
OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 1 of 57

OASIS Content Assembly Mechanism
Specification Version 1.1
OASIS Standard

1 June 2007
Specification URIs:
This Version:

Hhttp://docs.oasis-open.org/cam/v1.1/os/OASIS-CAM-Specification-1_1-015-060107.html
Hhttp://docs.oasis-open.org/cam/v1.1/os/OASIS-CAM-Specification-1_1-015-060107.docH
Hhttp://docs.oasis-open.org/cam/v1.1/os/OASIS-CAM-Specification-1_1-015-060107.pdfH

Previous Version:
Hhttp://docs.oasis-open.org/cam/v1.1/cs01/OASIS-CAM-Specification-1_1-015-041007.htmlH
Hhttp://docs.oasis-open.org/cam/v1.1/cs01/OASIS-CAM-Specification-1_1-015-041007.docH
Hhttp://docs.oasis-open.org/cam/v1.1/cs01/OASIS-CAM-Specification-1_1-015-041007.pdfH

Latest Version:
Hhttp://docs.oasis-open.org/cam/v1.1/OASIS-CAM-specification-v1_1.htmlH
Hhttp://docs.oasis-open.org/cam/v1.1/OASIS-CAM-specification-v1_1.doc
Hhttp://docs.oasis-open.org/cam/v1.1/OASIS-CAM-specification-v1_1.pdfH

Latest Approved Version:
Hhttp://docs.oasis-open.org/cam/OASIS-CAM-specification.html H
Hhttp://docs.oasis-open.org/cam/OASIS-CAM-specification.doc
Hhttp://docs.oasis-open.org/cam/OASIS-CAM-specification.pdfH

Technical Committee:
HOASIS Content Assembly Mechanism TC

Chair(s):
David RR Webber

Editor(s):
Martin Roberts
David RR Webber

Related work:
This specification replaces or supercedes:

• OASIS CAM v1.0 committee specification

This specification is related to:
• OASIS ebXML specifications (ISO 15000)
• OASIS web services specifications
• W3C XPath, namespaces, XSD and XML specifications

Declared XML Namespace(s):
xmlns:as=Hhttp://docs.oasis-open.org/cam/xmlnsH
asm1, asm2, asm3, default namespaces placeholders as needed

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 2 of 57

Abstract:
The Content Assembly Mechanism (CAM) provides an open XML based system for using business rules
to define, validate and compose specific business documents from generalized schema elements and
structures.
A CAM rule set and document assembly template defines the specific business context, content
requirement, and transactional function of a document. A CAM template must be capable of consistently
reproducing documents that can successfully carry out the specific transactional function that they were
designed for. CAM also provides the foundation for creating industry libraries and dictionaries of schema
elements and business document structures to support business process needs.
The core role of the OASIS CAM specifications is therefore to provide a generic standalone content
assembly mechanism that extends beyond the basic structural definition features in XML and schema to
provide a comprehensive system with which to define dynamic e-business interoperability.

Status:
This document was last revised or approved by the Content Assembly Mechanism TC on the above date.
The level of approval is also listed above. Check the “Latest Version” or “Latest Approved Version”
location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical Committee’s
email list. Others should send comments to the Technical Committee by using the “Send A Comment”
button on the Technical Committee’s web page at Hhttp://www.oasis-open.org/committees/cam
The CAM TC work is operating on an open license approach charter with unencumbered content, see the
Technical Committee web page at Hhttp://www.oasis-open.org/committees/cam/charter.phpH
For information relating to disclosure of patents pertaining to the CAM TC work, and if any such
contributing member statements exist, please refer to the Intellectual Property Rights section of the
Technical Committee web page (Hhttp://www.oasis-open.org/committees/cam/ipr.phpH).
The non-normative errata page for this specification is located at Hhttp://www.oasis-
open.org/committees/cam/

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 3 of 57

Notices
Copyright © OASIS® 1993–2007. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS", “Content Assembly Mechanism (CAM)” are trademarks of OASIS, the owner and
developer of this specification, and should be used only to refer to the organization and its official outputs.
OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to
enforce its marks against misleading uses. Please see Hhttp://www.oasis-open.org/who/trademark.phpH for
above guidance.

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 4 of 57

Table of Contents
1 Introduction 6

1.1 Terminology 7
1.2 Normative References 7
1.3 Non-Normative References 7
1.4 Terms and Definitions 7
1.5 Symbols and Abbreviations 8

2 Pre-requisites 11
3 Content Assembly Mechanism Technical Specification 12

3.1 Overview 15
3.2 Header declarations 17

3.2.1 Parameters 17
3.2.2 Pseudo Variables 17
3.2.3 Properties 17
3.2.4 Imports 18

3.3 Assembly Structures 18
3.4 Business Use Context Rules 21

3.4.1 XPath syntax functions 29
3.4.2 Handling CDATA content with XPath 30
3.4.3 CAM content mask syntax 30

3.5 Predicate Format Options 39
3.6 In-line use of predicates and references 42
3.7 Advanced Features 46
3.8 Use of namespace declarations 46
3.9 Extending CAM Processors 47

3.9.1 as:Extension 47
3.9.2 Preprocessor Extensions 48
3.9.3 Postprocessor Extensions 48
3.9.4 as:include 48
3.9.5 Template Location defaulting 48
3.9.6 Selection of Assembly Structure 48

3.10 Future Feature Extensions 49
A. Addendum 51

A1.1 CAM schema (W3C XSD syntax) 51
A1.2 CAM Processor Notes (Non-Normative) 51
A1.3 Processing Modes and Sequencing 52

B. Addendum 53
B1.1 CAM extension mechanism example 53

C. Acknowledgements 54
D. Non-Normative Text 55
E. Revision History 56

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 5 of 57

Figures and Tables
Figure 1 - The implementation model for a CAM processor ...6
Figure 2 - Deploying CAM Technology – Context Driven Assembly ..12
Figure 3 - Deploying CAM technology – Context Driven Validation ...13
Figure 4 – Deploying CAM technology – Defining Content Rules and Structures......................................14
Figure 5 - High-level parent elements of CAM (in simple XML syntax) ..15
Figure 6 - Structure for entire CAM syntax at a glance...16
Figure 7 – Example of Structure and format for AssemblyStructure ..19
Figure 8 - Substitution and fixed parameters values, with a well-formed XML structure............................19
Figure 9 - The Assertion predicates for BusinessUseContext ..21
Figure 10 – Syntax example for BusinessUseContext ...23
Figure 11 - Matrix of predicates for BusinessUseContext declarations..25
Figure 12 - XPath Comparator functions ..29
Figure 13 - Matrix of in-line statement commands and predicate commands ..42
Figure 14 - Use of in-line commands with a well-formed XML structure ..45
Figure 15 - An example of namespace declarations for CAM templates ...46

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 6 of 57

1 0BIntroduction 1

The core role of CAM remains the same - defining, composing and validating XML content. The version 1.1 2
of the CAM specification seeks to simplify the original work and more clearly delimit between core normative 3
features and extended non-normative sections and items. Also V1.1 builds from lessons learned over the 4
past two years in developing actual CAM templates. The new approach aligns closely with common industry 5
practice in marshalling and unmarshalling XML content, the XML DOM and allows the use of common XML 6
tools, including rule engines, alongside the CAM toolset. Consequently the CAM toolset now provides a 7
powerful set of typical XML scripted functional components that by default are needed when exchanging XML 8
business transactions. 9
The XML scripting is designed to be obvious, human readable and declarative. This means that the task of 10
providing rule-driven control mechanisms can become open and re-usable across an ebusiness community of 11
practice, not just for localized internal point solutions. This is especially important in today’s web service 12
environments to support the concept of loose-coupling of service interfaces and their associated transaction 13
interchanges. We have also taken into account the W3C and OMG work on rules. 14
The objective in releasing v1.1 is to provide a foundation specification that is simple, clear and easy to 15
implement today. Whereas the new approach now allows integration with specialized tools that link into 16
backend database systems and/or handles specialized structure formats, specialized error handling 17
mechanisms or provide engines for complex rule based logic. In addition support for external context 18
mechanisms are provided to align with business process needs, such as the OASIS ebBP/BPSS. 19
This approach is designed to separate the common sharable needs from the in-house local specializations in 20
a coherent systematic way. This allows implementers to isolate their own point development and still align 21
with common community practice and core business information handling structures and rules. 22
Future extensions to the specification may then build out and provide additional normative tools as extended 23
areas are better formalized and common industry practice establishes itself. An example of the need to 24
develop further normalized specification parts include registry interfacing and marshalling and unmarshalling 25
to and from SQL content repositories. Today these are provided by specialized tools and CAM provides a 26
formal extension mechanism and application programming interface (API) for these non-normative needs. 27
Figure 1 - The implementation model for a CAM processor 28

CAMCAMCAM
XML Parser

/ DOM
XML ParserXML Parser

/ DOM/ DOM

Built-in
Functions
BuiltBuilt--in in

FunctionsFunctions

XPath
handler
XPathXPath

handlerhandler

SQL
persistence

SQL SQL
persistencepersistence Terms

Registry
TermsTerms

RegistryRegistryRule EngineRule EngineRule Engine Post-
Processing

/ Errors

PostPost--
ProcessingProcessing

/ Errors/ Errors

XML-awareXMLXML--awareaware

CAMCAMCAM
XML Parser

/ DOM
XML ParserXML Parser

/ DOM/ DOM

Built-in
Functions
BuiltBuilt--in in

FunctionsFunctions

XPath
handler
XPathXPath

handlerhandler

SQL
persistence

SQL SQL
persistencepersistence Terms

Registry
TermsTerms

RegistryRegistryRule EngineRule EngineRule Engine Post-
Processing

/ Errors

PostPost--
ProcessingProcessing

/ Errors/ Errors

XML-awareXMLXML--awareaware

 29
Referencing Figure 1 - the top-most XML-aware functions are normative components required of a CAM 30
processor to support the core XML-scripting functionality. The lower components are optional tools supported 31
by the pluggable interface that CAM v1.1 provides. Implementers can use local specialized tools as 32
determined by their specific application environment. It is envisioned this implementation model can be 33

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 7 of 57

developed using a variety of modern programming languages and the pluggable interface is supported by 34
tools such as the Apache Foundation Maven technology. This flexibility allows for support of W3C Rule 35
Interchange Format (RIF) and OMG Production Rule Representation (PRR) as applicable. 36

1.1 3BTerminology 37

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, 38
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in 39
RFC2119 (see abbreviation references below). 40
All text is normative unless otherwise labelled. 41

1.2 4BNormative References 42

- XML Path Language (XPath) specifications document, version 1.0, W3C Recommendation 16 November 43
1999, Hhttp://www.w3.org/TR/xpath/H 44

 45
- Extensible Markup Language (XML) specifications document, version 1.1, W3C Candidate 46

Recommendation, 15 October 2002, Hhttp://www.w3.org/TR/xml11/H 47
 48
- XML Schema Definitions (XSD) – [XSD1] XML Schema Part 1: Structures, W3C Recommendation 2 May 49

2001 Hhttp://www.w3.org/TR/xmlschema-1/H 50
Hhttp://www.oasis-open.org/committees/download.php/6248/xsd1.htmlH 51

[XSD2] XML Schema Part 2: Datatypes, W3C Recommendation 2 May 2001 52
Hhttp://www.w3.org/TR/xmlschema-2/H 53
Hhttp://www.oasis-open.org/committees/download.php/6247/xsd2.html 54

- XNL: Specifications & Description Document, OASIS CIQ TC, Hhttp://www.oasis-open.org/committees/ciqH 55
 56
- XAL: Specifications & Description Document, OASIS CIQ TC, Hhttp://www.oasis-open.org/committees/ciq 57
 58
- ISO 16642 – Representing data categories Hhttp://www.loria.fr/projets/TMF/H 59
 60
- CEFACT – Core components specifications - Hhttp://webster.disa.org/cefact-groups/tmg/H 61

