3.4.3 Option 2 – Code Lists using Genericode Approach.. 19

3.5 CODE LIST PACKAGES – OPTION 1 AND OPTION 2 .. 23
3.6 ORDER OF ELEMENTS AND PRESENTATION ... 23

3.6.1 Example – Normal Order ... 23
3.7 DATA MAPPING .. 23

3.7.1 Example – Complex-to-simple Mapping ... 24
3.7.2 Example – Simple-to-complex Mapping ... 24

3.8 DATA QUALITY .. 25
3.8.1 Example – Data Quality ... 25
3.8.2 Data Quality Verification and Trust ... 26
3.8.3 Data Validation .. 26

3.9 EXTENSIBILITY ... 26
3.9.1 Extending the Schemas to Meet Application Specific Requirements .. 26
3.9.2 Extensibility - Practical Applications ... 26

3.10 LINKING AND REFERENCING ... 27
3.10.1 Using xLink [OPTIONAL] .. 27
3.10.2 Using Key Reference [OPTIONAL] .. 28

3.11 ID ATTRIBUTE .. 28
3.12 SCHEMA CONFORMANCE .. 29
3.13 SCHEMA CUSTOMISATION GUIDELINES .. 29

3.13.1 Namespace .. 29
3.13.2 Reducing the Entity Schema Structure .. 29

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 5 of 68

3.13.3 Customising the Code Lists/Enumerations of Name ... 30
3.13.4 Using the Methodology to customise Name Schema to meet application specific requirements 30

4 ENTITY “ADDRESS” (EXTENSIBLE ADDRESS LANGUAGE) .. 32

4.1 SEMANTICS OF “ADDRESS” ... 32
4.1.1 Example – Minimal Semantics (Unstructured/Free Text Data) .. 32
4.1.2 Example – Partial Semantics (Partially Structured Data) ... 32
4.1.3 Example – Full Semantics (Fully Structured Data) .. 34

4.2 DATA TYPES ... 34
4.3 CODE LISTS (ENUMERATIONS) ... 34
4.4 ORDER OF ELEMENTS AND PRESENTATION ... 34
4.5 DATA MAPPING .. 35

4.5.1 Example – Normal Order ... 35
4.6 DATA QUALITY .. 35
4.7 EXTENSIBILITY ... 35
4.8 LINKING AND REFERENCING ... 35
4.9 ID ATTRIBUTE .. 35
4.10 SCHEMA CONFORMANCE .. 35
4.11 ADDRESS/LOCATION REFERENCED BY GEORSS AND COORDINATES... 36

4.11.1 Using GeoRSS in xAL Schema .. 36
4.11.2 Defining Location Coordinates in xAL Schema .. 39

4.12 SCHEMA CUSTOMISATION GUIDELINES .. 40
4.12.1 Customising the Code Lists/Enumerations of Address ... 40
4.12.2 Using CVA to customise CIQ Address Schema to meet application specific requirements 41

5 COMBINATION OF “NAME” AND “ADDRESS” (EXTENSIBLE NAME AND ADDRESS
LANGUAGE) ... 43

5.1 USE OF ELEMENT XNAL:RECORD .. 43
5.1.1 Example .. 43

5.2 USE OF ELEMENT XNAL:POSTALLABEL .. 44
5.2.1 Example .. 44

5.3 CREATING YOUR OWN NAME AND ADDRESS APPLICATION SCHEMA .. 45

6 ENTITY “PARTY” (EXTENSIBLE PARTY INFORMATION LANGUAGE) ... 46

6.1 REUSE OF XNL AND XAL STRUCTURE FOR PERSON OR ORGANISATION NAME AND ADDRESS 46
6.2 PARTY STRUCTURES - EXAMPLES ... 47

6.2.1 Example – Qualification Details ... 47
6.2.2 Example – Birth Details .. 47
6.2.3 Example – Driver License ... 47
6.2.4 Example – Contact Phone Number ... 47
6.2.5 Example – Electronic Address Identifiers ... 47

6.3 DEALING WITH JOINT PARTY NAMES ... 48
6.4 REPRESENTING RELATIONSHIPS WITH OTHER PARTIES ... 48

6.4.1 Example – Person Relationship with other Persons of type “Friend” ... 50
6.4.2 Example – Organisation Relationship with other Organisations of type “Branch” 50
6.4.3 Example – Person Relationship with another Person... 50

6.5 DATA TYPES ... 51
6.6 CODE LISTS (ENUMERATIONS) ... 51
6.7 ORDER OF ELEMENTS AND PRESENTATION ... 51
6.8 DATA MAPPING .. 51
6.9 DATA QUALITY .. 51
6.10 EXTENSIBILITY ... 51
6.11 LINKING AND REFERENCING ... 51
6.12 SCHEMA CONFORMANCE .. 52
6.13 SCHEMA CUSTOMISATION GUIDELINES .. 52

6.13.1 Customising the Code Lists/Enumerations of Party ... 52
6.13.2 Using CVA to customise Party Schema to meet application specific requirements 53

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 6 of 68

7 DIFFERENCES BETWEEN TWO TYPES OF ENTITY SCHEMAS FOR CIQ SPECIFICATIONS 54

7.1 FILES FOR OPTION 1 (THE DEFAULT) .. 54
7.2 FILES FOR OPTION 2 .. 55

7.2.1 XML Schema Files .. 55
7.2.2 Genericode Based Code List Files .. 55

7.3 NAMESPACE ASSIGNMENT .. 56
7.4 DIFFERENCES BETWEEN CIQ ENTITY SCHEMAS USED IN OPTION 1 AND OPTION 2 ... 56

7.4.1 Compatibility between XML documents produced using Option 1 and Option 2 CIQ XML Schemas 59
7.4.2 Which Code List Package to Use? Option 1 or Option 2? ... 59

8 DATA EXCHANGE AND INTEROPERABILITY ... 60

8.1 DATA INTEROPERABILITY SUCCESS FORMULA ... 60
8.2 INFORMATION EXCHANGE AGREEMENT - GUIDELINES ... 60

9 CONFORMANCE ... 62

9.1 CONFORMANCE CLAUSES ... 62
9.1.1 Specifications Schema Conformance .. 62
9.1.2 Specifications Schema Extensibility Conformance ... 62
9.1.3 Specifications Code List Schema Customisation Conformance .. 62
9.1.4 Interoperability Conformance .. 62

10 MISCELLANEOUS .. 64

10.1 DOCUMENTATION ... 64
10.2 EXAMPLES .. 64
10.3 CONTRIBUTIONS FROM PUBLIC ... 64

11 CHANGE LOG .. 65

A. ACKNOWLEDGEMENTS .. 66

B. INTELLECTUAL PROPERTY RIGHTS, PATENTS, LICENSES AND ROYALTIES 67

C. REVISION HISTORY .. 68

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 7 of 68

1 Name, Address, Party and Party Relationship 1

1.1 Terminology 2

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD 3
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described in [RFC2119]. 4

While RFC2119 permits the use of synonyms, to achieve consistency across specifications, “MUST” is 5
used instead of “SHALL” and “REQUIRED”, “MUST NOT” instead of “SHALL NOT”, and “SHOULD” 6
instead of “RECOMMENDED” in this specification. To enable easy identification of the keywords, 7
uppercase is used for keywords. 8

1.2 Definitions 9

Following are the core entities and its definitions used by CIQ TC: 10

Name 11
Name of a person or an organisation 12

Address 13
A physical location or a mail delivery point 14

Party 15
A Party could be of two types namely, 16

• Person 17
• Organisation 18
An Organisation could be a company, association, club, not-for-profit, private firm, public firm, 19
consortium, university, school, etc. 20

Party data consists of many attributes (e.g. Name, Address, email address, telephone, etc) that 21
are unique to a party. However, a person or organisation’s name and address are generally the 22
key identifiers (but not necessarily the unique identifiers) of a “Party”. A “Customer” is of type 23
“Party”. 24

Party Relationship 25
Pairwise affiliation or association between two people, between two organisations, or between an 26
organisation and a person. 27
xPRL supports chains of interlocking pairwise party relationships, linked by common members. 28
A state involving mutual dealing between Parties 29

 30

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 8 of 68

2 CIQ Specifications Version 3.0 31

2.1 Formal Design Requirements 32

Following are the formal design requirements taken into consideration for version 3.0 XML Schemas of 33
CIQ Specifications: 34

• Data structures SHOULD be described using W3C XML Schema language 35

• Data structures SHOULD be separated into multiple namespaces for reuse of the core Party 36
entities (e.g. Person Name, Organisation Name, Address, Party Centric Information) 37

• Data structures SHOULD be able to accommodate all information types used for data exchanges 38
based on previous versions of the CIQ Specifications 39

• Data structures SHOULD be extensible (also, allow reduction in complexity) to provide enough 40
flexibility for point-to-point solutions and application-specific scenarios 41

• Data structures SHOULD allow application-specific information to be attached to entities without 42
breaking the structures. 43

• Implementation complexity SHOULD be proportional to the complexity of the subset of data 44
structures used by the implementer 45

• Data structures SHOULD be customisable to meet different end user requirements without 46
breaking the structures and at the same time, conforming to the core specification. 47

2.2 Major CIQ Specification Entities 48

The entire party information space is divided into a number of complex information types that are viewed 49
as core entities. This enables re-use of the core entities as required. We categorise these core entities of 50
CIQ Specifications into four namely, 51

• Name 52
• Address 53
• Party Centric Information, and 54
• Party Relationships 55
 56
Following are the basic and core CIQ specification entities defined in XML schemas as re-usable 57
types: 58

• Name (Person or Organisation - see xNL.xsd schema) 59

• Address (see xAL.xsd schema) 60

• Name and Address combined (see xNAL.xsd schema) 61

• Personal details of a person (person-centric information) (see xPIL.xsd schema) 62

• Organisation specific details (organisation-centric information) (see xPIL.xsd schema) 63

• Party Relationships (see xPRL.xsd [not available in this release] and xLink-2003-12-31-revised.xsd 64
schemas) 65

These core entities are supported by relevant code lists/enumerations to add “semantics/meaning” to 66
the data they represent. This will be discussed in detail in the following sections. 67
 68
 69

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 9 of 68

2.3 Version 3.0 XML Schema Files 70

Following are the different XML schemas produced for version 3.0: 71

XML Schema File
name

Description Comments

xNL.xsd Entity Name Defines a set of reusable types and elements
for a name of individual or organisation

xNL-types.xsd Entity Name
Enumerations

Defines a set of enumerations to support Name
entity

xAL.xsd Entity Address Defines a set of reusable types and elements
for an address, location name or description

xAL-types.xsd Entity Address
Enumerations

Defines a set of enumerations to support
address entity

xNAL.xsd Name and Address
binding

Defines two constructs to associate/link names
and addresses for data exchange or postal
purposes

xNAL-types.xsd Name and Address
binding
Enumerations

Defines a set of enumerations to support name
and address binding

xPIL.xsd (formerly
xCIL.xsd)

Entity Party
(organisation or
individual)

Defines a set of reusable types and elements
for a detailed description of an organisation or
individual centric information

xPIL-types.xsd Entity Party
(organisation or
individual)
Enumerations

Defines a set of enumerations to support party
centric information entity

CommonTypes.xsd Common Data
Types and
Enumerations

Defines a set of commonly used data types and
enumerations in the CIQ Schemas

xLink-2003-12-
31.xsd

xLink attributes Implements a subset of W3C xLink
specification attributes as XML schema

*.gc files Entity Party, Name,
and Address

Defines a set of enumerations/code lists in
genericode format

2.4 Common Design Concepts Used 72

Name, Address and Party schemas are designed to bring interoperability to the way these most 73
“common” Party related entities are used across all spectrums of business and government. 74
Name, Address and Party information components of version 3.0 share common design concepts that are 75
implemented as XML Schemas. This commonality should simplify understanding and adoption of the 76
XML Schemas. The xNAL schema design concept varies slightly as it is only a simple container for 77
associating/linking names and addresses. 78
The design concepts of Name, Address and Party schemas are similar in terms of the way semantic 79
information is represented to add the required “meaning” to the data. For example, for a person’s name 80
data, “Given Name, “Middle Name’ Surname” etc, are the semantic information that add meaning to the 81
data. 82

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 10 of 68

All common design concepts used in the CIQ Specifications (e.g. using code lists/enumerations, 83
customising CIQ entity schemas, extending CIQ entity schemas, referencing between entities, defining 84
business rules to constrain CIQ entity schemas) are equally applicable for all key entities of CIQ 85
specifications namely, Name, Address and Party. These common concepts are explained in detail in 86
section 3 (Entity “Name”). Users SHOULD study that section in detail before proceeding to other entities 87
namely, Address and Party, as these concepts are applicable to these entities also. 88

2.5 Namespaces Used 89

Following are the namespaces used in the specification: 90

Entity Namespace Suggested Prefix XML Schema
Files

Name urn:oasis:names:tc:ciq:xnl:3 xnl (or) n xNL.xsd
xNL-types.xsd

Address urn:oasis:names:tc:ciq:xal:3 xal (or) a xAL.xsd
xAL-types.xsd

Name and
Address

urn:oasis:names:tc:ciq:xnal:3 xnal xNAL.xsd
xNAL-types.xsd

Party urn:oasis:names:tc:ciq:xpil:3 xpil (or) p xPIL.xsd
xPIL-types.xsd

Party
Relationships

urn:oasis:names:tc:ciq:xprl:3 xprl (or) r xPRL.xsd
xPRL-types.xsd

xLink http://www.w3.org/1999/xlink xLink xLink-2003-12-
31.xsd

2.6 Other Industry Specifications/Standards Used 91

This document contains references to XML Linking Language (XLink) Version 1.0, W3C 92
Recommendation 27 June 2001 available at http://www.w3.org/TR/xlink/ . The CIQ TC strongly 93
recommends readers to read the xLink specification from W3C if they want to use this supported feature 94
in CIQ Specifications. 95
This document contains references to Code List version 1.0, OASIS Code List Representation TC 96
Committee Specification 01, May December 2007 available at http://www.oasis-97
open.org/committees/codelist. The CIQ TC strongly recommends readers to read the code list 98
specification if they want to use this supported feature in CIQ Specification. 99
This document contains references to Context Value Association, Working Draft 0.2, November 2007, 100
Schematron-based Value Validation using Genericode Methodology, version 0.1, OASIS Code List 101
Representation TC Working Draft, July 2007 available at http://www.oasis-open.org/committees/codelist. 102
The CIQ TC strongly recommends readers to read the methodology if they want to use this supported 103
feature in CIQ Specification. 104
GeoRSS 2.0 (georss.org) from Open Geospatial Consortium (http://www.opengeospatial.net) has been 105
referenced in this specification as it is critical to assuring interoperability with a variety of geospatial 106
technologies, such as GIS, Spatial Data Infrastructures, Location Services, and the GeoWeb. 107
 108

http://www.w3.org/TR/xlink/�
http://www.oasis-open.org/committees/codelist�
http://www.oasis-open.org/committees/codelist�
http://www.oasis-open.org/committees/codelist�
http://www.opengeospatial.net/�

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 11 of 68

3 Entity “Name” (extensible Name Language) 109

Entity “Name” has been modelled independent of any context as a standalone specification to reflect 110
some common understanding of concepts “Person Name” and “Organisation Name”. 111

3.1 Semantics of “Name” 112

CIQ Version 3.0 “Name” XML schema is separated into two parts: a structural part (xNL.xsd) as shown in 113
the XML schema diagram below and, separate enumeration/code list files (code lists defined in an XML 114
schema (xNL-types.xsd) and also, code lists represented in genericode format as .gc files) supporting the 115
structure by adding semantics to the data. “Genericode” will be discussed in later sections. 116
The structural part (xNL.xsd) SHOULD remain unchanged over the course of time while the code 117
list/enumeration files (xNL-types.xsd or .gc files) MAY be customised to meet particular implementation 118
needs as the semantics of data varies from one requirement to another. 119

 120
In the schema structure above (xNL.xsd), “NameElement” stores the name of a party and the supporting 121
enumeration lists referenced as attributes in the schema structure (see the xNL.xsd schema for the list of 122
attributes or the HTML documentation of the schema) that provide the semantic meaning of the data. 123
The structure allows for different semantic levels based on the following paradigm: 124

