
OASIS Advanced Message Queueing Protocol
(AMQP) Version 1.0

Committee Specification 01
18 July 2012

Specification URIs
This version:

http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-overview-v1.0-cs01.xml (Authoritative)
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-overview-v1.0-cs01.html
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-complete-v1.0-cs01.pdf

Previous version:
http://docs.oasis-open.org/amqp/core/v1.0/csprd01/amqp-core-overview-v1.0-csprd01.xml (Authoritative)
http://docs.oasis-open.org/amqp/core/v1.0/csprd01/amqp-core-overview-v1.0-csprd01.html
http://docs.oasis-open.org/amqp/core/v1.0/csprd01/amqp-core-complete-v1.0-csprd01.pdf

Latest version:
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-overview-v1.0.xml (Authoritative)
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-overview-v1.0.html
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf

Technical Committee:
OASIS Advanced Message Queueing Protocol (AMQP) TC

Chairs:
Ram Jeyaraman (Ram.Jeyaraman@microsoft.com), Microsoft
Angus Telfer (angus.telfer@inetco.com), INETCO Systems

Editors:
Robert Godfrey (robert.godfrey@jpmorgan.com), JPMorgan Chase & Co.
David Ingham (David.Ingham@microsoft.com), Microsoft
Rafael Schloming (rafaels@redhat.com), Red Hat

http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-overview-v1.0-cs01.xml
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-overview-v1.0-cs01.html
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-complete-v1.0-cs01.pdf
http://docs.oasis-open.org/amqp/core/v1.0/csprd01/amqp-core-overview-v1.0-csprd01.xml
http://docs.oasis-open.org/amqp/core/v1.0/csprd01/amqp-core-overview-v1.0-csprd01.html
http://docs.oasis-open.org/amqp/core/v1.0/csprd01/amqp-core-complete-v1.0-csprd01.pdf
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-overview-v1.0.xml
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-overview-v1.0.html
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf
http://www.oasis-open.org/committees/amqp/
mailto:Ram.Jeyaraman@microsoft.com
http://www.microsoft.com
mailto:angus.telfer@inetco.com
http://www.inetco.com
mailto:robert.godfrey@jpmorgan.com
http://www.jpmorganchase.com
mailto:David.Ingham@microsoft.com
http://www.microsoft.com
mailto:rafaels@redhat.com
http://www.redhat.com


Additional artifacts:
This specification consists of the following documents:

• Part 0: Overview - Overview of the AMQP specification
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-overview-v1.0-cs01.xml (Authoritative)
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-overview-v1.0-cs01.html

• Part 1: Types - AMQP type system and encoding
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-types-v1.0-cs01.xml (Authoritative)
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-types-v1.0-cs01.html

• Part 2: Transport - AMQP transport layer
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-transport-v1.0-cs01.xml (Authoritative)
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-transport-v1.0-cs01.html

• Part 3: Messaging - AMQP Messaging Layer
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-messaging-v1.0-cs01.xml (Authoritative)
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-messaging-v1.0-cs01.html

• Part 4: Transactions - AMQP Transactions Layer
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-transactions-v1.0-cs01.xml (Authoritative)
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-transactions-v1.0-cs01.html

• Part 5: Security - AMQP Security Layers
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-security-v1.0-cs01.xml (Authoritative)
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-security-v1.0-cs01.html

• XML Document Type Definition (DTD)
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp.dtd (Authoritative)

Related work:
This specification replaces or supersedes:

• AMQP v1.0 Final, 07 October 2011. http://www.amqp.org/specification/1.0/amqp-org-download

Abstract:

The Advanced Message Queuing Protocol (AMQP) is an open internet protocol for business messaging. It defines a binary
wire-level protocol that allows for the reliable exchange of business messages between two parties. AMQP has a layered
architecture and the specification is organized as a set of parts that reflects that architecture. Part 1 defines the AMQP type
system and encoding. Part 2 defines the AMQP transport layer, an efficient, binary, peer-to-peer protocol for transporting
messages between two processes over a network. Part 3 defines the AMQP message format, with a concrete encoding. Part
4 defines how interactions can be grouped within atomic transactions. Part 5 defines the AMQP security layers.

Status:

This document was last revised or approved by the OASIS Advanced Message Queueing Protocol (AMQP) TC on the above
date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of
this document.

Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others
should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web
page at http://www.oasis-open.org/committees/comments/index.php?wg_abbrev=amqp.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any
offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page
(http://www.oasis-open.org/committees/amqp/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:
[amqp-core-complete-v1.0]
OASIS Advanced Message Queueing Protocol (AMQP) Version 1.0. 18 July 2012. OASIS Committee Specification 01.
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-complete-v1.0-cs01.pdf.

amqp-core-complete-v1.0-cs01
Standards Track Work Product Copyright c© OASIS Open 2012. All Rights Reserved.

18 July 2012
Page 1 of 124

http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-overview-v1.0-cs01.xml
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-overview-v1.0-cs01.html
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-types-v1.0-cs01.xml
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-types-v1.0-cs01.html
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-transport-v1.0-cs01.xml
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-transport-v1.0-cs01.html
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-messaging-v1.0-cs01.xml
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-messaging-v1.0-cs01.html
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-transactions-v1.0-cs01.xml
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-transactions-v1.0-cs01.html
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-security-v1.0-cs01.xml
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-security-v1.0-cs01.html
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp.dtd
http://www.amqp.org/specification/1.0/amqp-org-download
http://www.oasis-open.org/committees/comments/index.php?wg_abbrev=amqp
http://www.oasis-open.org/committees/comments/index.php?wg_abbrev=amqp
http://www.oasis-open.org/committees/amqp/ipr.php
http://docs.oasis-open.org/amqp/core/v1.0/cs01/amqp-core-complete-v1.0-cs01.pdf


Notices:
Copyright c© OASIS Open 2012. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy
(the “OASIS IPR Policy”). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise
explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative
works. However, this document itself may not be modified in any way, including by removing the copyright notice or references
to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFOR-
MATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABIL-
ITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed
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OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims
that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a
license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this
specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in this document or the extent to which any license under
such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights.
Information on OASIS’ procedures with respect to rights in any document or deliverable produced by an OASIS Technical
Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances
of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such
proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from
the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at
any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name “OASIS” is a trademark of OASIS, the owner and developer of this specification, and should be used only to
refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifi-
cations, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/

policies-guidelines/trademark for above guidance.
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PART 0. OVERVIEW

Part 0: Overview

0.1 Introduction

The Advanced Message Queuing Protocol is an open internet protocol for business messaging.

AMQP is comprised of several layers. The lowest level defines an efficient, binary, peer-to-peer protocol for
transporting messages between two processes over a network. Above this, the messaging layer defines an
abstract message format, with concrete standard encoding. Every compliant AMQP process MUST be able to
send and receive messages in this standard encoding.

0.1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this specification are to be interpreted as described in IETF
RFC 2119 [RFC2119].

The authoritative form of the AMQP specification consists of a set of XML source documents. These documents
are transformed into PDF and HTML representations for readability. The machine readable version of the AMQP
DTD describes the XML used for the authoritative source documents. This DTD includes the definition of the
syntax used in the excerpts of XML presented in the PDF and HTML representations.

0.1.2 Normative References

[ASCII]
American National Standards Institute, Inc., American National Standard for Information Systems, Coded Char-
acter Sets - 7-Bit American National Standard Code for Information Interchange (7-Bit ASCII), ANSI X3.4-1986,
March 26, 1986.

[BCP47]
A. Phillips, Ed., M. Davis, Ed., Tags for Identifying Languages. IETF BCP: 47, September 2009.
http://www.ietf.org/rfc/bcp/bcp47.txt

[IANAHTTPPARAMS]
IANA (Internet Assigned Numbers Authority), Hypertext Transfer Protocol (HTTP) Parameters.
http://www.iana.org/assignments/http-parameters/http-parameters.xml

[IANAPEN]
IANA (Internet Assigned Numbers Authority), Private Enterprise Numbers.
http://www.iana.org/assignments/enterprise-numbers

[IANASUBTAG]
IANA (Internet Assigned Numbers Authority), Language Subtag Registry.
http://www.iana.org/assignments/language-subtag-registry

[IEEE754]
Standard for Floating-Point Arithmetic. IEEE 754-2008, August 2008.
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

[IEEE1003]
The Single UNIX Specification, Version 4. IEEE Std 1003.1-2008, December 2008.
http://www.unix.org/version4/
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[RFC1982]
R. Elz, R. Bush, Serial Number Arithmetic. IETF RFC 1982, August 1996.
http://www.ietf.org/rfc/rfc1982.txt

[RFC2046]
N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. IETF RFC 2046,
November 1996.
http://www.ietf.org/rfc/rfc2046.txt

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels. IETF RFC 2119, March 1997.
http://www.ietf.org/rfc/rfc2119.txt

[RFC2234]
D. Crocker, Ed., P. Overell, Augmented BNF for Syntax Specifications: ABNF. IETF RFC 2234, November 1997.
http://www.ietf.org/rfc/rfc2234.txt

[RFC2616]
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Hypertext Transfer Protocol –
HTTP/1.1. IETF RFC 2616, June 1999.
http://www.ietf.org/rfc/rfc2616.txt

[RFC4122]
P. Leach, M. Mealling, R. Salz, A Universally Unique IDentifier (UUID) URN Namespace. IETF RFC 4122, July
2005.
http://www.ietf.org/rfc/rfc4122.txt

[RFC4366]
S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, T. Wright, Transport Layer Security (TLS) Extensions.
IETF RFC 4366, April 2006.
http://www.ietf.org/rfc/rfc4366.txt

[RFC4422]
A. Melnikov, Ed., K. Zeilenga, Ed., Simple Authentication and Security Layer (SASL). IETF RFC 4422, June 2006.
http://www.ietf.org/rfc/rfc4422.txt

[RFC4616]
K. Zeilenga, Ed., The PLAIN Simple Authentication and Security Layer (SASL) Mechanism. IETF RFC 4616,
August 2006.
http://www.ietf.org/rfc/rfc4616.txt

[RFC5246]
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0.1.3 Non-normative References

[AMQPCONNCAP]
AMQP Capabilities Registry: Connection Capabilities
http://www.amqp.org/specification/1.0/connection-capabilities

[AMQPCONNPROP]
AMQP Capabilities Registry: Connection Properties
http://www.amqp.org/specification/1.0/connection-properties

[AMQPDELANN]
AMQP Capabilities Registry: Delivery Annotations
http://www.amqp.org/specification/1.0/delivery-annotations

[AMQPDISTMODE]
AMQP Capabilities Registry: Distribution Modes
http://www.amqp.org/specification/1.0/distribution-modes

[AMQPFILTERS]
AMQP Capabilities Registry: Filters
http://www.amqp.org/specification/1.0/filters

[AMQPFOOTER]
AMQP Capabilities Registry: Footer
http://www.amqp.org/specification/1.0/footer

[AMQPLINKCAP]
AMQP Capabilities Registry: Link Capabilities
http://www.amqp.org/specification/1.0/link-capabilities

[AMQPLINKPROP]
AMQP Capabilities Registry: Link Properties
http://www.amqp.org/specification/1.0/link-properties

[AMQPLINKSTATEPROP]
AMQP Capabilities Registry: Link State Properties
http://www.amqp.org/specification/1.0/link-state-properties

[AMQPMESSANN]
AMQP Capabilities Registry: Message Annotations
http://www.amqp.org/specification/1.0/message-annotations

[AMQPNODEPROP]
AMQP Capabilities Registry: Node Properties
http://www.amqp.org/specification/1.0/node-properties

[AMQPSESSCAP]
AMQP Capabilities Registry: Session Capabilities
http://www.amqp.org/specification/1.0/session-capabilities

[AMQPSESSPROP]
AMQP Capabilities Registry: Session Properties
http://www.amqp.org/specification/1.0/session-properties

[AMQPSOURCECAP]
AMQP Capabilities Registry: Source Capabilities
http://www.amqp.org/specification/1.0/source-capabilities

[AMQPTARGETCAP]
AMQP Capabilities Registry: Target Capabilities
http://www.amqp.org/specification/1.0/target-capabilities

amqp-core-complete-v1.0-cs01
Standards Track Work Product Copyright c© OASIS Open 2012. All Rights Reserved.

18 July 2012
Page 9 of 124

http://www.amqp.org/specification/1.0/connection-capabilities
http://www.amqp.org/specification/1.0/connection-properties
http://www.amqp.org/specification/1.0/delivery-annotations
http://www.amqp.org/specification/1.0/distribution-modes
http://www.amqp.org/specification/1.0/filters
http://www.amqp.org/specification/1.0/footer
http://www.amqp.org/specification/1.0/link-capabilities
http://www.amqp.org/specification/1.0/link-properties
http://www.amqp.org/specification/1.0/link-state-properties
http://www.amqp.org/specification/1.0/message-annotations
http://www.amqp.org/specification/1.0/node-properties
http://www.amqp.org/specification/1.0/session-capabilities
http://www.amqp.org/specification/1.0/session-properties
http://www.amqp.org/specification/1.0/source-capabilities
http://www.amqp.org/specification/1.0/target-capabilities


PART 0. OVERVIEW 0.2 Conformance

0.2 Conformance

AMQP defines a wire level protocol for business messaging. The definition allows for all common business mes-
saging behaviors. AMQP does not define a wire-level distinction between “clients” and “brokers”, the protocol is
symmetric. It is expected and encouraged that implementations of AMQP will have different capabilities. Expec-
tations of the capabilities of a “client library” are different from expectations of a “broker” which are themselves
different from the capabilities of a “router”. As relevant profiles emerge (where appropriate and applicable) these
will be formalised.

A conformant implementation MUST perform protocol negotiation (see Part 2: section 2.2), and then parse,
process, and produce frames in accordance with the format and semantics defined in parts 1 through 5 of this
specification.

Conformant implementations MUST NOT require the use of any extensions defined outside this document in order
to interoperate with any other conformant implementation.

Part 1 of this document defines the type system and type encodings that every conformant implementation MUST
implement.

Part 2 defines the peer-to-peer transport protocol which operates over TCP. Every conformant implementation of
AMQP over TCP MUST implement Part 2. Future standards mapping AMQP to protocols other than TCP MAY
modify or replace Part 2 when AMQP is being used over that protocol. A conformant implementation MUST
implement Part 2 or a mapping of AMQP to some non-TCP protocol.

Part 2 admits behaviors that might not be appropriate for every implementation. For example a “client library” might
not allow for its communication partner to spontaneously attempt to initiate a connection and request messages.
Where an implementation does not allow for a behavior the implementation MUST respond according to the rules
defined within Part 2 of the specification.

Part 3 of this document defines the AMQP Messaging Layer. Every conformant implementation which processes
messages MUST implement this part of the specification.

Some implementations might not process messages (for example, an implementation acting as a “router” which
looks only at the routing information carried by the AMQP Transport layer). Such implementations do not actively
implement Part 3, but MUST NOT act in ways which violate the rules of this part of the specification.

The Messaging layer admits behaviors that might not be appropriate for all implementations (and within an im-
plementation all behaviors might not be available for all configurations). Where a behavior is not admitted, the
implementation MUST respond according to the rules defined within this specification.

Part 4 defines the requirements for transactional messaging. Transactional messaging defines two roles, that
of the transactional resource and that of the transaction controller. A conformant implementation SHOULD be
capable of operating in one of these roles but MAY be unable to operate in either (for instance a simplistic client
library might have no ability to act as a transaction controller and would not be expected to act as a transactional
resource).

It is RECOMMENDED that implementations designed to act as messaging intermediaries support the ability to act
as a transactional resource. It is RECOMMENDED that implementations or re-usable libraries provide Application
Programming Interfaces to enable them to act as transactional controllers.

Where a behavior is not admitted, the rules defined in part 4 regarding responses to non-admitted behaviors
MUST be followed.

Part 5 defines Security Layers to provide an authenticated and/or encrypted transport. Implementations SHOULD
allow the configuration of appropriate levels of security for the domain in which they are to be deployed.

Conformant implementations acting in the TCP server role are strongly RECOMMENDED to implement Part 5:
section 5.2 (or Part 5: 5.2.1 Alternative Establishment). Implementations acting in the TCP server role are strongly
RECOMMENDED to implement Part 5: section 5.3 and to support commonly used SASL mechanisms. In partic-
ular such implementations SHOULD support the PLAIN [RFC4616] and SCRAM-SHA1 [RFC5802] mechanisms.
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PART 1. TYPES

Part 1: Types

1.1 Type System

The AMQP type system defines a set of commonly used primitive types for interoperable data representation.
AMQP values can be annotated with additional semantic information beyond that associated with the primitive
type. This allows for the association of an AMQP value with an external type that is not present as an AMQP
primitive. For example, a URL is commonly represented as a string, however not all strings are valid URLs,
and many programming languages and/or applications define a specific type to represent URLs. The AMQP
type system would allow for the definition of a code with which to annotate strings when the value is intended to
represent a URL.

1.1.1 Primitive Types

The AMQP type system defines a standard set of primitive types for representing both common scalar values and
common collections. The scalar types include booleans, integral numbers, floating point numbers, timestamps,
UUIDs, characters, strings, binary data, and symbols. The collection types include arrays (monomorphic), lists
(polymorphic), and maps.

1.1.2 Described Types

The primitive types defined by AMQP can directly represent many of the basic types present in most popular
programming languages, and therefore can be trivially used to exchange basic data. In practice, however, even
the simplest applications have their own set of custom types used to model concepts within the application’s
domain. In messaging applications these custom types need to be externalized for transmission.

AMQP provides a means to do this by allowing any AMQP type to be annotated with a descriptor. A descriptor
forms an association between a custom type, and an AMQP type. This association indicates that the AMQP type
is actually a representation of the custom type. The resulting combination of the AMQP type and its descriptor is
referred to as a described type.

A described type contains two distinct kinds of type information. It identifies both an AMQP type and a custom
type (as well as the relationship between them), and so can be understood at two different levels. An application
with intimate knowledge of a given domain can understand described types as the custom types they represent,
thereby decoding and processing them according to the complete semantics of the domain. An application with
no intimate knowledge can still understand the described types as AMQP types, decoding and processing them
as such.

1.1.3 Composite Types

AMQP defines a number of composite types used for encoding structured data such as frame bodies. A composite
type defines a composite value where each constituent value is identified by a well-known named field. Each
composite type definition includes an ordered sequence of fields, each with a specified name, type, and multiplicity.
Composite type definitions also include one or more descriptors (symbolic and/or numeric) for identifying their
defined representations. Composite types are formally defined using the XML notation defined in section 1.3.
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1.1.4 Restricted Types

AMQP defines the notion of a restricted type. This is a new type derived from an existing type where the permitted
values of the new type are a subset of the values of the existing type. Restricted types are commonly used
programming constructs, the most frequent being “enumerations” which in AMQP terminology are restrictions of
the integral types. However, the AMQP notion of restricted types can also represent more open ended restrictions
such as a URL which can be thought of as a restriction of the string type.

A restricted type definition might limit the permitted values to either a pre-defined fixed set, or an open-ended set.
In the former case, each permitted value is called a choice and all possible choices are listed in the formal type
definition. In the latter case, the nature of the restriction is specified as text in the formal type definition.

The existing type from which a restricted type is derived is referred to as the source type for the restriction. A
restricted type might or might not be annotated with a descriptor on the wire depending on the formal definition for
the type.

1.2 Type Encodings

An AMQP encoded data stream consists of untyped bytes with embedded constructors. The embedded con-
structor indicates how to interpret the untyped bytes that follow. Constructors can be thought of as functions that
consume untyped bytes from an open ended byte stream and construct a typed value. An AMQP encoded data
stream always begins with a constructor.

constructor untyped bytes
| |

+--+ +-----------------+-----------------+
| | | |

... 0xA1 0x1E "Hello Glorious Messaging World" ...
| | | | |
| | | utf8 bytes |
| | | |
| | # of data octets |
| | |
| +-----------------+-----------------+
| |
| string value encoded according
| to the str8-utf8 encoding
|

primitive format code
for the str8-utf8 encoding

Figure 1.1: Primitive Format Code (String)

An AMQP constructor consists of either a primitive format code, or a described format code. A primitive format
code is a constructor for an AMQP primitive type. A described format code consists of a descriptor and a primitive
format-code. A descriptor defines how to produce a domain specific type from an AMQP primitive value.
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constructor untyped bytes
| |

+-----------+-----------+ +-----------------+-----------------+
| | | |

... 0x00 0xA1 0x03 "URL" 0xA1 0x1E "http://example.org/hello-world" ...
| | | | |
+------+------+ | | |

| | | |
descriptor | +------------------+----------------+

| |
| string value encoded according
| to the str8-utf8 encoding
|

primitive format code
for the str8-utf8 encoding

(Note: this example shows a string-typed descriptor, which is
considered reserved)

Figure 1.2: Described Format Code (URL)

The descriptor portion of a described format code is itself any valid AMQP encoded value, including other de-
scribed values. The formal BNF for constructors is given below.

constructor = format-code
/ %x00 descriptor constructor

format-code = fixed / variable / compound / array
fixed = empty / fixed-one / fixed-two / fixed-four

/ fixed-eight / fixed-sixteen
variable = variable-one / variable-four
compound = compound-one / compound-four

array = array-one / array-four

descriptor = value
value = constructor untyped-bytes

untyped-bytes = *OCTET ; this is not actually *OCTET, the
; valid byte sequences are restricted
; by the constructor

; fixed width format codes
empty = %x40-4E / %x4F %x00-FF

fixed-one = %x50-5E / %x5F %x00-FF
fixed-two = %x60-6E / %x6F %x00-FF

fixed-four = %x70-7E / %x7F %x00-FF
fixed-eight = %x80-8E / %x8F %x00-FF

fixed-sixteen = %x90-9E / %x9F %x00-FF

; variable width format codes
variable-one = %xA0-AE / %xAF %x00-FF

variable-four = %xB0-BE / %xBF %x00-FF

; compound format codes
compound-one = %xC0-CE / %xCF %x00-FF

compound-four = %xD0-DE / %xDF %x00-FF

; array format codes
array-one = %xE0-EE / %xEF %x00-FF

array-four = %xF0-FE / %xFF %x00-FF

Figure 1.3: Constructor BNF

Format codes map to one of four different categories: fixed width, variable width, compound and array. Values
encoded within each category share the same basic structure parameterized by width. The subcategory within a
format-code identifies both the category and width.

Fixed Width The size of fixed-width data is determined based solely on the subcategory of the format
code for the fixed width value.
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Variable Width The size of variable-width data is determined based on an encoded size that prefixes the
data. The width of the encoded size is determined by the subcategory of the format code
for the variable width value.

Compound Compound data is encoded as a size and a count followed by a polymorphic sequence of
count constituent values. Each constituent value is preceded by a constructor that indicates
the semantics and encoding of the data that follows. The width of the size and count is
determined by the subcategory of the format code for the compound value.

Array Array data is encoded as a size and count followed by an array element constructor followed
by a monomorphic sequence of values encoded according to the supplied array element
constructor. The width of the size and count is determined by the subcategory of the format
code for the array.

The bits within a format code can be interpreted according to the following layout:

Bit: 7 6 5 4 3 2 1 0
+------------------------------------+ +----------+
| subcategory | subtype | | ext-type |
+------------------------------------+ +----------+

1 octet 1 octet
| |
+-------------------------------------------------+

|
format-code

ext-type: only present if subtype is 0xF

Figure 1.4: Format Code Layout

The following table describes the subcategories of format-codes:

Subcategory Category Format
==============================================================================
0x4 Fixed Width Zero octets of data.
0x5 Fixed Width One octet of data.
0x6 Fixed Width Two octets of data.
0x7 Fixed Width Four octets of data.
0x8 Fixed Width Eight octets of data.
0x9 Fixed Width Sixteen octets of data.

0xA Variable Width One octet of size, 0-255 octets of data.
0xB Variable Width Four octets of size, 0-4294967295 octets of data.

0xC Compound One octet each of size and count, 0-255 distinctly
typed values.

0xD Compound Four octets each of size and count, 0-4294967295
distinctly typed values.

0xE Array One octet each of size and count, 0-255 uniformly
typed values.

0xF Array Four octets each of size and count, 0-4294967295
uniformly typed values.

Figure 1.5: Subcategory Formats

Please note, unless otherwise specified, AMQP uses network byte order for all numeric values.

1.2.1 Fixed Width

The width of a specific fixed width encoding can be computed from the subcategory of the format code for the
fixed width value:
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n OCTETs
+----------+
| data |
+----------+

Subcategory n
=================
0x4 0
0x5 1
0x6 2
0x7 4
0x8 8
0x9 16

Figure 1.6: Layout of Fixed Width Data Encodings

1.2.2 Variable Width

All variable width encodings consist of a size in octets followed by size octets of encoded data. The width of the
size for a specific variable width encoding can be computed from the subcategory of the format code:

n OCTETs size OCTETs
+----------+-------------+
| size | value |
+----------+-------------+

Subcategory n
=================
0xA 1
0xB 4

Figure 1.7: Layout of Variable Width Data Encodings

1.2.3 Compound

All compound encodings consist of a size and a count followed by count encoded items. The width of the size and
count for a specific compound encoding can be computed from the category of the format code:

+----------= count items =----------+
| |

n OCTETs n OCTETs | |
+----------+----------+--------------+------------+-------+
| size | count | ... /| item |\ ... |
+----------+----------+------------/ +------------+ \-----+

/ / \ \
/ / \ \
/ / \ \
+-------------+----------+
| constructor | data |
+-------------+----------+

Subcategory n
=================
0xC 1
0xD 4

Figure 1.8: Layout of Compound Data Encodings

1.2.4 Array

All array encodings consist of a size followed by a count followed by an element constructor followed by count
elements of encoded data formated as REQUIRED by the element constructor:
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+--= count elements =--+
| |

n OCTETs n OCTETs | |
+----------+----------+---------------------+-------+------+-------+
| size | count | element-constructor | ... | data | ... |
+----------+----------+---------------------+-------+------+-------+

Subcategory n
=================
0xE 1
0xF 4

Figure 1.9: Layout of Array Encodings

1.3 Type Notation

Types are formally specified using an XML notation described below. Please note that this XML notation is used
only to define the type and is never used to represent encoded data. All encoded AMQP data is binary as
described in section 1.2.

The type element formally defines a semantic type used to exchange data on the wire. Every type definition has
the following general form. The child elements present depend upon the class of the type definition (primitive,
composite, or restricted):

<type class="primitive|composite|restricted" name="..." label="..." provides="...">
...

</type>

Figure 1.10: Type Definitions

The attributes of a type definition specify the following:

name The name of the type.

label A short description of the type.

class A string identifying what class of type is being defined: “primitive”, “composite”, or “re-
stricted”.

provides A comma separated list of archetypes (see field element).

There are three different classes of types identified by the “class” attribute: primitive, composite, and restricted.

1.3.1 Primitive Type Notation

A “primitive” type definition will contain one or more encoding elements that describe how the data is formatted on
the wire. Primitive types do not contain the descriptor, field, or choice elements.

<type class="primitive" name="..." label="..." provides="...">
<encoding ... > ... </encoding>
...
<encoding ... > ... </encoding>

</type>

Figure 1.11: Primitive Type Definitions
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The encoding element defines how a primitive type is encoded. The specification defines 4 general categories
of encodings: fixed, variable, compound, and array. A specific encoding provides further details of how data is
formatted within its general category.

<type class="primitive" ... >
...
<encoding name="..." code="0xNN" category="fixed|variable|compound|array" width="N" label="..."/>
...

</type>

Figure 1.12: Encoding Definitions

name The name of the encoding.

label A short description of the encoding.

code The numeric value that prefixes the encoded data on the wire.

category The category of the encoding: “fixed”, “variable”, “compound”, or “array”.

width The width of the encoding or the size/count prefixes depending on the category.

1.3.2 Composite Type Notation

A “composite” type definition specifies a new kind of record type, i.e., a type composed of a fixed number of fields
whose values are each of a specific type. A composite type does not have a new encoding, but is sent on the
wire as a list annotated by a specific descriptor value that identifies it as a representation of the defined composite
type. A composite type definition will contain a descriptor and zero or more field elements. Composite types do
not contain encoding or choice elements. The source attribute of a composite type will always be “list”, other
values are reserved for future use.

<type class="composite" name="..." label="..." provides="...">
<descriptor name="..." code="..."/>
<field name="..." ... > ... </field>
...
<field name="..." ... > ... </field>

</type>

Figure 1.13: Composite Type Definitions

1.3.3 Descriptor Notation

The descriptor element specifies what annotation is used to identify encoded values as representations of a
described type.

<type class="composite|restricted" ...>
...
<!-- domain-id:descriptor-id -->
<descriptor name="domain:name" code="0xNNNNNNNN:0xNNNNNNNN"/>
...

