
WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 1 of 120

WS-Biometric Devices Version 1.0

Committee Specification Draft 01 /
Public Review Draft 01

25 August 2014

Specification URIs
This version:

http://docs.oasis-open.org/biometrics/WS-BD/v1.0/csprd01/WS-BD-v1.0-csprd01.doc
(Authoritative)
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/csprd01/WS-BD-v1.0-csprd01.html
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/csprd01/WS-BD-v1.0-csprd01.pdf

Previous version:

N/A

Latest version:
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/WS-BD-v1.0.doc (Authoritative)
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/WS-BD-v1.0.html
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/WS-BD-v1.0.pdf

Technical Committee:

OASIS Biometrics TC

Chair:

Kevin Mangold (kevin.mangold@nist.gov), NIST

Editors:
Kevin Mangold (kevin.mangold@nist.gov), NIST
Ross J. Micheals (ross.micheals@nist.gov), NIST

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

 XML schemas: http://docs.oasis-open.org/biometrics/WS-BD/v1.0/csprd01/schemas/

Related work:

This specification replaces or supersedes:

 Specification for WS-Biometric Devices (WS-BD) Version 1.
http://www.nist.gov/itl/iad/ig/upload/NIST-SP-500-288-v1.pdf

Declared XML namespace:

 http://docs.oasis-open.org/biometrics/ns/ws-bd-1.0

Abstract:
WS-Biometric Devices, or WS-BD, is a command & control protocol for biometric devices. It uses
the language for the web; proprietary knowledge of sensor interfaces is no longer required.
Desktop, laptop, tablet, and smartphone applications can access sensors just as easily as they
can navigate to a website.

Status:
This document was last revised or approved by the OASIS Biometrics TC on the above date. The
level of approval is also listed above. Check the “Latest version” location noted above for possible
later revisions of this document. Any other numbered Versions and other technical work produced

http://docs.oasis-open.org/biometrics/WS-BD/v1.0/csprd01/WS-BD-v1.0-csprd01.doc
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/csprd01/WS-BD-v1.0-csprd01.html
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/csprd01/WS-BD-v1.0-csprd01.pdf
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/WS-BD-v1.0.doc
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/WS-BD-v1.0.html
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/WS-BD-v1.0.pdf
https://www.oasis-open.org/committees/biometrics/
mailto:kevin.mangold@nist.gov
http://www.nist.gov/
mailto:kevin.mangold@nist.gov
http://www.nist.gov/
mailto:ross.micheals@nist.gov
http://www.nist.gov/
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/csprd01/schemas/
http://www.nist.gov/itl/iad/ig/upload/NIST-SP-500-288-v1.pdf
http://docs.oasis-open.org/biometrics/ns/ws-bd-1.0

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 2 of 120

by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=biometrics#technical.

TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/biometrics/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/biometrics/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[WS-BD-v1.0]

WS-Biometric Devices Version 1.0. Edited by Kevin Mangold and Ross J. Micheals. 25 August
2014. OASIS Committee Specification Draft 01 / Public Review Draft 01. http://docs.oasis-
open.org/biometrics/WS-BD/v1.0/csprd01/WS-BD-v1.0-csprd01.html. Latest version:
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/WS-BD-v1.0.html.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=biometrics#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=biometrics#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=biometrics
https://www.oasis-open.org/committees/biometrics/
https://www.oasis-open.org/committees/biometrics/
https://www.oasis-open.org/committees/biometrics/ipr.php
https://www.oasis-open.org/committees/biometrics/ipr.php
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/csprd01/WS-BD-v1.0-csprd01.html
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/csprd01/WS-BD-v1.0-csprd01.html
http://docs.oasis-open.org/biometrics/WS-BD/v1.0/WS-BD-v1.0.html

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 3 of 120

Notices

Copyright © OASIS Open 2014. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 4 of 120

Table of Contents

1 Introduction ... 9

1.1 Terminology .. 9

1.2 Documentation Conventions... 10

1.2.1 Key Words ... 10

1.2.2 Quotations ... 10

1.2.3 Machine-Readable Code ... 10

1.2.4 Sequence Diagrams .. 10

1.3 Normative References .. 11

2 Design Concepts and Architecture ... 15

2.1 Interoperability .. 15

2.2 Architectural Components .. 15

2.2.1 Client ... 15

2.2.2 Sensor ... 15

2.2.3 Sensor Service .. 16

2.3 Intended Use .. 16

2.4 General Service Behavior ... 17

2.4.1 Security Model ... 17

2.4.2 HTTP Request-Response Usage .. 17

2.4.3 Client Identity ... 18

2.4.4 Sensor Identity... 19

2.4.5 Locking .. 19

2.4.6 Operations Summary .. 20

2.4.7 Idempotency .. 21

2.4.8 Service Lifecycle Behavior .. 21

3 Data Dictionary ... 23

3.1 Namespaces ... 23

3.2 UUID ... 23

3.3 Dictionary .. 24

3.4 Parameter ... 24

3.5 Range ... 26

3.6 Array ... 27

3.7 StringArray .. 27

3.8 UuidArray .. 27

3.9 ResourceArray .. 28

3.10 Resource... 28

3.11 Resolution ... 28

3.12 Status .. 29

3.13 Result .. 31

3.13.1 Terminology Shorthand ... 31

3.13.2 Required Elements .. 31

3.13.3 Element Summary ... 32

3.14 Validation .. 32

4 Metadata ... 34

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 5 of 120

4.1 Service Information ... 34

4.2 Configuration .. 35

4.3 Captured Data .. 35

4.3.1 Minimal Metadata .. 36

5 Live Preview ... 38

5.1 Endpoints .. 38

5.2 Heartbeat .. 39

6 Operations .. 40

6.1 General Usage Notes ... 40

6.1.1 Precedence of Status Enumerations ... 40

6.1.2 Parameter Failures .. 41

6.1.3 Visual Summaries ... 42

6.2 Documentation Conventions... 44

6.2.1 General Information ... 44

6.2.2 Result Summary .. 45

6.2.3 Usage Notes .. 46

6.2.4 Unique Knowledge .. 46

6.2.5 Return Values Detail ... 46

6.3 Register ... 47

6.3.1 Result Summary .. 47

6.3.2 Usage Notes .. 47

6.3.3 Unique Knowledge .. 47

6.3.4 Return Values Detail ... 47

6.4 Unregister ... 48

6.4.1 Result Summary .. 48

6.4.2 Usage Notes .. 48

6.4.3 Unique Knowledge .. 49

6.4.4 Return Values Detail ... 49

6.5 Try Lock .. 51

6.5.1 Result Summary .. 51

6.5.2 Usage Notes .. 51

6.5.3 Unique Knowledge .. 52

6.5.4 Return Values Detail ... 52

6.6 Steal Lock ... 54

6.6.1 Result Summary .. 54

6.6.2 Usage Notes .. 54

6.6.3 Unique Knowledge .. 55

6.6.4 Return Values Detail ... 55

6.7 Unlock ... 56

6.7.1 Result Summary .. 57

6.7.2 Usage Notes .. 57

6.7.3 Unique Knowledge .. 57

6.7.4 Return Values Detail ... 57

6.8 Get Service Info .. 58

6.8.1 Result Summary .. 59

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 6 of 120

6.8.2 Usage Notes .. 59

6.8.3 Unique Knowledge .. 60

6.8.4 Return Values Detail ... 60

6.9 Initialize ... 61

6.9.1 Result Summary .. 61

6.9.2 Usage Notes .. 62

6.9.3 Unique Knowledge .. 62

6.9.4 Return Values Detail ... 62

6.10 Get Configuration .. 65

6.10.1 Result Summary .. 65

6.10.2 Usage Notes .. 66

6.10.3 Unique Knowledge .. 66

6.10.4 Return Values Detail ... 66

6.11 Set Configuration .. 70

6.11.1 Result Summary .. 71

6.11.2 Usage Notes .. 71

6.11.3 Unique Knowledge .. 72

6.11.4 Return Values Detail ... 72

6.12 Capture ... 76

6.12.1 Result Summary .. 77

6.12.2 Usage Notes .. 77

6.12.3 Unique Knowledge .. 78

6.12.4 Return Values Detail ... 78

6.13 Download .. 82

6.13.1 Result Summary .. 82

6.13.2 Usage Notes .. 82

6.13.3 Unique Knowledge .. 86

6.13.4 Return Values Detail ... 86

6.14 Get Download Info .. 87

6.14.1 Result Summary .. 88

6.14.2 Usage Notes .. 88

6.14.3 Unique Knowledge .. 88

6.14.4 Return Values Detail ... 88

6.15 Thrifty Download ... 90

6.15.1 Result Summary .. 90

6.15.2 Usage Notes .. 91

6.15.3 Unique Knowledge .. 91

6.15.4 Return Values Detail ... 91

6.16 Cancel ... 93

6.16.1 Result Summary .. 93

6.16.2 Usage Notes .. 94

6.16.3 Unique Knowledge .. 95

6.16.4 Return Values Detail ... 95

7 Conformance Profiles ... 98

7.1.1 Conformance ... 98

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 7 of 120

7.1.2 Language ... 98

7.1.3 Operations ... 98

7.2 Fingerprint ... 99

7.3 Face .. 101

7.3.1 Service Information ... 101

7.4 Iris ... 102

7.4.1 Service Information ... 102

Appendix A. Parameter Details ... 104

A.1 Connections ... 104

A.1.1 Last Updated ... 104

A.1.2 Inactivity Timeout .. 104

A.1.3 Maximum Concurrent Sessions .. 104

A.1.4 Least Recently Used (LRU) Sessions Automatically Dropped ... 105

A.2 Timeouts ... 105

A.2.1 Initialization Timeout ... 105

A.2.2 Get Configuration Timeout .. 105

A.2.3 Set Configuration Timeout .. 106

A.2.4 Capture Timeout ... 106

A.2.5 Post-Acquisition Processing Time .. 106

A.2.6 Lock Stealing Prevention Period ... 106

A.3 Storage ... 107

A.3.1 Maximum Storage Capacity .. 107

A.3.2 Least-Recently Used Capture Data Automatically Dropped ... 107

A.4 Sensor .. 107

A.4.1 Modality ... 107

A.4.2 Submodality .. 108

Appendix B. Content Type Data .. 109

B.1 General Type .. 109

B.2 Image Formats ... 109

B.3 Video Formats .. 109

B.4 Audio Formats .. 109

B.5 General Biometric Formats .. 110

B.6 ISO / Modality-Specific Formats ... 110

Appendix C. XML Schema ... 112

Appendix D. Security (Informative) .. 114

D.1 References ... 114

D.2 Overview .. 115

D.3 Control Set Determination .. 115

D.3.1 “L” Security Control Criteria .. 115

D.3.2 “M” Security Control Criteria ... 115

D.3.3 “H” Security Control Criteria .. 116

D.4 Recommended & Candidate Security Controls ... 116

D.4.1 “L” Security Controls ... 117

D.4.2 “M” Security Controls .. 117

D.4.3 “H” Security Controls .. 117

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 8 of 120

Appendix E. Acknowledgments ... 118

Appendix F. Revision History .. 120

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 9 of 120

1 Introduction 1

The web services framework, has, in essence, begun to create a standard software 2
“communications bus” in support of service-oriented architecture. Applications and services can 3
“plug in” to the bus and begin communicating using standards tools. The emergence of this “bus” 4
has profound implications for identity exchange. 5

Jamie Lewis, Burton Group, February 2005 6
Forward to Digital Identity by Phillip J. Windley 7

As noted by Jamie Lewis, the emergence of web services as a common communications bus has 8
“profound implications.” The next generation of biometric devices will not only need to be intelligent, 9
secure, tamper-proof, and spoof resistant, but first, they will need to be interoperable. 10

These envisioned devices will require a communications protocol that is secure, globally connected, and 11
free from requirements on operating systems, device drivers, form factors, and low-level communications 12
protocols. WS-Biometric Devices is a protocol designed in the interest of furthering this goal, with a 13
specific focus on the single process shared by all biometric systems—acquisition. 14

 15

1.1 Terminology 16

This section contains terms and definitions used throughout this document. First time readers may desire 17
to skip this section and revisit it as needed. 18

biometric capture device 19

a system component capable of capturing biometric data in digital form 20

client 21

a logical endpoint that originates operation requests 22

HTTP 23

Hypertext Transfer Protocol. Unless specified, the term HTTP refers to either HTTP as defined in 24

[RFC2616] or HTTPS as defined in [RFC2660]. 25

ISO 26

International Organization for Standardization 27

modality 28

a distinct biometric category or type of biometric—typically a short, high-level description of a 29

human feature or behavioral characteristic (e.g., “fingerprint,” “iris,” “face,” or “gait”) 30

payload 31

the content of an HTTP request or response. An input payload refers to the XML content of an 32

HTTP request. An output payload refers to the XML content of an HTTP response. 33

payload parameter 34

an operation parameter that is passed to a service within an input payload 35

profile 36

a list of assertions that a service must support 37

REST 38

Representational State Transfer 39

RESTful 40

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 10 of 120

a web service which employs REST techniques 41

sensor or biometric sensor 42

a single biometric capture device or a logical collection of biometric capture devices 43

SOAP 44

Simple Object Access Protocol 45

submodality 46

a distinct category or subtype within a biometric modality 47

target sensor or target biometric sensor 48

the biometric sensor made available by a particular service 49

URL parameter 50

a parameter passed to a web service by embedding it in the URL 51

Web service or service or WS 52

a software system designed to support interoperable machine-to-machine interaction over a 53

network [WSGloss] 54

XML 55

Extensible Markup Language [XML] 56

1.2 Documentation Conventions 57

The following documentation conventions are used throughout this document. 58

1.2.1 Key Words 59

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 60
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 61
in[RFC2119]. 62

1.2.2 Quotations 63

If the inclusion of a period within a quotation might lead to ambiguity as to whether or not the period 64
should be included in the quoted material, the period will be placed outside the trailing quotation mark. 65
For example, a sentence that ends in a quotation would have the trailing period “inside the quotation, like 66
this quotation punctuated like this.” However, a sentence that ends in a URL would have the trailing 67
period outside the quotation mark, such as “http://example.com”. 68

1.2.3 Machine-Readable Code 69

With the exception of some reference URLs, machine-readable information will typically be depicted with 70
a mono-spaced font, such as this. 71

1.2.4 Sequence Diagrams 72

Throughout this document, sequence diagrams are used to help explain various scenarios. These 73
diagrams are informative simplifications and are intended to help explain core specification concepts. 74
Operations are depicted in a functional, remote procedure call style. 75

The following is an annotated sequence diagram that shows how an example sequence of HTTP request-76
responses is typically illustrated. The level of abstraction presented in the diagrams, and the details that 77
are shown (or not shown) will vary according to the particular information being illustrated. First time 78
readers may wish to skip this section and return to it as needed. 79

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 11 of 120

 80

 81

 82

Client A Service Client B

Lock owner = (none)

1:lock

sessionId={A1234567...}

Lock owner = {A1234567...}

2:lock

status=success

3:initialize

sessionId={A1234567...}

4:lock

sessionId={B890B123...}

5:lock

status=lockHeldByAnother

6:initialize

status=success

 83

Figure 1. Example of a sequence diagram used in this document. 84

1. Each actor in the sequence diagram (i.e., a client or a server) has a “swimlane” that chronicles 85

their interactions over time. Communication among the actors is depicted with arrows. In this 86

diagram, there are three actors: “Client A,” a WS-BD “Service,” and “Client B.” 87

 88

2. State information notable to the example is depicted in an elongated diamond shape within the 89

swimlane of the relevant actor. In this example, it is significant that the initial “lock owner” for the 90

“Service” actor is “(none)” and that the “lock owner” changes to “{A1234567…}” after a 91

communication from Client A. 92

 93

3. Unless otherwise noted, a solid arrow represents the request (initiation) of an HTTP request; the 94

opening of an HTTP socket connection and the transfer of information from a source to its 95

destination. The arrow begins on the swimlane of the originator and ends on the swimlane of the 96

destination. The order of the request and the operation name (§6.3 through §6.16) are shown 97

above the arrow. URL and/or payload parameters significant to the example are shown below the 98

arrow. In this example, the first communication occurs when Client A opens a connection to the 99

Service, initiating a “lock” request, where the “sessionId” parameter is “{A1234567…}.” 100

 101

4. Unless otherwise noted, a dotted arrow represents the response (completion) of a particular 102

HTTP request; the closing of an HTTP socket connection and the transfer of information back 103

from the destination to the source. The arrow starts on the originating request’s destination and 104

ends on the swimlane of actor that originated the request. The order of the request, and the name 105

of the operation that being replied to is shown above the arrow. Significant data “returned” to the 106

source is shown below the arrow (§3.13.1). Notice that the source, destination, and operation 107

name provide the means to match the response corresponds to a particular request—there is no 108

other visual indicator. In this example, the second communication is the response to the “lock” 109

request, where the service returns a “status” of “success.” 110

In general, “{A1234567…}” and “{B890B123…}” are used to represent session ids (§2.4.3, §3.13.3, §6.3); 111
“{C1D10123...}” and “{D2E21234...}” represent capture ids (§3.13.3, §6.12). 112

 113

1.3 Normative References 114

[3GPP] 3GPP, 3GPP TS 26.244 Transparent end-to-end packet switched streaming

1

1

2

2

3

3

4

4

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 12 of 120

service (PSS) 3GPP file format (3GP),
http://www.3gpp.org/DynaReport/26244.htm, Retrieved 12 August 2014

[3GPP2] 3GPP2, C.S0050-B Version 1.0 3GPP2 File Formats for Multimedia Services,
http://www.3gpp2.org/Public_html/specs/C.S0050-B_v1.0_070521.pdf, 18 May
2007

[AIFF] Apple Computer, Inc., Audio Interchange File Format: "AIFF". A Standard for
Sampled Sound Files Version 1.3, http://www-
mmsp.ece.mcgill.ca/Documents/AudioFormats/AIFF/Docs/AIFF-1.3.pdf, January
4, 1989

[AN2K] Information Technology: American National Standard for Information Systems—
Data Format for the Interchange of Fingerprint, Facial, & Scar Mark & Tattoo
(SMT) Information, http://www.nist.gov/customcf/get_pdf.cfm?pub_id=151453,
27 July 2000.

[AN2K11] B. Wing, Information Technology: American National Standard for Information
Systems—Data Format for the Interchange of Fingerprint, Facial & Other
Biometric Information,
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=910136, November 2011.

[AN2K7] R. McCabe, E. Newton, Information Technology: American National Standard for
Information Systems—Data Format for the Interchange of Fingerprint, Facial, &
Other Biometric Information – Part 1,
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=51174, 20 April 2007.

[AN2K8] E. Newton et al., Information Technology: American National Standard for
Information Systems—Data Format for the Interchange of Fingerprint, Facial, &
Other Biometric Information – Part 2: XML Version,
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=890062, 12 August 2008.

[ASF] Overview of the ASF Format, http://msdn.microsoft.com/en-
us/library/windows/desktop/dd757562%28v=vs.85%29.aspx, Retrieved 13
August 2014

[ASX] Windows Media Metafile Elements Reference, http://msdn.microsoft.com/en-
us/library/dd564668%28VS.85%29.aspx, Retrieved 13 August 2014

[AVI] AVI RIFF File Format, http://msdn.microsoft.com/en-us/library/ms779636.aspx,
Retrieved 12 August 2014

[BDIF1007] ISO/IEC 19794-10:2007: Information technology – Biometric data interchange
formats – Part 10: Hand geometry silhouette data

[BDIF205] ISO/IEC 19794-2:2005/Cor 1:2009/Amd 1:2010: Information technology –
Biometric data interchange formats – Part 2: Finger minutia data

[BDIF306] ISO/IEC 19794-3:2006: Information technology – Biometric data interchange
formats – Part 3: Finger pattern spectral data

[BDIF405]

ISO/IEC 19794-4:2005: Information technology – Biometric data interchange
formats – Part 4: Finger image data

[BDIF505] ISO/IEC 19794-5:2005: Information technology – Biometric data interchange
formats – Part 5: Face image data

[BDIF605] ISO/IEC 19794-6:2005: Information technology – Biometric data interchange
formats – Part 6: Iris image data

http://www.3gpp.org/DynaReport/26244.htm
http://www.3gpp2.org/Public_html/specs/C.S0050-B_v1.0_070521.pdf
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/AIFF/Docs/AIFF-1.3.pdf
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/AIFF/Docs/AIFF-1.3.pdf
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=151453
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=910136
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=51174
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=890062
http://msdn.microsoft.com/en-us/library/windows/desktop/dd757562%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd757562%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/dd564668%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/dd564668%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms779636.aspx

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 13 of 120

[BDIF611] ISO/IEC 19794-6:2011: Information technology – Biometric data interchange
formats – Part 6: Iris image data

[BDIF707] ISO/IEC 19794-7:2007/Cor 1:2009: Information technology – Biometric data
interchange formats – Part 7: Signature/sign time series data

[BDIF806] ISO/IEC 19794-8:2006/Cor 1:2011: Information technology – Biometric data
interchange formats – Part 8: Finger pattern skeletal data

[BDIF907] ISO/IEC 19794-9:2007: Information technology – Biometric data interchange
formats – Part 9: Vascular image data

[BMP] BMP File Format, http://www.digicamsoft.com/bmp/bmp.html

[CBEFF2010] ISO/IEC 19785-3:2007/Amd 1:2010: Information technology – Common
Biometric Exchange Formats Framework – Part 3: Patron format specifications
with Support for Additional Data Elements

[CMediaType] Media Types, http://www.iana.org/assignments/media-types/media-types.xhtml,
8 August 2014

[H264] Y.-K. Wang et al., RTP Payload Format for H.264 Video,
http://www.ietf.org/rfc/rfc6184.txt, IETF RFC 6184, May 2011.

[HTML5] HTML5. A vocabulary and associated APIs for HTML and XHTML. W3C
Candidate Recommendation, http://www.w3.org/TR/html5/, 31 July 2014.

[JPEG] E. Hamilton, JPEG File Interchange Format,
http://www.w3.org/Graphics/JPEG/jfif3.pdf, 1 September 1992.

[MPEG] ISO/IEC 14496: Information technology – Coding of audio-visual objects

[MPEG1] ISO/IEC 11172-3:1993/Cor 1:1996 Information technology – Coding of moving
pictures and associated audio for digital storage media at up to about 1.5 Mbit/s -
- Part 3: Audio

[OGG] Xiph.org, http://xiph.org/ogg/, Retrieved 12 August 2014

[PNG] D. Duce et al., Portable Network Graphics (PNG) Specification (Second Edition),
http://www.w3.org/TR/2003/REC-PNG-20031110, 10 November 2003.

[QTFF] Introduction to Quicktime File Format Specification,
https://developer.apple.com/library/mac/documentation/QuickTime/QTFF/QTFFP
reface/qtffPreface.html, Retrieved 12 August 2014

[RFC1737] K. Sollins, L. Masinter, Functional Requirements for Uniform Resource Names,
http://www.ietf.org/rfc/rfc1737.txt, IETC RFC 1737, December 1994.

[RFC2045] N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies, http://www.ietf.org/rfc/rfc2045.txt,
IETF RFC 2045, November 1996.

[RFC2046] N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part
Two: Media Types, http://www.ietf.org/rfc/rfc2046.txt, IETF RFC 2045,
November 1996.

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[RFC2141] R. Moats, URN Syntax, http://www.ietf.org/rfc/rfc2141.txt, IETF RFC 2141, May
1997

http://www.digicamsoft.com/bmp/bmp.html
http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.ietf.org/rfc/rfc6184.txt
http://www.w3.org/TR/html5/
http://www.w3.org/Graphics/JPEG/jfif3.pdf
http://xiph.org/ogg/
http://www.w3.org/TR/2003/REC-PNG-20031110
https://developer.apple.com/library/mac/documentation/QuickTime/QTFF/QTFFPreface/qtffPreface.html
https://developer.apple.com/library/mac/documentation/QuickTime/QTFF/QTFFPreface/qtffPreface.html
http://www.ietf.org/rfc/rfc1737.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2141.txt

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 14 of 120

[RFC2616] R. Fielding, et al., Hypertext Tranfer Protocol—HTTP/1.1,
http://www.ietf.org/rfc/rfc2616.txt, IETF RFC 2616, June 1999.

[RFC2660] E. Rescorla et al., The Secure HyperText Transfer Protocol,
http://www.ietf.org/rfc/rfc2660.txt, IETF RFC 2660, August 1999.

[RFC3001] M. Mealling, A URN Namespace of Object Identifiers,
http://www.ietf.org/rfc/rfc3001.txt, IETF RFC 3001, November 2000.

[RFC4122] P. Leach, M. Mealling, and R. Salz, A Universally Unique Identifier (UUID) URN
Namespace, http://www.ietf.org/rfc/rfc4122.txt, IETF RFC 4122, July 2005.

[SPHERE] National Institute of Standards and Technology, NIST Speech Header
Resources, http://www.nist.gov/itl/iad/mig/tools.cfm, Retrieved 12 August 2014

[TIFF] TIFF Revision 6.0, http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf,
3 June 1992.

[WAVE] IBM Corporation and Microsoft Corporation, Multimedia Programming Interface
and Data Specifications 1.0,
http://www.tactilemedia.com/info/MCI_Control_Info.html, August 1991

[WSGloss] H. Haas, A. Brown, Web Services Glossary, http://www.w3.org/TR/2004/NOTE-
ws-gloss-20040211/, February 11, 2004.