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 12 of 68

• A simple data structure with minimum semantics SHOULD fit into the schema with minimal effort 125

• A complex data structure SHOULD fit into the schema without loss of any semantic information 126

3.1.1 Example 1 – No Semantics (Unstructured/Free Text Data) 127

The least level of complexity in representing party name data is when a typical database does not 128
differentiate between a person name and an organisation name where only one field has been allocated 129
for storing the complete name information (unstructured data). This database can be mapped to xNL as 130
follows: 131

<n:PartyName> 132
 <n:NameLine>Mr Jeremy Apatuta Johnson</n:NameLine> 133
</n:PartyName> 134

In this example, information related to party name, resides in NameLine element. It has no semantic 135
information that MAY indicate what kind of name it is, i.e. person name or an organisation name, and 136
what the individual name elements (atomic data) are (i.e., the data has not been parsed into first name, 137
last name, title, etc.). What is known is that it is a name of some party, be it a person or an organisation. 138
Data in this free formatted/unstructured text form is classified as “poor quality” as it is subject to different 139
interpretations and MAY cause interoperability problems when exchanged between two or more 140
applications/systems. 141
Many common applications fall under this “No Semantics” category. 142

3.1.2 Example 2 – Minimal Semantics (Partially Structured Data) 143

The medium level of complexity in representing data is when a database differentiates between person 144
and organisation name. In this case, names are placed in the appropriate elements namely, PersonName 145
or OrganisationName inside the structure. 146
Person Name: 147

<n:PartyName> 148
 <n:PersonName> 149
 <n:NameElement>Mr Jeremy Apatuta Johnson</n:NameElement> 150
 </n:PersonName> 151
</n:PartyName> 152

This example shows that name information belongs to an individual, but the semantics of the individual 153
name elements (e.g. what are the meanings of “Mr”, “Jeremy”, etc.) are unknown. 154
Organisation Name: 155

<n:PartyName> 156
 <n:OrganisationName> 157
 <n:NameElement>Khandallah Laundering Ltd.</n:NameElement> 158
 </n:OrganisationName> 159
</n:PartyName> 160

This example is similar to the previous one, except that the name belongs to an organisation. The quality 161
of data in this case is marginally better than Example 1. 162
Many common applications fall under this “Minimal Semantics” category. 163
 164
 165
 166
 167
 168
 169

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 13 of 68

3.1.3 Example 3 – Full Semantics (Fully Structured Data) 170

The maximum level of complexity in representing data is when a database differentiates between person 171
and organisation name and also differentiates between different name elements within a name (the 172
semantics). The data is structured and the quality of data is excellent. 173

<n:PartyName> 174
 <n:PersonName> 175
 <n:NameElement Abbreviation="true" ElementType="Title">Mr</n:NameElement> 176
 <n:NameElement ElementType="FirstName">Jeremy</n:NameElement> 177
 <n:NameElement ElementType="MiddleName">Apatuta</n:NameElement> 178
 <n:NameElement ElementType="LastName">Johnson</n:NameElement> 179
 <n:NameElement ElementType="GenerationIdentifier">III</n:NameElement> 180
 <n:NameElement ElementType="GenerationIdentifier">Junior</n:NameElement> 181
 <n:NameElement ElementType="Title">PhD</n:NameElement> 182
 </n:PersonName> 183
</n:PartyName> 184

This example introduces ElementType attribute that indicates the exact meaning of the name element. 185
Few applications and in particular, applications dealing with data quality and integrity, fall under this “Full 186
Semantics” category and often, the database supported by these applications are high in the quality of 187
the data it manages. This is an additional level of semantics that is supported through code 188
list/enumerated values. Technically, the enumerations sit in a separate schema (xNL-types.xsd) or in 189
genericode files. 190
The more structured the data is, the better the interoperability of the data. 191
An example of enumeration is a list of name element types for a person name defined in xNL-types.xsd 192
as shown below. 193

<xs:simpleType name="PersonNameElementsEnumeration"> 194
 <xs:restriction base="xs:string"> 195
 <xs:enumeration value="PrecedingTitle"/> 196
 <xs:enumeration value="Title"/> 197
 <xs:enumeration value="FirstName"/> 198
 <xs:enumeration value="MiddleName"/> 199
 <xs:enumeration value="LastName"/> 200
 <xs:enumeration value="OtherName"/> 201
 <xs:enumeration value="Alias"/> 202
 <xs:enumeration value="GenerationIdentifier"/> 203
 </xs:restriction> 204
</xs:simpleType> 205

3.2 Data Types 206

All elements and attributes in xNL schema have strong data types. 207
All free-text values of elements (text nodes) and attributes are constrained by a simple type 208
“NormalizedString” (collapsed white spaces) defined in CommonTypes.xsd. Other XML Schema data 209
types are also used throughout the schema. 210

3.3 Code Lists (Enumerations) 211

This is an important section that users MUST give serious attention if they want to customise the CIQ 212
schemas to meet their specific requirements. 213

3.3.1 What is a Code List? 214

A code list (also called enumeration) defines a classification scheme and a set of classification values to 215
support the scheme. For example, “Administrative Area” is a classification scheme and a set of 216
classification values for this classification scheme could be: State, City, Province, Town, Region, District, 217
etc. 218
 219
XML Schema describes the structural and lexical constraints on an XML document. Some information 220
items in a document are described in the schema lexically as a simple value whereby the value is a code 221

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 14 of 68

representing an agreed-upon semantic concept. The value used is typically chosen from a set of unique 222
coded values enumerating related concepts. These sets of coded values are sometimes termed code 223
lists. 224

3.3.2 The importance of Code Lists for CIQ Specifications 225

Earlier versions of CIQ Name, Address and Party Information specifications had concrete schema 226
grammar (e.g. First Name, Middle Name, Last Name, etc XML elements/tags for a person name as 227
shown in the figure below) to define the party entities. 228

 229
This did not satisfy many name, address and party data usage scenarios that are geographic and cultural 230
specific. For example, in certain cultures, the concept of first name, middle name, and last/family/surname 231
for a person name does not exist. Representing person names from these cultures in the earlier version 232
of CIQ Specifications were difficult as its name schema (v2.0 of xNL.xsd as shown in the above figure) 233
had pre-defined element names as FirstName, MiddleName, and LastName, and they were semantically 234
incorrect metadata for the data. To be precise, in some culture where the concept of First Name does not 235
exist, using First Name element of CIQ specification to a data that appears in the first position of a 236
person’s name string is semantically incorrect. 237

3.3.2.1 Example 238

Let us look at the following example (this is not a fictitious person name, but real legal name of a 239
person born in the USA, who is a childhood friend of the Chair of CIQ TC. The street name and 240
father’s name of the person have been deliberately changed in this example to protect the identity 241
of the person). The person’s name is: 242

Mr. William Street Rajan United States Virginia Indian, where 243

“William Street”, is the name of the street where the person was born 244

“Rajan”, is the name of the person’s father 245

“United States”, is the country where the person was born 246

“Virginia”, is the state where the person was born, and 247

“Indian”, is the origin of the person 248

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 15 of 68

The person is legally and formally called as “WRUVI” 249
In the above example, using the concept of First Name, Middle Name, Last Name, Surname, Family 250
Name, etc. does not provide the intended meaning of the name, and therefore, the meaning of the data is 251
lost. 252

3.3.3 Customisable Code Lists 253

The Name, Address and Party schemas in this version provides code lists/enumerations designed to 254
satisfy common usage scenarios of the data by providing semantically correct 255
metadata/information/meaning to the data. These code lists are customisable by the users to satisfy 256
different name and address data requirements, but at the same time ensures that the core CIQ schema 257
structure is intact i.e., there is no need to change the schema to suit context specific semantic 258
requirements. A default set of code list/enumerated values (or in many cases, no values) are provided 259
with the schemas and these default values are not complete by any means and therefore, are 260
customisable by the user to suit their requirements. 261
The default code list values/enumerations for Party Name used in the CIQ Specifications are built using 262
common sense and with culture-specific view of the subject area (in this case Anglo-American culture, 263
where the terms such as First Name, Middle Name, Last Name are used), rather than adopted from a 264
specific application. The reason why we say “cultural specific view” is because some cultures do not have 265
the concept of First Name, Middle Name, and Last Name and so on. 266

NOTE: The code list/enumeration values for different code/enumeration lists that are 267
provided as part of the specifications are not complete. They only provide sample 268
values (and in most case no values) and it is up to the end users to customise them to 269
meet their data exchange requirements if the default values are incomplete, not 270
appropriate or over kill 271

There is always a possibility that a specific application requires certain enumerated values that are not 272
part of the standard xNL, xAL and xPIL specifications. It is acceptable for specific applications to provide 273
its own enumerated values (e.g. could be new one, delete an existing default one), but it is important that 274
all participants (could be internal business systems or external systems) involved in data exchange 275
SHOULD be aware of what the new enumeration values are to enable interoperability. Otherwise, 276
interoperability will fail. Therefore, some agreement SHOULD be in place between the participants 277
involved in the data exchange process (e.g. Information Exchange Agreement for data exchange) to 278
agree on the enumeration values. These agreed enumeration values SHOULD also be governed to 279
manage any changes to them in order to prevent interoperability breakdown. Any further information 280
about these sorts of agreements is outside the scope of the CIQ technical committee. 281
Therefore, for a generic international specification like CIQ that is independent of any 282
application/industry/culture, the ability to customise the specification to define context specific semantics 283
to the data is important. 284

3.3.3.1 Example 285

Now let us revisit example 3.3.2.1 again. To overcome the semantics problem and to not loose the 286
semantics of the data, using version 3.0 of the CIQ specification, users can define the correct context 287
specific semantics to the person name data as follows: 288

<n:PartyName> 289
 <n:PersonName> 290
 <n:NameElement ElementType="Title">Mr.</n:NameElement> 291
 <n:NameElement ElementType="Birth Street Name">William Street</n:NameElement> 292
 <n:NameElement ElementType="Father Name">Rajan</n:NameElement> 293
 <n:NameElement ElementType="Country Of Birth”>United States</n:NameElement> 294
 <n:NameElement ElementType="State Of Birth">Virginia</n:NameElement> 295
 <n:NameElement ElementType="Country Of Origin>Indian</n:NameElement> 296
 </n:PersonName> 297
</n:PartyName> 298

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 16 of 68

All user has to do is include the above semantic values that do not exist in the default 299
“PersonNameElementList” code list (e.g. Birth Street, Father Name, Country Of Birth, State of Birth, 300
Country Of Origin) without modifying the core xNL.xsd schema. 301

3.3.4 Improving Interoperability using Code Lists 302

Using customisable code list approach provided by CIQ Specifications, interoperability of data 303
(represented using CIQ Specifications) between applications can be significantly improved. Any 304
attribute/element that can add semantic meaning to data (e.g. type of address, where the value “Airport” 305
adds semantic meaning to an address data) is defined as a customisable code list in CIQ Specifications. 306
For example, PersonName element in xNL.xsd uses an attribute PersonIDType that provides a default 307
code list, but with no default values. When a code list has no values, XML Parsers treat the 308
attribute/element that references the code list as the same XML schema data type defined for that 309
element/attribute. This allows an application to define any value for the data type without any restriction. 310
This could result in interoperability breakdown between the sending application and the receiver 311
application because the receiving application needs to know the value of the data type that is passed for 312
further processing and it is unknown at run time. To improve interoperability by controlling the use of the 313
values for the data type, users SHOULD define specific values in the code list during design time, and 314
importantly these values SHOULD be agreed at design time by the parties exchanging the data. This will 315
give confidence to the users that the data exchanged during application run time conforms to the code list 316
values that have been agreed during application design time. 317
To provide enough flexibility to users to define the semantics of the data, over 100 default code lists (most 318
of them are empty, i.e., no default code values are provided) are provided by CIQ Specifications that are 319
customisable by users to improve interoperability of data. 320

3.4 Using Code Lists in CIQ Specifications – Two Options 321

CIQ Specifications provide TWO OPTIONS for users to define and manage code lists. The options are: 322
• OPTION 1: An XML schema file per CIQ entity (Name, Address and Party) representing all code lists 323

for the entity is provided as part of the specification. The enumeration/code list files are xNL-types.xsd 324
(for Name Entity code lists), xAL-types.xsd (For Address Entity code lists), xNAL-types.xsd (for Name 325
and Address Entities code list) and xPIL-types.xsd (for Party Entity code lists). This is the “DEFAULT” 326
approach for using code lists. 327

• OPTION 2: A genericode based code list file (.gc) per code list for all CIQ entities (Name, Address 328
and Party) is provided as part of the specification. Genericode is an OASIS industry specification for 329
representing code lists. For example, xNL-types.xsd file has 13 code lists in Option 1, and these code 330
lists are represented as 13 individual genericode (.gc) files in this option. Therefore, xNL-types.xsd, 331
xAL-types.xsd, xNAL-types.xsd, and xPIL-types.xsd Code List schemas are not part of this option and 332
instead, are replaced with .gc files. 333

Users MUST choose one of the above two options as part of the specification implementation, but MUST 334
NOT use both the options in the same implementation. 335

3.4.1 Why Two Options 336

Option 2 (Genericode approach) uses a “two pass validation” methodology (explained in the later 337
sections) on a CIQ XML document instance (first pass for XML document structural and lexical validation 338
against the core CIQ XML schema (xNL.xsd) and second pass for validation of code list value in the XML 339
document). 340
CIQ specifications are normally embedded/implemented as part of any broader application specific 341
schema such as customer information management, postal services, identity management, human 342
resource management, financial services, etc. The application specific schema MAY or MAY NOT 343
implement genericode approach to code lists. If only Option 2 is provided as part of the CIQ 344
specifications, end users implementing CIQ XML schema that is included as part of their application 345
specific schema to represent party data, will be forced to perform two pass validation on the application’s 346
XML document instance and in particular, on the fragments in the XML document where party data is 347

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 17 of 68

represented using CIQ. This limits the usage of CIQ specifications for wider adoption and hence, two 348
options are provided to enable end users to pick an approach that suits their requirements. The two 349
options are explained in detail in the following sections. 350

3.4.2 Option 1 – “Include” Code Lists (The Default Approach) 351

“Include” code lists are XML schemas that are “included” in the CIQ entity structure XML schemas, i.e., 352
xNL.xsd (Name Entity schema) “includes” xNL-types.xsd code list schema (as shown in the sample code 353
below), xAL.xsd (Address Entity schema) “includes” xAL-types.xsd code list schema, xNAL.xsd schema 354
“includes” xNAL-types.xsd code list schema, and xPIL.xsd (party entity schema) “includes” xPIL-types.xsd 355
schema. 356

<?xml version="1.0" encoding="UTF-8"?> 357
<xs:schema xmlns="urn:oasis:names:tc:ciq:xnl:3" 358
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xlink="http://www.w3.org/1999/xlink" 359
xmlns:ct="urn:oasis:names:tc:ciq:ct:3" targetNamespace="urn:oasis:names:tc:ciq:xnl:3" 360
elementFormDefault="qualified" attributeFormDefault="qualified"> 361

 362
<xs:include schemaLocation="xNL-types.xsd"/> <!—code list schema included - 363

Users MAY modify the code list XML schema to add or delete values depending upon their data 364
exchange requirements without modifying the structure of the CIQ entity schemas. Validation of the code 365
list values will be performed by XML parsers as part of the XML document instance validation in “one” 366
pass (i.e., XML document structure validation and the code list value validation will be performed in one 367
pass). 368
Any changes to the code list schema results in changes to the software code (e.g. java object generated 369
from xNL.xsd using XML Beans must be re-created) based on the entity schema as the entity schema 370
“includes” the code list schema. 371
The values of code lists provided as part of CIQ Specifications v3.0 are only sample values (and in most 372
cases, no values are provided) and by no means are accurate or complete list of values. It is up to the 373
users to customise the default code list. However, when exchanging data with more than one party 374
(trading partner or application), it is important that all the concerned parties SHOULD be aware of the 375
code list and the values that will be used as part of the data exchange process to achieve interoperability. 376