</type>

Figure 1.14: Descriptor Definitions

name A symbolic name for the representation.

code The numeric value.
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1.3.4 Field Notation

The field element identifies a field within a composite type. Every field has the following attributes:

<type class="composite" ...>
...
<field name="..." type="..." requires="..." default="..." label="..."

mandatory="true|false"
multiple="true|false" />

...
</type>

Figure 1.15: Field Definitions

name A name that uniquely identifies the field within the type.

type The type of the field. This attribute defines the range of values that are permitted to appear
in this field. It might name a specific type, in which case the values are restricted to that
type, or it might be the special character “*”, in which case a value of any type is permitted.
In the latter case the range of values might be further restricted by the requires attribute.

requires A comma separated list of archetypes. Field values are restricted to types providing at least
one of the specified archetypes.

default A default value for the field if no value is encoded.

label A short description of the field.

mandatory “true” iff a non null value for the field is always encoded.

multiple “true” iff the field can have multiple values of its specified type.

1.3.5 Restricted Type Notation

A “restricted” type definition specifies a new kind of type whose values are restricted to a subset of the values that
might be represented with another type. The source attribute identifies the base type from which a restricted type
is derived. A restricted type can have a descriptor element in which case it is identified by a descriptor on the wire.
The values permitted by a restricted type can be specified either via documentation, or directly limited to a fixed
number of values by the choice elements contained within the definition.

<type class="restricted" name="..." label="..." provides="...">
<descriptor name="..." code="..."/>
<choice name="..." value="..."/>
...
<choice name="..." value="..."/>

</type>

Figure 1.16: Restricted Type Definitions

The choice element identifies a legal value for a restricted type. The choice element has the following attributes:

<type class="restricted" ...>
...
<choice name="..." value="..."/>
...

</type>

Figure 1.17: Choice Definitions
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name A name for the value.

value The permitted value.

1.4 Composite Type Representation

AMQP composite types are represented as a described list. Each element in the list is positionally correlated with
the fields listed in the composite type definition. The permitted element values are determined by the type speci-
fication and multiplicity of the corresponding field definitions. When the trailing elements of the list representation
are null, they MAY be omitted. The descriptor of the list indicates the specific composite type being represented.

<type class="composite" name="book" label="example composite type">
<doc>
<p>An example composite type.</p>

</doc>

<descriptor name="example:book:list" code="0x00000003:0x00000002"/>

<field name="title" type="string" mandatory="true" label="title of the book"/>

<field name="authors" type="string" multiple="true"/>

<field name="isbn" type="string" label="the ISBN code for the book"/>
</type>

Figure 1.18: Example Composite Type

The mandatory attribute of a field description controls whether a null element value is permitted in the represen-
tation.

The multiple attribute of a field description controls whether multiple element values are permitted in the repre-
sentation. A single element of the type specified in the field description is always permitted. Multiple values are
represented by the use of an array where the type of the elements in the array is the type defined in the field
definition. Note that a null value and a zero-length array (with a correct type for its elements) both describe an
absence of a value and MUST be treated as semantically identical.

A field which is defined as both multiple and mandatory MUST contain at least one value (i.e. for such a field both
null and an array with no entries are invalid).

The described list shown below is an example composite value of the book type defined above. A trailing null
element corresponding to the absence of an ISBN value is depicted in the example, but can optionally be omitted
according to the encoding rules.

amqp-core-complete-v1.0-cs01
Standards Track Work Product Copyright c© OASIS Open 2012. All Rights Reserved.

18 July 2012
Page 24 of 124



PART 1. TYPES 1.5 Descriptor Values

constructor list representation of a book
| |

+-----------------+-------------------+ +-------------+---------------+
| | | |
0x00 0xA3 0x11 "example:book:list" 0xC0 0x40 0x03 title authors isbn

| | | | |
| identifies composite type | | |
| | | 0x40

sym8 +----------------------+ | |
(symbol) | | null value

+--------------+----------------+ |
| | |
0xA1 0x15 "AMQP for & by Dummies" |

|
+------------------------------------------------------------+-----+
| |
0xE0 0x25 0x02 0xA1 0x0E "Rob J. Godfrey" 0x13 "Rafael H. Schloming"

| | | | | | |
size | | +---------+---------+ +-----------+------------+

| | | |
count | first element second element

|
element constructor

Figure 1.19: Example Composite Value

1.5 Descriptor Values

Descriptor values other than symbolic (symbol) or numeric (ulong) are, while not syntactically invalid, reserved -
this includes numeric types other than ulong. To allow for users of the type system to define their own descriptors
without collision of descriptor values, an assignment policy for symbolic and numeric descriptors is given below.

The namespace for both symbolic and numeric descriptors is divided into distinct domains. Each domain has a
defined symbol and/or 4 byte numeric id assigned by the AMQP working group. For numeric ids the assigned
domain-id will be equal to the IANA Private Enterprise Number (PEN) of the requesting organisation [IANAPEN]
with domain-id 0 reserved for descriptors defined in the AMQP specification.

Descriptors are then assigned within each domain according to the following rules:

symbolic descriptors
<domain>:<name>

numeric descriptors
(domain-id << 32) | descriptor-id

1.6 Primitive Type Definitions

1.6.1 null

Indicates an empty value.

<type name="null" class="primitive">

<encoding code="0x40" category="fixed" width="0" label="the null value"/>

</type>

1.6.2 boolean

Represents a true or false value.
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<type name="boolean" class="primitive">

<encoding code="0x56" category="fixed" width="1"

label="boolean with the octet 0x00 being false and octet 0x01 being true"/>

<encoding name="true" code="0x41" category="fixed" width="0" label="the boolean value true"/>

<encoding name="false" code="0x42" category="fixed" width="0" label="the boolean value false"/>

</type>

1.6.3 ubyte

Integer in the range 0 to 28 - 1 inclusive.

<type name="ubyte" class="primitive">

<encoding code="0x50" category="fixed" width="1" label="8-bit unsigned integer"/>

</type>

1.6.4 ushort

Integer in the range 0 to 216 - 1 inclusive.

<type name="ushort" class="primitive">

<encoding code="0x60" category="fixed" width="2"

label="16-bit unsigned integer in network byte order"/>

</type>

1.6.5 uint

Integer in the range 0 to 232 - 1 inclusive.

<type name="uint" class="primitive">

<encoding code="0x70" category="fixed" width="4"

label="32-bit unsigned integer in network byte order"/>

<encoding name="smalluint" code="0x52" category="fixed" width="1"

label="unsigned integer value in the range 0 to 255 inclusive"/>

<encoding name="uint0" code="0x43" category="fixed" width="0" label="the uint value 0"/>

</type>

1.6.6 ulong

Integer in the range 0 to 264 - 1 inclusive.

<type name="ulong" class="primitive">

<encoding code="0x80" category="fixed" width="8"

label="64-bit unsigned integer in network byte order"/>

<encoding name="smallulong" code="0x53" category="fixed" width="1"

label="unsigned long value in the range 0 to 255 inclusive"/>

<encoding name="ulong0" code="0x44" category="fixed" width="0" label="the ulong value 0"/>

</type>

1.6.7 byte

Integer in the range −(27) to 27 - 1 inclusive.
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<type name="byte" class="primitive">

<encoding code="0x51" category="fixed" width="1"

label="8-bit two’s-complement integer"/>

</type>

1.6.8 short

Integer in the range −(215) to 215 - 1 inclusive.

<type name="short" class="primitive">

<encoding code="0x61" category="fixed" width="2"

label="16-bit two’s-complement integer in network byte order"/>

</type>

1.6.9 int

Integer in the range −(231) to 231 - 1 inclusive.

<type name="int" class="primitive">

<encoding code="0x71" category="fixed" width="4"

label="32-bit two’s-complement integer in network byte order"/>

<encoding name="smallint" code="0x54" category="fixed" width="1"

label="8-bit two’s-complement integer"/>

</type>

1.6.10 long

Integer in the range −(263) to 263 - 1 inclusive.

<type name="long" class="primitive">

<encoding code="0x81" category="fixed" width="8"

label="64-bit two’s-complement integer in network byte order"/>

<encoding name="smalllong" code="0x55" category="fixed" width="1"

label="8-bit two’s-complement integer"/>

</type>

1.6.11 float

32-bit floating point number (IEEE 754-2008 binary32).

<type name="float" class="primitive">

<encoding name="ieee-754" code="0x72" category="fixed" width="4" label="IEEE 754-2008 binary32"/>

</type>

A 32-bit floating point number (IEEE 754-2008 binary32 [IEEE754]).

1.6.12 double

64-bit floating point number (IEEE 754-2008 binary64).

<type name="double" class="primitive">

<encoding name="ieee-754" code="0x82" category="fixed" width="8" label="IEEE 754-2008 binary64"/>

</type>

A 64-bit floating point number (IEEE 754-2008 binary64 [IEEE754]).
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1.6.13 decimal32

32-bit decimal number (IEEE 754-2008 decimal32).

<type name="decimal32" class="primitive">

<encoding name="ieee-754" code="0x74" category="fixed" width="4"

label="IEEE 754-2008 decimal32 using the Binary Integer Decimal encoding"/>

</type>

A 32-bit decimal number (IEEE 754-2008 decimal32 [IEEE754]).

1.6.14 decimal64

64-bit decimal number (IEEE 754-2008 decimal64).

<type name="decimal64" class="primitive">

<encoding name="ieee-754" code="0x84" category="fixed" width="8"

label="IEEE 754-2008 decimal64 using the Binary Integer Decimal encoding"/>

</type>

A 64-bit decimal number (IEEE 754-2008 decimal64 [IEEE754]).

1.6.15 decimal128

128-bit decimal number (IEEE 754-2008 decimal128).

<type name="decimal128" class="primitive">

<encoding name="ieee-754" code="0x94" category="fixed" width="16"

label="IEEE 754-2008 decimal128 using the Binary Integer Decimal encoding"/>

</type>

A 128-bit decimal number (IEEE 754-2008 decimal128 [IEEE754]).

1.6.16 char

A single Unicode character.

<type name="char" class="primitive">

<encoding name="utf32" code="0x73" category="fixed" width="4"

label="a UTF-32BE encoded Unicode character"/>

</type>

A UTF-32BE encoded Unicode character [UNICODE6].

1.6.17 timestamp

An absolute point in time.

<type name="timestamp" class="primitive">

<encoding name="ms64" code="0x83" category="fixed" width="8"

label="64-bit two’s-complement integer representing milliseconds since the unix epoch"/>

</type>

Represents an approximate point in time using the Unix time t [IEEE1003] encoding of UTC, but with a precision
of milliseconds. For example, 1311704463521 represents the moment 2011-07-26T18:21:03.521Z.
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1.6.18 uuid

A universally unique identifier as defined by RFC-4122 section 4.1.2 .

<type name="uuid" class="primitive">

<encoding code="0x98" category="fixed" width="16"

label="UUID as defined in section 4.1.2 of RFC-4122"/>

</type>

UUID is defined in section 4.1.2 of RFC-4122 [RFC4122].

1.6.19 binary

A sequence of octets.

<type name="binary" class="primitive">

<encoding name="vbin8" code="0xa0" category="variable" width="1"

label="up to 2^8 - 1 octets of binary data"/>

<encoding name="vbin32" code="0xb0" category="variable" width="4"

label="up to 2^32 - 1 octets of binary data"/>

</type>

1.6.20 string

A sequence of Unicode characters.

<type name="string" class="primitive">

<encoding name="str8-utf8" code="0xa1" category="variable" width="1"

label="up to 2^8 - 1 octets worth of UTF-8 Unicode (with no byte order mark)"/>

<encoding name="str32-utf8" code="0xb1" category="variable" width="4"

label="up to 2^32 - 1 octets worth of UTF-8 Unicode (with no byte order mark)"/>

</type>

A string represents a sequence of Unicode characters as defined by the Unicode V6.0.0 standard [UNICODE6].

1.6.21 symbol

Symbolic values from a constrained domain.

<type name="symbol" class="primitive">

<encoding name="sym8" code="0xa3" category="variable" width="1"

label="up to 2^8 - 1 seven bit ASCII characters representing a symbolic value"/>

<encoding name="sym32" code="0xb3" category="variable" width="4"

label="up to 2^32 - 1 seven bit ASCII characters representing a symbolic value"/>

</type>

Symbols are values from a constrained domain. Although the set of possible domains is open-ended, typically
the both number and size of symbols in use for any given application will be small, e.g. small enough that it is
reasonable to cache all the distinct values. Symbols are encoded as ASCII characters [ASCII].

1.6.22 list

A sequence of polymorphic values.
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<type name="list" class="primitive">

<encoding name="list0" code="0x45" category="fixed" width="0"

label="the empty list (i.e. the list with no elements)"/>

<encoding name="list8" code="0xc0" category="compound" width="1"

label="up to 2^8 - 1 list elements with total size less than 2^8 octets"/>

<encoding name="list32" code="0xd0" category="compound" width="4"

label="up to 2^32 - 1 list elements with total size less than 2^32 octets"/>

</type>

1.6.23 map

A polymorphic mapping from distinct keys to values.

<type name="map" class="primitive">

<encoding name="map8" code="0xc1" category="compound" width="1"

label="up to 2^8 - 1 octets of encoded map data"/>

<encoding name="map32" code="0xd1" category="compound" width="4"

label="up to 2^32 - 1 octets of encoded map data"/>

</type>

A map is encoded as a compound value where the constituent elements form alternating key value pairs.

item 0 item 1 item n-1 item n
+-------+-------+----+---------+---------+
| key 1 | val 1 | .. | key n/2 | val n/2 |
+-------+-------+----+---------+---------+

Figure 1.20: Layout of Map Encoding

Map encodings MUST contain an even number of items (i.e. an equal number of keys and values). A map in
which there exist two identical key values is invalid. Unless known to be otherwise, maps MUST be considered
to be ordered, that is, the order of the key-value pairs is semantically important and two maps which are different
only in the order in which their key-value pairs are encoded are not equal.

1.6.24 array

A sequence of values of a single type.

<type name="array" class="primitive">

<encoding name="array8" code="0xe0" category="array" width="1"

label="up to 2^8 - 1 array elements with total size less than 2^8 octets"/>

<encoding name="array32" code="0xf0" category="array" width="4"

label="up to 2^32 - 1 array elements with total size less than 2^32 octets"/>

</type>
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Part 2: Transport

2.1 Transport

2.1.1 Conceptual Model

An AMQP network consists of nodes connected via links. Nodes are named entities responsible for the safe
storage and/or delivery of messages. Messages can originate from, terminate at, or be relayed by nodes.

A link is a unidirectional route between two nodes. A link attaches to a node at a terminus. There are two kinds of
terminus: sources and targets. A terminus is responsible for tracking the state of a particular stream of incoming
or outgoing messages. Sources track outgoing messages and targets track incoming messages. Messages only
travel along a link if they meet the entry criteria at the source.

As a message travels through an AMQP network, the responsibility for safe storage and delivery of the message
is transferred between the nodes it encounters. The link protocol (defined in section 2.6) manages the transfer of
responsibility between the source and target.

+------------+ +------------+
/ Node A \ / Node B \

+----------------+ +--filter +----------------+
| | / | |
| MSG_3 <MSG_1> | _/ _ | MSG_1 |
| |(_)------------------>(_)| |
| <MSG_2> MSG_4 | | | | MSG_2 |
| | | Link(Src,Tgt) | | |
+----------------+ | | +----------------+

| |
Src Tgt

Key: <MSG_n> = old location of MSG_n

Figure 2.1: Message Transfer between Nodes

Nodes exist within a container. Examples of containers are brokers and client applications. Each container MAY
hold many nodes. Examples of AMQP nodes are producers, consumers, and queues. Producers and consumers
are the elements within an application that generate and process messages. Queues are entities that store and
forward messages.

+---------------+ +----------+
| <<Container>> | 1..1 0..n | <<Node>> |
|---------------|<>-------------------->|----------|
| container-id | | name |
+---------------+ +----------+

/_\ /_\
| |
| |

+-----+-----+ +----------+----------+
| | | | |
| | | | |

+--------+ +--------+ +----------+ +----------+ +-------+
| Broker | | Client | | Producer | | Consumer | | Queue |
|--------| |--------| |----------| |----------| |-------|
| | | | | | | | | |
+--------+ +--------+ +----------+ +----------+ +-------+

Figure 2.2: Class Diagram of Concrete Containers and Nodes
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2.1.2 Communication Endpoints

The AMQP transport specification defines a peer-to-peer protocol for transferring messages between nodes in an
AMQP network. This portion of the specification is not concerned with the internal workings of any sort of node,
and only deals with the mechanics of unambiguously transferring a message from one node to another.

In order for communication to occur between nodes in different containers a connection needs be established.

Client App Broker
+-------------+ +-------------+
| |################################| |
| +---+ | | +---+ |
| | C | | Connection | | Q | |
| +-+-+ | | +-+-+ |
| | |################################| | |
+-----|-------+ +------|------+

| |
Consumer Queue
(Node) (Node)

Figure 2.3: An AMQP Connection

An AMQP connection consists of a full-duplex, reliably ordered sequence of frames. A frame is the unit of work
carried on the wire. Connections have a negotiated maximum frame size allowing byte streams to be easily
defragmented into complete frame bodies representing the independently parsable units formally defined in sec-
tion 2.7. The precise requirement for a connection is that if the nth frame arrives, all frames prior to n MUST also
have arrived. It is assumed connections are transient and can fail for a variety of reasons resulting in the loss
of an unknown number of frames, but they are still subject to the aforementioned ordered reliability criteria. This
is similar to the guarantee that TCP or SCTP provides for byte streams, and the specification defines a framing
system used to parse a byte stream into a sequence of frames for use in establishing an AMQP connection (see
section 2.3).

An AMQP connection is divided into a negotiated number of independent unidirectional channels. Each frame
is marked with the channel number indicating its parent channel, and the frame sequence for each channel is
multiplexed into a single frame sequence for the connection.

An AMQP session correlates two unidirectional channels to form a bidirectional, sequential conversation between
two containers. Sessions provide a flow control scheme based on the number of transfer frames transmitted.
Since frames have a maximum size for a given connection, this provides flow control based on the number of
bytes transmitted and can be used to optimize performance.

Client App Broker
+-------------+ +-------------+
| |################################| |
| +---+ |--------------------------------| +---+ |
| | C | | Session | | Q | |
| +---+ |--------------------------------| +---+ |
| |################################| |
+-------------+ +-------------+

Figure 2.4: An AMQP Session

A single connection MAY have multiple independent sessions active simultaneously, up to the negotiated channel
limit. Both connections and sessions are modeled by each peer as endpoints that store local and last known
remote state regarding the connection or session in question.
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Session<------+ +------>Session
(ICH=1, OCH=1) | | (ICH=1, OCH=1)

\|/ \|/
Session<--> Connection <---------> Connection <-->Session

(ICH=2, OCH=3) /|\ /|\ (ICH=3, OCH=2)
| |

Session<------+ +------>Session
(ICH=3, OCH=2) (ICH=2, OCH=3)

Key: ICH -> Input Channel, OCH -> Output Channel

Figure 2.5: Session & Connection Endpoints

In order to transfer messages between nodes (e.g., to move messages from a queue to a consumer) a link needs
to be established between the nodes. A link is a unidirectional route between two nodes. A link attaches to a
node at a terminus. There are two kinds of terminus: sources and targets. A terminus is responsible for tracking
the state of a particular stream of incoming or outgoing messages. Sources track outgoing messages and targets
track incoming messages. Messages only travel along a link if they meet the entry criteria at the source.

Links provide a credit-based flow control scheme based on the number of messages transmitted, allowing appli-
cations to control which nodes to receive messages from at a given point (e.g., to explicitly fetch a message from
a given queue).

Client App Broker
+-------------+ +-------------+
| |################################| |
| +---+ |--------------------------------| +---+ |
| | C |O<=================+======================O| Q | |
| +---+ \ |-------------|------------------| |+---+ |
| \ |#############|##################| | |
+-----------\-+ | +---|---------+

\ | |
Target | Source

Link

Figure 2.6: An AMQP Link

Sessions provide the context for communication between sources and targets. A link endpoint associates a
terminus with a session endpoint. Within a session, the link protocol (defined in section 2.6) is used to establish
links between sources and targets and to transfer messages across them. A single session can be simultaneously
associated with any number of links.

Links are named, and the state at the termini can live longer than the connection on which they were established.

Client App Broker
+-------------+ +-------------+
| | | |
| +---+ | | +---+ |
| | C |O<=| | | |=O| Q | |
| +---+| | | |+---+ |
| | | | | |
+--------|----+ +---|---------+

| |
| |

State retained State retained
at Target at Source

Figure 2.7: Connection Loss

The retained state at the termini can be used to reestablish the link on a new connection (and session) with precise
control over delivery guarantees (e.g., ensuring “exactly once” delivery).
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Client App Broker
+-------------+ +-------------+
| |################################| |
| +---+ |--------------------------------| +---+ |
| | C |O<========================================O| Q | |
| +---+ |--------------------------------| +---+ |
| |################################| |
+-------------+ +-------------+

Figure 2.8: Link Recovery

The diagram below shows the relationship between the three AMQP communication endpoints, Connection, Ses-
sion and Link.

+-------------+
| Link | Message Transport
+-------------+ (Node to Node)
| name |
| source |
| target |
| timeout |
+-------------+

/|\ 0..n
|
|
|

\|/ 0..1
+------------+
| Session | Frame Transport
+------------+ (Container to Container)
| name |
+------------+

/|\ 0..n
|
|
|

\|/ 1..1
+------------+
| Connection | Frame Transport
+------------+ (Container to Container)
| principal |
+------------+

Figure 2.9: Class Diagram of Communication Endpoints

2.1.3 Protocol Frames

The protocol consists of nine frame body types that are formally defined in section 2.7. The following table lists
the frame bodies and defines which endpoints handle them.
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Frame Connection Session Link
========================================
open H
begin I H
attach I H
flow I H
transfer I H
disposition I H
detach I H
end I H
close H
----------------------------------------

Key:
H: handled by the endpoint

I: intercepted (endpoint examines
the frame, but delegates
further processing to another
endpoint)

Figure 2.10: Frame Dispatch Table

2.2 Version Negotiation

Prior to sending any frames on a connection, each peer MUST start by sending a protocol header that indicates
the protocol version used on the connection. The protocol header consists of the upper case ASCII letters “AMQP”
followed by a protocol id of zero, followed by three unsigned bytes representing the major, minor, and revision of
the protocol version (currently 1 (MAJOR), 0 (MINOR), 0 (REVISION)). In total this is an 8-octet sequence:

4 OCTETS 1 OCTET 1 OCTET 1 OCTET 1 OCTET
+----------+---------+---------+---------+----------+
| "AMQP" | %d0 | major | minor | revision |
+----------+---------+---------+---------+----------+

Figure 2.11: Protocol Header Layout

Any data appearing beyond the protocol header MUST match the version indicated by the protocol header. If
the incoming and outgoing protocol headers do not match, both peers MUST close their outgoing stream and
SHOULD read the incoming stream until it is terminated.

The AMQP peer which acted in the role of the TCP client (i.e. the peer that actively opened the connection) MUST
immediately send its outgoing protocol header on establishment of the TCP connection. The AMQP peer which
acted in the role of the TCP server MAY elect to wait until receiving the incoming protocol header before sending its
own outgoing protocol header. This permits a multi protocol server implementation to choose the correct protocol
version to fit each client.

Two AMQP peers agree on a protocol version as follows (where the words “client” and “server” refer to the roles
being played by the peers at the TCP connection level):

• When the client opens a new socket connection to a server, it MUST send a protocol header with the client’s
preferred protocol version.

• If the requested protocol version is supported, the server MUST send its own protocol header with the
requested version to the socket, and then proceed according to the protocol definition.

• If the requested protocol version is not supported, the server MUST send a protocol header with a sup-
ported protocol version and then close the socket.

• When choosing a protocol version to respond with, the server SHOULD choose the highest supported
version that is less than or equal to the requested version. If no such version exists, the server SHOULD
respond with the highest supported version.
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• If the server cannot parse the protocol header, the server MUST send a valid protocol header with a sup-
ported protocol version and then close the socket.

• Note that if the server only supports a single protocol version, it is consistent with the above rules for the
server to send its protocol header prior to receiving anything from the client and to subsequently close the
socket if the client’s protocol header does not match the server’s.

Based on this behavior a client can discover which protocol versions a server supports by attempting to connect
with its highest supported version and reconnecting with a version less than or equal to the version received back
from the server.

TCP Client TCP Server
======================================================
AMQP%d0.1.0.0 ------------->

<------------- AMQP%d0.1.0.0 (1)
... *proceed*

AMQP%d0.1.1.0 ------------->
<------------- AMQP%d0.1.0.0 (2)

*TCP CLOSE*

HTTP ------------->
<------------- AMQP%d0.1.0.0 (3)

*TCP CLOSE*
------------------------------------------------------
(1) Server accepts connection for: AMQP, protocol=0,

major=1, minor=0, revision=0

(2) Server rejects connection for: AMQP, protocol=0,
major=1, minor=1, revision=0, Server responds
that it supports: AMQP, protocol=0, major=1,
minor=0, revision=0

(3) Server rejects connection for: HTTP. Server
responds it supports: AMQP, protocol=0, major=1,
minor=0, revision=0

Figure 2.12: Version Negotiation Examples

Please note that the above examples use the literal notation defined in RFC 2234 [RFC2234] for non alphanumeric
values.

The protocol id is not a part of the protocol version and thus the rule above regarding the highest supported
version does not apply. A client might request use of a protocol id that is unacceptable to a server - for example,
it might request a raw AMQP connection when the server is configured to require a TLS or SASL security layer
(See Part 5: section 5.1). In this case, the server MUST send a protocol header with an acceptable protocol id
(and version) and then close the socket. It MAY choose any protocol id.

TCP Client TCP Server
======================================================
AMQP%d0.1.0.0 ------------->

<------------- AMQP%d3.1.0.0
*TCP CLOSE*

------------------------------------------------------
Server rejects connection for: AMQP, protocol=0,
major=1, minor=0, revision=0, Server responds
that it requires: SASL security layer, protocol=3,
major=1, minor=0, revision=0

Figure 2.13: Protocol ID Rejection Example

2.3 Framing

Frames are divided into three distinct areas: a fixed width frame header, a variable width extended header, and a
variable width frame body.
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REQUIRED OPTIONAL OPTIONAL
+--------------+-----------------+------------+
| frame header | extended header | frame body |
+--------------+-----------------+------------+

8 bytes *variable* *variable*

Figure 2.14: Frame Layout

frame header The frame header is a fixed size (8 byte) structure that precedes each frame. The frame
header includes mandatory information necessary to parse the rest of the frame including
size and type information.

extended header The extended header is a variable width area preceding the frame body. This is an extension
point defined for future expansion. The treatment of this area depends on the frame type.

frame body The frame body is a variable width sequence of bytes the format of which depends on the
frame type.

2.3.1 Frame Layout

The diagram below shows the details of the general frame layout for all frame types.

+0 +1 +2 +3
+-----------------------------------+ -.

0 | SIZE | |
+-----------------------------------+ |---> Frame Header

4 | DOFF | TYPE | <TYPE-SPECIFIC> | | (8 bytes)
+-----------------------------------+ -’
+-----------------------------------+ -.

8 | ... | |
. . |---> Extended Header
. <TYPE-SPECIFIC> . | (DOFF * 4 - 8) bytes
| ... | |
+-----------------------------------+ -’
+-----------------------------------+ -.

4*DOFF | | |
. . |
. . |
. . |
. <TYPE-SPECIFIC> . |---> Frame Body
. . | (SIZE - DOFF * 4) bytes
. . |
. . |
. ________| |
| ... | |
+--------------------------+ -’

Figure 2.15: General Frame Layout

SIZE Bytes 0-3 of the frame header contain the frame size. This is an unsigned 32-bit integer that
MUST contain the total frame size of the frame header, extended header, and frame body.
The frame is malformed if the size is less than the size of the frame header (8 bytes).

DOFF Byte 4 of the frame header is the data offset. This gives the position of the body within the
frame. The value of the data offset is an unsigned, 8-bit integer specifying a count of 4-byte
words. Due to the mandatory 8-byte frame header, the frame is malformed if the value is
less than 2.

TYPE Byte 5 of the frame header is a type code. The type code indicates the format and purpose
of the frame. The subsequent bytes in the frame header MAY be interpreted differently
depending on the type of the frame. A type code of 0x00 indicates that the frame is an
AMQP frame. A type code of 0x01 indicates that the frame is a SASL frame, see Part 5:
section 5.3.
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2.3.2 AMQP Frames

Bytes 6 and 7 of an AMQP frame contain the channel number (see section 2.1). The frame body is defined as a
performative followed by an opaque payload. The performative MUST be one of those defined in section 2.7 and is
encoded as a described type in the AMQP type system. The remaining bytes in the frame body form the payload
for that frame. The presence and format of the payload is defined by the semantics of the given performative.

type: 0x00 - AMQP frame

+0 +1 +2 +3
+-----------------------------------+ -.

0 | SIZE | |
+-----------------------------------+ |---> Frame Header

4 | DOFF | TYPE | CHANNEL | | (8 bytes)
+-----------------------------------+ -’
+-----------------------------------+ -.

8 | ... | |
. . |---> Extended Header
. <IGNORED> . | (DOFF * 4 - 8) bytes
| ... | |
+-----------------------------------+ -’
+-----------------------------------+ -.