[WSQ] WSQ Gray-Scale Fingerprint Image Compression Specification Version 3.1,
https://fbibiospecs.org/docs/WSQ_Gray-
scale_Specification_Version_3_1_Final.pdf, 4 October 2010.

[XML] Tim Bray et al., Extensible Markup Language (XML) 1.0 (Fifth Edition),
http://www.w3.org/TR/xml/. W3C Recommendation. 26 November 2008.

[XMLNS] Tim Bray et al., Namespace in XML 1.0 (Third Edition),
http://www.w3.org/TR/2009/REC-xml-names-20091208/. W3C
Recommendation. 8 December2009.

[XSDPart1] Henry Thompson et al., XML Schema Part 1: Structures Second Edition,
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/, W3C
Recommendation. 28 October 2004.

[XSDPart2] P. Biron, A. Malhotra, XML Schema Part 2: Datatypes Second Edition,
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/, W3C
Recommendation. 28 October 2004.

 115

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2660.txt
http://www.ietf.org/rfc/rfc3001.txt
http://www.ietf.org/rfc/rfc4122.txt
http://www.nist.gov/itl/iad/mig/tools.cfm
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
http://www.tactilemedia.com/info/MCI_Control_Info.html
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
https://fbibiospecs.org/docs/WSQ_Gray-scale_Specification_Version_3_1_Final.pdf
https://fbibiospecs.org/docs/WSQ_Gray-scale_Specification_Version_3_1_Final.pdf
http://www.w3.org/TR/xml/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 15 of 120

2 Design Concepts and Architecture 116

This section describes the major design concepts and overall architecture of WS-BD. The main purpose 117
of a WS-BD service is to expose a target biometric sensor to clients via web services. 118

This specification provides a framework for deploying and invoking core synchronous operations via 119
lightweight web service protocols for the command and control of biometric sensors. The design of this 120
specification is influenced heavily by the REST architecture; deviations and tradeoffs were made to 121
accommodate the inherent mismatches between the REST design goals and the limitations of devices 122
that are (typically) oriented for a single-user. 123

2.1 Interoperability 124

ISO/IEC 2382-1 (1993) defines interoperability as “the capability to communicate, execute programs, or 125
transfer data among various functional units in a manner that requires the user to have little to no 126
knowledge of the unique characteristics of those units.” 127

Conformance to a standard does not necessarily guarantee interoperability. An example is conformance 128
to an HTML specification. A HTML page may be fully conformant to the HTML 4.0 specification, but it is 129
not interoperable between web browsers. Each browser has its own interpretation of how the content 130
should be displayed. To overcome this, web developers add a note suggesting which web browsers are 131
compatible for viewing. Interoperable web pages need to have the same visual outcome independent of 132
which browser is used. 133

A major design goal of WS-BD is to maximize interoperability, by minimizing the required “knowledge of 134
the unique characteristics” of a component that supports WS-BD. The authors recognize that 135
conformance to this specification alone cannot guarantee interoperability; although a minimum degree of 136
functionality is implied. Sensor profiles and accompanying conformance tests will need to be developed to 137

provide better guarantees of interoperability, and will be released in the future. 138

2.2 Architectural Components 139

Before discussing the envisioned use of WS-BD, it is useful to distinguish between the various 140
components that comprise a WS-BD implementation. These are logical components that may or may not 141
correspond to particular physical boundaries. This distinction becomes vital in understanding WS-BD’s 142
operational models. 143

2.2.1 Client 144

A client is any software component that originates requests for biometric acquisition. Note that a client 145
might be one of many hosted in a parent (logical or physical) component, and that a client might send 146
requests to a variety of destinations. 147

This icon is used to depict an arbitrary WS-BD client. A personal digital assistant (PDA) is
used to serve as a reminder that a client might be hosted on a non-traditional computer.

 148

2.2.2 Sensor 149

A biometric sensor is any component that is capable of acquiring a digital biometric sample. Most sensor 150
components are hosted within a dedicated hardware component, but this is not necessarily globally true. 151
For example, a keyboard is a general input device, but might also be used for a keystroke dynamics 152
biometric. 153

http://en.wikipedia.org/w/index.php?title=ISO/IEC_2382&action=edit&redlink=1

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 16 of 120

This icon is used to depict a biometric sensor. The icon has a vague similarity to a
fingerprint scanner, but should be thought of as an arbitrary biometric sensor.

The term “sensor” is used in this document in a singular sense, but may in fact be referring to multiple 154
biometric capture devices. Because the term “sensor” may have different interpretations, practitioners are 155
encouraged to detail the physical and logical boundaries that define a “sensor” for their given context. 156

2.2.3 Sensor Service 157

The sensor service is the “middleware” software component that exposes a biometric sensor to a client 158
through web services. The sensor service adapts HTTP request-response operations to biometric sensor 159
command & control. 160

This icon is used to depict a sensor service. The icon is abstract and has no meaningful
form, just as a sensor service is a piece of software that has no physical form.

2.3 Intended Use 161

Each implementation of WS-BD will be realized via a mapping of logical to physical components. A 162
distinguishing characteristic of an implementation will be the physical location of the sensor service 163
component. WS-BD is designed to support two scenarios: 164

1. Physically separated. The sensor service and biometric sensor are hosted by different physical 165

components. A physically separated service is one where there is both a physical and logical 166

separation between the biometric sensor and the service that provides access to it. 167

2. Physically integrated. The sensor service and biometric sensor are hosted within the same 168

physical component. A physically integrated service is one where the biometric sensor and the 169

service that provides access to it reside within the same physical component. 170

Figure 2 depicts a physically separated service. In this scenario, a biometric sensor is tethered to a 171
personal computer, workstation, or server. The web service, hosted on the computer, listens for 172
communication requests from clients. An example of such an implementation would be a USB fingerprint 173
scanner attached to a personal computer. A lightweight web service, running on that computer could 174
listen to requests from local (or remote) clients—translating WS-BD requests to and from biometric sensor 175
commands. 176

 177

Biometric Sensor
Sensor Service

Clients

 178

Figure 2. A physically separated WS-Biometric Devices (WS-BD) implementation. 179

Figure 3 depicts a physically integrated service. In this scenario, a single hardware device has an 180
embedded biometric sensor, as well as a web service. Analogous (but not identical) functionality is seen 181
in many network printers; it is possible to point a web browser to a local network address, and obtain a 182
web page that displays information about the state of the printer, such as toner and paper levels (WS-BD 183
enabled devices do not provide web pages to a browser). Clients make requests directly to the integrated 184
device; and a web service running within an embedded system translates the WS-BD requests to and 185
from biometric sensor commands. 186

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 17 of 120

Integrated Device

Clients

 187

Figure 3. A physically integrated WS-Biometric Devices (WS-BD) implementation. 188

The “separated” versus “integrated” distinction is a simplification with a potential for ambiguity. For 189
example, one might imagine putting a hardware shell around a USB fingerprint sensor connected to a 190
small form-factor computer. Inside the shell, the sensor service and sensor are on different physical 191
components. Outside the shell, the sensor service and sensor appear integrated. Logical encapsulations, 192
i.e., layers of abstraction, can facilitate analogous “hiding”. The definition of what constitutes the “same” 193
physical component depends on the particular implementation and the intended level of abstraction. 194
Regardless, it is a useful distinction in that it illustrates the flexibility afforded by leveraging highly 195
interoperable communications protocols. As suggested in §2.2.2 practitioners may need to clearly define 196

appropriate logical and physical boundaries for their own context of use. 197

2.4 General Service Behavior 198

The following section describes the general behavior of WS-BD clients and services. 199

2.4.1 Security Model 200

In this version of the specification, it is assumed that if a client is able to establish a connection with the 201
sensor service, then the client is fully authorized to use the service. This implies that all successfully 202
connected clients have equivalent access to the same service. Clients might be required to connect 203
through various HTTP protocols, such as HTTPS with client-side certificates, or a more sophisticated 204
protocol such as Open Id (http://openid.net/) and/or OAuth. 205

Specific security measures are out of scope of this specification, but should be carefully considered when 206
implementing a WS-BD service. Some recommended solutions to general scenarios are outlined 207
Appendix D. 208

2.4.2 HTTP Request-Response Usage 209

Most biometrics devices are inherently single user—i.e., they are designed to sample the biometrics from 210
a single user at a given time. Web services, on the other hand, are intended for stateless and multiuser 211
use. A biometric device exposed via web services must therefore provide a mechanism to reconcile these 212

competing viewpoints. 213

Notwithstanding the native limits of the underlying web server, WS-BD services must be capable of 214
handling multiple, concurrent requests. Services must respond to requests for operations that do not 215
require exclusive control of the biometric sensor and must do so without waiting until the biometric sensor 216

is in a particular state. 217

Because there is no well-accepted mechanism for providing asynchronous notification via REST, each 218
individual operation must block until completion. That is, the web server does not reply to an individual 219

HTTP request until the operation that is triggered by that request is finished. 220

Individual clients are not expected to poll—rather they make a single HTTP request and block for the 221
corresponding result. Because of this, it is expected that a client would perform WS-BD operations on an 222
independent thread, so not to interfere with the general responsiveness of the client application. WS-BD 223
clients therefore must be configured in such a manner such that individual HTTP operations have 224
timeouts that are compatible with a particular implementation. 225

WS-BD operations may be longer than typical REST services. Consequently, there is a clear need to 226
differentiate between service level errors and HTTP communication errors. WS-BD services must pass-227

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 18 of 120

through the status codes underlying a particular request. In other words, services must not use (or 228
otherwise ‘piggyback’) HTTP status codes to indicate failures that occur within the service. If a service 229
successfully receives a well-formed request, then the service must return the HTTP status code 200 230
indicating such. Failures are described within the contents of the XML data returned to the client for any 231
given operation. The exception to this is when the service receives a poorly-formed request (i.e., the XML 232
payload is not valid), then the service may return the HTTP status code 400, indicating a bad request. 233

This is deliberately different from REST services that override HTTP status codes to provide service-234
specific error messages. Avoiding the overloading of status codes is a pattern that facilitates the 235
debugging and troubleshooting of communication versus client & service failures. 236

DESIGN NOTE: Overriding HTTP status codes is just one example of the rich set of features afforded 237

by HTTP; content negotiation, entity tags (e-tags), and preconditions are other features that could be 238

leveraged instead of “recreated” (to some degree) within this specification. However, the authors 239

avoided the use of these advanced HTTP features in this version of the specification for several 240

reasons: 241

 To reduce the overall complexity required for implementation. 242

 To ease the requirements on clients and servers (particularly since the HTTP capabilities on 243

embedded systems may be limited). 244

 To avoid dependencies on any HTTP feature that is not required (such as entity tags). 245

In summary, the goal for this initial version of the specification is to provide common functionality 246
across the broadest set of platforms. As this standard evolves, the authors will continue to evaluate 247
the integration of more advanced HTTP features, as well as welcome feedback on their use from 248
users and/or implementers of the specification. 249

2.4.3 Client Identity 250

Before discussing how WS-BD balances single-user vs. multi-user needs, it is necessary to understand 251
the WS-BD model for how an individual client can easily and consistently identify itself to a service. 252

HTTP is, by design, a stateless protocol. Therefore, any persistence about the originator of a sequence of 253
requests must be built in (somewhat) artificially to the layer of abstraction above HTTP itself. This is 254
accomplished in WS-BD via a session—a collection of operations that originate from the same logical 255
endpoint. To initiate a session, a client performs a registration operation and obtains a session identifier 256
(or “session id”). During subsequent operations, a client uses this identifier as a parameter to uniquely 257
identify itself to a server. When the client is finished, it is expected to close a session with an 258
unregistration operation. To conserve resources, services may automatically unregister clients that do not 259

explicitly unregister after a period of inactivity (see §6.4.2.1). 260

This use of a session id directly implies that the particular sequences that constitute a session are entirely 261
the responsibility of the client. A client might opt to create a single session for its entire lifetime, or, might 262

open (and close) a session for a limited sequence of operations. WS-BD supports both scenarios. 263

It is possible, but discouraged, to implement a client with multiple sessions with the same service 264
simultaneously. For simplicity, and unless otherwise stated, this specification is written in a manner that 265
assumes that a single client maintains a single session id. (This can be assumed without loss of 266
generality, since a client with multiple sessions to a service could be decomposed into “sub-clients”—one 267
sub- client per session id.) 268

Just as a client might maintain multiple session ids, a single session id might be shared among a 269
collection of clients. By sharing the session id, a biometric sensor may then be put in a particular state by 270
one client, and then handed-off to another client. This specification does not provide guidance on how to 271
perform multi-client collaboration. However, session id sharing is certainly permitted, and a deliberate 272
artifact of the convention of using of the session id as the client identifier. Likewise, many-to-many 273
relationships (i.e., multiple session ids being shared among multiple clients) are also possible, but should 274

be avoided. 275

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 19 of 120

2.4.4 Sensor Identity 276

In general, implementers should map each target biometric sensor to a single endpoint (URI). However, 277

just as it is possible for a client to communicate with multiple services, a host might be responsible for 278

controlling multiple target biometric sensors. 279

Independent sensors should be exposed via different URIs. 280

EXAMPLE: Figure 4 shows a physically separate implementation where a single host machine 281
controls two biometric sensors—one fingerprint scanner and one digital camera. The devices act 282
independently and are therefore exposed via two different services—one at the URL 283
http://wsbd/fingerprint and one at http://wsbd/camera. 284

 285

Figure 4. Independent sensors controlled by separate services 286

A service that controls multiple biometric devices simultaneously (e.g., an array of cameras with 287
synchronized capture) should be exposed via the same endpoint. 288

 289

Figure 5. A sensor array controlled by a single service 290

EXAMPLE: Figure 5 shows a physically separate implementation where a single host machine 291

controls a pair of cameras used for stereo vision. The cameras act together as a single logical 292

sensor and are both exposed via the same service, http://wsbd/camera_array. 293

2.4.5 Locking 294

WS-BD uses a lock to satisfy two complementary requirements: 295

1. A service must have exclusive, sovereign control over biometric sensor hardware to perform a 296

particular sensor operation such as initialization, configuration, or capture. 297

2. A client needs to perform an uninterrupted sequence of sensor operations. 298

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 20 of 120

Each WS-BD service exposes a single lock (one per service) that controls access to the sensor. Clients 299
obtain the lock in order to perform a sequence of operations that should not be interrupted. Obtaining the 300
lock is an indication to the server (and indirectly to peer clients) that (1) a series of sensor operations is 301
about to be initiated and (2) that server may assume sovereign control of the biometric sensor. 302

A client releases the lock upon completion of its desired sequence of tasks. This indicates to the server 303
(and indirectly to peer clients) that the uninterruptable sequence of operations is finished. A client might 304
obtain and release the lock many times within the same session or a client might open and close a 305
session for each pair of lock/unlock operations. This decision is entirely dependent on a particular client. 306

The statement that a client might “own” or “hold” a lock is a convenient simplification that makes it easier 307
to understand the client-server interaction. In reality, each sensor service maintains a unique global 308
variable that contains a session id. The originator of that session id can be thought of as the client that 309
“holds” the lock to the service. Clients are expected to release the lock after completing their required 310
sensor operations, but there is lock stealing—a mechanism for forcefully releasing locks. This feature is 311

necessary to ensure that one client cannot hold a lock indefinitely, denying its peers access to the 312
biometric sensor. 313

As stated previously (see §2.4.3), it is implied that all successfully connected clients enjoy the same 314
access privileges. Each client is treated the same and are expected to work cooperatively with each 315
other. This is critically important, because it is this implied equivalence of “trust” that affords a lock 316
stealing operation. 317

DESIGN NOTE: In the early development states of this specification, the authors considered having a 318
single, atomic sensor operation that performed initialization, configuration and capture. This would avoid 319
the need for locks entirely, since a client could then be ensured (if successful), the desired operation 320
completed as requested. However, given the high degree of variability of sensor operations across 321
different sensors and modalities, the explicit locking was selected so that clients could have a higher 322
degree of control over a service and a more reliable way to predict timing. Regardless of the enforcement 323
mechanism, it is undesirable if once a “well-behaved” client started an operation and a “rogue” client 324
changed the internal state of the sensor midstream. 325

2.4.5.1 Pending Operations 326

Changing the state of the lock must have no effect on pending (i.e., currently running) sensor operations. 327
That is, a client may unlock, steal, or even re-obtain the service lock even if the target biometric sensor is 328
busy. When lock ownership is transferred during a sensor operation, overlapping sensor operations are 329
prevented by sensor operations returning sensorBusy. 330

2.4.6 Operations Summary 331

All WS-BD operations fall into one of eight categories: 332

1. Registration 333

2. Locking 334

3. Information 335

4. Initialization 336

5. Configuration 337

6. Capture 338

7. Download 339

8. Cancellation 340

Of these, the initialization, configuration, capture, and cancellation operations are all sensor operations 341
(i.e., they require exclusive sensor control) and require locking. Registration, locking, and download are 342
all non-sensor operations. They do not require locking and (as stated earlier) must be available to clients 343

regardless of the status of the biometric sensor. 344

Download is not a sensor operation as this allows for a collection of clients to dynamically share acquired 345

biometric data. One client might perform the capture and hand off the download responsibility to a peer. 346

The following is a brief summary of each type of operation: 347

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 21 of 120

 Registration operations open and close (unregister) a session. 348

 Locking operations are used by a client to obtain the lock, release the lock, and steal the lock. 349

 Information operations query the service for information about the service itself, such as the 350

supported biometric modalities, and service configuration parameters. 351

 The initialization operation prepares the biometric sensor for operation. 352

 Configuration operations get or set sensor parameters. 353

 The capture operation signals to the sensor to acquire a biometric. 354

 Download operations transfer the captured biometric data from the service to the client. 355

 Sensor operations can be stopped by the cancellation operation. 356

2.4.7 Idempotency 357

The W3C Web Services glossary [WSGloss] defines idempotency as: 358

 359

[the] property of an interaction whose results and side-effects are the same whether it is done one 360
or multiple times. 361

When regarding an operation’s idempotence, it should be assumed no other operations occur in between 362
successive operations, and that each operation is successful. Notice that idempotent operations may 363
have side-effects—but the final state of the service must be the same over multiple (uninterrupted) 364

invocations. 365

The following example illustrates idempotency using an imaginary web service. 366

EXAMPLE: A REST-based web service allows clients to create, read, update, and delete 367
customer records from a database. A client executes an operation to update a customer’s 368
address from “123 Main St” to “100 Broad Way.” 369

Suppose the operation is idempotent. Before the operation, the address is “123 Main St”. After 370
one execution of the update, the server returns “success”, and the address is “100 Broad Way”. If 371
the operation is executed a second time, the server again returns “success,” and the address 372
remains “100 Broad Way”. 373

Now suppose that when the operation is executed a second time, instead of returning “success”, 374
the server returns “no update made”, since the address was already “100 Broad Way.” Such an 375
operation is not idempotent, because executing the operation a second time yielded a different 376

result than the first execution. 377

The following is an example in the context of WS-BD. 378

EXAMPLE: A service has an available lock. A client invokes the lock operation and obtains a 379
“success” result. A subsequent invocation of the operation also returns a “success” result. The 380
operation being idempotent means that the results (“success”) and side-effects (a locked service) 381
of the two sequential operations are identical. 382

To best support robust communications, WS-BD is designed to offer idempotent services whenever 383
possible. 384

2.4.8 Service Lifecycle Behavior 385

The lifecycle of a service (i.e., when the service starts responding to requests, stops, or is otherwise 386
unavailable) must be modeled after an integrated implementation. This is because it is significantly easier 387
for a physically separated implementation to emulate the behavior of a fully integrated implementation 388
than it is the other way around. This requirement has a direct effect on the expected behavior of how a 389
physically separated service would handle a change in the target biometric sensor. 390

Specifically, on a desktop computer, hot-swapping the target biometric sensor is possible through an 391
operating system’s plug-and-play architecture. By design, this specification does not assume that it is 392
possible to replace a biometric sensor within an integrated device. Therefore, having a physically 393
separated implementation emulate an integrated implementation provides a simple means of providing a 394
common level of functionality. 395

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 22 of 120

By virtue of the stateless nature of the HTTP protocol, a client has no simple means of detecting if a web 396
service has been restarted. For most web communications, a client should not require this—it is a core 397
capability that constitutes the robustness of the web. Between successive web requests, a web server 398
might be restarted on its host any number of times. In the case of WS-BD, replacing an integrated device 399
with another (configured to respond on the same endpoint) is an effective restart of the service. 400
Therefore, by the emulation requirement, replacing the device within a physically separated 401
implementation must behave similarly. 402

A client may not be directly affected by a service restart, if the service is written in a robust manner. For 403
example, upon detecting a new target biometric sensor, a robust server could quiesce (refusing all new 404

requests until any pending requests are completed) and automatically restart. 405

Upon restarting, services should return to a fully reset state—i.e., all sessions should be dropped, and the 406
lock should not have an owner. However, a high-availability service may have a mechanism to preserve 407
state across restarts, but is significantly more complex to implement (particularly when using integrated 408
implementations!). A client that communicated with a service that was restarted would lose both its 409
session and the service lock (if held). With the exception of the get service info operation, through 410
various fault statuses a client would receive indirect notification of a service restart. If needed, a client 411
could use the service’s common info timestamp (§A.1.1) to detect potential changes in the get service 412
info operation. 413

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 23 of 120

3 Data Dictionary 414

This section contains descriptions of the data elements that are contained within the WS-BD data model. 415
Each data type is described via an accompanying XML Schema type definition [XSDPart1, XSDPart2]. 416

Refer to Appendix A for a complete XML schema containing all types defined in this specification. 417

3.1 Namespaces 418

The following namespaces, and corresponding namespace prefixes are used throughout this document. 419

Prefix Namespace Remarks

xs http://www.w3.org/2001/XMLSchema The xs namespace refers to the XML

Schema specification. Definitions for the
xs data types (i.e., those not explicitly

defined here) can be found in
[XSDPart2].

xsi http://www.w3.org/2001/XMLSchema-instance The xsi namespace allows the schema to
refer to other XML schemas in a qualified
way.

wsbd http://docs.oasis-

open.org/biometrics/ns/ws-bd-1.0
The wsbd namespace is a uniform

resource name [RFC1737, RFC2141]
consisting of an object identifier
[RFC3001] reserved for this
specification’s schema. This namespace
can be written in ASN.1 notation as
{joint-iso-ccitt(2) country(16) us(840)
organization(1) gov(101) csor(3)

biometrics(9) wsbd(3) version1(1)}.

All of the datatypes defined in this section (§3) belong to the wsbd namespace defined in the above table. 420

If a datatype is described in the document without a namespace prefix, the wsbd prefix is assumed. 421

3.2 UUID 422

A UUID is a unique identifier as defined in [RFC4122]. A service must use UUIDs that conform to the 423
following XML Schema type definition. 424

<xs:simpleType name="UUID"> 425
 <xs:restriction base="xs:string"> 426
 <xs:pattern value="[\da-fA-F]{8}-[\da-fA-F]{4}-[\da-fA-F]{4}-[\da-fA-F]{4}-[\da-fA-F]{12}"/> 427
 </xs:restriction> 428
</xs:simpleType> 429

EXAMPLE: Each of the following code fragments contains a well-formed UUID. Enclosing tags (which 430
may vary) are omitted. 431

E47991C3-CA4F-406A-8167-53121C0237BA 432

10fa0553-9b59-4D9e-bbcd-8D209e8d6818 433

161FdBf5-047F-456a-8373-D5A410aE4595 434

http://www.w3.org/2001/XMLSchema

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 24 of 120

3.3 Dictionary 435

A Dictionary is a generic container used to hold an arbitrary collection of name-value pairs. 436

<xs:complexType name="Dictionary"> 437
 <xs:sequence> 438
 <xs:element name="item" minOccurs="0" maxOccurs="unbounded"> 439
 <xs:complexType> 440
 <xs:sequence> 441
 <xs:element name="key" type="xs:string" nillable="true"/> 442
 <xs:element name="value" type="xs:anyType" nillable="true"/> 443
 </xs:sequence> 444
 </xs:complexType> 445
 </xs:element> 446
 </xs:sequence> 447
</xs:complexType> 448

EXAMPLE: A query to get the metadata of a capture returns a dictionary of supported settings and the 449

values at the time of capture. Enclosing tags (which may vary) are omitted. 450

<item> 451
 <key>imageWidth</key> 452
 <value>640</value> 453
</item> 454
<item> 455
 <key>imageHeight</key> 456
 <value>640</value> 457
</item> 458
<item> 459
 <key>captureDate</key> 460
 <value>2011-01-01T01:23:45Z</value> 461
</item> 462

Dictionary instances are nestable—i.e., the value element of one Dictionary can contain another 463

Dictionary. The use of xs:anyType allows for an XML element of any structure or definition to be used. 464

Using types not defined in this document or types defined in W3’s XML Schema recommendations 465

[XSDPart1, XSDPart2] might require a client to have unique knowledge about the service. Because the 466

requirement of unique knowledge negatively impacts interoperability, using such elements is discouraged. 467

3.4 Parameter 468

A Parameter is a container used to describe the parameters or settings of a service or sensor. 469

<xs:complexType name="Parameter"> 470
 <xs:sequence> 471
 <xs:element name="name" type="xs:string" nillable="true"/> 472
 <xs:element name="type" type="xs:QName" nillable="true"/> 473
 <xs:element name="readOnly" type="xs:boolean" minOccurs="0"/> 474
 <xs:element name="supportsMultiple" type="xs:boolean" minOccurs="0"/> 475
 <xs:element name="defaultValue" type="xs:anyType" nillable="true"/> 476
 <xs:element name="allowedValues" nillable="true" minOccurs="0"> 477
 <xs:complexType> 478
 <xs:sequence> 479
 <xs:element name="allowedValue" type="xs:anyType" nillable="true" minOccurs="0" 480
maxOccurs="unbounded"/> 481
 </xs:sequence> 482
 </xs:complexType> 483
 </xs:element> 484
 </xs:sequence> 485
</xs:complexType> 486

See §4 for more information on metadata and the use of Parameter. 487

3.4.1.1 Element Summary 488

The following is a brief informative description of each Parameter element. 489

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 25 of 120

Element Description

name The name of the parameter.

type The fully qualified type of the parameter.

readOnly Whether or not this parameter is read-only.

supportsMultiple Whether or not this parameter can support multiple values for this
parameter (§3.4.1.2).

defaultValue The default value of this parameter.

allowedValues A list of allowed values for this parameter (§3.4.1.3).