3.4.2.1 Code List Representation (Option 1) – An Example 377

The following example shows an XML schema representation of code list for SubDivisionTypeList 378
provided by CIQ specification as part of xNL-types.xsd. 379

<xs:simpleType name=SubDivisionTypeList”> 380
 <xs:annotation> 381
 <xs:documentation> A list of common types for sub divisions 382
 </xs:documentation> 383
 </xs:annotations> 384
 <xs:restriction base=”xs:string”> 385
 <xs:enumeration value=”Department”/> 386
 <xs:enumeration value=”Branch”/> 387
 <xs:enumeration value=”Business Unit”/> 388
 <xs:enumeration value=”School”/> 389
 <xs:enumeration value=”Section”/> 390
 </xs:restriction> 391
</xs:simpleType> 392

 393
 394
 395
 396
 397
 398
 399

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 18 of 68

3.4.2.2 Customising Code Lists (Option 1) – An Example 400

In the following example, the code list “OrganisationNameTypeList” under “xNL-types.xsd” is customised 401
by replacing the default values with new values to meet user requirements. 402

Default values for “OrganisationNameTypeList”
Code List

Customised values

LegalName ReportedName

NameChange OriginalName

CommonUse LegalName

PublishingName

OfficialName

UnofficialName

Undefined

The code for the specification with the original code list for “OrganisationNameTypeList” would look like 403
the following: 404

<xs:simpleType name="OrganisationNameTypeList"> 405
 <xs:restriction base="xs:string"> 406
 <xs:enumeration value="LegalName"/> 407
 <xs:enumeration value="NameChange"/> 408
 <xs:enumeration value="CommonUse"/> 409

 <xs:enumeration value="PublishingName"/> 410
 <xs:enumeration value="OfficialName"/> 411
 <xs:enumeration value="UnofficialName"/> 412
 <xs:enumeration value="Undefined"/> 413
 </xs:restriction> 414
</xs:simpleType> 415

The code for the new customised code list for “OrganisationNameTypeList” would look like the following: 416

<xs:simpleType name="OrganisationNameTypeList"> 417
 <xs:restriction base="xs:string"> 418
 <xs:enumeration value="ReportedName"/> 419
 <xs:enumeration value="OriginalName"/> 420
 <xs:enumeration value="LegalName"/> 421
 </xs:restriction> 422
</xs:simpleType> 423

This level of flexibility allows customisation of the xNL.xsd schema through changing the code lists only, 424
without changing the basic structure of the xNL.xsd schema. It is important to ensure that all schema 425
users involved in data exchange SHOULD use the same code lists for interoperability to be successful. 426
This SHOULD be negotiated between the data exchange parties and a proper governance process 427
SHOULD be in place to manage this process. 428

3.4.2.3 Code List Use (Option 1) Example – Point-to-Point 429

Assume that participants of a data exchange process agreed that for their purpose only a very simple 430
name structure is required. One of the options for them is to modify PersonNameElementsList code list in 431
the xNL-types.xsd file with the following values and remove the rest of the default values provided by the 432
specification: 433

<xs:simpleType name="PersonNameElementsList"> 434
 <xs:restriction base="xs:string"> 435
 <xs:enumeration value="Title"/> 436
 <xs:enumeration value="FirstName"/> 437
 <xs:enumeration value="MiddleName"/> 438
 <xs:enumeration value="LastName"/> 439
 </xs:restriction> 440
</xs:simpleType> 441

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 19 of 68

3.4.2.4 Code List Use (Option 1) Example – Locale Specific 442

In Russia, it would be more appropriate to use the following enumeration: 443

<xs:simpleType name="PersonNameElementList"> 444
 <xs:restriction base="xs:string"> 445
 <xs:enumeration value="Title"/> 446
 <xs:enumeration value="Name"/> 447
 <xs:enumeration value="FathersName"/> 448
 <xs:enumeration value="FamilyName"/> 449
 </xs:restriction> 450
</xs:simpleType> 451

Again, it is up to the implementers involved in data exchange to modify PersonNameElementList code list 452
in xNL-types.xsd file. 453

3.4.3 Option 2 – Code Lists using Genericode Approach 454

Option 1 is the default approach for CIQ Specifications to use code lists. However, users are given the 455
choice to use Option 2 instead of Option 1. It is up to the users to decide which approach to use and this 456
is based on their requirements. 457
The OASIS Code List Representation format, “Genericode”, is a single industry model and XML format 458
(with a W3C XML Schema) that can encode/standardise a broad range of code list information. The XML 459
format is designed to support interchange or distribution of machine-readable code list information 460
between systems. Details about this specification are available at: http://www.oasis-461
open.org/committees/codelist. 462
Let us consider an instance where trading partners who use CIQ Specifications for exchanging party 463
related data. The trading partners MAY wish to agree that different sets of values from the same code 464
lists MAY be allowed at multiple locations within a single document (perhaps allowing the state for the 465
buyer in an order is from a different set of states than that allowed for the seller). Option 1 approach MAY 466
not be able to accommodate such differentiation very elegantly or robustly, or possibly could not be able 467
to express such varied constraints due to limitations of the schema language's modelling semantics. 468
Moreover it is not necessarily the role of CIQ entity schemas to accommodate such differentiation 469
mandated by the use of it. Having a methodology and supporting document types with which to perform 470
code list value validation enables parties involved in document exchange to formally describe the sets of 471
coded values that are to be used and the document contexts in which those sets are to be used. Such a 472
formal and unambiguous description SHOULD then become part of a trading partner contractual 473
agreement, supported by processes to ensure the agreement is not being breached by a given document 474
instance. 475
This Option uses a “two” pass validation methodology, whereby, the “first” pass validation, allows the XML 476
document instance to be validated for its structure and well-formedness (ensures that information items 477
are in the correct places and are correctly formed) against the entity XML schema, and the “second” pass 478
validation allows the code list values in XML document instance to be validated against the genericode 479
based code lists and this does not involve the entity schemas. 480
Any change to the genericode based code list does not require changes to the software code (e.g. java 481
object must be re-created) based on the entity schema as the entity schema reference the genericode 482
based code list. 483

3.4.3.1 Code List (Option 2) Value Validation using Context Value Association 484

OASIS Code List Technical Committee describes an approach called “Context Value Association (CVA)” 485
for using the “two” validation approach as discussed in the previous section. CVA describes the file 486
format used in a "context/value association" file (termed in short as "a CVA file"). This file format is an 487
XML vocabulary using a subset of W3C XPath 1.0 to specify hierarchical document contexts and the 488
associated controlled vocabulary of values allowed at each context. A document context specifies one or 489
more locations found in an XML document or other similarly structured hierarchy. This file format 490
specification assumes the controlled vocabulary of values is expressed in an external resource described 491
by the genericode OASIS standard. 492

http://www.oasis-open.org/committees/codelist�
http://www.oasis-open.org/committees/codelist�

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 20 of 68

Context/value association is useful in many aspects of working with an XML document using controlled 493
vocabularies. Two examples are (1) for the direction of user data entry in the creation of an XML 494
document, ensuring that only valid values are proffered in a user interface selection such as a drop-down 495
menu; and (2) for the validation of the correct use of valid values found in an XML document. 496
 497
CVA enables validating code list values and supporting document types with which trading partners can 498
agree unambiguously on the sets of code lists, identifiers and other enumerated values against which 499
exchanged documents must validate. The objective of applying CVA to a set of document instances 500
being validated is to express the lists of values that are allowed in the context of information items found 501
in the instances. One asserts that particular values must be used in particular contexts, and the validation 502
process confirms the assertions do not fail. 503

3.4.3.2 Two Pass Value Validation (Option 2) 504

Schemata describe the structural and lexical constraints on a document. Some information items in a 505
document are described in the schema lexically as a simple value whereby the value is a code 506
representing an agreed-upon semantic concept. The value used is typically chosen from a set of unique 507
coded values enumerating related concepts. CVA is in support of the second pass of a two-pass 508
validation strategy, where the “first pass” confirms the structural and lexical constraints of a document and 509
the “second pass” confirms the value constraints of a document. 510
 511
The “first pass” can be accomplished with an XML document schema language such as W3C Schema or 512
ISO/IEC 19757-2 RELAX NG; “the second pass” is accomplished with a transformation language such as 513
a W3C XSLT 1.0 stylesheet or a Python program. In this specification, the second pass is an 514
implementation of ISO/IEC 19757-3 Schematron schemas that are utilised by CVA. 515
 516
ISO Schematron is a powerful and yet simple assertion-based schema language used to confirm the 517
success or failure of a set of assertions made about XML document instances. One can use ISO 518
Schematron to express assertions supporting business rules and other limitations of XML information 519
items so as to aggregate sets of requirements for the value validation of documents. 520
 521
In the figure below, “Methodology context association” depicts a file of context/value associations in the 522
lower centre, where each association specifies for information items in the document instance being 523
validated which lists of valid values in external value list expressions are to be used. 524
 525

 526

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 21 of 68

The synthesis of a pattern of ISO Schematron assertions to validate the values found in document 527
contexts, and the use of ISO Schematron to validate those assertions are illustrated in “Methodology 528
overview” figure below. 529

 530
To feed the ISO Schematron process, one needs to express the contexts of information items and the 531
values used in those contexts. CVA prescribes an XML vocabulary to create instances that express such 532
associations of values for contexts. The stylesheets provided with CVA read these instances of 533
context/value associations that point to externally-expressed lists of values and produce an ISO 534
Schematron pattern of assertions that can then be combined with other patterns for business rule 535
assertions to aggregate all document value validation requirements into a single process. The validation 536
process is then used against documents to be validated, producing for each document a report of that 537
document's failures of assertions. 538
By using CVA, users can use a default code list values for data exchange by adding more values to the 539
default code list or restricting the values in the default code lists by defining constraints and business 540
rules. 541

3.4.3.3 Code List Representation in Genericode (Option 2) – An Example 542

The following example shows Genericode representation of code list for SubDivisionTypeList represented 543
in a file called “SubDivisionTypeList.gc”. 544

<CodeList> 545
 <SimpleCodeList> 546
 <Row> 547
 <Value ColumnRef=”code”> 548
 <SimpleValue>Department</SimpleValue> <!—- code list value - 549
 </Value> 550
 <Value ColumnRef=”name”> 551
 <SimpleValue>Department</SimpleValue> <!—- description of the value- 552

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 22 of 68

 </Value> 553
 </Row> 554
 <Row> 555
 <Value ColumnRef=”code”> 556
 <SimpleValue>Division</SimpleValue> 557
 </Value> 558
 <Value ColumnRef=”name”> 559
 <SimpleValue>Division</SimpleValue> 560
 </Value> 561
 </Row> 562
 563
 <<Row> 564
 <Value ColumnRef=”code”> 565
 <SimpleValue>Branch</SimpleValue> 566
 </Value> 567
 <Value ColumnRef=”name”> 568
 <SimpleValue>Branch</SimpleValue> 569
 </Value> 570
 </Row> 571
 <Row> 572
 <Value ColumnRef=”code”> 573
 <SimpleValue>BusinessUnit</SimpleValue> 574
 </Value> 575
 <Value ColumnRef=”name”> 576
 <SimpleValue>BusinessUnit</SimpleValue> 577
 </Value> 578
 </Row> 579
 <Row> 580
 <Value ColumnRef=”code”> 581
 <SimpleValue>Section</SimpleValue> 582
 </Value> 583
 <Value ColumnRef=”name”> 584
 <SimpleValue>Section</SimpleValue> 585
 </Value> 586
 </Row> 587
 </SimpleCodeList> 588
</CodeList> 589

 590

3.4.3.4 Customising Genericode based Code Lists (Option 2) 591

Taking the same example of customising code lists in Option 1, OrganisationNameTypeList code list will 592
be a separate file called “OrganisationNameTypeList.gc”. To create a completely new set of code lists to 593
replace the default one, a new .gc file with the new set of code list values say, 594
“ReplaceOrganisationNameTypeList.gc” is created. By applying the constraints rule in a separate file, this 595
new code list replaces the default code list. 596
The process of customising the code lists is documented in CVA for code list and value validation. 597

3.4.3.5 CIQ Specifications used as a case study by OASIS Code List TC 598

The OASIS Code List Technical Committee has used OASIS CIQ Specification V3.0’s Name entity 599
(xNL.xsd) as a case study to demonstrate to end users how genericode based code list approach can be 600
used to replace XML schema approach to validate code lists (the default approach used by CIQ 601
Specifications). This document is listed in the reference section. 602

3.4.3.6 References for Option 2 603

Following are the documents that users of CIQ Specifications implementing Genericode based Code List 604
(Option 2) approach MUST read and understand: 605
• OASIS Codelist Representation (Genericode) Version 1.0, Committee Draft Specification 013, 606

November December 2007, http://www.oasis-open.org/committees/codelist http://www.oasis-607
open.org/committees/download.php/26153/oasis-code-list-representation-genericode.pdf 608

http://www.oasis-open.org/committees/download.php/26153/oasis-code-list-representation-genericode.pdf�
http://www.oasis-open.org/committees/download.php/26153/oasis-code-list-representation-genericode.pdf�

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 23 of 68

• Context Value Association, Working Draft 0.21, October November 2007, http://www.oasis-609
open.org/committees/document.php?document_id=25875http://www.oasis-610
open.org/committees/codelist 611

• OASIS Code List Adaptation Case Study (OASIS CIQ), 2007, http://www.oasis-612
open.org/committees/codelist 613

•OASIS Code List Adaptation Case Study (OASIS CIQ), Version 0.3, July 2007, http://www.oasis-614
open.org/committees/document.php?document_id=24813 615

3.5 Code List Packages – Option 1 and Option 2 616

CIQ Specification comes with two sets of supporting CIQ entity XML schema packages, one for Option 1 617
and the other for Option 2 of code lists. To assist users in getting a quick understanding of Option 2, all 618
code lists for CIQ specifications are represented as genericode files along with default constraints, 619
appropriate XSLT to process code lists, and with sample test XML document instance examples. It also 620
contains test scenarios with customised code lists from the default code lists along with business rules, 621
constraints supporting the customised code lists, XSLT and sample XML document instance examples. 622
The CIQ Specification entity schemas (xNL.xsd, xAL.xsd, xPIL.xsd, and xNAL.xsd) for both option 1 and 623
2 are in the same namespaces as users will use one of the two. 624
A separate document titled, “CIQ Specifications V3.0 Package” explains the structure of the CIQ 625
Specifications V3.0 package. 626
Section 7.4 explains the differences between the CIQ Core Entity schemas used in Option 1 and Option 627
2. 628

3.6 Order of Elements and Presentation 629

Order of name elements MUST be preserved for correct presentation (e.g. printing name elements on an 630
envelope). 631
If an application needs to present the name to a user, it MAY not always be aware about the correct order 632
of the elements if the semantics of the name elements are not available. 633

3.6.1 Example – Normal Order 634

Mr Jeremy Apatuta Johnson PhD 635
could be presented as follows 636

<n:PartyName> 637
 <n:PersonName> 638
 <n:NameElement>Mr</n:NameElement> 639
 <n:NameElement>Jeremy</n:NameElement> 640
 <n:NameElement>Apatuta</n:NameElement> 641
 <n:NameElement>Johnson</n:NameElement> 642
 <n:NameElement>PhD</n:NameElement> 643
 </n:PersonName> 644
</n:PartyName> 645

and restored back to Mr Jeremy Apatuta Johnson PhD. 646

Any other order of NameElement tags in the XML fragment could lead to an incorrect presentation of the 647
name. 648

3.7 Data Mapping 649

Mapping data between the xNL schema and a target database is not expected to be problematic as xNL 650
provides enough flexibility for virtually any level of data decomposition. However, the main issue lies in 651
the area of mapping a data provider with a data consumer through xNL. 652
For example, consider a data provider that has a person name in one line (free text and unparsed) and a 653
data consumer that has a highly decomposed data structure for a person’s name requires first name, 654

http://www.oasis-open.org/committees/document.php?document_id=25875�
http://www.oasis-open.org/committees/document.php?document_id=25875�
http://www.oasis-open.org/committees/document.php?document_id=25875�
http://www.oasis-open.org/committees/document.php?document_id=25875�
http://www.oasis-open.org/committees/document.php?document_id=25875�
http://www.oasis-open.org/committees/document.php?document_id=25875�

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 24 of 68

family name and title to reside in their respective fields. There is no way of strong the free text and 655
unparsed data in the target data structure without parsing it first using some smart name parsing data 656
quality parsing/scrubbing tool (there are plenty in the market). Such parsing/scrubbing is expected to be 657
the responsibility of the data consumer under this scenario and importantly, agreeing in advance with the 658
data provider that the incoming data is not parsed. 659

3.7.1 Example – Complex-to-simple Mapping 660

The source database easily maps to the xNL NameElement qualified with the ElementType attribute set 661
to values as in the diagram 662
 663

 664
 665
Source Database 666

NAME MIDDLENAME SURNAME

John Anthony Jackson
 667

xNL 668
 669
<n:PersonName> 670
 <n:NameElement n:ElementType="FirstName">John</n:NameElement> 671
 <n:NameElement n:ElementType="MiddleName">Anthony</n:NameElement> 672
 <n:NameElement n:ElementType="LastName">Jackson</n:NameElement> 673
</n:PersonName> 674

 675
Target Database 676

FULLNAME

John Anthony Jackson

This type of mapping does not present a major challenge as it is a direct mapping from source to xNL and 677
then concatenating the data values to form the full name to be stored in a database field/column. 678

3.7.2 Example – Simple-to-complex Mapping 679

The source database has the name in a simple unparsed form which can be easily mapped to xNL, but 680
cannot be directly mapped to the target database as in the following diagram: 681

 682

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 25 of 68

 683
 684
 685
 686
 687
Source Database 688

FULLNAME

John Anthony Jackson

 689
xNL 690

<n:PersonName> 691
 <n:NameElement>John Anthony Jackson</n:NameElement> 692
</n:PersonName> 693

At this point, the name resolution/parsing software splits John Anthony Jackson into a form acceptable by 694
the target database. 695
 696
Target Database 697

NAME MIDDLENAME SURNAME

John Anthony Jackson

3.8 Data Quality 698

The quality of any information management/processing system is only as good as the quality of the data it 699
processes/stores/manages. No matter how efficient is the process to interoperate data, if the quality of 700
data that is interoperated is poor, the business benefit arising out of the information processing system is 701
expected to be poor. To structurally represent the data, understand the semantics of the data to integrate 702
and interoperate the data, quality of the data is critical. CIQ specifications have been designed with the 703
above principle in mind. 704
xNL schema allows for data quality information to be provided as part of the entity using an attribute 705
DataQuality that can be set to either “Valid” or “Invalid” (default values), if such status is known. If 706
DataQuality attribute is omitted, it is presumed that the validity of the data is unknown. Users can 707
customise the DataQuality code list to add more data quality attributes (e.g. confidence levels) if required. 708
DataQuality attribute refers to the content of a container, e.g. PersonName, asserting that all the values 709
are known to be true and correct in a particular defined period. This specification also has provision to 710
define partial data quality where some parts of the content are correct and some are not or unknown. 711

3.8.1 Example – Data Quality 712

<n:PersonName n:DataQuality="Valid" 713
 n: ValidFrom="2001-01-01T00:00:00" 714
 <n:NameElement>John Anthony Jackson</n:NameElement> 715
</n:PersonName> 716

In this example John Anthony Jackson is known to be the true and correct value asserted by the sender 717
of this data and the validity of the data has been recorded as of 2001-01-01. 718

This feature allows the recipient of data to get an understanding of the quality of data they are receiving 719
and thereby, assists them to take appropriate measures to handle the data according to its quality. 720

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 26 of 68

3.8.2 Data Quality Verification and Trust 721

This specification does not mandate any data verification rules or requirements. It is entirely up to the 722
data exchange participants to establish them. 723
Also, the participants need to establish if the data quality information can be trusted. 724

3.8.3 Data Validation 725

This specification does not mandate any data validation rules or requirements. It is entirely up to the data 726
exchange participants to establish such rules and requirements. 727

3.9 Extensibility 728

All elements in Name, Address and Party namespaces support extensibility by allowing for any number of 729
attributes from a non-target namespace to be added. This is allowed in the XML Schema specifications of 730
CIQ. 731
All elements share the same declaration: 732

<xs:anyAttribute namespace="##other" processContents="lax"/> 733

Although this specification provides an extensibility mechanism, it is up to the participants of the data 734
exchange process to agree on the use of any extensions to the target namespace. Extensions without 735
agreements between parties involved in data exchange will break interoperability. 736
This specification mandates that an application SHOULD not fail if it encounters an attribute from a non-737
target namespace. The application MAY choose to ignore or remove the attribute. 738

3.9.1 Extending the Schemas to Meet Application Specific Requirements 739

CIQ Specifications does its best to provide the minimum required set of elements and attributes that are 740
commonly used independent of applications to define party data (name, address and other party 741
attributes). If specific applications require some additional set of attributes that are not defined in CIQ 742
specifications, then this extensibility mechanism SHOULD be used provided the extensions are agreed 743
with other parties in case of data exchange involving more than one application. If no agreement is in 744
place to manage extensions to the specification, interoperability will not be achieved. Use of this 745
extensibility mechanism SHOULD be governed. 746

3.9.2 Extensibility - Practical Applications 747

3.9.2.1 System-specific Identifiers 748

Participants involved in data exchanges MAY wish to add their system specific identifiers for easy 749
matching of known data, e.g. if system A sends a message containing a name of a person to system B as 750
in the example below 751

<n:PartyName xmlns:b="urn:acme.org:corporate:IDs" b:PartyID="123445"> 752
 <n:PersonName> 753
 <n:NameElement>John Johnson</n:NameElement> 754
 </n:PersonName> 755
</n:PartyName> 756

then Attribute b:PartyID="123445" is not in xNL namespace and acts as an identifier for system A. When 757
system B returns a response or sends another message and needs to include information about the same 758
party, it MAY use the same identifier as in the following example: 759

<n:PartyName xmlns:b="urn:acme.org:corporate:IDs" b:PartyID="123445" /> 760
The response could include the original payload with the name details. 761

 762

 763

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 27 of 68

 764

 765

3.9.2.2 Additional Metadata 766

Sometimes it MAY be required to include some additional metadata that is specific to a particular system 767
or application. Consider these examples: 768

<n:PartyName xmlns:x="urn:acme.org:corporate" x:OperatorID="buba7"> 769
 770

 771
<n:PartyName xmlns:b="urn:acme.org:corporate "> 772
 <n:PersonName> 773
 <n:NameElement b:Corrected="true">John Johnson</n:NameElement> 774
 </n:PersonName> 775
</n:PartyName> 776

In the above examples, “OperatorID” and “Corrected” are additional metadata added to “PartyName” from 777
different namespaces without breaking the structure of the schema. 778

3.10 Linking and Referencing 779

Linking and referencing of different resources such as Party Name or Party Address (internal to the 780
document or external to the document) can be achieved by two ways. It is important for parties involved in 781
data exchange SHOULD decide during design time the approach they will be implementing. 782
Implementing both the options will lead to interoperability problems. Just choose one. The two options 783
are: 784

- Using xLink 785
- Using Key Reference 786

3.10.1 Using xLink [OPTIONAL] 787

CIQ has now included support for xLink style referencing. These attributes are OPTIONAL and so will not 788
impact implementers who want to ignore them. The xLink attributes have been associated with 789
extensible type entities within the CIQ data structure thereby allowing these to be externally referenced to 790
support dynamic value lists. The xBRL (extensible Business Reporting Language) standards community 791
for example, uses this approach extensively to indicate the type values of objects in the data structure. 792
Names can be referenced internally (i.e. within some XML infoset that contains both referencing and 793
referenced elements) through xlink:href pointing at an element with xml:id with a matching value. External 794
entities can also be referenced if they are accessible by the recipient via HTTP(s)/GET. 795
The following example illustrates PartyName elements that reference other PartyName elements that 796
reside elsewhere, in this case outside of the document. 797

<a:Contacts 798
 xmlns:a="urn:acme.org:corporate:contacts" 799
 xmlns:n="urn:oasis:names:tc:ciq:xsdschema:xNL:3.0/20050427" 800
 xmlns:xlink="http://www.w3.org/1999/xlink"> 801
 <n:PartyName xlink:href="http://example.org/party?id=123445" xlink:type="locator"/> 802
 <n:PartyName xlink:href="http://example.org/party?id=83453485" xlink:type="locator"/> 803
</a:Contacts> 804

This example presumes that the recipient of this XML fragment has access to resource 805
http://example.org/party and that the resource returns PartyName element as an XML fragment of 806
text/xml MIME type. 807
Usage of xLink attributes in the CIQ specifications MAY slightly differ from the original xLink specification. 808
See CIQ TC Party Relationships Specification for more information on using xLink with xNL [Not available 809
in this version]. The xLink specification is available at http://www.w3.org/TR/xlink/. 810

http://www.w3.org/TR/xlink/�

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 28 of 68

Element PartyName can be either of type locator or resource in relation to xLink. 811
Implementers are not restricted to only using XLink for this purpose - for example the xlink:href attribute 812
MAY be re-used for a URL to a REST-based lookup, and so forth. The intent is to provide additional 813
flexibility for communities of practice to develop their own guidelines when adopting CIQ. 814

3.10.2 Using Key Reference [OPTIONAL] 815

This approach MAY be used for internal references (i.e. within some XML infoset that contains both 816
referencing and referenced elements). Two keys are used to reference an entity namely, Party and 817
Address. Two keys are: 818
1. Key – Primary Key of the entity, and 819
2. KeyRef – Foreign Key to reference an entity 820
The following example illustrates PartyName elements that reference other PartyName elements that 821
reside elsewhere, in this case inside the document. 822

<c:Customers 823
 xmlns:c="urn:acme.org:corporate:customers" 824
 xmlns:a="urn:oasis:names:tc:ciq:xal:3" 825
 xmlns:n="urn:oasis:names:tc:ciq:xnl:3" 826
 xmlns:p="urn:oasis:names:tc:ciq:xpil:3" 827
 <p:Party PartyKey=”111”> 828
 <n:PartyName> 829
 <n:PersonName> 830
 <n:NameElement n:ElementType=”FirstName”>Ram</n:NameElement> 831
 <n:NameElement n:ElementType=”LastName”>Kumar</n:LastName> 832
 </n:PersonName> 833
 </n:PartyName> 834

 <p:Party p:PartyKey=”222”> 835
 <n:PartyName> 836
 <n:PersonName> 837
 <n:NameElement n:ElementType=”FirstName”>Joe</n:NameElement> 838
 <n:NameElement n:ElementType=”LastName”>Sullivan</n:LastName> 839
 </n:PersonName> 840
 </n:PartyName> 841
 </p:Party> 842
 <c:Contacts> 843
 <c:Contact c:PartyKeyRef=”222”> 844
 <c:Contact c:PartyKeyRef=”111”> 845
 <c:/Contacts> 846
</c:Customers> 847

3.11 ID Attribute 848

Attribute ID is used with complex type PersonNameType and elements PersonName and 849
OrganisationName. This attribute allows unique identification of the collection of data it belongs to. The 850
value of the attribute MUST be unique within the scope of the application of xNL and the value MUST be 851
globally unique. The term ‘globally unique’ means a unique identifier that is “mathematically guaranteed” 852
to be unique. For example, GUID (Globally Unique Identifier) is a unique identifier that is based on the 853
simple principle that the total number of unique keys (or) is so large that the possibility of the same 854
number being generated twice is virtually zero. 855
This unique ID attribute SHOULD be used to uniquely identify collections of data as in the example below: 856
Application A supplies an xNL fragment containing some PersonName to Application B. The fragment 857
contains attribute ID with some unique value. 858

<n:PartyName n:ID="52F89CC0-5C10-4423-B367-2E8C14453926"> 859
 <n:PersonName> 860
 <n:NameElement>Max Voskob</n:NameElement> 861
 </n:PersonName> 862
 <n:OrganisationName> 863
 <n:NameElement>Khandallah Laundering Ltd.</n:NameElement> 864
 </n:OrganisationName> 865
</n:PartyName> 866

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 29 of 68

 867

If Application B decides to reply to A and use the same xNL fragment it need only provide the outer 868
element (n:PartyName in this case) with ID as the only attribute. 869

<n:PartyName n:ID="52F89CC0-5C10-4423-B367-2E8C14453926" /> 870
Application A should recognise the value of ID, so no additional data is required from B in relation to this. 871

The exact behaviour of the ID attribute is not specified in this document and is left to the users to decide 872
and implement. 873
The difference between the ID attribute and xLink attributes is that ID attribute cannot be resolved to a 874
location of the data – it identifies already known data. 875

3.12 Schema Conformance 876

Any XML documents produced MUST conform to the CIQ Specifications Schemas namely, xNL.xsd, 877
xAL.xsd, xNAL.xsd and xPIL.xsd i.e. the documents MUST be successfully validated against the 878
Schemas. This assumes that the base schemas MUST be modified. 879
If Option 2 for Code List is used, all genericode files MUST conform to the Genericode XML Schema, i.e. 880
all genericode files MUST successfully validate against the schema. 881
Any customisation of the code list files based on Option 1 MUST be well formed schemas. 882

3.13 Schema Customisation Guidelines 883

The broad nature and cultural diversity of entity “Name” makes it very difficult to produce one schema that 884
would satisfy all applications and all cultures while keeping the size and complexity of the schema 885
manageable. This specification allows some changes to the schema by adopters of the schema to fit their 886
specific requirements and constraints. However, note that any change to the schema breaks the CIQ 887
Specifications compatibility and so, they MUST NOT be changed. 888

3.13.1 Namespace 889

The namespace identifier SHOULD be changed if it is possible for an XML fragment valid under the 890
altered schema to be invalid under the original schema. 891

3.13.2 Reducing the Entity Schema Structure 892

Users SHOULD retain the minimum structure of Name entity as in the following diagram: 893

 894
This structure allows for most names to be represented, with exception for 895

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 30 of 68

• organisation subdivision hierarchy (SubdivisionName), e.g. faculty / school / department 896
Any further reduction in structure MAY lead to loss of flexibility and expressive power of the schema. 897
Users MUST NOT remove any attributes from the schema. Attributes in the schema can be easily ignored 898
during the processing. 899
 900
 901
 902
 903
 904

3.13.2.1 Implications of changing Name Entity Schema 905

Any changes to the Name Entity schema (xNL.xsd) are likely to break the compatibility one way or 906
another. 907
It MAY be possible that an XML fragment created for the original schema is invalid for the altered schema 908
or vice versa. This issue SHOULD be considered before making any changes to the schema that could 909
break the compatibility. 910

3.13.3 Customising the Code Lists/Enumerations of Name 911

Meeting all requirements of different cultures and ethnicity in terms of representing the names in one 912
specification is not trivial. This is the reason why code lists/enumerations are introduced in order to keep 913
the specification/schema simple, but at the same time provide the flexibility to adapt to different 914
requirements. 915
The values of the code lists/enumerations can be changed or new ones added as required. 916

NOTE: The code list/enumeration values for different enumeration lists that are 917
provided as part of the specification are not complete. They only provides some 918
sample values (and in most cases no values) and it is up to the end users to 919
customise them to meet their data exchange requirements if the default values are 920
incomplete, not appropriate or over kill 921

This level of flexibility allows some customisation of the schema through changing the code 922
list/enumerations only, without changing the basic structure of the schema. It is important to ensure that 923
all schema users involved in data exchange use the same code list/enumerations for interoperability to be 924
successful. This has to be negotiated between the data exchange parties and a proper governance 925
process SHOULD be in place to manage this process. 926