4*DOFF | PERFORMATIVE: | |
. Open / Begin / Attach . |
. Flow / Transfer / Disposition . |
. Detach / End / Close . |
|-----------------------------------| |
. . |---> Frame Body
. . | (SIZE - DOFF * 4) bytes
. PAYLOAD . |
. . |
. ________| |
| ... | |
+--------------------------+ -’

Figure 2.16: AMQP Frame Layout

An AMQP frame with no body MAY be used to generate artificial traffic as needed to satisfy any negotiated idle
timeout interval (see subsection 2.4.5).

2.4 Connections

AMQP connections are divided into a number of unidirectional channels. A connection endpoint contains two
kinds of channel endpoints: incoming and outgoing. A connection endpoint maps incoming frames other than
open and close to an incoming channel endpoint based on the incoming channel number, as well as relaying
frames produced by outgoing channel endpoints, marking them with the associated outgoing channel number
before sending them.

This requires connection endpoints to contain two mappings. One from incoming channel number to incoming
channel endpoint, and one from outgoing channel endpoint, to outgoing channel number.
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+-------OCHE X: 1
|
+-------OCHE Y: 7
|

<=== Frame[CH=1], Frame[CH=7] <===+

===> Frame[CH=0], Frame[CH=1] ===>+
|
+------>0: ICHE A
|
+------>1: ICHE B

OCHE: Outgoing Channel Endpoint
ICHE: Incoming Channel Endpoint

Figure 2.17: Unidirectional Channel Multiplexing

Channels are unidirectional, and thus at each connection endpoint the incoming and outgoing channels are com-
pletely distinct. Channel numbers are scoped relative to direction, thus there is no causal relation between incom-
ing and outgoing channels that happen to be identified by the same number. This means that if a bidirectional
endpoint is constructed from an incoming channel endpoint and an outgoing channel endpoint, the channel num-
ber used for incoming frames is not necessarily the same as the channel number used for outgoing frames.

+-------BIDI/O: 7
|

<=== Frame[CH=1], Frame[CH=7] <===+

===> Frame[CH=0], Frame[CH=1] ===>+
|
+------>1: BIDI/I

BIDI/I: Incoming half of a single bidirectional endpoint
BIDI/O: Outgoing half of a single bidirectional endpoint

Figure 2.18: Bidirectional Channel Multiplexing

Although not strictly directed at the connection endpoint, the begin and end frames are potentially useful for the
connection endpoint to intercept as these frames are how sessions mark the beginning and ending of communi-
cation on a given channel (see section 2.5).

2.4.1 Opening A Connection

Each AMQP connection begins with an exchange of capabilities and limitations, including the maximum frame
size. Prior to any explicit negotiation, the maximum frame size is 512 (MIN-MAX-FRAME-SIZE) and the maximum
channel number is 0. After establishing or accepting a TCP connection and sending the protocol header, each
peer MUST send an open frame before sending any other frames. The open frame describes the capabilities and
limits of that peer. The open frame can only be sent on channel 0. After sending the open frame and reading its
partner’s open frame a peer MUST operate within mutually acceptable limitations from this point forward.

TCP Client TCP Server
==================================
TCP-CONNECT TCP-ACCEPT
PROTO-HDR PROTO-HDR
OPEN ---+ +--- OPEN

\ /
wait x wait

/ \
proceed <--+ +--> proceed

...

Figure 2.19: Synchronous Connection Open Sequence
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2.4.2 Pipelined Open

For applications that use many short-lived connections, it MAY be desirable to pipeline the connection negotiation
process. A peer MAY do this by starting to send subsequent frames before receiving the partner’s connection
header or open frame. This is permitted so long as the pipelined frames are known a priori to conform to the
capabilities and limitations of its partner. For example, this can be accomplished by keeping the use of the
connection within the capabilities and limits expected of all AMQP implementations as defined by the specification
of the open frame.

TCP Client TCP Server
=============================================
TCP-CONNECT TCP-ACCEPT
PROTO-HDR PROTO-HDR
OPEN ---+ +--- OPEN

\ /
pipelined frame x pipelined frame

/ \
proceed <--+ +--> proceed

...
---------------------------------------------

Figure 2.20: Pipelined Connection Open Sequence

The use of pipelined frames by a peer cannot be distinguished by the peer’s partner from non-pipelined use so
long as the pipelined frames conform to the partner’s capabilities and limitations.

2.4.3 Closing A Connection

Prior to closing a connection, each peer MUST write a close frame with a code indicating the reason for closing.
This frame MUST be the last thing ever written onto a connection. After writing this frame the peer SHOULD con-
tinue to read from the connection until it receives the partner’s close frame (in order to guard against erroneously
or maliciously implemented partners, a peer SHOULD implement a timeout to give its partner a reasonable time
to receive and process the close before giving up and simply closing the underlying transport mechanism). A
close frame MAY be received on any channel up to the maximum channel number negotiated in open. However,
implementations SHOULD send it on channel 0, and MUST send it on channel 0 if pipelined in a single batch with
the corresponding open.

TCP Client TCP Server
=============================

...

CLOSE ------->
+-- CLOSE

/ TCP-CLOSE
TCP-CLOSE <--+

Figure 2.21: Synchronous Connection Close Sequence

Implementations SHOULD NOT expect to be able to reuse open TCP sockets after close performatives have
been exchanged. There is no requirement for an implementation to read from a socket after a close performative
has been received.

2.4.4 Simultaneous Close

Normally one peer will initiate the connection close, and the partner will send its close in response. However, be-
cause both endpoints MAY simultaneously choose to close the connection for independent reasons, it is possible
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for a simultaneous close to occur. In this case, the only potentially observable difference from the perspective of
each endpoint is the code indicating the reason for the close.

TCP Client TCP Server
================================

...

CLOSE ---+ +--- CLOSE
\ /
x
/ \

TCP-CLOSE <--+ +--> TCP-CLOSE

Figure 2.22: Simultaneous Connection Close Sequence

2.4.5 Idle Timeout Of A Connection

Connections are subject to an idle timeout threshold. The timeout is triggered by a local peer when no frames
are received after a threshold value is exceeded. The idle timeout is measured in milliseconds, and starts from
the time the last frame is received. If the threshold is exceeded, then a peer SHOULD try to gracefully close the
connection using a close frame with an error explaining why. If the remote peer does not respond gracefully within
a threshold to this, then the peer MAY close the TCP socket.

Each peer has its own (independent) idle timeout. At connection open each peer communicates the maximum
period between activity (frames) on the connection that it desires from its partner.The open frame carries the idle-
time-out field for this purpose. To avoid spurious timeouts, the value in idle-time-out SHOULD be half the peer’s
actual timeout threshold.

If a peer can not, for any reason support a proposed idle timeout, then it SHOULD close the connection using a
close frame with an error explaining why. There is no requirement for peers to support arbitrarily short or long idle
timeouts.

The use of idle timeouts is in addition to any network protocol level control. Implementations SHOULD make use
of TCP keep-alive wherever possible in order to be good citizens.

If a peer needs to satisfy the need to send traffic to prevent idle timeout, and has nothing to send, it MAY send
an empty frame, i.e., a frame consisting solely of a frame header, with no frame body. Implementations MUST be
prepared to handle empty frames arriving on any valid channel, though implementations SHOULD use channel 0
when sending empty frames, and MUST use channel 0 if a maximum channel number has not yet been negotiated
(i.e., before an open frame has been received). Apart from this use, empty frames have no meaning.

Empty frames can only be sent after the open frame is sent. As they are a frame, they MUST NOT be sent after
the close frame has been sent.

As an alternative to using an empty frame to prevent an idle timeout, if a connection is in a permissible state, an
implementation MAY choose to send a flow frame for a valid session.

If during operation a peer exceeds the remote peer’s idle timeout’s threshold, e.g., because it is heavily loaded, it
SHOULD gracefully close the connection by using a close frame with an error explaining why.

2.4.6 Connection States

START In this state a connection exists, but nothing has been sent or received. This is the state an
implementation would be in immediately after performing a socket connect or socket accept.

HDR RCVD In this state the connection header has been received from the peer but a connection header
has not been sent.

HDR SENT In this state the connection header has been sent to the peer but no connection header has
been received.
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HDR EXCH In this state the connection header has been sent to the peer and a connection header has
been received from the peer.

OPEN PIPE In this state both the connection header and the open frame have been sent but nothing has
been received.

OC PIPE In this state, the connection header, the open frame, any pipelined connection traffic, and
the close frame have been sent but nothing has been received.

OPEN RCVD In this state the connection headers have been exchanged. An open frame has been re-
ceived from the peer but an open frame has not been sent.

OPEN SENT In this state the connection headers have been exchanged. An open frame has been sent
to the peer but no open frame has yet been received.

CLOSE PIPE In this state the connection headers have been exchanged. An open frame, any pipelined
connection traffic, and the close frame have been sent but no open frame has yet been
received from the peer.

OPENED In this state the connection header and the open frame have been both sent and received.

CLOSE RCVD In this state a close frame has been received indicating that the peer has initiated an AMQP
close. No further frames are expected to arrive on the connection; however, frames can still
be sent. If desired, an implementation MAY do a TCP half-close at this point to shut down
the read side of the connection.

CLOSE SENT In this state a close frame has been sent to the peer. It is illegal to write anything more
onto the connection, however there could potentially still be incoming frames. If desired,
an implementation MAY do a TCP half-close at this point to shutdown the write side of the
connection.

DISCARDING The DISCARDING state is a variant of the CLOSE SENT state where the close is triggered
by an error. In this case any incoming frames on the connection MUST be silently discarded
until the peer’s close frame is received.

END In this state it is illegal for either endpoint to write anything more onto the connection. The
connection can be safely closed and discarded.

2.4.7 Connection State Diagram

The graph below depicts a complete state diagram for each endpoint. The boxes represent states, and the arrows
represent state transitions. Each arrow is labeled with the action that triggers that particular transition.
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R:HDR @=======@ S:HDR R:HDR[!=S:HDR]
+--------| START |-----+ +--------------------------------+
| @=======@ | | |
\|/ \|/ | |

@==========@ @==========@ S:OPEN |
+----| HDR_RCVD | | HDR_SENT |------+ |
| @==========@ @==========@ | R:HDR[!=S:HDR] |
| S:HDR | | R:HDR | +-----------------+
| +--------+ +------+ | | |
| \|/ \|/ \|/ | |
| @==========@ +-----------+ S:CLOSE |
| | HDR_EXCH | | OPEN_PIPE |----+ |
| @==========@ +-----------+ | |
| R:OPEN | | S:OPEN | R:HDR | |
| +--------+ +------+ +-------+ | |
| \|/ \|/ \|/ \|/ |
| @===========@ @===========@ S:CLOSE +---------+ |
| | OPEN_RCVD | | OPEN_SENT |-----+ | OC_PIPE |--+
| @===========@ @===========@ | +---------+ |
| S:OPEN | | R:OPEN \|/ | R:HDR |
| | @========@ | +------------+ | |
| +------>| OPENED |<----+ | CLOSE_PIPE |<--+ |
| @========@ +------------+ |
| R:CLOSE | | S:CLOSE | R:OPEN |
| +---------+ +-------+ | |
| \|/ \|/ | |
| @============@ @=============@ | |
| | CLOSE_RCVD | | CLOSE_SENT* |<----+ |
| @============@ @=============@ |
| S:CLOSE | | R:CLOSE |
| | @=====@ | |
| +-------->| END |<-----+ |
| @=====@ |
| /|\ |
| S:HDR[!=R:HDR] | R:HDR[!=S:HDR] |
+----------------------+-----------------------------------------------+

R:<CTRL> = Received <CTRL>
S:<CTRL> = Sent <CTRL>
* Also could be DISCARDING if an error condition
triggered the CLOSE

Figure 2.23: Connection State Diagram

State Legal Sends Legal Receives Legal Connection Actions
=======================================================================
START HDR HDR
HDR_RCVD HDR OPEN
HDR_SENT OPEN HDR
HDR_EXCH OPEN OPEN
OPEN_RCVD OPEN *
OPEN_SENT ** OPEN
OPEN_PIPE ** HDR
CLOSE_PIPE - OPEN TCP Close for Write
OC_PIPE - HDR TCP Close for Write
OPENED * *
CLOSE_RCVD * - TCP Close for Read
CLOSE_SENT - * TCP Close for Write
DISCARDING - * TCP Close for Write
END - - TCP Close

* = any frames
- = no frames
** = any frame known a priori to conform to the

peer’s capabilities and limitations

Figure 2.24: Connection State Table

2.5 Sessions

A session is a bidirectional sequential conversation between two containers that provides a grouping for related
links. Sessions serve as the context for link communication. Any number of links of any directionality can be
attached to a given session. However, a link MUST NOT be attached to more than one session at a time.
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Link A-------+ +------>Link A
| |
\|/ (attached) |

Link B<--- Session <--------------> Session <---Link B

Link C------>* (detached) *------>Link C

Figure 2.25: Instance Diagram of Session/Link attachment

Messages transferred on a link are sequentially identified within the session. A session can be viewed as multiplex-
ing link traffic, much like a connection multiplexes session traffic. However, unlike the sessions on a connection,
links on a session are not entirely independent since they share a common delivery sequence scoped to the ses-
sion. This common sequence allows endpoints to efficiently refer to sets of deliveries regardless of the originating
link. This is of particular benefit when a single application is receiving messages along a large number of different
links. In this case the session provides aggregation of otherwise independent links into a single stream that can
be efficiently acknowledged by the receiving application.

2.5.1 Establishing A Session

Sessions are established by creating a session endpoint, assigning it to an unused channel number, and sending
a begin announcing the association of the session endpoint with the outgoing channel. Upon receiving the
begin the partner will check the remote-channel field and find it empty. This indicates that the begin is referring to
remotely initiated session. The partner will therefore allocate an unused outgoing channel for the remotely initiated
session and indicate this by sending its own begin setting the remote-channel field to the incoming channel of the
remotely initiated session.

To make it easier to monitor AMQP sessions, it is RECOMMENDED that implementations always assign the
lowest available unused channel number.

The remote-channel field of a begin frame MUST be empty for a locally initiated session, and MUST be set when
announcing the endpoint created as a result of a remotely initiated session.

Endpoint Endpoint
=====================================================================
[CH3] BEGIN(name=..., --------->

remote-channel=null)
+-- [CH7] BEGIN(name=...,
/ remote-channel=3)
/

<---+

...

---------------------------------------------------------------------

Figure 2.26: Session Begin Sequence

2.5.2 Ending A Session

Sessions end automatically when the connection is closed or interrupted. Sessions are explicitly ended when
either endpoint chooses to end the session. When a session is explicitly ended, an end frame is sent to announce
the disassociation of the endpoint from its outgoing channel, and to carry error information when relevant.
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Endpoint A Endpoint B
====================================================================

...

[CH3] END(error=...) ---------> (1)
+-- [CH7] END(error=...)

/
/

(2) <---+

...

--------------------------------------------------------------------

(1) At this point the session endpoint is disassociated from
the outgoing channel on A, and the incoming channel on B.

(2) At this point the session endpoint is disassociated from
the outgoing channel on B, and the incoming channel on A.

Figure 2.27: Session End Sequence

2.5.3 Simultaneous End

Due to the potentially asynchronous nature of sessions, it is possible that both peers simultaneously decide to end
a session. If this happens, it will appear to each peer as though their partner’s spontaneously initiated end frame
is actually an answer to the peers initial end frame.

Endpoint A Endpoint B
=================================================================

...

[CH3] END(error=...) --+ +-- [CH7] END(error=...)
(1) \ / (2)

x
/ \

(3) <-+ +-> (4)

...

-----------------------------------------------------------------

(1) At this point no more frames can be sent by A.

(2) At this point no more frames can be sent by B.

(3) At this point endpoint A is fully ended.

(4) At this point endpoint B is fully ended.

Figure 2.28: Simultaneous Session End Sequence

2.5.4 Session Errors

When a session is unable to process input, it MUST indicate this by issuing an END with an appropriate error

indicating the cause of the problem. It MUST then proceed to discard all incoming frames from the remote endpoint
until receiving the remote endpoint’s corresponding end frame.
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Endpoint Endpoint
================================================
FRAME 1 ---------->
FRAME 2 ---------->
FRAME 3 ---+ +--- END(error=...)

\ /
x
/ \

<--+ +--> *discarded*
END ---------->

...
================================================

Figure 2.29: Session Error Sequence

2.5.5 Session States

UNMAPPED In the UNMAPPED state, the session endpoint is not mapped to any incoming or outgoing
channels on the connection endpoint. In this state an endpoint cannot send or receive
frames.

BEGIN SENT In the BEGIN SENT state, the session endpoint is assigned an outgoing channel number,
but there is no entry in the incoming channel map. In this state the endpoint MAY send
frames but cannot receive them.

BEGIN RCVD In the BEGIN RCVD state, the session endpoint has an entry in the incoming channel map,
but has not yet been assigned an outgoing channel number. The endpoint MAY receive
frames, but cannot send them.

MAPPED In the MAPPED state, the session endpoint has both an outgoing channel number and an
entry in the incoming channel map. The endpoint MAY both send and receive frames.

END SENT In the END SENT state, the session endpoint has an entry in the incoming channel map,
but is no longer assigned an outgoing channel number. The endpoint MAY receive frames,
but cannot send them.

END RCVD In the END RCVD state, the session endpoint is assigned an outgoing channel number, but
there is no entry in the incoming channel map. The endpoint MAY send frames, but cannot
receive them.

DISCARDING The DISCARDING state is a variant of the END SENT state where the end is triggered by
an error. In this case any incoming frames on the session MUST be silently discarded until
the peer’s end frame is received.
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UNMAPPED<-------------------+
| |

+-------+-------+ |
S:BEGIN | | R:BEGIN |

| | |
\|/ \|/ |

BEGIN_SENT BEGIN_RCVD |
| | |
| | |

R:BEGIN | | S:BEGIN |
+-------+-------+ |

| |
\|/ |

MAPPED |
| |

+-------------+-------------+ |
S:END(error) | S:END | | R:END |

| | | |
\|/ \|/ \|/ |

DISCARDING END_SENT END_RCVD |
| | | |
| | | |

R:END | R:END | | S:END |
+-------------+-------------+ |

| |
| |
+------------------------+

Figure 2.30: State Transitions

There is no obligation to retain a session endpoint after it transitions to the UNMAPPED state.

2.5.6 Session Flow Control

The session endpoint assigns each outgoing transfer frame an implicit transfer-id from a session scoped se-
quence. Each session endpoint maintains the following state to manage incoming and outgoing transfer frames:

next-incoming-id The next-incoming-id identifies the expected transfer-id of the next incoming transfer frame.

incoming-window The incoming-window defines the maximum number of incoming transfer frames that the
endpoint can currently receive. This identifies a current maximum incoming transfer-id that
can be computed by subtracting one from the sum of incoming-window and next-incoming-
id.

next-outgoing-id The next-outgoing-id is the transfer-id to assign to the next transfer frame. The next-
outgoing-id MAY be initialized to an arbitrary value and is incremented after each successive
transfer according to RFC-1982 [RFC1982] serial number arithmetic.

outgoing-window The outgoing-window defines the maximum number of outgoing transfer frames that the
endpoint can currently send. This identifies a current maximum outgoing transfer-id that can
be computed by subtracting one from the sum of outgoing-window and next-outgoing-id.

remote-incoming-window
The remote-incoming-window reflects the maximum number of outgoing transfers that can
be sent without exceeding the remote endpoint’s incoming-window. This value MUST be
decremented after every transfer frame is sent, and recomputed when informed of the
remote session endpoint state.

remote-outgoing-window
The remote-outgoing-window reflects the maximum number of incoming transfers that MAY
arrive without exceeding the remote endpoint’s outgoing-window. This value MUST be
decremented after every incoming transfer frame is received, and recomputed when in-
formed of the remote session endpoint state. When this window shrinks, it is an indication
of outstanding transfers. Settling outstanding transfers can cause the window to grow.
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Once initialized, this state is updated by various events that occur in the lifespan of a session and its associated
links:

sending a transfer Upon sending a transfer, the sending endpoint will increment its next-outgoing-id, decre-
ment its remote-incoming-window, and MAY (depending on policy) decrement its outgoing-
window.

receiving a transfer
Upon receiving a transfer, the receiving endpoint will increment the next-incoming-id to
match the implicit transfer-id of the incoming transfer plus one, as well as decrementing the
remote-outgoing-window, and MAY (depending on policy) decrement its incoming-window.

receiving a flow When the endpoint receives a flow frame from its peer, it MUST update the next-incoming-id
directly from the next-outgoing-id of the frame, and it MUST update the remote-outgoing-
window directly from the outgoing-window of the frame.

The remote-incoming-window is computed as follows:

next-incoming-idflow + incoming-windowflow - next-outgoing-idendpoint

If the next-incoming-id field of the flow frame is not set, then remote-incoming-window is
computed as follows:

initial-outgoing-idendpoint + incoming-windowflow - next-outgoing-idendpoint

2.6 Links

A link provides a unidirectional transport for messages between a source and a target. The primary responsibility
of a source or target (a terminus) is to maintain a record of the status of each active delivery attempt until such a
time as it is safe to forget. These are referred to as unsettled deliveries. When a terminus forgets the state asso-
ciated with a delivery-tag, it is considered settled. Settling a delivery at a terminus is an idempotent idempotent,
i.e., a delivery can transition from unsettled to settled, but never the reverse. Each delivery attempt is assigned a
unique delivery-tag at the source. The status of an active delivery attempt is known as the delivery state of the
delivery.

Link endpoints interface between a terminus and a session endpoint, and maintain additional state used for active
communication between the local and remote endpoints. Therefore there are two types of endpoint: senders
and receivers. When the sending application submits a message to the sender for transport, it also supplies the
delivery-tag used by the source to track the delivery state. The link endpoint assigns each message a unique
delivery-id from a session scoped sequence. These delivery-ids are used to efficiently reference subsets of the
outstanding deliveries on a session.

Termini can exist beyond their associated link endpoints, so it is possible for a session to terminate and the termini
to remain. A link is said to be suspended if the termini exist, but have no associated link endpoints. The process of
associating new link endpoints with existing termini and re-establishing communication is referred to as resuming
a link.

The original link endpoint state is not necessary for resumption of a link. Only the unsettled delivery state main-
tained at the termini is necessary for link resume, and this need not be stored directly. The form of delivery-tags
is intentionally left open-ended so that they and their related delivery state can, if desired, be (re)constructed from
application state, thereby minimizing or eliminating the need to retain additional protocol-specific state in order to
resume a link.

2.6.1 Naming A Link

Links are named so that they can be recovered when communication is interrupted. Link names MUST uniquely
identify the link amongst all links of the same direction between the two participating containers. Link names are
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only used when attaching a link, so they can be arbitrarily long without a significant penalty.

A link’s name uniquely identifies the link from the container of the source to the container of the target node, i.e., if
the container of the source node is A, and the container of the target node is B, the link can be globally identified
by the (ordered) tuple (A,B,<name>). Consequently, a link can only be active in one connection at a time. If
an attempt is made to attach the link subsequently when it is not suspended, then the link can be ’stolen’, i.e.,
the second attach succeeds and the first attach MUST then be closed with a link error of stolen. This behavior
ensures that in the event of a connection failure occurring and being noticed by one party, that re-establishment
has the desired effect.

2.6.2 Link Handles

Each link endpoint is assigned a numeric handle used by the peer as a shorthand to refer to the link in all frames
that reference the link (attach, detach, flow, transfer, disposition). This handle is assigned by the initial
attach frame and remains in use until the link is detached. The two endpoints are not REQUIRED to use the
same handle. This means a peer is free to independently chose its handle when a link endpoint is associated
with the session. The locally chosen handle is referred to as the output handle. The remotely chosen handle is
referred to as the input handle.

At an endpoint, a link is considered to be attached when the link endpoint exists and has both input and output
handles assigned at an active session endpoint. A link is considered to be detached when the link endpoint exists,
but is not assigned either input or output handles. A link can be considered half attached (or half detached) when
only one of the input or output handles is assigned.

+-------------------+ +-------------------+
| name: Link_1 | | name: Link_1 |
| handle: i | | handle: j |
|-------------------| |-------------------|
| role: receiver | | role: sender |
| source: A |<---+ +--->| source: A |
| target: B | | | | target: B |
+-------------------+ | | +-------------------+

| |
| +---------+ |

... <---+--->| Session |<---+---> ...
| +---------+ |
| |

+-------------------+ | | +-------------------+
| name: Link_N | | | | name: Link_N |
| handle: k |<---+ +--->| handle: l |
|-------------------| |-------------------|
| role: sender | | role: receiver |
| source: C | | source: C |
| target: D | | target: D |
+-------------------+ +-------------------+

Figure 2.31: Link Handles

2.6.3 Establishing Or Resuming A Link

Links are established and/or resumed by creating a link endpoint associated with a local terminus, assigning
it to an unused handle, and sending an attach frame. This frame carries the state of the newly created link
endpoint, including the local and remote termini, one being the source and one being the target depending on the
directionality of the link endpoint. On receipt of the attach, the remote session endpoint creates a corresponding
link endpoint and informs its application of the attaching link. The application attempts to locate the terminus
previously associated with the link. This terminus is associated with the link endpoint and can be updated if its
properties do not match those sent by the remote link endpoint. If no such terminus exists, the application MAY
choose to create one using the properties supplied by the remote link endpoint. The link endpoint is then mapped
to an unused handle, and an attach frame is issued carrying the state of the newly created endpoint. Note that
if the application chooses not to create a terminus, the session endpoint will still create a link endpoint and issue
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an attach indicating that the link endpoint has no associated local terminus. In this case, the session endpoint
MUST immediately detach the newly created link endpoint.

Peer Partner
================================================================
*create link endpoint*
ATTACH(name=N, handle=1, ----------> *create link endpoint*

role=sender, +--- ATTACH(name=N, handle=2,
source=A, / role=receiver,
target=B) / source=A,

/ target=B)
<--+

...
----------------------------------------------------------------

Figure 2.32: Establishing a Link

If there is no pre-existing terminus, and the peer does not wish to create a new one, this is indicated by setting the
local terminus (source or target as appropriate) to null.

Peer Partner
================================================================
*create link endpoint*
ATTACH(name=N, handle=1, ----------> *create link endpoint* (1)

role=sender, +--- ATTACH(name=N, handle=2,
source=A, / role=receiver,
target=B) / source=A,

/ target=-)
(2) <--+

+--- DETACH(handle=2,
/ closed=True)
/

/
<--+

DETACH(handle=1, ----------->
closed=True)

...
----------------------------------------------------------------
(1) The link endpoint is created, but no target is created.
(2) At this point the link is established, but it is to a

nonexistent target.

Figure 2.33: Refusing a Link

If either end of the link is already associated with a terminus, the attach frame MUST include its unsettled delivery
state.

Peer Partner
================================================================
*existing source*
ATTACH(name=N, handle=1, ----------> *found existing target*

role=sender, +--- ATTACH(name=N, handle=2, (1)
source=X, / role=receiver,
target=Y, / source=X,
unsettled=...) / target=Y,

(2) <--+ unsettled=...)
...

----------------------------------------------------------------
(1) The target already exists, and its properties

match the peer’s expectations.
(2) At this point the link is reestablished with source=X,

target=Y.

Figure 2.34: Resuming a Link

Note that it is possible that the expected terminus properties do not match the actual terminus properties reported
by the remote endpoint. In this case, the link is always considered to be between the source as described by the
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sender, and the target as described by the receiver. This can happen both when establishing and when resuming
a link.

When a link is established, it is possible for an endpoint not to have all the capabilities necessary to create the
terminus exactly matching the expectations of the peer. If this happens, the endpoint MAY adjust the properties
in order to succeed in creating the terminus. In this case the endpoint MUST report the actual properties of the
terminus as created.

When resuming a link, it is possible that the properties of the source and target have changed while the link
was suspended. When this happens, the termini properties communicated in the source and target fields of the
attach frames could be in conflict. In this case, the sender is considered to hold the authoritative version of the
source properties, the receiver is considered to hold the authoritative version of the target properties. As above,
the resulting link is constructed to be between the source as described by the sender, and the target as described
by the receiver. Once the link is resumed, either peer is free to continue if the updated properties are acceptable,
or, if not, detach the link.

Note that a peer MUST take responsibility for verifying that the remote terminus meets its requirements. The
remote peer SHOULD NOT attempt to preempt whether the terminus will meet the requirements of its partner.
This is equally true both for creating and resuming links.

Peer Partner
================================================================
*existing source*
ATTACH(name=N, handle=1, ----------> *found existing target*

role=sender, +--- ATTACH(name=N, handle=2, (1)
source=A, / role=receiver,
target=B, / source=A,
unsettled=...) / target=C,

(2) <--+ unsettled=...)
...

----------------------------------------------------------------
(1) The terminus already exists, but its state

does not match the peer’s endpoint.
(2) At this point the link is established with source=A,

target=C.

Figure 2.35: Resuming an altered Link

It is possible to resume a link even if one of the termini has lost nearly all its state. All that is necessary is the link
name and direction. This is referred to as recovering a link. This is done by creating a new link endpoint with an
empty source or target for incoming or outgoing links respectively. The full link state is then constructed from the
authoritative source or target supplied by the other endpoint once the link is established. If the remote peer has
no record of the link, then no terminus will be located, and local terminus (source or target as appropriate) field in
the attach frame will be null.