3.4.1.2 Supports Multiple 490

In some cases, a parameter might require multiple values. This flag specifies whether the parameter is 491
capable of multiple values. 492

When supportsMultiple is true, communicating values must be done through a defined array type. If a 493
type-specialized array is defined in this specification, such as a StringArray (§3.7) for xs:string, such type 494
should be used. The generic Array (§3.6) type must be used in all other cases. 495

The parameter’s type element must be the qualified name of a single value. For example, if the 496
parameter expects multiple strings during configuration, then the type must be xs:string and not 497

StringArray. 498

EXAMPLE: An iris scanner might have the ability to capture a left iris, right iris, and/or frontal face image 499
simultaneously. This example configures the scanner to capture left and right iris images together. The 500
first code block is what the service exposes to the clients. The second code block is how a client would 501
configure this parameter. The client configures the submodality by supplying a StringArray with two 502
elements: left and right—this tells the service to capture both the left and right iris. It is important to note 503
that in this example, submodality exposes values for two modalities: iris and face. The resulting captured 504
data must specify the respective modality for each captured item in its metadata. In both examples, 505

enclosing tags (which may vary) are omitted. 506

<name>submodality</name> 507
<type>xs:string</type> 508
<readOnly>false</readOnly> 509
<supportsMultiple>true</supportsMultiple> 510
<defaultValue xsi:type="wsbd:StringArray"> 511
 <element>leftIris</element> 512
 <element>rightIris</element> 513
</defaultValue> 514
<allowedValues> 515
 <allowedValue>leftIris</allowedValue> 516
 <allowedValue>rightIris</allowedValue> 517
 <allowedValue>frontalFace</allowedValue> 518
</allowedValues> 519

 520

<item> 521
 <key>submodality</key> 522
 <value xsi:type="wsbd:StringArray"> 523
 <element>leftIris</element> 524
 <element>rightIris</element> 525
 </value> 526
</item> 527

3.4.1.3 Allowed Values 528

For parameters that are not read-only and have restrictions on what values it may have, this allows the 529
service to dynamically expose it to its clients. 530

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 26 of 120

EXAMPLE: The following code block demonstrates a parameter, “CameraFlash”, with only three valid 531

values. Enclosing tags (which may vary) are omitted. 532

<name>cameraFlash</name> 533
<type>xs:string</type> 534
<readOnly>false</readOnly> 535
<supportsMultiple>false</supportsMultiple> 536
<defaultValue>auto</defaultValue> 537
<allowedValues> 538
 <allowedValue xsi:type="xs:string">on</allowedValue> 539
 <allowedValue xsi:type="xs:string">off</allowedValue> 540
 <allowedValue xsi:type="xs:string">auto</allowedValue> 541
</allowedValues> 542

Parameters requiring a range of values should be described by using Range (§3.5). Because the allowed 543

type is not the same as its parameter type, a service must have logic to check for a Range and any 544

appropriate validation. 545

EXAMPLE: The following code block demonstrates a parameter, “CameraZoom”, where the allowed 546

value is of type Range and consists of integers. Enclosing tags (which may vary) are omitted. 547

<name>cameraZoom</name> 548
<type>xs:integer</type> 549
<readOnly>false</readOnly> 550
<supportsMultiple>false</supportsMultiple> 551
<defaultValue>0</defaultValue> 552
<allowedValues> 553
 <allowedValue xsi:type="wsbd:Range"> 554
 <minimum>0</minimum> 555
 <maximum>100</maximum> 556
 </allowedValue> 557
</allowedValues> 558

Configurable parameters with no restrictions on its value must not include this element. 559

3.5 Range 560

A Range is a container used to describe a range of data, and whether the upper and lower bounds are 561
exclusive. The upper and lower bounds must be inclusive by default. 562

<xs:complexType name="Range"> 563
 <xs:sequence> 564
 <xs:element name="minimum" type="xs:anyType" nillable="true" minOccurs="0"/> 565
 <xs:element name="maximum" type="xs:anyType" nillable="true" minOccurs="0"/> 566
 <xs:element name="minimumIsExclusive" type="xs:boolean" nillable="true" minOccurs="0"/> 567
 <xs:element name="maximumIsExclusive" type="xs:boolean" nillable="true" minOccurs="0"/> 568
 </xs:sequence> 569
</xs:complexType> 570

EXAMPLE: An example range of numbers from 0 to 100. The minimum is exclusive while the maximum is 571
inclusive. Enclosing tags (which may vary) are omitted. 572

 <minimum>0</minimum> 573
 <maximum>100</maximum> 574
 <minimumIsExclusive>true</minimumIsExclusive> 575
 <maximumIsExclusive>false</maximumIsExclusive> 576

3.5.1.1 Element Summary 577

The following is a brief informative description of each Range element. 578

Element Description

minimum The lower bound of the range.

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 27 of 120

maximum The upper bound of the range.

minimumIsExclusive Boolean indicating whether the lower bound is exclusive or not. This
is true by default.

maximumIsExclusive Boolean indicating whether the upper bound is exclusive or not. This
is true by default.

3.6 Array 579

An Array is a generic container used to hold a collection of elements. 580

<xs:complexType name="Array"> 581
 <xs:sequence> 582
 <xs:element name="element" type="xs:anyType" nillable="true" minOccurs="0" 583
maxOccurs="unbounded"/> 584
 </xs:sequence> 585
</xs:complexType> 586

EXAMPLE: Each of the following code fragments is an example of a valid Array. Enclosing tags (which 587

may vary) are omitted. 588

<element>flatLeftThumb</element><element>flatRightThumb</element> 589

In this fragment (above), the values “flatLeftThumb” and “flatRightThumb” are of type xs:anyType, 590

(and are likely to be deserialized as a generic “object.” 591

<element xsi:type="xs:boolean">false</element><element 592
xsi:type="xs:int">1024</element> 593

Notice that in this fragment (above) the two values are of different types 594

<element xsi:type="xs:decimal">2.0</element> 595

In this fragment (above) the array contains a single element. 596

3.7 StringArray 597

A StringArray is a generic container used to hold a collection of strings. 598

<xs:complexType name="StringArray"> 599
 <xs:sequence> 600
 <xs:element name="element" type="xs:string" nillable="true" minOccurs="0" 601
maxOccurs="unbounded"/> 602
 </xs:sequence> 603
</xs:complexType> 604

EXAMPLE: Each of the following code fragments is an example of a valid StringArray. Enclosing tags 605

(which may vary) are omitted. 606

<element>flatLeftThumb</element><element>flatRightThumb</element> 607

<element>value1</element><element>value2</element> 608

<element>sessionId</element> 609

3.8 UuidArray 610

A UuidArray is a generic container used to hold a collection of UUIDs. 611

<xs:complexType name="UuidArray"> 612

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 28 of 120

 <xs:sequence> 613
 <xs:element name="element" type="wsbd:UUID" nillable="true" minOccurs="0" 614
maxOccurs="unbounded"/> 615
 </xs:sequence> 616
</xs:complexType> 617

EXAMPLE: The following code fragment is an example of a single UuidArray with three elements. 618

Enclosing tags (which may vary) are omitted. 619

<element>E47991C3-CA4F-406A-8167-53121C0237BA</element> 620
<element>10fa0553-9b59-4D9e-bbcd-8D209e8d6818</element> 621
<element>161FdBf5-047F-456a-8373-D5A410aE4595</element> 622

3.9 ResourceArray 623

A ResourceArray is a generic container used to hold a collection of Resources (§3.10). 624

<xs:complexType name="ResourceArray"> 625
 <xs:sequence> 626
 <xs:element name="element" type="wsbd:Resource" nillable="true" 627
minOccurs="0" maxOccurs="unbounded"/> 628
 </xs:sequence> 629
</xs:complexType> 630

 631

EXAMPLE: The following code fragment is an example of a single ResourceArray with two elements. 632

Enclosing tags (which may vary) are omitted. 633

<element><uri>file:///tmp/test.png<uri><contentType>image/png</contentType></element> 634
<element><uri>http://192.168.1.1/robots.txt<uri><contentType>text/plain</contentType></element> 635

3.10 Resource 636

Resource is a container to describe a resource at a specified URI. 637

<xs:complexType name="Resource"> 638
 <xs:sequence> 639
 <xs:element name="uri" type="xs:anyURI"/> 640
 <xs:element name="contentType" type="xs:string" nillable="true" minOccurs="0"/> 641
 <xs:element name="relationship" type="xs:string" nillable="true" minOccurs="0"/> 642
 </xs:sequence> 643
</xs:complexType> 644

3.11 Resolution 645

Resolution is a generic container to describe values for a width and height and optionally a description of 646

the unit. 647

<xs:complexType name="Resolution"> 648
 <xs:sequence> 649
 <xs:element name="width" type="xs:decimal"/> 650
 <xs:element name="height" type="xs:decimal"/> 651
 <xs:element name="unit" type="xs:string" nillable="true" minOccurs="0"/> 652
 </xs:sequence> 653
</xs:complexType> 654

3.11.1.1 Element Summary 655

The following is a brief informative description of each Size element. 656

Element Description

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 29 of 120

width The decimal value of the width

height The decimal value of the height

unit A string describing the units of the width and height values

3.12 Status 657

The Status represents a common enumeration for communicating state information about a service. 658

<xs:simpleType name="Status"> 659
 <xs:restriction base="xs:string"> 660
 <xs:enumeration value="success"/> 661
 <xs:enumeration value="failure"/> 662
 <xs:enumeration value="invalidId"/> 663
 <xs:enumeration value="canceled"/> 664
 <xs:enumeration value="canceledWithSensorFailure"/> 665
 <xs:enumeration value="sensorFailure"/> 666
 <xs:enumeration value="lockNotHeld"/> 667
 <xs:enumeration value="lockHeldByAnother"/> 668
 <xs:enumeration value="initializationNeeded"/> 669
 <xs:enumeration value="configurationNeeded"/> 670
 <xs:enumeration value="sensorBusy"/> 671
 <xs:enumeration value="sensorTimeout"/> 672
 <xs:enumeration value="unsupported"/> 673
 <xs:enumeration value="badValue"/> 674
 <xs:enumeration value="noSuchParamter"/> 675
 <xs:enumeration value="preparingDownload"/> 676
 </xs:restriction> 677
</xs:simpleType> 678

3.12.1.1 Definitions 679

The following table defines all of the potential values for the Status enumeration. 680

Value Description

success The operation completed successfully.

failure The operation failed. The failure was due to a web service (as
opposed to a sensor error).

invalidId The provided id is not valid. This can occur if the client provides a
(session or capture) id that is either:

unknown to the server (i.e., does not correspond to a known
registration or capture result), or

the session has been closed by the service (§6.4.2.1)

(See §6.1.2 for information on parameter failures.)

canceled The operation was canceled.

NOTE: A sensor service may cancel its own operation, for
example, if an operation is taking too long. This can happen if a
service maintains its own internal timeout that is shorter than a
sensor timeout.

canceledWithSensorFailure The operation was canceled, but during (and perhaps because of)
cancellation, a sensor failure occurred.

This particular status accommodates for hardware that may not

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 30 of 120

natively support cancellation.

sensorFailure The operation could not be performed because of a biometric
sensor (as opposed to web service) failure.

NOTE: Clients that receive a status of sensorFailure should
assume that the sensor will need to be reinitialized in order to
restore normal operation.

lockNotHeld The operation could not be performed because the client does not
hold the lock.

NOTE: This status implies that at the time the lock was queried,
no other client currently held the lock. However, this is not a
guarantee that any subsequent attempts to obtain the lock will
succeed.

lockHeldByAnother The operation could not be performed because another client
currently holds the lock.

initializationNeeded The operation could not be performed because the sensor
requires initialization.

configurationNeeded The operation could not be performed because the sensor
requires configuration.

sensorBusy The operation could not be performed because the sensor is
currently performing another task.

NOTE: Services may self-initiate an activity that triggers a
sensorBusy result. That is, it may not be possible for a client to
trace back a sensorBusy status to any particular operation. An
automated self-check, heartbeat, or other activity such as a data
transfer may place the target biometric sensor into a “busy” mode.
(See §6.13.2.2 for information about post-acquisition processing.)

sensorTimeout The operation was not performed because the biometric sensor
experienced a timeout.

NOTE: The most common cause of a sensor timeout would be a
lack of interaction with a sensor within an expected timeframe.

unsupported The service does not support the requested operation. (See §6.1.2

for information on parameter failures.)

badValue The operation could not be performed because a value provided
for a particular parameter was either (a) an incompatible type or
(b) outside of an acceptable range. (See §6.1.2 for information on

parameter failures.)

noSuchParameter The operation could not be performed because the service did not
recognize the name of a provided parameter. (See §6.1.2 for

information on parameter failures.)

preparingDownload The operation could not be performed because the service is

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 31 of 120

currently preparing captured data for download. (See §6.13.2.2)

Many of the permitted status values have been designed specifically to support physically separate 681

implementations—a scenario where it is easier to distinguish between failures in the web service and 682

failures in the biometric sensor. This is not to say that within an integrated implementation such a 683

distinction is not possible, only that some of the status values are more relevant for physically separate 684

versions. 685

For example, a robust service would allow all sensor operations to be canceled with no threat of a failure. 686

Unfortunately, not all commercial, off-the-shelf (COTS) sensors natively support cancellation. Therefore, 687

the canceledWithSensorFailure status is offered to accommodate this. Implementers can still offer 688

cancellation, but have a mechanism to communicate back to the client that sensor initialization might be 689

required. 690

3.13 Result 691

Unless a service returns with an HTTP error, all WS-BD operations must reply with an HTTP message 692
that contains an element of a Result type that conforms to the following XML Schema snippet. 693

<xs:element name="result" type="wsbd:Result" nillable="true"/> 694
 695
<xs:complexType name="Result"> 696
 <xs:sequence> 697
 <xs:element name="status" type="wsbd:Status"/> 698
 <xs:element name="badFields" type="wsbd:StringArray" nillable="true" minOccurs="0"/> 699
 <xs:element name="captureIds" type="wsbd:UuidArray" nillable="true" minOccurs="0"/> 700
 <xs:element name="metadata" type="wsbd:Dictionary" nillable="true" minOccurs="0"/> 701
 <xs:element name="message" type="xs:string" nillable="true" minOccurs="0"/> 702
 <xs:element name="sensorData" type="xs:base64Binary" nillable="true" minOccurs="0"/> 703
 <xs:element name="sessionId" type="wsbd:UUID" nillable="true" minOccurs="0"/> 704
 </xs:sequence> 705
</xs:complexType> 706

3.13.1 Terminology Shorthand 707

Since a Result is the intended outcome of all requests, this document may state that an operation 708

“returns” a particular status value. This is shorthand for a Result output payload with a status element 709

containing that value. 710

EXAMPLE: The following result payload “returns success”. A result might contain other child elements 711

depending on the specific operation and result status—see §5 for operations and their respective details. 712

<result xmlns="http://docs.oasis-open.org/biometrics/ns/ws-bd-1.0" 713
 xmlns:xs="http://www.w3.org/2001/XMLSchema" 714
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 715
 <status>success</status> 716
</result> 717

Likewise, the same shorthand is implied by a client “receiving” a status, or an operation “yielding” a 718
status. 719

3.13.2 Required Elements 720

Notice that from a XML Schema validation perspective [XSDPart1], a schema-valid Result must contain a 721

status element, and may contain any of the remaining elements. 722

http://www.w3.org/2001/XMLSchema

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 32 of 120

The specific permitted elements of a Result are determined via a combination of (a) the operation, and (b) 723

the result’s status. That is, different operations will have different requirements on which elements are 724

permitted or forbidden, depending on that operation’s status. 725

EXAMPLE: As will be detailed later (§6.3.4.1 and §6.5.4.1), a register operation returning a status of 726

success must also populate the sessionId element. However, a try lock operation that returns a 727

status of success cannot populate any element other than status. 728

DESIGN NOTE: An XML inheritance hierarchy could have been used to help enforce which elements are 729

permitted under which circumstances. However, a de-normalized representation (in which all of the 730

possible elements are valid with respect to a schema) was used to simplify client and server 731

implementation. Further, this reduces the burden of managing an object hierarchy for the sake of 732

enforcing simple constraints. 733

3.13.3 Element Summary 734

The following is a brief informative description of each Result element. 735

Element Description

status The disposition of the operation. All Result elements must contain a
status element. (Used in all operations.)

badFields The list of fields that contain invalid or ill-formed values. (Used in
almost all operations.)

captureIds Identifiers that may be used to obtain data acquired from a capture
operation (§6.12, §6.13).

metadata This field may hold

a) metadata for the service (§6.8), or

b) a service and sensor’s configuration (§6.10, §6.11), or

c) metadata relating to a particular capture (§6.13, §6.14,
§6.15)

(See §4for more information regarding metadata)

message A string providing informative detail regarding the output of an
operation. (Used in almost all operations.)

sensorData The biometric data corresponding to a particular capture identifier
(§6.13, §6.15).

sessionId A unique session identifier (§6.3).

3.14 Validation 736

The provided XML schemas may be used for initial XML validation. It should be noted that these are not 737

strict schema definitions and were designed for easy consumption of web service/code generation tools. 738

Additional logic should be used to evaluate the contents and validity of the data where the schema falls 739

short. For example, additional logic will be necessary to verify the contents of a Result are accurate as 740

there is not a different schema definition for every combination of optional and mandatory fields. 741

A service must have separate logic validating parameters and their values during configuration. The type 742
of any allowed values might not correspond with the type of the parameter. For example, if the type of the 743

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 33 of 120

parameter is an integer and an allowed value is a Range, the service must handle this within the service 744

as it cannot be appropriately validated using XML schema. 745

 746

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 34 of 120

4 Metadata 747

Metadata can be broken down into three smaller categories: service information, sensor information or 748

configuration, and capture information. Metadata can be returned in two forms: as a key/value pair within 749

a Dictionary or a Dictionary of Parameter types. 750

4.1 Service Information 751

Service information includes read-only parameters unrelated to the sensor as well as parameters that can 752

be set. Updating the values of a parameter should be done in the set configuration operation. 753

Service information must include the required parameters listed in Appendix A; including the optional 754
parameters is highly recommended. Each parameter must be exposed as a Parameter (§3.4). 755

Parameters listed in §A.1, §A.2, and §A.3 must be exposed as read-only parameters. 756

Read-only parameters must specify its current value by populating the default value field with the value. 757
Additionally, read-only parameters must not provide any allowed values. Allowed values are reserved to 758
specify acceptable information which may be passed to the service for configuration. 759

EXAMPLE: An example snippet from a get service info call demonstrating a read-only parameter. 760

Enclosing tags (which may vary) are omitted. 761

<name>inactivityTimeout</name> 762
<type>xs:nonNegativeInteger</type> 763
<readOnly>true</readOnly> 764
<supportsMultiple>false</supportsMultiple> 765
<defaultValue>600</defaultValue> 766

 767

Configurable parameters, or those which are not read only, must provide information for the default value 768
as well as allowed values. To specify that an allowed value is within range of numbers, refer to Range 769
(§3.5). 770

EXAMPLE: An example snippet from a get service info call. The target service supports a configurable 771

parameter called “ImageWidth”. Enclosing tags (which may vary) are omitted. 772

<name>imageWidth</name> 773
<type>xs:positiveInteger</type> 774
<readOnly>false</readOnly> 775
<supportsMultiple>false</supportsMultiple> 776
<defaultValue>800</defaultValue> 777
<allowedValues> 778
 <allowedValue>640</allowedValue> 779
 <allowedValue>800</allowedValue> 780
 <allowedValue>1024</allowedValue> 781
</allowedValues> 782

 783

In many cases, an exposed parameter will support multiple values (see §3.4.1.2). When a parameter 784
allows this capability, it must use a type-specific array, if defined in this specification, or the generic Array 785
(§3.6) type. The type element within a parameter must be the qualified name of a single value’s type (see 786

§3.4.1.2 for an example). 787

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 35 of 120

4.2 Configuration 788

A configuration consists of parameters specific to the sensor or post-processing related to the final 789

capture result. This must only consist of key/value pairs. It must not include other information about the 790

parameters, such as allowed values or read-only status. 791

Restrictions for each configuration parameter can be discovered through the get service info operation. 792

EXAMPLE: The following is an example payload to set configuration consisting of three parameters. 793

<configuration xmlns="http://docs.oasis-open.org/biometrics/ns/ws-bd-1.0" 794
 xmlns:xs="http://www.w3.org/2001/XMLSchema" 795
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 796
 <item> 797
 <key>imageHeight</key> 798
 <value xsi:type="xs:int">480</value> 799
 </item> 800
 <item> 801
 <key>imageWidth</key> 802
 <value xsi:type="xs:int">640</value> 803
 </item> 804
 <item> 805
 <key>frameRate</key> 806
 <value xsi:type="xs:int">20</value> 807
 </item> 808
</configuration> 809

 810

4.3 Captured Data 811

Metadata related to a particular capture operation must include the configuration of the sensor at the time 812

of capture. Static parameters related to the service should not be included in the metadata for a capture 813

result. 814

A service may perform post-processing steps on any captured information. This information should be 815

added to the particular capture result’s metadata. 816

EXAMPLE: Example metadata for a particular capture. Note that this includes parameters related to the 817

sensor. Enclosing tags (which may vary) are omitted. 818

<item> 819
 <key>serialNumber</key> 820
 <value xsi:type="xs:string">98A8N830LP332-V244</value> 821
</item> 822
<item> 823
 <key>imageHeight</key> 824
 <value xsi:type="xs:string">600</value> 825
</item> 826
<item> 827
 <key>imageWidth</key> 828
 <value xsi:type="xs:string">800</value> 829
</item> 830
<item> 831
 <key>captureTime</key> 832
 <value xsi:type="xs:dateTime">2011-12-02T09:39:10.935-05:00</value> 833
</item> 834
<item> 835
 <key>contentType</key> 836
 <value xsi:type="xs:string">image/jpeg</value> 837
</item> 838
<item> 839
 <key>modality</key> 840
 <value xsi:type="xs:string">Finger</value> 841
</item> 842
<item> 843

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 36 of 120

 <key>submodality</key> 844
 <value xsi:type="xs:string">LeftIndex</value> 845
</item> 846

 847

EXAMPLE: A service computes the quality score of a captured fingerprint (see previous example). This 848
score is added to the result’s metadata to allow other clients to take advantage of previously completed 849
processes. Enclosing tags (which may vary) are omitted. 850

<item> 851
 <key>quality</key> 852
 <value>78</value> 853
</item> 854
<item> 855
 <key>serialNumber</key> 856
 <value>98A8N830LP332-V244</value> 857
</item> 858
<item> 859
 <key>captureDate</key> 860
 <value>2011-01-01T15:30:00Z</value> 861
</item> 862
<item> 863
 <key>modality</key> 864
 <value>Finger</value> 865
</item> 866
<item> 867
 <key>submodality</key> 868
 <value>leftIndex</value> 869
</item> 870
<item> 871
 <key>imageHeight</key> 872
 <value>600</value> 873
</item> 874
<item> 875
 <key>imageWidth</key> 876
 <value>800</value> 877
</item> 878
<item> 879
 <key>contentType</key> 880
 <value>image/bmp</value> 881
</item> 882

4.3.1 Minimal Metadata 883

At a minimum, a sensor or service must maintain the following metadata fields for each captured result. 884

4.3.1.1 Capture Date 885

Formal Name captureDate

Data Type xs:dateTime [XSDPart2]

This value represents the date and time at which the capture occurred. 886

4.3.1.2 Modality 887

Formal Name modality

Data Type xs:string [XSDPart2]

The value of this field must be present in the list of available modalities exposed by the get service info 888
operation (§6.8) as defined in §A.4.1. This value represents the modality of the captured result. 889

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 37 of 120

4.3.1.3 Submodality 890

Formal Name submodality

Data Type xs:anyType [XSDPart2]

The value of this field must be present in the list of available submodalities exposed by the get service 891
info operation (§6.8) as defined in §A.4.2. This value represents the submodality of the captured result. If 892
this parameter supports multiple, then the data type must be a StringArray (§3.7) of values. If 893

submodality does not support multiple, the data type must be xs:string [XSDPart2]. 894

4.3.1.4 Content Type 895

Formal Name contentType

Data Type xs:string [RFC2045, RFC2046]

The value of this field represents the content type of the captured data. See Appendix B for which content 896
types are supported. 897

 898

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 38 of 120

5 Live Preview 899

The ability to provide live preview of a session provides feedback to the client on when to signal a capture 900
and/or what is going on during a capture. 901