3.13.4 Using the Methodology to customise Name Schema to meet 927
application specific requirements 928

The other approach to customise the CIQ Name schema (includes other entity schemas namely Party 929
and Address) without touching it is by using CVA. In this approach, one can use Schematron patterns to 930
define assertion rules to customise the xNL.xsd schema without modifying it. For example, it is possible to 931
customise xNL.xsd schema to restrict the use of elements, the occurrence of elements, the use of 932
attributes, and the occurrence of attributes, making elements and attributes mandatory, etc. 933
So, users who believe that many elements and attributes in the CIQ specifications are overwhelming to 934
what their requirements are, can define business rules using Schematron patterns to constraint the CIQ 935
base entity schemas. By constraining the CIQ schemas, users get two major benefits: 936
• CIQ Specifications that are tailored indirectly with the help of business rules to meet specific 937

application requirements 938
• Applications that use the customised CIQ Specifications with the help of business rules are still 939

compliant with the CIQ Specifications. 940

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 31 of 68

Therefore, by CIQ specifications providing two options for customising schemas (Option 1 and Option 2), 941
the specifications are powerful to address any specific application requirements for party information. 942

NOTE: The business rules used to constraint base schemas SHOULD be agreed by all 943
the parties that are involved in CIQ based data exchange to ensure 944
interoperability and the rules SHOULD be governed. 945

 946
 947
 948

3.13.4.1 Constraining Name Schema using CVA – An Example 949

xNL.xsd uses “NameElement” element as part of “PersonName” element to represent the name of a 950
person and this is supported by using the attribute “ElementType” to add semantics to the name. Let us 951
look at the following example: 952

<n:PersonName> 953
 <n:NameElement n:ElementType=”FirstName>Paruvachi</n:NameElement> 954
 <n:NameElement n:ElementType=”FirstName>Ram</n:NameElement> 955
 <n:NameElement n:ElementType=”MiddleName>Kumar</n:NameElement> 956
 <n:NameElement n:ElementType=”LastName>Venkatachalam</n:NameElement> 957
 <n:NameElement n:ElementType=”LastName>Gounder</n:NameElement> 958
</n:PersonName> 959

In the above example, there is no restriction on the number of times First Name and Last Name can occur 960
as per xNL.xsd schema grammar. Some applications might want to apply strict validation and constraint 961
rules on the xNL.xsd schema to avoid use of First Name and Last Name values to data at least once and 962
no more than once. This is where CVA can be used to define business rules to constraint the xNL.xsd 963
schema without modifying the xNL.xsd schema. The business rule code defined using Schematron 964
pattern for the above constraint is given below: 965

<rule context=”n:PersonName[not(parent::n:PartyName)]”> 966
 <assert test=count(n:NameElement [@n:ElementType=’FirstName’]=1” 967
 >Must have exactly one FirstName component</assert> 968
 <assert test=count(n:NameElement[@n:ElementType=’LastName’])=1” 969
 >Must have exactly one LastName component</assert> 970
</rule> 971

When first pass validation (structure validation) is performed on the above sample XML instance 972
document, the document is valid against the xNL.xsd. During second pass validation (business rule 973
constraint and value validation) on the above XML instance document, the following error is reported: 974

Must have exactly one FirstName component 975
Must have exactly one LastName component 976

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 32 of 68

4 Entity “Address” (extensible Address Language) 977

Entity “Address” has been modelled independent of any context as a standalone class to reflect some 978
common understanding of concepts “Location” and “Delivery Point”. 979
The design concepts for “Address” are similar to “Name”. Refer to section 2.4 Common Design Concepts 980
for more information. 981

4.1 Semantics of “Address” 982

The high level schema elements of xAL schema are illustrated in the diagram in the next page. 983
An address can be structured according to the complexity level of its source. 984

4.1.1 Example – Minimal Semantics (Unstructured/Free Text Data) 985

Suppose that the source database does not differentiate between different address elements and treats 986
them as Address Line 1, Address Line 2, Address Line “N”, the address information can then be placed 987
inside a free text container (element FreeTextAddress). 988

<a:Address> 989
 <a:FreeTextAddress> 990
 <a:AddressLine>Substation C</a:AddressLine> 991
 <a:AddressLine >17 James Street</a:AddressLine > 992
 <a:AddressLine>SPRINGVALE VIC 3171</a:AddressLine> 993
 </a:FreeTextAddress> 994
</a:Address> 995

It is up to the receiving application to parse this address and map it to the target data structure. It is 996
possible that some sort of parsing software or human involvement will be required to accomplish the task. 997
Data represented in this free formatted text form is classified as “poor quality” as it is subject to different 998
interpretations of the data and will cause interoperability problems. 999

Many common applications fall under this category. 1000

4.1.2 Example – Partial Semantics (Partially Structured Data) 1001

Assume that the address was captured in some semi-structured form such as State, Suburb and Street. 1002

<a:Address> 1003
 <a:AdministrativeArea> 1004
 <a:Name>WA</a:Name> 1005
 </a:AdministrativeArea> 1006
 <a:Locality> 1007
 <a:Name>OCEAN REEF</a:Name> 1008
 </a:Locality> 1009
 <a:Thoroughfare> 1010
 <a:NameElement>16 Patterson Street</a:NameElement> 1011
 </a:Thoroughfare> 1012
</a:Address> 1013

In this example, the free text information resides in containers that provide some semantic information on 1014
the content. E.g. State -> AdministrativeArea, Suburb -> Locality, Street -> Thoroughfare. At the same 1015
time, the Thoroughfare element contains street name and number in one line as free text, which MAY not 1016
be detailed enough for data structures where street name and number are separate fields. 1017

Many common applications fall under this category. 1018

 1019

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 33 of 68

 1020

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 34 of 68

4.1.3 Example – Full Semantics (Fully Structured Data) 1021

The following example illustrates an address structure that was decomposed into its atomic elements: 1022

<a:Address> 1023
 <a:AdministrativeArea a:Type="state"> 1024
 <a:NameElement a:Abbreviation="true" a:NameType="Name">VIC</a:NameElement> 1025
 </a:AdministrativeArea> 1026
 <a:Locality a:Type="suburb"> 1027
 <a:NameElement a:NameType="Name">CLAYTON</a:NameElement> 1028
 <a:SubLocality a:Type="Area"> 1029
 <a:NameElement a:NameType="Name">Technology Park</a:NameElement> 1030
 </a:SubLocality> 1031
 </a:Locality> 1032
 <a:Thoroughfare a:Type="ROAD"> 1033
 <a:NameElement a:NameType="NameandType">Dandenong Road</a:NameElement> 1034
 <a:Number a:IdentifierType="RangeFrom">200</a:Number> 1035
 <a:Number a:IdentifierType="Separator">-</a:Number> 1036
 <a:Number a:IdentifierType="RangeTo">350</a:Number> 1037
 <a:SubThoroughfare a:Type=”AVENUE”> 1038
 <a:NameElement a:NameType="NameAndType">Fifth Avenue</a:NameElement> 1039
 </a:SubThoroughfare> 1040
 </a:Thoroughfare> 1041
 <a:Premises a:Type="Building"> 1042
 <a:NameElement a:NameType="Name">Toshiba Building</a:NameElement> 1043
 </a:Premises> 1044
 <a:PostCode> 1045
 <a:Identifier>3168</a:Identifier> 1046
 </a:PostalCode> 1047
</a:Address> 1048

Few applications and in particular, applications dealing with data quality and integrity, fall under this 1049
category and the quality of data processed by these applications are generally high. 1050

4.2 Data Types 1051

All elements and attributes in xAL schema have strong data types. 1052
All free-text values of elements (text nodes) and attributes are constrained by a simple type 1053
“NormalizedString” (collapsed white spaces) defined in CommonTypes.xsd. Other XML Schema data 1054
types are also used throughout the schema. 1055
Other XML Schema defined data types (e.g. int, string, DateTime) are also used throughout xAL 1056
namespace. 1057

4.3 Code Lists (Enumerations) 1058

Use of code lists/enumerations is identical to use of code lists/enumerations for entity “Name”. Refer to 1059
section 3.3 for more information. 1060
Code Lists used in xAL for Option 1 reside in an “include” file xAL-types.xsd and for option 2 as separate 1061
genericode files. 1062

NOTE: The code list values for different code lists that are provided as part of 1063
the specifications are not complete. They only provides some sample values (and in 1064
most cases no values) and it is up to the end users to customise them to meet 1065
their data exchange requirements if the default values are incomplete, not 1066
appropriate or an over kill 1067

4.4 Order of Elements and Presentation 1068

Order of address elements MUST be preserved for correct presentation in a fashion similar to what is 1069
described in section 3.6. 1070
 1071

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 35 of 68

4.5 Data Mapping 1072

Mapping data between xAL schema and a database is similar to that of entity “Name” as described in 1073
section 3.7. 1074

4.5.1 Example – Normal Order 1075

23 Archer Street 1076
Chatswood, NSW 2067 1077
Australia 1078

could be presented as follows 1079

<a:Address> 1080
 <a:FreeTextAddress> 1081
 <a:AddressLine>23 Archer Street</a:AddressLine> 1082
 <a:AddressLine>Chatswood, NSW 2067</a:AddressLine> 1083
 <a:AddressLine>Australia</a:AddressLine> 1084
 </a:FreeTextAddress> 1085
</a:Address> 1086

and restored back to 1087

23 Archer Street 1088
Chatswood, NSW 2067 1089
Australia 1090

during data formatting exercise. 1091

Any other order of AddressLine tags in the XML fragment could lead to an incorrect presentation of the 1092
address. 1093

4.6 Data Quality 1094

xAL schema allows for data quality information to be provided as part of the entity using attribute 1095
DataQuality as for entity “Name”. Refer to section 3.8 for more information. 1096

4.7 Extensibility 1097

All elements in Address namespace are extensible as described in section 3.9. 1098

4.8 Linking and Referencing 1099

All linking and referencing rules described in section 3.10 apply to entity “Address”. 1100

4.9 ID Attribute 1101

Use of attribute ID is described in section 3.11. 1102

4.10 Schema Conformance 1103

Schema conformance described in section 3.12 is fully applicable to entity “Address”. 1104
 1105
 1106
 1107
 1108
 1109

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 36 of 68

4.11 Address/Location Referenced By GeoRSS and Coordinates 1110

xAL supports representation of Address/location in two ways namely, 1111
1. By using explicit coordinates with qualifiers for accuracy and precision, and 1112
2. By using the GeoRSS application profile, which expresses decimal degrees coordinates with 1113

accuracy and precision, and is implemented via external namespaces (either ATOM or RSS). 1114
Explicit coordinates are typically available from the process of geo-coding the street addresses. 1115
Coordinates are expressed in the Latitude and Longitude elements, including DegreesMeasure, 1116
MinutesMeasure, SecondsMeasure, and Direction. Data quality is expressed as attributes of coordinates 1117
including Meridian, Datum and Projection. 1118
GeoRSS incorporates a huge body of knowledge and expertise in geographical systems interoperability 1119
that can be reused for our purpose rather than re-inventing what has already been developed. The basic 1120
expression of a:LocationByCoordinate element in xAL.xsd schema has limits in utility for e-commerce 1121
applications. More interoperable expression of coordinate is possible via GeoRSS, due to the ability to 1122
reduce ambiguity introduced by requirements for different coordinate systems, units and measurements, 1123
or the ability to define more complex (non-point) geographic features. 1124
Support for GeoRSS and Location Coordinates for address/locations in xAL.xsd schema is shown in the 1125
following figure. 1126

 1127

4.11.1 Using GeoRSS in xAL Schema 1128

As RSS becomes more and more prevalent as a way to publish and share information, it becomes 1129
increasingly important that location is described in an interoperable manner so that applications can 1130
request, aggregate, share and map geographically tagged feeds. 1131
GeoRSS (Geographically Encoded Objects for RSS feeds) enables geo-enabling, or tagging, "really 1132
simple syndication" (RSS) feeds with location information. GeoRSS proposes a standardised way in 1133

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 37 of 68

which location is encoded with enough simplicity and descriptive power to satisfy most needs to describe 1134
the location of Web content. GeoRSS MAY not work for every use, but it should serve as an easy-to-use 1135
geo-tagging encoding that is brief and simple with useful defaults but extensible and upwardly-compatible 1136
with more sophisticated encoding standards such as the OGC (Open Geospatial Consortium) GML 1137
(Geography Markup Language). 1138
GeoRSS was developed as a collaborative effort of numerous individuals with expertise in geospatial 1139
interoperability, RSS, and standards, including participants in the -- the W3C (World Wide Web 1140
Consortium)1 and OGC (Open Geospatial Consortium)2. 1141
GeoRSS is a formal GML Application Profile, with two flavours: ‘GeoRSS Simple’, which describes a 1142
point, and ‘GeoRSS GML’, which describes four essential types of shapes for geo-referencing (point, line, 1143
box and polygon). 1144
GeoRSS Simple has greater brevity, but also has limited extensibility. When describing a point or 1145
coordinate, GeoRSS Simple can be used in all the same ways and places as GeoRSS GML. 1146
GeoRSS GML supports a greater range of features, notably coordinate reference systems other than 1147
WGS84 latitude/longitude. It is designed for use with Atom 1.0, RSS 2.0 and RSS 1.0, although it can be 1148
used just as easily in non-RSS XML encodings. 1149
Further detailed documentation and sample xml implementation information are published on the sites 1150
listed below: 1151
• http://georss.org/ 1152
• http://georss.org/gml 1153
• http://georss.org/atom 1154
The UML model for the GeoRSS application schema and the XML schema is shown below: 1155

 1156

1 OGC – www.opengeospatial.net
2 W3C – www.w3c.org

http://georss.org/�
http://georss.org/gml�
http://georss.org/atom�
http://georss.org/graphics/georss-appschema-uml.png�
http://georss.org/graphics/georss-appschema-uml.png�

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 38 of 68

 1157
GeoRSS is supported by an element a:GeoRSS in xAL.xsd schema as a non target namespace. The 1158
content of a:GeoRSS must comply with the following requirements: 1159
• Be from the GeoRSS/GML/Atom namespace 1160
• Refer to finest level of address details available in the address structure that a:GeoRSS belongs to 1161
• Be used unambiguously so that there is no confusion whether the coordinates belong to the postal 1162

delivery point (e.g. Post Box) or a physical address (e.g. flat) as it is possible to have both in the 1163
same address structure. 1164

There is no restriction on the shape of the area, a:GeoRSS can describe be it a point, linear feature, 1165
polygon or a rectangle. 1166

4.11.1.1 GeoRSS - Example 1167

The following are GeoRSS examples and demonstrate what GeoRSS Simple and GeoRSS GML 1168
encodings look like. The location being specified is city center Ft. Collins. 1169

Simple GeoRSS: 1170

<georss:point>40.533203 -105.0712</georss:point> 1171
 1172

GML GeoRSS: 1173

<GeoRSS:where> 1174
 <gml:Point> 1175
 <gml:pos>40.533203 -105.0712</gml:pos> 1176
 </gml:Point> 1177
<GeoRSS:where> 1178

These examples are in XML. However, RSS and GeoRSS are general models that can also be 1179
expressed in other serializations such as Java, RDF or XHTML. 1180

 1181

 1182

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 39 of 68

4.11.1.2 GeoRSS GML – Example 1183

A good way to describe a trip that has many places of interest like a boat trip or a hike is to specify the 1184
overall trip's path with a line as a child of the <feed>. Then mark each location of interest with a point in 1185
the <entry>. 1186

<feed xmlns="http://www.w3.org/2005/Atom" 1187
 xmlns:georss="http://www.georss.org/georss" 1188
 xmlns:gml="http://www.opengis.net/gml"> 1189
 <title>Dino's Mt. Washington trip</title> 1190
 <link href="http://www.myisp.com/dbv/"/> 1191
 <updated>2005-12-13T18:30:02Z</updated> 1192
 1193
 <author> 1194
 <name>Dino Bravo</name> 1195
 <email>dbv@example.org</email> 1196
 </author> 1197
 1198
 <id>http://www.myisp.com/dbv/</id> 1199
 1200
 <georss:where> 1201
 <gml:LineString> 1202
 <gml:posList> 1203
 45.256 -110.45 46.46 -109.48 43.84 -109.86 45.8 -109.2 1204
 </gml:posList> 1205
 </gml:LineString> 1206
 </georss:where> 1207
 1208
 <entry> 1209
 <title>Setting off</title> 1210
 <link href="http://www.myisp.com/dbv/1"/> 1211
 <id>http://www.myisp.com/dbv/1</id> 1212
 <updated>2005-08-17T07:02:32Z</updated> 1213
 <content>getting ready to take the mountain!</content> 1214
 <georss:where> 1215
 <gml:Point> 1216
 <gml:pos>45.256 -110.45</gml:pos> 1217
 </gml:Point> 1218
 </georss:where> 1219
 </entry> 1220
 1221
 <entry> 1222
 <title>Crossing Muddy Creek</title> 1223
 <link href="http://www.myisp.com/dbv/2"/> 1224
 <id>http://www.myisp.com/dbv/2</id> 1225
 <updated>2005-08-15T07:02:32Z</updated> 1226
 <content>Check out the salamanders here</content> 1227
 <georss:where> 1228
 <gml:Point> 1229
 <gml:pos>45.94 -74.377</gml:pos> 1230
 </gml:Point> 1231
 </georss:where> 1232
 </entry> 1233
</feed> 1234