Peer Partner
================================================================
*create link endpoint*
ATTACH(name=N, handle=1, ----------> *found existing target*

role=sender, +--- ATTACH(name=N, handle=2, (1)
source=X / role=receiver,
target=-) / source=X,

(2) <---+ target=Y)
...

----------------------------------------------------------------
(1) The target already exists, and its properties are

authoritative.
(2) At this point the link is reestablished with source=X,

target=Y.

Figure 2.36: Recovering a Link
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2.6.4 Detaching And Reattaching A Link

A session endpoint can choose to unmap its output handle for a link. In this case, the endpoint MUST send a
detach frame to inform the remote peer that the handle is no longer attached to the link endpoint. If both endpoints
do this, the link MAY return to a fully detached state. Note that in this case the link endpoints MAY still indirectly
communicate via the session, as there could still be active deliveries on the link referenced via delivery-id.

Peer Partner
=============================================================
*create link endpoint*
ATTACH(name=N, handle=1 ----------> *create link endpoint*

role=sender, +--- ATTACH(name=N, handle=2,
source=A, / role=receiver,
target=B) / source=A,

/ target=B)
<--+

...
*use link* <---------> *use link*

...
DETACH(handle=1) ----------> *detach input handle*

(1) *detach output handle* <---------- DETACH(handle=2)
...

-------------------------------------------------------------
(1) At this point both endpoints are detached.

Figure 2.37: Detaching a Link

When the state of a link endpoint changes, this is can be communicated by detaching and then reattaching with
the updated state on the attach frame. This can be used to update the properties of the link endpoints, or to
update the properties of the termini.

Peer Partner
=============================================================

...
DETACH(handle=1) ---+

\
\
\

*modify link endpoint* \
+--> *detach input handle*

ATTACH(name=N, handle=1 ---+ +--- DETACH(handle=2)
role=sender, \ /
source=A’, \/
target=B’) /\

/ \
*detach input handle* <--+ +--> *reattach input handle*

*modify link endpoint*
+--- ATTACH(name=N, handle=2
/ role=receiver,

/ source=A’,
/ target=B’)
/

(1) *reattach input handle* <--+
...

*use link* <---------> *use link*
...

-------------------------------------------------------------
(1) At this point the link is updated and attached.

Figure 2.38: Updating Link State

2.6.5 Link Errors

When an error occurs at a link endpoint, the endpoint MUST be detached with appropriate error information sup-
plied in the error field of the detach frame. The link endpoint MUST then be destroyed. If any input (other than
a detach) related to the endpoint either via the input handle or delivery-ids be received, the session MUST be
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terminated with an errant-link session-error. Since the link endpoint has been destroyed, the peer cannot reat-
tach, and MUST resume the link in order to restore communication. In order to disambiguate the resume request
from a pipelined re-attach the resuming attach performative MUST contain a non-null value for its unsettled field.
Receipt of a pipelined attach MUST result in the session being terminated with an errant-link session-error.

2.6.6 Closing A Link

A peer closes a link by sending the detach frame with the handle for the specified link, and the closed flag set to
true. The partner will destroy the corresponding link endpoint, and reply with its own detach frame with the closed
flag set to true.

Peer Partner
=============================================================
*create link endpoint*
ATTACH(name=N, handle=1 ----------> *create link endpoint*

role=sender, +--- ATTACH(name=N, handle=2,
source=A, / role=receiver,
target=B) / source=A,

/ target=B)
<--+

...
*use link* <---------> *use link*

...
DETACH(handle=1, ----------> *destroy link endpoint*

closed=True)
(1) *destroy link endpoint* <---------- DETACH(handle=2,

closed=True)
-------------------------------------------------------------
(1) At this point both endpoints are destroyed.

Figure 2.39: Closing a Link

Note that one peer MAY send a closing detach while its partner is sending a non-closing detach. In this case, the
partner MUST signal that it has closed the link by reattaching and then sending a closing detach.

2.6.7 Flow Control

Once attached, a link is subject to flow control of message transfers. Link endpoints maintain the following flow
control state. This state defines when it is legal to send transfers on an attached link, as well as indicating when
certain interesting conditions occur, such as insufficient messages to consume the currently available link-credit,
or insufficient link-credit to send available messages:

delivery-count The delivery-count is initialized by the sender when a link endpoint is created, and is incre-
mented whenever a message is sent. Only the sender MAY independently modify this field.
The receiver’s value is calculated based on the last known value from the sender and any
subsequent messages received on the link. Note that, despite its name, the delivery-count
is not a count but a sequence number initialized at an arbitrary point by the sender.

link-credit The link-credit variable defines the current maximum legal amount that the delivery-count
can be increased by. This identifies a delivery-limit that can be computed by adding the
link-credit to the delivery-count.

Only the receiver can independently choose a value for this field. The sender’s value MUST
always be maintained in such a way as to match the delivery-limit identified by the receiver.
This means that the sender’s link-credit variable MUST be set according to this formula
when flow information is given by the receiver:

link-creditsnd := delivery-countrcv + link-creditrcv - delivery-countsnd.
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In the event that the receiver does not yet know the delivery-count, i.e., delivery-countrcv
is unspecified, the sender MUST assume that the delivery-countrcv is the first delivery-
countsnd sent from sender to receiver, i.e., the delivery-countsnd specified in the flow state
carried by the initial attach frame from the sender to the receiver.

Additionally, whenever the sender increases delivery-count, it MUST decrease link-credit by
the same amount in order to maintain the delivery-limit identified by the receiver.

available The available variable is controlled by the sender, and indicates to the receiver, that the
sender could make use of the indicated amount of link-credit. Only the sender can indepen-
dently modify this field. The receiver’s value is calculated based on the last known value
from the sender and any subsequent incoming messages received. The sender MAY trans-
fer messages even if the available variable is zero. If this happens, the receiver MUST
maintain a floor of zero in its calculation of the value of available.

drain The drain flag indicates how the sender SHOULD behave when insufficient messages are
available to consume the current link-credit. If set, the sender will (after sending all available
messages) advance the delivery-count as much as possible, consuming all link-credit, and
send the flow state to the receiver. Only the receiver can independently modify this field.
The sender’s value is always the last known value indicated by the receiver.

If the link-credit is less than or equal to zero, i.e., the delivery-count is the same as or greater than the delivery-limit,
a sender MUST NOT send more messages. If the link-credit is reduced by the receiver when transfers are in-flight,
the receiver MAY either handle the excess messages normally or detach the link with a transfer-limit-exceeded
error code.

+----------+ +----------+
| Sender |---------------transfer------------>| Receiver |
+----------+ +----------+
\ / <----------------flow--------------- \ /
+------+ +------+

|
|
|

if link-credit <= 0 then pause

Figure 2.40: Flow Control

If the sender’s drain flag is set and there are no available messages, the sender MUST advance its delivery-count
until link-credit is zero, and send its updated flow state to the receiver.

The delivery-count is an absolute value. While the value itself is conceptually unbounded, it is encoded as a 32-bit
integer that wraps around and compares according to RFC-1982 [RFC1982] serial number arithmetic.

The initial flow state of a link endpoint is determined as follows. The link-credit and available variables are initialized
to zero. The drain flag is initialized to false. The sender MAY choose an arbitrary point to initialize the delivery-
count. This value is communicated in the initial attach frame. The receiver initializes its delivery-count upon
receiving the sender’s attach.
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flow state
|
| modifies

+------------------+ | +------------------+
| Sender | .----------------------. | Receiver |
+------------------+ attach, transfer, flow +------------------+
| delivery-count |------------------------------->| delivery-count |
| link-credit | | link-credit |
| available |<-------------------------------| available |
| drain | flow | drain |
+------------------+ ’-----’ +------------------+

|
| modifies
|

flow state

Figure 2.41: Flow State & related Frames

The flow control semantics defined in this section provide the primitives necessary to implement a wide variety of
flow control strategies. Additionally, by manipulating the link-credit and drain flag, a receiver can provide a variety
of different higher level behaviors often useful to applications, including synchronous blocking fetch, synchronous
fetch with a timeout, asynchronous notifications, and stopping/pausing.

+----------+ +----------+
| Receiver |<--------------transfer-------------| Sender |
+----------+ +----------+
\ / -----------------flow--------------> \ /
+------+ +------+

|
|
|

sync-get: flow(link-credit=1, ...) ---->
timed-get: flow(link-credit=1, ...),

*wait*,
flow(drain=True, ...) ---->

async-notify: flow(link-credit=delta, ...) ---->
stop: flow(link-credit=0, ...) ---->

Figure 2.42: Flow Control Usage Patterns

2.6.8 Synchronous Get

A synchronous get of a message from a link is accomplished by incrementing the link-credit, sending the updated
flow state, and waiting indefinitely for a transfer to arrive.

Receiver Sender
=================================================================

...
flow(link-credit=1) ---------->

+---- transfer(...)
*block until transfer arrives* /

<---+
...

-----------------------------------------------------------------

Figure 2.43: Synchronous Get

Synchronous get with a timeout is accomplished by incrementing the link-credit, sending the updated flow state
and waiting for the link-credit to be consumed. When the desired time has elapsed the receiver then sets the drain
flag and sends the newly updated flow state again, while continuing to wait for the link-credit to be consumed.
Even if no messages are available, this condition will be met promptly because of the drain flag. Once the link-
credit is consumed, the receiver can unambiguously determine whether a message has arrived or whether the
operation has timed out.
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Receiver Sender
=================================================================

...
flow(link-credit=1) ---------->

*wait for link-credit <= 0*
flow(drain=True) ---+ +--- transfer(...)

\ /
x

/ \
(1) <--+ +-->
(2) <---------- flow(...)

...
-----------------------------------------------------------------
(1) If a message is available within the timeout, it will

arrive at this point.
(2) If a message is not available within the timeout, the

drain flag will ensure that the sender promptly advances the
delivery-count until link-credit is consumed.

Figure 2.44: Synchronous Get w/ Timeout

2.6.9 Asynchronous Notification

Asynchronous notification can be accomplished as follows. The receiver maintains a target amount of link-credit
for that link. As transfer arrive on the link, the sender’s link-credit decreases as the delivery-count increases.
When the sender’s link-credit falls below a threshold, the flow state MAY be sent to increase the sender’s link-
credit back to the desired target amount.

Receiver Sender
=====================================================================

...
<---------- transfer(...)
<---------- transfer(...)

flow(link-credit=delta) ---+ +--- transfer(...)
\ /
x

/ \
<--+ +-->
<---------- transfer(...)
<---------- transfer(...)

flow(link-credit=delta) ---+ +--- transfer(...)
\ /
x

/ \
<--+ +-->

...
---------------------------------------------------------------------
The incoming message rate for the link is limited by the
rate at which the receiver updates the delivery-limit by
issuing link-credit.

Figure 2.45: Asynchrnous Notification

2.6.10 Stopping A Link

Stopping the transfers on a given link is accomplished by updating the link-credit to be zero and sending the
updated flow state. It is possible that some transfers could be in flight at the time the flow state is sent, so
incoming transfers could still arrive on the link. The echo field of the flow frame MAY be used to request the
sender’s flow state be echoed back. This MAY be used to determine when the link has finally quiesced.
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Receiver Sender
================================================================

...
<---------- transfer(...)

flow(..., ---+ +--- transfer(...)
link-credit=0, \ /
echo=True) x

/ \
(1) <--+ +-->
(2) <---------- flow(...)

...
----------------------------------------------------------------
(1) In-flight transfers can still arrive until the flow state

is updated at the sender.
(2) At this point no further transfers will arrive.

Figure 2.46: Stopping Incoming Messages

2.6.11 Messages

The transport layer assumes as little as possible about messages and allows alternative message representations
to be layered above. Message data is carried as the payload in frames containing the transfer performative.
Messages can be fragmented across several transfer frames as indicated by the more flag of the transfer

performative.

2.6.12 Transferring A Message

When an application initiates a message transfer, it assigns a delivery-tag used to track the state of the delivery
while the message is in transit. A delivery is considered unsettled at the sender/receiver from the point at which it
was sent/received until it has been settled by the sending/receiving application. Each delivery MUST be identified
by a delivery-tag chosen by the sending application. The delivery-tag MUST be unique amongst all deliveries that
could be considered unsettled by either end of the link.

Upon initiating a transfer, the application will supply the sending link endpoint (Sender) with the message data and
its associated delivery-tag. The sender will create an entry in its unsettled map, and send a transfer frame that
includes the delivery-tag, the delivery’s initial state, and its associated message data. For brevity on the wire, the
delivery-tag is also associated with a delivery-id assigned by the session. The delivery-id is then used to refer to
the delivery-tag in all subsequent interactions on that session.

The following diagrams illustrate the fundamentals involved in transferring a message. For normative semantics
please refer to the definitions of the transfer and disposition performatives. For simplicity the delivery-id is
omitted in the following diagrams and the delivery-tag is itself used directly. These diagrams also assume that
this interaction takes place in the context of a single established link, and as such omit other details that would be
present on the wire in practice such as the channel number, link handle, fragmentation flags, etc., focusing only
on the essential aspects of message transfer.

+------------------+
/ Sender \
+----------------------+
| unsettled: | transfer(delivery-tag=DT, settled=False,
| ... | state=S_0, ...)
| DT -> (local: S_0, |----------------------------------------------->
| remote: ?) |
| ... |
+----------------------+

Figure 2.47: Initial Transfer

Upon receiving the transfer, the receiving link endpoint (receiver) will create an entry in its own unsettled map and
make the transferred message data available to the application to process.
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+------------------+
/ Receiver \
+----------------------+

transfer(delivery-tag=DT, settled=False, | unsettled: |
state=S_0, ...) | ... |

----------------------------------------------->| DT -> (local: S_1, |
| remote: S_0)|
| ... |
+----------------------+

Figure 2.48: Initial Receipt

Once notified of the received message data, the application processes the message, indicating the updated
delivery state to the link endpoint as desired. Applications MAY wish to classify delivery states as terminal or
non-terminal depending on whether an endpoint will ever update the state further once it has been reached. In
some cases (e.g., large messages or transactions), the receiving application MAY wish to indicate non-terminal
delivery states to the sender. This is done via the disposition frame.

+------------------+
/ Receiver \
+----------------------+
| unsettled: |
| ... |

<-----------------------------------------------| DT -> (local: S_2, |
disp(role=receiver, ..., delivery-tag=DT, | remote: S_0)|

settled=False, state=S_2, ...) | ... |
+----------------------+

Figure 2.49: Indication of Non-Terminal State

Once the receiving application has finished processing the message, it indicates to the link endpoint a terminal
delivery state that reflects the outcome of the application processing (successful or otherwise) and thus the out-
come which the receiver wishes to occur at the sender. This state is communicated back to the sender via the
disposition frame.

+------------------+
/ Receiver \
+----------------------+
| unsettled: |
| ... |

<-----------------------------------------------| DT -> (local: T_0, |
disp(role=receiver, ..., delivery-tag=DT, | remote: S_0)|

settled=False, state=T_0, ...) | ... |
+----------------------+

Figure 2.50: Indication of Presumptive Terminal State

Upon receiving the updated delivery state from the receiver, the sender will, if it has not already spontaneously
attained a terminal state (e.g., through the expiry of the TTL at the sender), update its view of the state and
communicate this back to the sending application.

+------------------+
/ Sender \
+----------------------+
| unsettled: |
| ... |
| DT -> (local: S_0, |<-----------------------------------------------
| remote: T_0)| disp(role=receiver, ..., delivery-tag=DT,
| ... | settled=False, state=T_0, ...)
+----------------------+

Figure 2.51: Receipt of Terminal State
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The sending application will then typically perform some action based on this terminal state and then settle the
delivery, causing the sender to remove the delivery-tag from its unsettled map. The sender will then send its final
delivery state along with an indication that the delivery is settled at the sender. Note that this amounts to the
sender announcing that it is forever forgetting everything about the delivery-tag in question, and as such it is only
possible to make such an announcement once, since after the sender forgets, it has no way of remembering to
make the announcement again. If this frame gets lost due to an interruption in communication, the receiver will
find out that the sender has settled the delivery upon link recovery. When the sender re-attaches the receiver will
examine the unsettled state of the sender (i.e., what has not been forgotten) and from this can derive that the
delivery in question has been settled (since its tag will not be in the unsettled state).

+------------------+
/ Sender \
+----------------------+
| unsettled: | disp(role=sender, ..., delivery-tag=DT,
| ... | settled=True, state=T_1, ...)
| - -> - |----------------------------------------------->
| ... |
+----------------------+

Figure 2.52: Indication of Settlement

When the receiver finds out that the sender has settled the delivery, the receiver will update its view of the remote
state to indicate this, and then notify the receiving application.

+------------------+
/ Receiver \
+----------------------+

disp(role=sender, ..., delivery-tag=DT, | unsettled: |
settled=True, state=T_1, ...) | ... |

----------------------------------------------->| DT -> (local: S_2, |
| remote: - ) |
| ... |
+----------------------+

Figure 2.53: Receipt of Settlement

The application can then perform some final action, e.g., remove the delivery-tag from a set kept for de-duplication,
and then notify the receiver that the delivery is settled. The receiver will then remove the delivery-tag from its
unsettled map. Note that because the receiver knows that the delivery is already settled at the sender, it makes
no effort to notify the other endpoint that it is settling the delivery.

+------------------+
/ Receiver \
+----------------------+
| unsettled: |
| ... |

<-----------------------------------------------| - -> - |
| ... |
+----------------------+

Figure 2.54: Final Settlement

As alluded to above, it is possible for the sending application to transition a delivery to a terminal state at the
sender spontaneously (i.e., not as a consequence of a disposition that has been received from the receiver). In
this case the sender SHOULD send a disposition to the receiver, but not settle until the receiver confirms, via a
disposition in the opposite direction, that it has updated the state at its endpoint.

This set of exchanges illustrates the basic principals of message transfer. While a delivery is unsettled the end-
points exchange the current state of the delivery. Eventually both endpoints reach a terminal state as indicated by
the application. This triggers the other application to take some final action and settle the delivery, and once one
endpoint settles, this usually triggers the application at the other endpoint to settle.
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This basic pattern can be modified in a variety of ways to achieve different guarantees. For example if the sending
application settles the delivery before sending it, this results in an at-most-once guarantee. The sender has
indicated up front with his initial transmission that he has forgotten everything about this delivery and will therefore
make no further attempts to send it. If this delivery makes it to the receiver, the receiver clearly has no obligation
to respond with updates of the receiver’s delivery state, as they would be meaningless and ignored by the sender.

+------------------+
/ Sender \
+----------------------+
| unsettled: | transfer(delivery-tag=DT, settled=True,
| ... | state=T_0, ...)
| - -> - |----------------------------------------------->
| ... |
+----------------------+

Figure 2.55: At-Most-Once

Similarly, if the basic scenario is modified such that the receiving application chooses to settle immediately upon
processing the message rather than waiting for the sender to settle first, that yields an at-least-once guarantee.
If the disposition frame indicated below is lost, then upon link recovery the sender will not see the delivery-tag in
the receiver’s unsettled map and will therefore assume the delivery was lost and resend it, resulting in duplicate
processing of the message at the receiver.

+------------------+
/ Receiver \
+----------------------+
| unsettled: |
| ... |

<-----------------------------------------------| - -> - |
disp(role=receiver, ..., delivery-tag=DT, | ... |

settled=True, state=T_0, ...) | |
+----------------------+

Figure 2.56: At-Least-Once

As one might guess, the scenario presented initially where the sending application settles when the receiver
reaches a terminal state, and the receiving application settles when the sender settles, results in an exactly-once
guarantee. More generally if the receiver settles prior to the sender, it is possible for duplicate messages to occur,
except in the case where the sender settles before the initial transmission. Similarly, if the sender settles before
the receiver reaches a terminal state, it is possible for messages to be lost.

The sender and receiver policy regarding settling can either be preconfigured for the entire link, thereby allowing
for optimized endpoint choices, or can be determined on an ad-hoc basis for each delivery. An application MAY
also choose to settle at an endpoint independently of its delivery state, for example the sending application MAY
choose to settle a delivery due to the message ttl expiring regardless of whether the receiver has reached a
terminal state.

2.6.13 Resuming Deliveries

When a suspended link having unsettled deliveries is resumed, the unsettled field from the attach frame will carry
the delivery-tags and delivery state of all deliveries considered unsettled by the issuing link endpoint. The set of
delivery tags and delivery states contained in the unsettled maps from both endpoints can be divided into three
categories:

Deliveries that only the source considers unsettled
Deliveries in this category MAY be resumed at the discretion of the sending application. If the sending
application marks the resend attempt as a resumed delivery then it MUST be ignored by the receiver. (This
allows the sender to pipeline resumes without risk of duplication at the sender).
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Deliveries that only the target considers unsettled
Deliveries in this category MUST be ignored by the sender, and MUST be considered settled by the receiver.

Deliveries that both the source and target consider unsettled
Deliveries in this category MUST be resumed by the sender.

Note that in the case where an endpoint indicates that the unsettled map is incomplete, the absence of an entry
in the unsettled map is not an indication of settlement. In this case the two endpoints MUST reduce the levels
of unsettled state as much as they can by the sender resuming and/or settling transfers that it observes that the
receiver considers unsettled. Upon completion of this reduction of state, the two parties MUST suspend and
re-attempt to resume the link. Only when both sides have complete unsettled maps can new unsettled state be
created by the sending of non-resuming transfers.

A delivery is resumed much the same way it is initially transferred with the following exceptions:

• The resume flag of the transfer frame MUST be set to true when resuming a delivery.

• The sender MAY omit message data when the delivery state of the receiver indicates retransmission is
unnecessary.

Note that unsettled delivery-tags do NOT have any valid delivery-ids associated until they are resumed, as the
delivery-ids from their original link endpoints are meaningless to the new link endpoints.

2.6.14 Transferring Large Messages

Each transfer frame can carry an arbitrary amount of message data up to the limit imposed by the maximum
frame size. For messages that are too large to fit within the maximum frame size, additional data MAY be trans-
ferred in additional transfer frames by setting the more flag on all but the last transfer frame. When a message
is split up into multiple transfer frames in this manner, messages being transferred along different links MAY be
interleaved. However, messages transferred along a single link MUST NOT be interleaved.

The sender MAY indicate an aborted attempt to deliver a message by setting the abort flag on the last transfer.
In this case the receiver MUST discard the message data that was transferred prior to the abort.

+------------+ S:XFR(M=1,A=0)
+------| NOT_SENT |------+
| +------------+ |
| |
| S:XFR(M=0,A=0) |
| | S:XFR(M=1,A=0)
| | +----------+
| | | |
| \|/ \|/ |
| +------------+ |
| +----------------| SENDING |-------+
| | S:XFR(M=0,A=0) +------------+
| | |
| | |
| | | S:XFR(M=0,A=1)
| | |
\|/ \|/ \|/

+------------+ +------------+
| SENT | | ABORTED |
+------------+ +------------+

Key: S:XFR(M=?,A=?) --> Sent TRANSFER(more=?, aborted=?)

Figure 2.57: Outgoing Fragmentation State Diagram

amqp-core-complete-v1.0-cs01
Standards Track Work Product Copyright c© OASIS Open 2012. All Rights Reserved.

18 July 2012
Page 61 of 124



PART 2. TRANSPORT 2.7 Performatives

+------------+ R:XFR(M=1,A=0)
+------| NOT_RCVD |------+
| +------------+ |
| |
| R:XFR(M=0,A=0) |
| | R:XFR(M=1,A=0)
| | +----------+
| | | |
| \|/ \|/ |
| +------------+ |
| +----------------| RECEIVING |-------+
| | R:XFR(M=0,A=0) +------------+
| | |
| | |
| | | R:XFR(M=0,A=1)
| | |
\|/ \|/ \|/

+------------+ +------------+
| RECEIVED | | ABORTED |
+------------+ +------------+

Key: R:XFR(M=?,A=?) --> Received TRANSFER(more=?, aborted=?)

Figure 2.58: Incoming Fragmentation State Diagram

2.7 Performatives

2.7.1 Open

Negotiate connection parameters.

<type name="open" class="composite" source="list" provides="frame">

<descriptor name="amqp:open:list" code="0x00000000:0x00000010"/>

<field name="container-id" type="string" mandatory="true"/>

<field name="hostname" type="string"/>

<field name="max-frame-size" type="uint" default="4294967295"/>

<field name="channel-max" type="ushort" default="65535"/>

<field name="idle-time-out" type="milliseconds"/>

<field name="outgoing-locales" type="ietf-language-tag" multiple="true"/>

<field name="incoming-locales" type="ietf-language-tag" multiple="true"/>

<field name="offered-capabilities" type="symbol" multiple="true"/>

<field name="desired-capabilities" type="symbol" multiple="true"/>

<field name="properties" type="fields"/>

</type>

The first frame sent on a connection in either direction MUST contain an open performative. Note that the con-
nection header which is sent first on the connection is not a frame.

The fields indicate the capabilities and limitations of the sending peer.

Field Details

container-id the id of the source container

hostname the name of the target host
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The name of the host (either fully qualified or relative) to which the sending peer is connecting. It is
not mandatory to provide the hostname. If no hostname is provided the receiving peer SHOULD
select a default based on its own configuration. This field can be used by AMQP proxies to
determine the correct back-end service to connect the client to.
This field MAY already have been specified by the sasl-init frame, if a SASL layer is used, or,
the server name indication extension as described in RFC-4366, if a TLS layer is used, in which
case this field SHOULD be null or contain the same value. It is undefined what a different value
to that already specified means.

max-frame-size proposed maximum frame size

The largest frame size that the sending peer is able to accept on this connection. If this field
is not set it means that the peer does not impose any specific limit. A peer MUST NOT send
frames larger than its partner can handle. A peer that receives an oversized frame MUST close
the connection with the framing-error error-code.
Both peers MUST accept frames of up to 512 (MIN-MAX-FRAME-SIZE) octets.

channel-max the maximum channel number that can be used on the connection

The channel-max value is the highest channel number that can be used on the connection. This
value plus one is the maximum number of sessions that can be simultaneously active on the
connection. A peer MUST not use channel numbers outside the range that its partner can handle.
A peer that receives a channel number outside the supported range MUST close the connection
with the framing-error error-code.

idle-time-out idle time-out

The idle timeout REQUIRED by the sender (see subsection 2.4.5). A value of zero is the same
as if it was not set (null). If the receiver is unable or unwilling to support the idle time-out then it
SHOULD close the connection with an error explaining why (e.g., because it is too small).
If the value is not set, then the sender does not have an idle time-out. However, senders doing
this SHOULD be aware that implementations MAY choose to use an internal default to efficiently
manage a peer’s resources.

outgoing-locales locales available for outgoing text

A list of the locales that the peer supports for sending informational text. This includes connection,
session and link error descriptions. A peer MUST support at least the en-US locale (see subsec-
tion 2.8.12 IETF Language Tag). Since this value is always supported, it need not be supplied in
the outgoing-locales. A null value or an empty list implies that only en-US is supported.

incoming-locales desired locales for incoming text in decreasing level of preference

A list of locales that the sending peer permits for incoming informational text. This list is ordered
in decreasing level of preference. The receiving partner will choose the first (most preferred)
incoming locale from those which it supports. If none of the requested locales are supported, en-
US will be chosen. Note that en-US need not be supplied in this list as it is always the fallback. A
peer MAY determine which of the permitted incoming locales is chosen by examining the partner’s
supported locales as specified in the outgoing-locales field. A null value or an empty list implies
that only en-US is supported.

offered-capabilities extension capabilities the sender supports

If the receiver of the offered-capabilities requires an extension capability which is not present in
the offered-capability list then it MUST close the connection.
A registry of commonly defined connection capabilities and their meanings is maintained [AMQP-
CONNCAP].

desired-capabilities extension capabilities the sender can use if the receiver supports them
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The desired-capability list defines which extension capabilities the sender MAY use if the receiver
offers them (i.e., they are in the offered-capabilities list received by the sender of the desired-
capabilities). The sender MUST NOT attempt to use any capabilities it did not declare in the
desired-capabilities field. If the receiver of the desired-capabilities offers extension capabilities
which are not present in the desired-capabilities list it received, then it can be sure those (unde-
sired) capabilities will not be used on the connection.

properties connection properties

The properties map contains a set of fields intended to indicate information about the connection
and its container.
A registry of commonly defined connection properties and their meanings is maintained [AMQP-
CONNPROP].

2.7.2 Begin

Begin a session on a channel.

<type name="begin" class="composite" source="list" provides="frame">

<descriptor name="amqp:begin:list" code="0x00000000:0x00000011"/>

<field name="remote-channel" type="ushort"/>

<field name="next-outgoing-id" type="transfer-number" mandatory="true"/>

<field name="incoming-window" type="uint" mandatory="true"/>

<field name="outgoing-window" type="uint" mandatory="true"/>

<field name="handle-max" type="handle" default="4294967295"/>

<field name="offered-capabilities" type="symbol" multiple="true"/>

<field name="desired-capabilities" type="symbol" multiple="true"/>

<field name="properties" type="fields"/>

</type>

Indicate that a session has begun on the channel.