5.1 Endpoints 902

Exposing endpoint information to a client is done through the service information. If live preview is 903
implemented, a key/value pair shall be added where the key is “livePreview” and the value is of type 904
Parameter (§3.4). This must be a read-only parameter. The default value shall be of type ResourceArray 905
(§3.9). An implementation may expose one or more Resources (§3.10) in the ResourceArray. For the 906
stream parameter, each instance of a Resource shall contain the uri, contentType, and the relationship 907
elements. The content type of the stream and the value of each Resource’s contentType element should 908
be listed in Appendix B. The value of the relationship field must begin with “livePreview” and there must 909
be at least one entry where the element’s value consists of only “livePreview”. An implementer may 910
provide additional endpoints with a modified relationship. This may be done by appending a forward slash 911
immediately after “livePreview” and before any additional content; any additional content must not occur 912

before the forward slash. Only base-64 characters are allowed in the relationship field. 913

 914

The follow snippet is a skeleton service information entry for a stream parameter. Enclosing tags have 915
been omitted. 916

<item> 917
 <key>livePreview</key> 918
 <value xsi:type=”Parameter”> 919
 <name>livePreview </name> 920
 <type>Resource</type> 921
 <readOnly>true</readOnly> 922
 <defaultValue xsi:type=”ResourceArray”> 923
 ... 924
 ... 925
 </defaultValue> 926
 </value> 927
</item> 928

 929

EXAMPLE: The following snippet is an example service information entry that exposes a Parameter 930
(§3.4) for live preview resources. This example exposes two different endpoints, each offering a live 931
preview with different content types. Enclosing tags (which may vary) are omitted. 932

<item> 933
 <key>livePreview</key> 934
 <value xsi:type=”Parameter”> 935
 <name>livePreview</name> 936
 <type>Resource</type> 937
 <readOnly>true</readOnly> 938
 939
 <defaultValue xsi:type=”ResourceArray”> 940
 <element> 941
 <uri>http://192.168.1.1/stream</uri> 942
 <contentType>video/h264</contentType> 943
 <relationship>livePreview</relationship> 944
 </element> 945
 <element> 946
 <uri>http://192.168.1.1:81/stream</uri> 947
 <contentType>video/mpeg</contentType> 948
 <relationship>livePreview</relationship> 949
 </element> 950
 </defaultValue> 951

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 39 of 120

 </value> 952
</item> 953

 954

EXAMPLE: The following snippet is an example service information entry that exposes a Parameter 955
(§3.4) for live preview resources. This example exposes two different endpoints, one with a modified 956
relationship value. For example, the second entry may be describing an endpoint that has live preview of 957

a face at 30 frames per second. Enclosing tags (which may vary) are omitted. 958

<item> 959
 <key>livePreview</key> 960
 <value xsi:type=”Parameter”> 961
 <name>livePreview</name> 962
 <type>Resource</type> 963
 <readOnly>true</readOnly> 964
 965
 <defaultValue xsi:type=”ResourceArray”> 966
 <element> 967
 <uri>http://192.168.1.1/stream</uri> 968
 <contentType>video/h264</contentType> 969
 <relationship>livePreview</relationship> 970
 </element> 971
 <element> 972
 <uri>http://192.168.1.1:81/stream</uri> 973
 <contentType>video/mpeg</contentType> 974
 <relationship>livePreview/face+fps=30</relationship> 975
 </element> 976
 </defaultValue> 977
 </value> 978
</item> 979

 980

5.2 Heartbeat 981

In many cases, live preview may not be ready to provide actual images until a certain point in a session or 982
the lifetime of a service (e.g., after initialization). The service has two options on how to proceed when 983
streaming is called before it is ready. 984

1. Immediately close the live preview connection. This is only recommended if live preview is not 985
available for the service. It shall not be expected that a client will make additional calls to the live 986

preview endpoint after a closed connection. 987

2. Send a heartbeat to the client upon a live preview request. The heartbeat shall consist of minimal 988
null information and shall be sent to all clients on a fixed time interval. 989

 990

EXAMPLE: The follow is an example heartbeat frame sent over a multipart/x-mixed-replace stream. For 991
this example, the boundary indicator is boundaryString. A service may send this null frame as a heartbeat 992
to all connected clients every, for example, 10 seconds to alert the client that live preview data is 993
available, but not at the current state of the service, sensor, or session. 994

--boundaryString 995
Content-Type: multipart/x-heartbeat 996
 997
0 998
--boundaryString 999

 1000

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 40 of 120

6 Operations 1001

This section provides detailed information regarding each WS-BD operation. 1002

6.1 General Usage Notes 1003

The following usage notes apply to all operations, unless the detailed documentation for a particular 1004
operation conflicts with these general notes, in which case the detailed documentation takes precedence. 1005

1. Failure messages are informative. If an operation fails, then the message element may contain 1006

an informative message regarding the nature of that failure. The message is for informational 1007

purposes only—the functionality of a client must not depend on the contents of the message. 1008

2. Results must only contain required and optional elements. Services must only return 1009

elements that are either required or optional. All other elements must not be contained in the 1010

result, even if they are empty elements. Likewise, to maintain robustness in the face of a non-1011

conformant service, clients should ignore any element that is not in the list of permitted Result 1012

elements for a particular operation call. 1013

3. Sensor operations must not occur within a non-sensor operation. Services should only 1014

perform any sensor control within the operations: 1015

a. initialize, 1016

b. get configuration, 1017

c. set configuration, 1018

d. capture, and 1019

e. cancel. 1020

4. Sensor operations must require locking. Even if a service implements a sensor operation 1021

without controlling the target biometric sensor, the service must require that a locked service for 1022

the operation to be performed. 1023

5. Content Type. Clients must make HTTP requests using a content type of application/xml 1024

[RFC2616, §14]. 1025

6. Namespace. A data type without an explicit namespace or namespace prefix implies it is a 1026

member of the wsbd namespace as defined in §3.1. 1027

6.1.1 Precedence of Status Enumerations 1028

To maximize the amount of information given to a client when an error is obtained, and to prevent 1029
different implementations from exhibiting different behaviors, all WS-BD services must return status 1030
values according to a fixed priority. In other words, when multiple status messages might apply, a higher-1031
priority status must always be returned in favor of a lower-priority status. 1032

The status priority, listed from highest priority (“invalidId”) to lowest priority (“success”) is as follows: 1033

1. invalidId 1034
2. noSuchParameter 1035
3. badValue 1036
4. unsupported 1037
5. canceledWithSensorFailure 1038
6. canceled 1039
7. lockHeldByAnother 1040
8. lockNotHeld 1041
9. sensorBusy 1042
10. sensorFailure 1043
11. sensorTimeout 1044
12. initializationNeeded 1045
13. configurationNeeded 1046

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 41 of 120

14. preparingDownload 1047
15. failure 1048
16. success 1049

 1050

Notice that success is the lowest priority—an operation should only be deemed successful if no other 1051
kinds of (non-successful) statuses apply. 1052

The following example illustrates how this ordering affects the status returned in a situation in which 1053
multiple clients are performing operations. 1054

EXAMPLE: Figure 6 illustrates that client cannot receive a “sensorBusy” status if it does not hold the 1055
lock, even if a sensor operation is in progress (recall from §2.4.5 that sensor operations require holding the 1056
lock). Suppose there are two clients; Client A and Client B. Client A holds the lock and starts 1057

initialization on (Step 1–3). Immediately after Client A initiates capture, Client B (Step 4) tries to obtain 1058
the lock while Client A is still capturing. In this situation, the valid statuses that could be returned to 1059
Client B are “sensorBusy” (since the sensor is busy performing a capture) and “lockHeldByAnother” 1060
(since Client A holds the lock). In this case, the service returns “lockHeldByAnother” (Step 5) since 1061
“lockHeldByAnother” is higher priority than “sensorBusy.” 1062

Client A Service Client B

Lock owner = (none)

1:lock

sessionId={A1234567...}

Lock owner = {A1234567...}

2:lock

status=success

3:initialize

sessionId={A1234567...}

4:lock

sessionId={B890B123...}

5:lock

status=lockHeldByAnother

6:initialize

status=success

 1063

Figure 6. Example illustrating how a client cannot receive a "sensorBusy" status if it does not hold the lock. 1064

6.1.2 Parameter Failures 1065

Services must distinguish among badValue, invalidId, noSuchParameter, and unsupported according to 1066
the following rules. These rules are presented here in the order of precedence that matches the previous 1067
subsection. 1068

1. Is a recognizable UUID provided? If the operation requires a UUID as an input URL parameter, 1069
and provided value is not an UUID (i.e., the UUID is not parseable), then the service must return 1070
badValue. Additionally, the Result’s badFields list must contain the name of the offending 1071
parameter (sessionId or captureId). 1072
 1073
…otherwise… 1074
 1075

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 42 of 120

2. Is the UUID understood? If an operation requires an UUID as an input URL parameter, and the 1076
provided value is a UUID, but service cannot accept the provided value, then the service must 1077
return invalidId. Additionally, the Result’s badFields list must contain the name of the offending 1078
parameter (sessionId or captureId). 1079
 1080
…otherwise… 1081
 1082

3. Are the parameter names understood? If an operation does not recognize a provided input 1083
parameter name, then the service must return noSuchParameter. This behavior may differ from 1084
service to service, as different services may recognize (or not recognize) different parameters. 1085
The unrecognized parameter(s) must be listed in the Result’s badFields list. 1086
 1087
…otherwise… 1088
 1089

4. Are the parameter values acceptable? If an operation recognizes all of the provided parameter 1090
names, but cannot accept a provided value because it is (a) and inappropriate type, or (b) outside 1091
the range advertised by the service (§4.1), the then service must return badValue. The parameter 1092

names associated with the unacceptable values must be listed in the Result’s badFields list. 1093
Clients are expected to recover the bad values themselves by reconciling the Result 1094
corresponding to the offending request. 1095
 1096
…otherwise… 1097
 1098

5. Is the request supported? If an operation accepts the parameter names and values, but the 1099
particular request is not supported by the service or the target biometric sensor, then the service 1100
must return unsupported. The parameter names that triggered this determination must be listed in 1101
the Result’s badFields list. By returning multiple fields, a service is able to imply that a particular 1102
combination of provided values is unsupported. 1103

 1104

NOTE: It may be helpful to think of invalidId as a special case of badValue reserved for URL parameters 1105

of type UUID. 1106

6.1.3 Visual Summaries 1107

The following two tables provide informative visual summaries of WS-BD operations. These visual 1108
summaries are an overview; they are not authoritative. (§6.3–6.16 are authoritative.) 1109

6.1.3.1 Input & Output 1110

The following table represents a visual summary of the inputs and outputs corresponding to each 1111
operation. 1112

Operation inputs are indicated in the “URL Fragment” and “Input Payload” columns. Operation inputs take 1113
the form of either (a) a URL parameter, with the parameter name shown in “curly brackets” (“{“ and “}”) 1114
within the URL fragment (first column), and/or, (b) a input payload (defined in §1.1). 1115

Operation outputs are provided via Result, which is contained in the body of an operation’s HTTP 1116

response. 1117

1118

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 43 of 120

 1119

Summary of Operations Input/Output

Operation
URL Fragment

(Includes inputs) M
e

th
o

d

In
p

u
t

p
a

y
lo

a
d

Id
e

m
p

o
te

n
t

S
e
n

s
o

r
O

p
e
ra

ti
o

n

Permitted Result Elements
 (within output payload)

D
e
ta

il
e
d

 D
o

c
u

m
e
n

ta
ti

o
n

 (
§
)

s
ta

tu
s

b
a

d
F

ie
ld

s

s
e
s
s
io

n
Id

m
e
ta

d
a

ta

c
a
p

tu
re

Id
s

s
e
n

s
o

rD
a
ta

register /register POST none
 

  

 

 6.3

unregister /register/{sessionId} DELETE none 



 

  

 6.4

try lock

/lock/{sessionId}

POST none 



 

  

 6.5

steal lock PUT none 



 

  

 6.6

unlock DELETE none 



 

  

 6.7

get service info /info GET none 



 







 6.8

initialize /initialize/{sessionId} POST none    

  

 6.9

get configuration
/configure/{sessionId}

GET none    







 6.10

set configuration POST config    

  

 6.11

capture /capture/{sessionId} POST none


  

 

  6.12

download /download/{captureid} GET none 



 







 6.13

get download info /download/{captureid}/info GET none         6.14

thrifty download /download/{captureid}/{maxSize} GET none 



 







 6.15

cancel operation /cancel/{sessionId} POST none    

  

 6.16

 1120

Presence of a symbol in a table cell indicates that operation is idempotent (), a sensor operation (), 1121
and which elements may be present in the operation's Result (). Likewise, the lack of a symbol in a 1122
table cell indicates the operation is not idempotent, not a sensor operation, and which elements of the 1123
operation's Result are forbidden. 1124

EXAMPLE: The capture operation (fifth row from the bottom) is not idempotent, but is a sensor 1125

operation. The output may contain the elements status, badFields, and/or captureIds in its 1126

Result. The detailed information regarding the Result for capture, (i.e., which elements are 1127

specifically permitted under what circumstances) is found in §6.12. 1128

The message element is not shown in this table for two reasons. First, when it appears, it is always 1129

optional. Second, to emphasize that the message content must only be used for informative purposes; it 1130

must not be used as a vehicle for providing unique information that would inhibit a service’s 1131

interoperability. 1132

6.1.3.2 Permitted Status Values 1133

The following table provides a visual summary of the status values permitted. 1134

1135

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 44 of 120

 1136

Possible Status Values Per Operation

Status

Values

Operation
Description

s
u

c
c
e
s
s

fa
il

u
re

in
v

a
li
d

Id

c
a
n

c
e
le

d

c
a
n

c
e
le

d
W

it
h

S
e
n

s
o

rF
a
il
u

re

s
e
n

s
o

rF
a
il
u

re

lo
c

k
N

o
tH

e
ld

lo
c

k
H

e
ld

B
y
A

n
o

th
e
r

in
it

ia
li
z
a
ti

o
n

N
e
e
d

e
d

c
o

n
fi

g
u

ra
ti

o
n

N
e
e
d

e
d

s
e
n

s
o

rB
u

s
y

s
e
n

s
o

rT
im

e
o

u
t

u
n

s
u

p
p

o
rt

e
d

b
a

d
V

a
lu

e

n
o

S
u

c
h

P
a
ra

m
e
te

r

p
re

p
a

ri
n

g
D

o
w

n
lo

a
d

register  

             

unregister   

      



 



 

try lock   

   



    



 

steal lock   

         



 

unlock   

   



    



 

get service info  

             

initialize        

 

 





 

get configuration            





 

set configuration         



    



capture            





 

download   

         







get download info                

thrifty download   

        

 





cancel   

  

 

    



 

The presence (absence) of a symbol in a cell indicates that the respective status may (may not) be 1137

returned by the corresponding operation. 1138

EXAMPLE: The register operation may only return a Result with a Status that contains either 1139

success or failure. The unregister operation may only return success, failure, invalidId, 1140

sensorBusy, or badValue. 1141

The visual summary does not imply that services may return these values arbitrarily—the services must 1142

adhere to the behaviors as specified in their respective sections. 1143

 1144

6.2 Documentation Conventions 1145

Each WS-BD operation is documented according to the following conventions. 1146

6.2.1 General Information 1147

Each operation begins with the following tabular summary: 1148

Description A short description of the operation

URL Template The suffix used to access the operation. These take the form

/resourceName

or

/resourceName/{URL_parameter_1}/…/{URL_parameter_N}

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 45 of 120

Each parameter, {URL_parameter...} must be replaced, in-line with that
parameter’s value.

Parameters have no explicit names, other than defined by this
document or reported back to the client within the contents of a
badFields element.

It is assumed that consumers of the service will prepend the URL to the
service endpoint as appropriate.

EXAMPLE: The resource resourceName hosted at the endpoint

http://example.com/Service

would be accessible via

http://example.com/Service/resourceName

HTTP Method The HTTP method that triggers the operation, i.e., GET, POST, PUT, or
DELETE

URL Parameters A description of the URL-embedded operation parameters. For each
parameter the following details are provided:

 the name of the parameter

 the expected data type (§3)

 a description of the parameter

Input Payload A description of the content, if any, to be posted to the service as input
to an operation.

Idempotent Yes—the operation is idempotent (§2.4.7).

No—the operation is not idempotent.

Sensor Operation
(Lock Required)

Yes—the service may require exclusive control over the target
biometric sensor.

No—this operation does not require a lock.

Given the concurrency model (§2.4.5) this value doubles as
documentation as to whether or not a lock is required

6.2.2 Result Summary 1149

This subsection summarizes the various forms of a Result that may be returned by the operation. Each 1150

row represents a distinct combination of permitted values & elements associated with a particular status. 1151

An operation that returns success may also provide additional information other than status. 1152

success status="success"

failure status="failure"

message*=informative message describing failure

[status value] status=status literal

[required element name]=description of permitted contents of the
element

http://example.com/Service
http://example.com/Service

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 46 of 120

[optional element name]*=description of permitted contents of the
element

…

…

For each row, the left column contains a permitted status value, and the right column contains a summary 1153

of the constraints on the Result when the status element takes that specific value. The vertical ellipses 1154

at the bottom of the table signify that the summary table may have additional rows that summarize other 1155

permitted status values. 1156

Data types without an explicit namespace or namespace prefix are members of the wsbd namespace as 1157
defined in §3.1. 1158

Element names suffixed with a ‘*’ indicate that the element is optional. 1159

6.2.3 Usage Notes 1160

Each of the following subsections describes behaviors & requirements that are specific to its respective 1161

operation. 1162

6.2.4 Unique Knowledge 1163

For each operation, there is a brief description of whether or not the operation affords an opportunity for 1164
the server or client to exchange information unique to a particular implementation. The term “unique 1165
knowledge” is used to reflect the definition of interoperability referenced in §2.1. 1166

6.2.5 Return Values Detail 1167

This subsection details the various return values that the operation may return. For each permitted status 1168

value, the following table details the Result requirements: 1169

Status Value The particular status value

Condition The service accepts the registration request

Required Elements A list of the required elements. For each required element, the element
name, its expected contents, and expected data type is listed If no
namespace prefix is specified, then the wsbd namespace (§3.1) is

inferred.

For example,
 badFields={"sessionId"} (StringArray, §3.7)

Indicates that badFields is a required element, and that the contents of
the element must be a wsbd:StringArray containing the single literal
"sessionId".

Optional Elements A list of the required elements. Listed for each optional element are the
element names and its expected contents.

Constraints and information unique to the particular operation/status combination may follow the table, 1170

but some status values have no trailing explanatory text. 1171

A data type without an explicit namespace or namespace prefix implies it is a member of the wsbd 1172
namespace as defined in §3.1. 1173

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 47 of 120

6.3 Register 1174

Description Open a new client-server session

URL Template /register

HTTP Method POST

URL Parameters None

Input Payload None

Idempotent No

Sensor Operation No

6.3.1 Result Summary 1175

success status="success"

sessionId=session id (UUID, §3.2)

failure status="failure"

message*=informative message describing failure

6.3.2 Usage Notes 1176

Register provides a unique identifier that can be used to associate a particular client with a server. 1177

In a sequence of operations with a service, a register operation is likely one of the first operations 1178
performed by a client (get service info being the other). It is expected (but not required) that a client would 1179
perform a single registration during that client’s lifetime. 1180

DESIGN NOTE: By using an UUID, as opposed to the source IP address, a server can distinguish among 1181
clients sharing the same originating IP address (i.e., multiple clients on a single machine, or multiple 1182
machines behind a firewall). Additionally, a UUID allows a client (or collection of clients) to determine 1183
client identity rather than enforcing a particular model (§2.4.3). 1184

6.3.3 Unique Knowledge 1185

As specified, the register operation cannot be used to provide or obtain knowledge about unique 1186
characteristics of a client or service. 1187

6.3.4 Return Values Detail 1188

The register operation must return a Result according to the following constraints. 1189

6.3.4.1 Success 1190

Status Value success

Condition The service accepts the registration request

Required Elements status (Status, §3.12)

the literal “success”

sessionId (UUID, §3.2)

an identifier that can be used to identify a session

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 48 of 120

Optional Elements None

The “register” operation must not provide a sessionId of 00000000-0000-0000-0000-000000000000. 1191

6.3.4.2 Failure 1192

Status Value failure

Condition The service cannot accept the registration request

Required Elements status (Status, §3.12)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Registration might fail if there are too many sessions already registered with a service. The message 1193

element must only be used for informational purposes. Clients must not depend on particular contents of 1194

the message element to control client behavior. 1195

See §4 and §A.1 for how a client can use sensor metadata to determine the maximum number of current 1196

sessions a service can support. 1197

6.4 Unregister 1198

Description Close a client-server session

URL Template /register/{sessionId}

HTTP Method DELETE

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session to remove

Input Payload None

Idempotent Yes

Sensor Operation No

6.4.1 Result Summary 1199

success status="success"

failure status="failure"

message*=informative message describing failure

sensorBusy status="sensorBusy"

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

6.4.2 Usage Notes 1200

Unregister closes a client-server session. Although not strictly necessary, clients should unregister from a 1201

service when it is no longer needed. Given the lightweight nature of sessions, services should support 1202

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 49 of 120

(on the order of) thousands of concurrent sessions, but this cannot be guaranteed, particularly if the 1203

service is running within limited computational resources. Conversely, clients should assume that the 1204

number of concurrent sessions that a service can support is limited. (See §A.1 for details on connection 1205

metadata.) 1206

6.4.2.1 Inactivity 1207

A service may automatically unregister a client after a period of inactivity, or if demand on the service 1208
requires that least-recently used sessions be dropped. This is manifested by a client receiving a status of 1209
invalidId without a corresponding unregistration. Services should set the inactivity timeout to a value 1210

specified in minutes. (See §A.1 for details on connection metadata.) 1211

6.4.2.2 Sharing Session Ids 1212

A session id is not a secret, but clients that share session ids run the risk of having their session 1213
prematurely terminated by a rogue peer client. This behavior is permitted, but discouraged. See §2.4 for 1214
more information about client identity and the assumed security models. 1215

6.4.2.3 Locks & Pending Sensor Operations 1216

If a client that holds the service lock unregisters, then a service must also release the service lock, with 1217
one exception. If the unregistering client both holds the lock and is responsible for a pending sensor 1218
operation, the service must return sensorBusy (See §6.4.4.3). 1219

6.4.3 Unique Knowledge 1220

As specified, the unregister operation cannot be used to provide or obtain knowledge about unique 1221
characteristics of a client or service. 1222

6.4.4 Return Values Detail 1223

The unregister operation must return a Result according to the following constraints. 1224

6.4.4.1 Success 1225

Status Value success

Condition The service accepted the unregistration request

Required Elements status (Status, §3.12)

the literal “success”

Optional Elements None

If the unregistering client currently holds the service lock, and the requesting client is not responsible for 1226

any pending sensor operation, then successful unregistration must also release the service lock. 1227

As a consequence of idempotency, a session id does not need to ever have been registered successfully 1228
in order to unregister successfully. Consequently, the unregister operation cannot return a status of 1229

invalidId. 1230

6.4.4.2 Failure 1231

Status Value failure

Condition The service could not unregister the session.

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 50 of 120

Required Elements status (Status, §3.12)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

In practice, failure to unregister is expected to be a rare occurrence. Failure to unregister might occur if 1232

the service experiences a fault with an external system (such as a centralized database used to track 1233

session registration and unregistration) 1234

6.4.4.3 Sensor Busy 1235

Status Value sensorBusy

Condition The service could not unregister the session because the biometric
sensor is currently performing a sensor operation within the session
being unregistered.

Required Elements status (Status, §3.12)

the literal “sensorBusy”

Optional Elements None

This status must only be returned if (a) the sensor is busy and (b) the client making the request holds the 1236

lock (i.e., the session id provided matches that associated with the current service lock). Any client that 1237

does not hold the session lock must not result in a sensorBusy status. 1238

EXAMPLE: The following sequence diagram illustrates a client that cannot unregister (Client A) 1239

and a client that can unregister (Client B). After the initialize operation completes (Step 6), Client 1240

A can unregister (Steps 7-8). 1241

Client A Service Client B

Lock owner = {A1234567...}

1:initialize

sessionId={A1234567...}

Client A, holding the lock, can start initialization.

2:unregister

sessionId={B890B123...}

3:unregister

status=success

Client B does not hold the lock, and can unregister, even though
the service is performing a sensor operation.

4:unregister

sessionId={A1234567...}

5:unregister

status=sensorBusy

On a separate thread, Client A makes an unregistration request.
Client A is not permitted to unregister, because Client A both (1)
holds the lock and (2) is responsible for a pending sensor
operation (initialization).

6:initialize

status=success

7:unregister

sessionId={A1234567...}

8:unregister

status=success

Now that initialization is finished, Client A can unregister.

 1242

Figure 7. Example of how an unregister operation can result in sensorBusy. 1243

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 51 of 120

6.4.4.4 Bad Value 1244

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.12)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §6.1.2 for general information on how services must handle parameter failures. 1245

6.5 Try Lock 1246

Description Try to obtain the service lock

URL Template /lock/{sessionId}

HTTP Method POST

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session requesting the service lock

Input Payload None

Idempotent Yes

Sensor Operation No

6.5.1 Result Summary 1247

success status="success"

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

lockHeldByAnother status="lockHeldByAnother"

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

6.5.2 Usage Notes 1248

The try lock operation attempts to obtain the service lock. The word “try” is used to indicate that the call 1249
always returns immediately; it does not block until the lock is obtained. See §2.4.5 for detailed information 1250
about the WS-BD concurrency and locking model. 1251

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 52 of 120

6.5.3 Unique Knowledge 1252

As specified, the try lock cannot be used to provide or obtain knowledge about unique characteristics of a 1253
client or service. 1254

6.5.4 Return Values Detail 1255

The try lock operation must return a Result according to the following constraints. 1256

6.5.4.1 Success 1257

Status Value success

Condition The service was successfully locked to the provided session id.