1.3 5BNon-Normative References 62

- Jaxen reference site - Hhttp://jaxen.org/H 63
 64
- UN – eDocs resource site - Hhttp://www.unece.org/etrades/unedocs/ 65
 66
- UN – Codelists reference site for eDocs - Hhttp://www.unece.org/etrades/unedocs/codelist.htm 67

1.4 6BTerms and Definitions 68

Assembly model 69
A tree-structured model that can be implemented as a document schema. 70

Class diagram 71
A graphical notation used by H[UML]H to describe the static structure of a system, including object 72
classes and their attributes and associations. 73

Component model 74
A representation of normalized data components describing a potential network of associations and 75
roles between object classes. 76

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 8 of 57

Context 77
The circumstance or events that form the environment within which something exists or takes place. 78

Dependency diagram 79
A refinement of a class diagram that emphasizes the dependent associations between object classes. 80

Document 81
A set of information components that are interchanged as part of a business transaction; for example, 82
in placing an order. 83

Functional dependency 84
A means of aggregating components based on whether the values of a set of properties change 85
when another set of properties changes, that is, whether the former is dependent on the latter. 86

Normalization 87
A formal technique for identifying and defining functional dependencies. 88

Spreadsheet model 89
A representation of an assembly model in tabular form. 90

XSD schema 91
An XML document definition conforming to the W3C XML Schema language H[XSD1]HH[XSD2]H. 92

The terms Core Component (CC), Basic Core Component (BCC), Aggregate Core Component (ACC), 93
Association Core Component (ASCC), Business Information Entity (BIE), Basic Business Information Entity 94
(BBIE), and Aggregate Business Information Entity (ABIE) if used in this specification refer to the meanings 95
given in H[CCTS]H. 96
The terms Object Class, Property Term, Representation Term, and Qualifier are used in this specification with 97
the meanings given in H[ISO11179]H. 98
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, 99
RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as 100
described in H[RFC2119]H. 101

1.5 7BSymbols and Abbreviations 102

ABIE 103
Aggregate Business Information Entity 104

ACC 105
Aggregate Core Component 106

ASBIE 107
Association Business Information Entity 108

ASCC 109
Association Core Component 110

 ASN.1 111
ITU-T X.680-X.683: Abstract Syntax Notation One; ITU-T X.690-X.693: ASN.1 encoding rules 112

Hhttp://www.itu.int/ITU-T/studygroups/com17/languages/X.680-X.693-0207w.zipH 113
Hhttp://www.oasis-open.org/committees/download.php/6320/X.680-X.693-0207w.zipH 114

BBIE 115
Basic Business Information Entity 116

BCC 117

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 9 of 57

Basic Core Component 118

BIE 119
Business Information Entity 120

CC 121
Core Component 122

CCTS 123
UN/CEFACT ebXML Core Components Technical Specification 2.01 124

Hhttp://www.untmg.org/downloads/General/approved/CEFACT-CCTS-Version-2pt01.zipH 125
Hhttp://www.oasis-open.org/committees/download.php/6232/CEFACT-CCTS-Version-2pt01.zipH 126

EAN 127
European Article Numbering Association 128

EDI 129
Electronic Data Interchange 130

ISO 131
International Organization for Standardization 132

ISO11179 133
ISO/IEC 11179-1:1999 Information technology — Specification and standardization of data elements 134
— Part 1: Framework for the specification and standardization of data elements 135

Hhttp://www.iso.org/iso/en/ittf/PubliclyAvailableStandards/c002349_ISO_IEC_11179-1_1999(E).zipH 136
Hhttp://www.oasis-open.org/committees/download.php/6233/c002349_ISO_IEC_11179-137
1_1999%28E%29.pdfH 138

JSDF 139
Java Simple Date Format library 140

NDR 141
UBL Naming and Design Rules (see Appendix B.4) 142

RFC2119 143
Key words for use in RFCs to Indicate Requirement Levels 144

Hhttp://www.faqs.org/rfcs/rfc2119.htmlH 145
Hhttp://www.oasis-open.org/committees/download.php/6244/rfc2119.txt.pdfH 146
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 147
Hhttp://www.ietf.org/rfc/rfc2119.txtH, IETF RFC 2119, March 1997. 148

UML 149
Unified Modeling Language H[UML]H Version 1.5 (formal/03-03-01) 150

Hhttp://www.omg.org/docs/formal/03-03-01.pdfH 151
Hhttp://www.oasis-open.org/committees/download.php/6240/03-03-01.zip 152

UN/CEFACT 153
United Nations Centre for Trade Facilitation and Electronic Business 154

XML 155
Extensible Markup Language H[XML]H 1.0 (Second Edition),W3C Recommendation 6 October 2000 156

Hhttp://www.w3.org/TR/2000/REC-xml-20001006H 157
Hhttp://www.oasis-open.org/committees/download.php/6241/REC-xml-20001006.pdf 158

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 10 of 57

XSD 159
W3C XML Schema Language H[XSD1]H H[XSD2]H 160

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 11 of 57

2 1BPre-requisites 161

 162
These specifications make use of W3C technologies, including the XML V1.0, XML namespaces, W3C 163
Schema V1.0 (XSD) with W3C Schema data types V1.0, and XPath 1.0 recommendations. It should be 164
noted that only a subset of the XPath technology, specifically the locator sections of the XPath specification 165
are utilized. Explicit details of XPath syntax are provided in the body of this specification. A schema definition 166
is provided for the assembly mechanism structure. Knowledge of these technologies is required to interpret 167
the XML sections of this document. 168

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 12 of 57

3 2BContent Assembly Mechanism Technical Specification 169

This section describes the implementation specifications for CAM. As noted above there are three roles to 170
CAM – defining, composing and validating content. Figure 1 shows how implementers can integrate CAM 171
technology into their existing content generation systems, while Figure 2 shows CAM in a content validation 172
role, and then Figure 3 shows defining content rules. 173

Figure 2 - Deploying CAM Technology – Context Driven Assembly 174

Context
Values

Context
Values

Required
Content
Structure

Required
Content

Structure

Process
Engine

Process
Engine Content

References
Content

References

1

Payload /
Rendering
Payload /
Rendering

2

Content
Assembly
Mechanism
Template

Content
Assembly
Mechanism
Template

Payload
Mapping
Payload
Mapping

3

Application
Database

Application
Database

Registry
Components

Registry
Components Conceptual

Logical

Physical
Vocabularies

and
Industry Dictionaries

Vocabularies
and

Industry Dictionaries

Business Re-usable
Information

Components- BRICs

Business Re-usable
Information

Components- BRICs

Structure
Choices

Structure
Choices

 175
 176
In reference to XFigure 2 - Deploying CAM Technology – Context Driven Assembly X, item 1 is the subject of this 177
section, describing the syntax and mechanisms. Item 2 is a process engine designed to implement the CAM 178
logic as an executable software component, and similarly item 3 is the application XML marshalling and 179
unmarshalling component that links the e-business software to the physical business application software and 180
produces the resultant transaction payload for the business process needs. 181
Input to the conceptual model section can come from UML and similar modelling tools to define the core 182
components and relevant re-usable business information components themselves, or can come from existing 183
industry domain dictionaries. 184
The specification now continues with the detailing the physical realization in XML of the CAM template 185
mechanism itself using a fully-featured eBusiness deployment environment example. 186
The Figure 2 shows how CAM can be integrated as a content validation service within a transactional 187
exchange system using partner profiles, context and actions to drive transaction validation. 188

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 13 of 57

 Figure 3 - Deploying CAM technology – Context Driven Validation 189

 190
 191
Referencing the XFigure 3 - Deploying CAM technology – Context Driven Validation X, the business partner (#1) 192
sends business transactions (#2) to the partners messaging server (#3). The messaging envelope (#4) 193
contains the sender action and the data handler (#5) checks that against the partner profiles on record in the 194
Registry (#6). The sender action from the envelope also determines via the CPA (Collaboration Partner 195
Agreement) the CAM template associated with that business process step. The data handler (#5) then 196
invokes the CAM validation services (#7) and passes the references to: the inbound transaction on the 197
receive queue, the sender context and the CAM template. The CAM validation services (#7) then verifies the 198
content and returns either the precise error details found or a valid transaction status back to the data handler 199
for action. Using this configuration allows CAM to act as a context driven validation service that is 200
configurable via the partner CPA, the Sender Action from the message envelope received, and the CAM 201
templates defined for the business process. 202
Then Figure 4 below provides a lower level of detail into the XML script mechanisms required and the 203
business analysis steps that lead to the definition of these contents. 204

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 14 of 57

Figure 4 – Deploying CAM technology – Defining Content Rules and Structures 205

 206
 207
Referencing Figure 4 above the business analyst examines the business transaction schema layouts (#1), the 208
sample production transmissions, and references the industry vocabulary dictionary. Using the CAM template 209
the actual transaction structure required (#2) is defined. This may optionally contain additional context rules 210
(#3) that direct CAM processing based on variables and values (the header section can contain global context 211
declarations). Then noun references may also be created (#4) that cross-reference between the structure 212
elements (#2) and the registry dictionary (#5) and the approved industry noun definitions. Optionally local 213
application validation rules (#6) may also be added that test specific local requirements and also optional (#7) 214
is the application mappings (such as database table columns). Used in this role the CAM template captures 215
the information exchange details in an XML template that can then be shared and referenced between 216
partners and agreed to as the business information requirements. 217
The tools from both Figure 3 and Figure 4 can also be deployed interactively via a web browser interface to 218
allow partners to pre-test, and / or, self-certify prior to production message exchanges being sent. This can 219
provide online interactive tools where sample XML transactions can be tested by upload to a CAM validation 220
tool that applies the selected template and reports online any errors detected. 221

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 15 of 57

3.1 8BOverview 222

The CAM itself consists of four logical sections and the CAM template is expressed in XML syntax. This is 223
shown in figure 5 as high-level XML structure parent elementsF

1
F. 224

Figure 5 - High-level parent elements of CAM (in simple XML syntax) 225
 226

<CAM CAMlevel="1" version="1.1"> 227
 <Header> 228
 <AssemblyStructure/> 229
 <BusinessUseContext/> 230
 <Extension/> <!—Optional, repeatable --> 231
</CAM> 232

 233
The structure sections provide the core of the publically agreed interchange definition between exchange 234
partners - Assembly Structure(s), and Business Use Context Rules. Then the internal pre- or post processing 235
can be referenced as local include extensions as needed for specializations. 236
The optional extensions and includes are envisioned to support specialized non-normative handling that in the 237
prior CAM specification functionality included items such as Content References (with optional associated 238
data validation), extended Data Validations including rule agents and marshalling/unmarshalling content via 239
External Mappings. These process needs are now retained as future potential normative items that are still 240
evolving and described in a non-normative companion document to the main V1.1 specification as Appendix 241
B. 242
XFigure 6 - Structure for entire CAM syntax at a glanceXF

2
F next shows the complete v1.1 specification hierarchy 243

for CAM at a glance. 244
The CAM header it should be noted has built-in support for compatibility levels within the specification to both 245
aid in implementation of the CAM tools, and also to ensure interoperability across versions. 246
This is controlled via the CAMlevel attribute of the CAM root element. More details on the CAM 247
implementation levels and features are provided in advanced options section later. 248

1 Note: elements have been labelled using UN spellings, not North American spellings

2 This diagrammatic syntax uses modelling notations to show parent, repeated, choice and optional model
element linkages. Elements outlined with dashed lines are optional.