Field Details

remote-channel the remote channel for this session

If a session is locally initiated, the remote-channel MUST NOT be set. When an endpoint responds
to a remotely initiated session, the remote-channel MUST be set to the channel on which the
remote session sent the begin.

next-outgoing-id the transfer-id of the first transfer id the sender will send

See subsection 2.5.6.

incoming-window the initial incoming-window of the sender

See subsection 2.5.6.

outgoing-window the initial outgoing-window of the sender

See subsection 2.5.6.

handle-max the maximum handle value that can be used on the session

The handle-max value is the highest handle value that can be used on the session. A peer MUST
NOT attempt to attach a link using a handle value outside the range that its partner can handle.
A peer that receives a handle outside the supported range MUST close the connection with the
framing-error error-code.

offered-capabilities the extension capabilities the sender supports
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A registry of commonly defined session capabilities and their meanings is maintained
[AMQPSESSCAP].

desired-capabilities the extension capabilities the sender can use if the receiver supports them

The sender MUST NOT attempt to use any capability other than those it has declared in desired-
capabilities field.

properties session properties

The properties map contains a set of fields intended to indicate information about the session and
its container.
A registry of commonly defined session properties and their meanings is maintained
[AMQPSESSPROP].

2.7.3 Attach

Attach a link to a session.

<type name="attach" class="composite" source="list" provides="frame">

<descriptor name="amqp:attach:list" code="0x00000000:0x00000012"/>

<field name="name" type="string" mandatory="true"/>

<field name="handle" type="handle" mandatory="true"/>

<field name="role" type="role" mandatory="true"/>

<field name="snd-settle-mode" type="sender-settle-mode" default="mixed"/>

<field name="rcv-settle-mode" type="receiver-settle-mode" default="first"/>

<field name="source" type="*" requires="source"/>

<field name="target" type="*" requires="target"/>

<field name="unsettled" type="map"/>

<field name="incomplete-unsettled" type="boolean" default="false"/>

<field name="initial-delivery-count" type="sequence-no"/>

<field name="max-message-size" type="ulong"/>

<field name="offered-capabilities" type="symbol" multiple="true"/>

<field name="desired-capabilities" type="symbol" multiple="true"/>

<field name="properties" type="fields"/>

</type>

The attach frame indicates that a link endpoint has been attached to the session.

Field Details

name the name of the link

This name uniquely identifies the link from the container of the source to the container of the target
node, e.g., if the container of the source node is A, and the container of the target node is B, the
link MAY be globally identified by the (ordered) tuple (A,B,<name>).

handle the handle for the link while attached

The numeric handle assigned by the the peer as a shorthand to refer to the link in all performatives
that reference the link until the it is detached. See subsection 2.6.2.
The handle MUST NOT be used for other open links. An attempt to attach using a handle which
is already associated with a link MUST be responded to with an immediate close carrying a
handle-in-use session-error.
To make it easier to monitor AMQP link attach frames, it is RECOMMENDED that implementations
always assign the lowest available handle to this field.

role role of the link endpoint
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The role being played by the peer, i.e., whether the peer is the sender or the receiver of messages
on the link.

snd-settle-mode settlement policy for the sender

The delivery settlement policy for the sender. When set at the receiver this indicates the desired
value for the settlement mode at the sender. When set at the sender this indicates the actual
settlement mode in use. The sender SHOULD respect the receiver’s desired settlement mode if
the receiver initiates the attach exchange and the sender supports the desired mode.

rcv-settle-mode the settlement policy of the receiver

The delivery settlement policy for the receiver. When set at the sender this indicates the desired
value for the settlement mode at the receiver. When set at the receiver this indicates the actual
settlement mode in use. The receiver SHOULD respect the sender’s desired settlement mode if
the sender initiates the attach exchange and the receiver supports the desired mode.

source the source for messages

If no source is specified on an outgoing link, then there is no source currently attached to the link.
A link with no source will never produce outgoing messages.

target the target for messages

If no target is specified on an incoming link, then there is no target currently attached to the link.
A link with no target will never permit incoming messages.

unsettled unsettled delivery state

This is used to indicate any unsettled delivery states when a suspended link is resumed. The
map is keyed by delivery-tag with values indicating the delivery state. The local and remote
delivery states for a given delivery-tag MUST be compared to resolve any in-doubt deliveries. If
necessary, deliveries MAY be resent, or resumed based on the outcome of this comparison. See
subsection 2.6.13.
If the local unsettled map is too large to be encoded within a frame of the agreed maximum
frame size then the session MAY be ended with the frame-size-too-small error. The endpoint
SHOULD make use of the ability to send an incomplete unsettled map (see below) to avoid send-
ing an error.
The unsettled map MUST NOT contain null valued keys.
When reattaching (as opposed to resuming), the unsettled map MUST be null.

incomplete-unsettled

If set to true this field indicates that the unsettled map provided is not complete. When the map
is incomplete the recipient of the map cannot take the absence of a delivery tag from the map
as evidence of settlement. On receipt of an incomplete unsettled map a sending endpoint MUST
NOT send any new deliveries (i.e. deliveries where resume is not set to true) to its partner (and
a receiving endpoint which sent an incomplete unsettled map MUST detach with an error on
receiving a transfer which does not have the resume flag set to true).
Note that if this flag is set to true then the endpoints MUST detach and reattach at least once
in order to send new deliveries. This flag can be useful when there are too many entries in the
unsettled map to fit within a single frame. An endpoint can attach, resume, settle, and detach until
enough unsettled state has been cleared for an attach where this flag is set to false.

initial-delivery-count the sender’s initial value for delivery-count

This MUST NOT be null if role is sender, and it is ignored if the role is receiver. See subsec-
tion 2.6.7.

max-message-size the maximum message size supported by the link endpoint
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This field indicates the maximum message size supported by the link endpoint. Any attempt to
deliver a message larger than this results in a message-size-exceeded link-error. If this field is
zero or unset, there is no maximum size imposed by the link endpoint.

offered-capabilities the extension capabilities the sender supports

A registry of commonly defined link capabilities and their meanings is maintained [AMQ-
PLINKCAP].

desired-capabilities the extension capabilities the sender can use if the receiver supports them

The sender MUST NOT attempt to use any capability other than those it has declared in desired-
capabilities field.

properties link properties

The properties map contains a set of fields intended to indicate information about the link and its
container.
A registry of commonly defined link properties and their meanings is maintained [AMQ-
PLINKPROP].

2.7.4 Flow

Update link state.

<type name="flow" class="composite" source="list" provides="frame">

<descriptor name="amqp:flow:list" code="0x00000000:0x00000013"/>

<field name="next-incoming-id" type="transfer-number"/>

<field name="incoming-window" type="uint" mandatory="true"/>

<field name="next-outgoing-id" type="transfer-number" mandatory="true"/>

<field name="outgoing-window" type="uint" mandatory="true"/>

<field name="handle" type="handle"/>

<field name="delivery-count" type="sequence-no"/>

<field name="link-credit" type="uint"/>

<field name="available" type="uint"/>

<field name="drain" type="boolean" default="false"/>

<field name="echo" type="boolean" default="false"/>

<field name="properties" type="fields"/>

</type>

Updates the flow state for the specified link.

Field Details

next-incoming-id

Identifies the expected transfer-id of the next incoming transfer frame. This value MUST be set
if the peer has received the begin frame for the session, and MUST NOT be set if it has not. See
subsection 2.5.6 for more details.

incoming-window

Defines the maximum number of incoming transfer frames that the endpoint can currently re-
ceive. See subsection 2.5.6 for more details.

next-outgoing-id

The transfer-id that will be assigned to the next outgoing transfer frame. See subsection 2.5.6
for more details.
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outgoing-window

Defines the maximum number of outgoing transfer frames that the endpoint could potentially
currently send, if it was not constrained by restrictions imposed by its peer’s incoming-window.
See subsection 2.5.6 for more details.

handle

If set, indicates that the flow frame carries flow state information for the local link endpoint associ-
ated with the given handle. If not set, the flow frame is carrying only information pertaining to the
session endpoint.
If set to a handle that is not currently associated with an attached link, the recipient MUST respond
by ending the session with an unattached-handle session error.

delivery-count the endpoint’s value for the delivery-count sequence number

See subsection 2.6.7 for the definition of delivery-count.
When the handle field is not set, this field MUST NOT be set.
When the handle identifies that the flow state is being sent from the sender link endpoint to
receiver link endpoint this field MUST be set to the current delivery-count of the link endpoint.
When the flow state is being sent from the receiver endpoint to the sender endpoint this field
MUST be set to the last known value of the corresponding sending endpoint. In the event that the
receiving link endpoint has not yet seen the initial attach frame from the sender this field MUST
NOT be set.

link-credit the current maximum number of messages that can be received

The current maximum number of messages that can be handled at the receiver endpoint of the
link. Only the receiver endpoint can independently set this value. The sender endpoint sets this
to the last known value seen from the receiver. See subsection 2.6.7 for more details.
When the handle field is not set, this field MUST NOT be set.

available the number of available messages

The number of messages awaiting credit at the link sender endpoint. Only the sender can inde-
pendently set this value. The receiver sets this to the last known value seen from the sender. See
subsection 2.6.7 for more details.
When the handle field is not set, this field MUST NOT be set.

drain indicates drain mode

When flow state is sent from the sender to the receiver, this field contains the actual drain mode of
the sender. When flow state is sent from the receiver to the sender, this field contains the desired
drain mode of the receiver. See subsection 2.6.7 for more details.
When the handle field is not set, this field MUST NOT be set.

echo request state from partner

If set to true then the receiver SHOULD send its state at the earliest convenient opportunity.
If set to true, and the handle field is not set, then the sender only requires session endpoint state
to be echoed, however, the receiver MAY fulfil this requirement by sending a flow performative
carrying link-specific state (since any such flow also carries session state).
If a sender makes multiple requests for the same state before the receiver can reply, the receiver
MAY send only one flow in return.
Note that if a peer responds to echo requests with flows which themselves have the echo field set
to true, an infinite loop could result if its partner adopts the same policy (therefore such a policy
SHOULD be avoided).

properties link state properties
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A registry of commonly defined link state properties and their meanings is maintained [AMQ-
PLINKSTATEPROP].
When the handle field is not set, this field MUST NOT be set.

2.7.5 Transfer

Transfer a message.

<type name="transfer" class="composite" source="list" provides="frame">

<descriptor name="amqp:transfer:list" code="0x00000000:0x00000014"/>

<field name="handle" type="handle" mandatory="true"/>

<field name="delivery-id" type="delivery-number"/>

<field name="delivery-tag" type="delivery-tag"/>

<field name="message-format" type="message-format"/>

<field name="settled" type="boolean"/>

<field name="more" type="boolean" default="false"/>

<field name="rcv-settle-mode" type="receiver-settle-mode"/>

<field name="state" type="*" requires="delivery-state"/>

<field name="resume" type="boolean" default="false"/>

<field name="aborted" type="boolean" default="false"/>

<field name="batchable" type="boolean" default="false"/>

</type>

The transfer frame is used to send messages across a link. Messages MAY be carried by a single transfer up
to the maximum negotiated frame size for the connection. Larger messages MAY be split across several transfer
frames.

Field Details

handle

Specifies the link on which the message is transferred.

delivery-id alias for delivery-tag

The delivery-id MUST be supplied on the first transfer of a multi-transfer delivery. On continuation
transfers the delivery-id MAY be omitted. It is an error if the delivery-id on a continuation transfer
differs from the delivery-id on the first transfer of a delivery.

delivery-tag

Uniquely identifies the delivery attempt for a given message on this link. This field MUST be
specified for the first transfer of a multi-transfer message and can only be omitted for continuation
transfers. It is an error if the delivery-tag on a continuation transfer differs from the delivery-tag on
the first transfer of a delivery.

message-format indicates the message format

This field MUST be specified for the first transfer of a multi-transfer message and can only be
omitted for continuation transfers. It is an error if the message-format on a continuation transfer
differs from the message-format on the first transfer of a delivery.

settled
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If not set on the first (or only) transfer for a (multi-transfer) delivery, then the settled flag MUST be
interpreted as being false. For subsequent transfers in a multi-transfer delivery if the settled flag
is left unset then it MUST be interpreted as true if and only if the value of the settled flag on any
of the preceding transfers was true; if no preceding transfer was sent with settled being true then
the value when unset MUST be taken as false.
If the negotiated value for snd-settle-mode at attachment is settled, then this field MUST be true
on at least one transfer frame for a delivery (i.e., the delivery MUST be settled at the sender at
the point the delivery has been completely transferred).
If the negotiated value for snd-settle-mode at attachment is unsettled, then this field MUST be
false (or unset) on every transfer frame for a delivery (unless the delivery is aborted).

more indicates that the message has more content

Note that if both the more and aborted fields are set to true, the aborted flag takes precedence.
That is, a receiver SHOULD ignore the value of the more field if the transfer is marked as aborted.
A sender SHOULD NOT set the more flag to true if it also sets the aborted flag to true.

rcv-settle-mode

If first, this indicates that the receiver MUST settle the delivery once it has arrived without waiting
for the sender to settle first.
If second, this indicates that the receiver MUST NOT settle until sending its disposition to the
sender and receiving a settled disposition from the sender.
If not set, this value is defaulted to the value negotiated on link attach.
If the negotiated link value is first, then it is illegal to set this field to second.
If the message is being sent settled by the sender, the value of this field is ignored.
The (implicit or explicit) value of this field does not form part of the transfer state, and is not
retained if a link is suspended and subsequently resumed.

state the state of the delivery at the sender

When set this informs the receiver of the state of the delivery at the sender. This is particularly
useful when transfers of unsettled deliveries are resumed after resuming a link. Setting the state
on the transfer can be thought of as being equivalent to sending a disposition immediately before
the transfer performative, i.e., it is the state of the delivery (not the transfer) that existed at the
point the frame was sent.
Note that if the transfer performative (or an earlier disposition performative referring to the
delivery) indicates that the delivery has attained a terminal state, then no future transfer or
disposition sent by the sender can alter that terminal state.

resume indicates a resumed delivery

If true, the resume flag indicates that the transfer is being used to reassociate an unsettled delivery
from a dissociated link endpoint. See subsection 2.6.13 for more details.
The receiver MUST ignore resumed deliveries that are not in its local unsettled map. The sender
MUST NOT send resumed transfers for deliveries not in its local unsettled map.
If a resumed delivery spans more than one transfer performative, then the resume flag MUST be
set to true on the first transfer of the resumed delivery. For subsequent transfers for the same
delivery the resume flag MAY be set to true, or MAY be omitted.
In the case where the exchange of unsettled maps makes clear that all message data has been
successfully transferred to the receiver, and that only the final state (and potentially settlement) at
the sender needs to be conveyed, then a resumed delivery MAY carry no payload and instead act
solely as a vehicle for carrying the terminal state of the delivery at the sender.

aborted indicates that the message is aborted

Aborted messages SHOULD be discarded by the recipient (any payload within the frame carrying
the performative MUST be ignored). An aborted message is implicitly settled.
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batchable batchable hint

If true, then the issuer is hinting that there is no need for the peer to urgently communicate
updated delivery state. This hint MAY be used to artificially increase the amount of batching
an implementation uses when communicating delivery states, and thereby save bandwidth.
If the message being delivered is too large to fit within a single frame, then the setting of batchable
to true on any of the transfer performatives for the delivery is equivalent to setting batchable to
true for all the transfer performatives for the delivery.
The batchable value does not form part of the transfer state, and is not retained if a link is sus-
pended and subsequently resumed.

2.7.6 Disposition

Inform remote peer of delivery state changes.

<type name="disposition" class="composite" source="list" provides="frame">

<descriptor name="amqp:disposition:list" code="0x00000000:0x00000015"/>

<field name="role" type="role" mandatory="true"/>

<field name="first" type="delivery-number" mandatory="true"/>

<field name="last" type="delivery-number"/>

<field name="settled" type="boolean" default="false"/>

<field name="state" type="*" requires="delivery-state"/>

<field name="batchable" type="boolean" default="false"/>

</type>

The disposition frame is used to inform the remote peer of local changes in the state of deliveries. The disposition
frame MAY reference deliveries from many different links associated with a session, although all links MUST have
the directionality indicated by the specified role.

Note that it is possible for a disposition sent from sender to receiver to refer to a delivery which has not yet
completed (i.e., a delivery which is spread over multiple frames and not all frames have yet been sent). The use
of such interleaving is discouraged in favor of carrying the modified state on the next transfer performative for
the delivery.

The disposition performative MAY refer to deliveries on links that are no longer attached. As long as the links
have not been closed or detached with an error then the deliveries are still “live” and the updated state MUST be
applied.

Field Details

role directionality of disposition

The role identifies whether the disposition frame contains information about sending link endpoints
or receiving link endpoints.

first lower bound of deliveries

Identifies the lower bound of delivery-ids for the deliveries in this set.

last upper bound of deliveries

Identifies the upper bound of delivery-ids for the deliveries in this set. If not set, this is taken to be
the same as first.

settled indicates deliveries are settled

If true, indicates that the referenced deliveries are considered settled by the issuing endpoint.

state indicates state of deliveries
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Communicates the state of all the deliveries referenced by this disposition.

batchable batchable hint

If true, then the issuer is hinting that there is no need for the peer to urgently communicate the
impact of the updated delivery states. This hint MAY be used to artificially increase the amount of
batching an implementation uses when communicating delivery states, and thereby save band-
width.

2.7.7 Detach

Detach the link endpoint from the session.

<type name="detach" class="composite" source="list" provides="frame">

<descriptor name="amqp:detach:list" code="0x00000000:0x00000016"/>

<field name="handle" type="handle" mandatory="true"/>

<field name="closed" type="boolean" default="false"/>

<field name="error" type="error"/>

</type>

Detach the link endpoint from the session. This unmaps the handle and makes it available for use by other links.

Field Details

handle the local handle of the link to be detached

closed if true then the sender has closed the link

See subsection 2.6.6.

error error causing the detach

If set, this field indicates that the link is being detached due to an error condition. The value of the
field SHOULD contain details on the cause of the error.

2.7.8 End

End the session.

<type name="end" class="composite" source="list" provides="frame">

<descriptor name="amqp:end:list" code="0x00000000:0x00000017"/>

<field name="error" type="error"/>

</type>

Indicates that the session has ended.

Field Details

error error causing the end

If set, this field indicates that the session is being ended due to an error condition. The value of
the field SHOULD contain details on the cause of the error.
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2.7.9 Close

Signal a connection close.

<type name="close" class="composite" source="list" provides="frame">

<descriptor name="amqp:close:list" code="0x00000000:0x00000018"/>

<field name="error" type="error"/>

</type>

Sending a close signals that the sender will not be sending any more frames (or bytes of any other kind) on the
connection. Orderly shutdown requires that this frame MUST be written by the sender. It is illegal to send any
more frames (or bytes of any other kind) after sending a close frame.

Field Details

error error causing the close

If set, this field indicates that the connection is being closed due to an error condition. The value
of the field SHOULD contain details on the cause of the error.

2.8 Definitions

2.8.1 Role

Link endpoint role.

<type name="role" class="restricted" source="boolean">

<choice name="sender" value="false"/>

<choice name="receiver" value="true"/>

</type>

Valid Values

false sender

true receiver

2.8.2 Sender Settle Mode

Settlement policy for a sender.

<type name="sender-settle-mode" class="restricted" source="ubyte">

<choice name="unsettled" value="0"/>

<choice name="settled" value="1"/>

<choice name="mixed" value="2"/>

</type>

Valid Values

0 The sender will send all deliveries initially unsettled to the receiver.

1 The sender will send all deliveries settled to the receiver.
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2 The sender MAY send a mixture of settled and unsettled deliveries to the receiver.

2.8.3 Receiver Settle Mode

Settlement policy for a receiver.

<type name="receiver-settle-mode" class="restricted" source="ubyte">

<choice name="first" value="0"/>

<choice name="second" value="1"/>

</type>

Valid Values

0 The receiver will spontaneously settle all incoming transfers.

1 The receiver will only settle after sending the disposition to the sender and
receiving a disposition indicating settlement of the delivery from the sender.

2.8.4 Handle

The handle of a link.

<type name="handle" class="restricted" source="uint"/>

An alias established by the attach frame and subsequently used by endpoints as a shorthand to refer to the link
in all outgoing frames. The two endpoints MAY potentially use different handles to refer to the same link. Link
handles MAY be reused once a link is closed for both send and receive.

2.8.5 Seconds

A duration measured in seconds.

<type name="seconds" class="restricted" source="uint"/>

2.8.6 Milliseconds

A duration measured in milliseconds.

<type name="milliseconds" class="restricted" source="uint"/>

2.8.7 Delivery Tag

<type name="delivery-tag" class="restricted" source="binary"/>

A delivery-tag can be up to 32 octets of binary data.

2.8.8 Delivery Number

<type name="delivery-number" class="restricted" source="sequence-no"/>
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2.8.9 Transfer Number

<type name="transfer-number" class="restricted" source="sequence-no"/>

2.8.10 Sequence No

32-bit RFC-1982 serial number.

<type name="sequence-no" class="restricted" source="uint"/>

A sequence-no encodes a serial number as defined in RFC-1982 [RFC1982]. The arithmetic and operators for
these numbers are defined by RFC-1982.

2.8.11 Message Format

32-bit message format code.

<type name="message-format" class="restricted" source="uint"/>

The upper three octets of a message format code identify a particular message format. The lowest octet indicates
the version of said message format. Any given version of a format is forwards compatible with all higher versions.

3 octets 1 octet
+----------------+---------+
| message format | version |
+----------------+---------+
| |
msb lsb

Figure 2.59: Layout of Message Format Code

2.8.12 IETF Language Tag

An IETF language tag as defined by BCP 47.

<type name="ietf-language-tag" class="restricted" source="symbol"/>

IETF language tags are abbreviated language codes as defined in the IETF Best Current Practice BCP-47
[BCP47] (incorporating IETF RFC-5646 [RFC5646]). A list of registered subtags is maintained in the IANA Lan-
guage Subtag Registry [IANASUBTAG].

All AMQP implementations SHOULD understand at the least the IETF language tag en-US (note that this uses a
hyphen separator, not an underscore).

2.8.13 Fields

A mapping from field name to value.

<type name="fields" class="restricted" source="map"/>

The fields type is a map where the keys are restricted to be of type symbol (this excludes the possibility of a null
key). There is no further restriction implied by the fields type on the allowed values for the entries or the set of
allowed keys.
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2.8.14 Error

Details of an error.

<type name="error" class="composite" source="list">

<descriptor name="amqp:error:list" code="0x00000000:0x0000001d"/>

<field name="condition" type="symbol" requires="error-condition" mandatory="true"/>

<field name="description" type="string"/>

<field name="info" type="fields"/>

</type>

Field Details

condition error condition

A symbolic value indicating the error condition.

description descriptive text about the error condition

This text supplies any supplementary details not indicated by the condition field. This text can be
logged as an aid to resolving issues.

info map carrying information about the error condition

2.8.15 AMQP Error

Shared error conditions.

<type name="amqp-error" class="restricted" source="symbol" provides="error-condition">

<choice name="internal-error" value="amqp:internal-error"/>

<choice name="not-found" value="amqp:not-found"/>

<choice name="unauthorized-access" value="amqp:unauthorized-access"/>

<choice name="decode-error" value="amqp:decode-error"/>

<choice name="resource-limit-exceeded" value="amqp:resource-limit-exceeded"/>

<choice name="not-allowed" value="amqp:not-allowed"/>

<choice name="invalid-field" value="amqp:invalid-field"/>

<choice name="not-implemented" value="amqp:not-implemented"/>

<choice name="resource-locked" value="amqp:resource-locked"/>

<choice name="precondition-failed" value="amqp:precondition-failed"/>

<choice name="resource-deleted" value="amqp:resource-deleted"/>

<choice name="illegal-state" value="amqp:illegal-state"/>

<choice name="frame-size-too-small" value="amqp:frame-size-too-small"/>

</type>

Valid Values

amqp:internal-error

An internal error occurred. Operator intervention might be necessary to resume normal
operation.

amqp:not-found

A peer attempted to work with a remote entity that does not exist.

amqp:unauthorized-access

A peer attempted to work with a remote entity to which it has no access due to security
settings.
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amqp:decode-error

Data could not be decoded.

amqp:resource-limit-exceeded

A peer exceeded its resource allocation.

amqp:not-allowed

The peer tried to use a frame in a manner that is inconsistent with the semantics defined in
the specification.

amqp:invalid-field

An invalid field was passed in a frame body, and the operation could not proceed.

amqp:not-implemented

The peer tried to use functionality that is not implemented in its partner.

amqp:resource-locked

The client attempted to work with a server entity to which it has no access because another
client is working with it.

amqp:precondition-failed

The client made a request that was not allowed because some precondition failed.

amqp:resource-deleted

A server entity the client is working with has been deleted.

amqp:illegal-state

The peer sent a frame that is not permitted in the current state.

amqp:frame-size-too-small

The peer cannot send a frame because the smallest encoding of the performative with the
currently valid values would be too large to fit within a frame of the agreed maximum frame
size. When transferring a message the message data can be sent in multiple transfer

frames thereby avoiding this error. Similarly when attaching a link with a large unsettled
map the endpoint MAY make use of the incomplete-unsettled flag to avoid the need for
overly large frames.

2.8.16 Connection Error

Symbols used to indicate connection error conditions.

<type name="connection-error" class="restricted" source="symbol" provides="error-condition">

<choice name="connection-forced" value="amqp:connection:forced"/>

<choice name="framing-error" value="amqp:connection:framing-error"/>

<choice name="redirect" value="amqp:connection:redirect"/>

</type>

Valid Values

amqp:connection:forced

An operator intervened to close the connection for some reason. The client could retry at
some later date.
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amqp:connection:framing-error

A valid frame header cannot be formed from the incoming byte stream.

amqp:connection:redirect

The container is no longer available on the current connection. The peer SHOULD attempt
reconnection to the container using the details provided in the info map.
hostname the hostname of the container. This is the value that SHOULD be

supplied in the hostname field of the open frame, and during the
SASL and TLS negotiation (if used).

network-host the DNS hostname or IP address of the machine hosting the con-
tainer.

port the port number on the machine hosting the container.

2.8.17 Session Error

Symbols used to indicate session error conditions.

<type name="session-error" class="restricted" source="symbol" provides="error-condition">

<choice name="window-violation" value="amqp:session:window-violation"/>

<choice name="errant-link" value="amqp:session:errant-link"/>

<choice name="handle-in-use" value="amqp:session:handle-in-use"/>

<choice name="unattached-handle" value="amqp:session:unattached-handle"/>

</type>

Valid Values

amqp:session:window-violation

The peer violated incoming window for the session.

amqp:session:errant-link

Input was received for a link that was detached with an error.

amqp:session:handle-in-use

An attach was received using a handle that is already in use for an attached link.

amqp:session:unattached-handle

A frame (other than attach) was received referencing a handle which is not currently in use
of an attached link.

2.8.18 Link Error

Symbols used to indicate link error conditions.

<type name="link-error" class="restricted" source="symbol" provides="error-condition">

<choice name="detach-forced" value="amqp:link:detach-forced"/>

<choice name="transfer-limit-exceeded" value="amqp:link:transfer-limit-exceeded"/>

<choice name="message-size-exceeded" value="amqp:link:message-size-exceeded"/>

<choice name="redirect" value="amqp:link:redirect"/>

<choice name="stolen" value="amqp:link:stolen"/>

</type>
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Valid Values

amqp:link:detach-forced

An operator intervened to detach for some reason.

amqp:link:transfer-limit-exceeded

The peer sent more message transfers than currently allowed on the link.

amqp:link:message-size-exceeded

The peer sent a larger message than is supported on the link.

amqp:link:redirect

The address provided cannot be resolved to a terminus at the current container. The info
map MAY contain the following information to allow the client to locate the attach to the
terminus.
hostname the hostname of the container hosting the terminus. This is the value

that SHOULD be supplied in the hostname field of the open frame,
and during SASL and TLS negotiation (if used).

network-host the DNS hostname or IP address of the machine hosting the con-
tainer.

port the port number on the machine hosting the container.
address the address of the terminus at the container.

amqp:link:stolen

The link has been attached elsewhere, causing the existing attachment to be forcibly
closed.

2.8.19 Constant Definitions

PORT 5672 the IANA assigned port number for AMQP.
The standard AMQP port number that has been assigned
by IANA for TCP, UDP, and SCTP.
There are currently no UDP or SCTP mappings defined
for AMQP. The port number is reserved for future transport
mappings to these protocols.

SECURE-PORT 5671 the IANA assigned port number for secure AMQP (amqps).
The standard AMQP port number that has been assigned
by IANA for secure TCP using TLS.
Implementations listening on this port SHOULD NOT ex-
pect a protocol handshake before TLS is negotiated.

MAJOR 1 major protocol version.

MINOR 0 minor protocol version.