Required Elements status (Status, §3.12)

the literal “success”

Optional Elements None

Clients that hold the service lock are permitted to perform sensor operations (§2.4.5). By idempotency 1258

(§2.4.7), if a client already holds the lock, subsequent try lock operations shall also return success. 1259

6.5.4.2 Failure 1260

Status Value failure

Condition The service could not be locked to the provided session id.

Required Elements status (Status, §3.12)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must reserve a failure status to report system or internal failures and prevent the acquisition of 1261

the lock. Most try lock operations that do not succeed will not produce a failure status, but more likely a 1262

lockHeldByAnother status (See §6.5.4.4 for an example). 1263

6.5.4.3 Invalid Id 1264

Status Value invalidId

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.12)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 53 of 120

A session id is invalid if it does not correspond to an active registration. A session id may become 1265

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1266

inactivity (§6.4.4.1). 1267

See §6.1.2 for general information on how services must handle parameter failures. 1268

6.5.4.4 Lock Held by Another 1269

Status Value lockHeldByAnother

Condition The service could not be locked to the provided session id because the
lock is held by another client.

Required Elements status (Status, §3.12)

the literal “lockHeldByAnother”

Optional Elements None

EXAMPLE: The following sequence diagram illustrates a client that cannot obtain the lock (Client B) 1270

because it is held by another client (Client A). 1271

Client A Service Client B

Lock owner = (none)

1:lock

sessionId={A1234567...}

Lock owner = {A1234567...}

2:lock

status=success

3:lock

sessionId={B890B123...}

4:lock

status=lockHeldByAnother

 1272

Figure 8. Example of a scenario yielding a lockHeldByAnother result. 1273

6.5.4.5 Bad Value 1274

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.12)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §6.1.2 for general information on how services must handle parameter failures. 1275

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 54 of 120

6.6 Steal Lock 1276

Description Forcibly obtain the lock away from a peer client

URL Template /lock/{sessionId}

HTTP Method PUT

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session requesting the service lock

Input Payload None

Idempotent Yes

Sensor Operation No

6.6.1 Result Summary 1277

success status="success"

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

6.6.2 Usage Notes 1278

The steal lock operation allows a client to forcibly obtain the lock away from another client that already 1279
holds the lock. The purpose of this operation is to prevent a client that experiences a fatal error from 1280
forever preventing another client access to the service, and therefore, the biometric sensor. 1281

6.6.2.1 Avoid Lock Stealing 1282

Developers and integrators should endeavor to reserve lock stealing for exceptional circumstances—such 1283
as when a fatal error prevents a client from releasing a lock. Lock stealing should not be used as the 1284
primary mechanism in which peer clients coordinate biometric sensor use. 1285

6.6.2.2 Lock Stealing Prevention Period (LSPP) 1286

To assist in coordinating access among clients and to prevent excessive lock stealing, a service may 1287
trigger a time period that forbids lock stealing for each sensor operation. For convenience, this period of 1288
time will be referred to as the lock stealing prevention period (LSPP). 1289

During the LSPP, all attempts to steal the service lock will fail. Consequently, if a client experiences a 1290
fatal failure during a sensor operation, then all peer clients need to wait until the service re-enables lock 1291
stealing. 1292

All services should implement a non-zero LSPP. The recommended time for the LSPP is on the order of 1293
100 seconds. Services that enforce an LSPP must start the LSPP immediately before sovereign sensor 1294
control is required. Conversely, services should not enforce an LSPP unless absolutely necessary. 1295

If a request provides an invalid sessionId, then the operation should return an invalidId status instead of 1296
a failure—this must be true regardless of the LSPP threshold and whether or not it has expired. A 1297
failure signifies that the state of the service is still within the LSPP threshold and the provided sessionId 1298

is valid. 1299

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 55 of 120

A service may reinitiate a LSPP when an operation yields an undesirable result, such as failure. This 1300
would allow a client to attempt to resubmit the request or recover without worrying about whether or not 1301
the lock is still owned by the client’s session. 1302

An LSPP ends after a fixed amount of time has elapsed, unless another sensor operation restarts the 1303
LSPP. Services should keep the length of the LSPP fixed throughout the service’s lifecycle. It is 1304
recognized, however, that there may be use cases in which a variable LSPP timespan is desirable or 1305
required. Regardless, when determining the appropriate timespan, implementers should carefully 1306
consider the tradeoffs between preventing excessive lock stealing, versus forcing all clients to wait until a 1307
service re-enables lock stealing. 1308

6.6.2.3 Cancellation & (Lack of) Client Notification 1309

Lock stealing must have no effect on any currently running sensor operations. It is possible that a client 1310
initiates a sensor operation, has its lock stolen away, yet the operation completes successfully. 1311
Subsequent sensor operations would yield a lockNotHeld status, which a client could use to indicate that 1312
their lock was stolen away from them. Services should be implemented such that the LSPP is longer 1313
than any sensor operation. 1314

6.6.3 Unique Knowledge 1315

As specified, the steal lock operation cannot be used to provide or obtain knowledge about unique 1316
characteristics of a client or service. 1317

6.6.4 Return Values Detail 1318

The steal lock operation must return a Result according to the following constraints. 1319

6.6.4.1 Success 1320

Status Value success

Condition The service was successfully locked to the provided session id.

Required Elements status (Status, §3.12)

the literal “success”

Optional Elements None

See §2.4.5 for detailed information about the WS-BD concurrency and locking model. Cancellation must 1321

have no effect on pending sensor operations (§6.6.2.3). 1322

6.6.4.2 Failure 1323

Status Value failure

Condition The service could not be locked to the provided session id.

Required Elements status (Status, §3.12)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Most steal lock operations that yield a failure status will do so because the service receives a lock 1324

stealing request during a lock stealing prevention period (§6.6.2.2). Services must also reserve a failure 1325

status for other non-LSPP failures that prevent the acquisition of the lock. 1326

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 56 of 120

Implementers may choose to use the optional message field to provide more information to an end-user as 1327
to the specific reasons for the failure. However (as with all other failure status results), clients must not 1328

depend on any particular content to make this distinction. 1329

6.6.4.3 Invalid Id 1330

Status Value invalidId

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.12)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1331

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1332

inactivity (§6.4.4.1). 1333

See §6.1.2 for general information on how services must handle parameter failures. 1334

6.6.4.4 Bad Value 1335

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.12)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §6.1.2 for general information on how services must handle parameter failures. 1336

6.7 Unlock 1337

Description Release the service lock

URL Template /lock/{sessionId}

HTTP Method DELETE

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session releasing the service lock

Input Payload None

Idempotent Yes

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 57 of 120

Sensor Operation No

6.7.1 Result Summary 1338

success status="success"

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

6.7.2 Usage Notes 1339

The unlock operation releases a service lock, making locking available to other clients. 1340

See §2.4.5 for detailed information about the WS-BD concurrency and locking model. 1341

6.7.3 Unique Knowledge 1342

As specified, the unlock operation cannot be used to provide or obtain knowledge about unique 1343
characteristics of a client or service. 1344

6.7.4 Return Values Detail 1345

The steal lock operation must return a Result according to the following constraints. 1346

6.7.4.1 Success 1347

Status Value success

Condition The service returned to an unlocked state.

Required Elements status (Status, §3.12)

the literal “success”

Optional Elements None

Upon releasing the lock, a client is no longer permitted to perform any sensor operations (§2.4.5). By 1348

idempotency (§2.4.7), if a client already has released the lock, subsequent unlock operations should also 1349

return success. 1350

6.7.4.2 Failure 1351

Status Value failure

Condition The service could not be transitioned into an unlocked state.

Required Elements status (Status, §3.12)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 58 of 120

Services must reserve a failure status to report system or internal failures and prevent the release of 1352

the service lock. The occurrence of unlock operations that fail is expected to be rare. 1353

6.7.4.3 Invalid Id 1354

Status Value invalidId

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.12)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1355

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1356

inactivity (§6.4.4.1). 1357

See §6.1.2 for general information on how services must handle parameter failures. 1358

6.7.4.4 Bad Value 1359

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.12)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §6.1.2 for general information on how services must handle parameter failures. 1360

6.8 Get Service Info 1361

Description Retrieve metadata about the service that does not depend on session-
specific information, or sovereign control of the target biometric sensor

URL Template /info

HTTP Method GET

URL Parameters None

Input Payload None

Idempotent Yes

Sensor Operation No

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 59 of 120

6.8.1 Result Summary 1362

success status="success"

metadata=dictionary containing service metadata (Dictionary, §3.3)

failure status="failure"

message*=informative message describing failure

6.8.2 Usage Notes 1363

The get service info operation provides information about the service and target biometric sensor. This 1364
operation must return information that is both (a) independent of session, and (b) does not require 1365
sovereign biometric sensor control. In other words, services must not control the target biometric sensor 1366
during a get service info operation itself. Implementations may (and are encouraged to) use service 1367
startup time to query the biometric sensor directly to create a cache of information and capabilities for get 1368
service info operations. The service should keep a cache of sensor and service metadata to reduce the 1369

amount of operations that query the sensor as this can be a lengthy operation. 1370

The get service info operation does not require that a client be registered with the service. Unlike other 1371
operations, it does not take a session id as a URL parameter. 1372

See §4.1 for information about the metadata returned from this operation. 1373

EXAMPLE: The following represents a ‘raw’ request to get the service’s metadata. 1374

GET http://10.0.0.8:8000/Service/info HTTP/1.1 1375
Content-Type: application/xml 1376
Host: 10.0.0.8:8000 1377

EXAMPLE: The following is the ‘raw’ response from the above request. The metadata element of the 1378
result contains a Dictionary (§3.3) of parameter names and parameter information represented as a 1379
Parameter (§3.4). 1380

HTTP/1.1 200 OK 1381
Content-Length: 4244 1382
Content-Type: application/xml; charset=utf-8 1383
Server: Microsoft-HTTPAPI/2.0 1384
Date: Tue, 03 Jan 2012 14:54:51 GMT 1385
 1386
<result xmlns="http://docs.oasis-open.org/biometrics/ns/ws-bd-1.0" xmlns:i="http://www.w3.org/2001/XMLSchema-1387
instance"> 1388
 <status>success</status> 1389
 <metadata> 1390
 <item> 1391
 <key>width</key> 1392
 <value i:type="Parameter"> 1393
 <name>width</name> 1394
 <q:type xmlns:q="http://docs.oasis-open.org/biometrics/ns/ws-bd-1.0" 1395
xmlns:a="http://www.w3.org/2001/XMLSchema">a:unsignedInt</q:type> 1396
 <defaultValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">800</defaultValue> 1397
 <allowedValues> 1398
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">1280</allowedValue> 1399
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">960</allowedValue> 1400
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">800</allowedValue> 1401
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">640</allowedValue> 1402
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">424</allowedValue> 1403
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">416</allowedValue> 1404
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">352</allowedValue> 1405
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">320</allowedValue> 1406
 </allowedValues> 1407
 </value> 1408
 </item> 1409
 <item> 1410
 <key>height</key> 1411
 <value i:type="Parameter"> 1412
 <name>height</name> 1413
 <q:type xmlns:q="http://docs.oasis-open.org/biometrics/ns/ws-bd-1.0" 1414
xmlns:a="http://www.w3.org/2001/XMLSchema">a:unsignedInt</q:type> 1415
 <defaultValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">600</defaultValue> 1416
 <allowedValues> 1417

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 60 of 120

 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">720</allowedValue> 1418
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">600</allowedValue> 1419
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">544</allowedValue> 1420
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">480</allowedValue> 1421
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">448</allowedValue> 1422
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">360</allowedValue> 1423
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">288</allowedValue> 1424
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">240</allowedValue> 1425
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">144</allowedValue> 1426
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">120</allowedValue> 1427
 </allowedValues> 1428
 </value> 1429
 </item> 1430
 <item> 1431
 <key>frameRate</key> 1432
 <value i:type="Parameter"> 1433
 <name>frameRate</name> 1434
 <q:type xmlns:q="http://docs.oasis-open.org/biometrics/ns/ws-bd-1.0" 1435
xmlns:a="http://www.w3.org/2001/XMLSchema">a:unsignedInt</q:type> 1436
 <defaultValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">30</defaultValue> 1437
 <allowedValues> 1438
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">30</allowedValue> 1439
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">15</allowedValue> 1440
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">10</allowedValue> 1441
 </allowedValues> 1442
 </value> 1443
 </item> 1444
 <item> 1445
 <key>modality</key> 1446
 <value i:type="Parameter"> 1447
 <name>modality</name> 1448
 <q:type xmlns:q="http://docs.oasis-open.org/biometrics/ns/ws-bd-1.0" 1449
xmlns:a="http://www.w3.org/2001/XMLSchema">a:string</q:type> 1450
 <readOnly>true</readOnly> 1451
 <defaultValue i:type="a:string" xmlns:a="http://www.w3.org/2001/XMLSchema">face</defaultValue> 1452
 </value> 1453
 </item> 1454
 <item> 1455
 <key>submodality</key> 1456
 <value i:type="Parameter"> 1457
 <name>submodality</name> 1458
 <q:type xmlns:q="http://docs.oasis-open.org/biometrics/ns/ws-bd-1.0" 1459
xmlns:a="http://www.w3.org/2001/XMLSchema">a:string</q:type> 1460
 <readOnly>true</readOnly> 1461
 <defaultValue i:type="a:string" xmlns:a="http://www.w3.org/2001/XMLSchema">frontalFace</defaultValue> 1462
 </value> 1463
 </item> 1464
 </metadata> 1465
</result> 1466

 1467

6.8.3 Unique Knowledge 1468

As specified, the get service info can be used to obtain knowledge about unique characteristics of a 1469
service. Through get service info, a service may expose implementation and/or service-specific 1470
configuration parameter names and values that are not defined in this specification (see Appendix A for 1471
further information on parameters). 1472

6.8.4 Return Values Detail 1473

The get service info operation must return a Result according to the following constraints. 1474

6.8.4.1 Success 1475

Status Value success

Condition The service provides service metadata

Required Elements status (Status, §3.12)

the literal "success"

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 61 of 120

metadata (Dictionary, §3.3)

information about the service metadata

Optional Elements None

6.8.4.2 Failure 1476

Status Value failure

Condition The service cannot provide service metadata

Required Elements status (Status, §3.12)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

 1477

6.9 Initialize 1478

Description Initialize the target biometric sensor

URL Template /initialize/{sessionId}

HTTP Method POST

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session requesting initialization

Input Payload None

Idempotent Yes

Sensor Operation Yes

6.9.1 Result Summary 1479

success status="success"

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 62 of 120

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

6.9.2 Usage Notes 1480

The initialize operation prepares the target biometric sensor for (other) sensor operations. 1481

Some biometric sensors have no requirement for explicit initialization. In that case, the service should 1482

immediately return a success result. 1483

Although not strictly necessary, services should directly map this operation to the initialization of the 1484
target biometric sensor, unless the service can reliably determine that the target biometric sensor is in a 1485
fully operational state. In other words, a service may decide to immediately return success if there is a 1486
reliable way to detect if the target biometric sensor is currently in an initialized state. This style of “short 1487
circuit” evaluation could reduce initialization times. However, a service that always initializes the target 1488
biometric sensor would enable the ability of a client to attempt a manual reset of a sensor that has 1489
entered a faulty state. This is particularly useful in physically separated service implementations where 1490
the connection between the target biometric sensor and the web service host may be less reliable than an 1491
integrated implementation. 1492

6.9.3 Unique Knowledge 1493

As specified, the initialize operation cannot be used to provide or obtain knowledge about unique 1494
characteristics of a client or service. 1495

6.9.4 Return Values Detail 1496

6.9.4.1 Success 1497

Status Value success

Condition The service successfully initialized the target biometric sensor

Required Elements status

must be populated with the Status literal "success"

Optional Elements None

6.9.4.2 Failure 1498

Status Value failure

Condition The service experienced a fault that prevented successful initialization.

Required Elements status (Status, §3.12)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A failure status must only be used to report failures that occurred within the web service, not within the 1499

target biometric sensor (§6.9.4.5, §6.9.4.6) 1500

6.9.4.3 Invalid Id 1501

Status Value invalidId

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 63 of 120

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.12)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1502

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1503

inactivity (§6.4.4.1). 1504

See §6.1.2 for general information on how services must handle parameter failures. 1505

6.9.4.4 Canceled 1506

Status Value canceled

Condition The initialization operation was interrupted by a cancellation request.

Required Elements status (Status, §3.12)

the literal “canceled”

Optional Elements None

See §6.16.2.2 for information about what may trigger a cancellation. 1507

6.9.4.5 Canceled with Sensor Failure 1508

Status Value canceledWithSensorFailure

Condition The initialization operation was interrupted by a cancellation request
and the target biometric sensor experienced a failure

Required Elements status (Status, §3.12)

the literal “canceledWithSensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must return a canceledWithSensorFailure result if a cancellation request caused a failure within 1509

the target biometric sensor. Clients receiving this result may need to reattempt the initialization request to 1510

restore full functionality. See §6.16.2.2 for information about what may trigger a cancellation. 1511

6.9.4.6 Sensor Failure 1512

Status Value sensorFailure

Condition The initialization failed due to a failure within the target biometric sensor

Required Elements status (Status, §3.12)

the literal “sensorFailure”

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 64 of 120

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A sensorFailure status must only be used to report failures that occurred within the target biometric 1513

sensor, not a failure within the web service (§6.9.4.2). 1514

6.9.4.7 Lock Not Held 1515

Status Value lockNotHeld

Condition Initialization could not be performed because the requesting client does
not hold the lock

Required Elements status (Status, §3.12)

the literal “lockNotHeld”

Optional Elements None

Sensor operations require that the requesting client holds the service lock. 1516

6.9.4.8 Lock Held by Another 1517

Status Value lockHeldByAnother

Condition Initialization could not be performed because the lock is held by another
client.

Required Elements status (Status, §3.12)

the literal “lockHeldByAnother”

Optional Elements None

6.9.4.9 Sensor Busy 1518

Status Value sensorBusy

Condition Initialization could not be performed because the service is already
performing a different sensor operation for the requesting client.

Required Elements status (Status, §3.12)

the literal “sensorBusy”

Optional Elements None

6.9.4.10 Sensor Timeout 1519

Status Value sensorTimeout

Condition Initialization could not be performed because the target biometric
sensor took too long to complete the initialization request.

Required Elements status (Status, §3.12)

the literal “sensorTimeout”

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 65 of 120

Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is 1520

distinct from the client’s originating HTTP request, which may have its own, independent timeout. (See 1521

A.2 for information on how a client might determine timeouts.) 1522

6.9.4.11 Bad Value 1523

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.12)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §6.1.2 for general information on how services must handle parameter failures. 1524

6.10 Get Configuration 1525

Description Retrieve metadata about the target biometric sensor’s current
configuration

URL Template /configure/{sessionId}

HTTP Method GET

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session requesting the configuration

Input Payload None

Idempotent Yes

Sensor Operation Yes

6.10.1 Result Summary 1526

success status="success"

metadata=current configuration of the sensor (Dictionary, §3.3)

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 66 of 120

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

initializationNeeded status="initializationNeeded"

configurationNeeded status="configurationNeeded"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

6.10.2 Usage Notes 1527

The get configuration operation retrieves the service’s current configuration. 1528

EXAMPLE: The following represents a ‘raw’ request to retrieve the current configuration information of 1529

the service. 1530

GET http://10.0.0.8:8000/Service/configure/d745cd19-facd-4f91-8774-aac5ca9766a2 HTTP/1.1 1531
Content-Type: application/xml 1532
Host: 10.0.0.8:8000 1533

EXAMPLE: The following is the ‘raw’ response from the previous request. The metadata element in the 1534

result contains a Dictionary (§3.3) of parameter names and their respective values. 1535

HTTP/1.1 200 OK 1536
Content-Length: 554 1537
Content-Type: application/xml; charset=utf-8 1538
Server: Microsoft-HTTPAPI/2.0 1539
Date: Tue, 03 Jan 2012 14:57:29 GMT 1540
 1541
<result xmlns="http://docs.oasis-open.org/biometrics/ns/ws-bd-1.0" 1542
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> 1543
 <status>success</status> 1544
 <metadata> 1545
 <item> 1546
 <key>width</key> 1547
 <value i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">800</value> 1548
 </item> 1549
 <item> 1550
 <key>height</key> 1551
 <value i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">600</value> 1552
 </item> 1553
 <item> 1554
 <key>frameRate</key> 1555
 <value i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">15</value> 1556
 </item> 1557
 </metadata> 1558
</result> 1559

6.10.3 Unique Knowledge 1560

As specified, the get configuration can be used to obtain knowledge about unique characteristics of a 1561
service. Through get configuration, a service may expose implementation and/or service-specific 1562
configuration parameter names and values that are not explicitly described in this document. 1563

6.10.4 Return Values Detail 1564

The get configuration operation must return a Result according to the following constraints. 1565

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 67 of 120

6.10.4.1 Success 1566

Status Value success

Condition The service provides the current configuration

Required Elements status (Status, §3.12)

the literal “success”

metadata (Dictionary, §3.3)

the target biometric sensor’s current configuration

Optional Elements None

See §4.2 for information regarding configurations. 1567

6.10.4.2 Failure 1568

Status Value failure

Condition The service cannot provide the current configuration due to service (not
target biometric sensor) error.

Required Elements status (Status, §3.12)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must only use this status to report failures that occur within the web service, not the target 1569

biometric sensor (see §6.10.4.5, §6.10.4.6). 1570

6.10.4.3 Invalid Id 1571

Status Value invalidId

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.12)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1572

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1573

inactivity (§6.4.4.1). 1574

See §6.1.2 for general information on how services must handle parameter failures. 1575

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 68 of 120

6.10.4.4 Canceled 1576

Status Value canceled

Condition The get configuration operation was interrupted by a cancellation
request.

Required Elements status (Status, §3.12)

the literal “canceled”

Optional Elements None

See §6.16.2.2 for information about what may trigger a cancellation. 1577

6.10.4.5 Canceled with Sensor Failure 1578

Status Value canceledWithSensorFailure

Condition The get configuration operation was interrupted by a cancellation
request during which the target biometric sensor experienced a failure

Required Elements status (Status, §3.12)

the literal “canceledWithSensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must return a canceledWithSensorFailure result if a cancellation request caused a failure within 1579

the target biometric sensor. Clients receiving this result may need to perform initialization to restore full 1580

functionality. See §6.16.2.2 for information about what may trigger a cancellation. 1581

6.10.4.6 Sensor Failure 1582

Status Value sensorFailure

Condition The configuration could not be queried due to a failure within the target
biometric sensor.

Required Elements status (Status, §3.12)

the literal “sensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A sensorFailure status must only be used to report failures that occurred within the target biometric 1583

sensor, not a failure within the web service (§6.9.4.2). 1584

6.10.4.7 Lock Not Held 1585

Status Value lockNotHeld

Condition The configuration could not be queried because the requesting client
does not hold the lock.

Required Elements status (Status, §3.12)

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 69 of 120

the literal “lockNotHeld”

Optional Elements None

Sensor operations require that the requesting client holds the service lock. 1586

6.10.4.8 Lock Held by Another 1587

Status Value lockHeldByAnother

Condition The configuration could not be queried because the lock is held by
another client.

Required Elements status (Status, §3.12)

the literal “lockHeldByAnother”

Optional Elements None

6.10.4.9 Initialization Needed 1588

Status Value initializationNeeded

Condition The configuration could not be queried because the target biometric
sensor has not been initialized.

Required Elements status (Status, §3.12)

the literal “initializationNeeded”

Optional Elements None

Services should be able to provide the sensors configuration without initialization; however, this is not 1589

strictly necessary. Regardless, robust clients should assume that configuration will require initialization. 1590

6.10.4.10 Configuration Needed 1591

Status Value configurationNeeded

Condition The configuration could not be queried because the target biometric
sensor has not been initialized.

Required Elements status (Status, §3.12)

the literal “configurationNeeded”

Optional Elements None

Services may require configuration to be set before a configuration can be retrieved if a service does not 1592

provide a valid default configuration. 1593

6.10.4.11 Sensor Busy 1594

Status Value sensorBusy

Condition The configuration could not be queried because the service is already
performing a different sensor operation for the requesting client.

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 70 of 120

Required Elements status (Status, §3.12)

the literal “sensorBusy”

Optional Elements None

6.10.4.12 Sensor Timeout 1595

Status Value sensorTimeout

Condition The configuration could not be queried because the target biometric
sensor took too long to complete the request.