4.11.2 Defining Location Coordinates in xAL Schema 1235

If end users feel that GeoRSS GML is “overkill” or complex for their requirement and instead, want to just 1236
define the coordinates for location/address, xAL.xsd schema provides a default set of basic and 1237
commonly used elements representing explicit location coordinates through the element 1238
a:LocationByCoordinates. 1239
a:LocationByCoordinates element provides attributes namely, Datum, type of code used for Datum, 1240
Meridian, type of code used for Meridian, Projection and type of code used for Projection. 1241
a:LocationByCoordinates/a:Latitude and a:LocationByCoordinates/a:Longitude elements provide 1242
attributes namely, DegreesMeasure, MinutesMeasure, SecondsMeasure, and Direction. 1243
 1244

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 40 of 68

4.12 Schema Customisation Guidelines 1245

Schema customisation rules and concepts described in section 3.13 are fully applicable to entity 1246
“Address”. 1247

4.12.1 Customising the Code Lists/Enumerations of Address 1248

Addressing the 240+ country address semantics in one schema and at the same time keeping the 1249
schema simple is not trivial. Some countries have a city and some do not, some countries have counties, 1250
provinces or villages and some do not, some countries use canal names to represent the property on the 1251
banks of the canal, and, some countries have postal codes and some do not. 1252
Key components of international addresses that vary from country to country are represented in the 1253
specification using the schema elements namely, Administrative Area, Sub Administrative Area, Locality, 1254
Sub Locality, Premises, Sub Premises, Thoroughfare, and Postal Delivery Point. CIQ TC chose these 1255
names because they are independent of any country specific semantic terms such as City, Town, State, 1256
Street, etc. Providing valid and meaningful list of code lists/enumerations as default values to these 1257
elements that covers all countries is not a trivial exercise and therefore, this exercise was not conducted 1258
by CIQ TC. Instead, these elements are customisable using code lists/enumerations by end users to 1259
preserve the address semantics of each country which assists in improving the semantic quality of the 1260
address. To enable end users to preserve the meaning of the address semantics, the specification 1261
provides the ability to customise the schema using code lists/enumerations without changing the structure 1262
of the schema itself. 1263
For example, “State” defined in the code list/enumeration list for Administrative Area type could be valid 1264
for countries like India, Malaysia and Australia, but not for Singapore as it does not have the concept of 1265
“State”. A value “Nagar” in the code list/enumeration list for Sub Locality type could be only valid for 1266
countries like India and Pakistan. 1267
If there is no intent to use the code list/enumeration list for the above schema elements, the code 1268
list/enumeration list can be ignored. There is requirement that the default values for the enumeration lists 1269
provided by the specification must exist. The list can be empty also. As long as the code list/enumeration 1270
list values are agreed between the parties involved in data exchange (whether data exchange between 1271
internal business system or with external systems), interoperability is not an issue. 1272
In Option 1 of representing code lists, the values clarifying the meaning of geographical entity types (e.g. 1273
AdministrativeAreaType, LocalityAreaType) in xAL.xsd were intentionally taken out of the main schema 1274
file into an “include” file (xAL-types.xsd) to make customisation easier. In Option 2 of Code List 1275
representation, these code lists are represented as separate .gc file in genericode format. 1276
The values of the code lists/enumerations can be changed or new ones added as required. 1277

NOTE: The code list/enumeration values for different code/enumeration lists that are 1278
provided as part of the specifications are not complete. They only provide sample 1279
values (and in most case no values) and it is up to the end users to customise them to 1280
meet their data exchange requirements if the default values are incomplete, not 1281
appropriate or over kill 1282

4.12.1.1 End User Customised Code List - An Example 1283

In the example below, we use the country, Singapore. The default values provided by xAL.xsd for 1284
AdministrativeAreaType enumeration are given below. The user might want to restrict the values to meet 1285
only the address requirements for Singapore. Singapore does not have any administrative areas as it 1286
does not have state, city, or districts or provinces. So, the user can customise the schema by making the 1287
AdministrativeAreaType enumeration as an empty list as shown in the table below. 1288

 1289

 1290

 1291

 1292

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 41 of 68

Original values for “AdministrativeAreaType” Code
List

Customised Values

City

State

Territory

Province

This level of flexibility allows some customisation of the schema through changing the enumerations only, 1293
without changing the basic structure of the schema. It is important to ensure that all schema users 1294
involved in data exchange use the same enumerations for interoperability to be successful. This has to be 1295
negotiated between the data exchange parties and a proper governance process SHOULD be in place to 1296
manage this process. 1297

4.12.1.2 Implications of changing Address Entity Schema 1298

Any changes to the Address Entity schema (xAL.xsd) are likely to break the compatibility one way or 1299
another. 1300
It MAY be possible that an XML fragment created for the original schema is invalid for the altered schema 1301
or vice versa. This issue needs to be considered before making any changes to the schema that could 1302
break the compatibility. 1303

4.12.2 Using CVA to customise CIQ Address Schema to meet application 1304
specific requirements 1305

The other approach to customise the CIQ address schema (xAL.xsd) without modifying it is by CVA. In 1306
this approach, one can use Schematron patterns to define assertion rules to customise CIQ address 1307
schema without modifying it. For example, it is possible to customise CIQ address schema to restrict the 1308
use of address entitties that are not required for a specific country. For example, a country like Singapore 1309
will not need address entities namely, Administrative Area, Sub Administrative Area, Sub Locality, Rural 1310
Delivery and Post Office. These entities can be restricted using Schematron based assertion rules. 1311
Some might want to just use free text address lines and a few of the address entities like locality and 1312
postcode. Schematron assertion rules help users to achieve this. 1313

NOTE: The business rules used to constraint CIQ address schema SHOULD be agreed by 1314
all the parties that are involved in data exchange of CIQ based address data to 1315
ensure interoperability and the rules SHOULD be governed. 1316

4.12.2.1 Constraining CIQ Address Schema using CVA – Example 1 1317

Let us use the country “Singapore” as an example again. Let us say that the country “Singapore” only 1318
requires the following address entities defined in xAL.xsd and does not require the rest of the entities as 1319
they are not applicable to the country: 1320

• Country 1321
• Locality 1322
• Thoroughfare 1323
• PostCode 1324
 1325

 1326

 1327

 1328

 1329

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 42 of 68

This restriction can be achieved without modifying the xAL.xsd schema and by applying the following 1330
schematron pattern rules outside of xAL.xsd schema as follows: 1331

<rule context=”a:Address/*”> 1332
 <assert test=”(name()=’a:Country’) or (name()=’a:PostCode’) or 1333
 (name()=’a.Thoroughfare’) or (name()=’a:Locality’)” 1334
 >Invalid data element present in the document 1335
 </assert> 1336
</rule> 1337

The above simple rule restricts the use of other elements and attributes in xAL.xsd when an XML 1338
instance document is produced and validated. 1339

Now let us take the following XML instance document: 1340

<a:Address> 1341
 <a:Country> 1342
 <a:NameElement>Singapore</a:NameElement> 1343
 </a:Country> 1344
 <a:AdministrativeArea> 1345
 <a:NameElement></a:NameElement> 1346
 </a:AdministrativeArea> 1347
 <a:Locality> 1348
 <a:NameElement>NUS Campus</a:NameElement> 1349
 </a:Locality> 1350
 <a:Thoroughfare> 1351
 <a:NameElement>23 Woodside Road</a:NameElement> 1352
 </a:Thoroughfare> 1353
 <a:Premises> 1354
 <a:NameElement></a:NameElement> 1355
 </a:Premises> 1356
 <a:PostCode> 1357
 <a:Identifier>51120</a:Identifier> 1358
 </a:PostCode> 1359
</a:Address> 1360
 1361

When the above document instance is validated using CVA, pass one validation (structure validation 1362
against xAL.xsd) will be successful. Pass two validation (business rules and value validation) will report 1363
the following errors: 1364

Invalid data element present in the document 1365
 :/a:Address/a:AdministrativeArea 1366
Invalid data element present in the document 1367
 :/a:Address/a:Premises 1368

4.12.2.2 Constraining CIQ Address Schema using CVA – Example 2 1369

Let us consider another example where an application requires using only the free text address lines in 1370
xAL.xsd and no other address entities. 1371

This restriction can be achieved without modifying the xAL.xsd schema and by applying the following 1372
schematron pattern rules outside of the schema as follows: 1373

<rule context=”a:Address/*”> 1374
 <assert test=”name()=’a:FreeTextAddress’” 1375
 >Invalid data element present in the document 1376
 </assert> 1377
</rule> 1378

The above simple rule restricts the use of elements and attributes other than “FreeTextAddress” element 1379
in xAL.xsd when an XML instance document is produced and validated. 1380

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 43 of 68

5 Combination of “Name” and “Address” (extensible 1381

Name and Address Language) 1382

xNAL (Name and Address) schema is a container for combining related names and addresses. This 1383
specification recognises two ways of achieving this and they are: 1384

• Binding multiple names to multiple addresses (element xnal:Record) 1385

• Binding multiple names to a single address for postal purposes (element xnal:PostalLabel) 1386

5.1 Use of element xnal:Record 1387

Element xnal:Record is a binding container that shows that some names relate to some addresses as in 1388
the following diagram: 1389

 1390
The relationship type is application specific, but in general it is assumed that a person defined in the xNL 1391
part have some connection/link with an address specified in the xAL part. Use attributes from other 1392
namespace to specify the type of relationships and roles of names and addresses. 1393

5.1.1 Example 1394

Mr H G Guy, 9 Uxbridge Street, Redwood, Christchurch 8005 1395
<xnal:Record> 1396
 <n:PartyName> 1397
 <n:NameLine>Mr H G Guy</n:NameLine> 1398
 </n:PartyName> 1399
 <a:Address> 1400
 <a:Locality> 1401
 <a:Name>Christchurch</a:Name> 1402
 <a:SubLocality>Redwood</a:SubLocality> 1403
 </a:Locality> 1404
 <a:Thoroughfare> 1405
 <a:Number>9</a:Number> 1406
 <a:NameElement>Uxbridge Street</a:NameElement> 1407
 </a:Thoroughfare> 1408
 <a:PostCode> 1409
 <a:Identifier>8005</a:Identifier> 1410
 </a:PostCode> 1411
 </a:Address> 1412
</xnal:Record> 1413

 1414
 1415
 1416
 1417
 1418

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 44 of 68

5.2 Use of element xnal:PostalLabel 1419

Element xnal:PostalLabel is a binding container that provides elements and attributes for information 1420
often used for postal / delivery purposes, as in the following diagram. This has two main containers, an 1421
addressee and the address: 1422

 1423
This structure allows for any number of recipients to be linked to a single address with some delivery 1424
specific elements such as Designation and DependencyName. 1425

5.2.1 Example 1426

Attention: Mr S Mart 1427
Director 1428
Name Plate Engravers 1429
The Emporium 1430
855 Atawhai Drive 1431
Atawhai 1432
Nelson 7001 1433

translates into the following xNAL fragment: 1434

<xnal:PostalLabel> 1435
 <xnal:Addressee> 1436
 <xnal:Designation>Attention: Mr S Mart</xnal:Designation> 1437
 <xnal:Designation>Director</xnal:Designation> 1438

 <n:PartyName> 1439
 <n:NameLine>Name Plate Engravers</n:NameLine> 1440
 </n:PartyName> 1441
 </xnal:Addressee> 1442
 <a:Address> 1443
 <a:Locality> 1444
 <a:Name>Nelson</a:Name> 1445
 <a:SubLocality>Atawhai</a:SubLocality> 1446

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 45 of 68

 </a:Locality> 1447
 <a:Thoroughfare> 1448
 <a:NameElement>Atawhai Drive</a:NameElement> 1449
 <a:Number>855</a:Number> 1450
 </a:Thoroughfare> 1451
 <a:PostCode> 1452
 <a:Identifier>7001</a:Identifier> 1453
 </a:PostCode> 1454
 </a:Address> 1455
</xnal:PostalLabel> 1456

5.3 Creating your own Name and Address Application Schema 1457

Users can use the xNL and xAL constructs and create their own name and address container schema to 1458
meet their specific requirements rather than using a container element called “Record” as in xNAL if they 1459
believe that xNAL schema does not meet their requirements. This is where the power of CIQ 1460
Specifications comes in to play. It provides the basic party constructs to enable users to reuse the base 1461
constructs of CIQ specifications as part of their application specific data model and at the same time 1462
meeting their application specific requirements. 1463
For example, users can create a schema called Customers.xsd that could reuse xNL and xAL to 1464
represent their customers. This is shown in the following figure: 1465

 1466
In the above figure, PersonName is OPTIONAL. 1467
 1468

 1469
In the above figure, “Customer” is of type “Party” as defined in xNL schema. “Customer” is then extended 1470
to include “Address” element that is of type “Address” as defined in xAL schema. 1471
 1472

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 46 of 68

6 Entity “Party” (extensible Party Information 1473

Language) 1474

Entity “Party” encapsulates some most commonly used unique characteristics/attributes of Person or 1475
Organisation, such as name, address, personal details, contact details, physical features, etc. 1476
This assists in uniquely identifying a party with these unique party attributes. 1477
The schema consists of top level containers that MAY appear in any order or MAY be omitted. The 1478
containers are declared globally and can be reused by other schemas. The full schema for defining a 1479
Party can be found in xPIL,xsd file with enumerations in xPIL-types.xsd file for Code List Option 1 and .gc 1480
files for Code List Option 2. See the sample XML files for examples. 1481
xPIL provides a number of elements/attributes that are common to both a person and an organisation 1482
(e.g. account, electronic address identifier, name, address, contact numbers, membership, vehicle, etc). 1483
xPIL provides a number of elements/attributes that are applicable to a person only (e.g. gender, marital 1484
status, age, ethnicity, physical information, hobbies, etc) 1485
xPIL provides a number of elements/attributes that are applicable to an organisation only (e.g. industry 1486
type, registration details, number of employees, etc) 1487

6.1 Reuse of xNL and xAL Structure for Person or Organisation Name 1488
and Address 1489

 “Name” of xPIL schema reuses PartyNameType constructs from xNL namespace and “Address” of the 1490
xPIL schema reuses AddressType construct from xAL namespace as illustrated in the following diagram: 1491

 1492
 1493
The design paradigm for this xPIL schema is similar to those of Name and Address entities. Likewise, it is 1494
possible to combine information at different detail and semantic levels. 1495
 1496
 1497

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 47 of 68

6.2 Party Structures - Examples 1498

The following examples illustrate use of a selection of party constructs. 1499

6.2.1 Example – Qualification Details 1500

<p:Qualifications> 1501
 <p:Qualification> 1502
 <p:QualificationElement 1503
p:Type="QualificationName">BComp.Sc.</p:QualificationElement> 1504
 <p:QualificationElement 1505
p:Type="MajorSubject">Mathematics</p:QualificationElement> 1506
 <p:QualificationElement 1507
p:Type="MinorSubject">Statistics</p:QualificationElement> 1508
 <p:QualificationElement p:Type="Award">Honours</p:QualificationElement> 1509
 <p:InstitutionName> 1510
 <n:NameLine>University of Technology Sydney</n:NameLine> 1511
 </p:InstitutionName> 1512
 </p:Qualification> 1513
</p:Qualifications> 1514