REVISION 0 protocol revision.
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MIN-MAX-FRAME-SIZE 512 the lower bound for the agreed maximum frame size (in
bytes).
During the initial connection negotiation, the two peers
MUST agree upon a maximum frame size. This constant
defines the minimum value to which the maximum frame
size can be set. By defining this value, the peers can guar-
antee that they can send frames of up to this size until they
have agreed a definitive maximum frame size for that con-
nection.
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Part 3: Messaging

3.1 Introduction

The messaging layer builds on top of the concepts described in Part 1 and Part 2. The transport layer defines a
number of extension points suitable for use in a variety of different messaging applications. The messaging layer
specifies a standardized use of these to provide interoperable messaging capabilities. This standard covers:

• message format

– properties for the bare message

– formats for structured and unstructured sections in the bare message

– headers and footers for the annotated message

• delivery states for messages traveling between nodes

• states for messages stored at a distribution node

• sources and targets

– default disposition of transfers

– supported outcomes

– filtering of messages from a node

– distribution-mode for access to messages stored at a distribution node

– on-demand node creation

3.2 Message Format

The term message is used with various connotations in the messaging world. The sender might like to think of
the message as an immutable payload handed off to the messaging infrastructure for delivery. The receiver often
thinks of the message as not only that immutable payload from the sender, but also various annotations supplied
by the messaging infrastructure along the way. To avoid confusion we formally define the term bare message to
mean the message as supplied by the sender and the term annotated message to mean the message as seen at
the receiver.

An annotated message consists of the bare message plus sections for annotation at the head and tail of the
bare message. There are two classes of annotations: annotations that travel with the message indefinitely, and
annotations that are consumed by the next node.

The bare message consists of three sections: standard properties, application-properties, and application-data
(the body).
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Bare Message
|

.---------------------+--------------------.
| |

+--------+-------------+-------------+------------+--------------+--------------+--------+
| header | delivery- | message- | properties | application- | application- | footer |
| | annotations | annotations | | properties | data | |
+--------+-------------+-------------+------------+--------------+--------------+--------+
| |
’-------------------------------------------+--------------------------------------------’

|
Annotated Message

The bare message is immutable within the AMQP network. That is, none of the sections can be changed by any
node acting as an AMQP intermediary. If a section of the bare message is omitted, one MUST NOT be inserted
by an intermediary. The exact encoding of sections of the bare message MUST NOT be modified. This preserves
message hashes, HMACs and signatures based on the binary encoding of the bare message.

The exact structure of a message, together with its encoding, is defined by the message format. This document
defines the structure and semantics of message format 0 (MESSAGE-FORMAT). Altogether a message consists
of the following sections:

• Zero or one header.

• Zero or one delivery-annotations.

• Zero or one message-annotations.

• Zero or one properties.

• Zero or one application-properties.

• The body consists of one of the following three choices: one or more data sections, one or more amqp-sequence

sections, or a single amqp-value section.

• Zero or one footer.

3.2.1 Header

Transport headers for a message.

<type name="header" class="composite" source="list" provides="section">

<descriptor name="amqp:header:list" code="0x00000000:0x00000070"/>

<field name="durable" type="boolean" default="false"/>

<field name="priority" type="ubyte" default="4"/>

<field name="ttl" type="milliseconds"/>

<field name="first-acquirer" type="boolean" default="false"/>

<field name="delivery-count" type="uint" default="0"/>

</type>

The header section carries standard delivery details about the transfer of a message through the AMQP network.
If the header section is omitted the receiver MUST assume the appropriate default values (or the meaning implied
by no value being set) for the fields within the header unless other target or node specific defaults have otherwise
been set.

Field Details

durable specify durability requirements
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Durable messages MUST NOT be lost even if an intermediary is unexpectedly terminated and
restarted. A target which is not capable of fulfilling this guarantee MUST NOT accept messages
where the durable header is set to true: if the source allows the rejected outcome then the
message SHOULD be rejected with the precondition-failed error, otherwise the link MUST be
detached by the receiver with the same error.

priority relative message priority

This field contains the relative message priority. Higher numbers indicate higher priority mes-
sages. Messages with higher priorities MAY be delivered before those with lower priorities.
An AMQP intermediary implementing distinct priority levels MUST do so in the following manner:
• If n distinct priorities are implemented and n is less than 10 – priorities 0 to (5 - ceiling(n/2))

MUST be treated equivalently and MUST be the lowest effective priority. The priorities (4
+ floor(n/2)) and above MUST be treated equivalently and MUST be the highest effective
priority. The priorities (5 - ceiling(n/2)) to (4 + floor(n/2)) inclusive MUST be treated as
distinct priorities.
• If n distinct priorities are implemented and n is 10 or greater – priorities 0 to (n - 1) MUST

be distinct, and priorities n and above MUST be equivalent to priority (n - 1).
Thus, for example, if 2 distinct priorities are implemented, then levels 0 to 4 are equivalent, and
levels 5 to 9 are equivalent and levels 4 and 5 are distinct. If 3 distinct priorities are implements
the 0 to 3 are equivalent, 5 to 9 are equivalent and 3, 4 and 5 are distinct.
This scheme ensures that if two priorities are distinct for a server which implements m separate
priority levels they are also distinct for a server which implements n different priority levels where
n > m.

ttl time to live in ms

Duration in milliseconds for which the message is to be considered “live”. If this is set then
a message expiration time will be computed based on the time of arrival at an intermediary.
Messages that live longer than their expiration time will be discarded (or dead lettered). When a
message is transmitted by an intermediary that was received with a ttl, the transmitted message’s
header SHOULD contain a ttl that is computed as the difference between the current time and the
formerly computed message expiration time, i.e., the reduced ttl, so that messages will eventually
die if they end up in a delivery loop.

first-acquirer

If this value is true, then this message has not been acquired by any other link (see section 3.3). If
this value is false, then this message MAY have previously been acquired by another link or links.

delivery-count the number of prior unsuccessful delivery attempts

The number of unsuccessful previous attempts to deliver this message. If this value is non-zero
it can be taken as an indication that the delivery might be a duplicate. On first delivery, the value
is zero. It is incremented upon an outcome being settled at the sender, according to rules defined
for each outcome.

3.2.2 Delivery Annotations

<type name="delivery-annotations" class="restricted" source="annotations" provides="section">

<descriptor name="amqp:delivery-annotations:map" code="0x00000000:0x00000071"/>

</type>

The delivery-annotations section is used for delivery-specific non-standard properties at the head of the message.
Delivery annotations convey information from the sending peer to the receiving peer. If the recipient does not
understand the annotation it cannot be acted upon and its effects (such as any implied propagation) cannot be
acted upon. Annotations might be specific to one implementation, or common to multiple implementations. The
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capabilities negotiated on link attach and on the source and target SHOULD be used to establish which anno-
tations a peer supports. A registry of defined annotations and their meanings is maintained [AMQPDELANN]. The
symbolic key “rejected” is reserved for the use of communicating error information regarding rejected messages.
Any values associated with the “rejected” key MUST be of type error.

If the delivery-annotations section is omitted, it is equivalent to a delivery-annotations section containing an empty
map of annotations.

3.2.3 Message Annotations

<type name="message-annotations" class="restricted" source="annotations" provides="section">

<descriptor name="amqp:message-annotations:map" code="0x00000000:0x00000072"/>

</type>

The message-annotations section is used for properties of the message which are aimed at the infrastructure
and SHOULD be propagated across every delivery step. Message annotations convey information about the
message. Intermediaries MUST propagate the annotations unless the annotations are explicitly augmented or
modified (e.g., by the use of the modified outcome).

The capabilities negotiated on link attach and on the source and target can be used to establish which anno-
tations a peer understands; however, in a network of AMQP intermediaries it might not be possible to know if
every intermediary will understand the annotation. Note that for some annotations it might not be necessary for
the intermediary to understand their purpose, i.e., they could be used purely as an attribute which can be filtered
on.

A registry of defined annotations and their meanings is maintained [AMQPMESSANN].

If the message-annotations section is omitted, it is equivalent to a message-annotations section containing an
empty map of annotations.

3.2.4 Properties

Immutable properties of the message.

<type name="properties" class="composite" source="list" provides="section">

<descriptor name="amqp:properties:list" code="0x00000000:0x00000073"/>

<field name="message-id" type="*" requires="message-id"/>

<field name="user-id" type="binary"/>

<field name="to" type="*" requires="address"/>

<field name="subject" type="string"/>

<field name="reply-to" type="*" requires="address"/>

<field name="correlation-id" type="*" requires="message-id"/>

<field name="content-type" type="symbol"/>

<field name="content-encoding" type="symbol"/>

<field name="absolute-expiry-time" type="timestamp"/>

<field name="creation-time" type="timestamp"/>

<field name="group-id" type="string"/>

<field name="group-sequence" type="sequence-no"/>

<field name="reply-to-group-id" type="string"/>

</type>

The properties section is used for a defined set of standard properties of the message. The properties section is
part of the bare message; therefore, if retransmitted by an intermediary, it MUST remain unaltered.

Field Details

message-id application message identifier
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Message-id, if set, uniquely identifies a message within the message system. The message
producer is usually responsible for setting the message-id in such a way that it is assured to be
globally unique. A broker MAY discard a message as a duplicate if the value of the message-id
matches that of a previously received message sent to the same node.

user-id creating user id

The identity of the user responsible for producing the message. The client sets this value, and it
MAY be authenticated by intermediaries.

to the address of the node the message is destined for

The to field identifies the node that is the intended destination of the message. On any given
transfer this might not be the node at the receiving end of the link.

subject the subject of the message

A common field for summary information about the message content and purpose.

reply-to the node to send replies to

The address of the node to send replies to.

correlation-id application correlation identifier

This is a client-specific id that can be used to mark or identify messages between clients.

content-type MIME content type

The RFC-2046 [RFC2046] MIME type for the message’s application-data section (body). As per
RFC-2046 [RFC2046] this can contain a charset parameter defining the character encoding used:
e.g., ’text/plain; charset=“utf-8”’.
For clarity, as per section 7.2.1 of RFC-2616 [RFC2616], where the content type is unknown
the content-type SHOULD NOT be set. This allows the recipient the opportunity to determine the
actual type. Where the section is known to be truly opaque binary data, the content-type SHOULD
be set to application/octet-stream.
When using an application-data section with a section code other than data, content-type
SHOULD NOT be set.

content-encoding MIME content type

The content-encoding property is used as a modifier to the content-type. When present, its value
indicates what additional content encodings have been applied to the application-data, and thus
what decoding mechanisms need to be applied in order to obtain the media-type referenced by
the content-type header field.
Content-encoding is primarily used to allow a document to be compressed without losing the
identity of its underlying content type.
Content-encodings are to be interpreted as per section 3.5 of RFC 2616 [RFC2616]. Valid
content-encodings are registered at IANA [IANAHTTPPARAMS].
The content-encoding MUST NOT be set when the application-data section is other than data.
The binary representation of all other application-data section types is defined completely in terms
of the AMQP type system.
Implementations MUST NOT use the identity encoding. Instead, implementations SHOULD NOT
set this property. Implementations SHOULD NOT use the compress encoding, except as to re-
main compatible with messages originally sent with other protocols, e.g. HTTP or SMTP.
Implementations SHOULD NOT specify multiple content-encoding values except as to be com-
patible with messages originally sent with other protocols, e.g. HTTP or SMTP.

absolute-expiry-time the time when this message is considered expired

An absolute time when this message is considered to be expired.

amqp-core-complete-v1.0-cs01
Standards Track Work Product Copyright c© OASIS Open 2012. All Rights Reserved.

18 July 2012
Page 85 of 124



PART 3. MESSAGING 3.2 Message Format

creation-time the time when this message was created

An absolute time when this message was created.

group-id the group this message belongs to

Identifies the group the message belongs to.

group-sequence the sequence-no of this message within its group

The relative position of this message within its group.

reply-to-group-id the group the reply message belongs to

This is a client-specific id that is used so that client can send replies to this message to a specific
group.

3.2.5 Application Properties

<type name="application-properties" class="restricted" source="map" provides="section">

<descriptor name="amqp:application-properties:map" code="0x00000000:0x00000074"/>

</type>

The application-properties section is a part of the bare message used for structured application data. Intermedi-
aries can use the data within this structure for the purposes of filtering or routing.

The keys of this map are restricted to be of type string (which excludes the possibility of a null key) and the
values are restricted to be of simple types only, that is, excluding map, list, and array types.

3.2.6 Data

<type name="data" class="restricted" source="binary" provides="section">

<descriptor name="amqp:data:binary" code="0x00000000:0x00000075"/>

</type>

A data section contains opaque binary data.

3.2.7 AMQP Sequence

<type name="amqp-sequence" class="restricted" source="list" provides="section">

<descriptor name="amqp:amqp-sequence:list" code="0x00000000:0x00000076"/>

</type>

A sequence section contains an arbitrary number of structured data elements.

3.2.8 AMQP Value

<type name="amqp-value" class="restricted" source="*" provides="section">

<descriptor name="amqp:amqp-value:*" code="0x00000000:0x00000077"/>

</type>

An amqp-value section contains a single AMQP value.

3.2.9 Footer

Transport footers for a message.
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<type name="footer" class="restricted" source="annotations" provides="section">

<descriptor name="amqp:footer:map" code="0x00000000:0x00000078"/>

</type>

The footer section is used for details about the message or delivery which can only be calculated or evaluated
once the whole bare message has been constructed or seen (for example message hashes, HMACs, signatures
and encryption details).

A registry of defined footers and their meanings is maintained [AMQPFOOTER].

3.2.10 Annotations

<type name="annotations" class="restricted" source="map"/>

The annotations type is a map where the keys are restricted to be of type symbol or of type ulong. All ulong
keys, and all symbolic keys except those beginning with “x-” are reserved. Keys beginning with “x-opt-” MUST be
ignored if not understood. On receiving an annotation key which is not understood, and which does not begin with
“x-opt”, the receiving AMQP container MUST detach the link with a not-implemented error.

3.2.11 Message ID ULong

<type name="message-id-ulong" class="restricted" source="ulong" provides="message-id"/>

3.2.12 Message ID UUID

<type name="message-id-uuid" class="restricted" source="uuid" provides="message-id"/>

3.2.13 Message ID Binary

<type name="message-id-binary" class="restricted" source="binary" provides="message-id"/>

3.2.14 Message ID String

<type name="message-id-string" class="restricted" source="string" provides="message-id"/>

3.2.15 Address String

Address of a node.

<type name="address-string" class="restricted" source="string" provides="address"/>

3.2.16 Constant Definitions

MESSAGE-FORMAT 0 the format + revision for the messages defined by this doc-
ument.
This value goes into the message-format field of the trans-
fer frame when transferring messages of the format de-
fined herein.
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3.3 Distribution Nodes

The messaging layer defines a set of states for a distribution node, defined as a node that stores messages for
distribution. Not all nodes are distribution nodes; however, these definitions permit some standardized interaction
with those nodes that do. The transitions between these states are controlled by the transfer of messages to/from
a distribution node and the resulting terminal delivery state. Note that the state of a message at one distribution
node does not affect the state of the same message at a separate node.

By default a message will begin in the AVAILABLE state. Prior to initiating an acquiring transfer, the message will
transition to the ACQUIRED state. Once in the ACQUIRED state, a message is ineligible for acquiring transfers to
any other links.

A message will remain ACQUIRED at the distribution node until the transfer is settled. The delivery state at the
receiver determines how the message transitions when the transfer is settled. If the delivery state at the receiver
is not yet known, (e.g., the link endpoint is destroyed before recovery occurs) the default-outcome of the source is
used (see source).

State transitions can also occur spontaneously at the distribution node. For example if a message with a ttl
expires, the effect of expiry might be (depending on specific type and configuration of the distribution node) to
move spontaneously from the AVAILABLE state into the ARCHIVED state. In this case any transfers of the
message are transitioned to a terminal outcome at the distribution node regardless of receiver state.

+------------+
+->| AVAILABLE |
| +------------+
| |
| |

terminal outcome: | |
RELEASED/MODIFIED | | TRANSFER (acquiring)

| |
| |
| \|/
| +------------+
+--| ACQUIRED |

+------------+
|
|
| terminal outcome:
| ACCEPTED/REJECTED
|
|
\|/

+------------+
| ARCHIVED |
+------------+

Figure 3.1: Message State Transitions

3.4 Delivery State

The messaging layer defines a concrete set of delivery states which can be used (via the disposition frame) to
indicate the state of the message at the receiver. Delivery states can be either terminal or non-terminal. Once
a delivery reaches a terminal delivery state, the state for that delivery will no longer change. A terminal delivery
state is referred to as an outcome.

The following outcomes are formally defined by the messaging layer to indicate the result of processing at the
receiver:

• accepted: indicates successful processing at the receiver.

• rejected: indicates an invalid and unprocessable message.

• released: indicates that the message was not (and will not be) processed.
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• modified: indicates that the message was modified, but not processed.

The following non-terminal delivery-state is formally defined by the messaging layer for use during link recovery to
allow the sender to resume the transfer of a large message without retransmitting all the message data:

• received: indicates partial message data seen by the receiver as well as the starting point for a resumed
transfer.

3.4.1 Received

<type name="received" class="composite" source="list" provides="delivery-state">

<descriptor name="amqp:received:list" code="0x00000000:0x00000023"/>

<field name="section-number" type="uint" mandatory="true"/>

<field name="section-offset" type="ulong" mandatory="true"/>

</type>

At the target the received state indicates the furthest point in the payload of the message which the target will
not need to have resent if the link is resumed. At the source the received state represents the earliest point in
the payload which the sender is able to resume transferring at in the case of link resumption. When resuming
a delivery, if this state is set on the first transfer performative it indicates the offset in the payload at which the
first resumed delivery is starting. The sender MUST NOT send the received state on transfer or disposition
performatives except on the first transfer performative on a resumed delivery.

Field Details

section-number

When sent by the sender this indicates the first section of the message (with section-number 0
being the first section) for which data can be resent. Data from sections prior to the given section
cannot be retransmitted for this delivery.
When sent by the receiver this indicates the first section of the message for which all data might
not yet have been received.

section-offset

When sent by the sender this indicates the first byte of the encoded section data of the section
given by section-number for which data can be resent (with section-offset 0 being the first byte).
Bytes from the same section prior to the given offset section cannot be retransmitted for this
delivery.
When sent by the receiver this indicates the first byte of the given section which has not yet
been received. Note that if a receiver has received all of section number X (which contains
N bytes of data), but none of section number X + 1, then it can indicate this by sending ei-
ther Received(section-number=X, section-offset=N) or Received(section-number=X+1, section-
offset=0). The state Received(section-number=0, section-offset=0) indicates that no message
data at all has been transferred.

3.4.2 Accepted

The accepted outcome.

<type name="accepted" class="composite" source="list" provides="delivery-state, outcome">

<descriptor name="amqp:accepted:list" code="0x00000000:0x00000024"/>

</type>

At the source the accepted state means that the message has been retired from the node, and transfer of payload
data will not be able to be resumed if the link becomes suspended. A delivery can become accepted at the source
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even before all transfer frames have been sent, this does not imply that the remaining transfers for the delivery will
not be sent - only the aborted flag on the transfer performative can be used to indicate a premature termination
of the transfer.

At the target, the accepted outcome is used to indicate that an incoming message has been successfully pro-
cessed, and that the receiver of the message is expecting the sender to transition the delivery to the accepted
state at the source.

The accepted outcome does not increment the delivery-count in the header of the accepted message.

3.4.3 Rejected

The rejected outcome.

<type name="rejected" class="composite" source="list" provides="delivery-state, outcome">

<descriptor name="amqp:rejected:list" code="0x00000000:0x00000025"/>

<field name="error" type="error"/>

</type>

At the target, the rejected outcome is used to indicate that an incoming message is invalid and therefore unpro-
cessable. The rejected outcome when applied to a message will cause the delivery-count to be incremented in
the header of the rejected message.

At the source, the rejected outcome means that the target has informed the source that the message was rejected,
and the source has taken the necessary action. The delivery SHOULD NOT ever spontaneously attain the rejected
state at the source.

Field Details

error error that caused the message to be rejected

This field contains diagnostic information about the cause of the message rejection.

3.4.4 Released

The released outcome.

<type name="released" class="composite" source="list" provides="delivery-state, outcome">

<descriptor name="amqp:released:list" code="0x00000000:0x00000026"/>

</type>

At the source the released outcome means that the message is no longer acquired by the receiver, and has been
made available for (re-)delivery to the same or other targets receiving from the node. The message is unchanged
at the node (i.e., the delivery-count of the header of the released message MUST NOT be incremented). As
released is a terminal outcome, transfer of payload data will not be able to be resumed if the link becomes
suspended. A delivery can become released at the source even before all transfer frames have been sent. This
does not imply that the remaining transfers for the delivery will not be sent. The source MAY spontaneously attain
the released outcome for a message (for example the source might implement some sort of time-bound acquisition
lock, after which the acquisition of a message at a node is revoked to allow for delivery to an alternative consumer).

At the target, the released outcome is used to indicate that a given transfer was not and will not be acted upon.

3.4.5 Modified

The modified outcome.
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<type name="modified" class="composite" source="list" provides="delivery-state, outcome">

<descriptor name="amqp:modified:list" code="0x00000000:0x00000027"/>

<field name="delivery-failed" type="boolean"/>

<field name="undeliverable-here" type="boolean"/>

<field name="message-annotations" type="fields"/>

</type>

At the source the modified outcome means that the message is no longer acquired by the receiver, and has been
made available for (re-)delivery to the same or other targets receiving from the node. The message has been
changed at the node in the ways indicated by the fields of the outcome. As modified is a terminal outcome, transfer
of payload data will not be able to be resumed if the link becomes suspended. A delivery can become modified at
the source even before all transfer frames have been sent. This does not imply that the remaining transfers for the
delivery will not be sent. The source MAY spontaneously attain the modified outcome for a message (for example
the source might implement some sort of time-bound acquisition lock, after which the acquisition of a message
at a node is revoked to allow for delivery to an alternative consumer with the message modified in some way to
denote the previous failed, e.g., with delivery-failed set to true).

At the target, the modified outcome is used to indicate that a given transfer was not and will not be acted upon,
and that the message SHOULD be modified in the specified ways at the node.

Field Details

delivery-failed count the transfer as an unsuccessful delivery attempt

If the delivery-failed flag is set, any messages modified MUST have their delivery-count incre-
mented.

undeliverable-here prevent redelivery

If the undeliverable-here is set, then any messages released MUST NOT be redelivered to the
modifying link endpoint.

message-annotations message attributes

Map containing attributes to combine with the existing message-annotations held in the message’s
header section. Where the existing message-annotations of the message contain an entry with
the same key as an entry in this field, the value in this field associated with that key replaces the
one in the existing headers; where the existing message-annotations has no such value, the value
in this map is added.

3.4.6 Resuming Deliveries Using Delivery States

Part 2: 2.6.13 Resuming Deliveries provides the general scheme for how two endpoints can re-establish state
after link resumption was provided. The concrete delivery states defined above allow for a more comprehensive
set of examples of link resumption.
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Peer Partner
=======================================================================

ATTACH(name=N, handle=1, --+ +-- ATTACH(name=N, handle=2,
role=sender, \ / role=receiver,
source=X, \ / source=X,
target=Y, x target=Y,
unsettled= / \ unsettled=
{ 1 -> null, / \ { 2 -> Received(3,0),
2 -> null, <-+ +-> 3 -> Accepted,
3 -> null, 4 -> null,
4 -> null, 6 -> Received(2,0),
5 -> Received(0,200), 7 -> Received(0,100),
6 -> Received(1,150), 8 -> Accepted,
7 -> Received(0,500), 9 -> null,
8 -> Received(3,5), 11 -> Received(1,2000),
9 -> Received(2,0), 12 -> Accepted,

10 -> Accepted, 13 -> Released,
11 -> Accepted, 14 -> null }
12 -> Accepted,
13 -> Accepted,
14 -> Accepted }

-----------------------------------------------------------------------
Key:

Received(x,y) means Received(section-number=x, section-offset=y)

In this example, for delivery-tags 1 to 4 inclusive the sender indicates that it can resume sending from the start of
the message.

For delivery-tag 1, the receiver has no record of the delivery. To preserve “exactly once” or “at least once” delivery
guarantees, the sender MUST resend the message; however, the delivery is not being resumed (since the receiver
does not remember the delivery tag) so transfers MUST NOT have the resume flag set to true. If the sender were
to mark the transfers as resumes then they would be ignored at the receiver.

For delivery-tag 2, the receiver has retained some of the data making up the message, but not the whole. In order
to complete the delivery the sender needs to resume sending from some point before or at the next position which
the receiver is expecting.

TRANSFER(delivery-id=1, ----------> ** Append message data not **
delivery-tag=2, ** seen previously to delivery **

(1) state=Received(3,0), ** state. **
resume=true)

{ ** payload ** }

(1) state could be
a) null, meaning that the transfer is being resumed from the first

byte of section number 0 (and the receiver MUST ignore all data
up to the first position it has not previously received).

b) Received with section number 0, 1 or 2 and an offset, indicating
that the payload data on the first frame of the resumed delivery
starts at the given point, and that the receiver MUST ignore all
data up to the first position it has not previously received.

c) Received(3,0) indicating that the resumption will start at the
first point which the receiver has not previously received.

For delivery-tag 3, the receiver indicates that it has processed the delivery to the point where it desires a terminal
outcome (in this case accepted). In this case the sender will either apply that outcome at the source, or in the
rare case that it cannot apply that outcome, indicate the terminal outcome that has been applied. To do this the
sender MUST send a resuming transfer to associate delivery-tag 3 with a delivery-id. On this transfer the sender
SHOULD set the delivery-state at the source. If this is the same outcome as at the receiver then the sender MAY
also send the resuming transfer as settled.
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TRANSFER(delivery-id=2, ----------> ** Processes confirmation that **
delivery-tag=3, ** was accepted, and settles. **
settled=true,
more=false,
state=Accepted,
resume=true)

For delivery-tag 4, the receiver indicates that it is aware that the delivery had begun, but does not provide any
indication that it has retained any data about that delivery except the fact of its existence. To preserve “exactly
once” or “at least once” delivery guarantees, the sender MUST resend the whole message. Unlike the case
with delivery-tag 1 the resent delivery MUST be sent with the resume flag set to true and the delivery-tag set to 4.
(While this use of null in the receivers map is valid, it is discouraged. It is RECOMMENDED that receiver SHOULD
NOT retain such an entry in its map, in which case the situation would be as for delivery-tag 1 in this example).

TRANSFER(delivery-id=3, ----------> ** Processes in the same way **
delivery-tag=4, ** as we be done for a non- **

(1) state=null, ** resumed delivery. **
resume=true)

{ ** payload ** }

(1) Alternatively (and equivalently) state could be
Received(section-number=0, section-offset=0)

For delivery-tags 5 to 9 inclusive the sender indicates that it can resume at some point beyond start of the message
data. This is usually indicative of the fact that the receiver had previously confirmed reception of message data
to the given point, removing responsibility from the sender to retain the ability to resend that data after resuming
the link. The sender MAY still retain the ability to resend the message as a new delivery (i.e. it MAY not have
completely discarded the data from which the original delivery was generated).

For delivery-tag 5, the receiver has no record of the delivery. To preserve “exactly once” or “at least once” delivery
guarantees, the sender MUST resend the message; however, the delivery is not being resumed (since the receiver
does not remember the delivery tag) so transfers MUST NOT have the resume flag set to true. If the sender does
not have enough data to resend the message, then the sender MAY take some action to indicate that it believes
there is a possibility that there has been message loss, for example, notify the application.

For delivery-tag 6, the receiver has retained some of the data making up the message, but not the whole. The first
position within the message which the receiver has not received is after the first position at which the sender can
resume sending. In order to complete the delivery the sender needs to resume sending from some point before
or at the next position which the receiver is expecting.

TRANSFER(delivery-id=4, ----------> ** Append message data not **
delivery-tag=6, ** seen previously to delivery **

(1) state=Received(2,0), ** state. **
resume=true)

{ ** payload ** }

(1) state could be any point between Received(1,150) and Received(2,0)
inclusive. The receiver MUST ignore all data up to the first
position it has not previously received (i.e. section 2 offset 0).

For delivery-tag 7, the receiver has retained some of the data making up the message, but not the whole. The first
position within the message which the receiver has not received is before the first position at which the sender can
resume sending. It is thus not possible for the sender to resume sending the message to completion. The only
option available to the sender is to abort the transfer and to then (if possible) resend as a new delivery or else to
report the possible message loss in some way if it cannot.

TRANSFER(delivery-id=5, ----------> ** Discard any state relating **
delivery-tag=7, ** to the message delivery. **
resume=true,
aborted=true)
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For delivery-tag 8, the receiver indicates that it has processed the delivery to the point where it desires a terminal
outcome (in this case accepted). This is the same case as for delivery-tag 3.

TRANSFER(delivery-id=6, ----------> ** Processes confirmation that **
delivery-tag=8, ** was accepted, and settles. **
settled=true,
more=false,
state=Accepted,
resume=true)

For delivery-tag 9, the receiver indicates that it is aware that the delivery had begun, but does not provide any
indication that it has retained any data about that delivery except the fact of its existence. This is the same case
as for delivery-tag 7.

TRANSFER(delivery-id=7, ----------> ** Discard any state relating **
delivery-tag=9, ** to the message delivery. **
resume=true,
aborted=true)

For delivery-tags 10 to 14 inclusive the sender indicates that it has reached a terminal outcome, namely accepted.
Once the sender has arrived at a terminal outcome it MUST NOT change. As such, if a sender is capable of
resuming a delivery (even if the only possible outcome of the delivery is a pre-defined terminal outcome such as
accepted) it MUST NOT use this state as the value of the state in its unsettled map until it is sure that the receiver
will not require the resending of the message data.