Required Elements status (Status, §3.12)

the literal “sensorTimeout”

Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is 1596

distinct from the client’s originating HTTP request, which may have its own, independent timeout. (See 1597

A.2 for information on how a client might determine timeouts.) 1598

6.10.4.13 Bad Value 1599

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.12)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §6.1.2 for general information on how services must handle parameter failures. 1600

6.11 Set Configuration 1601

Description Set the target biometric sensor’s configuration

URL Template /configure/{sessionId}

HTTP Method POST

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session setting the configuration

Input Payload Desired sensor configuration (Dictionary, §3.3)

Idempotent Yes

Sensor Operation Yes

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 71 of 120

6.11.1 Result Summary 1602

success status="success"

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

initializationNeeded status="initializationNeeded"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

unsupported status="unsupported"

badFields={field names} (StringArray, §3.7)

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

 (or)

status="badValue"

badFields={field names} (StringArray, §3.7)

noSuchParameter status="unsupported"

badFields={field names} (StringArray, §3.7)

6.11.2 Usage Notes 1603

The set configuration operation sets the configuration of a service’s target biometric sensor. 1604

6.11.2.1 Input Payload Information 1605

The set configuration operation is the only operation that takes input within the body of the HTTP request. 1606

The desired configuration must be sent as a single Dictionary (§3.3) element named configuration. See 1607

§4.2 for information regarding configurations. See Appendix A for a complete XML Schema for this 1608

specification. The root element of the configuration data must conform to the following XML definition: 1609

<xs:element name="configuration" type="wsbd:Dictionary" nillable="true"/> 1610

EXAMPLE: The following represents a ‘raw’ request to configure a service at 1611
http://10.0.0.8:8000/Sensor such that width=800, height=600, and frameRate=15. (In this example, 1612

each value element contains fully qualified namespace information, although this is not necessary.) 1613

POST http://10.0.0.8:8000/Service/configure/d745cd19-facd-4f91-8774-aac5ca9766a2 HTTP/1.1 1614
Content-Type: application/xml 1615
Host: 10.0.0.8:8000 1616
Content-Length: 459 1617
Expect: 100-continue 1618

http://10.0.0.8:8000/Sensor

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 72 of 120

 1619
<configuration xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://docs.oasis-1620
open.org/biometrics/ns/ws-bd-1.0"> 1621
 <item> 1622
 <key>width</key> 1623
 <value xmlns:d3p1="http://www.w3.org/2001/XMLSchema" i:type="d3p1:int">800</value> 1624
 </item> 1625
 <item> 1626
 <key>height</key> 1627
 <value xmlns:d3p1="http://www.w3.org/2001/XMLSchema" i:type="d3p1:int">600</value> 1628
 </item> 1629
 <item> 1630
 <key>frameRate</key> 1631
 <value xmlns:d3p1="http://www.w3.org/2001/XMLSchema" i:type="d3p1:int">15</value> 1632
 </item> 1633
</configuration> 1634

More information regarding the use of the xmlns attribute can be found in [XMLNS]. 1635

6.11.3 Unique Knowledge 1636

The set configuration can be used to provide knowledge about unique characteristics to a service. 1637
Through set configuration, a client may provide implementation and/or service-specific parameter names 1638
and values that are not defined in this specification (see Appendix A for further information on 1639
parameters). 1640

6.11.4 Return Values Detail 1641

The set configuration operation must return a Result according to the following constraints. 1642

6.11.4.1 Success 1643

Status Value success

Condition The service was able to successfully set the full configuration

Required Elements status (Status, §3.12)

the literal “success”

Optional Elements None

6.11.4.2 Failure 1644

Status Value failure

Condition The service cannot set the desired configuration due to service (not
target biometric sensor) error.

Required Elements status (Status, §3.12)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must only use this status to report failures that occur within the web service, not the target 1645

biometric sensor (see §6.11.4.5, §6.11.4.6). 1646

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 73 of 120

6.11.4.3 Invalid Id 1647

Status Value invalidId

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.12)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1648

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1649

inactivity (§6.4.4.1). 1650

6.11.4.4 Canceled 1651

Status Value canceled

Condition The set configuration operation was interrupted by a cancellation
request.

Required Elements status (Status, §3.12)

the literal “canceled”

Optional Elements None

See §6.16.2.2 for information about what may trigger a cancellation. 1652

6.11.4.5 Canceled with Sensor Failure 1653

Status Value canceledWithSensorFailure

Condition The set configuration operation was interrupted by a cancellation
request during which the target biometric sensor experienced a failure

Required Elements status (Status, §3.12)

the literal “canceledWithSensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must return a canceledWithSensorFailure result if a cancellation request caused a failure within 1654

the target biometric sensor. Clients receiving this result may need to perform initialization to restore full 1655

functionality. See §6.16.2.2 for information about what may trigger a cancellation. 1656

6.11.4.6 Sensor Failure 1657

Status Value sensorFailure

Condition The configuration could not be set due to a failure within the target

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 74 of 120

biometric sensor.

Required Elements status (Status, §3.12)

the literal “sensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A sensorFailure status must only be used to report failures that occurred within the target biometric 1658

sensor, not a failure within the web service (§6.11.4.2). Errors with the configuration itself should be 1659

reported via an unsupported (§6.11.4.12), badValue (§6.11.4.13), or badValue status (§6.11.4.14). 1660

6.11.4.7 Lock Not Held 1661

Status Value lockNotHeld

Condition The configuration could not be queried because the requesting client
does not hold the lock.

Required Elements status (Status, §3.12)

the literal “lockNotHeld”

Optional Elements None

Sensor operations require that the requesting client holds the service lock. 1662

6.11.4.8 Lock Held by Another 1663

Status Value lockHeldByAnother

Condition The configuration could not be set because the lock is held by another
client.

Required Elements status (Status, §3.12)

the literal “lockHeldByAnother”

Optional Elements None

6.11.4.9 Initialization Needed 1664

Status Value initializationNeeded

Condition The configuration could not be set because the target biometric sensor
has not been initialized.

Required Elements status (Status, §3.12)

the literal “initializationNeeded”

Optional Elements None

Services should be able to set the configuration without initialization; however, this is not strictly 1665

necessary. Similarly, clients should assume that setting configuration will require initialization. 1666

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 75 of 120

6.11.4.10 Sensor Busy 1667

Status Value sensorBusy

Condition The configuration could not be set because the service is already
performing a different sensor operation for the requesting client.

Required Elements status (Status, §3.12)

the literal “sensorBusy”

Optional Elements None

6.11.4.11 Sensor Timeout 1668

Status Value sensorTimeout

Condition The configuration could not be set because the target biometric sensor
took too long to complete the request.

Required Elements status (Status, §3.12)

the literal “sensorTimeout”

Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is 1669

distinct from the client’s originating HTTP request, which may have its own, independent timeout. (See 1670

A.2 for information on how a client might determine timeouts.) 1671

6.11.4.12 Unsupported 1672

Status Value unsupported

Condition The requested configuration contains one or more values that are
syntactically and semantically valid, but not supported by the service.

Required Elements status (Status, §3.12)

the literal “unsupported”

badFields (StringArray, §3.7)

an array that contains the field name(s) that corresponding to
the unsupported value(s)

Optional Elements None

Returning multiple fields allows a service to indicate that a particular combination of parameters is not 1673

supported by a service. See §6.1.2 for additional information on how services must handle parameter 1674

failures. 1675

EXAMPLE: A WS-BD service utilizes a very basic off-the-shelf web camera with limited capabilities. This 1676

camera has three parameters that are all dependent on each other: ImageHeight, ImageWidth, and 1677

FrameRate. The respective allowed values for each parameter might look like: {240, 480, 600, 768}, 1678

{320, 640, 800, 1024}, and {5, 10, 15, 20, 30}. Configuring the sensor will return unsupported when 1679

the client tries to set ImageHeight=768, ImageWidth=1024, and FrameRate=30; this camera might not support 1680

capturing images of a higher resolution at a fast frame rate. Another example is configuring the sensor to 1681

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 76 of 120

use ImageHeight=240 and ImageWidth=1024; as this is a very basic web camera, it might not support 1682

capturing images at this resolution. In both cases, the values provided for each parameter are individually 1683

valid but the overall validity is dependent on the combination of parameters 1684

6.11.4.13 Bad Value 1685

Status Value badValue

Condition Either:

(a) The provided session id is not a well-formed UUID, or,

(b) The requested configuration contains a parameter value that is
either syntactically (e.g., an inappropriate data type) or
semantically (e.g., a value outside of an acceptable range)
invalid.

Required Elements status (Status, §3.12)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains either

(a) the single field name, “sessionId”, or

(b) the field name(s) that contain invalid value(s)

Optional Elements None

Notice that for the set configuration operation, an invalid URL parameter or one or more invalid input 1686

payload parameters can trigger a badValue status. 1687

See §6.1.2 for general information on how services must handle parameter failures. 1688

6.11.4.14 No Such Parameter 1689

Status Value noSuchParameter

Condition The requested configuration contains a parameter name that is not
recognized by the service.

Required Elements status (Status, §3.12)

the literal “noSuchParameter”

badFields (StringArray, §3.7)

an array that contains the field name(s) that are not recognized
by the service

Optional Elements None

See §6.1.2 for general information on how services must handle parameter failures. 1690

6.12 Capture 1691

Description Capture biometric data

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 77 of 120

URL Template /capture/{sessionId}

HTTP Method POST

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session requesting the capture

Input Payload None

Idempotent No

Sensor Operation Yes

6.12.1 Result Summary 1692

success status="success"

captureIds={identifiers of captured data} (UuidArray, §3.8)

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

initializationNeeded status="initializationNeeded"

configurationNeeded status="configurationNeeded"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

6.12.2 Usage Notes 1693

The capture operation triggers biometric acquisition. On success, the operation returns one or more 1694

identifiers, or capture ids. Naturally, the capture operation is not idempotent. Each capture operation 1695

returns unique identifiers—each execution returning references that are particular to that capture. Clients then 1696

can retrieve the captured data itself by passing a capture id as a URL parameter to the download 1697

operation. 1698

Multiple capture ids are supported to accommodate sensors that return collections of biometric data. For 1699

example, a multi-sensor array might save an image per sensor. A mixed-modality sensor might assign a 1700

different capture id for each modality. 1701

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 78 of 120

IMPORTANT NOTE: The capture operation may include some post-acquisition processing. Although 1702
post-acquisition processing is directly tied to the capture operation, its effects are primarily on data 1703
transfer, and is therefore discussed in detail within the download operation documentation (§6.13.2.2) 1704

6.12.2.1 Providing Timing Information 1705

Depending on the sensor, a capture operation may take anywhere from milliseconds to tens of seconds 1706

to execute. (It is possible to have even longer running capture operations than this, but special 1707

accommodations may need to be made on the server and client side to compensate for typical HTTP 1708

timeouts.) By design, there is no explicit mechanism for a client to determine how long a capture 1709

operation will take. However, services can provide “hints” through capture timeout information (A.2.4), 1710

and clients can automatically adjust their own timeouts and behavior accordingly. 1711

6.12.3 Unique Knowledge 1712

As specified, the capture operation cannot be used to provide or obtain knowledge about unique 1713
characteristics of a client or service. 1714

6.12.4 Return Values Detail 1715

The capture operation must return a Result according to the following constraints. 1716

6.12.4.1 Success 1717

Status Value success

Condition The service successfully performed a biometric acquisition

Required Elements status (Status, §3.12)

the literal “success”

captureIds (UuidArray, §3.8)

one more UUIDs that uniquely identify the data acquired by the
operation

Optional Elements None

See the usage notes for capture (§6.12.2) and download (§6.13.2) for full detail. 1718

6.12.4.2 Failure 1719

Status Value failure

Condition The service cannot perform the capture due to a service (not target
biometric sensor) error.

Required Elements status (Status, §3.12)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must only use this status to report failures that occur within the web service, not the target 1720

biometric sensor (see §6.12.4.5, §6.12.4.6). A service may fail at capture if there is not enough internal 1721

storage available to accommodate the captured data (§A.3). 1722

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 79 of 120

6.12.4.3 Invalid Id 1723

Status Value invalidId

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.12)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1724

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1725

inactivity (§6.4.4.1). 1726

See §6.1.2 for general information on how services must handle parameter failures. 1727

6.12.4.4 Canceled 1728

Status Value canceled

Condition The capture operation was interrupted by a cancellation request.

Required Elements status (Status, §3.12)

the literal “canceled”

Optional Elements None

See §6.16.2.2 for information about what may trigger a cancellation. 1729

6.12.4.5 Canceled with Sensor Failure 1730

Status Value canceledWithSensorFailure

Condition The capture operation was interrupted by a cancellation request during
which the target biometric sensor experienced a failure

Required Elements status (Status, §3.12)

the literal “canceledWithSensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must return a canceledWithSensorFailure result if a cancellation request caused a failure within 1731

the target biometric sensor. Clients receiving this result may need to perform initialization to restore full 1732

functionality. See §6.16.2.2 for information about what may trigger a cancellation. 1733

6.12.4.6 Sensor Failure 1734

Status Value sensorFailure

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 80 of 120

Condition The service could perform the capture due to a failure within the target
biometric sensor.

Required Elements status (Status, §3.12)

the literal “sensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A sensorFailure status must only be used to report failures that occurred within the target biometric 1735

sensor, not a failure within the web service (§6.12.4.2). 1736

6.12.4.7 Lock Not Held 1737

Status Value lockNotHeld

Condition The service could not perform a capture because the requesting client
does not hold the lock.

Required Elements status (Status, §3.12)

the literal “lockNotHeld”

Optional Elements None

Sensor operations require that the requesting client holds the service lock. 1738

6.12.4.8 Lock Held by Another 1739

Status Value lockHeldByAnother

Condition The service could not perform a capture because the lock is held by
another client.

Required Elements status (Status, §3.12)

the literal “lockHeldByAnother”

Optional Elements None

6.12.4.9 Initialization Needed 1740

Status Value
initializationNeeded

Condition The service could not perform a capture because the target biometric
sensor has not been initialized.

Required Elements status (Status, §3.12)

the literal “initializationNeeded”

Optional Elements None

Services should be able perform capture without explicit initialization. However, the specification 1741

recognizes that this is not always possible, particularly for physically separated implementations. 1742

Regardless, for robustness, clients should assume that setting configuration will require initialization. 1743

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 81 of 120

6.12.4.10 Configuration Needed 1744

Status Value
configurationNeeded

Condition The capture could not be set because the target biometric sensor has
not been configured.

Required Elements status (Status, §3.12)

the literal “configurationNeeded”

Optional Elements None

A service should offer a default configuration to allow capture to be performed without an explicit 1745

configuration. Regardless, for robustness, clients should assume that capture requires configuration. 1746

6.12.4.11 Sensor Busy 1747

Status Value sensorBusy

Condition The service could not perform a capture because the service is already
performing a different sensor operation for the requesting client.

Required Elements status (Status, §3.12)

the literal “sensorBusy”

Optional Elements None

6.12.4.12 Sensor Timeout 1748

Status Value sensorTimeout

Condition The service could not perform a capture because the target biometric
sensor took too long to complete the request.

Required Elements status (Status, §3.12)

the literal “sensorTimeout”

Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is 1749

distinct from the client’s originating HTTP request, which may have its own, independent timeout. (See 1750

§A.2 for information on how a client might determine timeouts.) 1751

6.12.4.13 Bad Value 1752

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.12)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 82 of 120

Optional Elements None

See §6.1.2 for general information on how services must handle parameter failures. 1753

6.13 Download 1754

Description Download the captured biometric data

URL Template /download/{captureId}

HTTP Method GET

URL Parameters {captureId} (UUID, §3.2)

Identity of the captured data to download

Input Payload None

Idempotent Yes

Sensor Operation No

6.13.1 Result Summary 1755

success status="success"

metadata=sensor configuration at the time of capture (Dictionary, §3.3)
sensorData=biometric data (xs:base64Binary)

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"captureId"} (StringArray, §3.7)

badValue status="badValue"

badFields={"captureId"} (StringArray, §3.7)

preparingDownload status="preparingDownload"

6.13.2 Usage Notes 1756

The download operation allows a client to retrieve biometric data acquired during a particular capture. 1757

6.13.2.1 Capture and Download as Separate Operations 1758

WS-BD decouples the acquisition operation (capture) from the data transfer (download) operation. This 1759

has two key benefits. First, it is a better fit for services that have post-acquisition processes. Second, it 1760

allows multiple clients to download the captured biometric data by exploiting the concurrent nature of 1761

HTTP. By making download a simple data transfer operation, service can handle multiple, concurrent 1762

downloads without requiring locking. 1763

6.13.2.2 Services with Post-Acquisition Processing 1764

A service does not need to make the captured data available immediately after capture; a service may 1765

have distinct acquisition and post-acquisition processes. The following are two examples of such 1766

services: 1767

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 83 of 120

EXAMPLE: A service exposing a fingerprint scanner also performs post processing on a 1768

fingerprint image—segmentation, quality assessment, and templatization. 1769

 1770

EXAMPLE: A service exposes a digital camera in which the captured image is not immediately 1771

available after a photo is taken; the image may need to be downloaded from to the camera’s 1772

internal storage or from the camera to the host computer (in a physically separated 1773

implementation). If the digital camera was unavailable for an operation due to a data transfer, a 1774

client requesting a sensor operation would receive a sensorBusy status. 1775

The first method is to perform the post-processing within the capture operation itself. I.e., capture not only 1776
blocks for the acquisition to be performed, but also blocks for the post-processing—returning when the 1777
post-processing is complete. This type of capture is the easier of the two to both (a) implement on the 1778
client, and (b) use by a client. 1779

EXAMPLE: Figure 9 illustrates an example of a capture operation that includes post-processing. 1780

Once the post-processing is complete, capture ids are returned to the client. 1781

Client Service

1:capture

sessionId={A1234567...}

The client sends a capture request to the service.

Acquisition Within the capture operation, the service performs both the acquisition and any
post-processing.

Post-processing

2:capture

captureId={C1D10123...}

After post-processing, the service provides a capture id to the requesting client.

3:download

captureId={C1D10123...}

4:download

(biometric data)

The requesting client uses the capture ids to download the biometric data.

 1782

Figure 9. Including post-processing in the capture operation means downloads 1783
are immediately available when capture completes. Unless specified, the status 1784
of all returned operations is success. 1785

In the second method, post-processing may be performed by the web service after the capture operation 1786
returns. Capture ids are still returned to the client, but are in an intermediate state. This exposes a 1787
window of time in which the capture is complete, but the biometric data is not yet ready for retrieval or 1788
download. Data-related operations (download, get download info, and thrifty download) performed within 1789
this window return a preparingDownload status to clients to indicate that the captured data is currently in 1790

an intermediate state—captured, but not yet ready for retrieval. 1791

EXAMPLE: Figure 10 illustrates an example of a capture operation with separate post-1792
processing. Returning to the example of the fingerprint scanner that transforms a raw biometric 1793
sample into a template after acquisition, assume that the service performs templatization after 1794
capture returns. During post-processing, requests for the captured data return 1795
preparingDownload, but the sensor itself is available for another capture operation. 1796

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 84 of 120

Client Service

1:capture

sessionId={A1234567...}

The client sends a capture request to the service.

Acquisition 1 Within the capture operation, the service performs both the acquisition and any
post-processing.

2:capture

captureId={12345...}

After acquisition, the service provides a capture id to the requesting client.

beginbegin

Post-processing capture {12345...}
In the background, the service starts post-processing.

3:download

captureId={12345...}

Once a capture id is available, the client can make a request to download.

4:download

status=preparingDownload

However, since the post-processing is not yet complete, the service returns
"preparingDownload" since the requested capture result is not yet ready.

5:capture

sessionId={A1234567...}

The service does not use the sensor during the post-processing step. The
client can successfully perform another capture.

Acquisition 2

6:capture

captureId={ABCDE...}

endend

Post-processing capture {12345...}

7:download

captureId={12345...}

8:download

(biometric data)

Now that the post-processing for captureId={12345...} is finished, the client can
download the biometric data.

 1797

Figure 10. Example of capture with separate post-acquisition processing that 1798
does involve the target biometric sensor. Because the post-acquisition 1799
processing does not involve the target biometric sensor, it is available for sensor 1800
operations. Unless specified, the status of all returned operations is success. 1801

Services with an independent post-processing step should perform the post-processing on an 1802
independent unit of execution (e.g., a separate thread, or process). However, post-processing may 1803

include a sensor operation, which would interfere with incoming sensor requests. 1804

EXAMPLE: Figure 11 illustrates another variation on a capture operation with separate post-1805
processing. Return to the digital camera example, but assume that it is a physically separate 1806
implementation and capture operation returns immediately after acquisition. The service also has 1807
a post-acquisition process that downloads the image data from the camera to a computer. Like 1808
the previous example, during post-processing, requests for the captured data return 1809
preparingDownload. However, the sensor is not available for additional operations because the 1810
post-processing step requires complete control over the camera to transfer the images to the host 1811
machine: preparing them for download. 1812

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 85 of 120

Client Service

1:capture

sessionId={A1234567...}

The client sends a capture request to the service.

Acquisition 1 Within the capture operation, the service performs both the acquisition and any
post-processing.

2:capture

captureId={12345...}

After acquisition, the service provides a capture id to the requesting client.

beginbegin

Post-processing capture {12345...}
In the background, the service starts post-processing.

3:download

captureId={12345...}

Once a capture id is available, the client can make a request to download.

4:download

status=preparingDownload

However, since the post-processing is not yet complete, the service returns
"preparingDownload" since the requested capture result is not yet ready.

5:capture

sessionId={A1234567...}

The service uses the sensor during the post-processing step. No client can
successfully perform another sensor operation.

Acquisition 2

6:capture

status=sensorBusy

endend

Post-processing capture {12345...}

7:download

captureId={12345...}

8:download

(biometric data)

Now that the post-processing for captureId={12345...} is finished, the client can
download the biometric data.

9:capture

sessionId={A1234567...}

Futhermore, clients can again perform successful capture.

Acquisition 3

10:capture

captureId={ABCDE...}

 1813

Figure 11. Example of capture with separate post-acquisition processing that 1814
does involve the target biometric sensor. Because the post-acquisition 1815
processing does not involve the target biometric sensor, it is available for sensor 1816
operations. Unless specified, the status of all returned operations is success. 1817

Unless there is an advantage to doing so, when post-acquisition processing includes a sensor operation, 1818
implementers should avoid having a capture operation that returns directly after acquisition. In this case, 1819
even when the capture operation finishes, clients cannot perform a sensor operation until the post-1820
acquisition processing is complete. 1821

In general, implementers should try to combine both the acquisition and post-acquisition processing into 1822
one capture operation—particularly if the delay due to post-acquisition processing is either operationally acceptable or a 1823
relatively insignificant contributor to the combined time. 1824

A download operation must return failure if the post-acquisition processing cannot be completed 1825
successfully. Such failures cannot be reflected in the originating capture operation —that operation has already returned 1826
successfully with capture ids. Services must eventually resolve all preparingDownload statuses to success or failure. 1827

Through get service info, a service can provide information to a client on how long to wait after capture 1828

until a preparingDownload is fully resolved. 1829

6.13.2.3 Client Notification 1830

A client that receives a preparingDownload must poll the service until the requested data becomes 1831
available. However, through get service info, a service can provide “hints” to a client on how long to wait 1832
after capture until data can be downloaded (§A.2.5) 1833

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 86 of 120

6.13.3 Unique Knowledge 1834

The download operation can be used to provide metadata, which may be unique to the service, through 1835
the metadata element. See §4 for information regarding metadata. 1836

6.13.4 Return Values Detail 1837

The download operation must return a Result according to the following constraints. 1838

6.13.4.1 Success 1839

Status Value success

Condition The service can provide the requested data

Required Elements status (Status, §3.12)

the literal “success”

metadata (Dictionary, §3.3)

sensor metadata as it was at the time of capture

sensorData (xs:base64Binary, [XSDPart2])

the biometric data corresponding to the requested capture id,
base-64 encoded

Optional Elements None

A successful download must populate the Result with all of the following information: 1840

1. The status element must be populated with the Status literal “success”. 1841

2. The metadata element must be populated with metadata of the biometric data and the 1842

configuration held by the target biometric sensor at the time of capture. 1843

3. The sensorData element must contain the biometric data, base-64 encoded (xs:base64Binary), 1844

corresponding to the requested capture id. 1845

See the usage notes for both capture (§6.12.2) and download (§6.13.2) for more detail regarding the 1846

conditions under which a service is permitted to accept or deny download requests. 1847

6.13.4.2 Failure 1848

Status Value failure

Condition The service cannot provide the requested data.

Required Elements status (Status, §3.12)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A service might not be able to provide the requested data due to failure in post-acquisition processing, a 1849

corrupted data store or other service or storage related failure. 1850

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 87 of 120

6.13.4.3 Invalid Id 1851

Status Value invalidId

Condition The provided capture id is not recognized by the service.

Required Elements status (Status, §3.12)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “captureId”

Optional Elements None

A capture id is invalid if it was not returned by a capture operation. A capture id may become 1852

unrecognized by the service automatically if the service automatically clears storage space to 1853

accommodate new captures (§A.3). 1854

See §6.1.2 for general information on how services must handle parameter failures. 1855

6.13.4.4 Bad Value 1856

Status Value badValue

Condition The provided capture id is not a well-formed UUID.