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 16 of 57

Figure 6 - Structure for entire CAM syntax at a glance 249

 250
 251
 252
Each of the parent items is now described in detail in the following sub-sections, while the formal schema 253
definition for CAM is provided at the OASIS web site in machine readable Schema format XSD syntax. While 254
the documented schema provides a useful structural overview, implementers should always check for the 255
very latest version on-line at the docs.oasis-open.org/cam area to ensure conformance and compliance to the 256
latest explicit programmatic details. 257
The next sections describe each parent element in the CAM in sequence, their role and their implementation 258
details. 259
 260

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 17 of 57

3.2 9BHeader declarations 261

The purpose of the Header section is to declare properties and parameters for the CAM process to reference. 262
There are three sub-sections: parameters, properties and imports. Within the main header there are 263
elements that allow documenting of the template description, owner, assigning of a version number and 264
providing a date/time stamp. These are used for informational purposes only and maybe used by external 265
processes to verify and identify that a particular CAM template instance is the one required to be used. 266

3.2.1 21BParameters 267

This section allows parameters to be declared that can then be used in context specific conditions and tests 268
within the CAM template itself. These can either be substitution values, or can be referencing external 269
parameter values that are required to be passed into this particular CAM template by an external process. 270
CAM uses the $name syntax to denote external parameter references where required in the CAM template 271
statements. External parameters can be passed using the CAM context mechanism (see later section on 272
Advanced Features support). 273

3.2.2 22BPseudo Variables 274

This item is non-normative, level 2. 275
When processing documents it is often expedient to have access to the system time. This would allow 276
checks against that time to be made and therefore validation to check for example that delivery dates are in 277
the future. To do this CAM defines the following pseudo variables. 278

• $date – this gives today’s date in the format YYYY-MM-DD 279
• $time – this gives the time at the start of processing the incoming file in the format HH:MI:SS 280
• $dateTime – this is a combination of the previous variables in the format YYYY-MM-DDTHH:MI:SS 281

These variables should be set by the processor at the start of processing for each incoming document. 282
In addition there is a need for date math functions to be provided to allow checks against the current time and 283
date and also between date fields. The following is considered a minimal set that may be provided. 284
These functions compare a field with the date or time of the validation: 285

• dateAfterNow(xpath,dateMask) 286
• timeAfterNow(xpath,timeMask) 287
• dateBeforeNow(xpath,dateMask) 288
• timeBeforeNow(xpath,timeMask) 289

The following functions allow either a positive or negative integer, which represents either days or hours to be 290
added to Now: 291

• dateAfterDays(xpath,dateMask,numofdays) 292
• timeAfterHours(xpath,dateMask,numofhours) 293
• dateBeforeDays(xpath,dateMask,numofdays) 294
• timeBeforeHours(xpath,dateMask,numofhours) 295

The following functions allow comparison between two fields: 296
• after(xpath,mask,xpath,mask) 297
• before(xpath,mask,xpath,mask) 298

3.2.3 23BProperties 299

This item is non-normative, level 2. 300
These allow creation of shorthand macros that can be referenced from anywhere in the remainder of the CAM 301
template using the ${macroname} reference method. This is designed to provide an easy way to maintain 302
references to external static URL values particularly. It can also be used to define shorthand for commonly 303

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 18 of 57

repeated blocks of syntax mark-up within the CAM template itself, such as a name and address layout, or a 304
particular XPath expression. 305

3.2.4 24BImports 306

This item is non-normative, level 2. 307
The import reference allows the CAM processor to pre-load any reference links to external files containing 308
syntax to be included into the CAM template. It also allows the external path of that include file to be 309
maintained in just one place in the template; making easier maintenance if this is re-located. In addition this 310
then allows an <include> statement within the CAM template to reference the import declaration and select a 311
particular sub-tree of content syntax to insert at that given point (using an XPath statement to point to the 312
fragment within the overall import file). This also allows the included content to be done by using just one 313
large file, instead of multiple small files. 314
The include statements would have the format: 315

<as:include>$importname/xpath</as:include> 316

An example with an import declared as ‘common_rules’ would be as follows: 317

<as:include>$common_rules//as:BusinessUseContext/as:Rules/as:default</as:include> 318

This example will load any default rules from the ‘common_rules’ CAM Template into the current template. 319
The next section begins describing the main processing associated with the CAM template. 320

3.3 10BAssembly Structures 321

The purpose of the AssemblyStructure section is to capture the required content structure or structures that 322
are needed for the particular business process step (i.e. one business process step may have more or more 323
structures it may contextually need to create). This section is designed to be extremely flexible in allowing the 324
definition of such structures. The current V1.x series of the specification uses simple well-formed XML 325
throughout to illustrate the usage. Later releases of the CAM specification consideration will be made to allow 326
any fixed structured markup as potentially being utilized as an assembly structure, such as DTD, Schema, 327
EDIF

3
F, or other (typically they will be used as substitution structures for each other). It is the responsibility of 328

the implementer to ensure that all parties to an e-business transaction interchange can process such content 329
formats where they are applicable to them (of course such parties can simply ignore content structures that 330
they will never be called upon to process). 331
Notice also that typically a single business process with multiple steps would be expected to have multiple 332
CAM templates, one for each business process step. While it is also possible to provide a single CAM 333
template with multiple structures for a business process with multiple steps, this will likely not work unless the 334
business transaction for each step is essentially the same (since the content reference section and context 335
rules section would have to reference potentially extremely different structures). 336

3 EDI is used in the generic sense through out this document to refer to the family of pre-XML text markup
systems, such as EDI-X12, UN/EDIFACT, HL7, FIX, SWIFT and more. See Hhttp://www.disa.orgH for more
details on EDI technologies. Each flavour of EDI can be accommodated within the AssemblyStructure section
of the CAM template as needed.

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 19 of 57

Using single CAM templates per step and transaction structure also greatly enhances re-use of CAM 337
templates across business processes that use the same structure content, but different context. 338
The formal structure rules for AssemblyStructure are expressed by the syntax in X0 X below. The XFigure 7 – 339
Example of Structure and format for AssemblyStructureX here shows a simple example for an 340
AssemblyStructure using a single structure for content. 341

Figure 7 – Example of Structure and format for AssemblyStructure 342

<Header> 343
 <Description>Example 4.2.1 using structures</Description> 344
 <Version>0.05</Version> 345
</Header> 346
<AssemblyStructure> 347
 <Structure taxonomy=”XML”> //XML is the only allowed value for Version 1.1 348
<!-- the physical structure of the required content goes here, and can be a 349
schema instance, or simply well-formed XML detail, see example below in Figure 8 350
--> 351
 </Structure > 352
</AssemblyStructure> 353

 354

In the basic usage, there will be just a single structure defined in the AssemblyStructure / Structure section. 355
However, in the more advanced use, multiple substitution structures may be provided and use of include 356
directives. These can also be included from external sources, with nesting of assemblies; see the section 357
below on Advanced Features for details. Also a mechanism is provided to select a structure based on an 358
XPath reference to content within an XML instance. 359
To provide the direct means to express content values within the structure syntax the following two methods 360
apply. A variable substitution value for an element or attribute is indicated by text that must start and end 361
with a ‘%’sign, for example ‘%Description%’; or simply %% where no indicative content is preferred. Any other 362
value is assumed to be a fixed content value. XFigure 8 - Substitution and fixed parameters values, with a 363
well-formed XML structureX shows examples of this technique. 364

Figure 8 - Substitution and fixed parameters values, with a well-formed XML structure 365

<Header> 366
 <Description>Example 4.2.2 Well-formed XML structure</Description> 367
 <Version>1.0</Version> 368
 <as:Parameters> 369
 <as:Parameter name="DeliveryCountry" 370
 values="USA|Mexico|Canada|Europe " 371
 use="Global" 372
 default="USA"/> 373
 </as:Parameters> 374
 375
</Header> 376
<AssemblyStructure> 377
 <Structure taxonomy=”XML” ID=”SoccerGear”> 378
 <Items CatalogueRef=”2006”> //Fixed Value 379
<SoccerGear> 380
 <Item> 381
<RefCode>%000_00_0000%</RefCode> // Value subject to rules 382
<Description>%any text line%</Description> 383
<Style>WorldCupSoccer</Style> 384
<UnitPrice>%amount%</UnitPrice> 385
 </Item> 386
<QuantityOrdered>%integer%</QuantityOrdered> 387
<SupplierID>%%</SupplierID> 388
<DistributorID>%%</DistributorID> 389
<OrderDelivery>Normal</OrderDelivery> 390
<DeliveryAddress> 391
 <USA> // details of address here 392

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 20 of 57

 </USA> 393
 <Mexico> // details of address here 394
 </Mexico> 395
 <Canada> // details of address here 396
 </Canada> 397
 <Europe> // details of address here 398
 </Europe> 399
</DeliveryAddress> 400
</SoccerGear> 401
 </Items> 402
 </Structure> 403
</AssemblyStructure> 404

 405
Referring to XFigure 8 - Substitution and fixed parameters values, with a well-formed XML structureX, the 406
“2006”, “WorldCupSoccer” and “Normal” are fixed values that will always appear in the payload transaction at 407
the completion of the CAM processing of the content. 408
In addition to the XML markup, within the AssemblyStructure itself may optionally be included in-line syntax 409
statements. The CAM system provides the BusinessUseContext section primarily to input context rules (see 410
section below), however, these rules may be optionally included as in-line syntax in the AssemblyStructure. 411
However, all rules where present in the BusinessUseContext section take precedence over such in-line 412
syntax rules. 413
The next section details examples of in-line context rules. 414

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 21 of 57

3.4 11BBusiness Use Context Rules 415

Once the assembly structure(s) have been defined, then the next step is to define the context rules that apply 416
to that content. The technique used is to identify a part of the structure by pointing to it using an XPath 417
locator reference, and then also applying an assertion using one of the structure predicates provided for that 418
purpose (an optional comparison evaluation expression can also be used with the XPath locator reference 419
where applicable). 420
Note: By default CAM assumes that any XML structure item, element or attribute, is mandatory unless a rule 421
is added in the BusinessUseContext section or an inline rule is placed in the structure. 422
Note: By default CAM will not enforce order of elements within an XML structure unless a rule is added in the 423
BusinessUseContext section or an inline rule is placed in the structure (same behaviour as with XML 1.0 424
attributes ordering being undetermined). This feature makes CAM templates more flexible, particularly for 425
complex structures, and prevents erroneous error flagging. 426
There are two sections to these business context rules, default rules normally apply, and conditional rules that 427
only apply if a particular rule block evaluates to true. The business rules then take the form of structure 428
assertion predicates that define the cardinality (aka occurrence usage rules) of the structure members and 429
content definitions. XFigure 9 - The Assertion predicates for BusinessUseContextX shows the structure 430
assertion predicates. 431

Figure 9 - The Assertion predicates for BusinessUseContext 432
excludeAttribute() useAttribute()

excludeElement() useChoice()

excludeTree() useElement()

makeOptional() useTree()

makeMandatory() useAttributeByID()

makeRepeatable() useChoiceByID()

setChoice() useElementByID()

setId() useTreeByID()

setLength() startBlock()

setLimit() endBlock()

setValue() checkCondition()

setDateMask() makeRecursive()

setStringMask() setUID()

setNumberMask() restrictValues()

datatype() or setDataType() restrictValuesByUID()

setRequired() orderChildren()

allowNulls() setDefault()

 setNumberRange()

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 22 of 57

Each predicate provides the ability to control the cardinality of elementsF

4
F within the structure, or whole pieces 433

of the structure hierarchy (children within parent). 434
An example of such context rules use is provided below, and also each predicate and its’ behaviour is 435
described in the matrix in figure 4.3.3 below. Also predicates can be used in combination to provide a 436
resultant behaviour together, an example is using makeRepeatable() and makeOptional() together on a 437
structure member. 438
Note that the BusinessUseContext section controls use of the structure, while if it is required to enforce 439
explicit validation of content, then there is also the non-normative DataValidations section that provides the 440
means to check explicitly an element to enforce content rules as required. See below for details on this 441
section. This validation section is also further described in the advanced use section since it can contain 442
extended features. 443
Predicates that affect the definition are applied using the following precedence rules. The lower numbered 444
rules are applied first and can be overridden by the high numbered rules. 445

1. AssemblyStructure Inline predicates. 446
2. BusinessUseContext default rules and predicates. 447
3. BusinessUseContext conditional rules and predicates. 448