For delivery-tag 10 the receiver has no record of the delivery. However, in contrast to the cases of delivery-tag 1
and delivery-tag 5, since it is known that the sender can only have arrived at this state through knowing that the
receiver has received the whole message (or that the sender had spontaneously reached a terminal outcome with
no possibility of resumption) there is no need to resend the message.

For delivery-tag 11 it MUST be assumed that the sender spontaneously attained the terminal outcome (and is
unable to resume). In this case the sender can simply abort the delivery as it cannot be resumed.

TRANSFER(delivery-id=8, ----------> ** Discard any state relating **
delivery-tag=11, ** to the message delivery. **
resume=true,
aborted=true)

For delivery-tag 12 both the sender and receiver have attained the same view of the terminal outcome, but neither
has settled. In this case the sender SHOULD simply settle the delivery.

TRANSFER(delivery-id=9, ----------> ** Locally settle the delivery **
delivery-tag=12,
settled=true,
resume=true)

For delivery-tag 13 the sender and receiver have both attained terminal outcomes, but the outcomes differ. In this
case, since the outcome actually takes effect at the sender, it is the sender’s view that is definitive. The sender
thus MUST restate this as the terminal outcome, and the receiver SHOULD then echo this and settle.

TRANSFER(delivery-id=10 ----------> ** Update any state affected **
delivery-tag=13, ** by the actual outcome, then **
settled=false, ** settle the delivery **
state=Accepted
resume=true)

<---------- DISPOSITION(first=10, last=10,
state=Accepted,
settled=true)

For delivery-tag 14 the case is essentially the same as for delivery-tag 11, as the null state at the receiver is
essentially identical to having the state Received with section-number=0 and section-offset=0.
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TRANSFER(delivery-id=11, ----------> ** Discard any state relating **
delivery-tag=14, ** to the message delivery. **
resume=true,
aborted=true)

3.5 Sources and Targets

The messaging layer defines two concrete types (source and target) to be used as the source and target of a
link. These types are supplied in the source and target fields of the attach frame when establishing or resuming
link. The source is comprised of an address (which the container of the outgoing link endpoint will resolve to a
node within that container) coupled with properties which determine:

• which messages from the sending node will be sent on the link,

• how sending the message affects the state of that message at the sending node,

• the behavior of messages which have been transferred on the link, but have not yet reached a terminal state
at the receiver, when the source is destroyed.

3.5.1 Filtering Messages

A source can restrict the messages transferred from a source by specifying a filter. A filter can be thought of as a
function which takes a message as input and returns a boolean value: true if the message will be accepted by the
source, false otherwise. A filter MUST NOT change its return value for a message unless the state or annotations
on the message at the node change (e.g., through an updated delivery state).

3.5.2 Distribution Modes

The source optionally defines a distribution-mode that informs and/or indicates how distribution nodes are to
behave with respect to the link. The distribution-mode of a source determines how messages from a distribution
node are distributed among its associated links. There are two defined distribution-modes: move and copy. When
specified, the distribution-mode has two related effects on the behavior of a distribution node with respect to the
link associated with the source.

The move distribution-mode causes messages transferred from the distribution node to transition to the AC-
QUIRED state prior to transfer over the link, and subsequently to the ARCHIVED state when the transfer is
settled with a successful outcome. The copy distribution-mode leaves the state of the message unchanged at the
distribution node.

A source MUST NOT resend a message which has previously been successfully transferred from the source, i.e.,
reached an ACCEPTED delivery state at the receiver. For a move link with a default configuration this is trivially
achieved as such an end result will lead to the message in the ARCHIVED state on the node, and thus ineligible
for transfer. For a copy link, state MUST be retained at the source to ensure compliance. In practice, for nodes
which maintain a strict order on messages at the node, the state might simply be a record of the most recent
message transferred.

A registry of commonly defined non-standard distribution-modes and their meanings is maintained [AMQPDIST-
MODE].
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3.5.3 Source

<type name="source" class="composite" source="list" provides="source">

<descriptor name="amqp:source:list" code="0x00000000:0x00000028"/>

<field name="address" type="*" requires="address"/>

<field name="durable" type="terminus-durability" default="none"/>

<field name="expiry-policy" type="terminus-expiry-policy" default="session-end"/>

<field name="timeout" type="seconds" default="0"/>

<field name="dynamic" type="boolean" default="false"/>

<field name="dynamic-node-properties" type="node-properties"/>

<field name="distribution-mode" type="symbol" requires="distribution-mode"/>

<field name="filter" type="filter-set"/>

<field name="default-outcome" type="*" requires="outcome"/>

<field name="outcomes" type="symbol" multiple="true"/>

<field name="capabilities" type="symbol" multiple="true"/>

</type>

For containers which do not implement address resolution (and do not admit spontaneous link attachment from
their partners) but are instead only used as producers of messages, it is unnecessary to provide spurious detail
on the source. For this purpose it is possible to use a “minimal” source in which all the fields are left unset.

Field Details

address the address of the source

The address of the source MUST NOT be set when sent on a attach frame sent by the receiving
link endpoint where the dynamic flag is set to true (that is where the receiver is requesting the
sender to create an addressable node).
The address of the source MUST be set when sent on a attach frame sent by the sending
link endpoint where the dynamic flag is set to true (that is where the sender has created an
addressable node at the request of the receiver and is now communicating the address of that
created node). The generated name of the address SHOULD include the link name and the
container-id of the remote container to allow for ease of identification.

durable indicates the durability of the terminus

Indicates what state of the terminus will be retained durably: the state of durable messages, only
existence and configuration of the terminus, or no state at all.

expiry-policy the expiry policy of the source

See subsection 3.5.6 Terminus Expiry Policy.

timeout duration that an expiring source will be retained

The source starts expiring as indicated by the expiry-policy.

dynamic request dynamic creation of a remote node

When set to true by the receiving link endpoint, this field constitutes a request for the sending
peer to dynamically create a node at the source. In this case the address field MUST NOT be set.
When set to true by the sending link endpoint this field indicates creation of a dynamically created
node. In this case the address field will contain the address of the created node. The generated
address SHOULD include the link name and other available information on the initiator of the
request (such as the remote container-id) in some recognizable form for ease of traceability.

dynamic-node-properties properties of the dynamically created node
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If the dynamic field is not set to true this field MUST be left unset.
When set by the receiving link endpoint, this field contains the desired properties of the node
the receiver wishes to be created. When set by the sending link endpoint this field contains
the actual properties of the dynamically created node. See subsection 3.5.9 Node Properties for
standard node properties. A registry of other commonly used node-properties and their meanings
is maintained [AMQPNODEPROP].

distribution-mode the distribution mode of the link

This field MUST be set by the sending end of the link if the endpoint supports more than one
distribution-mode. This field MAY be set by the receiving end of the link to indicate a preference
when a node supports multiple distribution modes.

filter a set of predicates to filter the messages admitted onto the link

See subsection 3.5.8 Filter Set. The receiving endpoint sets its desired filter, the sending endpoint
sets the filter actually in place (including any filters defaulted at the node). The receiving endpoint
MUST check that the filter in place meets its needs and take responsibility for detaching if it does
not.

default-outcome default outcome for unsettled transfers

Indicates the outcome to be used for transfers that have not reached a terminal state at the
receiver when the transfer is settled, including when the source is destroyed. The value MUST be
a valid outcome (e.g., released or rejected).

outcomes descriptors for the outcomes that can be chosen on this link

The values in this field are the symbolic descriptors of the outcomes that can be chosen on this
link. This field MAY be empty, indicating that the default-outcome will be assumed for all message
transfers (if the default-outcome is not set, and no outcomes are provided, then the accepted

outcome MUST be supported by the source).
When present, the values MUST be a symbolic descriptor of a valid outcome, e.g.,
“amqp:accepted:list”.

capabilities the extension capabilities the sender supports/desires

A registry of commonly defined source capabilities and their meanings is maintained [AMQP-
SOURCECAP].

3.5.4 Target

<type name="target" class="composite" source="list" provides="target">

<descriptor name="amqp:target:list" code="0x00000000:0x00000029"/>

<field name="address" type="*" requires="address"/>

<field name="durable" type="terminus-durability" default="none"/>

<field name="expiry-policy" type="terminus-expiry-policy" default="session-end"/>

<field name="timeout" type="seconds" default="0"/>

<field name="dynamic" type="boolean" default="false"/>

<field name="dynamic-node-properties" type="node-properties"/>

<field name="capabilities" type="symbol" multiple="true"/>

</type>

For containers which do not implement address resolution (and do not admit spontaneous link attachment from
their partners) but are instead only used as consumers of messages, it is unnecessary to provide spurious detail
on the source. For this purpose it is possible to use a “minimal” target in which all the fields are left unset.

Field Details
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address The address of the target.

The address of the target MUST NOT be set when sent on a attach frame sent by the sending
link endpoint where the dynamic flag is set to true (that is where the sender is requesting the
receiver to create an addressable node).
The address of the source MUST be set when sent on a attach frame sent by the receiving
link endpoint where the dynamic flag is set to true (that is where the receiver has created an
addressable node at the request of the sender and is now communicating the address of that
created node). The generated name of the address SHOULD include the link name and the
container-id of the remote container to allow for ease of identification.

durable indicates the durability of the terminus

Indicates what state of the terminus will be retained durably: the state of durable messages, only
existence and configuration of the terminus, or no state at all.

expiry-policy the expiry policy of the target

See subsection 3.5.6 Terminus Expiry Policy.

timeout duration that an expiring target will be retained

The target starts expiring as indicated by the expiry-policy.

dynamic request dynamic creation of a remote node

When set to true by the sending link endpoint, this field constitutes a request for the receiving
peer to dynamically create a node at the target. In this case the address field MUST NOT be set.
When set to true by the receiving link endpoint this field indicates creation of a dynamically created
node. In this case the address field will contain the address of the created node. The generated
address SHOULD include the link name and other available information on the initiator of the
request (such as the remote container-id) in some recognizable form for ease of traceability.

dynamic-node-properties properties of the dynamically created node

If the dynamic field is not set to true this field MUST be left unset.
When set by the sending link endpoint, this field contains the desired properties of the node
the sender wishes to be created. When set by the receiving link endpoint this field contains
the actual properties of the dynamically created node. See subsection 3.5.9 Node Properties for
standard node properties. A registry of other commonly used node-properties and their meanings
is maintained [AMQPNODEPROP].

capabilities the extension capabilities the sender supports/desires

A registry of commonly defined target capabilities and their meanings is maintained [AMQPTAR-
GETCAP].

3.5.5 Terminus Durability

Durability policy for a terminus.

<type name="terminus-durability" class="restricted" source="uint">

<choice name="none" value="0"/>

<choice name="configuration" value="1"/>

<choice name="unsettled-state" value="2"/>

</type>

Determines which state of the terminus is held durably.

Valid Values
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0 No terminus state is retained durably.

1 Only the existence and configuration of the terminus is retained durably.

2 In addition to the existence and configuration of the terminus, the unsettled state
for durable messages is retained durably.

3.5.6 Terminus Expiry Policy

Expiry policy for a terminus.

<type name="terminus-expiry-policy" class="restricted" source="symbol">

<choice name="link-detach" value="link-detach"/>

<choice name="session-end" value="session-end"/>

<choice name="connection-close" value="connection-close"/>

<choice name="never" value="never"/>

</type>

Determines when the expiry timer of a terminus starts counting down from the timeout value. If the link is sub-
sequently re-attached before the terminus is expired, then the count down is aborted. If the conditions for the
terminus-expiry-policy are subsequently re-met, the expiry timer restarts from its originally configured timeout
value.

Valid Values

link-detach The expiry timer starts when terminus is detached.

session-end The expiry timer starts when the most recently associated session is ended.

connection-close The expiry timer starts when most recently associated connection is closed.

never The terminus never expires.

3.5.7 Standard Distribution Mode

Link distribution policy.

<type name="std-dist-mode" class="restricted" source="symbol" provides="distribution-mode">

<choice name="move" value="move"/>

<choice name="copy" value="copy"/>

</type>

Policies for distributing messages when multiple links are connected to the same node.

Valid Values

move once successfully transferred over the link, the message will no longer be avail-
able to other links from the same node

copy once successfully transferred over the link, the message is still available for other
links from the same node
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3.5.8 Filter Set

<type name="filter-set" class="restricted" source="map"/>

A set of named filters. Every key in the map MUST be of type symbol, every value MUST be either null or of
a described type which provides the archetype filter. A filter acts as a function on a message which returns a
boolean result indicating whether the message can pass through that filter or not. A message will pass through a
filter-set if and only if it passes through each of the named filters. If the value for a given key is null, this acts as if
there were no such key present (i.e., all messages pass through the null filter).

Filter types are a defined extension point. The filter types that a given source supports will be indicated by
the capabilities of the source. A registry of commonly defined filter types and their capabilities is maintained
[AMQPFILTERS].

3.5.9 Node Properties

Properties of a node.

<type name="node-properties" class="restricted" source="fields"/>

A symbol-keyed map containing properties of a node used when requesting creation or reporting the creation of
a dynamic node.

The following common properties are defined:

lifetime-policy The lifetime of a dynamically generated node.

Definitionally, the lifetime will never be less than the lifetime of the link which caused its
creation, however it is possible to extend the lifetime of dynamically created node using a
lifetime policy. The value of this entry MUST be of a type which provides the lifetime-policy
archetype. The following standard lifetime-policies are defined below: delete-on-close,
delete-on-no-links, delete-on-no-messages or delete-on-no-links-or-messages.

supported-dist-modes
The distribution modes that the node supports.

The value of this entry MUST be one or more symbols which are valid distribution-modes.
That is, the value MUST be of the same type as would be valid in a field defined with the
following attributes:

type=“symbol” multiple=“true” requires=“distribution-mode”

3.5.10 Delete On Close

Lifetime of dynamic node scoped to lifetime of link which caused creation.

<type name="delete-on-close" class="composite" source="list" provides="lifetime-policy">

<descriptor name="amqp:delete-on-close:list" code="0x00000000:0x0000002b"/>

</type>

A node dynamically created with this lifetime policy will be deleted at the point that the link which caused its
creation ceases to exist.

3.5.11 Delete On No Links

Lifetime of dynamic node scoped to existence of links to the node.
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<type name="delete-on-no-links" class="composite" source="list" provides="lifetime-policy">

<descriptor name="amqp:delete-on-no-links:list" code="0x00000000:0x0000002c"/>

</type>

A node dynamically created with this lifetime policy will be deleted at the point that there remain no links for which
the node is either the source or target.

3.5.12 Delete On No Messages

Lifetime of dynamic node scoped to existence of messages on the node.

<type name="delete-on-no-messages" class="composite" source="list" provides="lifetime-policy">

<descriptor name="amqp:delete-on-no-messages:list" code="0x00000000:0x0000002d"/>

</type>

A node dynamically created with this lifetime policy will be deleted at the point that the link which caused its
creation no longer exists and there remain no messages at the node.

3.5.13 Delete On No Links Or Messages

Lifetime of node scoped to existence of messages on or links to the node.

<type name="delete-on-no-links-or-messages" class="composite" source="list" provides="lifetime-policy">

<descriptor name="amqp:delete-on-no-links-or-messages:list" code="0x00000000:0x0000002e"/>

</type>

A node dynamically created with this lifetime policy will be deleted at the point that the there are no links which
have this node as their source or target, and there remain no messages at the node.
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Part 4: Transactions

4.1 Transactional Messaging

Transactional messaging allows for the coordinated outcome of otherwise independent transfers. This extends to
an arbitrary number of transfers spread across any number of distinct links in either direction.

For every transactional interaction, one container acts as the transactional resource, and the other container
acts as the transaction controller. The transactional resource performs transactional work as requested by the
transaction controller.

The transactional controller and transactional resource communicate over a control link which is established by
the transactional controller. The declare and discharge messages are sent by the transactional controller over
the control link to allocate and complete transactions respectively (they do not represent the demarcation of
transactional work). No transactional work is allowed on the control link. Each transactional operation requested
is explicitly identified with the desired transaction-id and therefore can occur on any link within the controlling
session, or, if permitted by the capabilities of the controller, any link on the controlling connection. If the control
link is closed while there exist non-discharged transactions it created, then all such transactions are immediately
rolled back, and attempts to perform further transactional work on them will lead to failure.

4.2 Declaring a Transaction

The container acting as the transactional resource defines a special target that functions as a coordinator.
The transaction controller establishes a control link to this target. Note that links to the coordinator cannot be
resumed.

To begin transactional work, the transaction controller needs to obtain a transaction identifier from the resource.
It does this by sending a message to the coordinator whose body consists of the declare type in a single
amqp-value section. Other standard message sections such as the header section SHOULD be ignored. This
message MUST NOT be sent settled as the sender is REQUIRED to receive and interpret the outcome of the
declare from the receiver. If the coordinator receives a transfer that has been settled by the sender, it SHOULD
detach with an amqp:illegal-state error.

If the declaration is successful, the coordinator responds with a disposition outcome of declared which carries
the assigned identifier for the transaction.

If the coordinator was unable to perform the declare as specified by the transaction controller, the transaction
coordinator MUST convey the error to the controller as a transaction-error. If the source for the link to the
coordinator supports the rejected outcome, then the message MUST be rejected with this outcome carrying
the transaction-error. If the source does not support the rejected outcome, the transactional resource MUST
detach the link to the coordinator, with the detach performative carrying the transaction-error.

Transaction controllers SHOULD establish a control link that allows the rejected outcome.
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Transaction Controller Transactional Resource
===============================================================================

ATTACH(name=txn-ctl, --------->
...,
target=
Coordinator(
capabilities=
"amqp:local-transactions")

)

<--------- ATTACH(name=txn-ctl,
...,
target=
Coordinator(

capabilities=
["amqp:local-transactions",
"amqp:multi-txns-per-ssn"]

)
)

<--------- FLOW(...,handle=1, link-credit=1)

TRANSFER(delivery-id=0, ...) --------->
{ AmqpValue( Declare() ) }

<--------- DISPOSITION(first=0, last=0,
state=Declared(txn-id=0) )

-------------------------------------------------------------------------------

Figure 4.1: Declaring a Transaction

4.3 Discharging a Transaction

The controller will conclude the transactional work by sending a discharge message (encoded in a single amqp-value

section) to the coordinator. The controller indicates that it wishes to commit or rollback the transactional work by
setting the fail flag on the discharge body. As with the declare message, it is an error if the sender sends the
transfer pre-settled.

If the coordinator is unable to complete the discharge, the coordinator MUST convey the error to the controller
as a transaction-error. If the source for the link to the coordinator supports the rejected outcome, then the
message MUST be rejected with this outcome carrying the transaction-error. If the source does not support
the rejected outcome, the transactional resource MUST detach the link to the coordinator, with the detach

performative carrying the transaction-error. Note that the coordinator MUST always be able to complete a
discharge where the fail flag is set to true (since coordinator failure leads to rollback, which is what the controller
is asking for).
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Transaction Controller Transactional Resource
===============================================================================

TRANSFER(delivery-id=0, ...) --------->
{ AmqpValue( Declare() ) }

<--------- DISPOSITION(first=0, last=0,
state=Declared(txn-id=0) )

:
Transactional Work

:

TRANSFER(delivery-id=57, ...) --------->
{ AmqpValue(

Discharge(txn-id=0,
fail=false)

) }

<--------- DISPOSITION(first=57, last=57,
state=Accepted() )

-------------------------------------------------------------------------------

Figure 4.2: Discharging a Transaction

4.4 Transactional Work

Transactional work is described in terms of the message states defined in Part 3: section 3.3. Transactional work
is formally defined to be composed of the following operations:

• posting a message at a target, i.e., making it available

• acquiring a message at a source, i.e., transitioning it to acquired

• retiring a message at a source, i.e., applying the terminal outcome

The transactional resource performs these operations when triggered by the transaction controller:

• posting messages is initiated by incoming transfer frames

• acquiring messages is initiated by incoming flow frames

• retiring messages is initiated by incoming disposition frames

In each case, it is the responsibility of the transaction controller to identify the transaction with which the requested
work is to be associated. This is done with the transactional delivery state transactional-state that combines a
txn-id together with one of the terminal delivery states defined in Part 3: section 3.4. The transactional-state

is carried by both the transfer and the disposition frames allowing both the posting and retiring of messages
to be associated with a transaction.

The transfer, disposition, and flow frames can travel in either direction, i.e., from the controller to the resource
and from the resource to the controller. When these frames travel from the controller to the resource, any em-
bedded txn-ids are requesting that the resource assigns transactional work to the indicated transaction. When
traveling in the other direction, from resource to controller, the transfer and disposition frames indicate work
performed, and the txn-ids included MUST correctly indicate with which (if any) transaction this work is associated.
In the case of the flow frame traveling from resource to controller, the txn-id does not indicate work that has been
performed, but indicates with which transaction future transfers from that link will be performed.

4.4.1 Transactional Posting

If the transaction controller wishes to associate an outgoing transfer with a transaction, it MUST set the state
of the transfer with a transactional-state carrying the appropriate transaction identifier. Note that if delivery is
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split across several transfer frames then all frames MUST be explicitly associated with the same transaction. It
is an error for the controller to attempt to discharge a transaction against which a partial delivery has been posted.
If this happens, the control link MUST be terminated with the transaction-rollback error.

The effect of transactional posting is that the message does not become available at the destination node within
the transactional resource until after the transaction has been successfully discharged.

Transaction Controller Transactional Resource
===============================================================================

TRANSFER(handle=0, --------->
delivery-id=0, ...)

{ AmqpValue( Declare() ) }

<--------- DISPOSITION(first=0, last=0,
state=Declared(txn-id=0) )

TRANSFER(handle=1, --------->
delivery-id=1,
state=
TransactionalState(
txn-id=0) )

{ ... payload ... }

<--------- DISPOSITION(first=1, last=1,
state=TransactionalState(

txn-id=0,
outcome=Accepted())

)

-------------------------------------------------------------------------------

Figure 4.3: Transactional Publish

On receiving a non-settled delivery associated with a live transaction, the transactional resource MUST inform the
controller of the presumptive terminal outcome before it can successfully discharge the transaction. That is, the
resource MUST send a disposition performative which covers the posted transfer with the state of the delivery
being a transactional-state with the correct transaction identified, and a terminal outcome. This informs the
controller of the outcome that will be in effect at the point that the transaction is successfully discharged.

4.4.2 Transactional Retirement

The transaction controller might wish to associate the outcome of a delivery with a transaction. The delivery
itself need not be associated with the same transaction as the outcome, or indeed with any transaction at all.
However, the delivery MUST NOT be associated with a different non-discharged transaction than the outcome. If
this happens then the control link MUST be terminated with a transaction-rollback error.

To associate an outcome with a transaction the controller sends a disposition performative which sets the state
of the delivery to a transactional-state with the desired transaction identifier and the outcome to be applied
upon a successful discharge.
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Transaction Controller Transactional Resource
===============================================================================

TRANSFER(handle=0, --------->
delivery-id=0, ...)

{ AmqpValue( Declare() ) }

<--------- DISPOSITION(first=0, last=0,
state=Declared(txn-id=0) )

FLOW(handle=2, --------->
link-credit=10)

<--------- TRANSFER(handle=2,
delivery-id=11,
state=null,

{ ... payload ... }

:
:

<--------- TRANSFER(handle=2,
delivery-id=20,
state=null,

{ ... payload ... }

DISPOSITION(first=11, --------->
last=20,
state=TransactionalState(

txn-id=0,
outcome=Accepted())

)

-------------------------------------------------------------------------------

Figure 4.4: Transactional Receive

On a successful discharge, the resource will apply the given outcome and can immediately settle the transfers.
In the event of a controller-initiated rollback (a discharge where the fail flag is set to true) or a resource-initiated
rollback (the discharge message being rejected, or the link to the coordinator being detached with an error),
the outcome will not be applied, and the deliveries will still be “live” and will remain acquired by the controller,
i.e., the resource can expect the controller to request a disposition for the delivery (either transactionally on a new
transaction, or non-transactionally).

4.4.3 Transactional Acquisition

In the case of the flow frame, the transactional work is not necessarily directly initiated or entirely determined
when the flow frame arrives at the resource, but can in fact occur at some later point and in ways not necessarily
anticipated by the controller. To accommodate this, the resource associates an additional piece of state with
outgoing link endpoints, a txn-id that identifies the transaction with which acquired messages will be associated.
This state is determined by the controller by specifying a txn-id entry in the properties map of the flow frame.
When a transaction is discharged, the txn-id of any link endpoints will be cleared.

If the link endpoint does not support transactional acquisition, the link MUST be terminated with a not-implemented

error.

While the txn-id is cleared when the transaction is discharged, this does not affect the level of outstanding credit. To
prevent the sending link endpoint from acquiring outside of any transaction, the controller SHOULD ensure there
is no outstanding credit at the sender before it discharges the transaction. The controller can do this by either
setting the drain mode of the sending link endpoint to true before discharging the transaction, or by reducing the
link-credit to zero, and waiting to hear back that the sender has seen this state change.

If a transaction is discharged at a point where a message has been transactionally acquired, but has not been
fully sent (i.e., the delivery of the message will require more than one transfer frame and at least one, but not
all, such frames have been sent), then the resource MUST interpret this to mean that the fate of the acquisition is
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fully decided by the discharge. If the discharge indicates the failure of the transaction the resource MUST abort
or complete sending the remainder of the message before completing the discharge.

Transaction Controller Transactional Resource
===============================================================================

TRANSFER(handle=0, --------->
delivery-id=0, ...)

{ AmqpValue( Declare() ) }

<--------- DISPOSITION(first=0, last=0,
state=Declared(txn-id=0) )

FLOW(handle=2, --------->
link-credit=10,
drain=true,
properties={
txn-id=0

})

<--------- TRANSFER(handle=2,
delivery-id=11,
state=

TransactionalState(txn-id=0),
{ ... payload ... }

:
:

<--------- TRANSFER(handle=2,
delivery-id=20,
state=

TransactionalState(txn-id=0),
{ ... payload ... }

DISPOSITION(first=11, --------->
last=20,
state=TransactionalState(

txn-id=0,
outcome=Accepted())

)

-------------------------------------------------------------------------------

Figure 4.5: Transactional Acquisition

4.4.4 Interaction Of Settlement With Transactions

The transport layer defines a notion of settlement which refers to the point at which the association of a delivery-
tag to a delivery attempt is forgotten. Transactions do not in themselves change this notion, however the fact
that transactional work can be rolled back does have implications for deliveries which the endpoint has marked
as settled (and for which it can therefore no longer exchange state information using the previously allocated
transport level identifiers).

4.4.4.1 Transactional Posting

Delivery Sent Settled By Controller
The delivered message will not be made available at the node until the transaction has been successfully
discharged. If the transaction is rolled back then the delivery is not made available. If the resource is unable
to process the delivery it MUST NOT allow the successful discharge of the associated transaction. This can
be communicated by immediately destroying the controlling link on which the transaction was declared, or
by rejecting any attempt to discharge the transaction where the fail flag is not set to true.

Delivery Sent Unsettled By Controller; Resource Settles
The resource MUST determine the outcome of the delivery before committing the transaction, and this
MUST be communicated to the controller before the acceptance of a successful discharge. The outcome

amqp-core-complete-v1.0-cs01
Standards Track Work Product Copyright c© OASIS Open 2012. All Rights Reserved.

18 July 2012
Page 107 of 124



PART 4. TRANSACTIONS 4.5 Coordination

communicated by the resource MUST be associated with the same transaction with which the transfer

from controller to resource was associated.

If the transaction is rolled back then the delivery is not made available at the target. If the resource can
no longer apply the outcome that it originally indicated would be the result of a successful discharge then
it MUST NOT allow the successful discharge of the associated transaction. This can be communicated by
immediately destroying the controlling link on which the transaction was declared, or by rejecting any attempt
to discharge the transaction where the fail flag is not set to true.

Delivery Sent Unsettled By Controller; Resource Does Not Settle
Behavior prior to discharge is the same as the previous case.

After a successful discharge, the state of unsettled deliveries at the resource MUST reflect the outcome that
was applied. If the discharge was unsuccessful then an outcome SHOULD NOT be associated with the
unsettled deliveries. The controller SHOULD settle any outstanding unsettled deliveries in a timely fashion
after the transaction has discharged.

4.4.4.2 Transactional Retirement

This section considers the cases where the resource has sent messages to the controller in a non-transactional
fashion. For the cases where the resource sends the messages transactionally, see subsubsection 4.4.4.3.

Delivery Sent Unsettled By Resource; Controller Settles
Upon a successful discharge the outcome specified by the controller is applied at the source. If the controller
requests a rollback or the discharge attempt be unsuccessful, then the outcome is not applied. At this point
the controller can no longer influence the state of the delivery as it is settled, and the resource MUST apply
the default outcome.

Delivery Sent Unsettled By Resource; Controller Does Not Settle
The resource might or might not settle the delivery before the transaction is discharged. If the resource
settles the delivery before the discharge then the behavior after discharge is the same as the case above.

Upon a successful discharge the outcome is applied. Otherwise the state reverts to that which occurred
before the controller sent its (transactional) disposition. The controller is free to update the state using
subsequent transactional or non-transactional updates.