6.2.2 Example – Birth Details 1515

<p:BirthInfo p:BirthDateTime="1977-01-22T00:00:00"/> 1516

6.2.3 Example – Driver License 1517

<p:Document p:ValidTo="2004-04-22T00:00:00"> 1518
 <p:IssuePlace> 1519
 <a:Country> 1520
 <a:Name>Australia</a:Name> 1521
 </a:Country> 1522
 <a:AdministrativeArea> 1523
 <a:Name>NSW</a:Name> 1524
 </a:AdministrativeArea> 1525
 </p:IssuePlace> 1526
 <p:DocumentElement p:Type="DocumentID">74183768C</p:DocumentElement> 1527
 <p:DocumentElement p:Type="DocumentType">Driver License</p:DocumentElement> 1528
 <p:DocumentElement p:Type="Priviledge">Silver</p:DocumentElement> 1529
 <p:DocumentElement p:Type="Restriction">Car</p:DocumentElement> 1530
</p:Document> 1531

6.2.4 Example – Contact Phone Number 1532

<p:ContactNumber p:MediaType="Telephone" p:ContactNature="Business Line" 1533
p:ContactHours="9:00AM - 5:00PM"> 1534
 <p:ContactNumberElement p:Type="CountryCode">61</p:ContactNumberElement> 1535
 <p:ContactNumberElement p:Type="AreaCode">2</p:ContactNumberElement> 1536
 <p:ContactNumberElement p:Type="LocalNumber">94338765</p:ContactNumberElement> 1537
</p:ContactNumber> 1538

6.2.5 Example – Electronic Address Identifiers 1539

<p:ElectronicAddressIdentifiers> 1540
 <p:ElectronicAddressIdentifier p:Type="SKYPE" p:Usage="Personal">rkumar 1541
 </p:ElectronicAddressIdentifiers> 1542
 <p:ElectronicAddressIdentifier p:Type="EMAIL" p:Usage="Business">ram.kumar@email.com 1543
 </p:ElectronicAddressIdentifiers> 1544
 <p:ElectronicAddressIdentifier p:Type="URL" 1545
p:Usage="Personal">http://www.ramkumar.com 1546
 </p:ElectronicAddressIdentifiers> 1547
 1548

 1549

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 48 of 68

6.3 Dealing with Joint Party Names 1550

xPIL schema represents details of a Party. The Party has a name as specified in n:PartyName element. A 1551
“Party” can be a unique name (e.g. A person or an Organisation) or a joint name (e.g. Mrs. Sarah 1552
Johnson and Mr. James Johnson (or) Mrs. & Mr. Johnson). In this case, all the other details of the party 1553
defined using xPIL apply to the party as a whole (i.e. to both the persons in the above example) and not 1554
to one of the Parties (e.g. say only to Mrs. Sarah Johnson or Mr. James Johnson in the example). Also, 1555
all the addresses specified in Addresses element relate to the Party as a whole (i.e. applies to both Mrs. 1556
and Mr. Johnson in this example). 1557
If for example, Mrs. Sarah Johnson and Mr. James Johnson have to be defined separately with their own 1558
unique characteristics (e.g. address, vehicle, etc), then each person SHOULD be defined as an individual 1559
party. 1560

6.4 Representing Relationships with other Parties 1561

xPIL provides the ability to also define simple one to one relationships between a party (person or an 1562
organisation) and other parties (person or organisation). This is shown in the following diagram (an 1563
extract of XML schema). 1564
However, it is strongly advised that users interested in implementing relationships between parties using 1565
CIQ specifications SHOULD use CIQ xPRL (extensible Party Relationships Language) specification 1566
version 3.0 exclusively defined for dealing with party relationships. 1567

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 49 of 68

 1568
Examples of relationships include, Friend, Spouse, Referee, Contact, etc for a person, and Client, 1569
customer, branch, head office, etc for an organisation. 1570
Details of each party involved in the relationship can be defined namely, Person Name, Organisation 1571
Name, Contact Numbers and Electronic Address Identifiers. 1572
The “Relationship” element provides the relationship details between the parties. It’s attribute Status 1573
defines the status of relationship; attribute RelationshipWithPerson defines the type of relationship with 1574
the person (e.g. friend, spouse) if the party is a person; attribute RelationshipWithOrganisation defines 1575
the type of relationship with the organisation (e.g. client, branch, subsidiary) if the party is an organisation; 1576
attributes RelationshipValidFrom and RelationshipValidTo defines the dates of the relationship with the 1577
party. 1578
 1579
 1580
 1581
 1582

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 50 of 68

6.4.1 Example – Person Relationship with other Persons of type “Friend” 1583

<p:Relationships> 1584
 <p:Relationship p:RelationshipWithPersonGroup=”Friend”> 1585
 <p:PartyDetails> 1586
 <p:PersonName> 1587
 <p:NameElement=”FullName”>Andy Chen</NameElement> 1588
 </p:PersonName> 1589
 </p:PartyDetails> 1590
 </p:Relationship> 1591
 <p:Relationship p:RelationshipWithPersonGroup=”Friend”> 1592
 <p:PartyDetails> 1593
 <p:PersonName> 1594
 <p:NameElement=”FullName”>John Freedman</NameElement> 1595
 </p:PersonName> 1596
 </p:PartyDetails> 1597
 </p:Relationship> 1598
 <p:Relationship p:RelationshipWithPersonGroup=”Friend”> 1599
 <p:PartyDetails> 1600
 <p:PersonName> 1601
 <p:NameElement=”FullName”>Peter Jackson</NameElement> 1602
 </p:PersonName> 1603
 </p:PartyDetails> 1604
 </p:GroupRelationship> 1605
</p:Relationships> 1606

6.4.2 Example – Organisation Relationship with other Organisations of type 1607
“Branch” 1608

<p:Relationships> 1609
 <p:Relationship p:PartyType=”Organisation” p:RelationshipWithOrganisation=”Branch”> 1610
 <p:NameLine>XYZ Pty. Ltd</p:NameLine> 1611
 <p:Address> 1612
 <p:FreeTextAddress> 1613
 <p:AddressLine>23 Archer Street, Chastwood, NSW 2067, 1614
 Australia 1615
 </p:AddressLine> 1616
 </p:FreeTextAddress> 1617
 </p:Address> 1618
 </p:Relationship> 1619
 <p:Relationship p:PartyType=”Organisation” p:RelationshipWithOrganisation=”Branch”> 1620
 <p:NameLine>XYZ Pte. Ltd</p:NameLine> 1621
 <p:Address> 1622
 <p:FreeTextAddress> 1623
 <p:AddressLine>15, Meena Rd, K.K.Nagar, Chennai 600078 1624
 India 1625
 </p:AddressLine> 1626
 </p:FreeTextAddress> 1627
 </p:Address> 1628
 </p:Relationshiop> 1629
</p:Relationships> 1630
 1631

6.4.3 Example – Person Relationship with another Person 1632

<p:Relationships> 1633
 <p: Relationship p:RelationsipWithPersonGroup=”Son”> 1634
 <p:PersonName> 1635
 <p:NameElement=”FullName”>Andy Chen</NameElement> 1636
 </p:PersonName> 1637
 </p:Relationship> 1638
</p:Relationships> 1639

 1640

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 51 of 68

6.5 Data Types 1641

All elements and attributes in xPIL schema have strong data types. 1642
All free-text values of elements (text nodes) and attributes are constrained by a simple type 1643
“NormalizedString” (collapsed white spaces) defined in CommonTypes.xsd. Other XML Schema data 1644
types are also used throughout the schema. 1645
Other XML Schema defined data types are also used throughout the schema. 1646

6.6 Code Lists (Enumerations) 1647

Use of code lists/enumerations is identical to use of code lists for entity “Name”. Refer to section 3.3 for 1648
more information. 1649
Code lists/enumerations used in xPIL for code list option 1 reside in an “include” xPIL-types.xsd. Code 1650
lists/enumerations used in xPIL for code list option 2 reside as .gc genericode files. 1651

NOTE: The code list/enumeration values for different code lists/enumeration lists 1652
that are provided as part of the specifications are not complete. They only 1653
provides some sample values (and in most cases no values) and it is up to the end 1654
users to customise them to meet their data exchange requirements if the default 1655
values are incomplete, not appropriate or over kill 1656

6.7 Order of Elements and Presentation 1657

Order of elements without qualifier (@...type attribute) MUST be preserved for correct presentation as 1658
described in section 3.6. 1659

6.8 Data Mapping 1660

Mapping data between xPIL schema and a database is similar to that of entity “Name” as described in 1661
section 3.7. 1662

6.9 Data Quality 1663

xPIL schema allows for data quality information to be provided as part of the entity using attribute 1664
DataQuality as for entity “Name”. Refer to section 3.8 for more information. 1665

6.10 Extensibility 1666

All elements in Party namespaces are extensible as described in section 3.10. 1667

6.11 Linking and Referencing 1668

All linking and referencing rules described in section 3.9 apply to entity “Party”. 1669
The following example illustrates PartyName elements that reference other PartyName element that 1670
resides elsewhere, in this case outside of the document. 1671

<a:Contacts xmlns:a="urn:acme.org:corporate:contacts"> 1672
 <xnl:PartyName xlink:href="http://example.org/party?id=123445"/> 1673
 <xnl:PartyName xlink:href="http://example.org/party?id=83453485"/> 1674
</a:Contacts> 1675

This example presumes that the recipient of this XML fragment has access to resource 1676
“http://example.org/party” (possibly over HTTP/GET) and that the resource returns as PartyName element 1677
as an XML fragment of text/xml MIME type. 1678
Use of attribute ID is described in section 3.11. 1679

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 52 of 68

6.12 Schema Conformance 1680

Schema conformance described in section 3.12 is fully applicable to entity “Party”. 1681

6.13 Schema Customisation Guidelines 1682

Schema customisation rules and concepts described in section 3.13 are fully applicable to entity “Party”. 1683

6.13.1 Customising the Code Lists/Enumerations of Party 1684

If there is no intent to use the code list/enumeration list for the xPIL schema elements, the code 1685
list/enumeration list can be ignored. There is no absolute must rule that the default values for the 1686
enumeration lists provided by the specification must exist. The list can be empty also. As long as the code 1687
list/enumeration list values are agreed between the parties involved in data exchange (whether data 1688
exchange between internal business system or with external systems), interoperability is not an issue. 1689
In Option 1 of representing code lists, the values clarifying the meaning of party element types (e.g. 1690
DocumentType,ElectronicAddressIdentifierType) in xPIL.xsd were intentionally taken out of the main 1691
schema file into an “include” file (xPIL-types.xsd) to make customisation easier. In Option 2 of Code List 1692
representation, these code lists are represented as separate .gc file in genericode format. 1693
The values of the code lists/enumerations can be changed or new ones added as required. 1694

NOTE: The code list/enumeration values for different code/enumeration lists that are 1695
provided as part of the specifications are not complete. They only provide sample 1696
values (and in most case no values) and it is up to the end users to customise them to 1697
meet their data exchange requirements if the default values are incomplete, not 1698
appropriate or over kill 1699

6.13.1.1 End User Customised Code List - An Example 1700

In the example below, we use Identifier element of xPIL.xsd. The default values provided by CIQ 1701
Specification for Identifier type’s enumeration are given below. The user might want to restrict these 1702
values. So, the user can customise the code list for Identifier types by making the 1703
PartyIdentifierTypeEnumeration with the required values as shown in the table below. 1704

Default values for “PartyIdentifierTypeList” Code List Customised values

TaxID TaxID

CompanyID

NationalID

RegistrationID

This level of flexibility allows some customisation of the schema through changing the code 1705
list/enumerations only, without changing the basic structure of the schema. It is important to ensure that 1706
all schema users involved in data exchange use the same cod list/enumerations for interoperability to be 1707
successful. This has to be negotiated between the data exchange parties and a proper governance 1708
process SHOULD be in place to manage this process. 1709

6.13.1.2 Implications of changing Party Entity Schema 1710

Any changes to the Party Entity schema (xPIL.xsd) are likely to break the compatibility one way or 1711
another. 1712
It MAY be possible that an XML fragment created for the original schema is invalid for the altered schema 1713
or vice versa. This issue needs to be considered before making any changes to the schema that could 1714
break the compatibility. 1715

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 53 of 68

6.13.2 Using CVA to customise Party Schema to meet application specific 1716
requirements 1717

The other approach to customise the CIQ party schema (xPIL.xsd) without touching it is by using CVA. In 1718
this approach, one can use Schematron patterns to define assertion rules to customise party schema 1719
without touching or modifying it. For example, it is possible to customise party schema to restrict the use 1720
of party entities (elements and attributes) that are not required for a specific application. These entities 1721
can be restricted using Schematron based assertion rules. 1722

NOTE: The business rules used to constraint CIQ party schema SHOULD be agreed by 1723
all the parties that are involved in data exchange of CIQ based party data to 1724
ensure interoperability and the rules SHOULD be governed. 1725

 1726
 1727
 1728

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 54 of 68

7 Differences between two types of Entity Schemas 1729

for CIQ Specifications 1730

CIQ Specifications comes with two types of entity schemas (xNL.xsd, xAL.xsd, xPIL.xsd, and xNAL.xsd) 1731
based on the type of code lists/enumerations used. The types of code lists/enumerations options used 1732
are: 1733
Option1 (Default): All code lists for an entity represented using XML schema (in one file) and “included” 1734
in the appropriate entity schema (xNL-types.xsd, xAL-types.xsd, xNAL-types.xsd, and xPIL-types.xsd). 1735

 1736
Option 2: Code Lists represented using Genericode structure of OASIS Codelist TC. Each enumeration 1737
list in option 1 is a separate “.gc” file in this option. 1738

7.1 Files for Option 1 (The Default) 1739

Following are the XML schema files provided as default in CIQ Specifications package for Option 1: 1740
• xNL.xsd 1741
• xNL-types.xsd (13 Default Code Lists defined for xNL) 1742
• xAL.xsd 1743
• xAL-types.xsd (32 Default Code Lists defined for xAL) 1744
• xPIL.xsd 1745
• xPIL-types.xsd (60 Default Code Lists defined for xPIL) 1746
• xNAL.xsd 1747
• xNAL-types.xsd (2 Default Code List defined for xNAL) 1748
• CommonTypes.xsd (2 Default Code Lists defined for Common Type for all entities) 1749
• xlink-2003-12-21.xsd 1750
The relationship between the different XML Schemas for Option 1 is shown in the following diagram: 1751

 1752
 1753
 1754
 1755

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 55 of 68

7.2 Files for Option 2 1756

Following are the files provided as default in CIQ Specifications package for Option 2: 1757

7.2.1 XML Schema Files 1758

• xNL.xsd 1759
• xAL.xsd 1760
• xPIL.xsd 1761
• xNAL.xsd 1762
• CommonTypes.xsd 1763
• xlink-2003-12-21.xsd 1764
No *-types.xsd files exist in Option 2 as all the code lists are defined as genericode files. 1765
The relationship between the different schemas for Option 2 is shown in the following figure. As you can 1766
see, the enumeration list XML schemas do not exist. Instead, each CIQ entity (Name, Address, and 1767
Party) has a set of genericode based Code List files (.gc). 1768

 1769

7.2.2 Genericode Based Code List Files 1770

7.2.2.1 For Name (xNL) 1771

12 default genericode based code list files with .gc extension. Each enumeration list in Option 1 is defined 1772
as a separate file in Option 2. 1773

7.2.2.2 For Address (xAL) 1774

32 default genericode based code list files with .gc extension. Each enumeration list in Option 1 is defined 1775
as a separate file in Option 2. 1776

7.2.2.3 For Name and Address (xNAL) 1777

2 default genericode based code list files with .gc extension. The enumeration list in Option 1 is defined 1778
as a separate file in Option 2. 1779

7.2.2.4 For Party (xPIL) 1780

54 default genericode based code list files with .gc extension. Each enumeration list in Option 1 is defined 1781
as a separate file in Option 2. 1782
 1783

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 56 of 68

7.2.2.5 For Common Types 1784

2 default genericode based code list files with .gc extension. 1785

7.3 Namespace Assignment 1786

Both the types of entity schemas (for option 1 and option 2) use the same namespaces to ensure that the 1787
XML instance documents generated from any of these two options are compatible with both types of CIQ 1788
entity XML schemas. 1789