Referring to the structure in the example shown in XFigure 8 - Substitution and fixed parameters values, with a 449
well-formed XML structureX, XFigure 10 – Syntax example for BusinessUseContext X provides examples of 450
context based structural predicate assertions. Notice that such context rules can be default ones that apply to 451
all context uses of the structure, while other context rules can be grouped and constrained by a XPath locator 452
rule expression. There are three styles of such XPath expressions: 453

1. XPath expression refers to structure members directly and controls their use 454
2. XPath expression refers to structure member and contains condition of its value 455
3. XPath expression refers to a variable that has been created from the Parameter or the Properties 456

section in the Header. 457
Such XPath expressions will match all the structural elements that they can refer to, so if a unique element is 458
always required, implementers must ensure to provide the full XPath identity so that only a single unique 459
match occurs. An example is a reference to “//ZIPCode” which will match any occurrence, whereas 460
“/BillingAddress/ZIPCode” will only match that item. 461

4 Predicates can also be used on attributes as well as elements in the XML structure.

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 23 of 57

Figure 10 – Syntax example for BusinessUseContext 462

<BusinessUseContext> 463
<Rules> 464
 <default> 465
 <context> <!-- default structure constraints --> 466
 <constraint action="makeRepeatable(//SoccerGear)" /> 467
<!-- type 1 Xpath--> 468
 <constraint action="makeMandatory(//SoccerGear/Items/*)" /> 469
<constraint action="makeOptional(//Description)" /> 470
<constraint action="makeMandatory(//Items@CatalogueRef)" /> 471
<constraint action="makeOptional(//DistributorID)" /> 472
<constraint action="makeOptional(//SoccerGear/DeliveryAddress)" /> 473
 </context> 474
 </default> 475
 <context condition="//SoccerGear/SupplierID = 'SuperMaxSoccer'"> 476
<!-- type 2 Xpath--> 477
 <constraint action="makeMandatory(//SoccerGear/DeliveryAddress)"/> 478
 </context> 479
 <context condition="$DeliveryCountry = 'USA'"> 480
<!-- type 3 Xpath using parameter DeliveryCountry--> 481
 <constraint action="useTree(//SoccerGear/DeliveryAddress/USA)"/> 482
 </context> 483
</Rules> 484
</BusinessUseContext> 485

 486
Referring to the XPath expressions in XFigure 10 – Syntax example for BusinessUseContextX, examples of all 487
three types of expression are given to show how the XPath expressions are determined and used. For 488
external control values the special leading $ indicator followed by the variable name denotes a substitution 489
value from a context reference variable that is declared in the CAM template header. 490
Referring to XFigure 11 - Matrix of predicates for BusinessUseContext declarations X) below, the following 491
applies: 492
 493

//elementpath XPath expression resolving to an element(s) in the structure. This
parameter is not required when predicate is used in-line, since then it is
implicit.

//memberpath XPath expression resolving to either an element(s) or an attribute(s) in the
structure

//treepath XPath expression resolving to parent element with children in the structure

//StructureID reference to an in-line ID assignment within the structure, or ID value
assigned using setID() predicate.

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 24 of 57

//elementpath@
attributename

XPath expression resolving to an attribute or attributes in the structure

//attributepath This can be used interchangeably with //elementpath when //memberpath is
an allowed parameter of a predicate. Either a single XPath expression
resolving to an attribute in the structure, or a collection of XPath
expressions referencing more than one attribute for the given element of the
form H//elementpath@[attributename1H, attributename2, attributename3,…],
or H//elementpath@[*H] to reference all attributes for that element.

IDvalue String name used to identify structure member

UIDreference Valid UID and optional associated registry and taxonomy that points to an
entry in a Registry that provides contextual metadata content such as a
[valuelist] or other information

value, valuelist,
count, mask

String representing parameter. When lists are required then group with
paired brackets [a, b, c, …], and when group of groups use nested brackets
[[a, b, d, f],[d, e, g, m]]
Note: groups are required for collections of attributes in in-line predicate
assertions.

 494

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 25 of 57

Figure 11 - Matrix of predicates for BusinessUseContext declarations 495

 496

Predicate Parameter(s) Description

excludeAttribute() //elementpath@attributename Conditionally exclude attribute from
structure

excludeElement() //elementpath Conditionally exclude element from
structure

excludeTree() treepath Conditionally exclude a whole tree
from structure

makeOptional() //elementpath Conditionally allow part of structure to
be optional

makeMandatory() //elementpath Conditionally make part of structure
required

makeRepeatable() //elementpath Conditionally make part of structure
occur one or more times in the content

setChoice() //elementpath Indicate that the first level child
elements below the named
elementpath are actually choices that
are conditionally decided with a
useChoice() predicate action

setId() //elementpath,IDvalue Associate an ID value with a part of
the structure so that it can be referred
to directly by ID

setLength() //memberpath, value Control the length of content in a
structure member

setLength() //memberpath, [minvalue-maxvalue] Control the length of content in a
structure member, allows two factors
for range of lengths.

setLimit() //elementpath, count For members that are repeatable, set
a count limit to the number of times
they are repeatable

setDateMask()

setStringMask()

setNumberMask()

//memberpath, [mask | masklist]

or

//memberpath, [mask | masklist]

Assign a CAM picture mask to
describe the content. The mask can
also set explicit datatype of an item as
well using the first parameter of the
mask accordingly (default is string if
datatype parameter omitted). Masklist
allows an optional list of masks to be
provided as well as one single mask.

datatype()

or

setDatatype()

//memberpath, value associate datatype with item, valid
datatypes are same as W3C
datatypes. If a setMask() statement is
present for the item, this statement will
be ignored.

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 26 of 57

Predicate Parameter(s) Description

setRequired() //elementpath,value For members that are repeatable, set
a required occurrence for the number
of members that must at least be
present (nnnn must be greater than
1)F

5
F.

setValue() //memberpath, value Place a value into the content of a
structure

setValue() //memberpath, [valuelist] Place a set of values into the content
of a structure (allows selection of
multiple values of member items).

as:datetime()

Non-Normative,level 2

date-picture-mask

date-picture-mask + P7D

date-picture-mask – P30D

Allows variables to contain computed
date values for use in rule
comparisons or setting event timings
(value is returned from system clock of
server)

setUID()

Non-Normative,level 2

//memberpath, alias, value Assign a UID value to a structure
element. Alias must be declared in
registry addressing section of
ContentReferences).

restrictValues()

//memberpath,

[valuelist],[defaultValue]
Provide a list of allowed values for a
member item

restrictValuesByUID()

//memberpath, UIDreference,

[defaultValue]
Provide a list of allowed values for a
member item from a registry reference

useAttribute() //elementpath@attributename, or

//attributepath
Require use of an attribute for a
structure element and exclude other
attributes

useChoice() //elementpath Indicate child element to select from
choices indicated using a setChoice()
predicate.

useElement() //elementpath Where a structure definition includes
choices indicate which choice to use
(this function is specific to an element
path, and does not require a prior
setChoice() predicate to be specified).

5 Design note: makeRepeatable(), makeMandatory() is the preferred syntax over the alternate:
makeRepeatable() as:setRequired="1".

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 27 of 57

Predicate Parameter(s) Description

useTree() //treepath Where a structure member tree is
optional indicate that it is to be used.
Note: the //treepath points directly to
the parent node of the branch and
implicitly the child nodes below that,
that are then selected.

useAttributeByID()

Non-Normative

StructureID As per useAttribute but referenced by
structure ID defined by SetId or in-line
ID assignment

useChoiceByID()

Non-Normative

StructureID As per useChoice but referenced by
structure ID defined by SetId or in-line
ID assignment

useTreeByID()

Non-Normative

StructureID As per useTree but referenced by
structure ID defined by SetId or in-line
ID assignment

useElementByID()

Non-Normative

StructureID As per useElement but referenced by
structure ID defined by SetId or in-line
ID assignment

checkCondition()

Non-Normative,level 2

conditionID conditionID is required and references
the ID of the conditional block in the
data validation section (defined in
attribute – conditioned). The validation
block will be performed at that point in
the structure processing flow.

makeRecursive() StructureID Denote that the specified parent
element can occur recursively as a
child of this parent. Note that if the
orderChildren() is set the recursive
element must occur after all the other
children.

startBlock()

Non-Normative,level 2

StartBlock, [StructureID] Denote the beginning of a logical block
of structure content. The StructureID
is an optional reference. This function
is provided for completeness. It
should not be required for XML
structures, but may be required for
non-XML content; basic CAM
conformance at Level 1 does not
require this function.

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 28 of 57

Predicate Parameter(s) Description

endBlock()

Non-Normative,level 2

endBlock, [StructureID] Denote the end of a logical block of
structure content. The StructureID is
an optional reference, but if provided
must match a previous startBlock()
reference. This function is provided
for completeness. It should not be
required for XML structures, but may
be required for non-XML content;
basic CAM conformance at Level 1
does not require this function.

orderChildren() //elementpath This means that the children must
occur within the element in the order
that they occur in the Structure
provided. This overrides the default
CAM behaviour which is to allow child
elements to occur in any order.

allowNulls() //memberpath When used for elements either the
XML empty syntax <empty/> format or
the <empty></empty> format would be
accepted as valid mandatory content.

For attributes they are permitted to be
empty i.e. no white space or any
characters between value delimiters (""
or ‘’).

Note: This is to enable a similar
functionality to the “nillable” function in
xsd, however the user would not have
to supply the XML instance
xsi:nil="true" attribute.

setDefault() //memberpath Sets the default value for a node to the
value given (applies to element or
attribute) when the item is empty or
missing (if optional).

This will allow defaults to be applied
either directly or in conjunction with the
restrictValues() function.

Note: This can also apply with the
lookup() extension function (non-
normative).

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 29 of 57

Predicate Parameter(s) Description

setNumberRange() //memberpath For use with nodes of content type
number.

This would allow the specification of a
number being between two values
inclusively (e.g. 0-10 would include 0
and 10).

Note: This supplements the
restrictValues() function for nodes of
type number.

 497
The predicates shown in XFigure 11 - Matrix of predicates for BusinessUseContext declarations X) can also be 498
used as in-line statements within an assembly structure, refer to the section on advanced usage to see 499
examples of such use. 500

3.4.1 25BXPath syntax functions 501

The W3C XPath specification provides for extended functions. The CAM XPath usage exploits this by 502
following the same conditional evaluations as used in the open source project for the jaxen parser (this is 503
used as the reference XPath implementation). The base XPath provides the “contains” function for 504
examining content, the jaxen functions shown in XFigure 12 - XPath Comparator functionsX below extend this to 505
provide the complete set of familiar logical comparisons. 506
Figure 12 - XPath Comparator functions 507

 508

Comparator Syntax Description
Equal to $variable = 'testValue' Conditionally check for a

matching value
Not equal to not(value1,'value') Conditionally check for a

non-matching value
Greater than value > value or value > value Conditionally check for a

greater value
Less than value < value or value < value Conditionally check for a

lesser value
Greater than

or equal

value >= value or value >= value Conditionally check for a
greater than or equal to
value

Less than or

equal

Value <=value or value <= value Conditionally check for a
lesser or equal value

begins starts-with(value,value) Conditionally check for a
string matching the front
part of value, equal or
longer strings match.

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 30 of 57

ends ends-with(value,value) Conditionally check for a
string matching the end
part of value, equal or
longer strings match.

String length string-length() Conditional check for the
length of a string.