Required Elements status (Status, §3.12)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “captureId”

Optional Elements None

See §6.1.2 for general information on how services must handle parameter failures. 1857

6.13.4.5 Preparing Download 1858

Status Value preparingDownload

Condition The requested data cannot be provided because the service is currently
performing a post-acquisition process—i.e., preparing it for download

Required Elements status (Status, §3.12)

the literal “preparingDownload”

Optional Elements None

See the usage notes for both capture (§6.12.2) and download (§6.13.2) for full detail. 1859

 1860

6.14 Get Download Info 1861

Description Get only the metadata associated with a particular capture

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 88 of 120

URL Template /download/{captureId}/info

HTTP Method GET

URL Parameters {captureId} (UUID, §3.2)

Identity of the captured data to query

Input Payload Not applicable

Idempotent Yes

Sensor Operation No

6.14.1 Result Summary 1862

success status="success"

metadata=sensor configuration at the time of capture

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"captureId"} (StringArray, §3.7)

badValue status="badValue"

badFields={"captureId"} (StringArray, §3.7)

preparingDownload status="preparingDownload"

6.14.2 Usage Notes 1863

Given the potential large size of some biometric data the get download info operation provides clients with 1864

a way to get information about the biometric data without needing to transfer the biometric data itself. It is 1865

logically equivalent to the download operation, but without any sensor data. Therefore, unless detailed 1866

otherwise, the usage notes for download (§6.14.2) also apply to get download info. 1867

6.14.3 Unique Knowledge 1868

The get download info operation can be used to provide metadata, which may be unique to the service, 1869

through the metadata element. See §4 for information regarding metadata. 1870

6.14.4 Return Values Detail 1871

The get download info operation must return a Result according to the following constraints. 1872

6.14.4.1 Success 1873

Status Value success

Condition The service can provide the requested data

Required Elements status (Status, §3.12)

the literal “success”

metadata (Dictionary, §3.3)

the sensor’s configuration as it was set at the time of capture

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 89 of 120

Optional Elements None

A successful get download info operation returns all of the same information as a successful download 1874

operation (§6.13.4.1), but without the sensor data. 1875

6.14.4.2 Failure 1876

Status Value failure

Condition The service cannot provide the requested data.

Required Elements status (Status, §3.12)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A service might not be able to provide the requested data due to failure in post-acquisition processing, a 1877

corrupted data store or other service or storage related failure. 1878

6.14.4.3 Invalid Id 1879

Status Value invalidId

Condition The provided capture id is not recognized by the service.

Required Elements status (Status, §3.12)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “captureId”

Optional Elements None

A capture id is invalid if it was not returned by a capture operation. A capture id may become 1880

unrecognized by the service automatically if the service automatically clears storage space to 1881

accommodate new captures (§A.3). 1882

See §6.1.2 for general information on how services must handle parameter failures. 1883

6.14.4.4 Bad Value 1884

Status Value badValue

Condition The provided capture id is not a well-formed UUID.

Required Elements status (Status, §3.12)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “captureId”

Optional Elements None

See §6.1.2 for general information on how services must handle parameter failures. 1885

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 90 of 120

6.14.4.5 Preparing Download 1886

Status Value preparingDownload

Condition The requested data cannot be provided because the service is currently
performing a post-acquisition process—i.e., preparing it for download

Required Elements status (Status, §3.12)

the literal “preparingDownload”

Optional Elements None

See the usage notes for both capture (§6.12.2) and download (§6.13.2) for full detail. 1887

6.15 Thrifty Download 1888

Description Download a compact representation of the captured biometric data
suitable for preview

URL Template /download/{captureId}/{maxSize}

HTTP Method GET

URL Parameters {captureId} (UUID, §3.2)

Identity of the captured data to download

{maxSize} (xs:string, [XSDPart2])

Content-type dependent indicator of maximum permitted download size

Input Payload None

Idempotent Yes

Sensor Operation No

6.15.1 Result Summary 1889

success status="success"

metadata=minimal metadata describing the captured data (Dictionary,
§3.3, §4.3.1)

sensorData=biometric data (xs:base64Binary)

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"captureId"} (StringArray, §3.7)

badValue status="badValue"

badFields=either "captureId", "maxSize", or both (StringArray, §3.7)

unsupported status="unsupported"

preparingDownload status="preparingDownload"

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 91 of 120

6.15.2 Usage Notes 1890

The thrifty download operation allows a client to retrieve a compact representation of the biometric data 1891

acquired during a particular capture. It is logically equivalent to the download operation, but provides a 1892

compact version of the sensor data. Therefore, unless detailed otherwise, the usage notes for download 1893

(§6.14.2) also apply to get download info. 1894

The suitability of the thrifty download data as a biometric is implementation-dependent. For some 1895

applications, the compact representation may be suitable for use within a biometric algorithm; for others, 1896

it may only serve the purpose of preview. 1897

For images, the maxSize parameter describes the maximum image width or height (in pixels) that the 1898
service may return; neither dimension shall exceed maxSize. It is expected that servers will dynamically 1899
scale the captured data to fulfill a client request. This is not strictly necessary, however, as long as the 1900
maximum size requirements are met. 1901

For non-images, the default behavior is to return unsupported. It is possible to use URL parameter 1902
maxSize as general purpose parameter with implementation-dependent semantics. (See the next section 1903

for details.) 1904

6.15.3 Unique Knowledge 1905

The thrifty download operation can be used to provide knowledge about unique characteristics to a 1906

service. Through thrifty download, a service may (a) redefine the semantics of maxSize or (b) provide a 1907

data in a format that does not conform to the explicit types defined in this specification (see Appendix B 1908

for content types). 1909

6.15.4 Return Values Detail 1910

The thrifty download operation must return a Result according to the following constraints. 1911

6.15.4.1 Success 1912

Status Value success

Condition The service can provide the requested data

Required Elements status (Status, §3.12)

the literal “success”

metadata (Dictionary, §3.3)

minimal representation of sensor metadata as it was at the time
of capture. See §4.3.1 for information regarding minimal

metadata.

sensorData (xs:base64Binary, [XSDPart2])

the biometric data corresponding to the requested capture id,
base-64 encoded, scaled appropriately to the maxSize

parameter.

Optional Elements None

For increased efficiency, a successful thrifty download operation only returns the sensor data, and a 1913

subset of associated metadata. The metadata returned should be information that is absolutely essential 1914

to open or decode the returned sensor data. 1915

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 92 of 120

6.15.4.2 Failure 1916

Status Value failure

Condition The service cannot provide the requested data.

Required Elements status (Status, §3.12)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A service might not be able to provide the requested data due to a corrupted data store or other service 1917

or storage related failure. 1918

6.15.4.3 Invalid Id 1919

Status Value invalidId

Condition The provided capture id is not recognized by the service.

Required Elements status (Status, §3.12)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “captureId”

Optional Elements None

A capture id is invalid if it does not correspond to a capture operation. A capture id may become 1920

unrecognized by the service automatically if the service automatically clears storage space to 1921

accommodate new captures (§A.3). 1922

See §6.1.2 for general information on how services must handle parameter failures. 1923

6.15.4.4 Bad Value 1924

Status Value badValue

Condition The provided capture id is not a well-formed UUID.

Required Elements status (Status, §3.12)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains one or both of the following fields:

- “captureId” if the provided session id is not well-formed

- “maxSize” if the provided maxSize parameter is not well-formed

Optional Elements None

See §6.1.2 for general information on how services must handle parameter failures. 1925

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 93 of 120

6.15.4.5 Unsupported 1926

Status Value unsupported

Condition The service does not support thrifty download,

Required Elements status (Status, §3.12)

the literal “unsupported”

Optional Elements None

Services that capture biometrics that are not image-based should return unsupported. 1927

6.15.4.6 Preparing Download 1928

Status Value preparingDownload

Condition The requested data cannot be provided because the service is currently
performing a post-acquisition process—i.e., preparing it for download

Required Elements status (Status, §3.12)

the literal “preparingDownload”

Optional Elements None

Like download, the availability of thrifty download data may also be affected by the sequencing of post-1929

acquisition processing. See §6.13.2.2 for detail. 1930

6.16 Cancel 1931

Description Cancel the current sensor operation

URL Template /cancel/{sessionId}

HTTP Method POST

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session requesting cancellation

Input Payload None

Idempotent Yes

Sensor Operation Yes

6.16.1 Result Summary 1932

success status="success"

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 94 of 120

badValue status="badValue"

badFields={"sessionId"}

6.16.2 Usage Notes 1933

The cancel operation stops any currently running sensor operation; it has no effect on non-sensor 1934
operations. If cancellation of an active sensor operation is successful, cancel operation receives a 1935
success result, while the canceled operation receives a canceled (or canceledWithSensorFailure) result. 1936
As long as the operation is canceled, the cancel operation itself receives a success result, regardless if 1937
cancellation caused a sensor failure. In other words, if cancellation caused a fault within the target 1938
biometric sensor, as long as the sensor operation has stopped running, the cancel operation is 1939

considered to be successful. 1940

Client Service

1:capture

sessionId={A1234567...}

The client initates a capture operation with the server.

2:cancel

sessionId={A1234567...}

The client, before the capture is complete, initiates a cancel operation.

3:capture

status=canceled

The server returns a 'canceled' status for the capture operation because the
client requested a cancellation.

4:cancel

status=success

The server returns a 'success' status for the cancel operation because the
previous capture operation was cancelled successfully.

 1941

Figure 12. Example sequence of events for a client initially requesting a capture followed by a cancellation request. 1942

All services must provide cancellation for all sensor operations. 1943

6.16.2.1 Canceling Non-Sensor Operations 1944

Clients are responsible for canceling all non-sensor operations via client-side mechanisms only. 1945
Cancellation of sensor operations requires a separate service operation, since a service may need to 1946
“manually” interrupt a busy sensor. A service that had its client terminate a non-sensor operation would 1947
have no way to easily determine that a cancellation was requested. 1948

Client Service

1:download

captureId={10FEDCBA...}

A client initiates a download of a particular capture.

2:cancel The user of the client decides to abort the download. Since a cancellation of a
non-sensor operation has no effect on the service, the client bypasses sending
the cancel operation to the service and handles the request internally.

3:HttpSocket.close() The client simply closes the connection to the service, terminating the data
transfer.

4:download The server gets a signal that the connection is lost and stops transmitting the
requested data.

5:cancel

 1949

Figure 13. Cancellations of non-sensor operations do not require a cancel 1950
operation to be requested to the service. An example of this is where a client 1951
initiates then cancels a download operation. 1952

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 95 of 120

6.16.2.2 Cancellation Triggers 1953

Typically, the client that originates the sensor operation to be cancelled also initiates the cancellation 1954
request. Because WSBD operations are performed synchronously, cancellations are typically initiated on 1955
a separate unit of execution such as an independent thread or process. 1956

Notice that the only requirement to perform cancellation is that the requesting client holds the service 1957
lock. It is not a requirement that the client that originates the sensor operation to be canceled also initiates 1958
the cancellation request. Therefore, it is possible that a client may cancel the sensor operation initiated by 1959
another client. This occurs if a peer client (a) manages to steal the service lock before the sensor 1960
operation is completed, or (b) is provided with the originating client’s session id. 1961

A service might also self-initiate cancellation. In normal operation, a service that does not receive a timely 1962
response from a target biometric sensor would return sensorTimeout. However, if the service’s internal 1963
timeout mechanism fails, a service may initiate a cancel operation itself. Implementers should use this as 1964

a “last resort” compensating action. 1965

In summary, clients should be designed to not expect to be able to match a cancelation notification to any 1966

specific request or operation. 1967

6.16.3 Unique Knowledge 1968

As specified, the cancel operation cannot be used to provide or obtain knowledge about unique 1969
characteristics of a client or service. 1970

6.16.4 Return Values Detail 1971

The cancel operation must return a Result according to the following constraints. 1972

6.16.4.1 Success 1973

Status Value success

Condition The service successfully canceled the sensor operation

Required Elements status

must be populated with the Status literal "success"

Optional Elements None

See the usage notes for capture (§6.12.2) and download (§6.13.2) for full detail. 1974

6.16.4.2 Failure 1975

Status Value failure

Condition The service could not cancel the sensor operation

Required Elements status (Status, §3.12)

must be populated with the Status literal "failure"

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services should try to return failure in a timely fashion—there is little advantage to a client if it receives 1976

the cancellation failure after the sensor operation to be canceled completes. 1977

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 96 of 120

6.16.4.3 Invalid Id 1978

Status Value invalidId

Condition The provided session id is not recognized by the service.

Required Elements status (Status, §3.12)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 1979

unregistered from a service through explicit unregistration or triggered automatically by the service due to 1980

inactivity (§6.4.4.1). 1981

See §6.1.2 for general information on how services must handle parameter failures. 1982

6.16.4.4 Lock Not Held 1983

Status Value lockNotHeld

Condition The service could cancel the operation because the requesting client
does not hold the lock.

Required Elements status (Status, §3.12)

the literal “lockNotHeld”

Optional Elements None

Sensor operations require that the requesting client holds the service lock. 1984

6.16.4.5 Lock Held by Another 1985

Status Value lockHeldByAnother

Condition The service could not cancel the operation because the lock is held by
another client.

Required Elements status (Status, §3.12)

the literal “lockHeldByAnother”

Optional Elements None

 1986

6.16.4.6 Bad Value 1987

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.12)

the literal “badValue”

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 97 of 120

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §6.1.2 for general information on how services must handle parameter failures. 1988

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 98 of 120

7 Conformance Profiles 1989

This section of the specification describes the requirements around conformance to the WS-Biometric 1990
Devices specification. 1991

7.1.1 Conformance 1992

Implementations claiming conformance to this specification, MUST make such a claim according to all 1993
three of the following factors. 1994

1. If the implementation is general or modality specific 1995

2. The operations that are implemented (§7.1.3) 1996

3. If the implementation includes live preview (§5) 1997

An implementation that is modality specific must implement the service information and configuration 1998
metadata according to their respective subsection. For example, a “fingerprint” conformant service must 1999
implement the service and configuration information according to §7.2. Note that it is possible to 2000
implement a fingerprint-based WS-Biometric Devices service without adhering to §7.2, however, such an 2001
implementation cannot claim modality specific conformance. 2002

7.1.2 Language 2003

Conformance claims must take the form 2004

 “WS-Biometric Devices [modality] Conformance Level n [L]” 2005

where 2006

 [modality] is optional phrase that indicates if the implementation is modality specific 2007

 L* is an indicator if the implementation supports live preview. 2008

 Square brackets, [], are indicator to the reader of this specification that the phrase is optional; 2009

they are not to be included in the claim itself 2010

For example, the phrase “WS-Biometric Devices Conformance Level 3” indicates that the implementation 2011
is (a) not modality specific (b) implements the operations get service information, initialize, get 2012
configuration, capture, download, and get download information and (c) does NOT support live preview. 2013
Likewise, the phrase “WS-Biometric Devices Fingerprint Conformance Level 1L” indicates that the 2014
implementation (a) implements the service information and configuration parameters as specified by §7.2, 2015
(b) implements all operations and (c) supports live-preview. 2016

For implementations that support multiple modalities, then there shall be a conformance claim for each 2017
modality. For example, a converged device that supports machine readable documents, fingerprint 2018
(according to §7.2) and iris (according to §7.4) might claim “WS-Biometric Devices Conformance Level 2, 2019
WS-Biometric Devices Fingerprint Conformance Level 3L, and WS-Biometric Devices Iris Conformance 2020
Level 1.” 2021

7.1.3 Operations 2022

The table below shows three levels of conformance to this specification. An ‘X’ represents that the 2023
operation requires functionality and implementation. For operations that lack the identifier, the service 2024
should implement the operation minimally by always returning success and related arbitrary data. Sending 2025
success and arbitrary data removes any concern from clients whether or not certain operations are 2026
supported by removing the responsibility of functionality and implementation from the 2027
implementer/service. 2028

 2029

Operation Conformance Level 1 2 3

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 99 of 120

Register (§6.3) X

Unregister (§6.4) X

Try Lock (§6.5) X

Steal Lock (§6.6) X

Unlock (§6.7) X

Get Service Information (§6.8) X X X

Initialize (§6.9) X X X

Get Configuration (§6.10) X X X

Set Configuration (§6.11) X X

Capture (§6.12) X X X

Download (§6.13) X X X

Get Download Information (§6.14) X X X

Thrifty Download (§6.15) X X

Cancel (§6.16) X X

 2030

7.1.3.1 Additional Supported Operations 2031

Operation Identifier

Live Preview (§5) L

 2032

7.2 Fingerprint 2033

7.2.1.1 Service Information 2034

7.2.1.2 Submodality 2035

Formal Name submodality

Description A distinct subtype of fingerprint modality, supported by

the sensor.

Data Type xs:string [XSDPart2]

Required Yes

Allowed Values RightThumbFlat

RightIndexFlat

RightMiddleFlat

RightRingFlat

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 100 of 120

RightLittleFlat

LeftThumbFlat

LeftIndexFlat

LeftMiddleFlat

LeftRingFlat

LeftLittleFlat

LeftSlap

RightSlap

ThumbsSlap

RightThumbRolled

RightIndexRolled

RightMiddleRolled

RightRingRolled

RightLittleRolled

LeftThumbRolled

LeftIndexRolled

LeftMiddleRolled

LeftRingRolled

LeftLittleRolled

7.2.1.3 Image Size 2036

Formal Name fingerprintImageSize

Description The width and height of a resulting fingerprint image, in

pixels. If this value is calculated after capture, this

shall be the maximum width and height of a resulting

image.

Data Type resolution [§3.9]

Required Yes

Allowed Values The width element can be any positive integer value.

The height element can be any positive integer value.

The unit element, if defined, must be “pixel” or “pixels”.

 2037

7.2.1.4 Image Content Type 2038

Formal Name fingerprintImageContentType

Description The data format of the resulting fingerprint image.

Data Type xs:string [XSDPart2]

Required Yes

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 101 of 120

Allowed Values Any string value conformant with Appendix B, §B.2.

 2039

7.2.1.5 Image Density 2040

Formal Name fingerprintImageDensity

Description The pixel density of a resulting image represented in

pixels per inch (PPI).

Data Type xs:int [XSDPart2]

Required Yes

Allowed Values Any positive integer value.

 2041

7.3 Face 2042

7.3.1 Service Information 2043

7.3.1.1 Submodality 2044

Formal Name submodality

Description A distinct subtype of face modality, supported by the

sensor.

Data Type xs:string [XSDPart2]

Required Yes

Allowed Values Face2d

Face3d

7.3.1.2 Image Size 2045

Formal Name faceImageSize

Description The width and height of a resulting face image, in

pixels. If this value is calculated after capture, this

shall be the maximum width and height of a resulting

image.

Data Type resolution [§3.9]

Required Yes

Allowed Values The width element can be any positive integer value.

The height element can be any positive integer value.

The unit element, if defined, must be “pixel” or “pixels”.

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 102 of 120

 2046

7.3.1.3 Image Content Type 2047

Formal Name faceImageContentType

Description The data format of the resulting face image.

Data Type xs:string [XSDPart2]

Required Yes

Allowed Values Any string value conformant with Appendix B, §B.2.

 2048

7.4 Iris 2049

7.4.1 Service Information 2050

7.4.1.1 Submodality 2051

Formal Name submodality

Description A distinct subtype of iris modality, supported by the

sensor.

Data Type xs:string [XSDPart2]

Required Yes

Allowed Values LeftIris

RightIris

BothIrises

7.4.1.2 Image Size 2052

Formal Name irisImageSize

Description The width and height of a resulting iris image, in

pixels. If this value is calculated after capture, this

shall be the maximum width and height of a resulting

image.

Data Type resolution [§3.9]

Required Yes

Allowed Values The width element can be any positive integer value.

The height element can be any positive integer value.

The unit element, if defined, must be “pixel” or “pixels”.

 2053

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 103 of 120

7.4.1.3 Image Content Type 2054

Formal Name irisImageContentType

Description The data format of the resulting iris image.

Data Type xs:string [XSDPart2]

Required Yes

Allowed Values Any string value conformant with Appendix B, §B.2.

 2055

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 104 of 120

Appendix A. Parameter Details 2056

This appendix details the individual parameters available from a get service info operation. For each 2057
parameter, the following information is listed: 2058

 The formal parameter name 2059

 The expected data type of the parameter’s value 2060

 If a the service is required to implement the parameter 2061

A.1 Connections 2062

The following parameters describe how the service handles session lifetimes and registrations. 2063

A.1.1 Last Updated 2064

Formal Name lastUpdated

Data Type xs:dateTime [XSDPart2]

Required Yes

This parameter provides a timestamp of when the service last updated the common info parameters (this 2065

parameter not withstanding). The timestamp must include time zone information. Implementers should 2066

expect clients to use this timestamp to detect if any cached values of the (other) common info parameters 2067

may have changed. 2068

A.1.2 Inactivity Timeout 2069

Formal Name inactivityTimeout

Data Type xs:nonNegativeInteger [XSDPart2]

Required Yes

This parameter describes how long, in seconds, a session can be inactive before it may be automatically 2070

closed by the service. A value of ‘0’ indicates that the service never drops sessions due to inactivity. 2071

Inactivity time is measured per session. Services must measure it as the time elapsed between (a) the 2072

time at which a client initiated the session’s most recent operation and (b) the current time. Services must 2073

only use the session id to determine a session’s inactivity time. For example, a service does not maintain 2074

different inactivity timeouts for requests that use the same session id, but originate from two different IP 2075

addresses. Services may wait longer than the inactivity timeout to drop a session, but must not drop 2076

inactive sessions any sooner than the inactivityTimeout parameter indicates. 2077

A.1.3 Maximum Concurrent Sessions 2078

Formal Name maximumConcurrentSessions

Data Type xs:positiveInteger [XSDPart2]

Required Yes

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 105 of 120

This parameter describes the maximum number of concurrent sessions a service can maintain. Upon 2079

startup, a service must have zero concurrent sessions. When a client registers successfully (§6.3), the 2080

service increases its count of concurrent sessions by one. After successful unregistration (§6.4), the 2081

service decreases its count of concurrent sessions by one . 2082

A.1.4 Least Recently Used (LRU) Sessions Automatically Dropped 2083

Formal Name autoDropLRUSessions

Data Type xs:boolean [XSDPart2]

Required Yes

This parameter describes whether or not the service automatically unregisters the least-recently-used 2084

session when the service has reached its maximum number of concurrent sessions. If true, then upon 2085

receiving a registration request, the service may drop the least-recently used session if the maximum 2086

number of concurrent sessions has already been reached. If false, then any registration request that 2087

would cause the service to exceed its maximum number of concurrent sessions results in failure. The 2088

service shall not drop a session that currently holds the lock unless the session’s inactivity is outside of 2089

the inactivity timeout (§A.1.2) threshold. 2090

A.2 Timeouts 2091

Clients should not block indefinitely on any operation. However, since different services may differ 2092

significantly in the time they require to complete an operation, clients require a means to determine 2093

appropriate timeouts. The timeouts in this subsection describe how long a service waits until the service 2094

either returns sensorTimeout or initiates a service-side cancellation (§6.16.2.1). Services may wait longer 2095

than the times reported here, but, (under normal operations) must not report a sensorTimeout or initiate a 2096

cancellation before the reported time elapses. In other words, a client should be able to use these 2097

timeouts to help determine a reasonable upper bound on the time required for sensor operations. 2098

Note that these timeouts do not include any round-trip and network delay—clients should add an 2099

additional window to accommodate delays unique to that particular client-server relationship. 2100

A.2.1 Initialization Timeout 2101

Formal Name initializationTimeout

Data Type xs:positiveInteger [XSDPart2]

Required Yes

This parameter describes how long, in milliseconds, a service will wait for a target biometric sensor to 2102

perform initialization before it returns sensorTimeout (§6.9.4.10) or initiates a service-side cancellation 2103

(§6.16.2.1). 2104

A.2.2 Get Configuration Timeout 2105

Formal Name getConfigurationTimeout

Data Type xs:positiveInteger [XSDPart2]

Required Yes

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 106 of 120

This parameter describes how long, in milliseconds, a service will wait for a target biometric sensor to 2106

retrieve its configuration before it returns sensorTimeout (§6.10.4.12) or initiates a service-side 2107

cancellation (§6.16.2.1). 2108

A.2.3 Set Configuration Timeout 2109

Formal Name setConfigurationTimeout

Data Type xs:positiveInteger [XSDPart2]

Required Yes

This parameter describes how long, in milliseconds, a service will wait for a target biometric sensor to set 2110

its configuration before it returns sensorTimeout (§6.11.4.11) or initiates a service-side cancellation 2111

(§6.16.2.1). 2112

A.2.4 Capture Timeout 2113

Formal Name captureTimeout

Data Type xs:positiveInteger [XSDPart2]

Required Yes

This parameter describes how long, in milliseconds, a service will wait for a target biometric sensor to 2114

perform biometric acquisition before it returns sensorTimeout (§6.11.4.11) or initiates a service-side 2115

cancellation (§6.16.2.1). 2116

A.2.5 Post-Acquisition Processing Time 2117

Formal Name postAcquisitionProcessingTime

Data Type xs:nonNegativeInteger [XSDPart2]

Required Yes

This parameter describes an upper bound on how long, in milliseconds, a service takes to perform post-2118

acquisition processing. A client should not expect to be able to download captured data before this time 2119

has elapsed. Conversely, this time also describes how long after a capture a server is permitted to return 2120

preparingDownload for the provided capture ids. A value of zero (‘0’) indicates that the service includes 2121

any post-acquisition processing within the capture operation or that no post-acquisition processing is 2122

performed. 2123

A.2.6 Lock Stealing Prevention Period 2124

Formal Name lockStealingPreventionPeriod

Data Type xs:nonNegativeInteger [XSDPart2]

Required Yes

This parameter describes the length, in milliseconds, of the lock stealing prevention period (§6.6.2.2). 2125

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 107 of 120

A.3 Storage 2126

The following parameters describe how the service stores captured biometric data. 2127

A.3.1 Maximum Storage Capacity 2128

Formal Name maximumStorageCapacity

Data Type xs:positiveInteger [XSDPart2]

Required Yes

This parameter describes how much data, in bytes, the service is capable of storing. 2129

A.3.2 Least-Recently Used Capture Data Automatically Dropped 2130

Formal Name lruCaptureDataAutomaticallyDropped

Data Type xs:boolean [XSDPart2]

Required Yes

This parameter describes whether or not the service automatically deletes the least-recently-used capture 2131

to stay within its maximum storage capacity. If true, the service may automatically delete the least-2132

recently used biometric data to accommodate for new data. If false, then any operation that would require 2133

the service to exceed its storage capacity would fail. 2134

A.4 Sensor 2135

The following parameters describe information about the sensor and its supporting features 2136

A.4.1 Modality 2137

Formal Name modality

Data Type xs:string [XSDPart2]

Required Yes

This parameter describes which modality or modalities are supported by the sensor. 2138

The following table enumerates the list of modalities, as defined in [CBEFF2010], which provides the valid 2139
values for this field for currently identified modalities. Implementations are not limited to the following 2140
values, but shall use them if such modality is exposed. For example, if an implementation is exposing 2141
fingerprint capture capability, “Finger” shall be used. If an implementation is exposing an unlisted 2142
modality, it may use another value. 2143

Modality Value Description

Scent Information about the scent left by a subject

DNA Information about a subject’s DNA

Ear A subject’s ear image

Face An image of the subject’s face, either in two or three
dimensions

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 108 of 120

Finger An image of one of more of the subject’s fingerprints

Foot An image of one or both of the subject’s feet.