7.4 Differences between CIQ Entity Schemas used in Option 1 and 1790
Option 2 1791

The key difference between the two types of CIQ entity schemas (Option 1 and Option 2) are the 1792
additional metadata information for information item values in XML instances for Option 2. This metadata 1793
information is defined as OPTIONAL attributes. It is not mandatory to have instance level metadata, but 1794
having it allows an instance to disambiguate a code value that might be the same value from two different 1795
lists. An application interpreting a given information item that has different values from different lists MAY 1796
need the user to specify some or the entire list metadata from which the value is found, especially if the 1797
value is ambiguous. 1798
Four types metadata attributes are used in Option 2 entity schema attributes that reference code lists and 1799
they are: 1800
• Ref – corresponds to genericode <ShortName> reference 1801
• Ver – corresponds to genericode <Version> version of the file 1802
• URI – corresponds to genericode <CanonicalUri> abstract identifier for all versions of the code list 1803
• VerURI – corresponds to genericode <CanonicalVersionUri> abstract identifier for this version of the 1804

code list 1805
For detailed explanation of metadata information, read CVA document (http://www.oasis-1806
open.org/committees/document.php?document_id=21324) 1807
The figure below shows “PersonName” element in Option 1 (using xNL-types.xsd for all Name entity 1808
associated code lists) of xNL.xsd: 1809
 1810

http://www.oasis-open.org/committees/document.php?document_id=21324�
http://www.oasis-open.org/committees/document.php?document_id=21324�

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 57 of 68

 1811
The figure below shows PersonName element in Option 2 (using genericode for Name entity associated 1812
code lists) of xNL.xsd with metadata information for genericode based code lists: 1813

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 58 of 68 1814

Metadata Information for “DataQualityType” attribute that
refers to genericode “DataQualityEnumeration.gc” file

Metadata Information for “Type” attribute that refers
to genericode “PersonNameEnumeration.gc” file

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 59 of 68

7.4.1 Compatibility between XML documents produced using Option 1 and 1815
Option 2 CIQ XML Schemas 1816

XML document instances that conform to CIQ XML schemas of Option 1 SHOULD validate against the 1817
CIQ XML schemas of Option 2 without any changes to the XML document. This MAY not true vice versa 1818
as Option 2 CIQ XML schemas provide “metadata attributes” to support genericode and these attributes 1819
MAY be defined in the XML document instance. If these attributes are not defined in the XML document 1820
instance, then validation of the XML document instance against the CIQ XML Schemas of Option 1 1821
SHOULD be successful. 1822

7.4.2 Which Code List Package to Use? Option 1 or Option 2? 1823

User MUST use Option 1 or Option 2, but MUST NOT use both at the same time. The choice of the 1824
Option to use is entirely dependent on user specific requirements. 1825

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 60 of 68

8 Data Exchange and Interoperability 1826

OASIS CIQ TC defines data/information interoperability as follows: 1827
“Getting the right data to the right place at the right time in the right format and in the right 1828
context” 1829
It is the view of the CIQ committee that to enable interoperability of data/information between parties, the 1830
best solution is to parse the data elements into its atomic elements thereby preserving the semantics and 1831
quality of data. By this way the parties involved in data exchange will be in the best position to understand 1832
the semantics and quality of data thereby minimising interoperability issues. How the data will be 1833
exchanged between parties, whether in parsed or unparsed structure, must be negotiated between the 1834
parties to enable interoperability. 1835
One cannot expect interoperability to occur automatically without some sort of negotiation between 1836
parties (e.g. Information Exchange Agreement, whether internal or external to an organisation) involved in 1837
data exchange. Once information exchange agreements between parties are in place, then the 1838
data/information exchange process can be automated. Moreover, the entire information exchange and 1839
interoperability process SHOULD be managed through an effective governance process which SHOULD 1840
involve all the parties involved in the information exchange process. This enables effective and efficient 1841
management of any change to the information exchange process in the future. 1842

8.1 Data Interoperability Success Formula 1843

We at OASIS CIQ TC strongly believe in the following “Data Interoperability Success Formula”: 1844
Data Interoperability = Open Data Architecture + Data Integration + Data Quality + Data 1845
Standards + Data Semantics + Data Governance 1846

All components on the right hand side of the above formula are important for successful data 1847
interoperability. The term “Open” used here indicates artifacts that are independent of any proprietary 1848
solution (e.g. open industry artifacts or artifacts that are open within an enterprise). 1849

8.2 Information Exchange Agreement - Guidelines 1850

To ensure interoperability of CIQ represented data/information between applications/business systems 1851
(whether internal to the organisation or external to the organisation) it is strongly advised that an 1852
information exchange agreement/specification for CIQ SHOULD is in place. This agreement/specification 1853
SHOULD outline in detail the customisation of CIQ specifications. 1854

Following are the features of CIQ specifications that assist in customisation of the specifications to meet 1855
specific application or data exchange requirements, and the details of customisation SHOULD be 1856
documented and agreed (if involving more than one party in data exchange) at application/system design 1857
time to enable automating interoperability of information/data represented using CIQ specifications at 1858
application/system run time: 1859

• List of all elements of CIQ XML Schemas that SHOULD be used in the exchange. This includes 1860
details of which elements are mandatory and which elements are OPTIONAL 1861

• List of all attributes of CIQ XML Schemas that SHOULD be used in the exchange. This includes 1862
details of which attributes are mandatory and which attributes are OPTIONAL 1863

• The approach that will be used for Code Lists (Option 1 or Option 2) 1864
• The code list values that SHOULD be used for each CIQ code lists. This includes updating the default 1865

XML Schemas for code lists (Option 1) with the values to be used and updating the default 1866
genericode based code lists (Option 2) with the values to be used. These code list files SHOULD then 1867
be implemented by all applications/systems involved in data exchange. If genericode based code list 1868
approach (Option 2) is used, then the XSLTs for value validation SHOULD be generated and 1869
implemented by all applications/systems involved in data exchange. 1870

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 61 of 68

• Whether xLink or Key Reference SHOULD be used to reference party, name or address, and the 1871
details 1872

• Whether XML schema SHOULD be extended by using new attributes from a non-target namespace 1873
and if so, details of the additional attributes 1874

• Whether business rules SHOULD be defined to constrain the CIQ XML schemas and if so, details of 1875
the business rules that SHOULD be implemented consistently by all applications/systems involved in 1876
data exchange 1877

Once the agreement is implemented, it is vital that the agreement SHOULD be governed through a 1878
governance process to manage change effectively and efficiently. All parties involved in the data 1879
exchange process SHOULD be key stakeholders of the governance process. 1880
 1881

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 62 of 68

9 Conformance 1882

The keywords "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", “MAY” and "OPTIONAL" interpreted 1883
as described in [RFC2119] are used as the conformance clauses throughout this document. 1884

9.1 Conformance Clauses 1885

9.1.1 Specifications Schema Conformance 1886

Implementation of CIQ Specifications namely the XML Schemas (xNL.xsd, xAL.xsd, xNAL.xsd, and 1887
xPIL.xsd) MUST conform to the specifications if the implementation conforms to as stated in section 3.12. 1888

9.1.2 Specifications Schema Extensibility Conformance 1889

Implementation of CIQ Specifications namely the XML Schemas (xNL.xsd, xAL.xsd, xNAL.xsd, and 1890
xPIL.xsd) by extending them MUST conform as stated in section 3.9. 1891

9.1.3 Specifications Code List Schema Customisation Conformance 1892

Customisation of the Code List XML Schemas (xNL-types.xsd, xAL-types.xsd, xNAL-types.xsd, and xPIL-1893
types.xsd) using Option 1 MUST be well formed. Changes to the default values provided as part of the 1894
specifications is OPTIONAL and MAY be modified by the user. 1895

9.1.4 Interoperability Conformance 1896

Implementation of CIQ Specifications between two or more applications/systems or parties helps achieve 1897
interoperability if the implementation conforms to using the agreed conformance clauses as defined in 1898
sections 9.1.3.1, 9.1.3.2, 9.1.3.3, 9.1.3.4, 9.1.3.5, and 9.1.3.6. 1899

9.1.4.1 Interoperability Conformance - Using Elements and Attributes 1900

Implementation of elements and attributes of CIQ XML Schema enables interoperability if the following 1901
conditions are agreed by two or more parties involved in data exchange and are met: 1902
1. The OPTIONAL elements in the XML Schema that SHOULD be used for implementation and the 1903

OPTIONAL elements in the XML Schema that SHOULD be ignored. See section 8.2. 1904
2. The OPTIONAL attributes in the XML Schema that SHOULD be used for implementation and the 1905

OPTIONAL attributes in the XML Schema that SHOULD be ignored. See section 8.2 . 1906

9.1.4.2 Interoperability Conformance - Extending the Schema 1907

Implementation of the CIQ schema by extending it SHOULD be agreed and managed between two or 1908
more parties involved in the data exchange and MUST be conformed to in order to achieve 1909
interoperability as stated in section 3.9. 1910

9.1.4.3 Interoperability Conformance - Using Code Lists 1911

Implementation of a Code List approach SHOULD be agreed and conformance to the selected approach 1912
between two or more parties involved in the data exchange MUST be achieved in order to ensure 1913
interoperability and this is stated in section 3.4. 1914

9.1.4.4 Interoperability Conformance - Customising the Code Lists 1915

Implementation of the Code List values SHOULD be agreed between two or more parties involved in the 1916
data exchange and MUST be conformed to as agreed in order to ensure interoperability as stated in 1917
section 3.4. 1918

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 63 of 68

9.1.4.5 Interoperability Conformance - Customising the Schema 1919

Customisation of the schema SHOULD be achieved by the following ways: 1920
1. Using Code List values 1921
2. Defining new business rules to constraint the schema 1922
Implementation of the above approaches SHOULD be agreed between two or more parties involved in 1923
the data exchange and MUST be conformed to in order to achieve interoperability as stated in section 1924
3.13. 1925

9.1.4.6 Interoperability Conformance - Data/Information Exchange Agreement 1926

Implementation and conformance of the implementation to the agreed Data/Information Exchange 1927
Agreement between two or more parties involved in the data exchange MUST be achieved to ensure 1928
interoperability as stated in section 8.2. 1929
 1930

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 64 of 68

10 Miscellaneous 1931

10.1 Documentation 1932

Although, all schema files are fully documented using XML Schema annotations it is not always 1933
convenient to browse the schema itself. This specification is accompanied by a set of HTML files auto 1934
generated by XML Spy. Note that not all information captured in the schema annotation tags is in the 1935
HTML documentation. 1936

10.2 Examples 1937

Several examples of instance XML documents for name, address and party schemas are provided as 1938
XML files. The examples are informative and demonstrate the application of this Technical Specification. 1939
The example files and their content are being constantly improved and updated on no particular schedule. 1940

10.3 Contributions from Public 1941

OASIS CIQ TC is open in the way it conducts its business. We welcome contributions from public in any 1942
form. Please, use “Send A Comment” feature on CIQ TC home page (http://www.oasis-1943
open.org/committees/tc_home.php?wg_abbrev=ciq) to tell us about: 1944

• errors, omissions, misspellings in this specification, schemas or examples 1945

• your opinion in the form of criticisms, suggestions, comments, etc 1946

• willingness to contribute to the work of CIQ TC by becoming a member of the TC 1947

• willingness to contribute indirectly to the work of CIQ TC 1948

• provision of sample data that can be used to test the specifications 1949

• implementation experience 1950

• etc. 1951
 1952

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ciq�
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ciq�

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 65 of 68

11 Change Log 1953

The major change to this specification from its earlier release in November 2007 is fix to xAL V3.0 1954
schema. Details about the issue and changes to the xAL schema are explained in the following document 1955
that is provided as part of this release package: 1956
Document Name: “CIQ Specification V3.0 – Address Schema (xAL.xsd) ErrataChanges”, 19 March 2008 1957
File Name: ciq-xal-errata (file ypes: html, pdf or doc) 1958

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 66 of 68

A. Acknowledgements 1959

The following individuals have participated in the creation of version 3.0 of CIQ specifications and are 1960
gratefully acknowledged: 1961
Participants: 1962

 1963

George Farkas XBI Software, Inc Member, CIQ TC

John Glaubitz Vertex, Inc Voting Member, CIQ TC

Hidajet Hasimbegovic Individual Voting Member, CIQ TC

Robert James Individual Former Member, CIQ TC

Ram Kumar Individual Chair and Voting Member, CIQ TC

Graham Lobsey Individual Voting Member, CIQ TC

Joe Lubenow Individual Voting Member, CIQ TC

Mark Meadows Microsoft Corporation Former Member, CIQ TC

John Putman Individual Former Member, CIQ TC

Michael Roytman Vertex, Inc Voting Member, CIQ TC

Colin Wallis New Zealand Government Voting Member, CIQ TC

David Webber Individual Voting Member, CIQ TC

Fulton Wilcox Colts Neck Solutions LLC Member, CIQ TC

Max Voskob Individual Former Member, CIQ TC

 1964
OASIS CIQ Technical Committee (TC) sincerely thanks the public (this includes other standard groups, 1965
organisations and end users) for their continuous feedback and support that helps the TC to work toward 1966
improving the CIQ specifications. 1967
Special thanks to Mr.Ken Holman, Chair of OASIS Code List TC (http://www.oasis-1968
open.org/committees/tc_home.php?wg_abbrev=codelist) for his support, guidance and genericode 1969
implementation assistance to the TC in releasing the OASIS Code List version of CIQ V3.0 XML 1970
Schemas. 1971
Special thanks to Mr.Hugh Wallis, Director of Standards Development of extensible Business Reporting 1972
Language (xBRL) International Standards Group (http://www.xbrl.org) for working closely with the CIQ TC 1973
in jointly implementing W3C xLink specification that is now used by both xBRL and CIQ Specifications to 1974
enable interoperability between the two specifications. 1975
Special thanks to Mr.Carl Reed, Chief Technology Officer of Open Geospatial Consortium (OGC – 1976
http://www.opengeospatial.org) for his guidance and assistance to the TC in referencing the work of OGC 1977
on GeoRSS and Geo-Coordinates for addresses/locations as part of CIQ Address Specifications. 1978
OASIS CIQ TC also acknowledges the contributions from other former members of the TC since its 1979
inception in 2000. 1980
 1981

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=codelist�
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=codelist�
http://www.xbrl.org/�
http://www.opengeospatial.org/�

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 67 of 68

B. Intellectual Property Rights, Patents, Licenses and 1982

Royalties 1983

CIQ TC Specifications (includes documents, schemas and examples1 and 2) are free of any Intellectual 1984
Property Rights, Patents, Licenses or Royalties. Public is free to download and implement the 1985
specifications free of charge. 1986
 1987
1xAL-AustralianAddresses.xml 1988

Address examples come from AS/NZ 4819:2003 standard of Standards Australia and are subject 1989
to copyright 1990

 1991
2xAL-InternationalAddresses.xml 1992

Address examples come from a variety of sources including Universal Postal Union (UPU) website 1993
and the UPU address examples are subject to copyright. 1994

 1995
xLink-2003-12-31.xsd 1996

This schema was provided by the xBRL group in December 2006. 1997
 1998

OASIS CIQ V3.0 Name, Address and Party Public Review Draft 03 08 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 68 of 68

C. Revision History 1999

Revision Date Editor Changes Made

V3.0 PRD 01 13 April 2006 Ram Kumar and Max
Voskob

Prepared 60 days public review draft
from Committee Draft 01

V3.0 PRD 02 15 June 2007 Ram Kumar Prepared second round of 60 days public
review draft from Committee Draft 02 by
including all public review comments
from PRD 01. Also included is
implementation of OASIS Code list
specification

V3.0 PRD 02 R1 18 September
2007

Ram Kumar Inclusion of comments from Public
Review 02

V3.0 CS 15 November
2007

Ram Kumar TC Approved Committee Specification

V3.0 CD 02 18 March 2008 Ram Kumar Inclusion of the xAL Schema Errata

V3.0 PRD 03 08 April 2008 Ram Kumar Public Review Draft for 15 days review

 2000
 2001
 2002
 2003