Count count() Conditionally check for
the occurrence of an
element

Contains contains (value,‘value’) Conditional check for an
occurance of one string
within another.

concat concat(//elementpath, //elementpath,

‘stringvalue’)
This operator
concatenates the values
from locators together as
a string, or constant string
values. This allows
evaluations where the
content source may
separate related fields;
e.g. Month, Day, Year.

after after(xpath,

DateMaskPicture,$pseudovariable)
Non-normative extra
function for comparison of
dates and times

before before(xpath,

DateMaskPicture,$pseudovariable)

Non-normative extra
function for comparison of
dates and times

 509
Using these capabilities provides sufficient expressive capability to denote structural combinations for context 510
driven assembly and also for basic data validation (see following applicable sections). 511
The next section shows how to associate a reference to a dictionary of content model metadata, or to provide 512
the content model directly for members of the structure content. 513

3.4.2 26BHandling CDATA content with XPath 514

An XML element parent may enclose a CDATA section of embedded information. When outputting such 515
information there are two choices, the CDATA markup may be stripped off and the data processed, or the 516
CDATA section, including the markup, is passed through “as-is” into the output. The XPath expression can 517
only reference the parent element and not any markup within the CDATA itself. This specification does not 518
stipulate how to treat CDATA sections. 519

3.4.3 27BCAM content mask syntax 520

In order to provide a base-line character mask set, and also to provide a character mask set that is accessible 521
to business technical users as well as programming staff, CAM provides a default character mask system. 522
This mask system is based on that used by typical program generator tools available today and is designed to 523
provide a neutral method that can be mapped to specific program language syntax as needed. The mask 524
system syntax is provided below and usage details can be found by studying the examples provided in the 525
example tables. 526

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 31 of 57

The ability to support alternate date mask syntax for dates, such as with the Java Simple Date and Numeric 527
Format (JSDF / JSNF) syntaxF

6
F and class methods, is now also permitted and a mechanism described. 528

The JSDF / JSNF functionality is very similar to the original CAM mask system but provides some extra 529
capabilities and formats. 530
(Note: this technique can allow use of alternate mask systems syntaxes such as SQL, Perl, and so on as may be required 531
for specific industry / partner use). 532
Description 533
Picture masks are categorized by the basic data-typing element that they can be used in combination with. 534
CAM processors must check the content of the element or attribute against the masks and report any errors. 535
Note for items of arbitrary length and no mask – use the datatype() function instead of mask functions. 536
String Pictures 537
The positional directives and mask characters for string pictures are as follows: 538
X - any character mandatory 539
Aa - A for alphanumeric mandatory and a for alphanumeric optional may include spaces 540
? – any character optional, * - more than one character, arbitrary occurrence of – (equivalent to CDATA). 541
U - a character to be converted to upper case 542
^ - uppercase optional 543
L - a character to be converted to lower case 544
_ - Lowercase optional 545
0 - a digit (0-9 only) 546
- a digit (0-9 only), trailing and leading zeros shown as absent 547
‘ ‘ – single quotes, escape character block to denote actual mandatory character 548
Examples of string pictures are shown in the following table: 549

6 See details of SDF at - Hhttp://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 32 of 57

 550

String value Picture mask
(shorthand)

 Full expanded mask Validation match

portability X6 XXXXXX portab

portability UX3 UXXX Port

portability XXXXing XXXXing porting

realtime XXXX-XXXX XXXX-XXXX real-time

BOLD! L5 LLLLL bold!

asX XX’X’ XX’X’ Matches asX but not asd

 551
Numeric Pictures 552
The positional directives and mask characters for numeric pictures are as follows: 553
0 - a digit (0-9 only) 554
- a digit (0-9 only), trailing and leading zeros shown as absent 555
. – indicates the location of the decimal point. For example, '0000.000' defines a numeric variable of four 556
whole digits and three decimal digits 557
J - Uppercase, first character of – invoke alternate optional Java character format library methods to handle 558
mask processing – character J is ignored in actual mask (see alternate masks item below) 559
Examples of numeric pictures are shown in the following table (the ^ symbol represents one space character): 560

Numeric value Picture

-1234.56 ######.##

-1234.56 000000.##

-1234.56 -######.##

0 -######.##Z*
where Z indicates zero suppress –
e.g. 000000.01 becomes 0.01

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 33 of 57

Basic Date Pictures 561
The typical date formats are DD/MM/YYYY (European), MM/DD/YYYY (American), or YYYY/MM/DD 562
(Scandinavian). When you define the attribute Date for a variable, you must also select the format for the date 563
item (see below). You can change this default picture and place in it any positional directives and mask 564
characters you need. 565
DD—A place holder for the number of the day in a month 566
DDD—The number of the day in a year 567
DDDD—The relative day number in a month 568
MM—A place holder for the number of the month in a year 569
MMM...—Month displayed in full name form (up to 10 'M's in a sequence). e.g. January, February. If the 570
month name is shorter than the number 'M's in the string, the rest of the 'M' positions are filled with blanks. 571
YY—A place holder of the number of the year 572
YYYY—A place holder for the number of the year, represented in full format (e.g. 1993) 573
W—Day number in a week 574
WWW...—Name of day in a week. The string can be from 3 to 10 'W's. If the name of the day is shorter than 575
the number of 'W's in the string, the rest is filled with blanks. 576
/—Date separator position. 577
-—Date separator position (alternate). 578
J - Uppercase, first character of – invoke alternate optional Java character format library methods to handle 579
mask processing – character J is ignored in actual mask (see alternate masks item below) 580
Examples of date pictures are shown in the following table, using the date of 21 March 1992 (the ^ symbol 581
represents one space character – used to show spaces for this document only): 582
 583

Picture Validation Matches

MM/DD/YYYY 03/21/1992

MMMMMMMMMM^DDDD, ^YYYY March^^^^^^21st,^1992

MMMMMMMMMM^DDDD, ^YYYYT March^21st,^1992 with trimming directive (see below)

WWWWWWWWWW^-^W Saturday^^^-^7

WWWWWWWWWW^-^WT Saturday^-^7 with trimming directive (see below)

"Trimming directive" is invoked by adding the directive T to the variable picture. This directive instructs XML 584
parser to remove any blanks created by the positional directives 'WWW...' (weekday name), 'MMM...' (month 585
name), or 'DDDD' (ordinal day, e.g. 4th, 23rd). Since these positional directives must be specified in the 586
picture string using the maximum length possible, unwanted blanks may be inadvertently created for names 587
shorter than the specified length. The Trim Text directive will remove all such blanks. If a space is required 588
nevertheless, it must be explicitly inserted in the picture string as a mask character, (the ^ symbol is used to 589
indicate a blank character), e.g., 'TWWWWWWWWW^DDDD MMMMMMMMM,^YYYY' 590
"Zero fill" is invoked by adding the functional directive Z to the variable picture. This directive instructs XML 591
parser to fill the entire displayed variable, if its value is zero, with the "Character" value. If you don't specify a 592
Character the variable is filled with blanks. 593
Time Pictures 594
The XML parser defines the default picture mask HH/MM/SS for an element of datatype Time. Examples of 595
time pictures are shown in the following table: 596
 597

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 34 of 57

Picture Result Comments

HH:MM:SS 08:20:00 Time displayed on 24-hour clock.

HH:MM:SS 16:40:00 Time displayed on 24-hour clock.

HH:MM PM 8:20 am Time displayed on 12-hour clock.

HH:MM PM 4:40 pm Time displayed on 12-hour clock.

HH-MM-SS 16-40-00 Using Time Separator of '-'

 598

3.4.3.1 34BAlternate Simple Date Format - Date and Time Patterns 599

The simple date and time formats are specified by date and time pattern stringsF

7
F. Within date and time pattern 600

strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are interpreted as pattern letters representing 601
the components of a date or time string. Text can be quoted using single quotes (') to avoid interpretation, 602
where "''" represents a single quote. All other characters are not interpreted; they're simply copied into the 603
output string during formatting or matched against the input string during parsing. 604
The following tables provide details of the patterns and their usage. 605
A compliant implementation should first check the initial character of the picture mask. If it is uppercase J 606
character – then the mask is assumed to be of Java simple format. Then the processor should pass the mask 607
to the equivalent alternate mask processor – such as the Java Simple Date Format method - for either date or 608
time handling, and if that then fails – then an error should be returned. 609
The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' to 'z' are 610
reserved): 611

Letter Date or Time Component Presentation Examples

G Era designator HTextH AD

y Year HYearH 1996; 96

M Month in year HMonthH July; Jul; 07

w Week in year HNumberH 27

W Week in month HNumberH 2

D Day in year HNumberH 189

d Day in month HNumberH 10

7 Source: Sun Java documentation - Hhttp://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html H

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 35 of 57

F Day of week in month HNumberH 2

E Day in week HTextH Tuesday; Tue

a Am/pm marker HTextH PM

H Hour in day (0-23) HNumberH 0

k Hour in day (1-24) HNumberH 24

K Hour in am/pm (0-11) HNumberH 0

h Hour in am/pm (1-12) HNumberH 12

m Minute in hour HNumberH 30

s Second in minute HNumberH 55

S Millisecond HNumberH 978

z Time zone HGeneral time zoneH Pacific Standard Time; PST; GMT-08:00

Z Time zone HRFC 822 time zoneH
-0800

Pattern letters are usually repeated, as their number determines the exact presentation: 612

• Text: For formatting, if the number of pattern letters is 4 or more, the full form is used; otherwise a 613
short or abbreviated form is used if available. For parsing, both forms are accepted, independent of 614
the number of pattern letters. 615

• Number: For formatting, the number of pattern letters is the minimum number of digits, and shorter 616
numbers are zero-padded to this amount. For parsing, the number of pattern letters is ignored unless 617
it's needed to separate two adjacent fields. 618

• Year: For formatting, if the number of pattern letters is 2, the year is truncated to 2 digits; otherwise it 619
is interpreted as a HnumberH. 620

For parsing, if the number of pattern letters is more than 2, the year is interpreted literally, regardless of the 621
number of digits. So using the pattern "MM/dd/yyyy", "01/11/12" parses to Jan 11, 12 A.D. 622
For parsing with the abbreviated year pattern ("y" or "yy"), SimpleDateFormat must interpret the 623
abbreviated year relative to some century. It does this by adjusting dates to be within 80 years before and 20 624
years after the time the SimpleDateFormat instance is created. For example, using a pattern of "MM/dd/yy" 625
and a SimpleDateFormat instance created on Jan 1, 1997, the string "01/11/12" would be interpreted as 626
Jan 11, 2012 while the string "05/04/64" would be interpreted as May 4, 1964. During parsing, only strings 627
consisting of exactly two digits, as defined by HUCharacter.isDigit(char) UH, will be parsed into the default 628
century. Any other numeric string, such as a one digit string, a three or more digit string, or a two digit string 629
that isn't all digits (for example, "-1"), is interpreted literally. So "01/02/3" or "01/02/003" are parsed, using the 630
same pattern, as Jan 2, 3 AD. Likewise, "01/02/-3" is parsed as Jan 2, 4 BC. 631

• Month: If the number of pattern letters is 3 or more, the month is interpreted as HtextH; otherwise, it is 632
interpreted as a HnumberH. 633

• General time zone: Time zones are interpreted as HtextH if they have names. For time zones 634
representing a GMT offset value, the following syntax is used: 635

• GMTOffsetTimeZone: 636

• GMT Sign Hours : Minutes 637

• Sign: one of 638

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 36 of 57

• + - 639
• Hours: 640

• Digit 641

• Digit Digit 642

• Minutes: 643

• Digit Digit 644

• Digit: one of 645
 0 1 2 3 4 5 6 7 8 9 646

Hours must be between 0 and 23, and Minutes must be between 00 and 59. The format is locale 647
independent and digits must be taken from the Basic Latin block of the Unicode standard. 648

For parsing, HRFC 822 time zonesH are also accepted. 649

• RFC 822 time zone: For formatting, the RFC 822 4-digit time zone format is used: 650
• RFC822TimeZone: 651

• Sign TwoDigitHours Minutes 652

• TwoDigitHours: 653

 Digit Digit 654

TwoDigitHours must be between 00 and 23. Other definitions are as for Hgeneral time zones H. 655