Vein Information about a subject’s vein pattern

HandGeometry The geometry of an subject’s hand

Iris An image of one of both of the subject’s irises

Retina An image of one or both of the subject’s retinas

Voice Information about a subject’s voice

Gait Information about a subject’s gait or ambulatory
movement

Keystroke Information about a subject’s typing patterns

LipMovement Information about a subject’s lip movements

SignatureSign Information about a subject’s signature or handwriting

 2144

A.4.2 Submodality 2145

Formal Name submodality

Data Type xs:string [XSDPart2]

Required Yes

This parameter describes which submodalities are supported by the sensor. See §7 for submodality 2146

requirements for a particular modality. 2147

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 109 of 120

Appendix B. Content Type Data 2148

This appendix contains a catalog of content types for use in conformance profiles and parameters. When 2149
possible, the identified data formats shall be used. 2150

B.1 General Type 2151

application/xml Extensible Markup Language (XML) [XML]

text/plain Plaintext [RFC2046]

text/xml Extensible Markup Language (XML) [XML]

 2152

B.2 Image Formats 2153

Refer to [CMediaType] for more information regarding a registered image type. 2154

image/jpeg Joint Photographics Experts Group [JPEG]

image/png Portable Network Graphics [PNG]

image/tiff Tagged Image File Format [TIFF]

image/x-ms-bmp Windows OS/2 Bitmap Graphics [BMP]

image/x-wsq Wavelet Scalar Quantization (WSQ) [WSQ]

 2155

B.3 Video Formats 2156

Refer to [CMediaType] for more information regarding a registered video type. 2157

multipart/x-mixed-replace multipart/x-mixed-replace [HTML5] (§12.2)

video/h264 H.264 Video Compression [H264]

video/mpeg Moving Pictures Experts Group [MPEG]

video/quicktime QuickTime File Format [QTFF]

video/x-avi Audio Video Interleave [AVI]

video/x-ms-asf Advanced Systems Format [ASF]

video/x-ms-asx Advanced Stream Redirector [ASX]

video/x-ms-wmv Windows Media Video [ASF]

 2158

B.4 Audio Formats 2159

Refer to [CMediaType] for more information regarding a registered audio type. 2160

audio/3gpp 3rd Generation Partnership Project Multimedia files [3GPP]

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 110 of 120

audio/3gpp2 3rd Generation Partnership Project Multimedia files [3GPP2]

audio/mpeg Moving Pictures Experts Group [MPEG1]

audio/ogg Vorbis OGG Audio File [OGG]

audio/x-aiff Audio Interchange File Format [AIFF]

audio/x-ms-wav Waveform Audio File Format [WAVE]

audio/x-ms-wma Windows Media Audio [ASF]

audio/x-sphere NIST Speech Header Resources [SPHERE]

 2161

B.5 General Biometric Formats 2162

x-biometric/x-ansi-nist-itl-2000 Information Technology: American National Standard for
Information Systems—Data Format for the Interchange of
Fingerprint, Facial, & Scar Mark & Tattoo (SMT) Information
[AN2K]

x-biometric/x-ansi-nist-itl-2007 Information Technology: American National Standard for
Information Systems—Data Format for the Interchange of
Fingerprint, Facial, & Other Biometric Information – Part 1
[AN2K7]

x-biometric/x-ansi-nist-itl-2008 Information Technology: American National Standard for
Information Systems—Data Format for the Interchange of
Fingerprint, Facial, & Other Biometric Information – Part 2:
XML Version [AN2K8]

x-biometric/x-ansi-nist-itl-2011 Information Technology: American National Standard for
Information Systems—Data Format for the Interchange of
Fingerprint, Facial & Other Biometric Information [AN2K11]

x-biometric/x-cbeff-2010 Common Biometric Exchange Formats Framework with
Support for Additional Elements [CBEFF2010]

 2163

B.6 ISO / Modality-Specific Formats 2164

x-biometric/x-iso-19794-2-05 Finger Minutiae Data [BDIF205]

x-biometric/x-iso-19794-3-06 Finger Pattern Spectral Data [BDIF306]

x-biometric/x-iso-19794-4-05 Finger Image Data [BDIF405]

x-biometric/x-iso-19794-5-05 Face Image Data [BDIF505]

x-biometric/x-iso-19794-6-05 Iris Image Data [BDIF605]

x-biometric/x-iso-19794-7-07 Signature/Sign Time Series Data [BDIF707]

x-biometric/x-iso-19794-8-06 Finger Pattern Skeletal Data [BDIF806]

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 111 of 120

x-biometric/x-iso-19794-9-07 Vascular Image Data [BDIF907]

x-biometric/x-iso-19794-10-07 Hand Geometry Silhouette Data [BDIF1007]

 2165

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 112 of 120

Appendix C. XML Schema 2166

<?xml version="1.0"?> 2167
<xs:schema xmlns:wsbd="http://docs.oasis-open.org/biometrics/ns/ws-bd-1.0" 2168
 xmlns:xs="http://www.w3.org/2001/XMLSchema" 2169
 targetNamespace="http://docs.oasis-open.org/biometrics/ns/ws-bd-1.0" 2170
 elementFormDefault="qualified"> 2171
 2172
 <xs:element name="configuration" type="wsbd:Dictionary" nillable="true"/> 2173
 <xs:element name="result" type="wsbd:Result" nillable="true"/> 2174
 2175
 <xs:complexType name="Result"> 2176
 <xs:sequence> 2177
 <xs:element name="status" type="wsbd:Status"/> 2178
 <xs:element name="badFields" type="wsbd:StringArray" nillable="true" minOccurs="0"/> 2179
 <xs:element name="captureIds" type="wsbd:UuidArray" nillable="true" minOccurs="0"/> 2180
 <xs:element name="metadata" type="wsbd:Dictionary" nillable="true" minOccurs="0"/> 2181
 <xs:element name="message" type="xs:string" nillable="true" minOccurs="0"/> 2182
 <xs:element name="sensorData" type="xs:base64Binary" nillable="true" minOccurs="0"/> 2183
 <xs:element name="sessionId" type="wsbd:UUID" nillable="true" minOccurs="0"/> 2184
 </xs:sequence> 2185
 </xs:complexType> 2186
 2187
 <xs:simpleType name="UUID"> 2188
 <xs:restriction base="xs:string"> 2189
 <xs:pattern value="[\da-fA-F]{8}-[\da-fA-F]{4}-[\da-fA-F]{4}-[\da-fA-F]{4}-[\da-fA-F]{12}"/> 2190
 </xs:restriction> 2191
 </xs:simpleType> 2192
 2193
 <xs:simpleType name="Status"> 2194
 <xs:restriction base="xs:string"> 2195
 <xs:enumeration value="success"/> 2196
 <xs:enumeration value="failure"/> 2197
 <xs:enumeration value="invalidId"/> 2198
 <xs:enumeration value="canceled"/> 2199
 <xs:enumeration value="canceledWithSensorFailure"/> 2200
 <xs:enumeration value="sensorFailure"/> 2201
 <xs:enumeration value="lockNotHeld"/> 2202
 <xs:enumeration value="lockHeldByAnother"/> 2203
 <xs:enumeration value="initializationNeeded"/> 2204
 <xs:enumeration value="configurationNeeded"/> 2205
 <xs:enumeration value="sensorBusy"/> 2206
 <xs:enumeration value="sensorTimeout"/> 2207
 <xs:enumeration value="unsupported"/> 2208
 <xs:enumeration value="badValue"/> 2209
 <xs:enumeration value="noSuchParamter"/> 2210
 <xs:enumeration value="preparingDownload"/> 2211
 </xs:restriction> 2212
 </xs:simpleType> 2213
 2214
 <xs:complexType name="Array"> 2215
 <xs:sequence> 2216
 <xs:element name="element" type="xs:anyType" nillable="true" minOccurs="0" maxOccurs="unbounded"/> 2217
 </xs:sequence> 2218
 </xs:complexType> 2219
 2220
 <xs:complexType name="StringArray"> 2221
 <xs:sequence> 2222
 <xs:element name="element" type="xs:string" nillable="true" minOccurs="0" maxOccurs="unbounded"/> 2223
 </xs:sequence> 2224
 </xs:complexType> 2225
 2226
 <xs:complexType name="UuidArray"> 2227
 <xs:sequence> 2228
 <xs:element name="element" type="wsbd:UUID" nillable="true" minOccurs="0" maxOccurs="unbounded"/> 2229
 </xs:sequence> 2230
 </xs:complexType> 2231
 2232
 <xs:complexType name="Dictionary"> 2233
 <xs:sequence> 2234
 <xs:element name="item" minOccurs="0" maxOccurs="unbounded"> 2235
 <xs:complexType> 2236
 <xs:sequence> 2237
 <xs:element name="key" type="xs:string" nillable="true"/> 2238
 <xs:element name="value" type="xs:anyType" nillable="true"/> 2239
 </xs:sequence> 2240

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 113 of 120

 </xs:complexType> 2241
 </xs:element> 2242
 </xs:sequence> 2243
 </xs:complexType> 2244
 2245
 <xs:complexType name="Parameter"> 2246
 <xs:sequence> 2247
 <xs:element name="name" type="xs:string" nillable="true"/> 2248
 <xs:element name="type" type="xs:QName" nillable="true"/> 2249
 <xs:element name="readOnly" type="xs:boolean" minOccurs="0"/> 2250
 <xs:element name="supportsMultiple" type="xs:boolean" minOccurs="0"/> 2251
 <xs:element name="defaultValue" type="xs:anyType" nillable="true"/> 2252
 <xs:element name="allowedValues" nillable="true" minOccurs="0"> 2253
 <xs:complexType> 2254
 <xs:sequence> 2255
 <xs:element name="allowedValue" type="xs:anyType" nillable="true" minOccurs="0" maxOccurs="unbounded"/> 2256
 </xs:sequence> 2257
 </xs:complexType> 2258
 </xs:element> 2259
 </xs:sequence> 2260
 </xs:complexType> 2261
 2262
 <xs:complexType name="Range"> 2263
 <xs:sequence> 2264
 <xs:element name="minimum" type="xs:anyType" nillable="true" minOccurs="0"/> 2265
 <xs:element name="maximum" type="xs:anyType" nillable="true" minOccurs="0"/> 2266
 <xs:element name="minimumIsExclusive" type="xs:boolean" nillable="true" minOccurs="0"/> 2267
 <xs:element name="maximumIsExclusive" type="xs:boolean" nillable="true" minOccurs="0"/> 2268
 </xs:sequence> 2269
 </xs:complexType> 2270
 2271
 <xs:complexType name="Resolution"> 2272
 <xs:sequence> 2273
 <xs:element name="width" type="xs:double"/> 2274
 <xs:element name="height" type="xs:double"/> 2275
 <xs:element name="unit" type="xs:string" nillable="true" minOccurs="0"/> 2276
 </xs:sequence> 2277
 </xs:complexType> 2278
</xs:schema> 2279

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 114 of 120

Appendix D. Security (Informative) 2280

This section is an informative appendix that provides security control recommendations for systems that 2281
include the use of WS-Biometric Devices. 2282

Security requirements are context and organizational dependent. However, by providing general 2283
guidance, the OASIS Biometrics TC hopes to provide a common baseline that can be used to help 2284
ensure interoperability among components that leverage WS-Biometric Devices. If the approach to 2285
security varies widely among WS-BD enabled components, there is significantly less chance that off-the-2286
shelf products will interoperate. This appendix is not a comprehensive security standard,—therefore, 2287
updates to security guidance incorporated by reference should take precedence to any recommendation 2288
made here. In addition, security recommendations tend to be continuously updated, evolved, and 2289
improved; always seek the latest version of any of the referenced security specifications. 2290

Further, the security controls described here are specific to the WS-Biometric Devices protocols and the 2291
components using it. It is assumed controls described here are only one component of an 2292
implementation’s overall security. 2293

D.1 References 2294

The following references are used in this Appendix and can provide more specific security guidance for 2295
the identified technology. 2296

 2297

Abbreviation Technology Citation

[802.1x] Port-based

network access

control

IEEE Standard 801.1X-2004, Institute of Electrical and

Electronics Engineers, Standard for Local and metropolitan

area networks, Port-Based Network Access Control, 2004.

[FIPS 197] Advanced

encryption

standard

Federal Information Process Standards Publication 197.

Advanced Encryption Standard (AES). November 2001.

[OSI] Network

abstraction layers

ISO/IEC 74989-1:1994(E). Open Systems Interconnect—

Basic Reference Model: The Basic Model.

[800-38A] Block cipher

modes of

operation

M. Dworkin. Recommendation for Block Cipher Modes of

Operation: Methods and Techniques. NIST Special

Publication 800-38A. December 2001.

[SP 800-60] System sensitivity

classifications

K. Stine, et al. Guide for Mapping Types of Information and

Information Systems to Security Categories. NIST Special

Publication 800-600, Volume 1, Revision 1. August 2008.

[SP 800-52] Transport Layer

Security (TLS)

T. Polk, S. Chokhani, and K. McKay. DRAFT Guidelines for

the Selection, Configuration, and Use of Transport Layer

Security (TLS) Implementations. NIST Special Publication

800-52 Revision 1. September 2013.

[SP 800-77] IPSEC S. Frankel, K. Kent, R. Lewkowski, A. Orebaugh, R. Ritchey,

S. Sharma. Guide to IPsec VPNs. NIST Special Publication

800-77. December 2005.

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 115 of 120

[SP 800-97] Wireless network

security

S. Frankel, B. Eydt, L. Owens, K. Scarfone. Establishing

Wireless Robust Security Networks, A Guide to IEEE

802.11i. NIST Special Publication 800-97. February 2007.

[SP 800-113] SSL VPN S. Frankel, P. Hoffman, A. Orebaugh, R. Park. Guide to SSL

VPNs. NIST Special Publication 800-113. July 2008.

D.2 Overview 2298

WS-Biometric Devices components are only useful in the context of the system within which they 2299
participate. Therefore, recommended security controls are defined with respect to two orthogonal 2300
characteristics of those enclosing systems: 2301

1. An overall sensitivity level of low (L), medium (M), or high (H) defines a set of recommended 2302

security controls. These levels roughly, but not directly, correspond to those defined in [NIST 2303

SP 800-60]. The 800-60 level accompanies other information as inputs for determining the 2304

set of recommended controls specific for WS-BD. For the sake of disambiguation, “L,” “M,” or 2305

“H” will refer to a set of controls recommended by this appendix. 2306

2. For each sensitivity level, a set of controls is recommended to be applied at a particular layer 2307

of abstraction. For each sensitivity level, recommendations are made for controls to be 2308

applied at the network, transport and/or application level. These levels roughly, but not 2309

directly, correspond to the network, transport, and application layers defined in the OSI model 2310

[OSI]. 2311

D.3 Control Set Determination 2312

The following criteria are recommended for helping users and system owners in identifying a 2313
recommended set of security controls. 2314

D.3.1 “L” Security Control Criteria 2315

The set of “L” controls are recommended if, for a given system, each of the following three clauses are 2316
true: 2317

1. The system is used in a non-production environment or has an overall NIST SP 800-60 sensitivity 2318

of “Low” 2319

2. All WS-Biometric Devices clients and servers reside within the same trusted network 2320

3. The network that provides the WS-Biometric Devices interconnectivity network is completely 2321

isolated or otherwise security separated from untrusted networks with a strong buffer such as a 2322

comprehensive network firewall. 2323

Examples that may qualify for “L” security controls are the use of WS-Biometric devices: 2324

 In product development, testing, or other research where no real biometric data is stored or 2325

captured 2326

 Across physical or logical components that are within an embedded device with other physical or 2327

logical controls that make it difficult to access or surreptitiously monitor the channels that carry 2328

WS-Biometric Devices traffic. 2329

D.3.2 “M” Security Control Criteria 2330

The set of “M” controls are recommended if, for a given system, each of the following three clauses are 2331
true: 2332

1. The system is used in a production environment or the system has an overall NIST SP 800-60 2333

sensitivity of “Medium” 2334

2. All WS-Biometric Devices clients and servers reside within the same trusted network 2335

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 116 of 120

3. The system’s network is either completely isolated or otherwise security separated from untrusted 2336

networks with a buffer such as a firewall. 2337

Examples that may qualify for “M” security controls are the use of WS-Biometric devices: 2338

 In an identification enrollment station, where WS-Biometric Devices is used as a “wire 2339

replacement” for other less interoperable connectors. The WS-Biometric Devices network could 2340

be composed solely of the enrollment workstation and a biometric device with an Ethernet cable 2341

between them. 2342

 In a border screening application in which attended workstations in physically secure locations 2343

are used to submit biometrics to various law enforcement watch lists. 2344

D.3.3 “H” Security Control Criteria 2345

The set of “H” controls are recommended if the overall system has an NIST SP 800-60 sensitivity of 2346
“High” or if WS-Biometric Devices is used across an untrusted network. 2347

D.4 Recommended & Candidate Security Controls 2348

The following table outlines the candidate & recommended security controls. Recommended security 2349
controls are likely to be relevant and beneficial for all systems of a particular category. Candidate controls 2350

are those that are likely to more application and implementation specific. 2351

Candidate controls are marked with an asterisk (*). For example, in all “L” systems, any wireless 2352
networking should use WPA-2 Personal with 256-bit strength encryption (or better), and is therefore 2353
recommended. However, the use of TLS is a candidate since an “L” system might comprise a 2354
communications channel that is physically isolated or otherwise embedded in a system. In that case, 2355
foregoing TLS may be an acceptable tradeoff. 2356

There may be a degree of redundancy among these controls; for example, multiple layers of encryption. 2357
However, using multiple layers of security also affords more granular policy enforcement. For example, 2358
IPSEC may allow the communications among one set of systems, but TLS client certificates would restrict 2359
WS-Biometric Devices communications to a particularly trustworthy subset.. 2360

 L M H

Network
Layer

Wired None 802.1x
and/or
IPSEC*

IPSEC

Wireless WPA-2
Personal

WPA-2
Enterprise

WPA-2
Enterprise

Transport Layer TLS [SP
800-52]

TLS [SP
800-52]

TLS with
client
certificates
[SP 800-
52]

Application Layer None Biometric
payload
encryption
with AES*

Full
payload
encryption
with AES

 2361

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 117 of 120

D.4.1 “L” Security Controls 2362

Network. No network security controls are recommended for wired networks. For wireless networks, 2363
WPA-2, personal or enterprise mode is recommended. 2364

Transport. TLS as described in [800-52]; the use of client certificates is optional. 2365

Application. No application layer security control is recommended. 2366

D.4.2 “M” Security Controls 2367

Network. Networks should be secured with 802.1x [802.1x] and/or IPSEC [SP 800-77]. 2368

Transport. TLS as described in [800-52]; the use of client certificates is optional. 2369

Application. All biometric data (the contents of a Result’s sensorData) should be encrypted with AES as 2370

described in [FIPS 197] and [SP 800-38A]. 2371

D.4.3 “H” Security Controls 2372

Network. Networks should be secured with an IPSEC [800-77]. 2373

Transport. TLS with client certificates as described in [800-52]. 2374

Application. All biometric data (the contents of a Result’s sensorData) should be encrypted with AES as 2375

described in [FIPS 197] and [SP 800-38A]. 2376

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 118 of 120

Appendix E. Acknowledgments 2377

The following individuals have participated in the creation of this specification and are gratefully 2378
acknowledged: 2379

Participants: 2380
Almog Aley-Raz, Nuance 2381
Mr. Jeremiah Bruce, US Department of Homeland Security 2382
Mr. Doron Cohen, SafeNet, Inc. 2383
Robin Cover, OASIS 2384
Matthias de Haan, Tandent Vision Science, Inc 2385
Mr. Francisco Diez-Jimeno, Carlos III University of Madrid 2386
Dr. Jeff Dunne, Johns Hopkins University Applied Physics Laboratory 2387
Mr. Chet Ensign, OASIS 2388
Mr. Sander Fieten, Individual 2389
Richard Friedhoff, Tandent Vision Science, Inc 2390
Bob Gupta, Viometric, LLC 2391
Emily Jay, NIST 2392
Mr. Ken Kamakura, Fujitsu Limited 2393
Mr. Kevin Mangold, NIST 2394
Dr. Ross Micheals, NIST 2395
Derek Northrope, Fujitsu Limited 2396
Mr Tony Pham, Bank of America 2397
Dr. Raul Sanchez-Reillo, Carlos III University of Madrid 2398
Mrs. Dee Schur, OASIS 2399
Mr. Jeffrey Shultz, US Department of Defense (DoD) 2400
Casey Smith, Tandent Vision Science, Inc 2401
Mr. Kevin Strickland, Tandent Vision Science, Inc 2402
Cathy Tilton, Daon 2403
Mr. Ryan Triplett, Booz Allen Hamilton 2404
Ms. Maria Vachino, Johns Hopkins University Applied Physics Laboratory 2405
Mr. Steven Venable, Lockheed Martin 2406
Anne Wang, 3M HIS 2407
Youngrock Yoon, Tandent Vision Science, Inc 2408

Authors of initial NIST specification 2409
Ross J. Micheals 2410
Kevin Mangold 2411
Matt Aronoff 2412
Kristen Greene 2413
Kayee Kwong 2414
Karen Marshall 2415

Acknowledgments listed in initial NIST specification 2416
The authors thank the following individuals and organizations for their participation in the creation 2417
of this specification. 2418
Biometric Standards Working Group, Department of Defense 2419
Michael Albright, Vision and Security Technology Laboratory, University of Colorado at Colorado 2420
Springs 2421
Senaka Balasuriya, SolidBase Consulting 2422
Terrance Boult, Vision and Security Technology Laboratory, University of Colorado at Colorado 2423
Springs 2424
Leslie Collica, Information Technology Laboratory, National Institute of Standards and 2425
Technology 2426
Tod Companion, Science & Technology Directorate, Department of Homeland Security 2427
Bert Coursey, Science & Technology Directorate, Department of Homeland Security 2428
Nick Crawford, Government Printing Office 2429

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 119 of 120

Donna Dodson, Information Technology Laboratory, National Institute of Standards and 2430
Technology 2431
Valerie Evanoff, Biometric Center of Excellence, Federal Bureau of Investigation 2432
Rhonda Farrell, Booz Allen Hamilton 2433
Michael Garris, Information Technology Laboratory, National Institute of Standards and 2434
Technology 2435
Phillip Griffin, Booz Allen Hamilton 2436
Dwayne Hill, Biometric Standards Working Group, Department of Defense 2437
Rick Lazarick, Computer Sciences Corporation 2438
John Manzo, Biometric Center of Excellence, Federal Bureau of Investigation 2439
Charles Romine, Information Technology Laboratory, National Institute of Standards and 2440
Technology 2441
James St. Pierre, Information Technology Laboratory, National Institute of Standards and 2442
Technology 2443
Scott Swann, Federal Bureau of Investigation 2444
Ashit Talukder, Information Technology Laboratory, National Institute of Standards and 2445
Technology 2446
Cathy Tilton, Daon Inc. 2447
Ryan Triplett, Biometric Standards Working Group, Department of Defense 2448
Bradford Wing, Information Technology Laboratory, National Institute of Standards and 2449
Technology 2450
 2451

 2452

WS-BD-v1.0-csprd01 25 August 2014
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 120 of 120

Appendix F. Revision History 2453

 2454

Revision Date Editor(s) Changes Made

Working Draft
01

26 March 2013 Ross Micheals Initial working draft based on NIST
specification

Working Draft
02

06 September
2013

Kevin Mangold,
Ross Micheals

Incorporated methods of exposing a live
preview endpoint(s). Updated schema
namespace.

Working Draft
03

04 March 2014 Kevin Mangold,
Ross Micheals

Draft implementation of conformance
profiles and security guidance

Working Draft
04

02 April 2014 Ross Micheals Completed security guidance appendix.

Working Draft
05

July 2014 Ross Micheals,
Kevin Mangold

Harmonized security guidance and
appendix; updated security appendix to
reflect updated NIST Special Publication

Working Draft
06

August 2014 Ross Micheals Completed basic conformance profiles,
preparing manuscript for consideration by
the TC as a Committee Specification Draft.
Corrected minor typos and made minor
cosmetic fixes.

 2455