4.4.4.3 Transactional Acquisition

Delivery Sent Settled By Resource
In the event of a successful discharge the outcome applies at the resource, otherwise the acquisition and
outcome are rolled back.

Delivery Sent Unsettled By Resource; Controller Sends Outcome
An outcome sent by the controller before the transaction has discharged MUST be associated with the same
transaction. In the even of a successful discharge the outcome is applied at the source, otherwise both the
acquisition and outcome are rolled back.

4.5 Coordination

4.5.1 Coordinator

Target for communicating with a transaction coordinator.
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<type name="coordinator" class="composite" source="list" provides="target">

<descriptor name="amqp:coordinator:list" code="0x00000000:0x00000030"/>

<field name="capabilities" type="symbol" requires="txn-capability" multiple="true"/>

</type>

The coordinator type defines a special target used for establishing a link with a transaction coordinator.

Field Details

capabilities the capabilities supported at the coordinator

When sent by the transaction controller (the sending endpoint), indicates the desired capabilities
of the coordinator. When sent by the resource (the receiving endpoint), defined the actual capa-
bilities of the coordinator. Note that it is the responsibility of the transaction controller to verify that
the capabilities of the controller meet its requirements. See txn-capability.

4.5.2 Declare

Message body for declaring a transaction id.

<type name="declare" class="composite" source="list">

<descriptor name="amqp:declare:list" code="0x00000000:0x00000031"/>

<field name="global-id" type="*" requires="global-tx-id"/>

</type>

The declare type defines the message body sent to the coordinator to declare a transaction. The txn-id allocated
for this transaction is chosen by the transaction controller and identified in the declared resulting outcome.

Field Details

global-id global transaction id

Specifies that the txn-id allocated by this declare MUST be associated with the indicated global
transaction. If not set, the allocated txn-id will be associated with a local transaction. This field
MUST NOT be set if the coordinator does not have the distributed-transactions capability.
Note that the details of distributed transactions within AMQP 1.0 will be provided in a separate
specification.

4.5.3 Discharge

Message body for discharging a transaction.

<type name="discharge" class="composite" source="list">

<descriptor name="amqp:discharge:list" code="0x00000000:0x00000032"/>

<field name="txn-id" type="*" requires="txn-id" mandatory="true"/>

<field name="fail" type="boolean"/>

</type>

The discharge type defines the message body sent to the coordinator to indicate that the txn-id is no longer in use.
If the transaction is not associated with a global-id, then this also indicates the disposition of the local transaction.

Field Details

txn-id identifies the transaction to be discharged
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fail indicates the transaction has failed

If set, this flag indicates that the work associated with this transaction has failed, and the controller
wishes the transaction to be rolled back. If the transaction is associated with a global-id this will
render the global transaction rollback-only. If the transaction is a local transaction, then this flag
controls whether the transaction is committed or aborted when it is discharged. (Note that the
specification for distributed transactions within AMQP 1.0 will be provided separately in Part 6
Distributed Transactions).

4.5.4 Transaction ID

<type name="transaction-id" class="restricted" source="binary" provides="txn-id"/>

A transaction-id can be up to 32 octets of binary data.

4.5.5 Declared

<type name="declared" class="composite" source="list" provides="delivery-state, outcome">

<descriptor name="amqp:declared:list" code="0x00000000:0x00000033"/>

<field name="txn-id" type="*" requires="txn-id" mandatory="true"/>

</type>

Indicates that a transaction identifier has successfully been allocated in response to a declare message sent to a
transaction coordinator.

Field Details

txn-id the allocated transaction id

4.5.6 Transactional State

The state of a transactional message transfer.

<type name="transactional-state" class="composite" source="list" provides="delivery-state">

<descriptor name="amqp:transactional-state:list" code="0x00000000:0x00000034"/>

<field name="txn-id" type="*" mandatory="true" requires="txn-id"/>

<field name="outcome" type="*" requires="outcome"/>

</type>

The transactional-state type defines a delivery-state that is used to associate a delivery with a transaction as well
as to indicate which outcome is to be applied if the transaction commits.

Field Details

txn-id identifies the transaction with which the state is associated

outcome provisional outcome

This field indicates the provisional outcome to be applied if the transaction commits.
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4.5.7 Transaction Capability

Symbols indicating (desired/available) capabilities of a transaction coordinator.

<type name="txn-capability" class="restricted" source="symbol" provides="txn-capability">

<choice name="local-transactions" value="amqp:local-transactions"/>

<choice name="distributed-transactions" value="amqp:distributed-transactions"/>

<choice name="promotable-transactions" value="amqp:promotable-transactions"/>

<choice name="multi-txns-per-ssn" value="amqp:multi-txns-per-ssn"/>

<choice name="multi-ssns-per-txn" value="amqp:multi-ssns-per-txn"/>

</type>

Valid Values

amqp:local-transactions

Support local transactions.

amqp:distributed-transactions

Support AMQP Distributed Transactions.

amqp:promotable-transactions

Support AMQP Promotable Transactions.

amqp:multi-txns-per-ssn

Support multiple active transactions on a single session.

amqp:multi-ssns-per-txn

Support transactions whose txn-id is used across sessions on one connection.

4.5.8 Transaction Error

Symbols used to indicate transaction errors.

<type name="transaction-error" class="restricted" source="symbol" provides="error-condition">

<choice name="unknown-id" value="amqp:transaction:unknown-id"/>

<choice name="transaction-rollback" value="amqp:transaction:rollback"/>

<choice name="transaction-timeout" value="amqp:transaction:timeout"/>

</type>

Valid Values

amqp:transaction:unknown-id

The specified txn-id does not exist.

amqp:transaction:rollback

The transaction was rolled back for an unspecified reason.

amqp:transaction:timeout

The work represented by this transaction took too long.
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Part 5: Security

5.1 Security Layers

Security layers are used to establish an authenticated and/or encrypted transport over which regular AMQP traffic
can be tunneled. Security layers can be tunneled through one another (for instance a security layer used by the
peers to do authentication might be tunneled through a security layer established for encryption purposes).

The framing and protocol definitions for security layers are expected to be defined externally to the AMQP specifi-
cation as in the case of TLS [RFC5246]. An exception to this is the SASL [RFC4422] security layer which depends
on its host protocol to provide framing. Therefore section 5.3 defines the frames necessary for SASL to function.
When a security layer terminates (either before or after a secure tunnel is established), the TCP connection MUST
be closed by first shutting down the outgoing stream and then reading the incoming stream until it is terminated.

5.2 TLS

To establish a TLS session, each peer MUST start by sending a protocol header before commencing with TLS
negotiation. The protocol header consists of the upper case ASCII letters “AMQP” followed by a protocol id of two,
followed by three unsigned bytes representing the major, minor, and revision of the specification version (currently
1 (TLS-MAJOR), 0 (TLS-MINOR), 0 (TLS-REVISION)). In total this is an 8-octet sequence:

4 OCTETS 1 OCTET 1 OCTET 1 OCTET 1 OCTET
+----------+---------+---------+---------+----------+
| "AMQP" | %d2 | major | minor | revision |
+----------+---------+---------+---------+----------+

Figure 5.1: Protocol Header for TLS Security Layer

Other than using a protocol id of two, the exchange of TLS protocol headers follows the same rules specified in
the version negotiation section of the transport specification (See Part 2: section 2.2).

The following diagram illustrates the interaction involved in creating a TLS security layer:

TCP Client TCP Server
=========================================
AMQP%d2.1.0.0 --------->

<--------- AMQP%d2.1.0.0
:
:

<TLS negotiation>
:
:

AMQP%d0.1.0.0 ---------> (over TLS secured connection)
<--------- AMQP%d0.1.0.0

open --------->
<--------- open

Figure 5.2: Establishing a TLS Security Layer

When the use of the TLS security layer is negotiated, the following rules apply:

• The TLS client peer and TLS server peer are determined by the TCP client peer and TCP server peer
respectively.
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• The TLS client peer SHOULD use the server name indication extension as described in RFC-4366 [RFC4366].
If it does so, then it is undefined what happens if this differs from hostname in the sasl-init and open frame
frames.

This field can be used by AMQP proxies to determine the correct back-end service to connect the client to,
and to determine the domain to validate the client’s credentials against if TLS client certificates are being
used.

• The TLS client MUST validate the certificate presented by the TLS server.

• Implementations MAY choose to use TLS with unidirectional shutdown, i.e., an application initiating shut-
down using close notify is not obliged to wait for the peer to respond, and MAY close the write half of the
TCP socket.

5.2.1 Alternative Establishment

In certain situations, such as connecting through firewalls, it might not be possible to establish a TLS security layer
using the above procedure (for example, because a deep packet inspecting firewall sees the first few bytes of the
connection ’as not being TLS’).

As an alternative, implementations MAY run a pure TLS server, i.e., one that does not expect the initial TLS-
invoking handshake. The IANA service name for this is amqps and the port is SECURE-PORT (5671). Imple-
mentations MAY also choose to run this pure TLS server on other ports, if this is operationally necessary (e.g., to
tunnel through a legacy firewall that only expects TLS traffic on port 443).

5.2.2 Constant Definitions

TLS-MAJOR 1 major protocol version.

TLS-MINOR 0 minor protocol version.

TLS-REVISION 0 protocol revision.

5.3 SASL

To establish a SASL layer, each peer MUST start by sending a protocol header. The protocol header consists
of the upper case ASCII letters “AMQP” followed by a protocol id of three, followed by three unsigned bytes
representing the major, minor, and revision of the specification version (currently 1 (SASL-MAJOR), 0 (SASL-
MINOR), 0 (SASL-REVISION)). In total this is an 8-octet sequence:

4 OCTETS 1 OCTET 1 OCTET 1 OCTET 1 OCTET
+----------+---------+---------+---------+----------+
| "AMQP" | %d3 | major | minor | revision |
+----------+---------+---------+---------+----------+

Figure 5.3: Protocol Header for SASL Security Layer

Other than using a protocol id of three, the exchange of SASL layer headers follows the same rules specified in
the version negotiation section of the transport specification (See Part 2: section 2.2).

The following diagram illustrates the interaction involved in creating a SASL security layer:
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TCP Client TCP Server
=========================================
AMQP%d3.1.0.0 --------->

<--------- AMQP%d3.1.0.0
:
:

<SASL negotiation>
:
:

AMQP%d0.1.0.0 ---------> (over SASL secured connection)
<--------- AMQP%d0.1.0.0

open --------->
<--------- open

Figure 5.4: Establishing a SASL Security Layer

5.3.1 SASL Frames

SASL performatives are framed as per Part 2: section 2.3. A SASL frame has a type code of 0x01. Bytes 6
and 7 of the header are ignored. Implementations SHOULD set these to 0x00. The extended header is ignored.
Implementations SHOULD therefore set DOFF to 0x02.

type: 0x01 - SASL frame

+0 +1 +2 +3
+-----------------------------------+ -.

0 | SIZE | |
+-----------------------------------+ |---> Frame Header

4 | DOFF | TYPE | <IGNORED>*1 | | (8 bytes)
+-----------------------------------+ -’
+-----------------------------------+ -.

8 | ... | |
. . |---> Extended Header
. <IGNORED>*2 . | (DOFF * 4 - 8) bytes
| ... | |
+-----------------------------------+ -’
+-----------------------------------+ -.

4*DOFF | | |
. . |
. . |
. Sasl Mechanisms / Sasl Init . |
. Sasl Challenge / Sasl Response . |---> Frame Body
. Sasl Outcome . | (SIZE - DOFF * 4) bytes
. . |
. . |
. ________| |
| ... | |
+--------------------------+ -’

*1 SHOULD be set to 0x0000
*2 Ignored, so DOFF SHOULD be set to 0x02

Figure 5.5: SASL Frame

The maximum size of a SASL frame is defined by MIN-MAX-FRAME-SIZE. There is no mechanism within the
SASL negotiation to negotiate a different size. The frame body of a SASL frame MUST contain exactly one AMQP
type, whose type encoding MUST have provides=“sasl-frame” . Receipt of an empty frame is an irrecoverable
error.

5.3.2 SASL Negotiation

The peer acting as the SASL server MUST announce supported authentication mechanisms using the sasl-mechanisms

frame. The partner MUST then choose one of the supported mechanisms and initiate a sasl exchange.
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SASL Client SASL Server
================================

<-- SASL-MECHANISMS
SASL-INIT -->

...
<-- SASL-CHALLENGE *

SASL-RESPONSE -->
...
<-- SASL-OUTCOME

--------------------------------
* Note that the SASL
challenge/response step can
occur zero or more times
depending on the details of
the SASL mechanism chosen.

Figure 5.6: SASL Exchange

The peer playing the role of the SASL client and the peer playing the role of the SASL server MUST correspond
to the TCP client and server respectively.

5.3.3 Security Frame Bodies

5.3.3.1 SASL Mechanisms

Advertise available sasl mechanisms.

<type name="sasl-mechanisms" class="composite" source="list" provides="sasl-frame">

<descriptor name="amqp:sasl-mechanisms:list" code="0x00000000:0x00000040"/>

<field name="sasl-server-mechanisms" type="symbol" multiple="true" mandatory="true"/>

</type>

Advertises the available SASL mechanisms that can be used for authentication.

Field Details

sasl-server-mechanisms supported sasl mechanisms

A list of the sasl security mechanisms supported by the sending peer. It is invalid for this list to
be null or empty. If the sending peer does not require its partner to authenticate with it, then it
SHOULD send a list of one element with its value as the SASL mechanism ANONYMOUS. The
server mechanisms are ordered in decreasing level of preference.

5.3.3.2 SASL Init

Initiate sasl exchange.

<type name="sasl-init" class="composite" source="list" provides="sasl-frame">

<descriptor name="amqp:sasl-init:list" code="0x00000000:0x00000041"/>

<field name="mechanism" type="symbol" mandatory="true"/>

<field name="initial-response" type="binary"/>

<field name="hostname" type="string"/>

</type>

Selects the sasl mechanism and provides the initial response if needed.

Field Details

mechanism selected security mechanism
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The name of the SASL mechanism used for the SASL exchange. If the selected mechanism is
not supported by the receiving peer, it MUST close the connection with the authentication-failure
close-code. Each peer MUST authenticate using the highest-level security profile it can handle
from the list provided by the partner.

initial-response security response data

A block of opaque data passed to the security mechanism. The contents of this data are defined
by the SASL security mechanism.

hostname the name of the target host

The DNS name of the host (either fully qualified or relative) to which the sending peer is connect-
ing. It is not mandatory to provide the hostname. If no hostname is provided the receiving peer
SHOULD select a default based on its own configuration.
This field can be used by AMQP proxies to determine the correct back-end service to connect the
client to, and to determine the domain to validate the client’s credentials against.
This field might already have been specified by the server name indication extension as described
in RFC-4366 [RFC4366], if a TLS layer is used, in which case this field SHOULD either be null or
contain the same value. It is undefined what a different value to those already specified means.

5.3.3.3 SASL Challenge

Security mechanism challenge.

<type name="sasl-challenge" class="composite" source="list" provides="sasl-frame">

<descriptor name="amqp:sasl-challenge:list" code="0x00000000:0x00000042"/>

<field name="challenge" type="binary" mandatory="true"/>

</type>

Send the SASL challenge data as defined by the SASL specification.

Field Details

challenge security challenge data

Challenge information, a block of opaque binary data passed to the security mechanism.

5.3.3.4 SASL Response

Security mechanism response.

<type name="sasl-response" class="composite" source="list" provides="sasl-frame">

<descriptor name="amqp:sasl-response:list" code="0x00000000:0x00000043"/>

<field name="response" type="binary" mandatory="true"/>

</type>

Send the SASL response data as defined by the SASL specification.

Field Details

response security response data

A block of opaque data passed to the security mechanism. The contents of this data are defined
by the SASL security mechanism.
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5.3.3.5 SASL Outcome

Indicates the outcome of the sasl dialog.

<type name="sasl-outcome" class="composite" source="list" provides="sasl-frame">

<descriptor name="amqp:sasl-outcome:list" code="0x00000000:0x00000044"/>

<field name="code" type="sasl-code" mandatory="true"/>

<field name="additional-data" type="binary"/>

</type>

This frame indicates the outcome of the SASL dialog. Upon successful completion of the SASL dialog the security
layer has been established, and the peers MUST exchange protocol headers to either start a nested security layer,
or to establish the AMQP connection.

Field Details

code indicates the outcome of the sasl dialog

A reply-code indicating the outcome of the SASL dialog.

additional-data additional data as specified in RFC-4422

The additional-data field carries additional data on successful authentication outcome as specified
by the SASL specification [RFC4422]. If the authentication is unsuccessful, this field is not set.

5.3.3.6 SASL Code

Codes to indicate the outcome of the sasl dialog.

<type name="sasl-code" class="restricted" source="ubyte">

<choice name="ok" value="0"/>

<choice name="auth" value="1"/>

<choice name="sys" value="2"/>

<choice name="sys-perm" value="3"/>

<choice name="sys-temp" value="4"/>

</type>

Valid Values

0 Connection authentication succeeded.

1 Connection authentication failed due to an unspecified problem with the supplied
credentials.

2 Connection authentication failed due to a system error.

3 Connection authentication failed due to a system error that is unlikely to be cor-
rected without intervention.

4 Connection authentication failed due to a transient system error.

5.3.4 Constant Definitions

SASL-MAJOR 1 major protocol version.
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SASL-MINOR 0 minor protocol version.

SASL-REVISION 0 protocol revision.
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XML Document Type Definition (DTD)

1 <?xml version="1.0" encoding="UTF-8"?>

2

3 <!--

4 Copyright OASIS Open 2012. All Rights Reserved.

5

6

7 All capitalized terms in the following text have the meanings assigned to them in the OASIS

8 Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the

9 OASIS website.

10

11

12 This document and translations of it may be copied and furnished to others, and derivative works

13 that comment on or otherwise explain it or assist in its implementation may be prepared, copied,

14 published, and distributed, in whole or in part, without restriction of any kind, provided that

15 the above copyright notice and this section are included on all such copies and derivative works.

16 However, this document itself may not be modified in any way, including by removing the copyright

17 notice or references to OASIS, except as needed for the purpose of developing any document or

18 deliverable produced by an OASIS Technical Committee (in which case the rules applicable to

19 copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate

20 it into languages other than English.

21

22

23 The limited permissions granted above are perpetual and will not be revoked by OASIS or its

24 successors or assigns.

25

26

27 This document and the information contained herein is provided on an "AS IS" basis and OASIS

28 DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE

29 USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF

30 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

31

32

33 OASIS requests that any OASIS Party or any other party that believes it has patent claims that

34 would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS

35 Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant

36 patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS

37 Technical Committee that produced this specification.

38

39

40 OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of

41 ownership of any patent claims that would necessarily be infringed by implementations of this

42 specification by a patent holder that is not willing to provide a license to such patent claims in

43 a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this

44 specification. OASIS may include such claims on its website, but disclaims any obligation to do

45 so.

46

47

48 OASIS takes no position regarding the validity or scope of any intellectual property or other

49 rights that might be claimed to pertain to the implementation or use of the technology described

50 in this document or the extent to which any license under such rights might or might not be

51 available; neither does it represent that it has made any effort to identify any such rights.

52 Information on OASIS’ procedures with respect to rights in any document or deliverable produced

53 by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights
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54 made available for publication and any assurances of licenses to be made available, or the result

55 of an attempt made to obtain a general license or permission for the use of such proprietary

56 rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be

57 obtained from the OASIS TC Administrator. OASIS makes no representation that any information or

58 list of intellectual property rights will at any time be complete, or that any claims in such list

59 are, in fact, Essential Claims.

60

61

62 The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and

63 should be used only to refer to the organization and its official outputs. OASIS welcomes

64 reference to, and implementation and use of, specifications, while reserving the right to enforce

65 its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

66 -->

67

68 <!-- The AMQP specification is defined by a collection of XML source

69 files each conforming to the DTD defined below. Each file

70 specifies a distinct "part" of the specification.

71 -->

72

73 <!-- The amqp element is the root element for each source file and

74 thus identifies a distinct part of the AMQP specification. The

75 amqp element may contain any number of doc or section elements

76 and has the following attributes:

77

78 name - The name of the part of the specification defined within

79 this element.

80 label - A short label for the part of the specication defined

81 within this element

82 -->

83 <!ELEMENT amqp (doc|section)*>

84 <!ATTLIST amqp

85 xmlns CDATA #IMPLIED

86 name CDATA #REQUIRED

87 label CDATA #IMPLIED

88 >

89

90 <!-- The section element identifies a section within a part of the

91 AMQP specification. Sections provide a logical grouping of

92 content and definitions within a part of the specification. The

93 section element may contain any number of doc, definition, or

94 type elements and has the following attributes:

95

96 name - The name of the section.

97 title - A title for the section.

98 label - A short label for the section.

99 -->

100 <!ELEMENT section (doc|definition|type)*>

101 <!ATTLIST section

102 name CDATA #REQUIRED

103 title CDATA #IMPLIED

104 label CDATA #IMPLIED

105 >

106

107 <!-- The definition element formally defines a named constant. The

108 definition element may contain any number of doc elements and has

109 the following attributes:

110

111 name - The name of the constant.

112 value - The value of the constant.

113 label - A short label for the constant.
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114 -->

115 <!ELEMENT definition (doc)*>

116 <!ATTLIST definition

117 name CDATA #REQUIRED

118 value CDATA #REQUIRED

119 label CDATA #IMPLIED

120 >

121

122 <!-- The type element formally defines a semantic type used to

123 exchange data on the wire. Every type definition may have the

124 following attributes:

125

126 name - The name of the type.

127 label - A short description of the type.

128 class - A string identifying what class of type is being

129 defined.

130 provides - A comma separated list of archetypes (see field

131 element).

132

133 There are four different classes of types identified by the

134 "class" attribute: primitive, composite, restricted, and union.

135 All classes of types may contain doc elements.

136

137 A "primitive" type will contain one or more encoding elements

138 that describe how the data is formatted on the wire. Primitive

139 types do not contain descriptor, field, or choice elements.

140

141 A "composite" type definition specifies a new kind of record

142 type, i.e. a type composed of a fixed number of fields whose

143 values are each of a specific type. A composite type does not

144 have a new encoding, but is sent on the wire as a list annotated

145 by a specific descriptor value that identifies it as a

146 representation of the defined composite type. A composite type

147 definition will contain a descriptor and zero or more field

148 elements. Composite types do not contain encoding or choice

149 elements. The source attribute of a composite type will always be

150 "list", other values are reserved for future use.

151

152 A "restricted" type definition specifies a new kind of type whose

153 values are restricted to a subset of the values that may be

154 represented with another type. The source attribute identifies

155 the base type from which a restricted type is derived. A

156 restricted type may have a descriptor element in which case it is

157 identified by a descriptor on the wire. The values permitted by a

158 restricted type may be specified either via documentation, or

159 directly limited to a fixed number of values by the choice

160 elements contained within the definition.

161

162 The "union" class of types is currently reserved.

163 -->

164 <!ELEMENT type (encoding|descriptor|field|choice|doc)*>

165 <!ATTLIST type

166 name CDATA #REQUIRED

167 class (primitive|composite|restricted|union) #REQUIRED

168 source CDATA #IMPLIED

169 provides CDATA #IMPLIED

170 label CDATA #IMPLIED

171 >

172

173 <!-- The encoding element defines how a primitive type is encoded. The
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174 specification defines 4 general categories of encodings: fixed,

175 variable, compound, or array. A specific encoding provides

176 further details of how data is formatted within its general

177 category.

178

179 name - The name of the encoding.

180 label - A short description of the encoding.

181 code - The numeric value that prefixes the encoded data on

182 the wire.

183 category - The category of the encoding: "fixed", "variable",

184 "compound", or "array".

185 width - The width of the encoding or the size/count

186 prefixes depending on the category.

187 -->

188 <!ELEMENT encoding (doc)*>

189 <!ATTLIST encoding

190 name CDATA #IMPLIED

191 label CDATA #IMPLIED

192 code CDATA #REQUIRED

193 category (fixed|variable|compound|array) #REQUIRED

194 width CDATA #IMPLIED

195 >

196

197 <!-- The descriptor element specifies what annotation is used to

198 identify encoded values as representations of a described type.

199

200 name - A symbolic name for the representation.

201 code - The numeric value.

202 -->

203 <!ELEMENT descriptor (doc)*>

204 <!ATTLIST descriptor

205 name CDATA #IMPLIED

206 code CDATA #IMPLIED

207 >

208

209 <!-- The field element identifies a field within a composite type.

210 Every field has the following attributes:

211

212 name - A symbolic name that uniquely identifies the field

213 within the type.

214 type - The type of the field. This attribute defines the

215 range of values that are permitted to appear in

216 this field. It may name a specific type, in which

217 case the values are restricted to that type, or it

218 may be the special character "*", in which case a

219 value of any type is permitted. In the latter case

220 the range of values may be further restricted by

221 the requires attribute.

222 requires - A comma separated list of archetypes. Field values

223 are restricted to types providing at least one of

224 the specified archetypes.

225 default - A default value for the field if no value is encoded.

226 label - A short description of the field.

227 mandatory - "true" iff a non null value for the field is always encoded.

228 multiple - "true" iff the field may have multiple values of its specified type.

229 -->

230 <!ELEMENT field (doc)*>

231 <!ATTLIST field

232 name CDATA #REQUIRED

233 type CDATA #IMPLIED
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234 requires CDATA #IMPLIED

235 default CDATA #IMPLIED

236 label CDATA #IMPLIED

237 mandatory CDATA #IMPLIED

238 multiple CDATA #IMPLIED

239 >

240

241 <!-- The choice element identifies a legal value for a restricted

242 type. The choice element has the following attributes:

243

244 name - A symbolic name for the value.

245 value - The permitted value.

246 -->

247 <!ELEMENT choice (doc)*>

248 <!ATTLIST choice

249 name CDATA #REQUIRED

250 value CDATA #REQUIRED

251 >

252

253 <!-- The doc element identifies the basic unit of documentation that

254 may appear at nearly any point within the specification. A doc

255 element may optionally have a symbolic name and a title for cross

256 reference:

257

258 name - The symbolic name of the doc element.

259 title - The title of the doc element.

260

261 A doc element may contain any number of the following

262 presentational sub elements:

263

264 doc - nested doc elements

265 p - paragraphs

266 ul - unordered lists

267 ol - ordered lists

268 dl - definition lists

269 picture - preformatted ascii art diagrams

270 -->

271

272 <!ELEMENT doc (doc|p|ul|ol|dl|picture)*>

273 <!ATTLIST doc

274 name CDATA #IMPLIED

275 title CDATA #IMPLIED

276 >

277

278 <!-- A paragraph element may be optionally titled and contains

279 freeform text with the following markup elements:

280

281 anchor - a reference point

282 xref - a cross reference

283 b - bold text

284 i - italic text

285 term - a formal term

286 sup - superscript

287 sub - subscript

288 br - line break

289 -->

290 <!ELEMENT p (#PCDATA|anchor|xref|b|i|term|sup|sub|br)*>

291 <!ATTLIST p

292 title CDATA #IMPLIED

293 >
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294

295 <!-- A cross reference. -->

296 <!ELEMENT xref (#PCDATA)>

297 <!ATTLIST xref

298 type CDATA #IMPLIED

299 name CDATA #REQUIRED

300 choice CDATA #IMPLIED

301 >

302

303 <!-- A reference point. -->

304 <!ELEMENT anchor (#PCDATA)>

305 <!ATTLIST anchor

306 name CDATA #REQUIRED

307 >

308

309 <!-- A line break. -->

310 <!ELEMENT br EMPTY>

311

312 <!-- A span of boldface markup. -->

313 <!ELEMENT b (#PCDATA|sub|sup|i|br|anchor)*>

314 <!-- A span of italic markup. -->

315 <!ELEMENT i (#PCDATA|sub|sup|b|br|anchor)*>

316 <!-- A formal term. -->

317 <!ELEMENT term (#PCDATA)>

318 <!-- A span of superscript markup. -->

319 <!ELEMENT sup (#PCDATA|sup|sub|b|i)*>

320 <!-- A span of subscript markup. -->

321 <!ELEMENT sub (#PCDATA|sup|sub|b|i)*>

322

323 <!-- An unordered list. -->

324 <!ELEMENT ul (li)*>

325 <!ATTLIST ul

326 title CDATA #IMPLIED

327 >

328 <!-- An ordered list. -->

329 <!ELEMENT ol (li)*>

330 <!ATTLIST ol

331 title CDATA #IMPLIED

332 >

333

334 <!-- An item in an ordered or unordered list. -->

335 <!ELEMENT li (#PCDATA|p|ul|dl)*>

336

337 <!-- A definition list. -->

338 <!ELEMENT dl (dt, dd)*>

339 <!ATTLIST dl

340 title CDATA #IMPLIED

341 >

342 <!-- A definition term. -->

343 <!ELEMENT dt (#PCDATA)>

344 <!-- A definition description -->

345 <!ELEMENT dd (p|picture|ul|ol)*>

346

347 <!-- A preformatted ascii art diagram. -->

348 <!ELEMENT picture (#PCDATA)>

349 <!ATTLIST picture

350 title CDATA #IMPLIED

351 >
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