For parsing, Hgeneral time zonesH are also accepted. 656

SimpleDateFormat also supports localized date and time pattern strings. In these strings, the pattern 657
letters described above may be replaced with other, locale dependent, pattern letters. SimpleDateFormat 658
does not deal with the localization of text other than the pattern letters; that's up to the client of the class. 659

3.4.3.2 35BExamples 660

The following examples show how date and time patterns are interpreted in the U.S. locale. The given date 661
and time are 2001-07-04 12:08:56 local time in the U.S. Pacific Time time zone. 662

Date and Time Pattern Examples

"yyyy.MM.dd G 'at' HH:mm:ss z" 2001.07.04 AD at 12:08:56 PDT

"EEE, MMM d, ''yy" Wed, Jul 4, '01

"h:mm a" 12:08 PM

"hh 'o''clock' a, zzzz" 12 o'clock PM, Pacific Daylight Time

"K:mm a, z" 0:08 PM, PDT

"yyyyy.MMMMM.dd GGG hh:mm aaa" 02001.July.04 AD 12:08 PM

"EEE, d MMM yyyy HH:mm:ss Z" Wed, 4 Jul 2001 12:08:56 -0700

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 37 of 57

"yyMMddHHmmssZ" 010704120856-0700

 663

3.4.3.3 36BAlternate Simple Decimal Format - Number Patterns 664

The Java simple decimal formats are specified by patterns that represent the number formatting requiredF

8
F. 665

These patterns are selected using an uppercase J character to indicate the pattern syntax. 666

3.4.3.4 37BPatterns 667

DecimalFormat patterns have the following syntax: 668

 Pattern: 669

 PositivePattern 670

 PositivePattern ; NegativePattern 671

 PositivePattern: 672

 Prefixopt Number Suffixopt 673

 NegativePattern: 674

 Prefixopt Number Suffixopt 675

 Prefix: 676

 any Unicode characters except \uFFFE, \uFFFF, and special characters 677

 Suffix: 678

 any Unicode characters except \uFFFE, \uFFFF, and special characters 679

 Number: 680

 Integer Exponentopt 681

 Integer . Fraction Exponentopt 682

 Integer: 683

 MinimumInteger 684

 # 685

 # Integer 686

 # , Integer 687

 MinimumInteger: 688

 0 689

8 Java simple decimal format - Hhttp://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.htmlH

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 38 of 57

 0 MinimumInteger 690

 0 , MinimumInteger 691

 Fraction: 692

 MinimumFractionopt OptionalFractionopt 693

 MinimumFraction: 694

 0 MinimumFractionopt 695

 OptionalFraction: 696

 # OptionalFractionopt 697

 Exponent: 698

 E MinimumExponent 699

 MinimumExponent: 700

 0 MinimumExponentopt 701

 702

A DecimalFormat pattern contains a positive and negative subpattern, for example, 703
"#,##0.00;(#,##0.00)". Each subpattern has a prefix, numeric part, and suffix. The negative subpattern 704
is optional; if absent, then the positive subpattern prefixed with the localized minus sign (code>'-' in most 705
locales) is used as the negative subpattern. That is, "0.00" alone is equivalent to "0.00;-0.00". If there is 706
an explicit negative subpattern, it serves only to specify the negative prefix and suffix; the number of digits, 707
minimal digits, and other characteristics are all the same as the positive pattern. That means that 708
"#,##0.0#;(#)" produces precisely the same behavior as "#,##0.0#;(#,##0.0#)". 709
The prefixes, suffixes, and various symbols used for infinity, digits, thousands separators, decimal separators, 710
etc. may be set to arbitrary values, and they will appear properly during formatting. However, care must be 711
taken that the symbols and strings do not conflict, or parsing will be unreliable. For example, either the 712
positive and negative prefixes or the suffixes must be distinct for DecimalFormat.parse() to be able to 713
distinguish positive from negative values. (If they are identical, then DecimalFormat will behave as if no 714
negative subpattern was specified.) Another example is that the decimal separator and thousands separator 715
should be distinct characters, or parsing will be impossible. 716
The grouping separator is commonly used for thousands, but in some countries it separates ten-thousands. 717
The grouping size is a constant number of digits between the grouping characters, such as 3 for 100,000,000 718
or 4 for 1,0000,0000. If you supply a pattern with multiple grouping characters, the interval between the last 719
one and the end of the integer is the one that is used. So "#,##,###,####" == "######,####" == 720
"##,####,####". 721

3.4.3.5 38BSpecial Pattern Characters 722

Many characters in a pattern are taken literally; they are matched during parsing and output unchanged 723
during formatting. Special characters, on the other hand, stand for other characters, strings, or classes of 724
characters. They must be quoted, unless noted otherwise, if they are to appear in the prefix or suffix as 725
literals. 726
The characters listed here are used in non-localized patterns. Localized patterns use the corresponding 727
characters taken from this formatter's DecimalFormatSymbols object instead, and these characters lose 728
their special status. Two exceptions are the currency sign and quote, which are not localized. 729

Symbol Location Localized? Meaning

0 Number Yes Digit

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 39 of 57

Number Yes Digit, zero shows as absent

. Number Yes Decimal separator or monetary decimal separator

- Number Yes Minus sign

, Number Yes Grouping separator

E Number Yes Separates mantissa and exponent in scientific notation. Need not be
quoted in prefix or suffix.

; Subpattern
boundary

Yes Separates positive and negative subpatterns

% Prefix or suffix Yes Multiply by 100 and show as percentage

\u2030 Prefix or suffix Yes Multiply by 1000 and show as per mille

¤
(\u00A4)

Prefix or suffix No Currency sign, replaced by currency symbol. If doubled, replaced by
international currency symbol. If present in a pattern, the monetary
decimal separator is used instead of the decimal separator.

' Prefix or suffix No Used to quote special characters in a prefix or suffix, for example,
"'#'#" formats 123 to "#123". To create a single quote itself, use two
in a row: "# o''clock".

 730
For more information, examples and pattern manipulation see the documentation for the Java DecimalFormat 731
method and links to examples there. The library also supports use of scientific notation numbers. 732

3.5 12BPredicate Format Options 733

There are several ways in which predicates can be referenced with a CAM template. The tables below show 734
the different forms to be used and when. The first table shows the BusinessUseContext Rules format when a 735
constraint is applying one and only one action to an element or attribute. The second table is for when a 736
constraint is applying several actions to one item (specified by a path). The third table shows the inline 737
functions when applied to elements. The fourth shows a proposed extension for the inline definitions to be 738
used with attributes. 739
 740

TABLE 1: Functions used for constraint action attribute:
<as:constraint action=”functiondefn”/>

excludeAttribute(xpath)

excludeElement(xpath)

excludetree(xpath)

makeMandatory(xpath)

makeOptional(xpath)

makeRepeatable(xpath)

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 40 of 57

TABLE 1: Functions used for constraint action attribute:
<as:constraint action=”functiondefn”/>

restrictValues(xpath,valuesList)

setChoice(xpath)

setDateMask(xpath,dateMask)

setID(xpath,idValue)

setLength(xpath,lengthDescription)

setLimit(xpath,limitValue)

setMask(xpath,datatype,Mask)

setValue(xpath,value)

useAttribute(xpath)

useChoice(xpath)

useElement(xpath)

useTree(xpath)

orderChildren(xpath)

 741

 742

TABLE 2: Function used for constraint action element:
<as:constraint item=”xpath”>

 <as:action>functiondefn</as:action>

</asconstraint>

excludeAttribute()

excludeElement()

excludetree()

makeMandatory()

makeOptional()

makeRepeatable()

restrictValues(valuesList)

setChoice()

setDateMask(dateMask)

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 41 of 57

setID(idValue)

setLength(lengthDescription)

setLimit(limitValue)

setMask(datatype,Mask)

setValue(value)

useAttribute()

useChoice()

useElement()

useTree()

orderChildren()

 743

 744

TABLE 3: Inline Element functions – used alongside structure example - all are
attributes
as:makeMandatory="true"

as:makeOptional="true"

as:makeRepeatable="true"

as:restrictValues="valuesList"

valuesList ::= value|value|... value ::= string with or without single quotes

as:setChoice="idValue"

all elements in choice have same idValue

as:setDateMask="dateMask"

as:setID="idValue"

as:setLength="lengthDescription" : lengthDescription = min-max or max

as:setLimit="limitValue"

as:setMask="Mask" – must be used with a as:datatype attribute for non string

masks

as:setValue="value"

as:orderChildren=”true”

 745

TABLE 4: Inline attribute functions – used alongside structure example all are
attributes. Assumed to be for an attribute called ‘example’ - <element
example=”value”/>

as:makeMandatory-example="true"

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 42 of 57

as:makeOptional-example ="true"

as:restrictValues-example ="valuesList"

valuesList ::= value|value|... value ::= string with or without quotes

as:setMask-example =”Mask" – must be used with a as:datatype attribute for non

string masks

as:setID-example ="idValue"

as:setLength-example ="lengthDescription" : lengthDescription = min-max or max

as:setNumberMask-example ="numberMask"

as:setValue-example ="value"

 746

3.6 13BIn-line use of predicates and references 747

Figure 8 in Section 3.3 above shows an example for an AssemblyStructure with different structure 748
components for address (e.g. US, Europe, Canada). Using different structures for content can be controlled 749
with in-line statements indicating by context those optional and required content selections. The in-line 750
commands are inserted using the “as:” namespace prefix, to allow insertion of the command statements 751
wherever they are required. These in-line commands compliment the predicates used within the 752
<BusinessUseContext> section of the assembly for setChoice() and useChoice(). The table in Figure 13 753
below gives the list of these in-line statements and the equivalent predicate form where applicable. 754
In-line command entries marked as “not applicable” can only be used within the <BusinessUseContext> 755
section. Also where there is both a predicate statement and an in-line command, then the predicate 756
statement overrides and takes precedent. For attributes inline functions can be included by using the format 757
‘as:attributename-functionname=”value”’. . 758
The in-line statements available are detailed in the table shown in Figure 13. In-line command entries marked 759
as “not applicable” can only be used within the <BusinessUseContext> section. Also where there is both a 760
predicate statement and an in-line command, then the predicate statement overrides and takes precedent. 761
See Figure 14 below for examples of using in-line predicates. 762

Figure 13 - Matrix of in-line statement commands and predicate commands 763

Predicate In-line Command Notes
excludeAttribute() Not applicable
excludeElement() Not applicable
excludeTree() Not applicable

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 43 of 57

Predicate In-line Command Notes
makeOptional() as:makeOptional="true" Make part of structure optional,

or make a repeatable part of the
structure optional (e.g.
occurs=zero)

makeMandatory() as:makeMandatory="true" Make part of the structure
required; leaf element may not
be nillable

allowNull() as:allowNull="true" Allow null content model for leaf
element

makeRepeatable() as:makeRepeatable="true"

as:setLimit="5n"

as:setRequired="3n"

Make part of the structure occur
one or more times in the content;
the optional as:setLimit="nnnn"
statement controls the maximum
number of times that the repeat
can occurF

9
F. The optional

as:setRequired="nnnn"
statement controls the required
occurrences that must at least be
present.

setChoice() Not applicable
setId() as:choiceID="label" Associate an ID value with a part

of the structure so that it can be
referred to directly by ID

setLength() as:setLength="nnnn-mmmm" Control the length of content in a
structure member

setLimit() as:setLimit="nnnn" For members that are
repeatable, set a count limit to
the number of times they are
repeatable

9 Design note: the setLimit / setRequired are deliberately optional. It is intended they only be used sparingly,
when exceptional constraints are really needed. In W3C schema max/min are used as required factors. This
impairs the ability to know when an exceptional constraint is present and therefore is an inhibitor to
engineering robust interoperable systems.

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 44 of 57

Predicate In-line Command Notes
setRequired() as:setRequired="nnnn" For members that are

repeatable, set a required
occurrence for the number of
members that must at least be
present (nnnn must be greater
than 1)F

10
F.

setDateMask()

setNumberMask()

setStringMask()

as:setDateMask=”DD-MM-YY”

as:setNumberMask=”####.##”

as:setStringMask=”U8”

"x’Mask’"

Assign a regular expression or
picture mask to describe the
content. First character of the
mask indicates the type of mask.

setValue() as:setValue="string" Place a value into the content of
a structure

restrictValues() as:restrictValues=”’value’|’v

alue’”

"[valuelist]"

Provide a list of allowed values
for a member item

restrictValuesByUID()) as:restrictValuesByUID=

"UID"
Provide a list of allowed values
for a member item from an
registry reference

useAttribute() Not applicable
useChoice() Not applicable
useElement() as:useElement="true" Where a structure definition

includes choices indicate which
choice to use.

useTree() as:useTree="true" Where a structure member tree
is optional indicate that it is to be
used.

useAttributeByID() Not applicable
useChoiceByID() Not applicable
useTreeByID() Not applicable
useElementByID() Not applicable

10 Design note: makeRepeatable(), makeMandatory() is the preferred syntax over the alternate:
makeRepeatable() as:setRequired="1".

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 45 of 57

Predicate In-line Command Notes
Not applicable <as:include>URL

</as:include>

<as:include ignoreRoot=”yes”>

Allows inclusion of an external
source of assembly instructions
or structure. The URL is any
single valid W3C defined URL
expression that resolves to
physical content that can be
retrieved. Note: can only be
used in the <Structure> section
of assembly. The optional
ignoreRoot attribute permits
inclusion of fragments of XML
that are not well-formed by
ignoring the root element from
the XML source content.

checkCondition() as:checkCondition=

"conditionID”
Points to the condition to be
tested in the data validation
section.

makeRecursive() as:makeRecursive="true" Denotes element as a recursive
structure member, so can
appears as child of this parent.

orderChildren() as:orderChildren=”true” Denotes that the children of the
element must occur in the order
they occur in the reference
structure template.

 764
The next Figure 14 shows some examples of using these in-line commands within a structure. 765
 766
Figure 14 - Use of in-line commands with a well-formed XML structure 767

 768

<AssemblyStructure xmlns:as="http://www.oasis-open.org/committees/cam"> 769
 <Structure taxonomy=’XML’> 770
 <Items CatalogueRef=”2002”> 771
 <SoccerGear> 772
 <Item as:makeRepeatable="true"> 773
<RefCode as:makeMandatory="true" as:setLength="10">%%</RefCode> 774
<Description>%%</Description> 775
<Style>WorldCupSoccer</Style> 776
<UnitPrice as:setNumberMask="q999.9###.##">%%</UnitPrice> 777
 </Item> 778
<QuantityOrdered as:setNumberMask="q999####">%%</QuantityOrdered> 779
<SupplierID as:makeMandatory="true">%%</SupplierID> 780
<DistributorID>%%</DistributorID> 781
<OrderDelivery>Normal</OrderDelivery> 782
<DeliveryAddress/> 783
 </SoccerGear> 784
 </Items> 785
 </Structure> 786
</AssemblyStructure> 787

It should be noted that in-line commands cannot be used with non-XML structures; all such structures require 788
the use of predicates within the <BusinessUseContext> section of the assembly instead. 789

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 46 of 57

3.7 14BAdvanced Features 790

The following sections contain advanced feature options and use details. 791

3.8 15BUse of namespace declarations 792

The default CAM template assumes that all that is required is one namespace declaration for use with in-line 793
CAM predicates within a template (e.g. <myTagName as:setValue=”xxx”>). 794
However many business vocabularies have adopted wholesale use of namespace prefixes for the elements 795
and attributes in their schemas regardless of whether this is necessary or not. While this is not an issue for 796
the design of CAM it is an issue for several of the XML parser implementations and the way they have been 797
coded, including their DOM representations. Essentially when multi-namespace declarations exist in an XML 798
instance they can no long support the default namespace having no prefix. 799
Unfortunately this is a common behaviour that has been widely copied due to sharing of the underlying Java 800
libraries involved. Another issue is the placing of namespace declarations. Again the XML specifications 801
permit these to occur anywhere in the XML instance. However the Java library implementation will often fail if 802
all namespace declarations are not placed at the top of the XML instance. 803
To resolve this CAM templates permit the use of a global namespace at the root CAM template level and 804
placing all namespace declarations in the root element declaration. You should only need to resort to this 805
when handling structures that involve multiple inline namespace declarations within the XMl content. 806
Processors can provide a function to extract namespace definitions from an XML example and correctly 807
define a CAM template skeleton with namespaces moved to the root node and any anonymous namespaces 808
provided with a prefix (the jCAM editor implementation provides an example of this, along with the 809
autogenerate template feature in jCAM itself). The figure 15 here illustrates an example. 810

Figure 15 - An example of namespace declarations for CAM templates 811

<?xml version="1.0" encoding="utf-8"?> 812
<!-- Sample CAM Template showing use of namespaces extensions --> 813
<as:CAM CAMlevel="1" version="0.13" 814
 xmlns:as="http://www.oasis-open.org/committees/cam" 815
 xmlns:tic="http://era.nih.gov/Projectmgmt/SBIR/CGAP/ticket.namespace" 816
 xmlns:cb="http://era.nih.gov/Messaging/SBIR/CGAP/ticket.namespace" 817
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 818
xsi:schemaLocation="http://www.oasis-open.org/committees/cam 819
file:///D:/eclipse/workspace/camprocessor/schema/CAMv0151.xsd"> 820
 <!-- note: namespace declarations should all be here, not in body of CAM 821
template --> 822
<as:Header> 823
<as:Description>Validates an Incoming transaction</as:Description> 824
<as:Owner>CAM smaple templates</as:Owner> 825
<as:Version>0.1</as:Version> 826
<as:DateTime>2004-09-09T17:00:00</as:DateTime> 827
<as:Parameters> 828
<!-- example parameter declaration --> 829
<as:Parameter name="applicationType" values="competing_continuation|80|70" 830
use="global" default="competing_continuation"/> 831
</as:Parameters> 832
</as:Header> 833
<as:AssemblyStructure> 834
<as:Structure ID="default" taxonomy="XML"> 835
<cb:MessageType> 836
 <tic:ticket> 837
 <tic:institutionID>%%</tic:institutionID> 838
 <tic:correctionID>%%</tic:correctionID> 839
 <tic:timestamp>%%</tic:timestamp> 840
 <tic:application> 841
 <tic:projectTitle>%text%</tic:projectTitle> 842
 <tic:applicationType>%%</tic:applicationType> 843
 <tic:revisionNumber>%%</tic:revisionNumber> 844

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 47 of 57

 </tic:application> 845
 </tic:ticket> 846
</cb:MessageType> 847
</as:Structure> 848
</as:AssemblyStructure> 849
<as:BusinessUseContext> 850
<as:Rules> 851
<as:default> 852
<as:context> 853
<as:constraint action="setNumberMask(//tic:institutionID,#9)"/> 854
<as:constraint action="restrictValues(//tic:correctionID,'N'|'Y')"/> 855
<as:constraint action="setDateMask(//tic:timestamp,YYYY-MM-DDTHH:MI:SS)"/> 856
<as:constraint 857
action="restrictValues(//tic:applicationType,'competing_continuation'|'other')"/> 858
<as:constraint action="setNumberMask(//tic:revisionNumber,##)"/> 859
</as:context> 860
</as:default> 861
<!-- example additional rules --> 862
<as:context> 863
</as:context> 864
</as:Rules> 865
</as:BusinessUseContext> 866
</as:CAM> 867

 868

3.9 16BExtending CAM Processors 869

Originally CAM v1.0 was designed to have 5 distinct areas within the template. These were to cover off 870
expected forms of content handling and advanced functionality. In the 1.1 specification these have been 871
replaced in favour of a more extensible framework. This framework is based on the idea of a CAM processor 872
being able to provide a core set of XML handling functions, while allowing extensions via the optional include 873
or ANY functionality. 874
An extension entry is designed to allow CAM processors to invoke functionality that is too specialized to allow 875
strict normative definition by the CAM specification and implementation by the CAM processor developers 876
(such as for local integration specialization needs, error handling and reporting, XML marshalling or un-877
marshalling, or mutually agreed to vertical industry extensions). 878
There are two types of extension allowed, preprocessor and postprocessor. If more than one included 879
extension is defined of a given type they will be handled in the order that the extensions appear within the 880
CAM template. 881
Further ideas for implementing extensions and example syntax are provided in the Addendum B of this 882
document. 883

3.9.1 28Bas:Extension 884

This is a hook to enable any extension to be included in the CAM Template. It may contain any valid XML 885
from any defined source. Any number of extensions may be defined. Any process dependencies must be 886
defined by the CAM processor supporting the Extension. 887
For Java implementations of CAM the Apache Maven linkage approach provides a default configuration 888
method for associating external process handlers with the default CAM processor. 889
An example of an extension is provision of a lookup() function. This can be tailored to suit the particular 890
domain and/or local application needs. 891

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 48 of 57

3.9.2 29BPreprocessor Extensions 892

Preprocessor extensions are run after the CAM template has been read in to the processor and after any 893
pseudo-variables have been defined for the run. Any includes of any type are also completed before the 894
extensions run. They are run before any BusinessUseContext rules are applied to the Structure in question. 895
In order to run the processor must supply an API to allow the preprocessor extension access to the complete 896
CAM template and also to any input file that has been supplied to the processor. The preprocessor may then 897
update either of these items before completion. A method to pass back any errors to the processor for 898
onward communication must be provided. 899

3.9.3 30BPostprocessor Extensions 900

Postprocessor extensions are to be run after all the BusinessRulesContext rules have been completed. 901
Processors are at liberty to provide an option as to whether extensions are run in the case of errors occurring 902
during the core processing. 903
As with the preprocessors there are requirements to be able to access both the CAM template after any 904
processing and the input file that has been processed. Each extension may change these and return them 905
via the API for either the processor to complete work or to pass onto further extensions. A method to pass 906
back any errors to the processor for onward communication must be provided. 907

3.9.4 31Bas:include 908

The include provided outside the AssemblyStructure and BusinessUseContext elements is purely to allow 909
as:Extension elements to be included. 910
In addition note that the as:include may optionally specify the ignoreRoot=”yes” attribute. This permits 911
inclusion of XML fragments that are not well-formed, by allowing a dummy root element to be used to ensure 912
the fragment is well-formed – but then the dummy root element is ignored. 913
e.g. : 914
 915
<tempRoot> 916
 <not_well_formed_by_itself/> 917
 <tag1_include/> 918
 <tag2_include/> 919
 <well_formed> 920
 <tag3_include/> 921
 <well_formed> 922
</tempRoot> 923
 924
So tempRoot will be ignored 925

3.9.5 32BTemplate Location defaulting 926

This provides the ability to associate from an XML instance to the CAM template that validates it. A URL is 927
provided for the CAM template location. A CAM processor therefore can locate and validate XML directly. 928
The syntax for this is: 929
asi:templateLocation="[URL]"> 930
and the namespace declaration is: 931
xmlns:asi="http://www.oasis-open.org/committees/cam/instance" 932
and these should occur on the root element of the XML instance. 933

3.9.6 33BSelection of Assembly Structure 934

When a template contains more than one structure instance (such as different versions of the same structure) 935
it is necessary to provide the ability to dynamically select which structure to apply to an XML instance for 936
validation. One option is to pass in a CAM parameter. However this advanced feature permits the use of an 937

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 49 of 57

xpath attribute onto the Structure element that then uniquely identifies the ID value of the relevant structure 938
that should be used to validate the message (this can optionally be overridden by the structure ID name being 939
passed in from outside the template). This first matching XPath expression that returns true is then selected 940
for use. 941
 942
 The XML below provides an example. The xpath expression effectively equates to true if the XML instance 943
contains the matching relevant structure item, and / or associated value. 944
 945

<as:AssemblyStructure> 946
<as:Structure ID="ex_1" taxonomy="XML" 947
xpath="/ex:example"> <!-- Xpath check here --> 948
<ex:example> 949
<ex:test name="Fred"> 950
</ex:example> 951
</as:Structure> 952
 953
<as:Structure ID="new_1" taxonomy="XML" 954
xpath="/new:example"> <!-- Xpath check here --> 955
<new:example> 956
<new:test name="%Fred%"> 957
<new:inside>%value%</new:inside> 958
</new:example> 959
</as:Structure> 960
</as:AssemblyStructure> 961
 962

3.10 Future Feature Extensions 963

This section is provided as a holding area for potential extensions to the base CAM specifications. 964
W3C RIF and OMG PRR Rule Support 965
The ability to add extensions to the base CAM templates means that common rule syntax approaches can be 966
exploited easily to augment the base XML content validations that CAM provides. W3C Rule Interchange 967
Format (RIF) and OMG Production Rule Representation (PRR) are both examples of such extended rules 968
syntax that can be used to augment the basic built-in XPath support and CAM functions to add more complex 969
logic handling. Examples of these techniques will be developed for future use. 970
RDF / OWL support 971
The ability to use RDF / OWL syntax to provide metadata and semantics in the ContentReference section for 972
elements. 973
Registry based noun semantics 974
This is currently under development with the Registry SCM group and will be referenced here when complete. 975
WSDL support for CAM processor 976
A draft WSDL interface has been posted to the OASIS CAM TC site for discussion and is available. 977
Implementers may use this as a basis for deploying a CAM processor as a web service. 978
Accessing content in ebXML Registry 979
The ebXML Registry Services Specification (RSS) describes this capability. 980
Typical functions include the QueryManager's getRegistryObject, and getRepositoryItem operations. Also 981
there is the HTTP interface and also the SQL or Filter query interface as described by AdhocQueryRequest. 982
This also includes the possibility of running external library functions offered by a registry. 983
The registry specifications may be found at: 984
[3] ebXML Registry specifications 985
Hhttp://www.oasis-open.org/committees/regrep/documents/2.5/specs/ 986
Import Feature 987

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 50 of 57

Some basic IMPORT functionality is available in this V1.0 of CAM, however this is not intended to be 988
comprehensive or complete. Subsequent versions of CAM will enhance the basic functions available in V1.0 989
and allow more sophisticated sub-assembly techniques. 990
XACML support 991
In many ways the CAM context mechanisms mirror the ability to include or exclude content as a filtering style 992
operation between the input and output. An extension to support XACML (eXtensible Access Control Markup 993
Language) syntax is there a natural addition to CAM processing. CAM functions can simplify the creation and 994
coding of XACML while being able to call an XACML extension. 995
 996

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 51 of 57

A. Addendum 997

17BA1.1 CAM schema (W3C XSD syntax) 998

This item is provided as a reference to the formal specification of the XML structure definition for CAM itself. 999
However specific implementation details not captured by the XSD syntax should be referenced by studying 1000
the specification details provided in this document and clarification of particular items can be obtained by 1001
participating in the appropriate on-line e-business developer community discussion areas and from further 1002
technical bulletins supplementing the base specifications. For specific details of the latest XSD 1003
documentation please reference the OASIS CAM TC documents area where the latest approved XSD version 1004
is available. This is also mirrored to the open source jCAM site as well (http://www.jcam.org.uk). See 1005
document download area from OASIS website: Hhttp://www.oasis-open.org/committees/camH 1006
In addition OASIS may provide a static location to the reference CAM XSD schema under Hhttp://docs.oasis-1007
open.org/camH once an approved specification is available. 1008
 1009

18BA1.2 CAM Processor Notes (Non-Normative) 1010

CAM processor notes assist implementers developing assembly software, these are non-normative. Within 1011
an assembly implementation the processor examines the assembly document, interprets the instructions, and 1012
provides the completed content structure details given a particular set of business context parameters as 1013
input. This content structure could be stored as an XML DOM structure for XML based content, or can be 1014
stored in some other in-memory structure format for non-XML content. Additionally the memory structure 1015
could be temporarily stored and then passed to a business application step for final processing of the 1016
business content within the transaction. 1017
Since typical development environments already contain linkage between the XML parser, the DOM, an 1018
XPath processor, a scripting language such as JavaScript, the data binding toolset such as XSLT or a 1019
comparable mapping tool. The assembly approach based on an XML script fits naturally into this 1020
environment. 1021
Some suggested uses and behaviours for CAM processors include: 1022

· Design time gathering of document parts to build a context sensitive assembly service that can be 1023
called via an API or webservice interface. 1024

· Design time generation of validation scripts and schemas for the run time environment that is not 1025
CAM savvy or that does not provide any context flexibility. Think of this as a CAM compiler. This 1026
would mean that context parameters would be passed in as input to this. 1027

 1028
· Runtime validation engine based on context parameters and controlled via a Business Process 1029

engine with BPM script definitions running within the gateways of trading partners. 1030

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 52 of 57

19BA1.3 Processing Modes and Sequencing 1031

Non-normative 1032
Context elements can have conditions. These conditions can either be evaluated against variables 1033
(parameters) or XPath statements. These conditions can be evaluated in two modes: 1034
 1035

1) A standalone CAM template - i.e. on the basis of external parameters values passed to the CAM 1036
processor to evaluate the conditionals. 1037

2) CAM template and XML instance - check the XML instance to evaluate the condition and then 1038
proceed (this is the normal mode for a CAM processor). 1039

 1040
The first mode is typically used when you are trying to produce documentation about what is allowed for a 1041
transaction and it is useful to pre-process (precompile) the structure rules without the existence of an XML 1042
instance file. This means that any condition that falls into the second category can not be evaluated (these 1043
conditions then behave equivalent of having Schematron asserts, and are documented but not actioned). 1044
 1045

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 53 of 57

B. Addendum 1046

20BB1.1 CAM extension mechanism example 1047

This item illustrates the approach using Apache Maven linker technology to implement the component and 1048
Extension mechanism in CAM as implemented in the jCAM open source tool. It also shows how alternative 1049
strict and lax XML conformance can be optionally configured via this mechanisms. 1050
 1051
Figure B1.1.1 1052

<container> 1053
 <component-implementation class="uk.org.jcam.processor.dataObjects.Template" /> 1054
 <component-implementation class="uk.org.jcam.processor.dataObjects.DataFile" /> 1055
 <!-- <component-implementation 1056
class='uk.org.jcam.processor.validator.DefaultValidator'/> 1057
 --> 1058
 <!-- <component-implementation 1059
class='uk.org.jcam.processor.validator.UnOrderedValidatorLax'/> 1060
 --> 1061
 <component-implementation 1062
class="uk.org.jcam.processor.validator.UnOrderedValidatorStrict" /> 1063
 <component-implementation class="uk.org.jcam.processor.trimmer.DefaultTrimmer" 1064
/> 1065
 <component-implementation class="uk.org.jcam.processor.adorner.DefaultAdorner" 1066
/> 1067
 <component-implementation 1068
class="uk.org.jcam.processor.transformer.XSLTransformer" /> 1069
 <component-implementation class="uk.org.jcam.drools.DroolsDataValidator" /> 1070
 <component-implementation class="uk.org.jcam.groovy.GroovyDataValidator" /> 1071
 <component-implementation class="uk.org.jcam.beanshell.BeanShellDataValidator" 1072
/> 1073
</container> 1074

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 54 of 57

C. Acknowledgements 1075

The views and specification expressed in this document are those of the authors and are not necessarily 1076
those of their employers. The authors and their employers specifically disclaim responsibility for any 1077
problems arising from correct or incorrect implementation or use of this design. 1078
The following individuals have participated in the creation of this specification and are gratefully 1079
acknowledged. 1080
Participants: 1081
 1082
 1083

Fred Carter AmberPoint CAM TC member

Chris Hipson BTplc CAM TC member

Martin Roberts BTplc CAM TC member

Hans Aanesen Individual CAM TC member

Ram Kumar Individual CAM TC member

Joe Lubenow Individual CAM TC member

Colin Wallis New Zealand Government Member, CIQ TC

David Webber Individual Chair CAM TC

Tom Rhodes NIST CAM TC member

Bernd Eckenfels Seeburger, AG CAM TC member

Paul Boos US Dept of the Navy CAM TC member

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 55 of 57

D. Non-Normative Text 1084

Non-normative items are noted as such in the body of the specification as applicable. Possible Future 1085
Extensions are noted in that section above. Also a separate document is maintained by the CAM TC of 1086
experimental and extension items that are under consideration for inclusion in future versions of the 1087
specification. The latest public version of that draft non-normative items document is available from the 1088
committee area web site. 1089

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 56 of 57

E. Revision History 1090

[optional; should not be included in OASIS Standards] 1091
 1092
 1093
Change History: 1094
Status Ver

sion
Revision Date Editor Summary of Changes

Draft 1.0 0.10 30 December, 2002 DRRW Rough Draft

 0.11 12th February, 2003 DRRW Initial Draft

 0.12 23rd February, 2003 DRRW Revision for comments to 28/02/2003

 0.13 17th May, 2003 DRRW Revision for comments to 08/05/2003

 0.14 13th August, 2003 DRRW Revision for comments to 15/08/2003

 0.15 3rd February, 2004 DRRW Final edits prior to first public release

 0.16 15th February, 2004 DRRW Release Candidate for Committee Draft CAM

 0.17 19th February 2004 MMER Edited detailed comments into draft.

Committee
Draft

 0.17C 12th March 2004 DRRW Cosmetic changes to look of document to
match new OASIS template and notices
statement.

Revised
Committee
Draft

 0.18 10th December 2004 DRRW Revisions from comment period, corrections,
and bug fixes to examples. Added Table of
Figures index.

 0.19 4th January, 2005 DRRW Layout changes to align with new OASIS
document template formatting and logo.
Update figure 4.1.2 to reflect latest schema,
and also 4.5 for noun content referencing.
Add addendum glossary of terms and
abbreviations.

Revised
Committee
Draft

1.1 0.01 25th May, 2006 DRRW New revised specification to reflect extensible
model and architecture.

 1.1 0.02 27th June 2006 MR Explicit corrections to line up with
implementable features and also explicit
definition of normative and non-normative
sections.

 1.1 0.03 28th June 2006 MR Included section on extensions (plug-ins).

 1.1 0.04 4th July 4, 2006 DRRW Refined text, general edits.

 1.1 0.05 27th July, 2006 DRRW Revise examples + figure captioning

 1.1 0.06 5th Sept 2006 MR Issues around Order tackled

OASIS-CAM-Specification-1_1-015-060107.doc 01 June 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 57 of 57

Status Ver
sion

Revision Date Editor Summary of Changes

 1.1 0.06 12th September 2006 DRRW Changes consolidation and clean-up edits

 1.1 0.07 12th Sept 2006 MR Schema Diagram Updated, Appendix re-
factored, extensions approach re-worked

 1.1 0.08 15th Sept 2006 DRRW
/ MR

Edits and changes for accuracy. Import
Function refined, Date comparison functions
amended. W3C RIF and OMG PRR notes

 1.1 0.09 21st October 2006 MR /
DRRW

Very Simple Extensions added. Align date
masks with Java SDF. Correct examples XML

 1.1 0.10 24th October 2006 DRRW Refine masks mechanism details, including
both date and numeric masks.

 1.1 0.11 2nd November 2006 DRRW/
MR

Minor editing corrections and fixes to mask
details, handling of quote characters and non-
normative clarification of psuedo-variables.

 1.1 0.12 15th February 2007 DRRW Revised to include comments from OASIS
member 60 day review period (changes noted
in comment review log document).

 1.1 0.13 5th March 2007 DRRW Revised to use new OASIS document
template and include TC member comments
prior to formal Committee Specification ballot
(changes noted in comment review log
document).

 1.1 0.14 8th March 2007 DRRW Cosmetic edits/fixes to URLs and layout to
meet OASIS document specification, template
and site requirements.

 1095

